A Complex 6p25 Rearrangement in a Child With Multiple Epiphyseal Dysplasia
Bedoyan, Jirair K.; Lesperance, Marci M.; Ackley, Todd; Iyer, Ramaswamy K.; Innis, Jeffrey W.; Misra, Vinod K.
2015-01-01
Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ~2.21 Mb interstitial deletion, a ~240 kb terminal deletion, and a 70–80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5′ end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions. PMID:21204225
Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin
2011-01-01
SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314
NASA Astrophysics Data System (ADS)
Iwasaki, M.; Otani, R.; Ito, M.; Kamimura, M.
2016-05-01
We formulate the method of the absorbing boundary condition (ABC) in the coupled-rearrangement-channels variational method (CRCMV) for the three-body problem. In the present study, we handle the simple three-boson system, and the absorbing potential is introduced in the Jacobi coordinate in the individual rearrangement channels. The resonance parameters and the strength of the monopole breakup are compared with the complex scaling method (CSM). We have found that the CRCVM + ABC method nicely works in the threebody problem with the rearrangement channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuck-Muller, C.M.; Li, Shibo; Chen, H.
Intrachromosomal rearrangements usually result from three or fewer breaks. We report a complex intrachromosomal rearrangement resulting from five breaks in one chromosome 10 of a phenotypically normal father of two developmentally delayed children. GTG-banding analysis of the father`s rearranged chromosome 10 suggested an initial pericentric inversion followed by an insertion from the short arm into the terminal band of the long arm. To our knowledge, this rearrangement is the most complex ever reported in a single chromosome. Both children inherited a recombinant chromosome 10 with loss of the insertion and the segment distal to it. Mechanisms for both rearrangements aremore » proposed. 7 refs., 2 figs.« less
Aristidou, Constantia; Theodosiou, Athina; Ketoni, Andria; Bak, Mads; Mehrjouy, Mana M; Tommerup, Niels; Sismani, Carolina
2018-01-01
Precise characterization of apparently balanced complex chromosomal rearrangements in non-affected individuals is crucial as they may result in reproductive failure, recurrent miscarriages or affected offspring. We present a family, where the non-affected father and daughter were found, using FISH and karyotyping, to be carriers of a three-way complex chromosomal rearrangement [t(6;7;10)(q16.2;q34;q26.1), de novo in the father]. The family suffered from two stillbirths, one miscarriage, and has a son with severe intellectual disability. In the present study, the family was revisited using whole-genome mate-pair sequencing. Interestingly, whole-genome mate-pair sequencing revealed a cryptic breakpoint on derivative (der) chromosome 6 rendering the rearrangement even more complex. FISH using a chromosome (chr) 6 custom-designed probe and a chr10 control probe confirmed that the interstitial chr6 segment, created by the two chr6 breakpoints, was translocated onto der(10). Breakpoints were successfully validated with Sanger sequencing, and small imbalances as well as microhomology were identified. Finally, the complex chromosomal rearrangement breakpoints disrupted the SIM1 , GRIK2 , CNTNAP2 , and PTPRE genes without causing any phenotype development. In contrast to the majority of maternally transmitted complex chromosomal rearrangement cases, our study investigated a rare case where a complex chromosomal rearrangement, which most probably resulted from a Type IV hexavalent during the pachytene stage of meiosis I, was stably transmitted from a fertile father to his non-affected daughter. Whole-genome mate-pair sequencing proved highly successful in identifying cryptic complexity, which consequently provided further insight into the meiotic segregation of chromosomes and the increased reproductive risk in individuals carrying the specific complex chromosomal rearrangement. We propose that such complex rearrangements should be characterized in detail using a combination of conventional cytogenetic and NGS-based approaches to aid in better prenatal preimplantation genetic diagnosis and counseling in couples with reproductive problems.
Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo
2012-01-01
Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714
Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin
2012-06-28
Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Serdyukova, Natalya A.; Perelman, Polina L.; Pavlova, Svetlana V.; Bulatova, Nina S.; Golenishchev, Feodor N.; Stanyon, Roscoe
2017-01-01
It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected. PMID:28867774
Talkowski, Michael E; Ernst, Carl; Heilbut, Adrian; Chiang, Colby; Hanscom, Carrie; Lindgren, Amelia; Kirby, Andrew; Liu, Shangtao; Muddukrishna, Bhavana; Ohsumi, Toshiro K; Shen, Yiping; Borowsky, Mark; Daly, Mark J; Morton, Cynthia C; Gusella, James F
2011-04-08
The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwasaki, M.; Otani, R.; Ito, M.; Kamimura, M.
2016-06-01
We formulate the absorbing boundary condition (ABC) in the coupled rearrangement-channels variational method (CRCVM) for the three-body problem. The absorbing potential is introduced in the system of the identical three-bosons, on which the boson symmetry is explicitly imposed by considering the rearrangement channels. The resonance parameters and the strength of the monopole breakup are calculated by the CRCVM + ABC method, and the results are compared with the complex scaling method (CSM). We have found that the results of the ABC method are consistent with the CSM results. The effect of the boson symmetry, which is often neglected in the calculation of the triple α reactions, is also discussed.
The Robustness of a Signaling Complex to Domain Rearrangements Facilitates Network Evolution
Sato, Paloma M.; Yoganathan, Kogulan; Jung, Jae H.; Peisajovich, Sergio G.
2014-01-01
The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. PMID:25490747
Oshima, Junko; Lee, Jennifer A; Breman, Amy M; Fernandes, Priscilla H; Babovic-Vuksanovic, Dusica; Ward, Patricia A; Wolfe, Lynne A; Eng, Christine M; Del Gaudio, Daniela
2011-07-01
Mucopolysaccharidosis type II (MPS II) is caused by mutations in the IDS gene, which encodes the lysosomal enzyme iduronate-2-sulfatase. In ∼20% of MPS II patients the disorder is caused by gross IDS structural rearrangements. We identified two male cases harboring complex rearrangements involving the IDS gene and the nearby pseudogene, IDSP1, which has been annotated as a low-copy repeat (LCR). In both cases the rearrangement included a partial deletion of IDS and an inverted insertion of the neighboring region. In silico analyses revealed the presence of repetitive elements as well as LCRs at the junctions of rearrangements. Our models illustrate two alternative consequences of rearrangements initiated by non-allelic homologous recombination of LCRs: resolution by a second recombination event (that is, Alu-mediated recombination), or resolution by non-homologous end joining repair. These complex rearrangements have the potential to be recurrent and may be present among those MSP II cases with previously uncharacterized aberrations involving IDS.
Genomecmp: computer software to detect genomic rearrangements using markers
NASA Astrophysics Data System (ADS)
Kulawik, Maciej; Nowak, Robert M.
2017-08-01
Detection of genomics rearrangements is a tough task, because of the size of data to be processed. As genome sequences may consist of hundreds of millions symbols, it is not only practically impossible to compare them by hand, but it is also complex problem for computer software. The way to significantly accelerate the process is to use rearrangement detection algorithm based on unique short sequences called markers. The algorithm described in this paper develops markers using base genome and find the markers positions on other genome. The algorithm has been extended by support for ambiguity symbols. Web application with graphical user interface has been created using three-layer architecture, where users could run the task simultaneously. The accuracy and efficiency of proposed solution has been studied using generated and real data.
Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina
2016-11-01
Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5'-part from the 3'-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms.
Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina
2016-01-01
Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5′-part from the 3′-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms. PMID:27329736
Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient.
Plaisancié, Julie; Kleinfinger, Pascale; Cances, Claude; Bazin, Anne; Julia, Sophie; Trost, Detlef; Lohmann, Laurence; Vigouroux, Adeline
2014-10-01
Structural alterations in chromosomes are a frequent cause of cancers and congenital diseases. Recently, the phenomenon of chromosome crisis, consisting of a set of tens to hundreds of clustered genomic rearrangements, localized in one or a few chromosomes, was described in cancer cells under the term chromothripsis. Better knowledge and recognition of this catastrophic chromosome event has brought to light two distinct entities, chromothripsis and chromoanasynthesis. The complexity of these rearrangements and the original descriptions in tumor cells initially led to the thought that it was an acquired anomaly. In fact, a few patients have been reported with constitutional chromothripsis or chromoanasynthesis. Using microarray we identified a very complex chromosomal rearrangement in a patient who had a cytogenetically visible rearrangement of chromosome 18. The rearrangement contained more than 15 breakpoints localized on a single chromosome. Our patient displayed intellectual disability, behavioral troubles and craniofacial dysmorphism. Interestingly, the succession of duplications and triplications identified in our patient was not clustered on a single chromosomal region but spread over the entire chromosome 18. In the light of this new spectrum of chromosomal rearrangements, this report outlines the main features of these catastrophic events and discusses the underlying mechanism of the complex chromosomal rearrangement identified in our patient, which is strongly evocative of a chromoanasynthesis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Lee, Sang-Guk; Park, Tae Sung; Cho, Sun Young; Lim, Gayoung; Park, Gwang Jin; Oh, Seung Hwan; Cho, Eun Hae; Chong, So Young; Huh, Ji Young
2011-01-01
SET-NUP214 rearrangements have been rarely reported in T-cell acute lymphoblastic leukemia (T-ALL), acute undifferentiated leukemia, and acute myeloid leukemia, and most documented cases have been associated with normal karyotypes in conventional cytogenetic analyses. Here, we describe a novel case of T-ALL associated with a mediastinal mass and a SET-NUP214 rearrangement, which was masked by a complex karyotype at the time of initial diagnosis. Using multiplex reverse transcriptase-polymerase chain reaction analysis, we detected a cryptic SET-NUP214 rearrangement in our patient. As only 11 cases (including the present study) of T-ALL with SET-NUP214 rearrangement have been reported, the clinical features and treatment outcomes have not been fully determined. Further studies are necessary to evaluate the incidence of SET-NUP214 rearrangement in T-ALL patients and the treatment responses as well as prognosis of these patients.
Soheili, Arash; Tambar, Uttam K
2013-10-04
A formal total synthesis of (±)-amathaspiramide F through a tandem palladium-catalyzed allylic amination/[2,3]-Stevens rearrangement is reported. The unexpected diastereoselectivity of the [2,3]-Stevens rearrangement was controlled by the substitution patterns of an aromatic ring. This discovery represents a new stereocontrolling element for [2,3]-sigmatropic rearrangements in complex molecular settings.
MECP2 duplications in six patients with complex sex chromosome rearrangements
Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai
2011-01-01
Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712
ERIC Educational Resources Information Center
Zwaigenbaum, L; Sonnenberg, L. K.; Heshka, T.; Eastwood, S.; Xu, J.
2005-01-01
We report a 4-year-old girl with a "de novo", apparently balanced complex chromosome rearrangement. She initially presented for assessment of velopharyngeal insufficiency due to hypernasal speech. She has distinctive facial features (long face, broad nasal bridge, and protuberant ears with simplified helices), bifid uvula, strabismus,…
Chromosome rearrangements via template switching between diverged repeated sequences
Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.
2014-01-01
Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035
Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures
2013-01-01
For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu–phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(111). The two encountered interfaces are similar, as in both cases there would be no bonding without van der Waals interactions. Still, they are also distinctly different, as only at the Ag(111)–PTCDA interface do massive charge-rearrangements occur. Using recently developed theoretical tools, we show that it has become possible to provide atomistic insight into the physical and chemical processes in this comparatively complex nanostructure distinguishing between interactions involving local rearrangements of the charge density and long-range van der Waals attraction. PMID:23447750
Rearrangement moves on rooted phylogenetic networks
Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine
2017-01-01
Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction. PMID:28763439
A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons
Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta
2012-01-01
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276
Molecular Innovation in Ciliates with Complex Genome Rearrangements
NASA Astrophysics Data System (ADS)
Neme, R.; Landweber, L. F.
2017-07-01
We study molecular innovation in several ciliate species with unique massive genome rearrangements to understand how a radically distinct genome architecture can shape the process of acquiring new functions, genes and structures.
Havelange, Violaine; Ameye, Geneviève; Théate, Ivan; Callet-Bauchu, Evelyne; Mugneret, Francine; Michaux, Lucienne; Dastugue, Nicole; Penther, Dominique; Barin, Carole; Collonge-Rame, Marie-Agnès; Baranger, Laurence; Terré, Christine; Nadal, Nathalie; Lippert, Eric; Laï, Jean-Luc; Cabrol, Christine; Tigaud, Isabelle; Herens, Christian; Hagemeijer, Anne; Raphael, Martine; Libouton, Jeanne-Marie; Poirel, Hélène A
2013-01-01
We previously showed that complex karyotypes (CK) and chromosome 13q abnormalities have an adverse prognostic impact in childhood Burkitt lymphomas/leukemias (BL) and diffuse large B-cell lymphomas (DLBCL). The aim of our study was to identify recurrent alterations associated with MYC rearrangements in aggressive B-cell lymphomas with CK. Multicolor fluorescence in situ hybridization (M-FISH) was performed in 84 patient samples (59 adults and 25 children), including 37 BL (13 lymphomas and 24 acute leukemias), 12 DLBCL, 28 B-cell lymphomas with intermediate features (DLBCL/BL), 4 B-cell precursor acute lymphoblastic leukemias (BCP-ALL), and 3 unclassifiable B-cell lymphomas. New (cytogenetically undetected) abnormalities were identified in 80% of patients. We also refined one-third of the chromosomal aberrations detected by karyotyping. M-FISH proved to be more useful in identifying chromosomal partners involved in unbalanced translocations and in revealing greater complexity of 13q rearrangements. Most of the newly identified or refined recurrent alterations involved 1q, 13q and 3q (gains/losses), 7q and 18q (gains), or 6q (losses), suggesting that these secondary aberrations may play a role in lymphomagenesis. Several patterns of genomic aberrations were identified: 1q gains in BL, trisomies 7 in DLBCL, and 18q-translocations in adult non-BL. BCP-ALL usually displayed an 18q21 rearrangement. BL karyotypes were less complex and aneuploid than those of other MYC-rearranged lymphomas. BCP-ALL and DLBCL/BL were associated with a higher rate of early death than BL and DLBCL. These findings support the categorization of DLBCL/BL as a distinct entity and suggest that BL with CK are indeed different from other aggressive MYC-rearranged lymphomas, which usually show greater genetic complexity. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
A sequence-based survey of the complex structural organization of tumor genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav
2008-04-03
The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison ofmore » the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.« less
[3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products†
Ilardi, Elizabeth A.; Stivala, Craig E.
2014-01-01
Among the fundamental chemical transformations in organic synthesis, the [3,3]-sigmatropic rearrangement occupies a unique position as a powerful, reliable, and well-defined method for the stereoselective construction of carbon–carbon or carbon–heteroatom bonds. While many other reactions can unite two subunits and create a new bond, the strengths of sigmatropic rearrangements derive from their ability to enable structural reorganization with unmatched build-up of complexity. Recent applications that illustrate [3,3]-sigmatropic processes as a key concept in the synthesis of complex natural products are described in this tutorial review, covering literature from about 2001 through early 2009. PMID:19847347
Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S
2010-07-14
We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.
Hemmat, Morteza; Yang, Xiaojing; Chan, Patricia; McGough, Robert A; Ross, Leslie; Mahon, Loretta W; Anguiano, Arturo L; Boris, Wang T; Elnaggar, Mohamed M; Wang, Jia-Chi J; Strom, Charles M; Boyar, Fatih Z
2014-01-01
Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient's developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.
The genomic complexity of primary human prostate cancer
Berger, Michael F.; Lawrence, Michael S.; Demichelis, Francesca; Drier, Yotam; Cibulskis, Kristian; Sivachenko, Andrey Y.; Sboner, Andrea; Esgueva, Raquel; Pflueger, Dorothee; Sougnez, Carrie; Onofrio, Robert; Carter, Scott L.; Park, Kyung; Habegger, Lukas; Ambrogio, Lauren; Fennell, Timothy; Parkin, Melissa; Saksena, Gordon; Voet, Douglas; Ramos, Alex H.; Pugh, Trevor J.; Wilkinson, Jane; Fisher, Sheila; Winckler, Wendy; Mahan, Scott; Ardlie, Kristin; Baldwin, Jennifer; Simons, Jonathan W.; Kitabayashi, Naoki; MacDonald, Theresa Y.; Kantoff, Philip W.; Chin, Lynda; Gabriel, Stacey B.; Gerstein, Mark B.; Golub, Todd R.; Meyerson, Matthew; Tewari, Ashutosh; Lander, Eric S.; Getz, Gad; Rubin, Mark A.; Garraway, Levi A.
2010-01-01
Prostate cancer is the second most common cause of male cancer deaths in the United States. Here we present the complete sequence of seven primary prostate cancers and their paired normal counterparts. Several tumors contained complex chains of balanced rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumors lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumors contained rearrangements that disrupted CADM2, and four harbored events disrupting either PTEN (unbalanced events), a prostate tumor suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies to engage prostate tumorigenic mechanisms. PMID:21307934
Lim, Gayoung; Choi, Jong Rak; Kim, Min Jin; Kim, So Young; Lee, Hee Joo; Suh, Jin-Tae; Yoon, Hwi-Joong; Lee, Juhie; Lee, Sanggyu; Lee, Woo-In; Park, Tae Sung
2010-06-01
We present a novel case of acute myeloid leukemia with an NPM1/MLF1 rearrangement in a 78-year-old Korean woman. The bone marrow chromosome study showed a complex karyotype: 46,XX,t(2;13) (q13;q32),der(3)t(3;5)(q25.1;q34),der(5)del(5)(?q31q34)t(3;5),inv(9)(p11q13)c,del(20)(q11.2)[13]/49,idem,+5,+8,+der(13)t(2;13)[7]. Multiplex gene rearrangement testing, cloning, and sequencing analyses revealed an NPM1/MLF1 fusion rearrangement between exon 6 of NPM1 (ENSG00000181163) and exon 2 of MLF1 (ENSG00000178053). Although t(3;5)(q25.1;q34) or the NPM1/MLF1 rearrangement has been reported mostly as a sole karyotypic abnormality in younger patients, it should also be considered in elderly patients with complex chromosomal abnormalities in acute myeloid leukemia or myelodysplastic syndrome. Copyright 2010 Elsevier Inc. All rights reserved.
The MLL recombinome of acute leukemias in 2013
Meyer, C; Hofmann, J; Burmeister, T; Gröger, D; Park, T S; Emerenciano, M; Pombo de Oliveira, M; Renneville, A; Villarese, P; Macintyre, E; Cavé, H; Clappier, E; Mass-Malo, K; Zuna, J; Trka, J; De Braekeleer, E; De Braekeleer, M; Oh, S H; Tsaur, G; Fechina, L; van der Velden, V H J; van Dongen, J J M; Delabesse, E; Binato, R; Silva, M L M; Kustanovich, A; Aleinikova, O; Harris, M H; Lund-Aho, T; Juvonen, V; Heidenreich, O; Vormoor, J; Choi, W W L; Jarosova, M; Kolenova, A; Bueno, C; Menendez, P; Wehner, S; Eckert, C; Talmant, P; Tondeur, S; Lippert, E; Launay, E; Henry, C; Ballerini, P; Lapillone, H; Callanan, M B; Cayuela, J M; Herbaux, C; Cazzaniga, G; Kakadiya, P M; Bohlander, S; Ahlmann, M; Choi, J R; Gameiro, P; Lee, D S; Krauter, J; Cornillet-Lefebvre, P; Te Kronnie, G; Schäfer, B W; Kubetzko, S; Alonso, C N; zur Stadt, U; Sutton, R; Venn, N C; Izraeli, S; Trakhtenbrot, L; Madsen, H O; Archer, P; Hancock, J; Cerveira, N; Teixeira, M R; Lo Nigro, L; Möricke, A; Stanulla, M; Schrappe, M; Sedék, L; Szczepański, T; Zwaan, C M; Coenen, E A; van den Heuvel-Eibrink, M M; Strehl, S; Dworzak, M; Panzer-Grümayer, R; Dingermann, T; Klingebiel, T; Marschalek, R
2013-01-01
Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements. PMID:23628958
Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S
2016-01-01
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001 PMID:27892853
Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C
2018-05-29
We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.
Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.
2015-01-01
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089
2014-01-01
Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient. PMID:25478007
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes
NASA Astrophysics Data System (ADS)
Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.
Loo, Rachel R Ogorzalek; Loo, Joseph A
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, C.; Grubs, R.E.; Jewett, T.
Complex chromosome rearrangements (CCR) are rare structural rearrangements. Currently six cases of prenatally diagnosed balanced de novo CCR have been described. We present two new cases of prenatally ascertained balanced de novo CCR. In the first case, an amniocentesis revealed a balanced de novo three-way CCR involving chromosomes 5,6, and 11 with a pericentric inversion of chromosome 5 [four breaks]. In the second case a balanced de novo rearrangement was identified by amniocentesis which involved a reciprocal translocation between chromosomes 3 and 8 and a CCR involving chromosomes 6,7, and 18 [six breaks]. The use of whole chromosome painting helpedmore » elucidate the nature of these rearrangements. A review of the postnatally ascertained cases suggests that most patients have congenital anomalies, minor anomalies, and/or developmental delay/mental retardation. In addition, there appears to be a relationship between the number of chromosome breaks and the extent of phenotypic effects. The paucity of information regarding prenatally diagnosed CCR and the bias of ascertainment of postnatal CCR cases poses a problem in counseling families. 38 refs., 3 figs., 4 tabs.« less
Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.
Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej
2017-10-01
Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.
Wu, Chung-Shien; Chaw, Shu-Miaw
2014-04-01
Although conifers are of immense ecological and economic value, bioengineering of their chloroplasts remains undeveloped. Understanding the chloroplast genomic organization of conifers can facilitate their bioengineering. Members of the conifer II clade (or cupressophytes) are highly diverse in both morphologic features and chloroplast genomic organization. We compared six cupressophyte chloroplast genomes (cpDNAs) that represent four of the five cupressophyte families, including three genomes that are first reported here (Agathis dammara, Calocedrus formosana and Nageia nagi). The six cupressophyte cpDNAs have lost a pair of large inverted repeats (IRs) and vary greatly in size, organization and tRNA copies. We demonstrate that cupressophyte cpDNAs have evolved towards reduced size, largely due to shrunken intergenic spacers. In cupressophytes, cpDNA rearrangements are capable of extending intergenic spacers, and synonymous mutations are negatively associated with the size and frequency of rearrangements. The variable cpDNA sizes of cupressophytes may have been shaped by mutational burden and genomic rearrangements. On the basis of cpDNA organization, our analyses revealed that in gymnosperms, cpDNA rearrangements are phylogenetically informative, which supports the 'gnepines' clade. In addition, removal of a specific IR influences the minimal rearrangements required for the gnepines and cupressophyte clades, whereby Pinaceae favours the removal of IRB but cupressophytes exclusion of IRA. This result strongly suggests that different IR copies have been lost from conifers I and II. Our data help understand the complexity and evolution of cupressophyte cpDNAs. © 2013 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology, The Association of Applied Biologists and John Wiley & Sons Ltd.
Catalytic intermolecular carbon electrophile induced semipinacol rearrangement.
Zhang, Qing-Wei; Zhang, Xiao-Bo; Li, Bao-Sheng; Xiang, Kai; Zhang, Fu-Min; Wang, Shao-Hua; Tu, Yong-Qiang
2013-02-25
A catalytic intermolecular carbon electrophile induced semipinacol rearrangement was realized and the asymmetric version was also preliminarily accomplished with 92% and 82% ee. The complex tricyclic system architecture with four continuous stereogenic centers could be achieved from simple starting materials in a single step under mild conditions.
Mouka, Aurélie; Izard, Vincent; Tachdjian, Gérard; Brisset, Sophie; Yates, Frank; Mayeur, Anne; Drévillon, Loïc; Jarray, Rafika; Leboulch, Philippe; Maouche-Chrétien, Leila; Tosca, Lucie
2017-01-01
Despite progress in human reproductive biology, the cause of male infertility often remains unknown, due to the lack of appropriate and convenient in vitro models of meiosis. Induced pluripotent stem cells (iPSCs) derived from the cells of infertile patients could provide a gold standard model for generating primordial germ cells and studying their development and the process of spermatogenesis. We report the characterization of a complex chromosomal rearrangement (CCR) in an azoospermic patient, and the successful generation of specific-iPSCs from PBMC-derived erythroblasts. The CCR was characterized by karyotype, fluorescence in situ hybridization and oligonucleotide-based array-comparative genomic hybridization. The CCR included five breakpoints and was caused by the inverted insertion of a chromosome 12 segment into the short arm of one chromosome 7 and a pericentric inversion of the structurally rearranged chromosome 12. Gene mapping of the breakpoints led to the identification of a candidate gene, SYCP3. Erythroblasts from the patient were reprogrammed with Sendai virus vectors to generate iPSCs. We assessed iPSC pluripotency by RT-PCR, immunofluorescence staining and teratoma induction. The generation of specific-iPSCs from patients with a CCR provides a valuable in vitro genetic model for studying the mechanisms by which chromosomal abnormalities alter meiosis and germ cell development. PMID:28045072
Vieira-da-Silva, Ana; Louzada, Sandra; Adega, Filomena; Chaves, Raquel
2015-01-01
Compared to humans and other mammals, rodent genomes, specifically Muroidea species, underwent intense chromosome reshuffling in which many complex structural rearrangements occurred. This fact makes them preferential animal models for studying the process of karyotype evolution. Here, we present the first combined chromosome comparative maps between 2 Cricetidae species, Cricetus cricetus and Peromyscus eremicus, and the index species Mus musculus and Rattus norvegicus. Comparative chromosome painting was done using mouse and rat paint probes together with in silico analysis from the Ensembl genome browser database. Hereby, evolutionary events (inter- and intrachromosomal rearrangements) that occurred in C. cricetus and P. eremicus since the putative ancestral Muroidea genome could be inferred, and evolutionary breakpoint regions could be detected. A colocalization of constitutive heterochromatin and evolutionary breakpoint regions in each genome was observed. Our results suggest the involvement of constitutive heterochromatin in karyotype restructuring of these species, despite the different levels of conservation of the C. cricetus (derivative) and P. eremicus (conserved) genomes. © 2015 S. Karger AG, Basel.
Constitutional Chromoanagenesis of Distal 13q in a Young Adult with Recurrent Strokes.
Burnside, Rachel D; Harris, April; Speyer, Darrow; Burgin, W Scott; Rose, David Z; Sanchez-Valle, Amarilis
2016-01-01
Constitutional chromoanagenesis events, which include chromoanasynthesis and chromothripsis and result in highly complex rearrangements, have been reported for only a few individuals. While rare, these phenomena have likely been underestimated in a constitutional setting as technologies that can accurately detect such complexity are relatively new to the mature field of clinical cytogenetics. G-banding is not likely to accurately identify chromoanasynthesis or chromothripsis, since the banding patterns of chromosomes are likely to be misidentified or oversimplified due to a much lower resolution. We describe a patient who was initially referred for cytogenetic testing as a child for speech delay. As a young adult, he was referred again for recurrent strokes. Chromosome analysis was performed, and the rearrangement resembled a simple duplication of 13q32q34. However, SNP microarray analysis showed a complex pattern of copy number gains and a loss consistent with chromoanasynthesis involving distal 13q (13q32.1q34). This report emphasizes the value of performing microarray analysis for individuals with abnormal or complex chromosome rearrangements. © 2016 S. Karger AG, Basel.
Isolation of Betulin and Rearrangement to Allobetulin: A Biomimetic Natural Product Synthesis
ERIC Educational Resources Information Center
Green, Brian; Bentley, Michael D.; Chung, Bong Y.; Lynch, Nicholas G.; Jensen, Bruce L.
2007-01-01
The triterpenes are a diverse class of widely distributed natural products derived from squalene. Various cyclization and subsequent rearrangement reactions produce many complex structural types. These compounds frequently display a wide divergence of biological properties. For example the pentacyclic triterpene, betulin, is isolated from white…
Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer.
Pritchard, Colin C; Morrissey, Colm; Kumar, Akash; Zhang, Xiaotun; Smith, Christina; Coleman, Ilsa; Salipante, Stephen J; Milbank, Jennifer; Yu, Ming; Grady, William M; Tait, Jonathan F; Corey, Eva; Vessella, Robert L; Walsh, Tom; Shendure, Jay; Nelson, Peter S
2014-09-25
A hypermutated subtype of advanced prostate cancer was recently described, but prevalence and mechanisms have not been well-characterized. Here we find that 12% (7 of 60) of advanced prostate cancers are hypermutated, and that all hypermutated cancers have mismatch repair gene mutations and microsatellite instability (MSI). Mutations are frequently complex MSH2 or MSH6 structural rearrangements rather than MLH1 epigenetic silencing. Our findings identify parallels and differences in the mechanisms of hypermutation in prostate cancer compared with other MSI-associated cancers.
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication.
Sakai, Yusuke; Kawachi, Kengo; Terada, Yutaka; Omori, Hiroko; Matsuura, Yoshiharu; Kamitani, Wataru
2017-10-01
Infection with coronavirus rearranges the host cell membrane to assemble a replication/transcription complex in which replication of the viral genome and transcription of viral mRNA occur. Although coexistence of nsp3 and nsp4 is known to cause membrane rearrangement, the mechanisms underlying the interaction of these two proteins remain unclear. We demonstrated that binding of nsp4 with nsp3 is essential for membrane rearrangement and identified amino acid residues in nsp4 responsible for the interaction with nsp3. In addition, we revealed that the nsp3-nsp4 interaction is not sufficient to induce membrane rearrangement, suggesting the participation of other factors such as host proteins. Finally, we showed that loss of the nsp3-nsp4 interaction eliminated viral replication by using an infectious cDNA clone and replicon system of SARS-CoV. These findings provide clues to the mechanism of the replication/transcription complex assembly of SARS-CoV and could reveal an antiviral target for the treatment of betacoronavirus infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Chromosome-specific staining to detect genetic rearrangements
Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol
2013-04-09
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
De Gregori, M; Ciccone, R; Magini, P; Pramparo, T; Gimelli, S; Messa, J; Novara, F; Vetro, A; Rossi, E; Maraschio, P; Bonaglia, M C; Anichini, C; Ferrero, G B; Silengo, M; Fazzi, E; Zatterale, A; Fischetto, R; Previderé, C; Belli, S; Turci, A; Calabrese, G; Bernardi, F; Meneghelli, E; Riegel, M; Rocchi, M; SGuerneri; Lalatta, F; Zelante, L; Romano, C; Fichera, Ma; Mattina, T; Arrigo, G; Zollino, M; Giglio, S; Lonardo, F; Bonfante, A; Ferlini, A; Cifuentes, F; Van Esch, H; Backx, L; Schinzel, A; Vermeesch, J R; Zuffardi, O
2007-01-01
Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as “balanced” by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a “chromosomal phenotype” and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome‐wide array CGH may be advisable in all carriers of “balanced” CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis. PMID:17766364
NASA Astrophysics Data System (ADS)
Vasisht, Vishwas V.; Dutta, Sudeep K.; Del Gado, Emanuela; Blair, Daniel L.
2018-01-01
We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.
Lohmann, Katja; Redin, Claire; Tönnies, Holger; Bressman, Susan B; Subero, Jose Ignacio Martin; Wiegers, Karin; Hinrichs, Frauke; Hellenbroich, Yorck; Rakovic, Aleksandar; Raymond, Deborah; Ozelius, Laurie J; Schwinger, Eberhard; Siebert, Reiner; Talkowski, Michael E; Saunders-Pullman, Rachel; Klein, Christine
2017-07-01
Chromosomal rearrangements are increasingly recognized to underlie neurologic disorders and are often accompanied by additional clinical signs beyond the gene-specific phenotypic spectrum. To elucidate the causal genetic variant in a large US family with co-occurrence of dopa-responsive dystonia as well as skeletal and eye abnormalities (ie, ptosis, myopia, and retina detachment). We examined 10 members of a family, including 5 patients with dopa-responsive dystonia and skeletal and/or eye abnormalities, from a US tertiary referral center for neurological diseases using multiple conventional molecular methods, including fluorescence in situ hybridization and array comparative genomic hybridization as well as large-insert whole-genome sequencing to survey multiple classes of genomic variations. Of note, there was a seemingly implausible transmission pattern in this family due to a mutation-negative obligate mutation carrier. Genetic diagnosis in affected family members and insight into the formation of large deletions. Four members were diagnosed with definite and 1 with probable dopa-responsive dystonia. All 5 affected individuals carried a large heterozygous deletion encompassing all 6 exons of GCH1. Additionally, all mutation carriers had congenital ptosis requiring surgery, 4 had myopia, 2 had retinal detachment, and 2 showed skeletal abnormalities of the hands, ie, polydactyly or syndactyly or missing a hand digit. Two individuals were reported to be free of any disease. Analyses revealed complex chromosomal rearrangements on chromosome 14q21-22 in unaffected individuals that triggered the expansion to a larger deletion segregating with affection status. The expansion occurred recurrently, explaining the seemingly non-mendelian inheritance pattern. These rearrangements included a deletion of GCH1, which likely contributes to the dopa-responsive dystonia, as well as a deletion of BMP4 as a potential cause of digital and eye abnormalities. Our findings alert neurologists to the importance of clinical red flags, ie, unexpected co-occurrence of clinical features that may point to the presence of chromosomal rearrangements as the primary disease cause. The clinical management and diagnostics of such patients requires an interdisciplinary approach in modern clinical-diagnostic care.
Capturing a flavivirus pre-fusion intermediate.
Kaufmann, Bärbel; Chipman, Paul R; Holdaway, Heather A; Johnson, Syd; Fremont, Daved H; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G
2009-11-01
During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting approximately 60 A-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements.
Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.
Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier
2004-01-01
Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.
In vivo and in vitro measurements of complex-type chromosomal exchanges induced by heavy ions.
George, K; Durante, M; Wu, H; Willingham, V; Cucinotta, F A
2003-01-01
Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
ERIC Educational Resources Information Center
Graulich, Nicole; Tiemann, Rudiger; Schreiner, Peter R.
2012-01-01
We investigate the efficiency of domain-specific heuristic strategies in mastering and predicting pericyclic six-electron rearrangements. Based on recent research findings on these types of reactions a new concept has been developed that should help students identify and describe six-electron rearrangements more readily in complex molecules. The…
Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line
Collins, Bernard; Clambey, Eric T.; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W.
2014-01-01
Summary Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4+CD8+ thymocyte using an Ikaros null CD4−CD8− mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry non-functional rearrangements on both alleles of their TCR α loci. Retroviral re-introduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR+ cells. The process is RAG dependent, requires SWI/SNF chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/NuRD complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR+ CD4+CD8+ thymocyte transition. PMID:23172374
Guffei, Amanda; Sarkar, Rahul; Klewes, Ludger; Righolt, Christiaan; Knecht, Hans; Mai, Sabine
2010-12-01
Hodgkin's lymphoma is characterized by the presence of mono-nucleated Hodgkin cells and bi- to multi-nucleated Reed-Sternberg cells. We have recently shown telomere dysfunction and aberrant synchronous/asynchronous cell divisions during the transition of Hodgkin cells to Reed-Sternberg cells.1 To determine whether overall changes in nuclear architecture affect genomic instability during the transition of Hodgkin cells to Reed-Sternberg cells, we investigated the nuclear organization of chromosomes in these cells. Three-dimensional fluorescent in situ hybridization revealed irregular nuclear positioning of individual chromosomes in Hodgkin cells and, more so, in Reed-Sternberg cells. We characterized an increasingly unequal distribution of chromosomes as mono-nucleated cells became multi-nucleated cells, some of which also contained chromosome-poor 'ghost' cell nuclei. Measurements of nuclear chromosome positions suggested chromosome overlaps in both types of cells. Spectral karyotyping then revealed both aneuploidy and complex chromosomal rearrangements: multiple breakage-bridge-fusion cycles were at the origin of the multiple rearranged chromosomes. This conclusion was challenged by super resolution three-dimensional structured illumination imaging of Hodgkin and Reed-Sternberg nuclei. Three-dimensional super resolution microscopy data documented inter-nuclear DNA bridges in multi-nucleated cells but not in mono-nucleated cells. These bridges consisted of chromatids and chromosomes shared by two Reed-Sternberg nuclei. The complexity of chromosomal rearrangements increased as Hodgkin cells developed into multi-nucleated cells, thus indicating tumor progression and evolution in Hodgkin's lymphoma, with Reed-Sternberg cells representing the highest complexity in chromosomal rearrangements in this disease. This is the first study to demonstrate nuclear remodeling and associated genomic instability leading to the generation of Reed-Sternberg cells of Hodgkin's lymphoma. We defined nuclear remodeling as a key feature of Hodgkin's lymphoma, highlighting the relevance of nuclear architecture in cancer.
Complex chromatid-isochromatid exchanges following irradiation with heavy ions?
Loucas, B D; Eberle, R L; Durante, M; Cornforth, M N
2004-01-01
We describe a peculiar and relatively rare type of chromosomal rearrangement induced in human peripheral lymphocytes that were ostensibly irradiated in G(0) phase of the cell cycle by accelerated heavy ions, and which, to the best of our knowledge, have not been previously described. The novel rearrangements which were detected using mFISH following exposure to 500 MeV/nucleon and 5 GeV/n 56Fe particles, but were not induced by either 137Cs gamma rays or 238Pu alpha particles, can alternatively be described as either complex chromatid-isochromatid or complex chromatid-chromosome exchanges. Different mechanisms potentially responsible for their formation are discussed. Copyright 2003 S. Karger AG, Basel
Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert
2007-01-01
Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463
Pailler, E.; Auger, N.; Lindsay, C. R.; Vielh, P.; Islas-Morris-Hernandez, A.; Borget, I.; Ngo-Camus, M.; Planchard, D.; Soria, J.-C.; Besse, B.; Farace, F.
2015-01-01
Background Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Patients and methods Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. Results ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24–55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7–11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. Conclusion We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene abnormalities and elevated numerical CIN, a potential mechanism to escape ROS1-inhibitor therapy in ROS1-rearranged NSCLC tumors. PMID:25846554
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2002-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nudeic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2008-09-09
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Gray, Joe W [San Francisco, CA; Pinkel, Daniel [Lafayette, CA; Kallioniemi, Olli-Pekka [Turku, FI; Kallioniemi, Anne [Tampere, FI; Sakamoto, Masaru [Tokyo, JP
2009-10-06
Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Gray; Joe W.; Pinkel; Daniel; Kallioniemi; Olli-Pekka; Kallioniemi; Anne; Sakamoto; Masaru
2002-02-05
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.
Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi
2017-03-01
Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.
Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement
Willis, Nicholas A.; Rass, Emilie; Scully, Ralph
2015-01-01
Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318
NASA Astrophysics Data System (ADS)
Schalley, Christoph A.; Dieterle, Martin; Schröder, Detlef; Schwarz, Helmut; Uggerud, Einar
1997-04-01
The unimolecular decays of protonated methyl hydroperoxide and dimethyl peroxide have been studied by tandem mass spectrometric techniques in combination with isotopic labeling as well as computational methods. The potential-energy surfaces calculated at the BECKE3LYP/6-311++G** level of theory are in good agreement with the experimental findings. The decomposition of the protonated peroxides can be described by a general mechanistic scheme which involves rearrangement to proton-bridged complexes, i.e. [CH2O-H-OH2]+ and [CH2O-H-O(H)CH3]+, respectively. When formed unimolecularly via rearrangement of the protonated peroxides, these complexes are rovibrationally highly excited; consequently, their fragmentations are affected remarkably as compared to proton-bound complexes of lower internal energy which are independently generated from the corresponding alcohol and carbonyl compounds in a chemical ionization plasma. For methyl hydroperoxide, both oxygen atoms can be protonated, giving rise to two isomeric cations with rather similar heats of formation but entirely different fragmentation behaviors. Cleavage of the O---O bond in dimethyl peroxide upon protonation results in proton- as well as methyl-cation-bridged intermediates, e.g. [CH2O-H-O(H)CH3]+ and [CH2O-CH3-OH2]+.
Ai, Yanran; Kozytska, Mariya V; Zou, Yike; Khartulyari, Anton S; Maio, William A; Smith, Amos B
2018-06-01
An effective late-stage large-fragment union/rearrangement exploiting the Petasis-Ferrier protocol, in conjunction with multicomponent Type I Anion Relay Chemistry (ARC) to access advanced intermediates, permits completion of a convergent, stereocontrolled total synthesis of the architecturally complex phosphomacrolide (-)-enigmazole A (1).
The thermal degradation of 5 alpha (H)-cholestane during closed-system pyrolysis
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey D.; Bennett, Barry; Stuart Fetch, G.
1995-06-01
Involatile hydrocarbons were identified following the heating of 5α(H)-cholestane in water with reaction vessel walls composed of 316 grade stainless steel and borosilicate glass. These analyses were compared with the hydrocarbon product compositions from closed-system pyrolysis experiments with no added water. Unsaturated hydrocarbons dominate their saturated counterparts following hydrous pyrolysis in both stainless steel-316 and borosilicate glass. In the absence of added water the converse is true in that saturated components dominate the hydrocarbon mixture. Backbone rearrangement in the steroid nucleus leading to spirosterene formation was only observed under aqueous conditions in both borosilicate glass and stainless steel-316 vessels. These comparisons demonstrate that water, as opposed to reaction vessel surface catalytic effects, plays a central role in mediating hydrocarbon degradation during closed-system hydrous pyrolysis. 5α(H)-cholestane degradation under aqueous conditions is a complex composite of dissociative and rearrangement processes. These include (I) carbon-carbon bond cleavage in the sidechains as well as the ring system, (2) dehydrogenation, and (3) backbone rearrangement. These laboratory experiments provide a product description of the involatile hydrocarbons which will be the basis for a mechanistic study of 5α(H)-cholestane degradation in hot water.
Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans
NASA Astrophysics Data System (ADS)
Hecht, Elizabeth S.; Loziuk, Philip L.; Muddiman, David C.
2017-04-01
Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows.
Yauy, Kevin; Gatinois, Vincent; Guignard, Thomas; Sati, Satish; Puechberty, Jacques; Gaillard, Jean Baptiste; Schneider, Anouck; Pellestor, Franck
2018-01-01
Apparition of next-generation sequencing (NGS) was a breakthrough on knowledge of genome structure. Bioinformatic tools are a key point to analyze this huge amount of data from NGS and characterize the three-dimensional organization of chromosomes. This chapter describes usage of different browsers to explore publicly available online data and to search for possible 3D chromatin changes involved during complex chromosomal rearrangements as chromothripsis. Their pathogenic impact on clinical phenotype and gene misexpression can also be evaluated with annotated databases.
Human, Mouse, and Rat Genome Large-Scale Rearrangements: Stability Versus Speciation
Zhao, Shaying; Shetty, Jyoti; Hou, Lihua; Delcher, Arthur; Zhu, Baoli; Osoegawa, Kazutoyo; de Jong, Pieter; Nierman, William C.; Strausberg, Robert L.; Fraser, Claire M.
2004-01-01
Using paired-end sequences from bacterial artificial chromosomes, we have constructed high-resolution synteny and rearrangement breakpoint maps among human, mouse, and rat genomes. Among the >300 syntenic blocks identified are segments of over 40 Mb without any detected interspecies rearrangements, as well as regions with frequently broken synteny and extensive rearrangements. As closely related species, mouse and rat share the majority of the breakpoints and often have the same types of rearrangements when compared with the human genome. However, the breakpoints not shared between them indicate that mouse rearrangements are more often interchromosomal, whereas intrachromosomal rearrangements are more prominent in rat. Centromeres may have played a significant role in reorganizing a number of chromosomes in all three species. The comparison of the three species indicates that genome rearrangements follow a path that accommodates a delicate balance between maintaining a basic structure underlying all mammalian species and permitting variations that are necessary for speciation. PMID:15364903
Takaoka, Hiroyuki; Sofian-Azirun, Mohd; Low, Van Lun; Ya’cob, Zubaidah; Chen, Chee Dhang; Lau, Koon Weng; Pham, Xuan Da
2016-01-01
The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country’s status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam. PMID:27695048
Adler, Peter H; Takaoka, Hiroyuki; Sofian-Azirun, Mohd; Low, Van Lun; Ya'cob, Zubaidah; Chen, Chee Dhang; Lau, Koon Weng; Pham, Xuan Da
2016-01-01
The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country's status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam.
Polyomavirus BK non-coding control region rearrangements in health and disease.
Sharma, Preety M; Gupta, Gaurav; Vats, Abhay; Shapiro, Ron; Randhawa, Parmjeet S
2007-08-01
BK virus is an increasingly recognized pathogen in transplanted patients. DNA sequencing of this virus shows considerable genomic variability. To understand the clinical significance of rearrangements in the non-coding control region (NCCR) of BK virus (BKV), we report a meta-analysis of 507 sequences, including 40 sequences generated in our own laboratory, for associations between rearrangements and disease, tissue tropism, geographic origin, and viral genotype. NCCR rearrangements were less frequent in (a) asymptomatic BKV viruria compared to patients viral nephropathy (1.7% vs. 22.5%), and (b) viral genotype 1 compared to other genotypes (2.4% vs. 11.2%). Rearrangements were commoner in malignancy (78.6%), and Norwegians (45.7%), and less common in East Indians (0%), and Japanese (4.3%). A surprising number of rearranged sequences were reported from mononuclear cells of healthy subjects, whereas most plasma sequences were archetypal. This difference could not be related to potential recombinase activity in lymphocytes, as consensus recombination signal sequences could not be found in the NCCR region. NCCR rearrangements are neither required nor a sufficient condition to produce clinical disease. BKV nephropathy and hemorrhagic cystitis are not associated with any unique NCCR configuration or nucleotide sequence.
On the Structural Plasticity of the Human Genome: Chromosomal Inversions Revisited
Alves, Joao M; Lopes, Alexandra M; Chikhi, Lounès; Amorim, António
2012-01-01
With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome. PMID:23730202
Ikaros promotes rearrangement of TCR α genes in an Ikaros null thymoma cell line.
Collins, Bernard; Clambey, Eric T; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W
2013-02-01
Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4(+) CD8(+) thymocyte using an Ikaros null CD4(-) CD8(-) mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry nonfunctional rearrangements on both alleles of their TCR α loci. Retroviral reintroduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR(+) cells. The process is RAG dependent, requires switch/sucrose nonfermentable chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/nucleosome remodeling and deacetylase complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR(+) CD4(+) CD8(+) thymocyte transition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Freindorf, Marek; Cremer, Dieter; Kraka, Elfi
2018-03-01
The unified reaction valley approach (URVA) combined with the local mode, ring puckering and electron density analysis is applied to elucidate the mechanistic differences of the non-catalysed and the Au[I]-N-heterocyclic carbene (NHC)-catalysed [3,3]-sigmatropic rearrangement of allyl acetate. Using a dual-level approach (DFT and DLPNO-CCSD(T)), the influence of solvation, counter-ions, bulky and electron withdrawing/donating substituents as well as the exchange of the Au[I]-NHC with a Au[I]-phosphine catalyst is investigated. The catalyst breaks up the rearrangement into two steps by switching between Au[I]-π and Au[I]-σ complexation, thus avoiding the energy-consuming CO cleavage in the first step. Based on local stretching force constants ka(C=C), we derive for the first time a quantitative measure of the π-acidity of the Au[I] catalyst; in all catalysed reactions, the bond order n(C=C) drops from 2 to 1.65. The ring puckering analysis clarifies that all reactions start and end via a six-membered ring with a boat form. All Au[I]-σ-complex intermediates show a considerable admixture of the chair form. The non-catalysed [3,3]-sigmatropic rearrangement goes through a maximum of charge separation between the allyl and acetate units at the transition state, while all catalysed reactions proceed via a minimum of charge separation reached in the region of the Au[I]-σ-complex.
Pailler, E; Auger, N; Lindsay, C R; Vielh, P; Islas-Morris-Hernandez, A; Borget, I; Ngo-Camus, M; Planchard, D; Soria, J-C; Besse, B; Farace, F
2015-07-01
Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24-55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7-11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene abnormalities and elevated numerical CIN, a potential mechanism to escape ROS1-inhibitor therapy in ROS1-rearranged NSCLC tumors. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Ferfouri, F; Boitrelle, F; Clement, P; Molina Gomes, D; Selva, J; Vialard, F
2014-06-01
Complex chromosome rearrangements (CCR) with two independent chromosome rearrangements are rare. Although CCRs lead to high unbalanced gamete rates, data on meiotic segregation in this context are scarce. A male patient was referred to our clinic as part of a family screening programme prompted by the observation of a 44,X,der(Y),t(Y;15)(q12;q10)pat,rob(13;14)(q10;q10)mat karyotype in his brother. Karyotyping identified the same CCR. Sperm FISH (with locus-specific probes for the segments involved in the translocations and nine chromosomes not involved in both rearrangements) was used to investigate the rearrangements meiotic segregation products and establish whether or not an inter-chromosomal effect was present. Sperm nuclear DNA fragmentation was also evaluated. For rob(13;14) and der(Y), the proportions of unbalanced products were, respectively, 26.4% and 60.6%. Overall, 70.3% of the meiotic segregation products were unbalanced. No evidence of an inter-chromosomal effect was found, and the sperm nuclear DNA fragmentation rate was similar to our laboratory's normal cut-off value. In view of previously published sperm FISH analyses of Robertsonian translocations (and even though the mechanism is still unknown), we hypothesise that cosegregation of der(Y) and rob(13;14) could modify rob(13;14) meiotic segregation. © 2013 Blackwell Verlag GmbH.
Synthesis of polyketide stereoarrays enabled by a traceless oxonia-Cope rearrangement.
Yang, Lin; He, Guoli; Yin, Ruifeng; Zhu, Lili; Wang, Xiaoxia; Hong, Ran
2014-10-20
Polyketide antibiotics bearing skipped polyols represent a synthetic challenge. A SiCl4-promoted oxonia-Cope rearrangement of syn,syn-2-vinyl-1,3-diols was developed to forge an array of 1,5-pentenediols, thus providing versatile motifs for the preparation of 1,2,3,5-stereoarrays in a highly stereoselective manner. Further exploration with Sn(OTf)2 realized the rearrangement of a cross-aldehyde which tactically warrants the utility of the current approach to access complex polyketides. The origin of high stereoselectivity is attributed to a chairlike anti-conformation of the oxonium ion intermediate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P
2009-06-01
The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.
Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A
2014-09-01
The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.
Exceptional complex chromosomal rearrangements in three generations.
Kartapradja, Hannie; Marzuki, Nanis Sacharina; Pertile, Mark D; Francis, David; Suciati, Lita Putri; Anggaratri, Helena Woro; Ambarwati, Debby Dwi; Idris, Firman Prathama; Lesmana, Harry; Trimarsanto, Hidayat; Paramayuda, Chrysantine; Harahap, Alida Roswita
2015-01-01
We report an exceptional complex chromosomal rearrangement (CCR) found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband's mother, which was confirmed using the whole chromosome painting (WCP) FISH. High resolution whole genome microarray analysis of DNA from the proband's mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother's and grandmother's CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.
Generation of a complete set of human telomeric band painting probes by chromosome microdissection.
Hu, Liang; Sham, Jonathan S T; Tjia, Wai Mui; Tan, Yue-qiu; Lu, Guang-xiu; Guan, Xin-Yuan
2004-02-01
Chromosomal rearrangements involving telomeric bands have been frequently detected in many malignancies and congenital diseases. To develop a useful tool to study chromosomal rearrangements within the telomeric band effectively and accurately, a whole set of telomeric band painting probes (TBP) has been generated by chromosome microdissection. The intensity and specificity of these TBPs have been tested by fluorescence in situ hybridization and all TBPs showed strong and specific signals to target regions. TBPs of 6q and 17p were successfully used to detect the loss of the terminal band of 6q in a hepatocellular carcinoma cell line and a complex translocation involving the 17p terminal band in a melanoma cell line. Meanwhile, the TBP of 21q was used to detect a de novo translocation, t(12;21), and the breakpoint at 21q was located at 21q22.2. Further application of these TBPs should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements involving telomeric bands.
Rare Complex Mutational Profile in an ALK Inhibitor-resistant Non-small Cell Lung Cancer.
Azzato, Elizabeth M; Deshpande, Charuhas; Aikawa, Vania; Aggarwal, Charu; Alley, Evan; Jacobs, Benjamin; Morrissette, Jennifer; Daber, Robert
2015-05-01
Testing for somatic alterations, including anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements and epidermal growth factor receptor gene (EGFR) mutations, is standard practice in the diagnostic evaluation and therapeutic management of non-small cell lung cancer (NSCLC), where the results of such tests can predict response to targeted-therapy. ALK rearrangements, EGFR mutations and mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) are considered mutually exclusive in NSCLC. Herein we identified a KRAS Q22K mutation and frameshift mutations in the genes encoding serine/threonine kinase 11 (STK11) and ataxia telangiectasia mutated serine/threonine kinase (ATM) by next-generation sequencing in a patient with ALK rearrangement-positive oligo-metastatic NSCLC, whose disease progressed while on two ALK-targeted therapies. Such a complex diagnostic genetic profile has not been reported in ALK fusion-positive NSCLC. This case highlights the utility of comprehensive molecular testing in the diagnosis of NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Daveau, Romain; Combaret, Valérie; Pierre-Eugène, Cécile; Cazes, Alex; Louis-Brennetot, Caroline; Schleiermacher, Gudrun; Ferrand, Sandrine; Pierron, Gaëlle; Lermine, Alban; Frio, Thomas Rio; Raynal, Virginie; Vassal, Gilles; Barillot, Emmanuel; Delattre, Olivier; Janoueix-Lerosey, Isabelle
2013-01-01
Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis. PMID:23991058
Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A
2003-11-26
DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.
Bao, Yun-Juan; Liang, Zhong; Mayfield, Jeffrey A.; McShan, William M.; Lee, Shaun W.; Ploplis, Victoria A.; Castellino, Francis J.
2016-01-01
Symmetric genomic rearrangements around replication axes in genomes are commonly observed in prokaryotic genomes, including Group A Streptococcus (GAS). However, asymmetric rearrangements are rare. Our previous studies showed that the hypervirulent invasive GAS strain, M23ND, containing an inactivated transcriptional regulator system, covRS, exhibits unique extensive asymmetric rearrangements, which reconstructed a genomic structure distinct from other GAS genomes. In the current investigation, we identified the rearrangement events and examined the genetic consequences and evolutionary implications underlying the rearrangements. By comparison with a close phylogenetic relative, M18-MGAS8232, we propose a molecular model wherein a series of asymmetric rearrangements have occurred in M23ND, involving translocations, inversions and integrations mediated by multiple factors, viz., rRNA-comX (factor for late competence), transposons and phage-encoded gene segments. Assessments of the cumulative gene orientations and GC skews reveal that the asymmetric genomic rearrangements did not affect the general genomic integrity of the organism. However, functional distributions reveal re-clustering of a broad set of CovRS-regulated actively transcribed genes, including virulence factors and metabolic genes, to the same leading strand, with high confidence (p-value ~10−10). The re-clustering of the genes suggests a potential selection advantage for the spatial proximity to the transcription complexes, which may contain the global transcriptional regulator, CovRS, and other RNA polymerases. Their proximities allow for efficient transcription of the genes required for growth, virulence and persistence. A new paradigm of survival strategies of GAS strains is provided through multiple genomic rearrangements, while, at the same time, maintaining genomic integrity. PMID:27329479
2013-01-01
The t(8;14)(q24.1;q32), the cytogenetic hallmark of Burkitt’s lymphoma, is also found, but rarely, in cases of chronic lymphocytic leukemia (CLL). Such translocation typically results in a MYC-IGH@ fusion subsequently deregulating and overexpressing MYC on der 14q32. In CLL, atypical rearrangements resulting in its gain or loss, within or outside of IGH@ or MYC locus, have been reported, but their clinical significance remains uncertain. Herein, we report a 67 year-old male with complex cytogenetic findings of apparently balanced t(8;14) and unreported complex rearrangements of IGH@ and MYC loci. His clinical, morphological and immunophenotypic features were consistent with the diagnosis of CLL. Interphase FISH studies revealed deletions of 11q22.3 and 13q14.3, and an extra copy of IGH@, indicative of rearrangement. Karyotype analysis showed an apparently balanced t(8;14)(q24.1;q32). Sequential GPG-metaphase FISH studies revealed abnormal signal patterns: rearrangement of IGH break apart probe with the 5’-IGH@ on derivative 8q24.1 and the 3’-IGH@ retained on der 14q; absence of MYC break apart-specific signal on der 8q; and, the presence of unsplit 5’-MYC-3’ break apart probe signals on der 14q. The breakpoint on 8q24.1 was found to be at least 400 Kb upstream of 5’ of MYC. In addition, FISH studies revealed two abnormal clones; one with 13q14.3 deletion, and the other, with concurrent 11q deletion and atypical rearrangements. Chromosome microarray analysis (CMA) detected a 7.1 Mb deletion on 11q22.3-q23.3 including ATM, a finding consistent with FISH results. While no significant copy number gain or loss observed on chromosomes 8, 12 and 13, a 455 Kb microdeletion of uncertain clinical significance was detected on 14q32.33. Immunohistochemistry showed co-expression of CD19, CD5, and CD23, positive ZAP-70 expression and absence of MYC expression. Overall findings reveal an apparently balanced t(8;14) and atypical complex rearrangements involving 3’-IGH@ and a breakpoint at least 400 Kb upstream of MYC, resulting in the relocation of the intact 5’-MYC-3’ from der 8q, and apposition to 3’-IGH@ at der 14q. This case report provides unique and additional cytogenetic data that may be of clinical significance in such a rare finding in CLL. It also highlights the utility of conventional and sequential metaphase FISH in understanding complex chromosome anomalies and their association with other clinical findings in patients with CLL. To the best of our knowledge, this is the first CLL reported case with such an atypical rearrangement in a patient with a negative MYC expression. PMID:23369149
SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes
Shen, Yue; Stracquadanio, Giovanni; Wang, Yun; Yang, Kun; Mitchell, Leslie A.; Xue, Yaxin; Cai, Yizhi; Chen, Tai; Dymond, Jessica S.; Kang, Kang; Gong, Jianhui; Zeng, Xiaofan; Zhang, Yongfen; Li, Yingrui; Feng, Qiang; Xu, Xun; Wang, Jun; Wang, Jian; Yang, Huanming; Boeke, Jef D.; Bader, Joel S.
2016-01-01
Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3′ UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes. PMID:26566658
Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R
1998-11-01
A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.
Babot, Marion; Labarbuta, Paola; Birch, Amanda; Kee, Sara; Fuszard, Matthew; Botting, Catherine H.; Wittig, Ilka; Heide, Heinrich; Galkin, Alexander
2014-01-01
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover. PMID:24560811
DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu
2010-01-01
A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418
Milne, Bruce S; Hoather, Tess; O'Brien, Patricia C M; Yang, Fengtang; Ferguson-Smith, Malcolm A; Dobson, Jane; Sargan, David
2004-01-01
Many canine tumour types represent useful models for tumours also found in humans. Studies of chromosomal abnormalities in canine tumours have been impeded by the complexity of the canine karyotype (2n = 78), which has made accurate identification of rearranged chromosomes difficult and laborious. To overcome this difficulty we have developed a seven-colour paint system for canine chromosomes, with six sets of chromosome paints covering all chromosomes except Y. Several pairs of canine autosomes co-locate in the flow karyotype. To distinguish these autosomes from each other, paint sets were supplemented with chromosomes of red fox and Japanese raccoon dog. Paints were used in fluorescence in-situ hybridization to analyse karyotypes in fourteen canine soft tissue sarcomas. Rearranged karyotypes were observed in seven tumours, but there was evidence for loss of rearrangement during tissue culture. Five tumours had rearrangements involving four chromosomes or fewer; one, a chondrosarcoma, had lost seven chromosomes whilst the last, a spindle cell sarcoma, had rearrangements involving eighteen chromosome pairs. The paint sets described here facilitate the complete cytogenetic analysis of balanced translocations and other inter-chromosomal rearrangements in canine tumours. We believe that this is the first canine tumour series to be subjected to this level of analysis.
Wan, Huanying; Shi, Guochao; Niu, Wenquan
2014-01-01
Objective This meta-analysis aimed to comprehensively examine the relationship between the clinicopathological and demographical characteristics and ALK rearrangements in patients with non-small cell lung cancer (NSCLC). Methods and Main Findings In total, 62 qualified articles including 1178 ALK rearranged cases from 20541 NSCLC patients were analyzed, and the data were extracted independently by two investigators. NSCLC patients with ALK rearrangements tended to be younger than those without (mean difference: −7.16 years; 95% confidence interval (95% CI): −9.35 to −4.96; P<0.00001), even across subgroups by race. Compared with female NSCLC patients, the odds ratio (OR) of carrying ALK rearrangements was reduced by 28% (95% CI: 0.58–0.90; P = 0.004) in males, and this reduction was potentiated in Asians, yet in opposite direction in Caucasians. Likewise, smokers were less likely to have ALK rearrangements than never-smokers (OR = 0.33; 95% CI: 0.25–0.44; P<0.00001), even in race-stratified subgroups. Moreover, compared with NSCLC patients with tumor stage IV, ALK rearrangements were underrepresented in those with tumor stage I–III (OR = 0.58; 95% CI: 0.44–0.78; P = 0.0002). Patients with lung adenocarcinomas had a significantly higher rate of ALK rearrangements (7.2%) than patients with non-adenocarcinoma (2.0%) (OR = 2.25; 95% CI: 1.54–3.27; P<0.0001). Conclusion Our findings demonstrate that ALK rearrangements tended to be present in NSCLC patients with no smoking habit, younger age and tumor stage IV. Moreover, race, age, gender, smoking status, tumor stage and histology might be potential sources of heterogeneity. PMID:24959902
NASA Technical Reports Server (NTRS)
Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.
2001-01-01
Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.
Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja
2012-01-01
Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants. PMID:22250127
Detection of genomic rearrangements in cucumber using genomecmp software
NASA Astrophysics Data System (ADS)
Kulawik, Maciej; Pawełkowicz, Magdalena Ewa; Wojcieszek, Michał; PlÄ der, Wojciech; Nowak, Robert M.
2017-08-01
Comparative genomic by increasing information about the genomes sequences available in the databases is a rapidly evolving science. A simple comparison of the general features of genomes such as genome size, number of genes, and chromosome number presents an entry point into comparative genomic analysis. Here we present the utility of the new tool genomecmp for finding rearrangements across the compared sequences and applications in plant comparative genomics.
Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita
2014-01-01
Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms. PMID:24611143
Watanabe, Junko; Togo, Shinsaku; Sumiyoshi, Issei; Namba, Yukiko; Suina, Kentaro; Mizuno, Takafumi; Kadoya, Kotaro; Motomura, Hiroaki; Iwai, Moe; Nagaoka, Tetsutaro; Sasaki, Shinichi; Hayashi, Takuo; Uekusa, Toshimasa; Abe, Kanae; Urata, Yasuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kato, Shunsuke; Takahashi, Kazuhisa
2018-01-01
Anti-anaplastic lymphoma kinase (ALK)-targeted therapy dramatically improves therapeutic responses in patients with ALK-rearranged lung adenocarcinoma (Ad-LC). A few cases of squamous cell lung carcinoma (Sq-LC) with ALK rearrangement have been reported; however, the clinicopathological features and clinical outcomes following treatment with ALK inhibitors are unknown. We addressed this in the present study by retrospectively comparing the clinical characteristics of five patients with ALK-rearranged Sq-LC with those of patients with ALK-rearranged Ad-LC and by evaluating representative cases of ALK inhibitor responders and non-responders. The prevalence of ALK rearrangement in Sq-LCs was 1.36%. Progression-free survival (PFS) after initial treatment with crizotinib was significantly shorter in Sq-LC than in Ad-LC with ALK rearrangement (p = 0.033). Two ALK rearrangements assayed by fluorescence in situ hybridization (FISH)-positive/immunohistochemistry-negative cases did not respond to crizotinb, and PFS decreased following alectinib treatment of ALK-rearranged Sq-LC (p = 0.045). A rebiopsy revealed that responders to ceritinib harbored the L1196M mutation, which causes resistance to other ALK inhibitors. However, non-responders were resistant to all ALK inhibitors, despite the presence of ALK rearrangement in FISH-positive circulating tumor cells and circulating free DNA and absence of the ALK inhibitor resistance mutation. These results indicate that ALK inhibitors remain a reasonable therapeutic option for ALK-rearranged Sq-LC patients who have worse outcomes than ALK-rearranged Ad-LC patients and that resistance mechanisms are heterogeneous. Additionally, oncologists should be aware of the possibility of ALK-rearranged Sq-LC based on clinicopathological features, and plan second-line therapeutic strategies based on rebiopsy results in order to improve patient outcome. PMID:29844868
Watanabe, Junko; Togo, Shinsaku; Sumiyoshi, Issei; Namba, Yukiko; Suina, Kentaro; Mizuno, Takafumi; Kadoya, Kotaro; Motomura, Hiroaki; Iwai, Moe; Nagaoka, Tetsutaro; Sasaki, Shinichi; Hayashi, Takuo; Uekusa, Toshimasa; Abe, Kanae; Urata, Yasuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kato, Shunsuke; Takahashi, Kazuhisa
2018-05-08
Anti-anaplastic lymphoma kinase (ALK)-targeted therapy dramatically improves therapeutic responses in patients with ALK-rearranged lung adenocarcinoma (Ad-LC). A few cases of squamous cell lung carcinoma (Sq-LC) with ALK rearrangement have been reported; however, the clinicopathological features and clinical outcomes following treatment with ALK inhibitors are unknown. We addressed this in the present study by retrospectively comparing the clinical characteristics of five patients with ALK-rearranged Sq-LC with those of patients with ALK-rearranged Ad-LC and by evaluating representative cases of ALK inhibitor responders and non-responders. The prevalence of ALK rearrangement in Sq-LCs was 1.36%. Progression-free survival (PFS) after initial treatment with crizotinib was significantly shorter in Sq-LC than in Ad-LC with ALK rearrangement ( p = 0.033). Two ALK rearrangements assayed by fluorescence in situ hybridization (FISH)-positive/immunohistochemistry-negative cases did not respond to crizotinb, and PFS decreased following alectinib treatment of ALK-rearranged Sq-LC ( p = 0.045). A rebiopsy revealed that responders to ceritinib harbored the L1196M mutation, which causes resistance to other ALK inhibitors. However, non-responders were resistant to all ALK inhibitors, despite the presence of ALK rearrangement in FISH-positive circulating tumor cells and circulating free DNA and absence of the ALK inhibitor resistance mutation. These results indicate that ALK inhibitors remain a reasonable therapeutic option for ALK-rearranged Sq-LC patients who have worse outcomes than ALK-rearranged Ad-LC patients and that resistance mechanisms are heterogeneous. Additionally, oncologists should be aware of the possibility of ALK-rearranged Sq-LC based on clinicopathological features, and plan second-line therapeutic strategies based on rebiopsy results in order to improve patient outcome.
Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry
Joron, Mathieu; Frezal, Lise; Jones, Robert T.; Chamberlain, Nicola L.; Lee, Siu F.; Haag, Christoph R.; Whibley, Annabel; Becuwe, Michel; Baxter, Simon W.; Ferguson, Laura; Wilkinson, Paul A.; Salazar, Camilo; Davidson, Claire; Clark, Richard; Quail, Michael A.; Beasley, Helen; Glithero, Rebecca; Lloyd, Christine; Sims, Sarah; Jones, Matthew C.; Rogers, Jane; Jiggins, Chris D.; ffrench-Constant, Richard H.
2013-01-01
Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes1. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for ‘pin’ and ‘thrum’ floral types in Primula1 and Fagopyrum2, but classic examples are also found in insect mimicry3–5 and snail morphology6. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge7–10. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species9–11, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the Plocus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow. PMID:21841803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, C.; Grubs, R.E.; Jewett, T.
1994-09-01
Complex chromosome rearrangements (CCR) are rare structural rearrangements involving at least three chromosomes with three or more breakpoints. Although there have been numerous reports of individuals with CCR, most have been ascertained through the presence of multiple congenital anomalies, recurrent pregnancy loss, or infertility. Few cases have been ascertained prenatally. We present two new cases of prenatally ascertained CCR. In the first case, an amniocentesis revealed an apparently balanced de novo rearrangement in which chromosomes 5, 6 and 11 were involved in a three-way translocation: 46,XY,t(6;5)(5;11)(q23;p14.3;q15;p13). The pregnancy was unevenful. Recently, at the age of 9 months, a physical andmore » developmental evaluation were normal but, height, weight, and head circumference were below the 5th percentile. In the second case an amniocentesis revealed an unbalanced de novo rearrangement involving separate translocations and an interstitial deletion: 46,XY,del(6)(q25.3q27),t(3;8)(p13;q21.3),t(6;18)(p11.2;q11.2). A meconium plug was present at birth and at 6 months of age surgery for Hirschsprung`s disease was required. Currently, at 10 months of age, the patient has hypotonia and developmental delay. The paucity of information regarding prenatally diagnosed CCR poses a problem in counseling families. Of the four prenatally diagnosed balanced de novo CCR cases, three had abnormal outcomes. In a review of the literature, approximately 70% of the postnatally ascertained balanced de novo CCR cases were associated with congenital anomalies, growth retardation and/or mental retardation. More information regarding the outcome of prenatally ascertained balanced de novo CCR is required for accurate risk assessment.« less
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2009-10-06
Methods and compositions for staining based upon nucleic acid sequence that employ nudeic nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Constitutional chromothripsis involving the critical region of 9q21.13 microdeletion syndrome.
Genesio, Rita; Fontana, Paolo; Mormile, Angela; Casertano, Alberto; Falco, Mariateresa; Conti, Anna; Franzese, Adriana; Mozzillo, Enza; Nitsch, Lucio; Melis, Daniela
2015-01-01
The chromothripsis is a biological phenomenon, first observed in tumors and then rapidly described in congenital disorders. The principle of the chromothripsis process is the occurrence of a local shattering to pieces and rebuilding of chromosomes in a random order. Congenital chromothripsis rearrangements often involve reciprocal rearrangements on multiple chromosomes and have been described as cause of contiguous gene syndromes. We hypothesize that chromothripsis could be responsible for known 9q21.13 microdeletion syndrome, causing a composite phenotype with additional features. The case reported is a 16- years-old female with a complex genomic rearrangement of chromosome 9 including the critical region of 9q21.13 microdeletion syndrome. The patient presents with platelet disorder and thyroid dysfunction in addition to the classical neurobehavioral phenotype of the syndrome. The presence of multiple rearrangements on the same chromosome 9 and the rebuilding of chromosome in a random order suggested that the rearrangement could origin from an event of chromthripsis. To our knowledge this is the first report of congenital chromothripsis involving chromosome 9. Furthermore this is the only case of 9q21.13 microdeletion syndrome due to chromothripsis.
SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes.
Shen, Yue; Stracquadanio, Giovanni; Wang, Yun; Yang, Kun; Mitchell, Leslie A; Xue, Yaxin; Cai, Yizhi; Chen, Tai; Dymond, Jessica S; Kang, Kang; Gong, Jianhui; Zeng, Xiaofan; Zhang, Yongfen; Li, Yingrui; Feng, Qiang; Xu, Xun; Wang, Jun; Wang, Jian; Yang, Huanming; Boeke, Jef D; Bader, Joel S
2016-01-01
Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3' UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes. © 2016 Shen et al.; Published by Cold Spring Harbor Laboratory Press.
SvABA: genome-wide detection of structural variants and indels by local assembly.
Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen
2018-04-01
Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.
An, Rong; Wang, Yisong; Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe
2016-05-17
Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients.
D'Angelo, Carla S; Kohl, Ilana; Varela, Monica Castro; de Castro, Cláudia I E; Kim, Chong A; Bertola, Débora R; Lourenço, Charles M; Koiffmann, Célia P
2010-01-01
Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. The strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of approximately 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36.
Methods of staining target chromosomal DNA employing high complexity nucleic acid probes
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2006-10-03
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Pailler, Emma; Adam, Julien; Barthélémy, Amélie; Oulhen, Marianne; Auger, Nathalie; Valent, Alexander; Borget, Isabelle; Planchard, David; Taylor, Melissa; André, Fabrice; Soria, Jean Charles; Vielh, Philippe; Besse, Benjamin; Farace, Françoise
2013-06-20
The diagnostic test for ALK rearrangement in non-small-cell lung cancer (NSCLC) for crizotinib treatment is currently done on tumor biopsies or fine-needle aspirations. We evaluated whether ALK rearrangement diagnosis could be performed by using circulating tumor cells (CTCs). The presence of an ALK rearrangement was examined in CTCs of 18 ALK-positive and 14 ALK-negative patients by using a filtration enrichment technique and filter-adapted fluorescent in situ hybridization (FA-FISH), a FISH method optimized for filters. ALK-rearrangement patterns were determined in CTCs and compared with those present in tumor biopsies. ALK-rearranged CTCs and tumor specimens were characterized for epithelial (cytokeratins, E-cadherin) and mesenchymal (vimentin, N-cadherin) marker expression. ALK-rearranged CTCs were monitored in five patients treated with crizotinib. All ALK-positive patients had four or more ALK-rearranged CTCs per 1 mL of blood (median, nine CTCs per 1 mL; range, four to 34 CTCs per 1 mL). No or only one ALK-rearranged CTC (median, one per 1 mL; range, zero to one per 1 mL) was detected in ALK-negative patients. ALK-rearranged CTCs harbored a unique (3'5') split pattern, and heterogeneous patterns (3'5', only 3') of splits were present in tumors. ALK-rearranged CTCs expressed a mesenchymal phenotype contrasting with heterogeneous epithelial and mesenchymal marker expressions in tumors. Variations in ALK-rearranged CTC levels were detected in patients being treated with crizotinib. ALK rearrangement can be detected in CTCs of patients with ALK-positive NSCLC by using a filtration technique and FA-FISH, enabling both diagnostic testing and monitoring of crizotinib treatment. Our results suggest that CTCs harboring a unique ALK rearrangement and mesenchymal phenotype may arise from clonal selection of tumor cells that have acquired the potential to drive metastatic progression of ALK-positive NSCLC.
Biased immunoglobulin light chain gene usage in the shark1
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-01-01
This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033
Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions.
Odoardi, Francesca; Rana, Michele; Broccolini, Aldobrando; Mirabella, Massimiliano; Modoni, Anna; D'Amico, Adele; Papacci, Manuela; Tonali, Pietro; Servidei, Serenella; Silvestri, Gabriella
2003-04-30
We estimated the frequency of multiple mtDNA rearrangements by Southern blot in 32 patients affected by mitochondrial disorders associated with single deletions in order to assess genotype-phenotype correlations and elucidate the pathogenic significance of mtDNA duplications. Muscle in situ hybridization studies were performed in patients showing mtDNA duplications at Southern blot. We found multiple rearrangements in 12/32 (37.5%) patients; in particular, mtDNA duplications were detected in 4/4 Kearns-Sayre syndrome (KSS), in 1 Pearson's syndrome, in 1/3 encephalomyopathies with progressive external ophthalmoplegia (PEO), and in 2/23 PEO. In situ studies documented an exclusive accumulation of deleted mtDNAs in cytochrome c oxidase negative fibers of patients with mtDNA duplications. The presence of mtDNA duplications significantly correlated with onset of symptoms before age 15 and occurrence of clinical multisystem involvement. Analysis of biochemical data documented a predominant reduction of complex III in patients without duplications compared to patients with mtDNA duplications. Our data indicate that multiple mtDNA rearrangements are detectable in a considerable proportion of patients with single deletions and that mtDNA duplications do not cause any oxidative impairment. They more likely play a pathogenic role in the determination of clinical expression of mitochondrial diseases associated with single mtDNA deletions, possibly generating deleted mtDNAs in embryonic tissues by homologous recombination. Copyright 2003 Wiley-Liss, Inc.
Kretschmer, Rafael; de Oliveira Furo, Ivanete; Gunski, Ricardo José; Del Valle Garnero, Analía; Pereira, Jorge C; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Corrêa; de Freitas, Thales Renato Ochotorena
2018-06-07
Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the karyotype evolution within Columbiformes remains unclear. To delineate the synteny-conserved segments and karyotypic differences among four Columbidae species, we used chromosome painting from Gallus gallus (GGA, 2n = 78) and Leucopternis albicollis (LAL, 2n = 68). Besides that, a set of painting probes for the eared dove, Zenaida auriculata (ZAU, 2n = 76), was generated from flow-sorted chromosomes. Chromosome painting with GGA and ZAU probes showed conservation of the first ten ancestral pairs in Z. auriculata, Columba livia, and Columbina picui, while in Leptotila verreauxi, fusion of the ancestral chromosomes 6 and 7 was observed. However, LAL probes revealed a complex reorganization of ancestral chromosome 1, involving paracentric and pericentric inversions. Because of the presence of similar intrachromosomal rearrangements in the chromosomes corresponding to GGA1q in the Columbidae and Passeriformes species but without a common origin, these results are consistent with the recent proposal of divergence within Neoaves (Passerea and Columbea). In addition, inversions in chromosome 2 were identified in C. picui and L. verreauxi. Thus, in four species of distinct genera of the Columbidae family, unique chromosomal rearrangements have occurred during karyotype evolution, confirming that despite conservation of the ancestral syntenic groups, these chromosomes have been modified by the occurrence of intrachromosomal rearrangements.
LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex
Angulo, Jenniffer; Ulryck, Nathalie; Deforges, Jules; Chamond, Nathalie; Lopez-Lastra, Marcelo; Masquida, Benoît; Sargueil, Bruno
2016-01-01
As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a ‘kissing complex’ between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation. PMID:26626152
Ko, Young Sin; Hwang, Tae Sook; Kim, Ja Yeon; Choi, Yoon-La; Lee, Seung Eun; Han, Hye Seung; Kim, Wan Seop; Kim, Suk Kyeong; Park, Kyoung Sik
2017-04-12
Molecular markers are helpful diagnostic tools, particularly for cytologically indeterminate thyroid nodules. Preoperative RET/PTC1 rearrangement analysis in BRAF and RAS wild-type indeterminate thyroid nodules would permit the formulation of an unambiguous surgical plan. Cycle threshold values according to the cell count for detection of the RET/PTC1 rearrangement by real-time reverse transcription-polymerase chain reaction (RT-PCR) using fresh and routine air-dried TPC1 cells were evaluated. The correlation of RET/PTC1 rearrangement between fine-needle aspiration (FNA) and paired formalin-fixed paraffin-embedded (FFPE) specimens was analyzed. RET/PTC1 rearrangements of 76 resected BRAF and RAS wild-type classical PTCs were also analyzed. Results of RT-PCR and the Nanostring were compared. When 100 fresh and air-dried TPC1 cells were used, expression of RET/PTC1 rearrangement was detectable after 35 and 33 PCR cycles, respectively. The results of RET/PTC1 rearrangement in 10 FNA and paired FFPE papillary thyroid carcinoma (PTC) specimens showed complete correlation. Twenty-nine (38.2%) of 76 BRAF and RAS wild-type classical PTCs had RET/PTC1 rearrangement. Comparison of RET/PTC1 rearrangement analysis between RT-PCR and the Nanostring showed moderate agreement with a κ value of 0.56 ( p = 0.002). The RET/PTC1 rearrangement analysis by RT-PCR using routine air-dried FNA specimen was confirmed to be technically applicable. A significant proportion (38.2%) of the BRAF and RAS wild-type PTCs harbored RET/PTC1 rearrangements.
Platt, Adam; Morten, John; Ji, Qunsheng; Elvin, Paul; Womack, Chris; Su, Xinying; Donald, Emma; Gray, Neil; Read, Jessica; Bigley, Graham; Blockley, Laura; Cresswell, Carl; Dale, Angela; Davies, Amanda; Zhang, Tianwei; Fan, Shuqiong; Fu, Haihua; Gladwin, Amanda; Harrod, Grace; Stevens, James; Williams, Victoria; Ye, Qingqing; Zheng, Li; de Boer, Richard; Herbst, Roy S; Lee, Jin-Soo; Vasselli, James
2015-03-23
To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation. Randomized Phase III clinical trials ( NCT00312377 , ZODIAC; NCT00418886 , ZEAL; NCT00364351 , ZEST; NCT00404924 , ZEPHYR).
Alu elements mediate large SPG11 gene rearrangements: further spatacsin mutations.
Conceição Pereira, Maria; Loureiro, José Leal; Pinto-Basto, Jorge; Brandão, Eva; Margarida Lopes, Ana; Neves, Georgina; Dias, Pureza; Geraldes, Ruth; Martins, Isabel Pavão; Cruz, Vitor Tedim; Kamsteeg, Erik-Jan; Brunner, Han G; Coutinho, Paula; Sequeiros, Jorge; Alonso, Isabel
2012-01-01
Hereditary spastic paraplegias compose a group of neurodegenerative disorders with a large clinical and genetic heterogeneity. Among the autosomal recessive forms, spastic paraplegia type 11 is the most common. To better understand the spastic paraplegia type 11 mutation spectrum, we studied a group of 54 patients with hereditary spastic paraplegia. Mutation screening was performed by PCR amplification of SPG11 coding regions and intron boundaries, followed by sequencing. For the detection of large gene rearrangements, we performed multiplex ligation-dependent probe amplification. We report 13 families with spastic paraplegia type 11 carrying either novel or previously identified mutations. We describe a complex entire SPG11 rearrangement and show that large gene rearrangements are frequent among patients with spastic paraplegia type 11. Moreover, we mapped the deletion breakpoints of three different large SPG11 deletions and provide evidence for Alu microhomology-mediated exon deletion. Our analysis shows that the high number of repeated elements in SPG11 together with the presence of recombination hotspots and the high intrinsic instability of the 15q locus all contribute toward making this genomic region more prone to large gene rearrangements. These findings enlarge the amount of data relating repeated elements with neurodegenerative disorders and highlight their importance in human disease and genome evolution.
Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies.
Duhoux, Francois P; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Nguyen-Khac, Florence; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A
2011-01-01
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.
Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies
Duhoux, Francois P.; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A.
2011-01-01
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis. PMID:22039459
Pereira, Adenilson Leão; Malcher, Stella Miranda; Nagamachi, Cleusa Yoshiko; O’Brien, Patricia Caroline Mary; Ferguson-Smith, Malcolm Andrew; Mendes-Oliveira, Ana Cristina; Pieczarka, Julio Cesar
2016-01-01
Sigmodontinae rodents show great diversity and complexity in morphology and ecology. This diversity is accompanied by extensive chromosome variation challenging attempts to reconstruct their ancestral genome. The species Hylaeamys megacephalus–HME (Oryzomyini, 2n = 54), Necromys lasiurus—NLA (Akodontini, 2n = 34) and Akodon sp.–ASP (Akodontini, 2n = 10) have extreme diploid numbers that make it difficult to understand the rearrangements that are responsible for such differences. In this study we analyzed these changes using whole chromosome probes of HME in cross-species painting of NLA and ASP to construct chromosome homology maps that reveal the rearrangements between species. We include data from the literature for other Sigmodontinae previously studied with probes from HME and Mus musculus (MMU) probes. We also use the HME probes on MMU chromosomes for the comparative analysis of NLA with other species already mapped by MMU probes. Our results show that NLA and ASP have highly rearranged karyotypes when compared to HME. Eleven HME syntenic blocks are shared among the species studied here. Four syntenies may be ancestral to Akodontini (HME2/18, 3/25, 18/25 and 4/11/16) and eight to Sigmodontinae (HME26, 1/12, 6/21, 7/9, 5/17, 11/16, 20/13 and 19/14/19). Using MMU data we identified six associations shared among rodents from seven subfamilies, where MMU3/18 and MMU8/13 are phylogenetic signatures of Sigmodontinae. We suggest that the associations MMU2entire, MMU6proximal/12entire, MMU3/18, MMU8/13, MMU1/17, MMU10/17, MMU12/17, MMU5/16, MMU5/6 and MMU7/19 are part of the ancestral Sigmodontinae genome. PMID:26800516
Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions
Leblon, G.; Zickler, D.; Lebilcot, S.
1986-01-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.—Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.—Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms. PMID:17246312
Leblon, G; Zickler, D; Lebilcot, S
1986-02-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.
Bekker-Méndez, Vilma Carolina; Miranda-Peralta, Enrique; Núñez-Enríquez, Juan Carlos; Olarte-Carrillo, Irma; Guerra-Castillo, Francisco Xavier; Pompa-Mera, Ericka Nelly; Ocaña-Mondragón, Alicia; Rangel-López, Angélica; Bernáldez-Ríos, Roberto; Medina-Sanson, Aurora; Jiménez-Hernández, Elva; Amador-Sánchez, Raquel; Peñaloza-González, José Gabriel; de Diego Flores-Chapa, José; Fajardo-Gutiérrez, Arturo; Flores-Lujano, Janet; Rodríguez-Zepeda, María Del Carmen; Dorantes-Acosta, Elisa María; Bolea-Murga, Victoria; Núñez-Villegas, Nancy; Velázquez-Aviña, Martha Margarita; Torres-Nava, José Refugio; Reyes-Zepeda, Nancy Carolina; González-Bonilla, Cesar; Mejía-Aranguré, Juan Manuel
2014-01-01
Mexico has one of the highest incidences of childhood leukemia worldwide and significantly higher mortality rates for this disease compared with other countries. One possible cause is the high prevalence of gene rearrangements associated with the etiology or with a poor prognosis of childhood acute lymphoblastic leukemia (ALL). The aims of this multicenter study were to determine the prevalence of the four most common gene rearrangements [ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL rearrangements] and to explore their relationship with mortality rates during the first year of treatment in ALL children from Mexico City. Patients were recruited from eight public hospitals during 2010-2012. A total of 282 bone marrow samples were obtained at each child's diagnosis for screening by conventional and multiplex reverse transcription polymerase chain reaction to determine the gene rearrangements. Gene rearrangements were detected in 50 (17.7%) patients. ETV6-RUNX1 was detected in 21 (7.4%) patients, TCF3-PBX1 in 20 (7.1%) patients, BCR-ABL1 in 5 (1.8%) patients, and MLL rearrangements in 4 (1.4%) patients. The earliest deaths occurred at months 1, 2, and 3 after diagnosis in patients with MLL, ETV6-RUNX1, and BCR-ABL1 gene rearrangements, respectively. Gene rearrangements could be related to the aggressiveness of leukemia observed in Mexican children.
Bekker-Méndez, Vilma Carolina; Miranda-Peralta, Enrique; Núñez-Enríquez, Juan Carlos; Olarte-Carrillo, Irma; Guerra-Castillo, Francisco Xavier; Pompa-Mera, Ericka Nelly; Ocaña-Mondragón, Alicia; Bernáldez-Ríos, Roberto; Medina-Sanson, Aurora; Jiménez-Hernández, Elva; Amador-Sánchez, Raquel; Peñaloza-González, José Gabriel; de Diego Flores-Chapa, José; Fajardo-Gutiérrez, Arturo; Flores-Lujano, Janet; Rodríguez-Zepeda, María del Carmen; Dorantes-Acosta, Elisa María; Bolea-Murga, Victoria; Núñez-Villegas, Nancy; Velázquez-Aviña, Martha Margarita; Torres-Nava, José Refugio; Reyes-Zepeda, Nancy Carolina; González-Bonilla, Cesar; Mejía-Aranguré, Juan Manuel
2014-01-01
Mexico has one of the highest incidences of childhood leukemia worldwide and significantly higher mortality rates for this disease compared with other countries. One possible cause is the high prevalence of gene rearrangements associated with the etiology or with a poor prognosis of childhood acute lymphoblastic leukemia (ALL). The aims of this multicenter study were to determine the prevalence of the four most common gene rearrangements [ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL rearrangements] and to explore their relationship with mortality rates during the first year of treatment in ALL children from Mexico City. Patients were recruited from eight public hospitals during 2010–2012. A total of 282 bone marrow samples were obtained at each child's diagnosis for screening by conventional and multiplex reverse transcription polymerase chain reaction to determine the gene rearrangements. Gene rearrangements were detected in 50 (17.7%) patients. ETV6-RUNX1 was detected in 21 (7.4%) patients, TCF3-PBX1 in 20 (7.1%) patients, BCR-ABL1 in 5 (1.8%) patients, and MLL rearrangements in 4 (1.4%) patients. The earliest deaths occurred at months 1, 2, and 3 after diagnosis in patients with MLL, ETV6-RUNX1, and BCR-ABL1 gene rearrangements, respectively. Gene rearrangements could be related to the aggressiveness of leukemia observed in Mexican children. PMID:25692130
Enantioselective Reduction of Ketones and Imines Catalyzed by (CN-Box)Re(V)-Oxo Complexes
Nolin, Kristine A.; Ahn, Richard W.; Kobayashi, Yusuke; Kennedy-Smith, Joshua J.
2012-01-01
The development and application of chiral, non-racemic Re(V)-oxo complexes to the enantioselective reduction of prochiral ketones is described. In addition to the enantioselective reduction of prochiral ketones, we report the application of these complexes to (1) a tandem Meyer-Schuster rearrangement/reduction to access enantioenriched allylic alcohols and (2) the enantioselective reduction of imines. PMID:20623567
Mehio, Nada; Ivanov, Alexander S.; Ladshaw, Austin P.; ...
2015-11-22
Poly(acrylamidoxime) fibers are the current state of the art adsorbent for mining uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a challenge to mining on the industrial scale. In this work, we employ density functional theory (DFT) and coupled-cluster methods (CCSD(T)) in the restricted formalism to investigate potential binding motifs of the oxovanadium(IV) ion (VO 2+) with the formamidoximate ligand. Consistent with experimental EXAFS data, the hydrated six-coordinate complex is predicted to be preferred over the hydrated five-coordinate complex. Here, our investigation of formamidoximate-VO 2+ complexes universally identified the most stable binding motifmore » formed by chelating a tautomerically rearranged imino hydroxylamine via the imino nitrogen and hydroxylamine oxygen. The alternative binding motifs for amidoxime chelation via a non-rearranged tautomer and 2 coordination are found to be ~11 kcal/mol less stable. Ultimately, the difference in the most stable VO 2+ and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less
Asatryan, Rubik; Ruckenstein, Eli; Hachmann, Johannes
2017-08-01
This paper provides a first-principles theoretical investigation of the polytopal rearrangements and fluxional behavior of five-coordinate d 7 -transition metal complexes. Our work is primarily based on a potential energy surface analysis of the iron tetracarbonyl hydride radical HFe˙(CO) 4 . We demonstrate the existence of distorted coordination geometries in this prototypical system and, for the first time, introduce three general rearrangement mechanisms, which account for the non-ideal coordination. The first of these mechanisms constitutes a modified version of the Berry pseudorotation via a square-based pyramidal C 4v transition state that connects two chemically identical edge-bridged tetrahedral stereoisomers of C 2v symmetry. It differs from the classical Berry mechanism, which involves two regular D 3h equilibrium structures and a C 4v transition state. The second mechanism is related to the famous "tetrahedral jump" hypothesis, postulated by Muetterties for a number of d 6 HML 4 and H 2 ML 4 complexes. Here, our study suggests two fluxional rearrangement pathways via distinct types of C 2v transition states. Both pathways of this mechanism can be described as a single-ligand migration to a vacant position of an "octahedron", thus interchanging (switching) the apical and basal ligands of the initial quasi-square pyramidal isomer, which is considered as an idealized octahedron with a vacancy. Accordingly, we call this mechanism "octahedral switch". The third mechanism follows a butterfly-type isomerization featuring a key-angle deformation, and we thus call it "butterfly isomerization". It connects the quasi-square pyramidal and edge-bridged tetrahedral isomers of HFe˙(CO) 4 through a distorted edge-bridged tetrahedral transition state of C s symmetry. Our paper discusses the overall features of the isomers and rearrangement mechanisms as well as their implications. We rationalize the existence of each stationary point through an electronic structure analysis and argue their relevance for isolobal analogues of HFe˙(CO) 4 .
Horowitz, Julie E; Bassing, Craig H
2014-02-15
The RAG proteins are comprised of core endonuclease domains and noncore regions that modulate endonuclease activity. Mutation or deletion of noncore RAG regions in humans causes immunodeficiency and altered TCR repertoire, and mice expressing core but not full-length Rag1 (Rag1(C/C)) or Rag2 (Rag2(C/C)) exhibit lymphopenia, reflecting impaired V(D)J recombination and lymphocyte development. Rag1(C/C) mice display reduced D-to-J and V-to-DJ rearrangements of TCRβ and IgH loci, whereas Rag2(C/C) mice show decreased V-to-DJ rearrangements and altered Vβ/VH repertoire. Because Vβs/VHs only recombine to DJ complexes, the Rag1(C/C) phenotype could reflect roles for noncore RAG1 regions in promoting recombination during only the D-to-J step or during both steps. In this study, we demonstrate that a preassembled TCRβ gene, but not a preassembled DβJβ complex or the prosurvival BCL2 protein, completely rescues αβ T cell development in Rag1(C/C) mice. We find that Rag1(C/C) mice exhibit altered Vβ utilization in Vβ-to-DJβ rearrangements, increased usage of 3'Jα gene segments in Vα-to-Jα rearrangements, and abnormal changes in Vβ repertoire during αβ TCR selection. Inefficient Vβ/VH recombination signal sequences (RSSs) have been hypothesized to cause impaired V-to-DJ recombination on the background of a defective recombinase as in core-Rag mice. We show that replacement of the Vβ14 RSS with a more efficient RSS increases Vβ14 recombination and rescues αβ T cell development in Rag1(C/C) mice. Our data indicate that noncore RAG1 regions establish a diverse TCR repertoire by overcoming Vβ RSS inefficiency to promote Vβ recombination and αβ T cell development, and by modulating TCRβ and TCRα gene segment utilization.
Mediator structure and rearrangements required for holoenzyme formation.
Tsai, Kuang-Lei; Yu, Xiaodi; Gopalan, Sneha; Chao, Ti-Chun; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Murakami, Kenji; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J
2017-04-13
The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.
Atomic Rearrangements in Electron Attachment to Laser-Excited Molecules^*
NASA Astrophysics Data System (ADS)
Pinnaduwage, Lal; McCorkle, Dennis
1996-10-01
We report the observation of extensive atomic rearrangements in dissociative electron attachment to triethylamine " (Pinnaduwage and McCorkle, Chem.Phys. Lett. (in press, 1996))" and benzene laser excited to energies above their ionization thresholds. Large signal of "rearranged" negative ions, such as C_3^- (which is observed in both cases), were observed. This is in contrast to negative-ion formation via electron attachment to molecules in their ground states, where "rearranged" negative ions are comparatively weak and have been observed only occasionally. However, formation of "rearranged" positive ions is of common occurrence in the ionization of polyatomic molecules; it is possible that the formation of "rearranged" positive ions in the ionization processes, and the formation of such negative ions via electron attachment to excited states located close to the ionization threshold, are related. * Work supported by the LDRD Program of the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the US Department of Energy under contract number DE-AC05-96OR22464, and by the National Science Foundation under contract CHE-93113949 with the Univ. of Tenn., Knoxville.
Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.
2012-01-01
Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219
Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda; Tümer, Zeynep; Ravn, Kirstine; Pasparaki, Angela; Sarafidou, Theologia; Kontos, Harry; Kokotas, Haris; Karadima, Georgia; Grigoriadou, Maria; Pandelia, Effie; Theodorou, Virginia; Moschonas, Nicholas K; Petersen, Michael B
2011-11-01
We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q. By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region with no copy number change, followed by a 5.62 Mb 10q26.2-q26.3 deletion and a translocation of satellite material. The homology between the repeat sequences at 10q subtelomere region and the sequences on the acrocentric short arms may explain the origin of the rearrangement and it is likely that the submicroscopic microdeletion and microduplication are responsible for the abnormal phenotype in our patient. The patient presented here, with a 15-year follow-up, manifests a distinct phenotype different from the 10q26 pure distal monosomy and trisomy syndromes. Copyright © 2011 Wiley Periodicals, Inc.
Reactions in trifluoroacetic acid (CF 3COOH) induced by low energy electron attachment
NASA Astrophysics Data System (ADS)
Langer, Judith; Stano, Michal; Gohlke, Sascha; Foltin, Victor; Matejcik, Stefan; Illenberger, Eugen
2006-02-01
Dissociative electron attachment to trifluoroacetic acid (CF 3COOH) is characterized by an intense low energy shape resonance located near 1 eV and a comparatively weaker core excited resonance located near 7 eV. The shape resonance decomposes into the fragment ions CF 3COO -, CF 2COO -, and CF2-. The underlying reactions include simple bond cleavage but also more complex sequences involving multiple bond cleavages, rearrangement in the precursor ion and formation of new molecules (HF, CO 2). The core excited resonance additionally decomposes into F -, CF3- and probably metastable CO2-.
Butler, J B; Vaillancourt, R E; Potts, B M; Lee, D J; King, G J; Baten, A; Shepherd, M; Freeman, J S
2017-05-22
Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.
Method of detecting genetic translocations identified with chromosomal abnormalities
Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas
2001-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Method of detecting genetic deletions identified with chromosomal abnormalities
Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas
2013-11-26
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.
Blaikley, Elizabeth J; Tinline-Purvis, Helen; Kasparek, Torben R; Marguerat, Samuel; Sarkar, Sovan; Hulme, Lydia; Hussey, Sharon; Wee, Boon-Yu; Deegan, Rachel S; Walker, Carol A; Pai, Chen-Chun; Bähler, Jürg; Nakagawa, Takuro; Humphrey, Timothy C
2014-05-01
DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability. © The Author(s) 2014. Published by Oxford University Press.
Immunoglobulin Heavy Chain Exclusion in the Shark
Malecek, Karolina; Lee, Victor; Feng, Wendy; Huang, Jing Li; Flajnik, Martin F; Ohta, Yuko; Hsu, Ellen
2008-01-01
The adaptive immune system depends on specific antigen receptors, immunoglobulins (Ig) in B lymphocytes and T cell receptors (TCR) in T lymphocytes. Adaptive responses to immune challenge are based on the expression of a single species of antigen receptor per cell; and in B cells, this is mediated in part by allelic exclusion at the Ig heavy (H) chain locus. How allelic exclusion is regulated is unclear; we considered that sharks, the oldest vertebrates possessing the Ig/TCR-based immune system, would yield insights not previously approachable and reveal the primordial basis of the regulation of allelic exclusion. Sharks have an IgH locus organization consisting of 15–200 independently rearranging miniloci (VH-D1-D2-JH-Cμ), a gene organization that is considered ancestral to the tetrapod and bony fish IgH locus. We found that rearrangement takes place only within a minilocus, and the recombining gene segments are assembled simultaneously and randomly. Only one or few H chain genes were fully rearranged in each shark B cell, whereas the other loci retained their germline configuration. In contrast, most IgH were partially rearranged in every thymocyte (developing T cell) examined, but no IgH transcripts were detected. The distinction between B and T cells in their IgH configurations and transcription reveals a heretofore unsuspected chromatin state permissive for rearrangement in precursor lymphocytes, and suggests that controlled limitation of B cell lineage-specific factors mediate regulated rearrangement and allelic exclusion. This regulation may be shared by higher vertebrates in which additional mechanistic and regulatory elements have evolved with their structurally complex IgH locus. PMID:18578572
NASA Astrophysics Data System (ADS)
Grubbs, G. S. Grubbs, Ii; Cooke, S. A.; Novick, Stewart E.
2012-06-01
Claisen rearrangement ethers are a fundamental organic, pericyclic rearrangement reaction reagent. In the mechanism of a Claisen rearrangement, a vinyl allyl ether is needed to provide the necessary Lewis acid/base sites on the molecule for the rearrangement and are simply heated. This rearrangement was first discovered by heating up the title molecule, allyl phenyl ether. However, much like the Diels-Alder, Cope, and other pericyclic reactions, conformation and coordination of chemical groups is key to the Claisen mechanism. In this study, the authors present some structural characteristics of allyl phenyl ether from an analysis of the microwave spectra in the 8-14 GHz region using a CP-FTMW spectrometer. This is, to the authors knowledge, the first known microwave region study of the title molecule. Three conformers have been observed and assigned to date and will be discussed. Along with the rotational spectra, geometry calculations and potential energy surfaces performed at the MP2/6-311G++(3d,2p) level will be discussed and compared to the experimental results. Modeling the Claisen aromatic rearrangement mechanism using CP-FTMW spectroscopy will also be discussed. L. Claisen Chemische Berichte 45, 3157, October 1912.
Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex
Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.
2014-01-01
SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805
Gene context conservation of a higher order than operons.
Lathe, W C; Snel, B; Bork, P
2000-10-01
Operons, co-transcribed and co-regulated contiguous sets of genes, are poorly conserved over short periods of evolutionary time. The gene order, gene content and regulatory mechanisms of operons can be very different, even in closely related species. Here, we present several lines of evidence which suggest that, although an operon and its individual genes and regulatory structures are rearranged when comparing the genomes of different species, this rearrangement is a conservative process. Genomic rearrangements invariably maintain individual genes in very specific functional and regulatory contexts. We call this conserved context an uber-operon.
Lautz, Jonathan D; Brown, Emily A; VanSchoiack, Alison A Williams; Smith, Stephen E P
2018-05-27
Cells utilize dynamic, network level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of preexisting multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
FISH analysis in the derivation of a 12, 15, 21 complex chromosomal rearrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, C.K.; Muscolino, D.; Baird, N.
Cytogenetic analysis was performed for a couple referred for recurrent pregnancy loss. Routine GTG banded studies revealed a 46,XY karyotype for the husband, but in the woman, an apparently balanced complex rearrangement involving chromosomes 12, 15, and 21 was detected. The 46,XX,t(12;15)(q13.3;q23),t(12;21)(q21;q11.2) karyotype is the consequence of 2 translocation events resulting in 3 rearranged chromosomes: (1) a derivative 12 arising from the exchange of the short arms of 12 and 21; (2) a derivative chromosome 15 consisting of segments of the long arms of chromosomes 12 and 15; and (3) a complex derivative chromosome 21 which includes the short armmore » and centromere of 21, and portions of the long arms of both chromosomes 12 and 15. Because the 12;21 translocation occurred at the centromeric region on both chromosomes, it was not possible to cytogenetically differentiate the derivative chromosomes 12 and 21. To clarify this issue, fluorescence in situ hybridization (FISH) was performed utilizing a 13/21 alpha-satellite probe. The location of the FITC signal clearly indicated a chromosome 21 centromere present on the derivative containing portions of all three chromosomes. A family history of spontaneous fetal losses suggested the possibility of a familial translocation. However, the likelihood of transmission of such a complex set of translocations is low, leading to the hypothesis that only one of the translocations was inherited with the second a de novo event in this individual. Karyotype analysis of both parents revealed no cytogenetic anomalies. Therefore, the extremely unusual occurrence of two independent translocations involving 3 chromosomes arose de novo in this patient.« less
Identification of copy number variations and translocations in cancer cells from Hi-C data.
Chakraborty, Abhijit; Ay, Ferhat
2017-10-18
Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes with CNV events for a breast cancer cell line (r=0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Furthermore, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes (DMs) and homogeneously staining regions (HSRs). Considering the inherent limitations of existing techniques for karyotyping (i.e., missing balanced rearrangements and those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C. CNV calling: https://github.com/ay-lab/HiCnvTranslocation calling: https://github.com/ay-lab/HiCtransHi-C simulation: https://github.com/ay-lab/AveSim. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The potential of clofarabine in MLL-rearranged infant acute lymphoblastic leukaemia.
Stumpel, Dominique J P M; Schneider, Pauline; Pieters, Rob; Stam, Ronald W
2015-09-01
MLL-rearranged acute lymphoblastic leukaemia (ALL) in infants is the most difficult-to-treat type of childhood ALL, displaying a chemotherapy-resistant phenotype, and unique histone modifications, gene expression signatures and DNA methylation patterns. MLL-rearranged infant ALL responds remarkably well to nucleoside analogue drugs in vitro, such as cytarabine and cladribine, and to the demethylating agents decitabine and zebularine as measured by cytotoxicity assays. These observations led to the inclusion of cytarabine into the treatment regimens currently used for infants with ALL. However, survival chances for infants with MLL-rearranged ALL do still not exceed 30-40%. Here we explored the in vitro potential of the novel nucleoside analogue clofarabine for MLL-rearranged infant ALL. Therefore we used both cell line models as well as primary patient cells. Compared with other nucleoside analogues, clofarabine effectively targeted primary MLL-rearranged infant ALL cells at the lowest concentrations, with median LC50 values of ∼25 nM. Interestingly, clofarabine displayed synergistic cytotoxic effects in combination with cytarabine. Furthermore, at concentrations of 5-10nM clofarabine induced demethylation of the promoter region of the tumour suppressor gene FHIT (Fragile Histidine Triad), a gene typically hypermethylated in MLL-rearranged ALL. Demethylation of the FHIT promoter region was accompanied by subtle re-expression of this gene both at the mRNA and protein level. We conclude that clofarabine is an interesting candidate for further studies in MLL-rearranged ALL in infants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui
2015-07-01
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.
Editing disulphide bonds: error correction using redox currencies.
Ito, Koreaki
2010-01-01
The disulphide bond-introducing enzyme of bacteria, DsbA, sometimes oxidizes non-native cysteine pairs. DsbC should rearrange the resulting incorrect disulphide bonds into those with correct connectivity. DsbA and DsbC receive oxidizing and reducing equivalents, respectively, from respective redox components (quinones and NADPH) of the cell. Two mechanisms of disulphide bond rearrangement have been proposed. In the redox-neutral 'shuffling' mechanism, the nucleophilic cysteine in the DsbC active site forms a mixed disulphide with a substrate and induces disulphide shuffling within the substrate part of the enzyme-substrate complex, followed by resolution into a reduced enzyme and a disulphide-rearranged substrate. In the 'reduction-oxidation' mechanism, DsbC reduces those substrates with wrong disulphides so that DsbA can oxidize them again. In this issue of Molecular Microbiology, Berkmen and his collaborators show that a disulphide reductase, TrxP, from an anaerobic bacterium can substitute for DsbC in Escherichia coli. They propose that the reduction-oxidation mechanism of disulphide rearrangement can indeed operate in vivo. An implication of this work is that correcting errors in disulphide bonds can be coupled to cellular metabolism and is conceptually similar to the proofreading processes observed with numerous synthesis and maturation reactions of biological macromolecules.
Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Hoffmann, Peter; Bowie, John H
2011-12-15
A joint experimental and theoretical investigation of the fragmentation behaviour of energised [M-H](-) anions from selected phosphorylated peptides has confirmed some of the most complex rearrangement processes yet to be reported for peptide negative ions. In particular: pSer and pThr (like pTyr) may transfer phosphate groups to C-terminal carboxyl anions and to the carboxyl anion side chains of Asp and Glu, and characteristic nucleophilic/cleavage reactions accompany or follow these rearrangements. pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely transfer of a phosphate group from pSer or pThr to Tyr, is energetically unfavourable in comparison. pSer can transfer phosphate to a non-phosphorylated Ser. The non-rearranged [M-H](-) species yields more abundant product anions than its rearranged counterpart. If a peptide containing any or all of Ser, Thr and Tyr is not completely phosphorylated, negative-ion cleavages can determine the number of phosphated residues, and normally the positions of Ser, Thr and Tyr, but not which specific residues are phosphorylated. This is in accord with comments made earlier by Lehmann and coworkers. Copyright © 2011 John Wiley & Sons, Ltd.
Russian Doll Genes and Complex Chromosome Rearrangements in Oxytricha trifallax
Braun, Jasper; Nabergall, Lukas; Neme, Rafik; Landweber, Laura F.; Saito, Masahico; Jonoska, Nataša
2018-01-01
Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC). Furthermore, Oxytricha trifallax undergoes extensive genome rearrangements during sexual conjugation and post-zygotic development of daughter cells. These rearrangements are necessary because the precursor MIC loci are often both fragmented and scrambled, with respect to the corresponding MAC loci. Such genome architectures are remarkably tolerant of encrypted MIC loci, because RNA-guided processes during MAC development reorganize the gene fragments in the correct order to resemble the parental MAC sequence. Here, we describe the germline organization of several nested and highly scrambled genes in Oxytricha trifallax. These include cases with multiple layers of nesting, plus highly interleaved or tangled precursor loci that appear to deviate from previously described patterns. We present mathematical methods to measure the degree of nesting between precursor MIC loci, and revisit a method for a mathematical description of scrambling. After applying these methods to the chromosome rearrangement maps of O. trifallax we describe cases of nested arrangements with up to five layers of embedded genes, as well as the most scrambled loci in O. trifallax. PMID:29545465
Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting
Nie, W; Wang, J; Su, W; Wang, D; Tanomtong, A; Perelman, P L; Graphodatsky, A S; Yang, F
2012-01-01
Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species. PMID:22086079
Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko
2015-04-01
Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Gruber, Kim; Horn, Heike; Kalla, Jörg; Fritz, Peter; Rosenwald, Andreas; Kohlhäufl, Martin; Friedel, Godehard; Schwab, Matthias; Ott, German; Kalla, Claudia
2014-03-01
The approved dual-color fluorescence in situ hybridization (FISH) test for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements in non-small-cell lung cancer (NSCLC) is complex and represents a low-throughput assay difficult to use in daily diagnostic practice. We devised a sensitive and robust routine diagnostic test for the detection of rearrangements and transcriptional up-regulation of ALK. We developed a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay adapted to RNA isolated from routine formalin-fixed, paraffin-embedded material and applied it to 652 NSCLC specimens. The reliability of this technique to detect ALK dysregulation was shown by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ALK expression indicative of a gene rearrangement in 24 (4.6%) and full-length ALK transcript expression in six (1.1%) of 523 interpretable tumors. Among 182 tumors simultaneously analyzed by FISH and qRT-PCR, the latter accurately typed 97% of 19 rearranged and 158 nonrearranged tumors and identified ALK deregulation in two cases with insufficient FISH. Six tumors expressing full-length ALK transcripts did not show rearrangements of the gene. Immunohistochemistry detected ALK protein overexpression in tumors with gene fusions and transcriptional up-regulation, but did not distinguish between the two. One case with full-length ALK expression carried a heterozygous point mutation (S1220Y) within the kinase domain potentially interfering with kinase activity and/or inhibitor binding. Our qRT-PCR assay reliably identifies and distinguishes ALK rearrangements and full-length transcript expression in formalin-fixed, paraffin-embedded material. It is an easy-to-perform, cost-effective, and high-throughput tool for the diagnosis of ALK activation. The expression of full-length ALK transcripts may be relevant for ALK inhibitor therapy in NSCLC.
2013-01-01
Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy in pediatric patients and the leading cause of cancer-related death in children and young adults. Translocations of 9p24 involving JAK2 (9p24) and gain-of-function mutations of JAK2 with subsequent activation of the JAK2 kinase have been described in several hematological malignancies including B-ALL. However, rearrangements involving JAK2 are rare in B-ALL as only few cases have been described in the literature. Findings Herein, we present a case of pediatric B-ALL whose conventional cytogenetics revealed an abnormal karyotype with a reciprocal translocation involving 9p24 (JAK2) and 12p11.2. Fluorescence in situ hybridization (FISH) studies using the RP11-927H16 Spectrum Green JAK2 probe on previously G-banded metaphases confirmed the involvement of JAK2 in this rearrangement. Further FISH studies on the same previously G-banded metaphases using the LSI MLL probe helped to characterize an insertion of MLL into 6q27 as an additional abnormality in this karyotype. FISH studies performed on interphase nuclei also revealed an abnormal clone with MLL rearrangements in 23.6% of the nuclei examined as well as an abnormal clonal population with a deletion of the 5'IGH@ region in 88.3% of the nuclei examined. Conclusions Rearrangements of 9p24 can result in constitutive activation of JAK2, and have been observed in B-ALL. Rearrangements of the MLL gene have also been described extensively in B-ALL. However, rearrangements of MLL with a partner at 6q27 and in conjunction with a translocation involving JAK2 have not been previously described. This case pinpoints the importance of FISH and conventional cytogenetics to characterize complex rearrangements in which JAK2 and MLL are involved. The therapeutic targeting of JAK2 and MLL in cases like this may be prognostically beneficial. PMID:24274401
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, J.-P.; Stehle, T.; Zhang, R.
The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
Cuscó, Ivon; del Campo, Miguel; Vilardell, Mireia; González, Eva; Gener, Blanca; Galán, Enrique; Toledo, Laura; Pérez-Jurado, Luis A
2008-01-01
Background Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered. PMID:18405349
Cuscó, Ivon; del Campo, Miguel; Vilardell, Mireia; González, Eva; Gener, Blanca; Galán, Enrique; Toledo, Laura; Pérez-Jurado, Luis A
2008-04-11
Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.
Sullivan, Harold C; Fisher, Kevin E; Hoffa, Anne L; Wang, Jason; Saxe, Debra; Siddiqui, Momin T; Cohen, Cynthia
2015-04-01
Among the mutations described in non-small cell lung carcinoma is a rearrangement resulting from an inversion within chromosome 2p leading to the formation of a fusion gene, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK). Fluorescence in situ hybridization (FISH) is the gold standard for the detection of ALK gene rearrangements. However, molecular methods are not readily available in all pathology laboratories. Immunohistochemistry (IHC) using an antibody directed against the EML4-ALK fusion protein provides a widely available alternative method of detection. We assessed whether IHC is a comparable and cost-effective alternative to FISH analysis for the detection of ALK gene rearrangements. A total of 110 non-small cell lung carcinoma cases (63 surgical/biopsy and 47 cytology specimens), previously tested for ALK gene rearrangements by FISH [7 (6.4%) positive for the rearrangement], were probed for the EML4-ALK fusion protein using a monoclonal EML4-ALK antibody, clone 5A4. Cells were considered to stain positive for ALK if >5% of cells showed cytoplasmic staining of at least grade 1 intensity (scale: 0 to 3). A cost analysis was performed using ALK IHC as a screening test. The sensitivity and specificity of the EML4-ALK IHC stain compared with ALK FISH analysis were 100% and 96%, respectively. All 7 FISH-positive cases stained positive by IHC, whereas 4 FISH-negative cases demonstrated positive staining. One of the 4 FISH-negative, IHC-positive cases harbored an EML4-ALK rearrangement by RT-PCR yielding 3 false-positive results overall. The κ agreement between IHC and FISH methods is 0.76 (substantial/excellent). The potential savings of implementing the ALK IHC as a screening method would be $10,418.21. Sensitivity of the EML4-ALK IHC stain is excellent (100%) but due to its suboptimal specificity, IHC cannot reliably supplant FISH analysis for the detection of ALK gene rearrangements. IHC shows promise as a screening tool to prevent unnecessary costly FISH analysis.
Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E
2013-05-15
Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.
Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia
2013-01-01
Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation.
Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer
Rondinelli, Beatrice; Rosano, Dalia; Antonini, Elena; Frenquelli, Michela; Montanini, Laura; Huang, DaChuan; Segalla, Simona; Yoshihara, Kosuke; Amin, Samir B.; Lazarevic, Dejan; The, Bin Tean; Verhaak, Roel G.W.; Futreal, P. Andrew; Di Croce, Luciano; Chin, Lynda; Cittaro, Davide; Tonon, Giovanni
2015-01-01
Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers. PMID:26551685
Complex chromosomal rearrangements induced in vivo by heavy ions.
Durante, M; Ando, K; Furusawa, Y; Obe, G; George, K; Cucinotta, F A
2004-01-01
It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel
Complex Chromosomal Rearrangements Induced in Vivo by Heavy Ions
NASA Technical Reports Server (NTRS)
Durante, M.; Ando, K.; Furusawa, G.; Obe, G.; George, K.; Cucinotta, F. A.
2004-01-01
It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel.
Telomere sister chromatid exchange in telomerase deficient murine cells.
Wang, Yisong; Giannone, Richard J; Liu, Yie
2005-10-01
We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape "end crisis". However, the possibility that ES cells were more permissive to genomic rearrangements than other cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.
Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D; Popov, Lauren M; Chen, Jin; O'Leary, Seán E; Wang, Richard; Carette, Jan E; Sarnow, Peter; Puglisi, Joseph D
2015-01-13
Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Brian; Nayak, Dhananjaya; Ray, Ananya
RNA polymerase inhibitors like the CBR class that target the enzyme’s complex catalytic center are attractive leads for new antimicrobials. The catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg 2+ ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. Here, we report crystal structures of CBR inhibitor/Escherichia coli RNA polymerasemore » complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.« less
Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas
2009-06-09
The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex.
Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K
2017-04-26
Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.
Dynamics of Polydisperse Foam-like Emulsion
NASA Astrophysics Data System (ADS)
Hicock, Harry; Feitosa, Klebert
2011-10-01
Foam is a complex fluid whose relaxation properties are associated with the continuous diffusion of gas from small to large bubbles driven by differences in Laplace pressures. We study the dynamics of bubble rearrangements by tracking droplets of a clear, buoyantly neutral emulsion that coarsens like a foam. The droplets are imaged in three dimensions using confocal microscopy. Analysis of the images allows us to measure their positions and radii, and track their evolution in time. We find that the droplet size distribution fits a Weibull distribution characteristics of foam systems. Additionally, we observe that droplets undergo continuous evolution interspersed by occasional large rearrangements in par with local relaxation behavior typical of foams.
García-Guerrero, Estefanía; Pérez-Simón, José Antonio; Sánchez-Abarca, Luis Ignacio; Díaz-Moreno, Irene; De la Rosa, Miguel A; Díaz-Quintana, Antonio
2016-01-01
Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.
Lim, Tony KH; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck
2016-01-01
Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3–15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0–2 cells/1.88 mL of blood). The latter range was validated as the ‘false positive’ cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing. PMID:26993609
Tan, Chye Ling; Lim, Tse Hui; Lim, Tony Kh; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck
2016-04-26
Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3-15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0-2 cells/1.88 mL of blood). The latter range was validated as the 'false positive' cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing.
Selenophene transition metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Carter James
1994-07-27
This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η 5- and the η 1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand.more » In the final paper, the C-H bond activation of η 1(S)-bound thiophenes, η 1(S)-benzothiophene and η 1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η 1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh 3)Re(2-benzothioenylcarbene)]O 3SCF 3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η 1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.« less
Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin
2015-11-12
High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics.
Grey, William; Ivey, Adam; Milne, Thomas A; Haferlach, Torsten; Grimwade, David; Uhlmann, Frank; Voisset, Edwige; Yu, Veronica
2018-01-01
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCF Skp2 and APC Cdc20 . Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the Mll N and Mll C subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Activation of C-H bonds by rare-earth metallocene-butyl complexes.
Grindell, Richard; Day, Benjamin M; Guo, Fu-Sheng; Pugh, Thomas; Layfield, Richard A
2017-09-05
The stable metallocene-butyl complexes [(Cp Me ) 2 M( n Bu)] 2 (M = Y, Dy) were synthesized and their reactivity towards to ferrocene and bulky N-heterocyclic carbenes investigated. Selective mono-deprotonation of ferrocene and a benzylic methyl group of IMes were observed, whereas a control reaction of (Cp Me ) 3 M with IMes resulted in a normal-to-abnormal NHC rearrangement.
Major pathologic response to alectinib in ALK-rearranged adenocarcinoma of the lung.
Imanishi, Naoko; Yoneda, Kazue; Taira, Akihiro; Ichiki, Yoshinobu; Sato, Naoko; Hisaoka, Masanori; Tanaka, Fumihiro
2018-03-09
Alectinib is a highly selective tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) and provided a significantly prolonged progression-free survival compared with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC) harboring rearrangements of the ALK gene. Here, we present the first surgical case of ALK-rearranged lung adenocarcinoma with major pathological response in resected specimens after treatment with alectinib. A 65-year-old female with clinical stage IIIA-N2 ALK-rearranged adenocarcinoma originating from the left lower lobe presented. Involvement of lower para-tracheal node was pathologically confirmed by endobronchial ultrasound-guided biopsy. Alectinib was prescribed, as the patient may not tolerate radiotherapy due to a mental illness. After 3 months' treatment with alectinib, a remarkable radiological and metabolic response was achieved. The patient did not tolerate further continuation of alectinib treatment, and surgery was performed without any morbidity. Only < 10% tumor cells were viable in all resected specimens, indicating major pathological response to alectinib. Salvage surgery after alectinib treatment may be safe and effective for initially unresectable NSCLC harboring ALK-rearrangements.
NASA Astrophysics Data System (ADS)
Bartlett, P. L.; Stelbovics, A. T.; Rescigno, T. N.; McCurdy, C. W.
2007-11-01
Calculations are reported for four-body electron-helium collisions and positron-hydrogen collisions, in the S-wave model, using the time-independent propagating exterior complex scaling (PECS) method. The PECS S-wave calculations for three-body processes in electron-helium collisions compare favourably with previous convergent close-coupling (CCC) and time-dependent exterior complex scaling (ECS) calculations, and exhibit smooth cross section profiles. The PECS four-body double-excitation cross sections are significantly different from CCC calculations and highlight the need for an accurate representation of the resonant helium final-state wave functions when undertaking these calculations. Results are also presented for positron-hydrogen collisions in an S-wave model using an electron-positron potential of V12 = - (8 + (r1 - r2)2)-1/2. This model is representative of the full problem, and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.
Effects of recombinant protein misfolding and aggregation on bacterial membranes.
Ami, D; Natalello, A; Schultz, T; Gatti-Lafranconi, P; Lotti, M; Doglia, S M; de Marco, A
2009-02-01
The expression of recombinant proteins is known to induce a metabolic rearrangement in the host cell. We used aggregation-sensitive model systems to study the effects elicited in Escherichia coli cells by the aggregation of recombinant glutathione-S-transferase and its fusion with the green fluorescent protein that, according to the expression conditions, accumulate intracellularly as soluble protein, or soluble and insoluble aggregates. We show that the folding state of the recombinant protein and the complexity of the intracellular aggregates critically affect the cell response. Specifically, protein misfolding and aggregation induce changes in specific host proteins involved in lipid metabolism and oxidative stress, a reduction in the membrane permeability, as well as a rearrangement of its lipid composition. The temporal evolution of the host cell response and that of the aggregation process pointed out that the misfolded protein and soluble aggregates are responsible for the membrane modifications and the changes in the host protein levels. Interestingly, native recombinant protein and large insoluble aggregates do not seem to activate stress markers and membrane rearrangements.
Endometrial stromal tumours revisited: an update based on the 2014 WHO classification.
Ali, Rola H; Rouzbahman, Marjan
2015-05-01
Endometrial stromal tumours (EST) are rare tumours of endometrial stromal origin that account for less than 2% of all uterine tumours. Recent cytogenetic and molecular advances in this area have improved our understanding of ESTs and helped refine their classification into more meaningful categories. Accordingly, the newly released 2014 WHO classification system recognises four categories: endometrial stromal nodule (ESN), low-grade endometrial stromal sarcoma (LGESS), high-grade endometrial stromal sarcoma (HGESS) and undifferentiated uterine sarcoma (UUS). At the molecular level, these tumours may demonstrate a relatively simple karyotype with a defining chromosomal rearrangement (as in the majority of ESNs, LGESSs and YWHAE-rearranged HGESS) or demonstrate complex cytogenetic aberrations lacking specific rearrangements (as in UUSs). Herein we provide an update on this topic aimed at the practicing pathologist. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Krylov, Vadim B; Argunov, Dmitry A; Vinnitskiy, Dmitry Z; Verkhnyatskaya, Stella A; Gerbst, Alexey G; Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Huebner, Johannes; Holst, Otto; Siebert, Hans-Christian; Nifantiev, Nikolay E
2014-12-08
Great interest in natural furanoside-containing compounds has challenged the development of preparative methods for their synthesis. Herein a novel reaction in carbohydrate chemistry, namely a pyranoside-into-furanoside (PIF) rearrangement permitting the transformation of selectively O-substituted pyranosides into the corresponding furanosides is reported. The discovered process includes acid-promoted sulfation accompanied by rearrangement of the pyranoside ring into a furanoside ring followed by solvolytic O-desulfation. This process, which has no analogy in organic chemistry, was shown to be a very useful tool for the synthesis of furanoside-containing complex oligosaccharides, which was demonstrated by synthesizing disaccharide derivatives α-D-Galp-(1→3)-β-D-Galf-OPr, 3-O-s-lactyl-β-D-Galf-(1→3)-β-D-Glcp-OPr, and α-L-Fucf-(1→4)-β-D-GlcpA-OPr related to polysaccharides from the bacteria Klebsiella pneumoniae and Enterococcus faecalis and the brown seaweed Chordaria flagelliformis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle
2018-05-01
Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.
Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.
Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J
2014-06-05
The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.
Luquet, I; Laï, J L; Barin, C; Baranger, L; Bilhou-Nabera, C; Lippert, E; Gervais, C; Talmant, P; Cornillet-Lefebvre, P; Perot, C; Nadal, N; Mozziconacci, M J; Lafage-Pochitaloff, M; Eclache, V; Mugneret, F; Lefebvre, C; Herens, C; Speleman, F; Poirel, H; Tigaud, I; Cabrol, C; Rousselot, P; Daliphard, S; Imbert, M; Garand, R; Geneviève, F; Berger, R; Terre, C
2008-01-01
A series of 38 patients with acute myeloblastic leukemia (AML) with 49 or more chromosomes and without structural abnormalities was selected within the Groupe Francophone de Cytogénétique Hématologique (GFCH) to better define their characteristics. The median age of the patients was 65 years, and all FAB subtypes were represented. Although all chromosomes were gained, some seems to prevail: chromosome 8 (68%), 21 (47%), 19 (37%), and 13 and 14 (34% each). Since MLL rearrangement leads patients in a group with an unfavorable prognosis, search for cryptic rearrangements of MLL was performed in 34 patients and showed abnormalities in 5 (15%). When we applied the most frequent definition of complex karyotypes (three or more abnormalities), all patients with high hyperdiploid AML fall in the unfavorable category. Among the 18 patients without MLL rearrangement receiving an induction therapy, 16 (89%) reached CR and 6 (33%) were still alive after a 31-month median follow-up (14-61 months). Although this study was retrospective, these results suggest that high hyperdiploid AML without chromosome rearrangement seems to be a subgroup of uncommon AML (less than 1%), and may be better classified in the intermediate prognostic group.
DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.
2016-01-01
Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459
Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell
Kong, Mei; Zhou, Jianya; Ding, Wei; Zhou, Jianying
2016-01-01
Defining distinctive histologic characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) may help identify cases that merit molecular testing. However, the majority of previous reports have focused on surgical specimens but only limited studies assessed histomorphology of advanced NSCLCs. In order to identify the clinical and histological characteristics of ROS1-rearranged advanced NSCLCs, we examined five hundred sixteen Chinese patients with advanced NSCLCs using ROS1 fluorescence in situ hybridization and real-time polymerase chain reaction and then analyzed for clinical and pathological features. We performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement. 19 tumors were identified with ROS1 rearrangement (3.7% of adenocarcinomas). 16 ROS1+ and 122 ROS1- samples with available medical records and enough tumor cells were included for histological analysis. Compared with ROS1-negative advanced NSCLCs, ROS1-rearranged advanced NSCLCs were associated with a younger age at presentation. ROS1 rearrangements were not significantly associated with sex, smoking history, drinking history and metastatic sites. The most common histological pattern was solid growth (12/16), followed by acinar (4/16) growth. 66.7% cases with solid growth pattern showed hepatoid cytology (8/12) and 75% cases with acinar growth pattern showed a cribriform structure (3/4). 18.8% cases were found to have abundant extracellular mucus or signet-ring cells (3/16). Only one case with solid growth pattern showed psammomatous calcifications. In conclusion, age, hepatoid cytology and cribriform structure are the independent predictors for ROS1-rearranged advanced NSCLCs, recognizing these may be helpful in finding candidates for genomic alterations, especially when available tissue samples are limited. PMID:27708233
Telomere sister chromatid exchange in telomerase deficient murine cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yisong; Giannone, Richard J; Liu, Yie
2005-01-01
We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape 'end crisis'. However, the possibility that ES cells were more permissive to genomic rearrangements than othermore » cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.« less
Mechanism of α-ketol-type rearrangement of benzoin derivatives under basic conditions.
Karino, Masahiro; Kubouchi, Daiki; Hamaoka, Kazuki; Umeyama, Shintaro; Yamataka, Hiroshi
2013-07-19
The mechanism of base-catalyzed rearrangement of ring-substituted benzoins in aqueous methanol was examined by kinetic and product analyses. Substituent effects on the rate and equilibrium constants revealed that the kinetic process has a different electron demand compared to the equilibrium process. Reactions in deuterated solvents showed that the rate of H/D exchange of the α-hydrogen is similar to the overall rate toward the equilibrium state. A proton-inventory experiment using partially deuterated solvents showed a linear dependence of the rate on the deuterium fraction of the solvent, indicating that only one deuterium isotope effect contributes to the overall rate process. All these results point to a mechanism in which the rearrangement is initiated by the rate-determining α-hydrogen abstraction rather than a mechanism with initial hydroxyl hydrogen abstraction as in the general α-ketol rearrangement.
Comparing genomes with rearrangements and segmental duplications.
Shao, Mingfu; Moret, Bernard M E
2015-06-15
Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.
Pekar-Zlotin, Marina; Hirsch, Fred R; Soussan-Gutman, Lior; Ilouze, Maya; Dvir, Addie; Boyle, Theresa; Wynes, Murry; Miller, Vincent A; Lipson, Doron; Palmer, Gary A; Ali, Siraj M; Dekel, Shlomi; Brenner, Ronen; Bunn, Paul A; Peled, Nir
2015-03-01
The U.S. Food and Drug Administration-approved method for detecting EML4-ALK rearrangement is fluorescence in situ hybridization (FISH); however, data supporting the use of immunohistochemistry (IHC) for that purpose are accumulating. Previous studies that compared FISH and IHC considered FISH the gold standard, but none compared data with the results of next-generation sequencing (NGS) analysis. We studied FISH and IHC (D5F3 antibody) systematically for EML4-ALK rearrangement in 51 lung adenocarcinoma patients, followed by NGS in case of discordance. Of 51 patients, 4 were positive with FISH (7.8%), and 8 were positive with IHC (15.7%). Three were positive with both. NGS confirmed that four of the five patients who were positive with IHC and negative with FISH were positive for ALK. Two were treated by crizotinib, with progression-free survival of 18 and 6 months. Considering NGS as the most accurate test, the sensitivity and specificity were 42.9% and 97.7%, respectively, for FISH and 100% and 97.7%, respectively, for IHC. The FISH-based method of detecting EML4-ALK rearrangement in lung cancer may miss a significant number of patients who could benefit from targeted ALK therapy. Screening for EML4-ALK rearrangement by IHC should be strongly considered, and NGS is recommended in borderline cases. Two patients who were negative with FISH and positive with IHC were treated with crizotinib and responded to therapy. ©AlphaMed Press.
Trifonov, Vladimir; Fluri, Simon; Binkert, Franz; Nandini, Adayapalam; Anderson, Jasen; Rodriguez, Laura; Gross, Madeleine; Kosyakova, Nadezda; Mkrtchyan, Hasmik; Ewers, Elisabeth; Reich, Daniela; Weise, Anja; Liehr, Thomas
2008-01-01
Background Small supernumerary marker chromosomes (sSMC) are present ~2.6 × 106 human worldwide. sSMC are a heterogeneous group of derivative chromosomes concerning their clinical consequences as well as their chromosomal origin and shape. Besides the sSMC present in Emanuel syndrome, i.e. der(22)t(11;22)(q23;q11), only few so-called complex sSMC are reported. Results Here we report three new cases of unique complex sSMC. One was a de novo case with a dic(13 or 21;22) and two were maternally derived: a der(18)t(8;18) and a der(13 or 21)t(13 or 21;18). Thus, in summary, now 22 cases of unique complex sSMC are available in the literature. However, this special kind of sSMC might be under-diagnosed among sSMC-carriers. Conclusion More comprehensive characterization of sSMC and approaches like reverse fluorescence in situ hybridization (FISH) or array based comparative genomic hybridization (array-CGH) might identify them to be more frequent than only ~0.9% among all sSMC. PMID:18471318
Tartar, Aurélien; Boucias, Drion G
2004-04-01
A fragment of the Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) plastid genome has been sequenced. The genome architecture was compared to that of both a non-photosynthetic relative (Prototheca wickerhamii) and a photosynthetic relative (Chlorella vulgaris). Comparative genomic analysis indicated that Helicosporidium and Prototheca are closely related genera. The analyses also revealed that the Helicosporidium sp. plastid genome has been rearranged. In particular, two ribosomal protein-encoding genes (rpl19 and rps23) appeared to have been transposed, or lost from the Helicosporidium sp. plastid genome. RT-PCR reactions demonstrated that the retained plastid genes were transcribed, suggesting that, despite rearrangement(s), the Helicosporidium sp. plastid genome has remained functional. The modified plastid genome architecture is a novel apomorphy that indicates that the Helicosporidia are highly derived green algae, more so than Prototheca spp. As such, they represent a promising model to study organellar genome reorganizations in parasitic protists.
Tsakou, Eugenia; Agathagelidis, Andreas; Boudjoghra, Myriam; Raff, Thorsten; Dagklis, Antonis; Chatzouli, Maria; Smilevska, Tatjana; Bourikas, George; Merle-Beral, Helene; Manioudaki-Kavallieratou, Eleni; Anagnostopoulos, Achilles; Brüggemann, Monika; Davi, Frederic; Stamatopoulos, Kostas; Belessi, Chrysoula
2012-01-01
The frequent occurrence of stereotyped heavy complementarity-determining region 3 (VH CDR3) sequences among unrelated cases with chronic lymphocytic leukemia (CLL) is widely taken as evidence for antigen selection. Stereotyped VH CDR3 sequences are often defined by the selective association of certain immunoglobulin heavy diversity (IGHD) genes in specific reading frames with certain immunoglobulin heavy joining (IGHJ ) genes. To gain insight into the mechanisms underlying VH CDR3 restrictions and also determine the developmental stage when restrictions in VH CDR3 are imposed, we analyzed partial IGHD-IGHJ rearrangements (D-J) in 829 CLL cases and compared the productively rearranged D-J joints (that is, in-frame junctions without junctional stop codons) to (a) the productive immunoglobulin heavy variable (IGHV )-IGHD-IGHJ rearrangements (V-D-J) from the same cases and (b) 174 D-J rearrangements from 160 precursor B-cell acute lymphoblastic leukemia cases (pre-B acute lymphoblastic leukemia [ALL]). Partial D-J rearrangements were detected in 272/829 CLL cases (32.8%). Sequence analysis was feasible in 238 of 272 D-J rearrangements; 198 of 238 (83.2%) were productively rearranged. The D-J joints in CLL did not differ significantly from those in pre-B ALL, except for higher frequency of the IGHD7-27 and IGHJ6 genes in the latter. Among CLL carrying productively rearranged D-J, comparison of the IGHD gene repertoire in productive V-D-J versus D-J revealed the following: (a) overuse of IGHD reading frames encoding hydrophilic peptides among V-D-J and (b) selection of the IGHD3-3 and IGHD6-19 genes in V-D-J junctions. These results document that the IGHD and IGHJ gene biases in the CLL expressed VH CDR3 repertoire are not stochastic but are directed by selection operating at the immunoglobulin protein level. PMID:21968789
Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia
2013-01-01
Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation. PMID:23741400
Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.
2016-01-01
Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, W.G.
1987-11-18
The nitro complex (NH/sub 3/)/sub 5/CoNO/sub 2//sup 2 +/ reacts rapidly and completely with neat anhydrous trifluoromethanesulfonic acid to generate the aqua species (NH/sub 3/)/sub 5/CoOH/sub 2//sup 3 +/. Oxygen-17 NMR results show that the oxygen in the bound water is derived from the original nitro group. A mechanism involving acid-catalyzed nitrogen-to-oxygen nitrite rearrangement is considered. The relationship between the mechanisms for oxygen scrambling and acid-catalyzed loss of NO/sup +/ from the nitrito linkage isomer is discussed, together with the mechanism for the present reaction. 20 references, 1 figure.
The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement
Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Burroughs, Mark; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Knipe, Kristen; Mathis, Marsenia H.; Pruitt, Andrea M.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.
2017-01-01
ABSTRACT Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology. IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology. PMID:28167525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Johnson; Baumgartner, Adolf; Lu, Chun-Mei
2009-03-09
Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relativelymore » rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.« less
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthew J.; Ottoni, Elizabeth; Ishiyama, Noboru
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding ofmore » MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.« less
Mapping and phasing of structural variation in patient genomes using nanopore sequencing.
Cretu Stancu, Mircea; van Roosmalen, Markus J; Renkens, Ivo; Nieboer, Marleen M; Middelkamp, Sjors; de Ligt, Joep; Pregno, Giulia; Giachino, Daniela; Mandrile, Giorgia; Espejo Valle-Inclan, Jose; Korzelius, Jerome; de Bruijn, Ewart; Cuppen, Edwin; Talkowski, Michael E; Marschall, Tobias; de Ridder, Jeroen; Kloosterman, Wigard P
2017-11-06
Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.
Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A
2012-09-06
Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.
Ikeda-Ohno, Atsushi; Tsushima, Satoru; Takao, Koichiro; Rossberg, André; Funke, Harald; Scheinost, Andreas C; Bernhard, Gert; Yaita, Tsuyoshi; Hennig, Christoph
2009-12-21
The electrochemical behavior and complex structure of Np carbonato complexes, which are of major concern for the geological disposal of radioactive wastes, have been investigated in aqueous Na(2)CO(3) and Na(2)CO(3)/NaOH solutions at different oxidation states by using cyclic voltammetry, X-ray absorption spectroscopy, and density functional theory calculations. The end-member complexes of penta- and hexavalent Np in 1.5 M Na(2)CO(3) with pH = 11.7 have been determined as a transdioxo neptunyl tricarbonato complex, [NpO(2)(CO(3))(3)](n-) (n = 5 for Np(V), and 4 for Np(VI)). Hence, the electrochemical reaction of the Np(V/VI) redox couple merely results in the shortening/lengthening of bond distances mainly because of the change of the cationic charge of Np, without any structural rearrangement. This explains the observed reversible-like feature on their cyclic voltammograms. In contrast, the electrochemical oxidation of Np(V) in a highly basic carbonate solution of 2.0 M Na(2)CO(3)/1.0 M NaOH (pH > 13) yielded a stable heptavalent Np complex of [Np(VII)O(4)(OH)(2)](3-), indicating that the oxidation reaction from Np(V) to Np(VII) in the carbonate solution involves a drastic structural rearrangement from the transdioxo configuration to a square-planar-tetraoxo configuration, as well as exchanging the coordinating anions from carbonate ions (CO(3)(2-)) to hydroxide ions (OH(-)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent
2010-01-01
Cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations are studied by restricted and broken-symmetry DFT using the M06 family of meta-GGA functionals. The global minima of these molecular materials are magnetically silent due to the sigma-bond connecting the two phenalenyls, while the sigma-bond may undergo low-barrier sigmatropic rearrangements via pi-pi bonded paramagnetic intermediates. The validation of theory is performed for the chair-conformation by comparing the sigma-bonded structures and the rearrangement barriers with experimental data. The boat-conformation is then studied using the validated functional. The electronic spectra of both chair- and boat-conformations are calculated and their applications in thermochromism are discussed.
Li, Bingcan; Mao, Xinrui; Wang, Yujuan; Guo, Chunyan
2017-01-01
It is generally accepted that associative recognition memory is supported by recollection. In addition, recent research indicates that familiarity can support associative memory, especially when two items are unitized into a single item. Both perceptual and conceptual manipulations can be used to unitize items, but few studies have compared these two methods of unitization directly. In the present study, we investigated the effects of familiarity and recollection on successful retrieval of items that were unitized perceptually or conceptually. Participants were instructed to remember either a Chinese two-character compound or unrelated word-pairs, which were presented simultaneously or sequentially. Participants were then asked to recognize whether word-pairs were intact or rearranged. Event-related potential (ERP) recordings were performed during the recognition phase of the study. Two-character compounds were better discriminated than unrelated word-pairs and simultaneous presentation was found to elicit better discrimination than sequential presentation for unrelated word-pairs only. ERP recordings indicated that the early intact/rearranged effects (FN400), typically associated with familiarity, were elicited in compound word-pairs with both simultaneous and sequential presentation, and in simultaneously presented unrelated word-pairs, but not in sequentially presented unrelated word-pairs. In contrast, the late positive complex (LPC) effects associated with recollection were elicited in all four conditions. Together, these results indicate that while the engagement of familiarity in associative recognition is affected by both perceptual and conceptual unitization, conceptual unitization promotes a higher level of unitization (LOU). In addition, the engagement of recollection was not affected by unitized manipulations. It should be noted, however, that due to experimental design, the effects presented here may be due to semantic rather than episodic memory and future studies should take this into consideration when manipulating rearranged pairs. PMID:28400723
Kiener, Hans P; Watts, Gerald F M; Cui, Yajun; Wright, John; Thornhill, Thomas S; Sköld, Markus; Behar, Samuel M; Niederreiter, Birgit; Lu, Jun; Cernadas, Manuela; Coyle, Anthony J; Sims, Gary P; Smolen, Josef; Warman, Matthew L; Brenner, Michael B; Lee, David M
2010-03-01
To define the intrinsic capacity of fibroblast-like synoviocytes (FLS) to establish a 3-dimensional (3-D) complex synovial lining architecture characterized by the multicellular organization of the compacted synovial lining and the elaboration of synovial fluid constituents. FLS were cultured in spherical extracellular matrix (ECM) micromasses for 3 weeks. The FLS micromass architecture was assessed histologically and compared with that of dermal fibroblast controls. Lubricin synthesis was measured via immunodetection. Basement membrane matrix and reticular fiber stains were performed to examine ECM organization. Primary human and mouse monocytes were prepared and cocultured with FLS in micromass to investigate cocompaction in the lining architecture. Cytokine stimuli were applied to determine the capacity for inflammatory architecture rearrangement. FLS, but not dermal fibroblasts, spontaneously formed a compacted lining architecture over 3 weeks in the 3-D ECM micromass organ cultures. These lining cells produced lubricin. FLS rearranged their surrounding ECM into a complex architecture resembling the synovial lining and supported the survival and cocompaction of monocyte/macrophages in the neo-lining structure. Furthermore, when stimulated by cytokines, FLS lining structures displayed features of the hyperplastic rheumatoid arthritis synovial lining. This 3-D micromass organ culture method demonstrates that many of the phenotypic characteristics of the normal and the hyperplastic synovial lining in vivo are intrinsic functions of FLS. Moreover, FLS promote survival and cocompaction of primary monocytes in a manner remarkably similar to that of synovial lining macrophages. These findings provide new insight into inherent functions of the FLS lineage and establish a powerful in vitro method for further investigation of this lineage.
Rall, Melanie; Kraft, Daniela; Volcic, Meta; Cucu, Aljona; Nasonova, Elena; Taucher-Scholz, Gisela; Bönig, Halvard; Wiesmüller, Lisa; Fournier, Claudia
2015-01-01
Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment. PMID:26618143
The sh2-R allele of the maize shrunken-2 locus was caused by a complex chromosomal rearrangement.
Kramer, Vance; Shaw, Janine R; Senior, M Lynn; Hannah, L Curtis
2015-03-01
The mutant that originally defined the shrunken - 2 locus of maize is shown here to be the product of a complex chromosomal rearrangement. The maize shrunken-2 gene (sh2) encodes the large subunit of the heterotetrameric enzyme, adenosine diphosphate glucose pyrophosphorylases and a rate-limiting enzyme in starch biosynthesis. The sh2 gene was defined approximately 72 years ago by the isolation of a loss-of-function allele conditioning a shrunken, but viable seed. In subsequent years, the realization that this allele, termed zsh2-R or sh2-Reference, causes an extremely high level of sucrose to accumulate in the developing seed led to a revolution in the sweet corn industry. Now, the vast majority of sweet corns grown throughout the world contain this mutant allele. Through initial Southern analysis followed by genomic sequencing, the work reported here shows that this allele arose through a complex set of events involving at least three breaks of chromosome 3 as well as an intra-chromosomal inversion. These findings provide an explanation for some previously reported, unexpected observations concerning rates of recombination within and between genes in this region.
Shirts, Brian H; Salipante, Stephen J; Casadei, Silvia; Ryan, Shawnia; Martin, Judith; Jacobson, Angela; Vlaskin, Tatyana; Koehler, Karen; Livingston, Robert J; King, Mary-Claire; Walsh, Tom; Pritchard, Colin C
2014-10-01
Single-exon inversions have rarely been described in clinical syndromes and are challenging to detect using Sanger sequencing. We report the case of a 40-year-old woman with adenomatous colon polyps too numerous to count and who had a complex inversion spanning the entire exon 10 in APC (the gene encoding for adenomatous polyposis coli), causing exon skipping and resulting in a frameshift and premature protein truncation. In this study, we employed complete APC gene sequencing using high-coverage next-generation sequencing by ColoSeq, analysis with BreakDancer and SLOPE software, and confirmatory transcript analysis. ColoSeq identified a complex small genomic rearrangement consisting of an inversion that results in translational skipping of exon 10 in the APC gene. This mutation would not have been detected by traditional sequencing or gene-dosage methods. We report a case of adenomatous polyposis resulting from a complex single-exon inversion. Our report highlights the benefits of large-scale sequencing methods that capture intronic sequences with high enough depth of coverage-as well as the use of informatics tools-to enable detection of small pathogenic structural rearrangements.
Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette
2009-06-01
Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.
Schleiermacher, Gudrun; Bourdeaut, Franck; Combaret, Valérie; Picrron, Gaelle; Raynal, Virginie; Aurias, Alain; Ribeiro, Agnes; Janoueix-Lerosey, Isabelle; Delattre, Olivier
2005-05-05
In neuroblastoma, the most frequent genetic alterations are unbalanced translocations involving chromosome 17. To gain insights into these rearrangements, we have characterized a previously identified der(1)t(1;17) of the CLB-Bar cell line. The 17q breakpoint was mapped by FISH. Subsequently, a rearranged fragment was identified by Southern analysis, cloned in a lambda vector and sequenced. The chromosome rearrangement is more complex than expected due to the presence of an interstitial 4p telomeric sequence between chromosome 1p and 17q. Three different genes, which may play a role in neuroblastoma development, are disrupted by the translocation breakpoints. Indeed, the 3'UTR of the PIP5K2B gene on chromosome 17q is directly fused to the (TTAGGG)n repeat of the chromosome 4p telomere, and the (1;4) fusion disrupts the MACF1 (microtubule-actin crosslinking factor 1) and POLN genes, respectively. Interestingly, the (1;4) fusion was present at diagnosis and at relapse, whereas the (4;17) fusion was detected at relapse only, leading to a secondary 17q gain confirmed by array CGH therefore indicating that 17q gain may not be a primary event in neuroblastoma. Finally, screening of a panel of neuroblastoma cell lines identified interstitial telomeric sequences in three other cases, suggesting that this may be a recurrent mechanism leading to unbalanced translocations in neuroblastoma.
Balanced complex chromosome rearrangements: reproductive aspects. A review.
Madan, Kamlesh
2012-04-01
This review examines the reproductive consequences for carriers of a balanced complex chromosome rearrangement (CCR). It is based on an analysis of CCRs in 103 adults referred for reproductive problems, including male infertility. The main focus is on reproductive risks based on data from 84 CCRs. Carriers of balanced CCRs have a high risk of an abortion and/or a chromosomally unbalanced child. I have identified roughly four different types of CCRs (I-IV); most (44%) belong to Type I with a simple 3-way or 4-way exchange of segments and risk factors similar to those for reciprocal translocations. There were only three CCRs (4%) of type II, which involve an inversion. Type III CCRs (21%) involve one or more insertions with ∼35% risk of a child with a duplication or a deletion of the inserted segment. Type IV CCRs (31%) involve a "middle segment" in a derivative chromosome with segments from at least three chromosomes. In ∼35% of these CCRs, recombination occurs in this segment, which can produce imbalance but in many cases it changes a CCR into a simpler balanced rearrangement in the next generation. Balanced CCRs, which have been often considered together in one group, can now be split into four types, each with a risk of a different type of imbalance. This analysis provides a better understanding of the reproductive consequences for carriers of balanced CCRs and should be useful in prenatal diagnosis and genetic counseling. Copyright © 2012 Wiley Periodicals, Inc.
Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2)
Walz, Katherina; Paylor, Richard; Yan, Jiong; Bi, Weimin; Lupski, James R.
2006-01-01
Genomic disorders are conditions that result from DNA rearrangements, such as deletions or duplications. The identification of the dosage-sensitive gene(s) within the rearranged genomic interval is important for the elucidation of genes responsible for complex neurobehavioral phenotypes. Smith-Magenis syndrome is associated with a 3.7-Mb deletion in 17p11.2, and its clinical presentation is caused by retinoic acid inducible 1 (RAI1) haploinsufficiency. The reciprocal microduplication syndrome, dup(17)(p11.2p11.2), manifests several neurobehavioral abnormalities, but the responsible dosage-sensitive gene(s) remain undefined. We previously generated a mouse model for dup(17)(p11.2p11.2), Dp(11)17/+, that recapitulated most of the phenotypes observed in human patients. We have now analyzed compound heterozygous mice carrying a duplication [Dp(11)17] in one chromosome 11 along with a null allele of Rai1 in the other chromosome 11 homologue [Dp(11)17/Rai1– mice] in order to study the relationship between Rai1 gene copy number and the Dp(11)17/+ phenotypes. Normal disomic Rai1 gene dosage was sufficient to rescue the complex physical and behavioral phenotypes observed in Dp(11)17/+ mice, despite altered trisomic copy number of the other 18 genes present in the rearranged genomic interval. These data provide a model for variation in copy number of single genes that could influence common traits such as obesity and behavior. PMID:17024248
Fan, Meng; Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S
2017-02-01
Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.
GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.
Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu
2017-01-25
Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.
Do, Hongdo; Molania, Ramyar
2017-01-01
The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis. PMID:29097403
A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas.
Hippolyte, Isabelle; Bakry, Frederic; Seguin, Marc; Gardes, Laetitia; Rivallan, Ronan; Risterucci, Ange-Marie; Jenny, Christophe; Perrier, Xavier; Carreel, Françoise; Argout, Xavier; Piffanelli, Pietro; Khan, Imtiaz A; Miller, Robert N G; Pappas, Georgios J; Mbéguié-A-Mbéguié, Didier; Matsumoto, Takashi; De Bernardinis, Veronique; Huttner, Eric; Kilian, Andrzej; Baurens, Franc-Christophe; D'Hont, Angélique; Cote, François; Courtois, Brigitte; Glaszmann, Jean-Christophe
2010-04-13
The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p < 0.05) from the expected Mendelian ratios. These skewed markers were distributed in different linkage groups for each parent. To solve some complex ordering of the markers on linkage groups, we associated tools such as tree-like graphic representations, recombination frequency statistics and cytogenetical studies to identify structural rearrangements and build parsimonious linkage group order. An illustration of such an approach is given for the P. Lilin parent. We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs) covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation.
NASA Astrophysics Data System (ADS)
Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre
2017-07-01
Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.
Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis
Parks, Joseph W.; Kappel, Kalli; Das, Rhiju; Stone, Michael D.
2017-01-01
Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein. FRET-guided modeling places the essential pseudoknot fold distal to the active site on a protein surface comprising the C-terminal element, a domain that shares structural homology with canonical polymerase thumb domains. An independently solved medium-resolution structure of Tetrahymena telomerase provides a blind test of our modeling methodology and sheds light on the structural homology of this domain across diverse organisms. Our smFRET-Rosetta models reveal nanometer-scale rearrangements within the RNA core domain during catalysis. Taken together, our FRET data and pseudoatomic molecular models permit us to propose a possible mechanism for how RNA core domain rearrangement is coupled to template hybrid elongation. PMID:28096444
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-01-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-09-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.
Arndt, Annette; Steinestel, Konrad; Rump, Alexis; Sroya, Manveer; Bogdanova, Tetiana; Kovgan, Leonila; Port, Matthias; Abend, Michael; Eder, Stefan
2018-04-06
Childhood radiation exposure has been associated with increased papillary thyroid carcinoma (PTC) risk. The role of anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related PTC remains unclear, but STRN-ALK fusions have recently been detected in PTCs from radiation exposed persons after Chernobyl using targeted next-generation sequencing and RNA-seq. We investigated ALK and RET gene rearrangements as well as known driver point mutations in PTC tumours from 77 radiation-exposed patients (mean age at surgery 22.4 years) and PTC tumours from 19 non-exposed individuals after the Chernobyl accident. ALK rearrangements were detected by fluorescence in situ hybridisation (FISH) and confirmed with immunohistochemistry (IHC); point mutations in the BRAF and RAS genes were detected by DNA pyrosequencing. Among the 77 tumours from exposed persons, we identified 7 ALK rearrangements and none in the unexposed group. When combining ALK and RET rearrangements, we found 24 in the exposed (31.2%) compared to two (10.5%) in the unexposed group. Odds ratios increased significantly in a dose-dependent manner up to 6.2 (95%CI: 1.1, 34.7; p = 0.039) at Iodine-131 thyroid doses >500 mGy. In total, 27 cases carried point mutations of BRAF or RAS genes, yet logistic regression analysis failed to identify significant dose association. To our knowledge we are the first to describe ALK rearrangements in post-Chernobyl PTC samples using routine methods such as FISH and IHC. Our findings further support the hypothesis that gene rearrangements, but not oncogenic driver mutations, are associated with ionizing radiation-related tumour risk. IHC may represent an effective method for ALK-screening in PTCs with known radiation aetiology, which is of clinical value since oncogenic ALK activation might represent a valuable target for small molecule inhibitors. © 2018 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.
Zhong, J; Li, X; Bai, H; Zhao, J; Wang, Z; Duan, J; An, T; Wu, M; Wang, Y; Wang, S; Wang, J
2016-12-01
To evaluate the feasibility of malignant pleural effusions (MPE) as surrogate samples for the detection of echinoderm microtubule-associated protein-like4 (EML4)-anaplastic lymphoma kinase (ALK) and to investigate the prognostic and predictive value of EML4-ALK in MPE of non-small-cell lung cancer (NSCLC). One hundred and nine NSCLC patients were retrospectively analysed. EML4-ALK was identified using paraffin-embedded tumour cells in MPE samples by immunohistochemistry (IHC, Ventana) and confirmed by fluorescence using in situ hybridisation (FISH) and qRT-PCR. The EGFR mutation was determined by MPE, using denaturing high-performance liquid chromatography (DHPLC). A total of 5 out of 109 (4.58%) patients were identified as EML4-ALK rearrangement in MPE by IHC.; In addition to two metachronous samples, the consistency of MPE and tissue for EML4-ALK detection was 100% (21/21), and the sensitivity and specificity were 100% (2/2) and 100% (19/19), respectively. EML4-ALK rearrangement cases were confirmed by FISH and qRT-PCR; the sensitivity were both 100% (2/2) when compared with tissue, and it was 60% (3/5) and 100% (5/5), respectively, when compared with MPE by IHC. The overall response rate (ORR) was 100% (2/2) for patients with EML4-ALK in MPE. Moreover, the PFS of these patients appeared to be prolonged in chemotherapy (9.27 versus 6.53 and versus 4.67 months, P = 0.122), compared with the EGFR mutation and the EGFR/ALK double negative group, respectively. EML4-ALK rearrangement detection in malignant pleural effusions is a complementary method for EML4-ALK detection. VETANA and qRT-PCR are more appropriate for MPE detection. EML4-ALK rearrangement in pleural effusions has a predictive value for treatment. © 2016 John Wiley & Sons Ltd.
Comparative mapping and rapid karyotypic evolution in the genus helianthus.
Burke, John M; Lai, Zhao; Salmaso, Marzia; Nakazato, Takuya; Tang, Shunxue; Heesacker, Adam; Knapp, Steven J; Rieseberg, Loren H
2004-01-01
Comparative genetic linkage maps provide a powerful tool for the study of karyotypic evolution. We constructed a joint SSR/RAPD genetic linkage map of the Helianthus petiolaris genome and used it, along with an integrated SSR genetic linkage map derived from four independent H. annuus mapping populations, to examine the evolution of genome structure between these two annual sunflower species. The results of this work indicate the presence of 27 colinear segments resulting from a minimum of eight translocations and three inversions. These 11 rearrangements are more than previously suspected on the basis of either cytological or genetic map-based analyses. Taken together, these rearrangements required a minimum of 20 chromosomal breakages/fusions. On the basis of estimates of the time since divergence of these two species (750,000-1,000,000 years), this translates into an estimated rate of 5.5-7.3 chromosomal rearrangements per million years of evolution, the highest rate reported for any taxonomic group to date. PMID:15166168
Hensing, Thomas; Schrock, Alexa B.; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H.; Lipson, Doron; Elvin, Julia A.; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J.; Firozvi, Kashif; Frampton, Garrett M.; Molina, Julian R.; Menon, Smitha; Brahmer, Julie R.; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S.; Stephens, Phil J.; Miller, Vincent A.; Wakelee, Heather
2016-01-01
Introduction. For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Materials and Methods. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. Results. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Conclusion. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Implications for Practice: Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. PMID:27245569
Ali, Siraj M; Hensing, Thomas; Schrock, Alexa B; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H; Lipson, Doron; Elvin, Julia A; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J; Firozvi, Kashif; Frampton, Garrett M; Molina, Julian R; Menon, Smitha; Brahmer, Julie R; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S; Stephens, Phil J; Miller, Vincent A; Wakelee, Heather; Ganesan, Shridar; Salgia, Ravi
2016-06-01
For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. ©AlphaMed Press.
Burke, Luke A; Butler, Richard N
2009-08-07
The reaction surfaces leading to rearrangements and ring expansions of azapentalene cycloadducts of imidazolo- and triazolodicyanomethanide 1,3-dipoles with alkynes are studied with the B3LYP DFT method using the 6-31G(d) and 6-311+G(2d,p) basis sets. The surprisingly complex surface involves (1) consecutive but not combined pericyclic steps, a coarctate TS, and pseudopericyclic mechanisms, (2) anchimerically assisted H-atom transfer competing effectively with concerted symmetry-allowed sigmatropic steps, and (3) azolium methanide zwitterions and ketenimines as key intermediates. The azolium methanide is identified as the intermediate detected previously in a variable-temperature NMR experiment that converted the unstable cycloadduct to product imine.
A 1.375-approximation algorithm for sorting by transpositions.
Elias, Isaac; Hartman, Tzvika
2006-01-01
Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.
Toward a Symphony of Reactivity: Cascades Involving Catalysis and Sigmatropic Rearrangements
Jones, Amanda C.; May, Jeremy A.; Sarpong, Richmond; Stoltz, Brian M.
2014-01-01
Catalysis and synthesis are intimately linked in modern organic chemistry. The synthesis of complex molecules is an ever evolving area of science. In many regards, the inherent beauty associated with a synthetic sequence can be linked to a certain combination of the creativity with which a sequence is designed and the overall efficiency with which the ultimate process is performed. In synthesis, as in other endeavors, beauty is very much in the eyes of the beholder.[**] It is with this in mind that we will attempt to review an area of synthesis that has fascinated us and that we find extraordinarily beautiful, namely the combination of catalysis and sigmatropic rearrangements in consecutive and cascade sequences. PMID:24677683
Casaluce, Francesca; Sgambato, Assunta; Sacco, Paola Claudia; Palazzolo, Giovanni; Maione, Paolo; Rossi, Antonio; Ciardiello, Fortunato; Gridelli, Cesare
2016-01-01
Non-small cell lung cancers (NSCLCs) harboring anaplastic lymphoma kinase (ALK) rearrangement are generally responsive to treatment with ALK tyrosine kinase inhibitors (TKIs). Crizotinib is the first-in-class TKI approved as front-line or salvage therapy in advanced ALK-rearranged NSCLC. Unfortunately, drug resistance develops after initial benefit, through a variety of mechanisms preserving or not the dominance of ALK signaling in the crizotinib-resistant state. The distinction between patients who preserve ALK dominance (secondary mutations alone or in combination with the number of copy ALK gain) compared to those that have decreased ALK dominance (separate or second oncogenic drivers, with or without concurrent persistence of the original ALK signal) is important in order to overcome resistance. Novel second-generation ALK inhibitors are currently in clinical development with promising results in ALK-rearranged NSCLC, as well as in crizotinib-resistant patients. Among these, ceritinib in the United States was granted by Food and Drug Administration accelerated approval for treatment of patients with ALK-rearranged, metastatic NSCLC with progression disease on or intolerance to crizotinib. Fully understanding of the different mechanisms of resistance to crizotinib will help us to continue to exploit personalized medicine approaches overcoming crizotinib resistance in these patients in the future. This review aims to discuss on strategy overcoming crizotinib-resistance starting from molecular mechanisms of resistance until novel ALK kinase inhibitors in ALK-rearranged NSCLC patients.
Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, Rameshwar U.; Wilson, Ian A.
The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Åmore » from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.« less
A rare example of germ-line chromothripsis resulting in large genomic imbalance.
Anderson, Sarah E; Kamath, Arveen; Pilz, Daniela T; Morgan, Sian M
2016-04-01
Chromothripsis is a recently described 'chromosome catastrophe' phenomenon in which multiple genomic rearrangements are generated in a single catastrophic event. Chromothripsis has most frequently been associated with cancer, but there have also been rare reports of chromothripsis in patients with developmental disorders and congenital anomalies. In contrast to the massive DNA loss that often accompanies chromothripsis in cancer, only minimal DNA loss has been reported in the majority of cases of chromothripsis that have occurred in the germ line. Presumably, this is because in most instances, large genomic losses would be lethal in utero. We report on a female patient with developmental delay and dysmorphism. G-banded chromosome analysis detected a subtle, interstitial deletion of chromosome 13 and a complex rearrangement of one X chromosome. Subsequent array comparative genomic hybridisation studies indicated nine deletions on the X chromosome ranging from 327 kb to 8 Mb in size. A 4.4 Mb deletion on chromosome 13 was also confirmed, compatible with the patient's clinical phenotype. We propose that this is a rare example of constitutional chromothripsis in association with relatively large genomic imbalances and that these have been tolerated in this case as they have occurred in a female on the X chromosome, which has undergone preferential X inactivation.
Kretschmer, Rafael; de Lima, Vanusa Lilian Camargo; de Souza, Marcelo Santos; Costa, Alice Lemos; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José; Garnero, Analía Del Valle
2018-01-01
In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetacentric and acrocentric. Hybridization of GGA probes showed syntenies in the majority of ancestral macrochromosomes, except for GGA1 and GGA2, which hybridized to more than one pair of chromosomes each. LAL probes confirmed the occurrence of intrachromosomal rearrangements in the chromosomes corresponding to GGA1q, as previously proposed for species from the order Passeriformes. In addition, LAL probes suggest that pericentric inversions or centromere repositioning were responsible for variations in the morphology of the heteromorphic pairs 1 and 3. Altogether, the analysis of our data on chromosome painting and the data published in other Passeriformes highlights chromosomal changes that have occurred during the evolution of Passeriformes.
Kretschmer, Rafael; de Lima, Vanusa Lilian Camargo; de Souza, Marcelo Santos; Costa, Alice Lemos; O’Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José; Garnero, Analía Del Valle
2018-01-01
Abstract In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetacentric and acrocentric. Hybridization of GGA probes showed syntenies in the majority of ancestral macrochromosomes, except for GGA1 and GGA2, which hybridized to more than one pair of chromosomes each. LAL probes confirmed the occurrence of intrachromosomal rearrangements in the chromosomes corresponding to GGA1q, as previously proposed for species from the order Passeriformes. In addition, LAL probes suggest that pericentric inversions or centromere repositioning were responsible for variations in the morphology of the heteromorphic pairs 1 and 3. Altogether, the analysis of our data on chromosome painting and the data published in other Passeriformes highlights chromosomal changes that have occurred during the evolution of Passeriformes. PMID:29675139
Noujaim, Jonathan; Jones, Robin L; Swansbury, John; Gonzalez, David; Benson, Charlotte; Judson, Ian; Fisher, Cyril; Thway, Khin
2017-01-01
Background: EWSR1 rearrangements were first identified in Ewing sarcoma, but the spectrum of EWSR1-rearranged neoplasms now includes many soft tissue tumour subtypes including desmoplastic small round cell tumour (DSRCT), myxoid liposarcoma (MLPS), extraskeletal myxoid chondrosarcoma (EMC), angiomatoid fibrous histiocytoma (AFH), clear cell sarcoma (CCS) and myoepithelial neoplasms. We analysed the spectrum of EWSR1-rearranged soft tissue neoplasms at our tertiary sarcoma centre, by assessing ancillary molecular diagnostic modalities identifying EWSR1-rearranged tumours and reviewing the results in light of our current knowledge of these and other Ewing sarcoma-like neoplasms. Methods: We retrospectively analysed all specimens tested for EWSR1 rearrangements by fluorescence in situ hybridisation (FISH) and/or reverse transcription–PCR (RT–PCR) over a 7-year period. Results: There was a total of 772 specimens. FISH was performed more often than RT–PCR (n=753, 97.5% vs n=445, 57.6%). In total, 210 (27.9%) specimens were FISH-positive for EWSR1 rearrangement compared to 111 (14.4%) that showed EWSR1 fusion transcripts with RT–PCR. Failure rates for FISH and RT–PCR were 2.5% and 18.0%. Of 109 round cell tumours with pathology consistent with Ewing sarcoma, 15 (13.8 %) cases were FISH-positive without an identifiable EWSR1 fusion transcript, 4 (3.7%) were FISH-negative but RT–PCR positive and 4 (3.7%) were negative for both. FISH positivity for DSRCT, MLPS, EMC, AFH and CCS was 86.3%, 4.3%, 58.5%, 60.0% and 87.9%, respectively. A positive FISH result led to diagnostic change in 40 (19.0%) EWSR1-rearranged cases. 13 FISH-positive cases remained unclassifiable. Conclusions: FISH is more sensitive for identifying EWSR1 rearrangements than RT–PCR. However, there can be significant morphologic and immunohistochemical overlap between groups of EWSR1-rearranged neoplasms, with important prognostic and therapeutic implications. FISH and RT–PCR should be used as complementary modalities in diagnosing EWSR1-rearranged neoplasms, but as tumour groups harbouring EWSR1 rearrangements are increasingly characterised and because given translocations involving EWSR1 and its partner genes are not always specific for tumour types, it is critical that these are evaluated by specialist soft tissue surgical pathologists noting the morphologic and immunohistochemical context. As RT–PCR using commercial primers is limited to only the most prevalent EWSR1 fusion transcripts, the incorporation of high-throughput sequencing technologies into the standard diagnostic repertoire to assess for multiple molecular abnormalities of soft tissue tumours in parallel (including detection of newly characterised Ewing sarcoma-like tumours) might be the most effective and efficient means of ancillary diagnosis in future. PMID:28141799
Effect of substrate RNA sequence on the cleavage reaction by a short ribozyme.
Ohmichi, T; Okumoto, Y; Sugimoto, N
1998-01-01
Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis. PMID:9837996
Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K
2016-02-17
Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Cardone, A; Hassan, S A; Albers, R W; Sriram, R D; Pant, H C
2010-08-20
The crystal structure of the cdk5/p25 complex has provided information on possible molecular mechanisms of the ligand binding, specificity, and regulation of the kinase. Comparative molecular dynamics simulations are reported here for physiological conditions. This study provides new insight on the mechanisms that modulate such processes, which may be exploited to control pathological activation by p25. The structural changes observed in the kinase are stabilized by a network of interactions involving highly conserved residues within the cyclin-dependent kinase (cdk) family. Collective motions of the proteins (cdk5, p25, and CIP) and their complexes are identified by principal component analysis, revealing two conformational states of the activation loop upon p25 complexation, which are absent in the uncomplexed kinase and not apparent from the crystal. Simulations of the uncomplexed inhibitor CIP show structural rearrangements and increased flexibility of the interfacial loop containing the critical residue E240, which becomes fully hydrated and available for interactions with one of several positively charged residues in the kinase. These changes provide a rationale for the observed high affinity and enhanced inhibitory action of CIP when compared to either p25 or the physiological activators of cdk5. Published by Elsevier Ltd.
Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv
2015-01-01
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340
Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui
2012-01-01
Polyploidization is a major evolutionary process. Approximately 70-75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution.
Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui
2012-01-01
Polyploidization is a major evolutionary process. Approximately 70–75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution. PMID:22363542
Weiler, K S; Wakimoto, B T
1998-01-01
In Drosophila melanogaster, chromosome rearrangements that juxtapose euchromatin and heterochromatin can result in position effect variegation (PEV), the variable expression of heterochromatic and euchromatic genes in the vicinity of the novel breakpoint. We examined PEV of the heterochromatic light (lt) and concertina (cta) genes in order to investigate potential tissue or developmental differences in chromosome structure that might be informative for comparing the mechanisms of PEV of heterochromatic and euchromatic genes. We employed tissue pigmentation and in situ hybridization to RNA to assess expression of lt in individual cells of multiple tissues during development. Variegation of lt was induced in the adult eye, larval salivary glands and larval Malpighian tubules for each of three different chromosome rearrangements. The relative severity of the effect in these tissues was not tissue-specific but rather was characteristic of each rearrangement. Surprisingly, larval imaginal discs did not exhibit variegated lt expression. Instead, a uniform reduction of the lt transcript was observed, which correlated in magnitude with the degree of variegation. The same results were obtained for cta expression. These two distinct effects of rearrangements on heterochromatic gene expression correlated with the developmental stage of the tissue. These results have implications for models of heterochromatin formation and the nuclear organization of chromosomes during development and differentiation. PMID:9649533
Chromosome phylogenies of man, great apes, and Old World monkeys.
De Grouchy, J
1987-08-31
The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution, in human chromosomal diseases, and after ionizing irradiation do not seem to be distributed at random. Chromosomal rearrangements observed in evolution are known to be harmful in humans, leading to complete or partial sterility through abnormal offspring in the heterozygous state but not in the homozygous state. They then become a robust reproductive barrier capable of creating new species, far more powerful than gene mutations advocated by neo-Darwinism. The homozygous state may be achieved especially through inbreeding, which must have played a major role during primate evolution.(ABSTRACT TRUNCATED AT 400 WORDS)
Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl
2014-07-04
Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.
Fourier transform C-13 NMR analysis of some free and potassium-ion complexed antibiotics.
NASA Technical Reports Server (NTRS)
Ohnishi, M.; Fedarko, M.-C.; Baldeschwieler, J. D.; Johnson, L. F.
1972-01-01
Fourier transforms of the noise-decoupled, natural abundance C-13 NMR free induction decays of the cyclic antibiotic valinomycin and its potassium-ion complex have been obtained at 25.2 MHz. Comparisons are made with C-13 NMR spectra taken at 22.6 MHz of the cyclic antibiotic nonactin and the synthetic polyether dicyclohexyl-18-crown-6 and their potassium complexes. The results obtained suggest that conformational rearrangements of the molecule as a whole can compete with direct interactions between carbons and the potassium ion in determining C-13 chemical shift differences between the free and complexed species.
Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin
2011-03-29
Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.
Nicoś, M; Krawczyk, P; Wojas-Krawczyk, K; Bożyk, A; Jarosz, B; Sawicki, M; Trojanowski, T; Milanowski, J
2017-12-01
RT-PCR technique has showed a promising value as pre-screening method for detection of mRNA containing abnormal ALK sequences, but its sensitivity and specificity is still discussable. Previously, we determined the incidence of ALK rearrangement in CNS metastases of NSCLC using IHC and FISH methods. We evaluated ALK gene rearrangement using two-step RT-PCR method with EML4-ALK Fusion Gene Detection Kit (Entrogen, USA). The studied group included 145 patients (45 females, 100 males) with CNS metastases of NSCLC and was heterogeneous in terms of histology and smoking status. 21% of CNS metastases of NSCLC (30/145) showed presence of mRNA containing abnormal ALK sequences. FISH and IHC tests confirmed the presence of ALK gene rearrangement and expression of ALK abnormal protein in seven patients with positive result of RT-PCR analysis (4.8% of all patients, 20% of RT-PCR positive patients). RT-PCR method compared to FISH analysis achieved 100% of sensitivity and only 82.7% of specificity. IHC method compared to FISH method indicated 100% of sensitivity and 97.8% of specificity. In comparison to IHC, RT-PCR showed identical sensitivity with high number of false positive results. Utility of RT-PCR technique in screening of ALK abnormalities and in qualification patients for molecularly targeted therapies needs further validation.
The structural basis for function in diamond-like carbon binding peptides.
Gabryelczyk, Bartosz; Szilvay, Géza R; Linder, Markus B
2014-07-29
The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity. More significantly, rearrangements in the sequence indicated that the binding is a complex recognition event that is dependent on the overall structure of the peptide. The work demonstrates the unique properties of peptides for creating functionality at interfaces via noncovalent binding for potential applications in, for example, nanomaterials, biomedical materials, and sensors.
2013-01-01
Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376
Impact of observational incompleteness on the structural properties of protein interaction networks
NASA Astrophysics Data System (ADS)
Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin
2007-01-01
The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.
Montoya-Durango, Diego E; Ramos, Kenneth A; Bojang, Pasano; Ruiz, Lorell; Ramos, Irma N; Ramos, Kenneth S
2016-01-25
Long Interspersed Nuclear Element-1 (L1) is an oncogenic mammalian retroelement silenced early in development via tightly controlled epigenetic mechanisms. We have previously shown that the regulatory region of human and murine L1s interact with retinoblastoma (RB) proteins to effect retroelement silencing. The present studies were conducted to identify the corepressor complex responsible for RB-mediated silencing of L1. Chromatin immunoprecipitation and silencing RNA technology were used to identify the repressor complex that silences L1 in human and murine cells. Components of the Nucleosomal and Remodeling Deacetylase (NuRD) multiprotein complex specifically enriched the L1 5'-untranslated DNA sequence in human and murine cells. Genetic ablation of RB proteins in murine cells destabilized interactions within the NuRD macromolecular complex and mediated nuclear rearrangement of Mi2-β, an ATP-dependent helicase subunit with nucleosome remodeling activity. Depletion of Mi2-β, RbAP46 and HDAC2 reduced the repressor activity of the NuRD complex and reactivated a synthetic L1 reporter in human cells. Epigenetic reactivation of L1 in RB-null cells by DNA damage was markedly enhanced compared to wild type cells. RB proteins stabilize interactions of the NuRD corepressor complex within the L1 promoter to effect L1 silencing. L1 retroelements may serve as a scaffold on which RB builds heterochromatic regions that regulate chromatin function.
ERIC Educational Resources Information Center
Sales, Eric S.; Silveira, Gustavo P.
2015-01-01
Lactone-size identification of [subscript D]-ribonolactone derivatives has been debated for four decades due to complex lactone-ring rearrangements and acetal migration. This laboratory experiment for an upper-division undergraduate organic chemistry laboratory course describes a fast and reliable assignment of lactone-size derivatives from…
A Distinct Class of Genome Rearrangements Driven by Heterologous Recombination.
León-Ortiz, Ana María; Panier, Stephanie; Sarek, Grzegorz; Vannier, Jean-Baptiste; Patel, Harshil; Campbell, Peter J; Boulton, Simon J
2018-01-18
Erroneous DNA repair by heterologous recombination (Ht-REC) is a potential threat to genome stability, but evidence supporting its prevalence is lacking. Here we demonstrate that recombination is possible between heterologous sequences and that it is a source of chromosomal alterations in mitotic and meiotic cells. Mechanistically, we find that the RTEL1 and HIM-6/BLM helicases and the BRCA1 homolog BRC-1 counteract Ht-REC in Caenorhabditis elegans, whereas mismatch repair does not. Instead, MSH-2/6 drives Ht-REC events in rtel-1 and brc-1 mutants and excessive crossovers in rtel-1 mutant meioses. Loss of vertebrate Rtel1 also causes a variety of unusually large and complex structural variations, including chromothripsis, breakage-fusion-bridge events, and tandem duplications with distant intra-chromosomal insertions, whose structure are consistent with a role for RTEL1 in preventing Ht-REC during break-induced replication. Our data establish Ht-REC as an unappreciated source of genome instability that underpins a novel class of complex genome rearrangements that likely arise during replication stress. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Granot-Hershkovitz, Einat; Raas-Rothschild, Annick; Frumkin, Ayala; Granot, David; Silverstein, Shira; Abeliovich, Dvorah
2011-08-01
Cytogenetic analysis of DNA from a girl with severe psychomotor retardation revealed a de novo pericentric inversion of chromosome 2: 46,XX,inv(2)(p15q24.2). In order to elucidate the possible role of the inversion in the girl's abnormal phenotype, we analyzed the inversion breakpoints. FISH analysis revealed BAC clones spanning the breakpoints at 2p and 2q of the inversion. Southern blot hybridization with DNA probes from the BAC regions was used to refine the localization of the breakpoints, followed by inverse-PCR which enabled us to sequence the inversion breakpoints. We found a complex chromosomal rearrangement, including five breakpoints, four at 2q and one at 2p joined with minor insertions/deletions of a few bases. The breakpoint at 2p was within the NRXN1 gene that has previously been associated with autism, intellectual disabilities, and psychiatric disorders. In 2q, the breakpoints disrupted two genes, TANC1 and RBMS1; the phenotypic effect of these genes is not currently known. Copyright © 2011 Wiley-Liss, Inc.
Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu
2012-05-09
Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M'kacher, Radhia; Bennaceur-Griscelli, Annelise; Girinsky, Theodore
Purpose: To investigate a potential link between telomere length, chromosomal instability, and the advent of a second cancer (SC) in patients with Hodgkin's lymphoma (HL), who are known to be at risk for SCs. This study was premised on the finding that telomere dysfunction and DNA repair pathways were related to many pathologic conditions. Methods and Materials: Three cohorts of patients with HL were studied: 73 who were prospectively followed >5 years after diagnosis (prospective HL cohort), 28 who developed a SC (SC HL cohort), and 18 long-term survivors with no evidence of disease or complication since their initial treatmentmore » (NED HL cohort). Telomere length was analyzed by a telomeric restriction fragment assay in peripheral blood lymphocytes. Thirty healthy donors and 70 patients with a newly diagnosed solid tumor were the control population. Results: Compared with controls, patients from the prospective HL cohort, before any treatment, showed age-independent shorter telomeres (mean, 8.3 vs. 11.7 kb in healthy donors; <6 kb in 18% in HL patients), increased spontaneous chromosomal abnormalities, and increased in vitro radiation sensitivity (p < 10{sup -4} each). After treatment, telomere shortening was associated with cytogenetic profiles characterized by the persistence of complex chromosomal rearrangement and clonal aberrations. Moreover, the two cases of SC in the prospective HL patients had short telomeres and CCR initially. In addition, the SC HL cohort was characterized by markedly short telomeres (6.6 vs. 9.7 kb in the NED HL cohort), the presence of complex chromosome rearrangements, and increased in vitro radiation sensitivity. Conclusions: An intimate relationship between pre-treatment telomere shortening, chromosomal instability, radiation sensitivity and occurrence of SC was found in HL patients.« less
Iype, Thomas; Alakbarzade, Vafa; Iype, Mary; Singh, Royana; Sreekantan-Nair, Ajith; Chioza, Barry A; Mohapatra, Tribhuvan M; Baple, Emma L; Patton, Michael A; Warner, Thomas T; Proukakis, Christos; Kulkarni, Abhi; Crosby, Andrew H
2015-11-10
The deletion of the chromosome 4p16.3 Wolf-Hirschhorn syndrome critical region (WHSCR-2) typically results in a characteristic facial appearance, varying intellectual disability, stereotypies and prenatal onset of growth retardation, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of distal chromosome 3p (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance. We investigated a large Indian five-generation pedigree with ten affected family members in which chromosomal microarray and fluorescence in situ hybridization analyses disclosed a complex rearrangement involving chromosomal subregions 4p16.1 and 3p26.3 resulting in a 4p16.1 deletion and 3p26.3 microduplication in three individuals, and a 4p16.1 duplication and 3p26.3 microdeletion in seven individuals. A typical clinical presentation of WHS was observed in all three cases with 4p16.1 deletion and 3p26.3 microduplication. Individuals with a 4p16.1 duplication and 3p26.3 microdeletion demonstrated a range of clinical features including typical 3p microdeletion or 4p partial trisomy syndrome to more severe neurodevelopmental delay with distinct dysmorphic features. We present the largest pedigree with complex t(4p;3p) chromosomal rearrangements and diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome amongst affected individuals.
Three-dimensional imaging of the craniofacial complex.
Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.
2000-02-01
Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.
Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes*
Zhang, Qi; Liu, Wen
2011-01-01
The radical S-adenosylmethionine (AdoMet) superfamily currently comprises thousands of proteins that participate in numerous biochemical processes across all kingdoms of life. These proteins share a common mechanism to generate a powerful 5′-deoxyadenosyl radical, which initiates a highly diverse array of biotransformations. Recent studies are beginning to reveal the role of radical AdoMet proteins in the catalysis of highly complex and chemically unusual transformations, e.g. the ThiC-catalyzed complex rearrangement reaction. The unique features and intriguing chemistries of these proteins thus demonstrate the remarkable versatility and sophistication of radical enzymology. PMID:21771780
NASA Astrophysics Data System (ADS)
Li, Cheng; Mitra, Somenath
2007-12-01
A fullerene-single wall carbon nanotube (C60-SWCNT) complex is used as a component of the photoactive layer in bulk heterojunction photovoltaic cells. This complex synthesized by microwave-assisted reaction takes advantage of the electron accepting feature of C60 and the high electron transport capability of SWCNTs. In this paper, quantum efficiency enhancement by increasing light absorption and by bringing about appropriate morphological rearrangements via solvent vapor treatment and thermal annealing is presented. The optimum combination of these steps led to an increase in efficiency by as much as 87.5%.
Li, Zhuangjie; Zhang, Baoquan
2012-09-13
Decreasing CO2 emissions into the atmosphere is key for reducing global warming. To facilitate the CO2 emission reduction efforts, our laboratory conducted experimental and theoretical investigations of the homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → (NH4)HCO3(s)/(NH4)2CO3(s) (n = 1 and 2) using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and ab initio molecular orbital theory. Our FTIR-ATR experimental results indicate that (NH4)2CO3(s) and (NH4)HCO3(s) are formed as aerosol particulate matter when carbon dioxide reacts with ammonia and water in the gaseous phase at room temperature. Ab initio study of this chemical system suggested that the reaction may proceed through formation of NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes. Subsequent complexes, NH3·H2O·CO2 and (NH3)2·H2O·CO2, can be formed by adding gaseous reactants to the NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes, respectively. The NH3·H2O·CO2 and (NH3)2·H2O·CO2 complexes can then be rearranged to produce (NH4)HCO3 and (NH4)2CO3 as final products via a transition state, and the NH3 molecule acts as a medium accepting and donating hydrogen atoms in the rearrangement process. Our computational results also reveal that the presence of an additional water molecule can reduce the activation energy of the rearrangement process. The high activation energy predicted in the present work suggests that the reaction is kinetically not favored, and our experimental observation of (NH4)HCO3(s) and (NH4)2CO3(s) may be attributed to the high concentrations of reactants increasing the reaction rate of the title reactions in the reactor.
Hamatani, Kiyohiro; Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro
2012-11-01
We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF(V600E)) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5' rapid amplification of cDNA ends (5' RACE). We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC.
Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro
2012-01-01
Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Conclusion Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC. PMID:23050789
Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.
2014-01-01
A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903
Wang, Zhixiong; Cheng, Yulan; Abraham, John M; Yan, Rong; Liu, Xi; Chen, Wei; Ibrahim, Sariat; Schroth, Gary P; Ke, Xiquan; He, Yulong; Meltzer, Stephen J
2017-10-15
Studies of chromosomal rearrangements and fusion transcripts have elucidated mechanisms of tumorigenesis and led to targeted cancer therapies. This study was aimed at identifying novel fusion transcripts in esophageal adenocarcinoma (EAC). To identify new fusion transcripts associated with EAC, targeted RNA sequencing and polymerase chain reaction (PCR) verification were performed in 40 EACs and matched nonmalignant specimens from the same patients. Genomic PCR and Sanger sequencing were performed to find the breakpoint of fusion genes. Five novel in-frame fusion transcripts were identified and verified in 40 EACs and in a validation cohort of 15 additional EACs (55 patients in all): fibroblast growth factor receptor 2 (FGFR2)-GRB2-associated binding protein 2 (GAB2) in 2 of 55 or 3.6%, Niemann-Pick C1 (NPC1)-maternal embryonic leucine zipper kinase (MELK) in 2 of 55 or 3.6%, ubiquitin-specific peptidase 54 (USP54)-calcium/calmodulin dependent protein kinase II γ (CAMK2G) in 2 of 55 or 3.6%, megakaryoblastic leukemia (translocation) 1 (MKL1)-fibulin 1 (FBLN1) in 1 of 55 or 1.8%, and CCR4-NOT transcription complex subunit 2 (CNOT2)-chromosome 12 open reading frame 49 (C12orf49) in 1 of 55 or 1.8%. A genomic analysis indicated that NPC1-MELK arose from a complex interchromosomal translocation event involving chromosomes 18, 3, and 9 with 3 rearrangement points, and this was consistent with chromoplexy. These data indicate that fusion transcripts occur at a stable frequency in EAC. Furthermore, our results indicate that chromoplexy is an underlying mechanism that generates fusion transcripts in EAC. These and other fusion transcripts merit further study as diagnostic markers and potential therapeutic targets in EAC. Cancer 2017;123:3916-24. © 2017 American Cancer Society. © 2017 American Cancer Society.
Molecular cytogenetic identification of a rearrangement involving 10q23 in a patient with ALL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosemblum-Vos, L.S.; Frantz, C.N.; Punzalan, C.M.
A patient with pre-B cell acute lymphocytic leukemia (ALL) demonstrated a novel complex karyotype, elucidated by fluorescence in situ hybridization (FISH), which involved the region of a rare heritable fragile site at 10q23-q24. An asymptomatic two-year-old white female presented with anemia; her physical examination was normal. WBC was 6,200 with 8% blasts, and 35% atypical lymphocytes. Her bone marrow showed 50% lymphoblasts, expressing CD9, CD10, CD19, CD22, CD24, CD45, and HLA-DR, consistent with B-cell lineage. Cytogenetic examination of a bone marrow biopsy yielded GTG-banded chromosomes of sub-optimal morphology. The karyotype was initially interpreted as mosaic 46,X,-X,+4,-10,+13,der(19)/46,XX with 40% abnormal cells.more » Subsequent FISH studies revealed the der(19) to be an unbalanced form of the 1;19 translocation frequently found in pre-B cell ALL. Using FISH, we also identified a complex rearrangement in which an X chromosome segment was inserted interstitially into 10q at the q23.3/q24 junction, the location of a rare heritable fragile site. The karyotype has been reinterpreted as 46,X,del(X)(:p11.2{r_arrow}qter), ins(10;X)(q23.3;p11.2p22.3),der(19)t(1;19)(q23p13)/46,XX. To our knowledge, this is only the second reported case involving this breakpoint in ALL-L1, the other being a patient with biphenotypic pre-B/myeloid acute leukemia. Our patient is currently being investigated for this fragile site. The complete elucidation of the chromosomes involved in this complex rearrangement and the possible implications of the chromosome 10 breakpoint would have gone undetected without the application of FISH.« less
Tanaka, Toru; Sun, Liying; Tsutani, Kouhei; Suzuki, Nobuhiro
2011-08-01
Mycoreovirus 1 (MyRV1), a member of the family Reoviridae possessing a genome consisting of 11 dsRNA segments (S1-S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, Cryphonectria hypovirus 1 (CHV1) strain EP713, of the family Hypoviridae with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.
Doğan, Özgül; Korkmaz, E Mahir
2017-10-01
The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.
Characterizing polymorphic inversions in human genomes by single-cell sequencing
Sanders, Ashley D.; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M.
2016-01-01
Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery. PMID:27472961
del Priore, Lucía; Pigozzi, María I
2015-01-01
In the zebra finch, 2 alternative morphs regarding centromere position were described for chromosome 6. This polymorphism was interpreted to be the result of a pericentric inversion, but other causes of the centromere repositioning were not ruled out. We used immunofluorescence localization to examine the distribution of MLH1 foci on synaptonemal complexes to test the prediction that pericentric inversions cause synaptic irregularities and/or crossover suppression in heterozygotes. We found complete suppression of crossing over in the region involved in the rearrangement in male and female heterozygotes. In contrast, the same region showed high levels of crossing over in homozygotes for the acrocentric form of this chromosome. No inversion loops or synaptic irregularities were detected along bivalent 6 in heterozygotes suggesting that heterologous pairing is achieved during zygotene or early pachytene. Altogether these findings strongly indicate that the polymorphic chromosome 6 originated by a pericentric inversion. Since inversions are common rearrangements in karyotypic evolution in birds, it seems likely that early heterologous pairing could help to fix these rearrangements, preventing crossing overs in heterozygotes and their deleterious effects on fertility. © 2015 S. Karger AG, Basel.
Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L
2015-02-01
Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ.
Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R
2007-09-01
Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.
Han, Xiao-Hong; Zhang, Ning-Ning; Ma, Li; Lin, Dong-Mei; Hao, Xue-Zhi; Liu, Yu-Tao; Wang, Lin; Liu, Peng; Yuan, Zheng; Li, Dan; Lin, Hua; Sun, Yan; Shi, Yuan-Kai
2013-10-01
Accurate determination of anaplastic lymphoma kinase (ALK) rearrangements is critical in identifying ALK-positive patients for targeted therapy in non-small-cell lung cancer (NSCLC). Fluorescence in situ hybridization (FISH) is the current standard method to detect ALK rearrangements but is technically challenging and costly. We compared optimised immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization techniques in this study of 139 samples of advanced NSCLC with non-squamous histology. ALK alteration was found in 32.6 % (43/132) of patients by FISH, 32.9 % (45/137) of patients by IHC and 27.9 % (34/122) of samples by qRT-PCR (concordance rate of 96.9 % between FISH and IHC, 95.7 % between FISH and qRT-PCR, P < 0.001). IHC sensitivity and specificity were 97.7 % and 96.6 %, respectively, while the sensitivity and specificity of qRT-PCR were 89.2 % and 98.7 %, respectively. ALK rearrangements were more common in young patients (P = 0.007), non-smokers or light smokers (P = 0.008) and adenocarcinoma histology, especially with signet ring cell features (P < 0.001). Optimised IHC could be a useful method in screening ALK rearrangements in clinical practice with qRT-PCR as an alternative diagnostic tool to clarify specific ALK variants.
Hasanzadeh-NazarAbadi, Mohammad; Baghbani, Fatemeh; Namazi, Iman; Mirzaee, Salmeh
2014-08-01
Approximately 205 million pregnancies occur each year in the worldwide. On the other hand, Spontaneous abortion has been reported in 15-20% of all diagnosed pregnancies. The most common cause of spontaneous abortion is chromosomal abnormalities of the embryo. Robertsonian translocation carriers specially 21-14 are the most common balanced rearrangement among the carrier couples with the history of spontaneous abortion. In order to search for balanced chromosomal rearrangement and cytogenetic disorders, 10 members of related family with consanguinity marriage with the history of recurrent miscarriage were assessed. Cytogenetic evaluation on the basis G-banding technique at high resolution was performed in 3 couples and their related family with the history of idiopathic RSA in order to postulate any balanced chromosomal rearrangement. six members of them appeared with robertsonian balanced translocation between chromosome No.21 to No. 14 with the karyotype of 45, XX, t (14, 21) and 45, XY, t (14, 21), which this results are in agreement with several similar works which claimed that the risk of spontaneous abortion in couples with balanced chromosomal rearrangements is higher compared with general population. Considering to results of present study, it seems as if the cytogenetic analysis of couples with the history of recurrent abortions should be suggested compulsory to estimate the probable presence of any chromosomal rearrangement. This offer wills valuable information for genetic consulting.
Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L
2015-01-01
Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ. PMID:24990612
Sammler, Svenja; Ketmaier, Valerio; Havenstein, Katja; Tiedemann, Ralph
2013-12-01
Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography.
Zhang, Ning-Ning; Liu, Yu-Tao; Ma, Li; Wang, Lin; Hao, Xue-Zhi; Yuan, Zheng; Lin, Dong-Mei; Li, Dan; Zhou, Yu-Jie; Lin, Hua; Han, Xiao-Hong; Sun, Yan; Shi, Yuankai
2014-01-01
Background This study aimed to elucidate clinical significance of anaplastic lymphoma kinase (ALK) rearrangement in selected advanced non-small cell lung cancer (NSCLC), to compare the application of different ALK detection methods, and especially evaluate a possible association between ALK expression and clinical outcomes in crizotinib-treated patients. Methods ALK status was assessed by fluorescent in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative RT-PCR (qRT-PCR) in 173 selected advanced NSCLC patients. Clinicopathologic data, genotype status and survival outcomes were analyzed. Moreover, the association of ALK expression with clinical outcomes was evaluated in ALK FISH-positive crizotinib-treated patients including two patients with concurrent epidermal growth factor receptor (EGFR) mutation. Results The positivity detection rate of ALK rearrangement by FISH, IHC and qRT-PCR was 35.5% (59/166), 35.7% (61/171), and 27.9% (34/122), respectively. ALK rearrangement was observed predominantly in young patients, never or light smokers, and adenocarcinomas, especially with signet ring cell features and poor differentiation. Median progression-free survival (PFS) of crizotinib-treated patients was 7.6 months. The overall survival (OS) of these patients was longer compared with that of crizotinib-naive or wild-type cohorts, but there was no significant difference in OS compared with patients with EGFR mutation. ALK expression did not associate with PFS; but, when ALK expression was analyzed as a dichotomous variable, moderate and strong ALK expression had a decreased risk of death (P = 0.026). The two patients with concomitant EGFR and ALK alterations showed difference in ALK expression, response to EGFR and ALK inhibitors, and overall survival. Conclusions Selective enrichment according to clinicopathologic features in NSCLC patients could highly improve the positivity detection rate of ALK rearrangement for ALK-targeted therapy. IHC could provide more clues for clinical trial design and therapeutic strategies for ALK-positive NSCLC patients including patients with double genetic aberration of ALK and EGFR. PMID:24404167
Structure-reactivity relationship of Amadori rearrangement products compared to related ketoses.
Kaufmann, Martin; Meissner, Philipp M; Pelke, Daniel; Mügge, Clemens; Kroh, Lothar W
2016-06-16
Structure-reactivity relationships of Amadori rearrangement products compared to their related ketoses were derived from multiple NMR spectroscopic techniques. Besides structure elucidation of six Amadori rearrangement products derived from d-glucose and d-galactose with l-alanine, l-phenylalanine and l-proline, especially quantitative (13)C selective saturation transfer NMR spectroscopy was applied to deduce information on isomeric systems. It could be shown exemplarily that the Amadori compound N-(1-deoxy-d-fructos-1-yl)-l-proline exhibits much higher isomerisation rates than d-fructose, which can be explained by C-1 substituent mediated intramolecular catalysis. In combination with a reduced carbonyl activity of Amadori compounds compared to their related ketoses which results in an increased acyclic keto isomer concentration, the results on isomerisation dynamics lead to a highly significant increased reactivity of Amadori compounds. This can be clearly seen, comparing approximated carbohydrate milieu stability time constants (ACuSTiC) which is 1 s for N-(1-deoxy-d-fructos-1-yl)-l-proline and 10 s for d-fructose at pD 4.20 ± 0.05 at 350 K. In addition, first NMR spectroscopic data are provided, which prove that α-pyranose of (amino acid substituted) d-fructose adopts both, (2)C5 and (5)C2 conformation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Euna; Williamson, Sean R; Montironi, Rodolfo; Zhang, Shaobo; Wang, Mingsheng; Eble, John N; Grignon, David J; Lopez-Beltran, Antonio; Idrees, Muhammad T; Baldridge, Lee Ann; Scarpelli, Marina; Jones, Carol L; Wang, Lisha; MacLennan, Gregory T; Osunkoya, Adeboye O; Cheng, Liang
2015-07-01
We examined gene rearrangement and the expression of anaplastic lymphoma kinase (ALK) in urinary bladder inflammatory myofibroblastic tumour (IMT) using fluorescence in-situ hybridization (FISH) and two immunohistochemical antibodies to ALK. We also investigated whether IMT represents an immunoglobulin (Ig)G4-related disease. The performance of the Dako FLEX ALK monoclonal antibody (CD246) and the Cell Signaling Technology ALK (D5F3) XP monoclonal antibody were compared. Overall, 11 of 16 tumours showed ALK expression by immunohistochemistry (69%). Ten demonstrated ALK expression with both stains and one was positive with D5F3 but not CD246 (91% correlation). The D5F3 antibody yielded a stronger staining intensity and a higher sensitivity. Nine tumours demonstrated ALK rearrangements (56%) by FISH. Three were ALK(+) by immunohistochemistry but negative for rearrangement by FISH, whereas one showed rearrangement by FISH but was negative by immunohistochemistry. In total, 12 tumours were positive for ALK abnormalities (75%). Using current criteria, no cases were classified as an IgG4-related disease. The ALK D5F3 immunohistochemical stain showed superior staining characteristics compared with ALK CD246. Discrepancies in the results between FISH and immunohistochemistry for ALK abnormalities may have causes that are multifactorial. By current criteria, IMT does not represent an IgG4-related disease. © 2014 John Wiley & Sons Ltd.
Treating ALK-positive non-small cell lung cancer
Tsiara, Anna; Tsironis, Georgios; Lykka, Maria; Liontos, Michalis; Bamias, Aristotelis; Dimopoulos, Meletios-Athanasios
2018-01-01
Targeting genomic alterations, such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements, have radically changed the treatment of patients with non-small cell lung cancer (NSCLC). In the case of ALK-rearranged gene, subsequent rapid development of effective genotype-directed therapies with ALK tyrosine kinase inhibitors (TKIs) triggered major advances in the personalized molecularly based approach of NSCLC. Crizotinib was the first-in-class ALK TKI with proven superiority over standard platinum-based chemotherapy for the 1st-line therapy of ALK-rearranged NSCLC patients. However, the acquired resistance to crizotinib and its diminished efficacy to the central nervous system (CNS) relapse led to the development of several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib. To date, four ALK TKIs, crizotinib, ceritinib, alectinib and brigatinib have received approval from the Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) and even more agents are currently under investigation for the treatment of ALK-rearranged NSCLC. However, the optimal frontline approach and the exact sequence of ALK inhibitors are still under consideration. Recently announced results of phase III trials recognized higher efficacy of alectinib compared to crizotinib in first-line setting, even in patients with CNS involvement. In this review, we will discuss the current knowledge regarding the biology of the ALK-positive NSCLC, the available therapeutic inhibitors and we will focus on the raised issues from their use in clinical practise. PMID:29862230
Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen
2016-01-01
Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965
Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki
2015-01-01
Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041
Biased Immunoglobulin Light Chain Gene Usage in the Shark.
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-10-15
This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. Copyright © 2015 by The American Association of Immunologists, Inc.
X-linked cataract and Nance-Horan syndrome are allelic disorders.
Coccia, Margherita; Brooks, Simon P; Webb, Tom R; Christodoulou, Katja; Wozniak, Izabella O; Murday, Victoria; Balicki, Martha; Yee, Harris A; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J; Maher, Eamonn R; Moore, Anthony T; Russell-Eggitt, Isabelle M; Hardcastle, Alison J
2009-07-15
Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication-triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved.
X-linked cataract and Nance-Horan syndrome are allelic disorders
Coccia, Margherita; Brooks, Simon P.; Webb, Tom R.; Christodoulou, Katja; Wozniak, Izabella O.; Murday, Victoria; Balicki, Martha; Yee, Harris A.; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K.; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J.; Maher, Eamonn R.; Moore, Anthony T.; Russell-Eggitt, Isabelle M.; Hardcastle, Alison J.
2009-01-01
Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved. PMID:19414485
Bentley, Stephen D.; Corton, Craig; Brown, Susan E.; Barron, Andrew; Clark, Louise; Doggett, Jon; Harris, Barbara; Ormond, Doug; Quail, Michael A.; May, Georgiana; Francis, David; Knudson, Dennis; Parkhill, Julian; Ishimaru, Carol A.
2008-01-01
Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome. PMID:18192393
Ito, Kentaro; Hataji, Osamu; Kobayashi, Hiroyasu; Fujiwara, Atsushi; Yoshida, Masamichi; D'Alessandro-Gabazza, Corina N; Itani, Hidetoshi; Tanigawa, Motoaki; Ikeda, Takuya; Fujiwara, Kentaro; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C; Taguchi, Osamu; Yamamoto, Nobuyuki
2017-02-01
Alectinib and crizotinib have been approved for the therapy of NSCLC caused by anaplastic lymphoma kinase gene (ALK) rearrangement. The effect of alectinib or crizotinib on overall survival (OS) in patients with ALK-rearranged NSCLC remains unknown. A multicenter retrospective study was conducted to compare OS between patients receiving alectinib and crizotinib and between patients treated with alectinib and those treated sequentially with crizotinib and then alectinib after crizotinib failure. The time to treatment failure (TTF), progression-free survival (PFS), and OS were compared. Sixty-one patients with ALK-rearranged NSCLC were enrolled. Forty-six patients were treated with anaplastic lymphoma kinase (ALK) inhibitors (31 with crizotinib, 28 with alectinib, and 13 with both ALK inhibitors). The response rate was 66.7% for the crizotinib-treated group and 80.8% for the alectinib-treated group. Among all patients, TTF and PFS were significantly prolonged in the alectinib-treated group compared with in the crizotinib-treated group. Subgroup analyses revealed significantly prolonged TTF for alectinib compared with crizotinib therapy in the ALK inhibitor-naive population. OS was significantly longer in the alectinib-treated group than in the crizotinib-treated group. The TTF and OS of patients treated sequentially with crizotinib and then with alectinib after crizotinib failure tended to be longer than those of patients treated with alectinib alone. Therapy with alectinib alone was significantly superior to therapy with crizotinib alone in terms of TTF, PFS, and OS, and sequential therapy with crizotinib and alectinib after crizotinib failure tended to provide a better OS benefit than did therapy with alectinib alone in patients with ALK-positive NSCLC. However, large-scale prospective studies are needed to confirm these observations. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Triple Hit Lymphoma: Rare Cases With Less Dire Than Usual Prognosis.
Kallen, Michael E; Alexanian, Serge; Said, Jonathan; Quintero-Rivera, Fabiola
2016-12-01
Triple hit lymphomas are a subset of so-called double hit non-Hodgkin lymphomas exhibiting simultaneous gene translocations/disruption of MYC, BCL2, and BCL6; however, their overlapping morphologic features and complex genetic rearrangements can render classification and prognostication vexing. Clinically triple hit lymphomas are thought to demonstrate aggressive behavior, similar to or worse than that of double hit lymphomas. Only rare reports of long term survivors exist and raise the possibility that unidentified morphologic, immunologic, or cytogenetic differences may impart a less adverse prognosis than current literature and opinion may suggest. Here we report 3 such cases with less aggressive behavior. Cases such as these may prove useful in comparing outcomes, and underlying mechanisms of tumor progression, in aggressive non-Hodgkin lymphomas. © The Author(s) 2016.
Scott, Stuart A; Cohen, Ninette; Brandt, Tracy; Warburton, Peter E; Edelmann, Lisa
2010-09-01
Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.
The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR.
Retière, C; Halary, F; Peyrat, M A; Le Deist, F; Bonneville, M; Hallet, M M
1999-01-15
Functional chimeric TCR chains, encoded by V gamma J gamma C beta or V gamma J beta C beta hybrid gene TCR, are expressed at the surface of a small fraction of alpha beta T lymphocytes in healthy individuals. Their frequency is dramatically increased in patients with ataxia-telangiectasia, a syndrome associated with inherited genomic instability. As the TCR gamma and beta loci are in an inverted orientation on chromosome 7, the generation of such hybrid genes requires at least an inversion event. Until now, neither the sequences involved in this genetic mechanism nor the number of recombinations leading to the formation of functional transcriptional units have been characterized. In this manuscript, we demonstrate that at least two rearrangements, involving classical recombination signal sequence and the V(D)J recombinase complex, lead to the formation of productive hybrid genes. A primary inversion 7 event between D beta and J gamma genic segments generates C gamma V beta and C beta V gamma hybrid loci. Within the C gamma V beta locus, secondary rearrangements between V gamma and J gamma or V gamma and J beta elements generate functional genes. Besides, our results suggest that secondary rearrangements were blocked in the C beta V gamma locus of normal but not ataxia-telangiectasia T lymphocytes. We also provide formal evidence that the same D beta-3' recombination signal sequence can be used in successive rearrangements with J gamma and J beta genic segments, thus showing that a signal joint has been involved in a secondary recombination event.
Sengupta, Raghuvir N.; Van Schie, Sabine N.S.; Giambaşu, George; Dai, Qing; Yesselman, Joseph D.; York, Darrin; Piccirilli, Joseph A.; Herschlag, Daniel
2016-01-01
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. PMID:26567314
Sengupta, Raghuvir N; Van Schie, Sabine N S; Giambaşu, George; Dai, Qing; Yesselman, Joseph D; York, Darrin; Piccirilli, Joseph A; Herschlag, Daniel
2016-01-01
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. © 2015 Sengupta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W.
2015-01-01
It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are investigated. PMID:26042422
Zhang, Yang; Máté, Gabriell; Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W
2015-01-01
It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are investigated.
Evidence for molecular differences in prostate cancer between African American and Caucasian men.
Khani, Francesca; Mosquera, Juan Miguel; Park, Kyung; Blattner, Mirjam; O'Reilly, Catherine; MacDonald, Theresa Y; Chen, Zhengming; Srivastava, Abhishek; Tewari, Ashutosh K; Barbieri, Christopher E; Rubin, Mark A; Robinson, Brian D
2014-09-15
The aim of this study was to compare the frequency of ERG rearrangement, PTEN deletion, SPINK1 overexpression, and SPOP mutation in prostate cancer in African American and Caucasian men. Dominant tumor nodules from radical prostatectomy specimens of 105 African American men (AAM) were compared with 113 dominant nodules from Caucasian men (CaM). Clinical and pathologic characteristics of the two groups were similar. SPINK1 overexpression was evaluated by immunohistochemistry, ERG rearrangement and PTEN deletion by FISH, and SPOP mutation by Sanger sequencing. ERG rearrangement was identified in 48 of 113 tumors (42.5%) in CaM and 29 of 105 tumors (27.6%) in AAM (P = 0.024). PTEN deletion was seen in 19 of 96 tumors (19.8%) in CaM and 7 of 101 tumors (6.9%) in AAM (P = 0.011). SPINK1 overexpression was present in 9 of 110 tumors (8.2%) in CaM and 25 of 105 tumors (23.4%) in AAM (P = 0.002). SPOP mutation was identified in 8 of 78 (10.3%) tumors in CaM and 4 of 88 (4.5%) tumors in AAM (P = 0.230). When adjusted for age, body mass index, Gleason score, and pathologic stage, ERG rearrangement and SPINK1 overexpression remain significantly different (P = 0.018 and P = 0.008, respectively), and differences in PTEN deletion and SPOP mutation approach significance (P = 0.061 and P = 0.087, respectively). Significant molecular differences exist between prostate cancers in AAM and CaM. SPINK1 overexpression, an alteration associated with more aggressive prostate cancers, was more frequent in AAM, whereas ERG rearrangement and PTEN deletion were less frequent in this cohort. Further investigation is warranted to determine whether these molecular differences explain some of the disparity in incidence and mortality between these two ethnic groups. ©2014 American Association for Cancer Research.
Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas.
Specht, Katja; Zhang, Lei; Sung, Yun-Shao; Nucci, Marisa; Dry, Sarah; Vaiyapuri, Sumathi; Richter, Gunther H S; Fletcher, Christopher D M; Antonescu, Cristina R
2016-04-01
Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose because of overlapping morphologic, immunohistochemical, and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4-related fusions, whereas another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44-year-old man, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by reverse transcription polymerase chain reaction and fluorescence in situ hybridization techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC, and BCOR-CCNB3 abnormalities for BCOR break-apart probes by fluorescence in situ hybridization to detect potential recurrent BCOR gene rearrangements outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, whereas no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3-positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared with classic Ewing's sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SBRCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion-positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs, which presented in young adults, with a variable anatomic distribution. Furthermore, BCOR-rearranged tumors often displayed spindle cell areas, either well defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly differentiated synovial sarcoma.
Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas
Specht, Katja; Zhang, Lei; Sung, Yun-Shao; Nucci, Marisa; Dry, Sarah; Vaiyapuri, Sumathi; Richter, Gunther HS; Fletcher, Christopher DM; Antonescu, Cristina R
2015-01-01
Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose due to overlapping morphologic, immunohistochemical and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4 related fusions, while another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44 year-old male, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by RT-PCR and FISH techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC and BCOR-CCNB3 abnormalities, for BCOR break-apart probes by FISH to detect potential recurrent BCOR gene rearrangements, outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, while no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3 positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared to classic Ewing sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SRBCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs which presented in young adults, with a variable anatomic distribution. Furthermore BCOR-rearranged tumors often displayed spindle cell areas, either well-defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly differentiated synovial sarcoma. PMID:26752546
Jenkins, Z A; Henry, H M; Galloway, S M; Dodds, K G; Montgomery, G W
1997-01-01
Three genes--parathyroid hormone-like hormone (PTHLH), insulin-like growth factor 1 (IGF 1), and retinoic acid receptor gamma (RARG)--have been mapped to sheep (Ovis aries) chromosome 3 (OAR 3). The order and genetic distances between loci on OAR 3 are similar to those on cattle (Bos taurus) chromosome 5, as expected from their close evolutionary relationship. The OAR 3 linkage map shows conserved synteny with human chromosome 12, but there are at least two rearrangements in gene order between the species.
Puntieri, Fiona; Andrioli, Nancy B; Nieves, Mariela
2018-06-14
During the last decades the mammalian genome has been proposed to have regions prone to breakage and reorganization concentrated in certain chromosomal bands that seem to correspond to evolutionary breakpoints. These bands are likely to be involved in chromosome fragility or instability. In Primates, some biomarkers of genetic damage may be associated with various degrees of genomic instability. Here, we investigated the usefulness of Sister Chromatid Exchange (SCE) as a biomarker of potential sites of frequent chromosome breakage and rearrangement in Alouatta caraya, Ateles chamek, Ateles paniscus and Cebus cay. These Neotropical species have particular genomic and chromosomal features allowing the analysis of genomic instability for comparative purposes. We determined the frequency of spontaneous induction of SCEs and assessed the relationship between these and structural rearrangements implicated in the evolution of the primates of interest. Overall, A. caraya and C. cay presented a low proportion of statistically significant unstable bands, suggesting fairly stable genomes and the existence of some kind of protection against endogenous damage. In contrast, Ateles showed a highly significant proportion of unstable bands; these were mainly found in the rearranged regions, which is consistent with the numerous genomic reorganizations that might have occurred during the evolution of this genus.
Chervinsky, D S; Lam, D H; Melman, M P; Gross, K W; Aplan, P D
2001-09-01
SCL and LMO1 were both discovered by virtue of their activation by chromosomaltranslocation in patients with T-cell acute lymphoblastic leukemia (T-ALL). Overexpression of SCL and LMO1 in the thymus of transgenic mice leads to T-ALL at a young age. scid (severe combined immunodeficient) mice are unable to efficiently recombine antigen receptor genes and consequently display a developmental block at the CD4-CD8- to CD4+CD8+ transition. To test the hypothesis that this developmental block would protect SCL/LMO1 transgenic mice from developing T-ALL, we crossed the SCL and LMO1 transgenes onto a scid background. The age of onset for T-ALL in the SCL/LMO1/scid mice was significantly delayed (P < 0.001) compared with SCL/LMO1/wild-type mice. Intriguingly, all of the SCL/LMO1/scid malignancies displayed clonal, in-frame TCRbeta gene rearrangements. Taken together, these findings suggest that the "leaky" scid thymocyte that undergoes a productive TCRbeta gene rearrangement is susceptible to the oncogenic action of SCL and LMO1 and additionally suggests that TCRbeta gene rearrangements may be required for the oncogenic action of SCL and LMO1.
Mechanism for chelated sulfate formation from SO2 and bis (triphenylphosphine) platinum
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, A. B.
1985-01-01
Structure and energy surface calculations using the atom superposition and electron delocalization molecular orbital theory show that the first step in the reaction between SO2 and the dioxygen complex (PPh3)2PtO2 is the coordination of SO2 with one oxygen atom of the complex, followed by metal-oxygen bond breaking and reorientation, leading to a five-membered cyclic structure. This then rearranges to form the bidentate coordinated sulfate. Alternative pathways are considered and are found to be less favorable.
Aminian, Mahdi; Nabatchian, Fariba; Vaisi-Raygani, Asad; Torabi, Mojgan
2013-03-15
The Bradford protein assay is a popular method because of its rapidity, sensitivity, and relative specificity. This method is subject to some interference by nonprotein compounds. In this study, we describe the interference of cetyltrimethylammonium bromide (CTAB) with the Bradford assay. This interference is based on the interaction of Coomassie Brilliant Blue G-250 (CBB) with this cationic detergent. This study suggests that both electrostatic and hydrophobic interactions are involved in the interaction of CTAB and CBB. The anionic and neutral forms of CBB bind to CTAB by electrostatic attraction, which accelerates hydrophobic interactions of these CBB forms and the hydrophobic tail of CTAB. Consequently, the hydrophobic regions of the dominant free cationic form of CBB dye compete for the tail of CTAB with two other forms of the dye and gradually displace the primary hydrophobic interactions and rearrange the primary CBB-CTAB complex. This interaction of CTAB and CBB dye produces a primary 650-nm-absorbing complex that then gradually rearranges to a complex that shows an absorbance shoulder at 800-950 nm. This study conclusively shows a strong response of CBB to CTAB that causes a time-dependent and nearly additive interference with the Bradford assay. This study also may promote an application of CBB for CTAB quantification. Copyright © 2012 Elsevier Inc. All rights reserved.
Zepeda-Mendoza, Cinthya J; Bardon, Alexandra; Kammin, Tammy; Harris, David J; Cox, Helen; Redin, Claire; Ordulu, Zehra; Talkowski, Michael E; Morton, Cynthia C
2018-03-01
Molecular characterization of balanced chromosomal abnormalities constitutes a powerful tool in understanding the pathogenic mechanisms of complex genetic disorders. Here we report a male with severe global developmental delay in the presence of a complex karyotype and normal microarray and exome studies. The subject, referred to as DGAP294, has two de novo apparently balanced translocations involving chromosomes 1 and 14, and chromosomes 4 and 10, disrupting several different transcripts of adhesion G protein-coupled receptor L2 (ADGRL2) and protocadherin 15 (PCDH15). In addition, a maternally inherited inversion disrupts peptidyl arginine deiminase types 3 and 4 (PADI3 and PADI4) on chromosome 1. None of these gene disruptions explain the patient's phenotype. Using genome regulatory annotations and chromosome conformation data, we predict a position effect ~370 kb upstream of a translocation breakpoint located at 14q12. The position effect involves forkhead box G1 (FOXG1), mutations in which are associated with the congenital form of Rett syndrome and FOXG1 syndrome. We believe the FOXG1 position effect largely accounts for the clinical phenotype in DGAP294, which can be classified as FOXG1 syndrome like. Our findings emphasize the significance of not only analyzing disrupted genes by chromosomal rearrangements, but also evaluating potential long-range position effects in clinical diagnoses.
Efficient Recreation of t(11;22) EWSR1-FLI1+ in Human Stem Cells Using CRISPR/Cas9.
Torres-Ruiz, Raul; Martinez-Lage, Marta; Martin, Maria C; Garcia, Aida; Bueno, Clara; Castaño, Julio; Ramirez, Juan C; Menendez, Pablo; Cigudosa, Juan C; Rodriguez-Perales, Sandra
2017-05-09
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Toluene Dose-Response and Preliminary Study of Proteomics for Neuronal Cell Lines
2015-07-01
related to oxidative stress such as energy reserve metabolism, cell -death signaling, reactive oxygen species (ROS) defense, cytoskeletal rearrangement...protein nodes related to oxidative stress as characterized by gene ontologies for energy reserve metabolism, cell -death signaling, reactive oxygen ...process Myosin I complex myofibril assembly Cytoskeletal matrix assembly DNA methyltransferase Activity Cellular ketone Metabolic process Mesenchymal stem
Peoples, Resources, and Lifestyles: The Hopi-Navajo Land Partition Act of 1974.
ERIC Educational Resources Information Center
Goodman, James M.
The Hopi and Navajo tribes have been engaged in a long and complex land dispute within the 1882 Executive Order Area (Joint Use Area) of Arizona, an area recently redefined via the Partition Act of 1974 which calls for the relocation of 5 to 10,000 Navajos. This rearrangement of political domain threatens to influence the future management and…
Steichen, Clara; Maluenda, Jérôme; Tosca, Lucie; Luce, Eléanor; Pineau, Dominique; Dianat, Noushin; Hannoun, Zara; Tachdjian, Gérard; Melki, Judith
2015-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise for cell therapy through their use as vital tools for regenerative and personalized medicine. However, the genomic integrity of hiPSCs still raises some concern and is one of the barriers limiting their use in clinical applications. Numerous articles have reported the occurrence of aneuploidies, copy number variations, or single point mutations in hiPSCs, and nonintegrative reprogramming strategies have been developed to minimize the impact of the reprogramming process on the hiPSC genome. Here, we report the characterization of an hiPSC line generated by daily transfections of modified messenger RNAs, displaying several genomic abnormalities. Karyotype analysis showed a complex genomic rearrangement, which remained stable during long-term culture. Fluorescent in situ hybridization analyses were performed on the hiPSC line showing that this karyotype is balanced. Interestingly, single-nucleotide polymorphism analysis revealed the presence of a large 1q region of uniparental disomy (UPD), demonstrating for the first time that UPD can occur in a noncompensatory context during nonintegrative reprogramming of normal fibroblasts. PMID:25650439
NASA Astrophysics Data System (ADS)
Pronkin, P. G.; Tatikolov, A. S.
2015-07-01
The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.
Analysis of Expressed and Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia
Belessi, Chrysoula; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Hatzi, Katerina; Smilevska, Tatjana; Stavroyianni, Niki; Marantidou, Fotini; Paterakis, George; Fassas, Athanasios; Anagnostopoulos, Achilles; Laoutaris, Nikolaos
2005-01-01
Immunoglobulin κ (IGK) locus rearrangements were analyzed in parallel on cDNA/genomic DNA in 188 κ- and 103 λ-chronic lymphocytic leukemia (CLL) cases. IGKV-KDE and IGKJ-C-intron-KDE rearrangements were also analyzed on genomic DNA. In κ-CLL, only 3 of 188 cases carried double in-frame IGKV-J transcripts: in such cases, the possibility that leukemic cells expressed more than one κ chain cannot be excluded. Twenty-eight κ-CLL cases also carried nonexpressed (nontranscribed and/or out-of-frame) IGKV-J rearrangements. Taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 38% of κ-CLL cases carried biallelic IGK locus rearrangements. In λ-CLL, 69 IGKV-J rearrangements were detected in 64 of 103 cases (62%); 24 rearrangements (38.2%) were in-frame. Four cases carried in-frame IGKV-J transcripts but retained monotypic light-chain expression, suggesting posttranscriptional regulation of allelic exclusion. In all, taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 97% of λ-CLL cases had at least 1 rearranged IGK allele, in keeping with normal cells. IG repertoire comparisons in κ- versus λ-CLL revealed that CLL precursor cells tried many rearrangements on the same IGK allele before they became λ producers. Thirteen of 28 and 26 of 69 non-expressed sequences in, respectively, κ- or λ-CLL had < 100% homology to germline. This finding might be considered as evidence for secondary rearrangements occurring after the onset of somatic hypermutation, at least in some cases. The inactivation of potentially functional IGKV-J joints by secondary rearrangements indicates active receptor editing in CLL and provides further evidence for the role of antigen in CLL immunopathogenesis. PMID:16622520
Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence
Shiao, Yih-Horng; Leighty, Robert M.; Wang, Cuiju; Ge, Xin; Crawford, Erik B.; Spurrier, Joshua M.; McCann, Sean D.; Fields, Janet R.; Fornwald, Laura; Riffle, Lisa; Driver, Craig; Quiñones, Octavio A.; Wilson, Ralph E.; Kasprzak, Kazimierz S.; Travlos, Gregory S.; Alvord, W. Gregory; Anderson, Lucy M.
2011-01-01
Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures. PMID:21765958
Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series.
Shwan, Nzar A A; Louzada, Sandra; Yang, Fengtang; Armour, John A L
2017-05-01
The human amylase gene cluster includes the human salivary (AMY1) and pancreatic amylase genes (AMY2A and AMY2B), and is a highly variable and dynamic region of the genome. Copy number variation (CNV) of AMY1 has been implicated in human dietary adaptation, and in population association with obesity, but neither of these findings has been independently replicated. Despite these functional implications, the structural genomic basis of CNV has only been defined in detail very recently. In this work, we use high-resolution analysis of copy number, and analysis of segregation in trios, to define new, independent allelic series of amylase CNVs in sub-Saharan Africans, including a series of higher-order expansions of a unit consisting of one copy each of AMY1, AMY2A, and AMY2B. We use fiber-FISH (fluorescence in situ hybridization) to define unexpected complexity in the accompanying rearrangements. These findings demonstrate recurrent involvement of the amylase gene region in genomic instability, involving at least five independent rearrangements of the pancreatic amylase genes (AMY2A and AMY2B). Structural features shared by fundamentally distinct lineages strongly suggest that the common ancestral state for the human amylase cluster contained more than one, and probably three, copies of AMY1. © 2017 WILEY PERIODICALS, INC.
Meier, Bettina; Cooke, Susanna L.; Weiss, Joerg; Bailly, Aymeric P.; Alexandrov, Ludmil B.; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R.; Campbell, Peter J.
2014-01-01
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. PMID:25030888
Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes
Loviglio, M N; Leleu, M; Männik, K; Passeggeri, M; Giannuzzi, G; van der Werf, I; Waszak, S M; Zazhytska, M; Roberts-Caldeira, I; Gheldof, N; Migliavacca, E; Alfaiz, A A; Hippolyte, L; Maillard, A M; Loviglio, Maria Nicla; Männik, Katrin; van der Werf, Ilse; Giannuzzi, Giuliana; Zazhytska, Marianna; Gheldof, Nele; Migliavacca, Eugenia; Alfaiz, Ali A; Roberts-Caldeira, Inês; Hippolyte, Loyse; Maillard, Anne M; Ferrarini, Alessandra; Butschi, Florence Niel; Conrad, Bernard; Addor, Marie-Claude; Belfiore, Marco; Roetzer, Katharina; Dijck, Anke Van; Blaumeiser, Bettina; Kooy, Frank; Roelens, Filip; Dheedene, Annelies; Chiaie, Barbara Delle; Menten, Björn; Oostra, Ann; Caberg, Jean-Hubert; Carter, Melissa; Kellam, Barbara; Stavropoulos, Dimitri J; Marshall, Christian; Scherer, Stephen W; Weksberg, Rosanna; Cytrynbaum, Cheryl; Bassett, Anne; Lowther, Chelsea; Gillis, Jane; MacKay, Sara; Bache, Iben; Ousager, Lilian B; Smerdel, Maja Patricia; Graakjaer, Jesper; Kjaergaard, Susanne; Metspalu, Andres; Mathieu, Michele; Bonneau, Dominique; Guichet, Agnes; Parent, Philippe; Férec, Claude; Gerard, Marion; Plessis, Ghislaine; Lespinasse, James; Masurel, Alice; Marle, Nathalie; Faivre, Laurence; Callier, Patrick; Layet, Valerie; Meur, Nathalie Le; Le Goff, Céline; Duban-Bedu, Bénédicte; Sukno, Sylvie; Boute, Odile; Andrieux, Joris; Blanchet, Patricia; Geneviève, David; Puechberty, Jacques; Schneider, Anouck; Leheup, Bruno; Jonveaux, Philippe; Mercier, Sandra; David, Albert; Le Caignec, Cédric; de Pontual, Loic; Pipiras, Eva; Jacquette, Aurelia; Keren, Boris; Gilbert-Dussardier, Brigitte; Bilan, Frederic; Goldenberg, Alice; Chambon, Pascal; Toutain, Annick; Till, Marianne; Sanlaville, Damien; Leube, Barbara; Royer-Pokora, Brigitte; Grabe, Hans Jörgen; Schmidt, Carsten Oliver; Schurmann, Claudia; Homuth, Georg; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Bernardini, Laura; Novelli, Antonio; Micale, Lucia; Merla, Giuseppe; Zollino, Marcella; Mari, Francesca; Rizzo, Caterina Lo; Renieri, Alessandra; Silengo, Margherita; Vulto-van Silfhout, Anneke T; Schouten, Meyke; Pfundt, Rolph; de Leeuw, Nicole; Vansenne, Fleur; Maas, Saskia M; Barge-Schaapveld, Daniela QCM; Knegt, Alida C; Stadheim, Barbro; Rodningen, Olaug; Houge, Gunnar; Price, Sue; Hawkes, Lara; Campbell, Carolyn; Kini, Usha; Vogt, Julie; Walters, Robin; Blakemore, Alexandra; Gusella, James F; Shen, Yiping; Scott, Daryl; Bacino, Carlos A; Tsuchiya, Karen; Ladda, Roger; Sell, Susan; Asamoah, Alexander; Hamati, Aline I; Rosenfeld, Jill A; Shaffer, Lisa G; Mitchell, Elyse; Hodge, Jennelle C; Beckmann, Jacques S; Jacquemont, Sébastien; Reymond, Alexandre; Reymond, Alexandre; Ewans, Lisa J; Mowat, David; Walker, Jan; Amor, David J; Esch, Hilde Van; Leroy, Patricia; Caberg, Jean-Hubert; Bamforth, John-Steven; Babu, Deepti; Till, Marianne; Sanlaville, Damien; Geneviève, David; Puechberty, Jacques; Isidor, Bertrand; DiDonato, Nataliya; Hackmann, Karl; Passeggeri, Marzia; Haeringen, Arie van; Rosenfeld, Jill A; Shaffer, Lisa G; Smith, Rosemarie; Ellingwood, Sara; Farber, Darren M; Puri, Vinay; Zadeh, Neda; Weaver, David D; Miller, Mandy; Wilks, Timothy; Jorgez, Carolina J; Lafayette, DeeDee; Jacquemont, Sébastien; Van Dijck, A; Kooy, R F; Sanlaville, D; Rosenfeld, J A; Shaffer, L G; Andrieux, J; Marshall, C; Scherer, S W; Shen, Y; Gusella, J F; Thorsteinsdottir, U; Thorleifsson, G; Dermitzakis, E T; Deplancke, B; Beckmann, J S; Rougemont, J; Jacquemont, S; Reymond, A
2017-01-01
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes. PMID:27240531
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
Maddalo, Danilo; Manchado, Eusebio; Concepcion, Carla P.; Bonetti, Ciro; Vidigal, Joana A.; Han, Yoon-Chi; Ogrodowski, Paul; Crippa, Alessandra; Rekhtman, Natasha; de Stanchina, Elisa; Lowe, Scott W.; Ventura, Andrea
2014-01-01
Chromosomal rearrangements play a central role in the pathogenesis of human cancers and often result in the expression of therapeutically actionable gene fusions1. A recently discovered example is a fusion between the Echinoderm Microtubule-associated Protein-like 4 (EML4) and the Anaplastic Lymphoma Kinase (ALK) genes, generated by an inversion on the short arm of chromosome 2: inv(2)(p21p23). The EML4-ALK oncogene is detected in a subset of human non-small cell lung cancers (NSCLC)2 and is clinically relevant because it confers sensitivity to ALK inhibitors3. Despite their importance, modeling such genetic events in mice has proven challenging and requires complex manipulation of the germline. Here we describe an efficient method to induce specific chromosomal rearrangements in vivo using viral-mediated delivery of the CRISPR/Cas9 system to somatic cells of adult animals. We apply it to generate a mouse model of Eml4-Alk-driven lung cancer. The resulting tumors invariably harbor the Eml4-Alkinversion, express the Eml4-Alk fusion gene, display histo-pathologic and molecular features typical of ALK+ human NSCLCs, and respond to treatment with ALK-inhibitors. The general strategy described here substantially expands our ability to model human cancers in mice and potentially in other organisms. PMID:25337876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.
2006-01-09
Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 andmore » ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies identified a number of taxa inwhich several rearrangements have occurred (reviewed in Raubeson andJansen, 2005), an extraordinary number of chloroplast genome alterationsare concentrated in several families in the angiosperm order Asterales(sensu APGII, Bremer et al., 2003). Gene mapping studies ofrepresentatives of the Campanulaceae (Cosner, 1993; Cosner et al.,1997,2004) and Lobeliaceae (Knox et al., 1993; Knox and Palmer, 1999)identified large inversions, contraction and expansion of the invertedrepeat regions, and several insertions and deletions in the cpDNAs ofthese closely related taxa. Detailed restriction site and gene mapping ofthe chloroplast genome of Trachelium caeruleum (Campanulaceae) identifiedseven to ten large inversions, families of repeats associated withrearrangements, possible transpositions, and even the disruption ofoperons (Cosner et al., 1997). Seventeen other members of theCampanulaceae were mapped and exhibit many additional rearrangements(Cosner et al., 2004). What happened in this lineage that made itsusceptible to so many chloroplast genome rearrangements? How do normallyvery conserved chloroplast genomes change? The cause of rearrangements inthis group is unclear based on the limited resolution available withmapping techniques. Several mechanisms have been proposed to explain howrearrangements occur: recombination between repeats, transposition, ortemporary instability due to loss of the inverted repeat (Raubeson andJansen, 2005). Sequencing whole chloroplast genomes within theCampanulaceae offers a unique opportunity to examine both the extent andmechanisms of rearrangements within a phylogenetic framework.We reporthere the first complete chloroplast genome sequence of a member of theCampanulaceae, Trachelium caeruleum. This work will serve as a benchmarkfor subsequent, comparative sequencing and analysis of other members ofthis family and close relatives, with the goal of further understandingchloroplast genome evolution. We confirmed features previously identifiedthrough mapping, and discovered many additional structural changes,including several partial to entire gene duplications, deterioration ofat least four normally conserved chloroplast genes into gene fragments,and the nature and position of numerous repeat elements at or nearinversion endpoints. The focus of this paper is on analyses of sequencesat or near these rearrangements in Trachelium caeruleum. Inversions arebelieved to occur due to the presence of repeat elements subject tohomologous recombination (Palmer, 1991; Knox et al., 1993). Repeats mayfacilitate inversions or other genome rearrangements (Achaz et al.,2003), and higher incidences of repeats have been correlated with greaternumbers of rearrangements (Rocha, 2003). Alternatively, repeats mayproliferate within a genome asa result of DNA strand repair mechanismsfollowing a rearrangement event such as an inversion. Gene« less
Oneal, Elen; Lowry, David B.; Wright, Kevin M.; Zhu, Zhirui; Willis, John H.
2014-01-01
Chromosomal rearrangement polymorphisms are common and increasingly found to be associated with adaptive ecological divergence and speciation. Rearrangements, such as inversions, reduce recombination in heterozygous individuals and thus can protect favourable allelic combinations at linked loci, facilitating their spread in the presence of gene flow. Recently, we identified a chromosomal inversion polymorphism that contributes to ecological adaptation and reproductive isolation between annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus. Here we evaluate the population genetic structure of this inverted region in comparison with the collinear regions of the genome across the M. guttatus species complex. We tested whether annual and perennial M. guttatus exhibit different patterns of divergence for loci in the inverted and noninverted regions of the genome. We then evaluated whether there are contrasting climate associations with these genomic regions through redundancy analysis. We found that the inversion exhibits broadly different patterns of divergence among annual and perennial M. guttatus and is associated with environmental variation across population accessions. This study is the first widespread population genetic survey of the diversity of the M. guttatus species complex. Our findings contribute to a greater understanding of morphological, ecological, and genetic evolutionary divergence across this highly diverse group of closely related ecotypes and species. Finally, understanding species relationships among M. guttatus sp. has hitherto been stymied by accumulated evidence of substantial gene flow among populations as well as designated species. Nevertheless, our results shed light on these relationships and provide insight into adaptation in life history traits within the complex. PMID:24796267
Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M
2017-01-24
A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.
Transient isomers in the photodissociation of bromoiodomethane
NASA Astrophysics Data System (ADS)
Marcellini, Moreno; Nasedkin, Alexandr; Zietz, Burkhard; Petersson, Jonas; Vincent, Jonathan; Palazzetti, Federico; Malmerberg, Erik; Kong, Qingyu; Wulff, Michael; van der Spoel, David; Neutze, Richard; Davidsson, Jan
2018-04-01
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-04-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
NASA Astrophysics Data System (ADS)
Suemoto, Tohru; Tomimoto, Shinichi; Matsuoka, Taira
Recent developments in femtosecond dynamics of the photoexcited state in quasi-one-dimensional platinum complexes [Pt(en)2][Pt(en)2X2] (ClO4)4 with X = Cl, Br and I are reviewed. The experimental results of time-resolved luminescence spectroscopy based on up-conversion technique are presented and analyzed in terms of a theory of wave-packet motion. An attempt to make a movie of wave-packet motion is mentioned. In Sec. 1, a brief introduction to the dynamics of the excited states in quasi-one-dimensional platinum complexes is given. It is stressed that this system can be a good model system for investigating the photo-induced structural phase transition. In order to describe a one-dimensional chain consisting of metal ions and halogen ions, the extended Peierls-Hubbard model is introduced in Sec. 2. The theoretical model of the relaxation dynamics in the excited states with a strong electron-lattice coupling is given in Sec. 3. The model is based on the interaction mode, which is appropriate for understanding the vibrational relaxation of localized centers in solids. Experimental backgrounds with some historical survey are given in Sec. 4. The recent experimental results of time-resolved luminescence for Pt-Cl, Pt-Br and Pt-I systems are presented in Secs. 5 to 8. The main result contains the direct observation of the wave-packet oscillation in the self-trapped excitons. The relaxation process observed in experiments has been successfully interpreted in terms of the model based on the interaction mode and the dynamical aspects are compared with the transient absorption measurements. The lifetime of the STE is shorter in Pt-X with heavier halogen ions. This behavior is discussed in relation with the non-radiative process leading to lattice rearrangements. In Secs. 9 and 10, visualization of the wave-packet form is presented. The basic behavior of the wave-packet is well understood in terms of a harmonic oscillator model. A non-exponential decay profiles are revealed from the center of gravity motion of the wave-packets. The exciton localization process is also discussed in the last section.
A system for the detection of chromosomal rearrangements using Sordaria macrospora.
Arnaise, S; Leblon, G; Lares, L
1984-01-01
A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.
USA: Economics, Politics, Ideology, Number 12, December 1977
1978-01-19
which will guarantee the pioneer firm the neces- sary profit level. The structure of market prices, however, represents a poor reflection, as we...the timely and rapid rearrangement of structural proportions. The economic mechanism of state-monopolistic capitalism, however, was incapable of...ensuring the necessary dynamism in the large-scale economy. The development of massive structural changes in the American economy is a complex and
Mohan, Shruthi; Koshy, Teena; Vekatachalam, Perumal; Nampoothiri, Sheela; Yesodharan, Dhanya; Gowrishankar, Kalpana; Kumar, Jeevan; Ravichandran, Latha; Joseph, Santhosh; Chandrasekaran, Anupama; Paul, Solomon F. D.
2016-01-01
Background & objectives: Subtelomeres are prone to deleterious rearrangements owing to their proximity to unique sequences on the one end and telomeric repetitive sequences, which increase their tendency to recombine, on the other end. These subtelomeric rearrangements resulting in segmental aneusomy are reported to contribute to the aetiology of idiopathic intellectual disability/developmental delay (ID/DD). We undertook this study to estimate the frequency of subtelomeric rearrangements in children with ID/DD. Methods: One hundred and twenty seven children with idiopathic ID/DD were tested for subtelomeric rearrangements using karyotyping and FISH. Blood samples were cultured, harvested, fixed and GTG-banded using the standard protocols. Results: Rearrangements involving the subtelomeres were observed in 7.8 per cent of the tested samples. Detection of rearrangements visible at the resolution of the karyotype constituted 2.3 per cent, while those rearrangements detected only with FISH constituted 5.5 per cent. Five deletions and five unbalanced translocations were detected. Analysis of parental samples wherever possible was informative regarding the inheritance of the rearrangement. Interpretation & conclusions: The frequency of subtelomeric rearrangements observed in this study was within the reported range of 0-35 per cent. All abnormal genotypes were clinically correlated. Further analysis with array technologies presents a future prospect. Our results suggest the need to test individuals with ID/DD for subtelomeric rearrangements using sensitive methods such as FISH. PMID:27934799
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; ...
2017-11-27
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.
NASA Astrophysics Data System (ADS)
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; Kay, B. P.; Deibel, C. M.; Faestermann, T.; Hertenberger, R.; Mitchell, A. J.; Schiffer, J. P.; Szwec, S. V.; Thomas, J. S.; Wirth, H.-F.
2017-11-01
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-β decay of 100Mo have been determined by measuring cross sections in (d ,p ), (p ,d ), (3He,α ), and (3He,d ) reactions on Mo,10098 and Ru,102100 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-β decay of the 100Mo system.
Krawczyk, Paweł Adam; Ramlau, Rodryg Adam; Szumiło, Justyna; Kozielski, Jerzy; Kalinka-Warzocha, Ewa; Bryl, Maciej; Knopik-Dąbrowicz, Alina; Spychalski, Łukasz; Szczęsna, Aleksandra; Rydzik, Ewelina; Milanowski, Janusz
2013-01-01
Introduction ALK gene rearrangement is observed in a small subset (3–7%) of non-small cell lung cancer (NSCLC) patients. The efficacy of crizotinib was shown in lung cancer patients harbouring ALK rearrangement. Nowadays, the analysis of ALK gene rearrangement is added to molecular examination of predictive factors. Aim of the study The frequency of ALK gene rearrangement as well as the type of its irregularity was analysed by fluorescence in situ hybridisation (FISH) in tissue samples from NSCLC patients. Material and methods The ALK gene rearrangement was analysed in 71 samples including 53 histological and 18 cytological samples. The analysis could be performed in 56 cases (78.87%), significantly more frequently in histological than in cytological materials. The encountered problem with ALK rearrangement diagnosis resulted from the scarcity of tumour cells in cytological samples, high background fluorescence noises and fragmentation of cell nuclei. Results The normal ALK copy number without gene rearrangement was observed in 26 (36.62%) patients ALK gene polysomy without gene rearrangement was observed in 25 (35.21%) samples while in 3 (4.23%) samples ALK gene amplification was found. ALK gene rearrangement was observed in 2 (2.82%) samples from males, while in the first case the rearrangement coexisted with ALK amplification. In the second case, signet-ring tumour cells were found during histopathological examination and this patient was successfully treated with crizotinib with partial remission lasting 16 months. Conclusions FISH is a useful technique for ALK gene rearrangement analysis which allows us to specify the type of gene irregularities. ALK gene examination could be performed in histological as well as cytological (cellblocks) samples, but obtaining a reliable result in cytological samples depends on the cellularity of examined materials. PMID:24592134
NASA Astrophysics Data System (ADS)
Lee, Chi-Woo; Petrykin, Valery; Kakihana, Masato
2009-01-01
A series of 0.5 mol% Eu 2+-activated Ba 2-xSr xZnS 3 phosphor materials were synthesized using precursors prepared by the polymerizable complex method and their fluorescent properties were studied for the first time. It was found that Sr substitution for Ba leads to the considerable improvement of internal quantum efficiency and emission intensity in these materials compared to Ba 2ZnS 3, while emission peak wavelength exhibits a blue shift from 680 to 660 nm. Rietveld refinement of crystal structure of sample with x=0.7 suggests that Sr ions preferentially occupy one of two Ba sites in this compound. Such a structural re-arrangement might be responsible for the observed quantum efficiency dependence on Sr concentration.
Metaphase and interphase cytogenetics in fibroadenomas of the breast.
Rizou, Helen; Bardi, Georgia; Arnaourti, Maria; Apostolikas, Nikiforos; Sfikas, Kostas; Charlaftis, Antonios; Polichronis, Athanassios; Agnantis, Niki J; Pandis, Nikos
2004-01-01
Short-term cultures of fifty-two samples of fibroadenomas were cytogenetically analyzed. Thirty-three of the successfully karyotyped fibroadenomas were further investigated for the presence of amplifications in the CCND1, c-MYC and HER/2-neu genes by means of FISH analysis. Compared to carcinomas, fibroadenomas seem to have less complex cytogenetic rearrangements and limited alterations on HER-2/neu, CCND1 and c-MYC loci. A cytogenetic subgroup of fibroadenomas with hyperdiploid karyotypes and only numerical changes was observed. Amplification of CCND1 seems to play a more substantial role in benign tumor progression. These findings confirm that fibroadenomas do have genetic alterations and support the hypothesis that a fibroadenoma subset displays changes also found in carcinomas, thus indicating that patients belonging to this group might have an increased risk for subsequent breast cancer.
Berget, Ellen; Helgeland, Lars; Liseth, Knut; Løkeland, Turid; Molven, Anders; Vintermyr, Olav Karsten
2014-01-01
Aims We aimed to evaluate the prognostic value of routine use of PCR amplification of immunoglobulin gene rearrangements in bone marrow (BM) staging in patients with follicular lymphoma (FL). Methods Clonal rearrangements were assessed by immunoglobulin heavy and light-chain gene rearrangement analysis in BM aspirates from 96 patients diagnosed with FL and related to morphological detection of BM involvement in biopsies. In 71 patients, results were also compared with concurrent flow cytometry analysis. Results BM involvement was detected by PCR in 34.4% (33/96) of patients. The presence of clonal rearrangements by PCR was associated with advanced clinical stage (I–III vs IV; p<0.001), high FL International Prognostic Index (FLIPI) score (0–1, 2 vs ≥3; p=0.003), and detection of BM involvement by morphology and flow cytometry analysis (p<0.001 for both). PCR-positive patients had a significantly poorer survival than PCR-negative patients (p=0.001, log-rank test). Thirteen patients positive by PCR but without morphologically detectable BM involvement, had significantly poorer survival than patients with negative morphology and negative PCR result (p=0.002). The poor survival associated with BM involvement by PCR was independent of the FLIPI score (p=0.007, Cox regression). BM involvement by morphology or flow cytometry did not show a significant impact on survival. Conclusions Our results showed that routine use of PCR-based clonality analysis significantly improved the prognostic impact of BM staging in patients with FL. BM involvement by PCR was also an independent adverse prognostic factor. PMID:25233852
Page, Elyse C; Heatley, Susan L; Yeung, David T; Thomas, Paul Q; White, Deborah L
2018-06-04
Breakthrough studies over the past decade have uncovered unique gene fusions implicated in acute lymphoblastic leukaemia (ALL). The critical gene, cytokine receptor-like factor 2 (CRLF2), is rearranged in 5-16% of B-ALL, comprising 50% of Philadelphia-like ALL and cooperates with genomic lesions in the Jak, Mapk and Ras signalling pathways. Children with Down Syndrome (DS) have a predisposition to developing CRLF2 rearranged-ALL which is observed in 60% of DS-ALL patients. These patients experience a poor survival outcome. Mutations of genes involved in epigenetic regulation are more prevalent in DS-ALL patients than non-DS ALL patients, highlighting the potential for alternative treatment strategies. DS-ALL patients also suffer greater treatment-related toxicity from current ALL treatment regimens compared to non-DS-ALL patients. An increased gene dosage of critical genes on chromosome 21 which have roles in purine synthesis and folate transport may contribute. As the genomic landscape of DS-ALL patients is different to non-DS-ALL patients, targeted therapies for individual lesions may improve outcomes. Therapeutically targeting each rearrangement with targeted or combination therapy that will perturb the transforming signalling pathways will likely improve the poor survival rates of this subset of patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Corrente, Francesco; Bellesi, Silvia; Metafuni, Elisabetta; Puggioni, Pier Luigi; Marietti, Sara; Ciminello, Angela Maria; Za, Tommaso; Sorà, Federica; Fianchi, Luana; Sica, Simona; De Stefano, Valerio; Chiusolo, Patrizia
2018-05-01
We performed a retrospective analysis of 88 adult patients with B-ALL diagnosed in our center by a flow-cytometric assessment. Immunophenotypic expression of leukemic cells was explored by simultaneous evaluation of positivity, percentage of expressing cells and median fluorescence intensity (MFI). BCR/ABL1 fusion transcripts were assessed by RT-PCR analysis and were identified in 36 patients (40.9%). CD10 and CD34 were positive in the totality of BCR/ABL1-positive cases. Patients with gene rearrangement had a greater frequency of CD66c, CD13 and CD33 positivity compared with BCR/ABL1-negative cases. Moreover, BCR/ABL1-positive cases exhibited a greater median percentage and MFI values of CD13, CD33, CD66c, CD10, CD34 and CD25 expressions, but a lower median percentage and MFI values of CD38 and CD22 expressions than patients without gene rearrangement. Multivariate logistic regression analysis showed that CD10, CD38 and CD13 expressions were independent predictors for the presence of BCR/ABL1 rearrangement. Predictive probabilities of molecular occurrence based on these markers are proposed. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
DeBoy, Robert T; Mongodin, Emmanuel F; Emerson, Joanne B; Nelson, Karen E
2006-04-01
In the present study, the chromosomes of two members of the Thermotogales were compared. A whole-genome alignment of Thermotoga maritima MSB8 and Thermotoga neapolitana NS-E has revealed numerous large-scale DNA rearrangements, most of which are associated with CRISPR DNA repeats and/or tRNA genes. These DNA rearrangements do not include the putative origin of DNA replication but move within the same replichore, i.e., the same replicating half of the chromosome (delimited by the replication origin and terminus). Based on cumulative GC skew analysis, both the T. maritima and T. neapolitana lineages contain one or two major inverted DNA segments. Also, based on PCR amplification and sequence analysis of the DNA joints that are associated with the major rearrangements, the overall chromosome architecture was found to be conserved at most DNA joints for other strains of T. neapolitana. Taken together, the results from this analysis suggest that the observed chromosomal rearrangements in the Thermotogales likely occurred by successive inversions after their divergence from a common ancestor and before strain diversification. Finally, sequence analysis shows that size polymorphisms in the DNA joints associated with CRISPRs can be explained by expansion and possibly contraction of the DNA repeat and spacer unit, providing a tool for discerning the relatedness of strains from different geographic locations.
Validation of ALK/ROS1 Dual Break Apart FISH Probe probe in non-small-cell lung cancer.
Lim, Sun Min; Chang, Hyun; Cha, Yoon Jin; Liang, Shile; Tai, Yan Chin; Li, Gu; Pestova, Ekaterina; Policht, Frank; Perez, Thomas; Soo, Ross A; Park, Won Young; Kim, Hye Ryun; Shim, Hyo Sup; Cho, Byoung Chul
2017-09-01
ALK and ROS1 gene rearrangements are distinct molecular subsets of non-small-cell lung cancer (NSCLC), and they are strong predictive biomarkers of response to ALK/ROS1 inhibitors, such as crizotinib. Thus, it is clinically important to develop an effective screening strategy to detect patients who will benefit from such treatment. In this study, we aimed to validate analytical performance of Vysis ALK/ROS1 Dual Break Apart Probe Kit (RUO) in NSCLC. Study population composed of three patient cohorts with histologically confirmed lung adenocarcinoma (patients with ALK rearrangement, patients with ROS1 rearrangement and patients with wild-type ALK and ROS1). Specimens consisted of 12 ALK-positive, 8 ROS1-positive and 21 ALK/ROS1-wild type formalin-fixed paraffin-embedded samples obtained from surgical resection or excisional biopsy. ALK rearrangement was previously assessed by Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Abbot Park, IL, USA) and ROS1 rearrangement was previously assessed by ZytoLight ® SPEC ROS1 Break Apart Probe (ZytoVision, GmbH). All specimens were re-evaluated by Vysis ALK/ROS1 Dual Break Apart Probe Kit. FISH images were scanned on BioView AllegroPlus system and interpreted via BioView SoloWeb remotely. For a total of 41 patient samples, the concordance of the results by Vysis ALK/ROS1 Dual Break Apart Probe Kit was evaluated and compared to the known ALK and ROS1 rearrangement status of the specimen. Of the 12 ALK-positive cases, hybridization with Vysis ALK/ROS1 Dual Break Apart Probe Kit was successful in 10 cases (success rate 10/12, 83%) and of these 10 cases, all showed ALK rearrangement (100% concordance with the results of Vysis ALK Break Apart FISH Probe Kit). Two of the ALK+ cases were excluded due to weak ROS1 signals that could not be enumerated. Of the 8 ROS1-positive cases, 6 cases were successfully evaluated using Vysis ALK/ROS1 Dual Break Apart Probe Kit. The success rate was 75% (6/8), and of these 6 cases, all showed ROS1 rearrangement, giving a 100% concordance with ZytoLight ® SPEC ROS1 Break Apart Probe. Two of the cases were excluded due to weak ROS1 gold signal or high background. In the cohort of 21 wild-type cases, the success rate using Vysis ALK/ROS1 Dual Break Apart FISH Probe Kit was 85% (18/21) and the concordance with ALK and ROS1 probe kit was 100% (18/18). Vysis ALK/ROS1 Dual Break Apart Probe Kit (RUO) can detect ALK and ROS1 rearrangement simultaneously in NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.
HIP1-ALK, a novel ALK fusion variant that responds to crizotinib.
Fang, Douglas D; Zhang, Bin; Gu, Qingyang; Lira, Maruja; Xu, Qiang; Sun, Hongye; Qian, Maoxiang; Sheng, Weiqi; Ozeck, Mark; Wang, Zhenxiong; Zhang, Cathy; Chen, Xinsheng; Chen, Kevin X; Li, Jian; Chen, Shu-Hui; Christensen, James; Mao, Mao; Chan, Chi-Chung
2014-03-01
The aim of this study was to identify anaplastic lymphoma kinase (ALK) rearrangements in lung cancer patient-derived xenograft (PDX) models and to explore their responses to crizotinib. Screening of 99 lung cancer PDX models by the NanoString ALK fusion assay identified two ALK-rearranged non-small-cell lung cancer (NSCLC) tumors, including one harboring a previously known echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion and another containing an unknown ALK fusion variant. Expression array, RNA-Seq, reverse transcription polymerase chain reaction, and direct sequencing were then conducted to confirm the rearrangements and to identify the novel fusion partner in the xenograft and/or the primary patient tumor. Finally, pharmacological studies were performed in PDX models to evaluate their responses to ALK inhibitor crizotinib. Two ALK-rearranged NSCLC PDX models were identified: one carried a well-known EML4-ALK variant 3a/b and the other harbored a novel huntingtin interacting protein 1 (HIP1)-ALK fusion gene. Exon 28 of the HIP1 gene located on chromosome 7 was fused to exon 20 of the ALK gene located on chromosome 2. Both cases were clinically diagnosed as squamous cell carcinoma. Compared with the other lung cancer PDX models, both ALK-rearranged models displayed elevated ALK mRNA expression. Furthermore, in vivo efficacy studies demonstrated that, similar to the EML4-ALK-positive model, the HIP1-ALK-containing PDX model was sensitive to treatment with crizotinib. Discovery of HIP1 as a fusion partner of ALK in NSCLC is a novel finding. In addition, the HIP1-ALK-rearranged tumor is sensitive to treatment with crizotinib in vivo, implicating HIP1-ALKas an oncogenic driver of lung tumorigenesis. Collectively, our results indicate that HIP1-ALK-positive NSCLC may benefit from clinical applications of crizotinib.
Rosenblum, Frida; Hutchinson, Lloyd M; Garver, Joann; Woda, Bruce; Cosar, Ediz; Kurian, Elizabeth M
2014-11-01
Minimally invasive sampling by cytology or core needle biopsy often provides an initial diagnosis for treatment in patients with lung nodules. From these limited specimens, multiple molecular studies are frequently requested. Current guidelines from the US Food and Drug Administration recommend using formalin-fixed paraffin-embedded tissue sections for the detection of anaplastic lymphoma kinase (ALK) gene rearrangement by fluorescence in situ hybridization (FISH). The authors compared alcohol-fixed and formalin-fixed cytology specimens using a novel automated detection for ALK rearrangements by FISH and immunohistochemistry (IHC). ALK FISH testing was performed on 129 lung adenocarcinomas from 71 cytology cases and 58 biopsy/resection specimens using Papanicolaou staining with integrated cytomorphology. IHC with the ALK D5F3 antibody was performed on cases with residual material (88 of 129 cases). The mean age of the patients was 66 years; there were 62 women and 67 men. ALK gene rearrangement was present in 4% of cytology specimens (3 of 71 specimens) and 7% of surgical specimens (4 of 58 specimens). FISH in 13 cases was technically unsuccessful. Of the 7 FISH-positive cases, only 2 cytology cases (4%) and 2 surgical cases (6%) were found to be positive with the ALK antibody, demonstrating 80% concordance. The one case found to be negative for ALK by IHC demonstrated a variant rearrangement of the ALK 2p23 gene locus by FISH. The results of the current study validate the usefulness of alcohol-fixed and/or formalin-fixed cytology specimens for ALK rearrangement by a novel automated FISH method. IHC using the D5F3 antibody for ALK is specific in this limited cohort. The authors also demonstrated that alcohol-fixed cytology specimens can be used for ALK rearrangement by automated FISH, alone or in conjunction with IHC. © 2014 American Cancer Society.
Deakin, Janine E; Kruger-Andrzejewska, Maya
2016-09-01
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
Hayakawa, Itaru; Kawasaki, Hiroshi
2010-01-01
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections. PMID:20544023
Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.
Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin
2014-07-01
Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.
Characterizing complex structural variation in germline and somatic genomes
Quinlan, Aaron R.; Hall, Ira M.
2011-01-01
Genome structural variation (SV) is a major source of genetic diversity in mammals and a hallmark of cancer. While SV is typically defined by its canonical forms – duplication, deletion, insertion, inversion and translocation – recent breakpoint mapping studies have revealed a surprising number of “complex” variants that evade simple classification. Complex SVs are defined by clustered breakpoints that arose through a single mutation but cannot be explained by one simple end-joining or recombination event. Some complex variants exhibit profoundly complicated rearrangements between distinct loci from multiple chromosomes, while others involve more subtle alterations at a single locus. These diverse and unpredictable features present a challenge for SV mapping experiments. Here, we review current knowledge of complex SV in mammals, and outline techniques for identifying and characterizing complex variants using next-generation DNA sequencing. PMID:22094265
The structure of the β-barrel assembly machinery complex
Bakelar, Jeremy; Buchanan, Susan K.; Noinaj, Nicholas
2016-01-08
β-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the β-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. In this paper, we report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may notmore » be threaded through the barrel during biogenesis. Finally and further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.« less
The structure of the β-barrel assembly machinery complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakelar, Jeremy; Buchanan, Susan K.; Noinaj, Nicholas
β-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the β-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. In this paper, we report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may notmore » be threaded through the barrel during biogenesis. Finally and further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.« less
A complex chromosomal rearrangement involving chromosomes 2, 5, and X in autism spectrum disorder.
Griesi-Oliveira, Karina; Moreira, Danielle de Paula; Davis-Wright, Nicole; Sanders, Stephan; Mason, Christopher; Orabona, Guilherme Müller; Vadasz, Estevão; Bertola, Débora Romeo; State, Matthew W; Passos-Bueno, Maria Rita
2012-07-01
Here, we describe a female patient with autism spectrum disorder and dysmorphic features that harbors a complex genetic alteration, involving a de novo balanced translocation t(2;X)(q11;q24), a 5q11 segmental trisomy and a maternally inherited isodisomy on chromosome 5. All the possibly damaging genetic effects of such alterations are discussed. In light of recent findings on ASD genetic causes, the hypothesis that all these alterations might be acting in orchestration and contributing to the phenotype is also considered. Copyright © 2012 Wiley Periodicals, Inc.
Ferreira de Carvalho, J; Chelaifa, H; Boutte, J; Poulain, J; Couloux, A; Wincker, P; Bellec, A; Fourment, J; Bergès, H; Salmon, A; Ainouche, M
2013-12-01
Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.
Vasson, Aurélie; Leroux, Céline; Orhant, Lucie; Boimard, Mathieu; Toussaint, Aurélie; Leroy, Chrystel; Commere, Virginie; Ghiotti, Tiffany; Deburgrave, Nathalie; Saillour, Yoann; Atlan, Isabelle; Fouveaut, Corinne; Beldjord, Cherif; Valleix, Sophie; Leturcq, France; Dodé, Catherine; Bienvenu, Thierry; Chelly, Jamel; Cossée, Mireille
2013-01-01
The frequency of disease-related large rearrangements (referred to as copy-number mutations, CNMs) varies among genes, and search for these mutations has an important place in diagnostic strategies. In recent years, CGH method using custom-designed high-density oligonucleotide-based arrays allowed the development of a powerful tool for detection of alterations at the level of exons and made it possible to provide flexibility through the possibility of modeling chips. The aim of our study was to test custom-designed oligonucleotide CGH array in a diagnostic laboratory setting that analyses several genes involved in various genetic diseases, and to compare it with conventional strategies. To this end, we designed a 12-plex CGH array (135k; 135 000 probes/subarray) (Roche Nimblegen) with exonic and intronic oligonucleotide probes covering 26 genes routinely analyzed in the laboratory. We tested control samples with known CNMs and patients for whom genetic causes underlying their disorders were unknown. The contribution of this technique is undeniable. Indeed, it appeared reproducible, reliable and sensitive enough to detect heterozygous single-exon deletions or duplications, complex rearrangements and somatic mosaicism. In addition, it improves reliability of CNM detection and allows determination of boundaries precisely enough to direct targeted sequencing of breakpoints. All of these points, associated with the possibility of a simultaneous analysis of several genes and scalability ‘homemade' make it a valuable tool as a new diagnostic approach of CNMs. PMID:23340513
Xavier, Crislaine; Soares, Rógean Vinícius Santos; Amorim, Igor Costa; Cabral-de-Mello, Diogo Cavalcanti; de Cássia de Moura, Rita
2018-03-09
Euchroma Dejean, 1833 (Buprestidae: Coleoptera) is a monotypic genus comprising the species Euchroma gigantea, with populations presenting a degree of karyotypic variation/polymorphism rarely found within a single taxonomic (specific) unit, as well as drastically incompatible meiotic configurations in populations from extremes of the species range. To better understand the complex karyotypic evolution of E. gigantea, the karyotypes of specimens from five populations in Brazil were investigated using molecular cytogenetics and phylogenetic approaches. Herein, we used FISH with histone genes as well as sequencing of the COI to determine differential distribution of markers and relationships among populations. The analyses revealed new karyotypes, with variability for chromosome number and morphology of multiple sex chromosome mechanisms, occurrence of B chromosome variants (punctiform and large ones), and high dispersion of histone genes in different karyotypes. These data indicate that chromosomal polymorphism in E. gigantea is greater than previously reported, and that the species can be a valuable model for cytogenetic studies. The COI phylogenetic and haplotype analyses highlighted the formation of three groups with chromosomally polymorphic individuals. Finally, we compared the different karyotypes and proposed a model for the chromosomal evolution of this species. The species E. gigantea includes at least three cytogenetically polymorphic lineages. Moreover, in each of these lineages, different chromosomal rearrangements have been fixed. Dispersion of repetitive sequences may have favored the high frequency of these rearrangements, which could be related to both adaptation of the species to different habitats and the speciation process.
Tahara, Keishiro; Pan, Ling; Yamaguchi, Ryoko; Shimakoshi, Hisashi; Abe, Masaaki; Hisaeda, Yoshio
2017-10-01
Among the coenzyme B 12 -dependent enzymes, methylmalonyl-CoA mutase (MMCM) catalyzes the carbon-skeleton rearrangement reaction between R-methylmalonyl-CoA and succinyl-CoA. Diethyl 2-bromomethyl-2-phenylmalonate, an alkyl bromide substrate having two different migrating groups (phenyl and carboxylic ester groups) on the β-carbon, was applied to the electrolysis mediated by a hydrophobic vitamin B 12 model complex, heptamethyl cobyrinate perchlorate in this study. The electrolysis of the substrate at -1.0V vs. Ag-AgCl by light irradiation afforded the simple reduced product (diethyl 2-methyl-2-phenylmalonate) and the phenyl migrated product (diethyl 2-benzyl-2-phenylmalonate), as well as the electrolysis of the substrate at -1.5V vs. Ag-AgCl in the dark. The electrolysis of the substrate at -2.0V vs. Ag-AgCl afforded the carboxylic ester migrated product (diethyl phenylsuccinate) as the major product. The selectivity for the migrating group was successfully tuned by controlling the electrolysis potential. We clarified that the cathodic chemistry of the Co(III) alkylated heptamethyl cobyrinate is critical for the selectivity of the migrating group through mechanistic investigations and comparisons to the simple vitamin B 12 model complex, an imine/oxime-type cobalt complex. Copyright © 2017 Elsevier Inc. All rights reserved.
Shen, Qin; Wang, Xuan; Yu, Bo; Shi, Shanshan; Liu, Biao; Wang, Yanfen; Xia, Qiuyuan; Rao, Qiu; Zhou, Xiaojun
2015-12-01
Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) screening is essential to its treatment such as crizotinib. Different assays have been developed to detect ALK rearrangements, such as fluorescence in situ hybridization (FISH), reverse transcriptase-PCR (RT-PCR), and immunohistochemistry (IHC). However, ALK detection has not been applied widely in all hospitals. Moreover, IHC has been proposed to be a pre-screening tool because of its wide application in clinics. Since the low expression of ALK protein, the sensitivity and specificity of ALK antibody are the keys to the success of IHC screening. Therefore, we compared different antibodies to find the best one for IHC detection. We evaluated ALK expression by four different ALK antibodies: clone D5F3 (Ventana), clone D5F3 (CST), clone 1A4/1H7 (OriGene Tech.), and clone 5A4 (Abcam) based on manual IHC in a cohort of 60 NSCLCs. The results were compared with those from automated IHC (clone D5F3, Ventana). All cases were evaluated independently by ALK FISH. 32 ALK-positive and 28 ALK-negative NSCLCs were identified by automated IHC (D5F3, Ventana) and FISH analysis. Based on conventional manual IHC, the sensitivity of four antibodies-D5F3 (Ventana), D5F3 (CST), 1A4/1H7 (OriGene Tech.), and 5A4 (Abcam)-was 93.8%, 84.4%, 93.8%, and 56.3%, respectively. Their specificities and positive predictive values were 100%. The percentage of strong-moderate staining was 65.6%, 62.5%, 68.8%, and 21.9%, respectively. Compared with automated IHC (D5F3, Ventana), each staining concordance was 96.7%, 91.7%, 96.7%, and 76.7%, respectively, and each presented staining heterogeneity (weak-moderate-strong intensity). These data indicated that manual IHC with a more reliable ALK antibody might provide an effective strategy for screening ALK gene rearrangements in all NSCLC patients, followed by confirmatory FISH analysis in IHC-positive cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Swee, Lee Kim; Tan, Zhen Wei; Sanecka, Anna; Yoshida, Nagisa; Patel, Harshil; Grotenbreg, Gijsbert; Frickel, Eva-Maria; Ploegh, Hidde L
2016-11-01
T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2 b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 L d -restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds. © 2016 The Authors.
Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice.
Ma, Jianxin; Bennetzen, Jeffrey L
2006-01-10
Centromeres have many unusual biological properties, including kinetochore attachment and severe repression of local meiotic recombination. These properties are partly an outcome, partly a cause, of unusual DNA structure in the centromeric region. Although several plant and animal genomes have been sequenced, most centromere sequences have not been completed or analyzed in depth. To shed light on the unique organization, variability, and evolution of centromeric DNA, detailed analysis of a 1.97-Mb sequence that includes centromere 8 (CEN8) of japonica rice was undertaken. Thirty-three long-terminal repeat (LTR)-retrotransposon families (including 11 previously unknown) were identified in the CEN8 region, totaling 245 elements and fragments that account for 67% of the region. The ratio of solo LTRs to intact elements in the CEN8 region is approximately 0.9:1, compared with approximately 2.2:1 in noncentromeric regions of rice. However, the ratio of solo LTRs to intact elements in the core of the CEN8 region ( approximately 2.5:1) is higher than in any other region investigated in rice, suggesting a hotspot for unequal recombination. Comparison of the CEN8 region of japonica and its orthologous segments from indica rice indicated that approximately 15% of the intact retrotransposons and solo LTRs were inserted into CEN8 after the divergence of japonica and indica from a common ancestor, compared with approximately 50% for previously studied euchromatic regions. Frequent DNA rearrangements were observed in the CEN8 region, including a 212-kb subregion that was found to be composed of three rearranged tandem repeats. Phylogenetic analysis also revealed recent segmental duplication and extensive rearrangement and reshuffling of the CentO satellite repeats.
Segmental Duplications and Copy-Number Variation in the Human Genome
Sharp, Andrew J. ; Locke, Devin P. ; McGrath, Sean D. ; Cheng, Ze ; Bailey, Jeffrey A. ; Vallente, Rhea U. ; Pertz, Lisa M. ; Clark, Royden A. ; Schwartz, Stuart ; Segraves, Rick ; Oseroff, Vanessa V. ; Albertson, Donna G. ; Pinkel, Daniel ; Eichler, Evan E.
2005-01-01
The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders. PMID:15918152
Augustinos, Antonios A.; Drosopoulou, Elena; Gariou-Papalexiou, Aggeliki; Asimakis, Elias D.; Cáceres, Carlos; Tsiamis, George; Bourtzis, Kostas; Penelope Mavragani-Tsipidou; Zacharopoulou, Antigone
2015-01-01
Abstract The Bactrocera dorsalis species complex, currently comprising about 90 entities has received much attention. During the last decades, considerable effort has been devoted to delimiting the species of the complex. This information is of great importance for agriculture and world trade, since the complex harbours several pest species of major economic importance and other species that could evolve into global threats. Speciation in Diptera is usually accompanied by chromosomal rearrangements, particularly inversions that are assumed to reduce/eliminate gene flow. Other candidates currently receiving much attention regarding their possible involvement in speciation are reproductive symbionts, such as Wolbachia, Spiroplasma, Arsenophonus, Rickettsia and Cardinium. Such symbionts tend to spread quickly through natural populations and can cause a variety of phenotypes that promote pre-mating and/or post-mating isolation and, in addition, can affect the biology, physiology, ecology and evolution of their insect hosts in various ways. Considering all these aspects, we present: (a) a summary of the recently gained knowledge on the cytogenetics of five members of the Bactrocera dorsalis complex, namely Bactrocera dorsalis s.s., Bactrocera invadens, Bactrocera philippinensis, Bactrocera papayae and Bactrocera carambolae, supplemented by additional data from a Bactrocera dorsalis s.s. colony from China, as well as by a cytogenetic comparison between the dorsalis complex and the genetically close species, Bactrocera tryoni, and, (b) a reproductive symbiont screening of 18 different colonized populations of these five taxa. Our analysis did not reveal any chromosomal rearrangements that could differentiate among them. Moreover, screening for reproductive symbionts was negative for all colonies derived from different geographic origins and/or hosts. There are many different factors that can lead to speciation, and our data do not support chromosomal and/or symbiotic-based speciation phenomena in the taxa under study. PMID:26798263
A tandem cross-metathesis/semipinacol rearrangement reaction.
Plummer, Christopher W; Soheili, Arash; Leighton, James L
2012-05-18
An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.
Usage of DNA Fingerprinting Technology for Quality Control in Molecular Lab Bench Work.
McIntosh, Linda Y; Lal, Janella E; Qin, Dahui
2018-01-01
One of the major quality assurance (QA) goals in many molecular laboratories is to avoid sample pipetting errors on the lab bench; especially when pipetting into multiwell plates. A pipetting error can cause a switch in patient samples, which can lead to recording the wrong results for the patient samples involved. Such pipetting errors are difficult to identify when it happens in lab bench work. DNA fingerprinting is a powerful tool in determining sample identities. Our laboratory has explored the usage of this technology in our QA process and successfully established that DNA fingerprinting can be used to monitor possible sample switch in gene rearrangement lab bench work. We use florescent light to quench the florescence in the gene rearrangement polymerase chain reaction products. After that, DNA fingerprinting technology is used to identify the sample DNA in the gene rearrangement polymerase chain reaction plate. The result is compared with the corresponding patient's blood sample DNA to determine whether there is a sample switch during the lab bench work.
NASA Astrophysics Data System (ADS)
Berg, Morgann; Leon, Neliza; Posadas, Agham; Lee, Alfred; Kim, Jeehoon; de Lozanne, Alex; Demkov, Alex
2012-02-01
Previous studies we have conducted on thin films of lanthanum cobaltate (LCO) under tensile strain have revealed a tendency toward local magnetic domain rearrangement into streak-like configurations near the ferromagnetic to paramagnetic phase transition. Moreover, the persistence of these streak-like characteristics to lower temperatures after field-cooling appears to be linked to the strength of the applied magnetic field in which these films are field-cooled. This tendency has not yet been verified for thin films of LCO under compressive strain which could indicate whether this magnetic domain rearrangement is intrinsic to thin film samples of LCO or is merely an effect of tensile strain. Using magnetic force microscopy, we investigate the microscale magnetic properties of a thin film of LCO under compressive strain, prepared by molecular beam epitaxy and deposited on a lanthanum aluminate substrate. We observe these properties across a wide temperature range and compare our results to global magnetic characteristics of this film as measured by a SQUID magnetometer.
D'Anna, Francesca; Frenna, Vincenzo; Ghelfi, Franco; Marullo, Salvatore; Spinelli, Domenico
2011-04-15
The reaction rates for the rearrangement of eleven (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole 3a-k into the relevant (2-aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas 4a-k in the presence of trichloroacetic acid or of piperidine have been determined in toluene at 313.1 K. The results have been related to the effect of the aryl substituent by using Hammett and/or Ingold-Yukawa-Tsuno correlations and have been compared with those previously collected in a protic polar solvent (dioxane/water) as well as with those on the analogous rearrangement of the corresponding (Z)-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole 1a-k in benzene. Some light can thus be shed on the general differences of chemical reactivity between protic polar (or dipolar aprotic) and apolar solvents.
Rearrangements of organic peroxides and related processes
Yaremenko, Ivan A; Vil’, Vera A; Demchuk, Dmitry V
2016-01-01
Summary This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately. PMID:27559418
Chromosomal Evolution and Patterns of Introgression in Helianthus
Barb, Jessica G.; Bowers, John E.; Renaut, Sebastien; Rey, Juan I.; Knapp, Steven J.; Rieseberg, Loren H.; Burke, John M.
2014-01-01
Knowledge of the nature and extent of karyotypic differences between species provides insight into the evolutionary history of the genomes in question and, in the case of closely related species, the potential for genetic exchange between taxa. We constructed high-density genetic maps of the silverleaf sunflower (Helianthus argophyllus) and Algodones Dune sunflower (H. niveus ssp. tephrodes) genomes and compared them to a consensus map of cultivated sunflower (H. annuus) to identify chromosomal rearrangements between species. The genetic maps of H. argophyllus and H. niveus ssp. tephrodes included 17 linkage groups each and spanned 1337 and 1478 cM, respectively. Comparative analyses revealed greater divergence between H. annuus and H. niveus ssp. tephrodes (13 inverted segments, 18 translocated segments) than between H. annuus and H. argophyllus (10 inverted segments, 8 translocated segments), consistent with their known phylogenetic relationships. Marker order was conserved across much of the genome, with 83 and 64% of the H. argophyllus and H. niveus ssp. tephrodes genomes, respectively, being syntenic with H. annuus. Population genomic analyses between H. annuus and H. argophyllus, which are sympatric across a portion of the natural range of H. annuus, revealed significantly elevated genetic structure in rearranged portions of the genome, indicating that such rearrangements are associated with restricted gene flow between these two species. PMID:24770331
Cruickshank, M N; Ford, J; Cheung, L C; Heng, J; Singh, S; Wells, J; Failes, T W; Arndt, G M; Smithers, N; Prinjha, R K; Anderson, D; Carter, K W; Gout, A M; Lassmann, T; O'Reilly, J; Cole, C H; Kotecha, R S; Kees, U R
2017-01-01
To address the poor prognosis of mixed lineage leukemia (MLL)-rearranged infant acute lymphoblastic leukemia (iALL), we generated a panel of cell lines from primary patient samples and investigated cytotoxic responses to contemporary and novel Food and Drug Administration-approved chemotherapeutics. To characterize representation of primary disease within cell lines, molecular features were compared using RNA-sequencing and cytogenetics. High-throughput screening revealed variable efficacy of currently used drugs, however identified consistent efficacy of three novel drug classes: proteasome inhibitors, histone deacetylase inhibitors and cyclin-dependent kinase inhibitors. Gene expression of drug targets was highly reproducible comparing iALL cell lines to matched primary specimens. Histone deacetylase inhibitors, including romidepsin (ROM), enhanced the activity of a key component of iALL therapy, cytarabine (ARAC) in vitro and combined administration of ROM and ARAC to xenografted mice further reduced leukemia burden. Molecular studies showed that ROM reduces expression of cytidine deaminase, an enzyme involved in ARAC deactivation, and enhances the DNA damage–response to ARAC. In conclusion, we present a valuable resource for drug discovery, including the first systematic analysis of transcriptome reproducibility in vitro, and have identified ROM as a promising therapeutic for MLL-rearranged iALL. PMID:27443263
Phylogenomics of African guenons.
Moulin, Sibyle; Gerbault-Seureau, Michèle; Dutrillaux, Bernard; Richard, Florence Anne
2008-01-01
The karyotypes of 28 specimens belonging to 26 species of Cercopithecinae have been compared with each other and with human karyotype by chromosome banding and, for some of them, by Zoo-FISH (human painting probes) techniques. The study includes the first description of the karyotypes of four species and a synonym of Cercopithecus nictitans. The chromosomal homologies obtained provide us with new data on a large number of rearrangements. This allows us to code chromosomal characters to draw Cercopithecini phylogenetic trees, which are compared to phylogenetic data based on DNA sequences. Our findings show that some of the superspecies proposed by Kingdon (1997 The Kingdon Field Guide to African Mammals, Academic Press.) and Groves (2001 Primates Taxonomy, Smithsonian Institution Press) do not form homogeneous groups and that the genus Cercopithecus is paraphyletic, in agreement with previous molecular analyses. The evolution of Cercopithecini karyotypes is mainly due to non-centromeric chromosome fissions and centromeric shifts or inversions. Non-Robertsonian translocations occurred in C. hamlyni and C. neglectus. The position of chromosomal rearrangements in the phylogenetic tree leads us to propose that the Cercopithecini evolution proceeded by either repeated fission events facilitated by peculiar genomic structures or successive reticulate phases, in which heterozygous populations for few rearranged chromosomes were present, allowing the spreading of chromosomal forms in various combinations, before the speciation process.
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia
Gu, Zhaohui; Churchman, Michelle; Roberts, Kathryn; Li, Yongjin; Liu, Yu; Harvey, Richard C.; McCastlain, Kelly; Reshmi, Shalini C.; Payne-Turner, Debbie; Iacobucci, Ilaria; Shao, Ying; Chen, I-Ming; Valentine, Marcus; Pei, Deqing; Mungall, Karen L.; Mungall, Andrew J.; Ma, Yussanne; Moore, Richard; Marra, Marco; Stonerock, Eileen; Gastier-Foster, Julie M.; Devidas, Meenakshi; Dai, Yunfeng; Wood, Brent; Borowitz, Michael; Larsen, Eric E.; Maloney, Kelly; Mattano Jr, Leonard A.; Angiolillo, Anne; Salzer, Wanda L.; Burke, Michael J.; Gianni, Francesca; Spinelli, Orietta; Radich, Jerald P.; Minden, Mark D.; Moorman, Anthony V.; Patel, Bella; Fielding, Adele K.; Rowe, Jacob M.; Luger, Selina M.; Bhatia, Ravi; Aldoss, Ibrahim; Forman, Stephen J.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Marcucci, Guido; Bloomfield, Clara D.; Stock, Wendy; Kornblau, Steven; Kantarjian, Hagop M.; Konopleva, Marina; Paietta, Elisabeth; Willman, Cheryl L.; L. Loh, Mignon; P. Hunger, Stephen; Mullighan, Charles G.
2016-01-01
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered. PMID:27824051
Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan
Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin
2014-01-01
Background and Objective: Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph+CML in Pakistan. Methods: The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. Results: All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. Conclusion: It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low. PMID:25097530
USDA-ARS?s Scientific Manuscript database
Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...
Dorshorst, Ben; Molin, Anna-Maja; Rubin, Carl-Johan; Johansson, Anna M.; Strömstedt, Lina; Pham, Manh-Hung; Chen, Chih-Feng; Hallböök, Finn; Ashwell, Chris; Andersson, Leif
2011-01-01
Dermal hyperpigmentation or Fibromelanosis (FM) is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3), a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals. PMID:22216010
Akyurek, Nalan; Uner, Aysegul; Benekli, Mustafa; Barista, Ibrahim
2012-09-01
Diffuse large B-cell lymphomas (DLBCLs) are a biologically heterogeneous group in which various gene alterations have been reported. The aim of this study was to investigate the frequency and prognostic impact of BCL2, BCL6, and MYC rearrangements in cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab (R-CHOP)-treated DLBCL cases. Tissue microarrays were constructed from 239 cases of DLBCL, and the expressions of CD10, BCL6, MUM1/IRF4, and BCL2 were evaluated by immunohistochemistry. MYC, BCL2, and BCL6 rearrangements were investigated by interphase fluorescence in situ hybridization on tissue microarrays. Survival analysis was constructed from 145 R-CHOP-treated patients. MYC, BCL2, and BCL6 rearrangements were detected in 14 (6%), 36 (15%), and 69 (29%) of 239 DLBCL patients. Double or triple rearrangements were detected in 7 (3%) of 239 DLBCL cases. Of these, 4 had BCL2 and MYC, 2 had BCL6 and MYC, and 1 had BCL2, BCL6, and MYC rearrangements. The prognosis of these cases was extremely poor, with a median survival of 9 months. MYC rearrangement was associated with significantly worse overall survival (P = .01), especially for the cases with GC phenotype (P = .009). BCL6 rearrangement also predicted significantly shorter overall survival (P = .04), especially for the non-GC phenotype (P = .03). BCL2 rearrangement had no prognostic impact on outcome. International Prognostic Index (P = .004) and MYC rearrangement (P = .009) were independent poor prognostic factors. Analysis of MYC gene rearrangement along with BCL2 and BCL6 is critical in identifying high-risk patients with poor prognosis. Copyright © 2011 American Cancer Society.
Complex chromosomal rearrangement-a lesson learned from PGS.
Frumkin, Tsvia; Peleg, Sagit; Gold, Veronica; Reches, Adi; Asaf, Shiri; Azem, Foad; Ben-Yosef, Dalit; Malcov, Mira
2017-08-01
The aim of the study is to report a case of non-diagnosed complex chromosomal rearrangement (CCR) identified by preimplantation genetic screening (PGS) followed by preimplantation genetic diagnosis (PGD) which resulted in a pregnancy and delivery of healthy offspring. A 29-year-old woman and her spouse, both diagnosed previously with normal karyotypes, approached our IVF-PGD center following eight early spontaneous miscarriages. PGS using chromosomal microarray analysis (CMA) was performed on biopsied trophectoderm. Fluorescence in situ hybridization (FISH), as well as re-karyotype, were performed on metaphase derived from peripheral blood of the couple. Subsequently, in the following PGD cycle, a total of seven blastocysts underwent CMA. A gain or loss at three chromosomes (3, 7, 9) was identified in six out of seven embryos in the first PGS-CMA cycle. FISH analysis of parental peripheral blood samples demonstrated that the male is a carrier of a CCR involving those chromosomes; this was in spite of a former diagnosis of normal karyotypes for both parents. Re-karyotype verified the complex translocation of 46,XY,t (3;7;9)(q23;q22;q22). Subsequently, in the following cycle, a total of seven blastocysts underwent PGD-CMA for the identified complex translocation. Two embryos were diagnosed with balanced chromosomal constitution. A single balanced embryo was transferred and pregnancy was achieved, resulting in the birth of a healthy female baby. PGS employing CMA is an efficient method to detect unrevealed chromosomal abnormalities, including complicated cases of CCR. The combined application of array CGH and FISH technologies enables the identification of an increased number of CCR carriers for which PGD is particularly beneficial.
The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1.
Rodgers, D W; Gamblin, S J; Harris, B A; Ray, S; Culp, J S; Hellmig, B; Woolf, D J; Debouck, C; Harrison, S C
1995-01-01
The crystal structure of the reverse transcriptase (RT) from the type 1 human immunodeficiency virus has been determined at 3.2-A resolution. Comparison with complexes between RT and the polymerase inhibitor Nevirapine [Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. (1992) Science 256, 1783-1790] and between RT and an oligonucleotide [Jacobo-Molina, A., Ding, J., Nanni, R., Clark, A. D., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L., Clark, P., Hizi, A., Hughes, S. H. & Arnold, E. (1993) Proc. Natl. Acad. Sci. USA 90, 6320-6324] reveals changes associated with ligand binding. The enzyme is a heterodimer (p66/p51), with domains labeled "fingers," "thumb," "palm," and "connection" in both subunits, and a ribonuclease H domain in the larger subunit only. The most striking difference between RT and both complex structures is the change in orientation of the p66 thumb (approximately 33 degrees rotation). Smaller shifts relative to the core of the molecule were also found in other domains, including the p66 fingers and palm, which contain the polymerase active site. Within the polymerase catalytic region itself, there are no rearrangements between RT and the RT/DNA complex. In RT/Nevirapine, the drug binds in the p66 palm near the polymerase active site, a region that is well-packed hydrophobic core in the unliganded enzyme. Room for the drug is provided by movement of a small beta-sheet within the palm domain of the Nevirapine complex. The rearrangement within the palm and thumb, as well as domain shifts relative to the enzyme core, may prevent correct placement of the oligonucleotide substrate when the drug is bound. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7532306
Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Sun; Li, Shu-Xing; Bren, Nina
2013-09-01
To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å 2 (1 Å=0.1 nm) of surface area, within which Arg 36 and Phe 32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr 184 from loop-C of α7, while Asp 30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr 184. These inter-residue interactions diverge from thosemore » in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr 184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.« less
SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis
NASA Astrophysics Data System (ADS)
Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi
2017-09-01
Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.
Meier, Bettina; Cooke, Susanna L; Weiss, Joerg; Bailly, Aymeric P; Alexandrov, Ludmil B; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R; Gartner, Anton; Campbell, Peter J
2014-10-01
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling "chromoanasynthesis," a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. © 2014 Meier et al.; Published by Cold Spring Harbor Laboratory Press.
Schnermann, Martin J; Beaudry, Christopher M; Genung, Nathan E; Canham, Stephen M; Untiedt, Nicholas L; Karanikolas, Breanne D W; Sütterlin, Christine; Overman, Larry E
2011-11-02
The synthesis and direct comparison of the chemical reactivity of the two highly oxidized bicyclic lactone fragments found in rearranged spongian diterpenes (8-substituted 6-acetoxy-2,7-dioxabicyclo[3.2.1]octan-3-one and 6-substituted 7-acetoxy-2,8-dioxabicyclo[3.3.0]octan-3-one) are reported. Details of the first synthesis of the 6-acetoxy-2,7-dioxabicyclo[3.2.1]octan-3-one ring system, including an examination of several possibilities for the key bridging cyclization reaction, are described. In addition, the first synthesis of 7-acetoxy-2,8-dioxabicyclo[3.3.0]octanones containing quaternary carbon substituents at C6 is disclosed. Aspects of the chemical reactivity and Golgi-modifying properties of these bicyclic lactone analogs of rearranged spongian diterpenes are also reported. Under both acidic and basic conditions, 8-substituted 2,7-dioxabicyclo[3.2.1]octanones are converted to 6-substituted-2,8-dioxabicyclo[3.3.0]octanones. Moreover, these dioxabicyclic lactones react with primary amines and lysine side chains of lysozyme to form substituted pyrroles, a conjugation that could be responsible for the unique biological properties of these compounds. These studies demonstrate that acetoxylation adjacent to the lactone carbonyl group, in either the bridged or fused series, is required to produce fragmented Golgi membranes in the pericentriolar region that is characteristic of macfarlandin E.
Alter, D; Mark, H F
2000-10-01
Numerical and structural chromosomal abnormalities occur in up to 90% of cases of childhood acute lymphoblastic leukemia (ALL). Two-thirds of these abnormalities are recurrent. The most common abnormalities are pseudodiploidy and t(1;19), occurring 40 and 5-6% of the time. Hyperdiploidy has the best prognosis, with an 80-90% 5-year survival. The 4;11 translocation has the worst prognosis, with a 10-35% 5-year survival. We report a patient with infant acute lymphoblastic leukemia and nonrecurrent rearrangements of chromosomes 10 and 11. Structural rearrangements between chromosomes 10 and 11 have been observed in 0.5% of all cases of childhood ALL with cytogenetic abnormalities. The identification of the apparently unique structural abnormalities was achieved using fluorescent in situ hybridization (FISH) with chromosome 10- and chromosome 11-specific painting probes as an adjunct to conventional cytogenetics. As is often the case, suboptimal preparations often preclude unequivocal identification of complex rearrangements by conventional banding techniques. The cytogenetic diagnosis of our patient was established as 46,XY, der(10)-t(10;11)(p15;q14)t(10;11)(q25;p11), der(11)t(10;11)(p15;q14)t(10;11)-(q25;p11). The benefits of FISH serve to increase the resolution of detection for chromosomal abnormalities and the understanding of the pathogenic mechanisms of childhood ALL. Copyright 2000 Academic Press.
Kretschmer, Rafael; Gunski, Ricardo José; Garnero, Analía Del Valle; Furo, Ivanete de Oliveira; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa
2014-01-01
Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely. PMID:25058578
From cells to tissue: A continuum model of epithelial mechanics
NASA Astrophysics Data System (ADS)
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Combinatorial structure of genome rearrangements scenarios.
Ouangraoua, Aïda; Bergeron, Anne
2010-09-01
In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios between two genomes. We also construct effective bijections between the set of scenarios that sort a component as well studied combinatorial objects such as parking functions, labeled trees, and prüfer codes.
Inhibition of the Growth of Papillary Thyroid Carcinoma Cells by CI-1040
Henderson, Ying C.; Ahn, Soon-Hyun; Clayman, Gary L.
2015-01-01
Background Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy, usually possesses mutations, either RET/PTC rearrangement or BRAF mutation. Both mutations can activate the mitogen-activated protein kinase kinase/extracellular signal–related kinase signaling transduction pathway, which results in activation of transcription factors that regulate cellular proliferation, differentiation, and apoptosis. Objective To test the effects of CI-1040 (PD184352), a specific MEK1/2 inhibitor, on PTC cells carrying either an RET/PTC1 rearrangement or a BRAF mutation. Design The effects of CI-1040 on PTC cells were evaluated in vitro and in vivo. Main Outcome Measures The effects of CI-1040 on PTC cells were evaluated in vitro using a cell proliferation assay, cell cycle analysis, and immunoblotting. The antitumor effects of CI-1040 in vivo were evaluated in an orthotopic mouse model. Results The concentrations of CI-1040 needed to inhibit 50% cell growth were 0.052μM for PTC cells with a BRAF mutation and 1.1μM for PTC cells with the RET/PTC1 rearrangement. After 3 weeks of oral administration of CI-1040 (300 mg/kg/d) to mice with orthotopic tumor implants of PTC cells, the mean tumor volume of implants bearing the RET/PTC1 rearrangement (n=5) was reduced 47.5% compared with untreated mice (from 701.9 to 368.5 mm3), and the mean volume of implants with a BRAF mutation (n=8) was reduced 31.3% (from 297.3 to 204.2 mm3). Conclusions CI-1040 inhibits PTC cell growth in vitro and in vivo. Because RET/PTC rearrangements are unique to thyroid carcinomas and a high percentage of PTCs possess either mutation, these findings support the clinical evaluation of CI-1040 for patients with PTC. PMID:19380355
Soo, Ross A; Kubo, Akihito; Ando, Masahiko; Kawaguchi, Tomoya; Ahn, Myung-Ju; Ou, Sai-Hong Ignatius
2017-09-01
Molecular studies have demonstrated actionable driver oncogene alterations are more frequent in never-smokers with non-small-cell lung cancer (NSCLC). The etiology of these driver oncogenes in patients with NSCLC remains unknown, and environmental tobacco smoke (ETS) is a potential cause in these cases. We assembled clinical and genetic information for never-smoker patients with NSCLC accrued in Japan, Korea, Singapore, and the United States. To determine an association between cumulative ETS and activating EGFR mutations or ALK rearrangements, the Mantel extension test was used. Multivariate analysis on activating EGFR and ALK gene rearrangements was performed using the generalized linear mixed model with nations as a random effect. From July 2007 to December 2012, 498 never-smokers with pathologically proven NSCLC were registered and tested for the association between ETS and EGFR and ALK status. EGFR mutations were more frequent in the ever-ETS cohort (58.4%) compared with the never-ETS cohort (39.6%), and the incidence of EGFR mutations was significantly associated with the increment of cumulative ETS (cETS) in female never-smokers (P = .033), whereas the incidence of ALK rearrangements was not significantly different between the ever-ETS and never-ETS cohorts. Odds ratio for EGFR mutations for each 10-year increment in cETS was 1.091 and 0.89 for female and male never-smokers (P = .031 and P = .263, respectively). Increased ETS exposure was closely associated with EGFR mutations in female never-smokers with NSCLC in the expanded multinational cohort. However, the association of ETS and ALK rearrangements in never-smokers with NSCLC was not significant. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Weiya; Tang, Yuan; Li, Jinnan; Jiang, Lili; Jiang, Yong; Su, Xueying
2015-02-01
Surgical resections or tumor biopsies are often not available for patients with late-stage non-small cell lung cancer (NSCLC). Cytological specimens, such as malignant pleural effusion (MPE) cell blocks, are critical for molecular testing. Currently, diagnostic methods to identify anaplastic lymphoma kinase (ALK) rearrangements include fluorescence in situ hybridization (FISH), real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). In the current study, the authors compared Ventana ALK IHC assays and ALK FISH to detect ALK rearrangements in MPE cell blocks from patients with advanced NSCLC. The ALK IHC assay and ALK FISH were performed on 63 MPE cell blocks. RT-PCR analysis was performed as additional validation in cases in which a discrepancy was observed between the IHC assay and FISH results. The Ventana ALK IHC assay was found to be informative for all 63 samples, and 8 cases were positive. Fifty-eight cases were interpretable for FISH detection, and 6 were positive. The concordance between IHC and FISH was 100% among the 58 cases. Of the 5 uninterpretable ALK FISH cases, 2 cases and 3 cases, respectively, were ALK IHC positive and negative. One of the 2 ALK IHC-positive cases also demonstrated a positive result in the RT-PCR assay and the patient benefited from crizotinib treatment. MPE cell blocks can be used successfully for the detection of ALK rearrangement when tumor tissue is not available. The Ventana ALK IHC assay is an effective screening method for ALK rearrangement in MPE cell blocks from patients with advanced NSCLC, demonstrating high agreement with FISH results. © 2014 American Cancer Society.
van Karnebeek, C D M; Koevoets, C; Sluijter, S; Bijlsma, E; Smeets, D; Redeker, E; Hennekam, R; Hoovers, J
2002-01-01
Objective: The frequency of subtelomeric rearrangements in patients with unexplained mental retardation (MR) is uncertain, as most studies have been retrospective and case retrieval may have been biased towards cases more likely to have a chromosome anomaly. To ascertain the frequency of cytogenetic anomalies, including subtelomeric rearrangements, we prospectively screened a consecutive cohort of cases with unexplained MR in an academic tertiary centre. Methods: Inclusion criteria were: age <18 years at referral, IQ<85, no aetiological diagnosis after complete examination, which included karyotyping with high resolution banding (HRB). Results: In 266 karyotyped children, anomalies were detected in 20 (7.5%, seven numerical, 13 structural); 39 cases were analysed by FISH for specific interstitial microdeletions, and anomalies were found in nine (23%). FISH analyses for subtelomeric microdeletions were performed in 184 children (44% moderate-profound MR, 51% familial MR), and one rearrangement (0.5%) was identified in a non-familial MR female with mild MR (de novo deletion 12q24.33-qter). The number of probable polymorphisms was considerable: 2qter (n=7), Xpter (n=3), and Ypter (n=1). A significantly higher total number of malformations and minor anomalies was present in the cytogenetic anomaly group compared to the group without cytogenetic anomalies. Conclusions: The total frequency of cytogenetic anomalies in this prospective study was high (1:10), but the frequency of subtelomeric rearrangements was low. The most likely explanations are the high quality of HRB cytogenetic studies and the lack of clinical selection bias. Conventional cytogenetic analyses, combined with targeted microdeletion testing, remain the single most effective way of additional investigation in mentally retarded children, also in a tertiary centre. PMID:12161591
Kao, Hua-Lin; Yeh, Yi-Chen; Lin, Chin-Hsuan; Hsu, Wei-Fang; Hsieh, Wen-Yu; Ho, Hsiang-Ling; Chou, Teh-Ying
2016-11-01
Analysis of the targetable driver mutations is now recommended in all patients with advanced lung adenocarcinoma. Molecular-based methods are usually adopted, however, along with the implementation of highly sensitive and/or mutation-specific antibodies, immunohistochemistry (IHC) has been considered an alternative method for identifying driver mutations in lung adenocarcinomas. A total of 205 lung adenocarcinomas were examined for EGFR mutations and ALK and ROS1 rearrangements using real-time PCR, fluorescence in situ hybridization (FISH) and IHC in parallel. The performance of different commercially available IHC antibody clones toward targetable driver mutations was evaluated. The association between these driver mutations and clinicopathological characteristics was also analyzed. In 205 cases we studied, 58.5% were found to harbor EGFR mutations, 6.3% ALK rearrangements and 1.0% ROS1 rearrangements. Compared to molecular-based methods, IHC of EGFR mutations showed an excellent specificity but the sensitivity is suboptimal, while IHC of ALK and ROS1 rearrangements demonstrated high sensitivity and specificity. No significant difference regarding the performance of different antibody clones toward these driver mutations was observed, except that clone SP125 showed a higher sensitivity than 43B2 in the detection of p.L858R of EGFR. In circumstances such as poor quality of nucleic acids or low content of tumor cells, IHC of EGFR mutation-specific antibodies could be used as an alternative method. Patients negative for EGFR mutations are subjected to further analysis on ALK and ROS1 rearrangements using IHC methods. Herein, we proposed a lung adenocarcinoma testing algorithm for the application of IHC in therapeutic diagnosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions
NASA Astrophysics Data System (ADS)
Brahmkhatri, Varsha P.; Chandra, Kousik; Dubey, Abhinav; Atreya, Hanudatta S.
2015-07-01
In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03047a
Song, Zhengbo; Zheng, Yuhui; Wang, Xuzhou; Su, Haiyan; Zhang, Yiping; Song, Yong
2017-10-01
Anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements represent two most frequent fusion targets in lung adenocarcinoma. Our study was intended to explore the clinicopathological characteristics, coexistence and treatment of ALK/ROS1-rearranged patients of lung adenocarcinoma without epidermal growth factor receptor (EGFR) mutation. Patients with wild-type EGFR mutation were screened for ALK/ROS1 at four domestic hospitals. ALK/ROS1 rearrangements were detected by reverse transcription-polymerase chain reaction (RT-PCR). Progression-free survival (PFS) curve was plotted with the Kaplan-Meier method. Among 732 eligible cases, ALK and ROS1 rearrangements were detected in 89 (12.2%) and 32 (4.4%) patients respectively. One patient harbored coexisting ALK/ROS1 fusion. Both ALK and ROS1-positive phenotypes were predominantly detected in younger non-smokers. More ALK/ROS1-rearranged patients were correlated with the expressions of TTF1, napsin A and solid predominant adenocarcinoma subtype. Thirty-three ALK and six ROS1 rearrangement patients received crizotinib treatment at an advanced stage. The median PFS was 9.5 months for ALK-positive patients and it was not attained in ROS1-rearranged counterparts. The frequency of ALK and ROS1 rearrangements is elevated in EGFR-wild-type patients and the phenomenon of coexisting ALK/ROS1 has remained extremely rare. The rearrangements of ALK/ROS1 are correlated with age, smoking status, expressions of TTF1 & napsin A and solid predominant adenocarcinoma subtype.
Sinkora, Marek; Sun, Jishan; Sinkorová, Jana; Christenson, Ronald K; Ford, Steven P; Butler, John E
2003-02-15
B cell lymphogenesis in mammals occurs in various tissues during development but it is generally accepted that it operates by the same mechanism in all tissues. We show that in swine, the frequency of in-frame (IF) VDJ rearrangements differs among yolk sac, fetal liver, spleen, early thymus, bone marrow, and late thymus. All VDJ rearrangements recovered and analyzed on the 20th day of gestation (DG20) from the yolk sac were 100% IF. Those recovered at DG30 in the fetal liver were >90% IF, and this predominance of cells with apparently a single IF rearrangement continued in all organs until approximately DG45, which corresponds to the time when lymphopoiesis begins in the bone marrow. Thereafter, the proportion of IF rearrangements drops to approximately 71%, i.e., the value predicted whether VDJ rearrangement is random and both chromosomes were involved. Unlike other tissues, VDJs recovered from thymus after DG50 display a pattern suggesting no selection for IF rearrangements. Regardless of differences in the proportion of IF rearrangements, we observed no significant age- or tissue-dependent changes in CDR3 diversity, N region additions, or other characteristics of fetal VDJs during ontogeny. These findings indicate there are multiple sites of B cell lymphogenesis in fetal piglets and differences in the frequency of productive VDJ rearrangements at various sites. We propose the latter to result from differential selection or a developmentally dependent change in the intrinsic mechanism of VDJ rearrangement.
Song, Zhengbo; Zheng, Yuhui; Wang, Xuzhou; Su, Haiyan
2017-01-01
Background Anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements represent two most frequent fusion targets in lung adenocarcinoma. Our study was intended to explore the clinicopathological characteristics, coexistence and treatment of ALK/ROS1-rearranged patients of lung adenocarcinoma without epidermal growth factor receptor (EGFR) mutation. Methods Patients with wild-type EGFR mutation were screened for ALK/ROS1 at four domestic hospitals. ALK/ROS1 rearrangements were detected by reverse transcription-polymerase chain reaction (RT-PCR). Progression-free survival (PFS) curve was plotted with the Kaplan-Meier method. Results Among 732 eligible cases, ALK and ROS1 rearrangements were detected in 89 (12.2%) and 32 (4.4%) patients respectively. One patient harbored coexisting ALK/ROS1 fusion. Both ALK and ROS1-positive phenotypes were predominantly detected in younger non-smokers. More ALK/ROS1-rearranged patients were correlated with the expressions of TTF1, napsin A and solid predominant adenocarcinoma subtype. Thirty-three ALK and six ROS1 rearrangement patients received crizotinib treatment at an advanced stage. The median PFS was 9.5 months for ALK-positive patients and it was not attained in ROS1-rearranged counterparts. Conclusions The frequency of ALK and ROS1 rearrangements is elevated in EGFR-wild-type patients and the phenomenon of coexisting ALK/ROS1 has remained extremely rare. The rearrangements of ALK/ROS1 are correlated with age, smoking status, expressions of TTF1 & napsin A and solid predominant adenocarcinoma subtype. PMID:29268402
2011-01-01
Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH) studies using 5S and 25S ribosomal DNA (rDNA) probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS) to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus) to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS) sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These results make the genus a model system for the study of complex chromosomal evolution in plants. PMID:21910890
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis
Hover, Bradley M.; Tonthat, Nam K.; Schumacher, Maria A.; ...
2015-05-04
The molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During Moco biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC (molybdenum cofactor biosynthesis protein A and C, respectively). Conventionally, MoaA was considered to catalyze the majority of this transformation, with MoaC playing little or no role in the pyranopterin formation. Recently, this view was challenged by the isolation of 3',8-cyclo-7,8-dihydro-guanosine 5'-triphosphate (3',8-cH 2GTP) as the productmore » of in vitro MoaA reactions. To elucidate the mechanism of formation of Moco pyranopterin backbone, in this paper we performed biochemical characterization of 3',8-cH 2GTP and functional and X-ray crystallographic characterizations of MoaC. These studies revealed that 3',8-cH 2GTP is the only product of MoaA that can be converted to cPMP by MoaC. Our structural studies captured the specific binding of 3',8-cH 2GTP in the active site of MoaC. These observations provided strong evidence that the physiological function of MoaA is the conversion of GTP to 3',8-cH 2GTP (GTP 3',8-cyclase), and that of MoaC is to catalyze the rearrangement of 3',8-cH 2GTP into cPMP (cPMP synthase). Furthermore, our structure-guided studies suggest that MoaC catalysis involves the dynamic motions of enzyme active-site loops as a way to control the timing of interaction between the reaction intermediates and catalytically essential amino acid residues. In conclusion, these results reveal the previously unidentified mechanism behind Moco biosynthesis and provide mechanistic and structural insights into how enzymes catalyze complex rearrangement reactions.« less
Lan, Tianying; Albert, Victor A
2011-09-12
Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH) studies using 5S and 25S ribosomal DNA (rDNA) probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS) to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus) to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS) sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Paphiopedilum species display many chromosomal rearrangements--for example, duplications, translocations, and inversions--but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These results make the genus a model system for the study of complex chromosomal evolution in plants.
Catalytic and Thermal 1,2-Rearrangement of (α-Mercaptobenzyl)trimethylsilane
NASA Astrophysics Data System (ADS)
Zhang, Jie; Cui, Mengzhong; Feng, Shengyu; Sun, Xiaomin; Feng, Dacheng
2009-09-01
The mechanisms of catalytic and thermal 1,2-rearrangement of (α-mercaptobenzyl)trimethylsilane were studied by using density functional theory (DFT) at the MP2/6-31+G(d,p)//B3LYP/6-31G(d) levels. The results show that (α-mercaptobenzyl)trimethylsilane rearranges to (benzylthio)trimethylsilane through a trimethylsilyl group migration from C to S atom via a transition state of pentacoordinate Si atom with or without radical initiators. The low reaction activation energy (15.1 kcal/mol) is responsible for the fast rearrangement in the presence of radical initiators. Both radical and nonradical thermal rearrangement mechanisms were suggested, and the radical mechanism dominates through its self-catalyzing. These results are consistent with the experiment results. The activation energy (ΔHact = 15.1 kcal/mol) for the rate-determining step within the self-catalytic cycle is low enough to make (trimethylsilylbenzyl)thiyl radical be a reasonable catalyst for the thermal rearrangement. The catalytic and thermal 1,2-rearrangement mechanisms of (α-mercaptobenzyl)trimethylsilane, especially the self-catalytic radical mechanism, were revealed for the first time. The comparison of the rearrangement mechanisms between (α-mercaptobenzyl)trimethylsilane and silylmethanethiol discloses the factors in determining the reaction mechanism of such kinds of mercaptoalkyl-functionalized organosilanes. The phenyl group is found to be favorable for the radical rearrangement, thus making (α-mercaptobenzyl)trimethylsilane instable.
Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John
2012-01-01
Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574
A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features.
Zhou, Jianya; Zhao, Jing; Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying
2016-01-01
To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases.
Boles, Georgia C; Hightower, Randy L; Coates, Rebecca A; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B
2018-04-12
Complexes of aspartic acid (Asp) cationized with Zn 2+ : Zn(Asp-H) + , Zn(Asp-H) + (ACN) where ACN = acetonitrile, and Zn(Asp-H) + (Asp); as well as with Cd 2+ , CdCl + (Asp), were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free electron laser. A series of low-energy conformers for each complex was found using quantum chemical calculations to identify the structures formed experimentally. The main binding motif observed for the heavy-metal complex, CdCl + (Asp)[N,CO,CO s ], is a charge-solvated, tridentate structure, where the metal center binds to the backbone amino group and carbonyl oxygens of the backbone and side-chain carboxylic acids. Likewise, the deprotonated Zn(Asp-H) + (ACN) and Zn(Asp-H) + (Asp) complexes show comparable [N,CO - ,CO s ](ACN) and [N,CO - ,CO s ][N,CO,CO s ] coordinations, respectively. Interestingly, there was only minor spectral evidence for the analogous Zn(Asp-H) + [N,CO - ,CO s ] binding motif, even though this species is predicted to be the lowest-energy conformer. Instead, rearrangement and partial dissociation of the amino acid are observed, as spectral features most consistent with the experimental spectrum are exhibited by a four-coordinate Zn(Asp-NH 4 ) + [CO 2 - ,CO s ](NH 3 ) complex. Analysis of the mechanistic pathway leading from the predicted lowest-energy conformer to the isobaric deaminated complex is explored theoretically. Further, comparison of the current work to that of Zn 2+ and Cd 2+ complexes of asparagine (Asn) allows additional conclusions regarding populated conformers and effects of carboxamide versus carboxylic acid binding to be drawn.
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-11-28
Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.
Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression
McDermott, Danielle; Olson Reichhardt, Cynthia J.; Reichhardt, Charles
2016-11-11
In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements ofmore » particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, E.; Neubauer, S.; Schmitt, G.
1996-01-01
A three-color chromosome in situ suppression technique and classical cytogenetic analysis were compared for the detection of chromosomal aberrations in blood lymphocytes of 27 patients who had undergone radiation therapies from 1 month to 9 years ago. Depending on the respective regimens of therapy, a high variability was found in the aberration data. Aberration rates depended on the interval between exposure and scoring rather than on the locally applied radiation doses, which were rather uniform among most patients. Chromosome in situ suppression was found to be superior to classical cytogenetics with respect not only to the spectrum of detectable aberrationsmore » but also to the uncovering of long-term effects of irradiation. Of particular interest were the relative stability of the frequency of radiation-induced reciprocal translocations and the utility of chromosome in situ suppression to uncover complex rearrangements. 27 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Bochinski, J. R.; Curtis, C.; Roman, M. P.; Clarke, L. I.; Wang, Q.; Thoppey, N. M.; Gorga, R. E.
2014-03-01
Utilizing unconfined polymer fluids (e.g., from solution or melt), edge electrospinning provides a straightforward approach for scaled up production of high quality nanofibers through the formation of many parallel jets. From simple geometries (using solution contained within a sharp-edged bowl or on a flat plate), jets form and spontaneously re-arrange on the fluid surface near the edge. Using appropriate control of the electric field induced feed rate, comparable per jet fabrication as traditional single-needle electrospinning can be realized, resulting in nanofibers with similar diameters, diameter distribution, and collected mat porosity. The presence of multiple jets proportionally enhances the production rate of the system, with minimal experimental complexity and without the possibility of clogging. Extending this needle-less approach to commercial polyethylene polymers, micron scale fibers can be melt electrospun using a similar apparatus. Support from National Science Foundation (CMMI-0800237).
Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle.
Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu
2017-02-26
In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions.
Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle
Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu
2017-01-01
In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634
2013-01-01
Purpose: Cells of the lung are at risk from exposure to low and moderate doses of ionizing radiation from a range of environmental and medical sources. To help assess human health risks from such exposures, a better understanding of the frequency and types of chromosome aberration initially-induced in human lung cell types is required to link initial DNA damage and rearrangements with transmission potential and, to assess how this varies with radiation quality. Materials and methods: We exposed normal human bronchial lung epithelial (NHBE) cells in vitro to 0.5 and 1 Gy low-linear energy transfer (LET) γ-rays and a low fluence of high-LET α-particles and assayed for chromosome aberrations in premature chromosome condensation (PCC) spreads by 24-color multiplex-fluorescence in situ hybridization (M-FISH). Results: Both simple and complex aberrations were induced in a LET and dose-dependent manner; however, the frequency and complexity observed were reduced in comparison to that previously reported in spherical cell types after exposure to comparable doses or fluence of radiation. Approximately 1–2% of all exposed cells were categorized as being capable of transmitting radiation-induced chromosomal damage to future NHBE cell generations, irrespective of dose. Conclusion: One possible mechanistic explanation for this reduced complexity is the differing geometric organization of chromosome territories within ellipsoid nuclei compared to spherical nuclei. This study highlights the need to better understand the role of nuclear organization in the formation of exchange aberrations and, the influence three-dimensional (3D) tissue architecture may have on this in vivo. PMID:23679558
Tejedor, David; Delgado-Hernández, Samuel; Peyrac, Jesús; González-Platas, Javier; García-Tellado, Fernando
2017-07-26
An all-pericyclic manifold is developed for the construction of topologically diverse, structurally complex and natural product-like polycyclic chemotypes. The manifold uses readily accessible tertiary propargyl vinyl ethers as substrates and imidazole as a catalyst to form up to two new rings, three new C-C bonds, six stereogenic centers and one transannular oxo-bridge. The manifold is efficient, scalable and instrumentally simple to perform and entails a propargyl Claisen rearrangement-[1,3]H shift, an oxa-6π-electrocyclization, and an intramolecular Diels-Alder reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selinger, Christina I; Li, Bob T; Pavlakis, Nick; Links, Matthew; Gill, Anthony J; Lee, Adrian; Clarke, Stephen; Tran, Thang N; Lum, Trina; Yip, Po Yee; Horvath, Lisa; Yu, Bing; Kohonen-Corish, Maija RJ; O’Toole, Sandra A; Cooper, Wendy A
2016-01-01
Aims To assess the prevalence of ROS1 rearrangements in a retrospective and prospective diagnostic Australian cohort and evaluate the effectiveness of immunohistochemical screening. Methods A retrospective cohort of 278 early stage lung adenocarcinomas and an additional 104 prospective NSCLC cases referred for routine molecular testing were evaluated. ROS1 immunohistochemistry (IHC) was performed (D4D6 clone, Cell Signaling Technology) on all cases as well as fluorescence in situ hybridisation (FISH) using the ZytoVision and Abbott Molecular ROS1 FISH probes, with ≥15% of cells with split signals considered positive for rearrangement. Results Eighty eight cases (32%) from the retrospective cohort showed staining by ROS1 IHC, and one case (0.4%) showed ROS1 rearrangement by FISH. Nineteen of the prospective diagnostic cases showed ROS1 IHC staining of which 12 (12%) cases were confirmed as ROS1 rearranged by FISH. There were no ROS1 rearranged cases that showed no expression of ROS1 with IHC. The ROS1 rearranged cases in the prospective cohort were all EGFR wildtype and ALK rearrangement negative. The sensitivity of ROS1 IHC in the retrospective cohort was 100% and specificity was 76%. Conclusions ROS1 rearrangements are rare events in lung adenocarcinomas. Selection of cases for ROS1 FISH testing, by excluding EGFR/ALK positive cases and use of IHC to screen for potentially positive cases can be used to enrich for the likelihood of a identifying a ROS1 rearranged lung cancer and prevent the need to undertake expensive and time consuming FISH testing in all cases. PMID:27599111
Selinger, Christina I; Li, Bob T; Pavlakis, Nick; Links, Matthew; Gill, Anthony J; Lee, Adrian; Clarke, Stephen; Tran, Thang N; Lum, Trina; Yip, Po Y; Horvath, Lisa; Yu, Bing; Kohonen-Corish, Maija R J; O'Toole, Sandra A; Cooper, Wendy A
2017-02-01
To assess the prevalence of ROS1 rearrangements in a retrospective and prospective diagnostic Australian cohort and evaluate the effectiveness of immunohistochemical screening. A retrospective cohort of 278 early stage lung adenocarcinomas and an additional 104 prospective non-small-cell lung cancer (NSCLC) cases referred for routine molecular testing were evaluated. ROS1 immunohistochemistry (IHC) was performed (D4D6 clone, Cell Signaling Technology) on all cases as well as fluorescence in-situ hybridization (FISH) using the ZytoVision and Abbott Molecular ROS1 FISH probes, with ≥15% of cells with split signals considered positive for rearrangement. Eighty-eight cases (32%) from the retrospective cohort showed staining by ROS1 IHC, and one case (0.4%) showed ROS1 rearrangement by FISH. Nineteen of the prospective diagnostic cases showed ROS1 IHC staining, 12 (12%) cases of which were confirmed as ROS1 rearranged by FISH. There were no ROS1 rearranged cases that showed no expression of ROS1 with IHC. The ROS1 rearranged cases in the prospective cohort were all EGFR wild-type and anaplastic lymphoma kinase (ALK) rearrangement-negative. The sensitivity of ROS1 IHC in the retrospective cohort was 100% and specificity was 76%. ROS1 rearrangements are rare events in lung adenocarcinomas. Selection of cases for ROS1 FISH testing, by excluding EGFR/ALK-positive cases and use of IHC to screen for potentially positive cases, can be used to enrich for the likelihood of identifying a ROS1 rearranged lung cancer and prevent the need to undertake expensive and time-consuming FISH testing in all cases. © 2016 John Wiley & Sons Ltd.
Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas
2016-01-01
Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515
Nilsson, R Jonas A; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A M; Thunnissen, Erik; Dingemans, Anne-Marie C; Viteri, Santiago; Tannous, Bakhos A; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F; Wurdinger, Thomas
2016-01-05
Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK- platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.
Deformation in metallic glasses studied by synchrotron x-ray diffraction
Dmowski, Wojciech; Egami, Takeshi; Tong, Yang
2016-01-11
In this study, high mechanical strength is one of the superior properties of metallic glasses which render them promising as a structural material. However, understanding the process of mechanical deformation in strongly disordered matter, such as metallic glass, is exceedingly difficult because even an effort to describe the structure qualitatively is hampered by the absence of crystalline periodicity. In spite of such challenges, we demonstrate that high-energy synchrotron X-ray diffraction measurement under stress, using a two-dimensional detector coupled with the anisotropic pair-density function (PDF) analysis, has greatly facilitated the effort of unraveling complex atomic rearrangements involved in the elastic, anelastic,more » and plastic deformation of metallic glasses. Even though PDF only provides information on the correlation between two atoms and not on many-body correlations, which are often necessary in elucidating various properties, by using stress as means of exciting the system we can garner rich information on the nature of the atomic structure and local atomic rearrangements during deformation in glasses.« less
Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast
Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh
2014-01-01
Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140
Nesterov, S V; Skorobogatova, Iu A; Iaguzhinskiĭ, L S
2014-01-01
This paper represents the study of endogenous and exogenous fatty acids affecting the mitochondrial phosphorylation system effectiveness depending on temperature. The experiment was set up under conditions in which the oxidative phosphorylation system operates as a supercomplex. Rat liver mitochondria were isolated without purposive fatty acids removal from membranes, then studied in hypotonic medium (120 mOsm). We managed to detect a very narrow interval 19 ± 1°C where the fatty acid uncoupling effect is weak up to disappearing. At the same small temperature range, a structural rearrangement that takes place in the enzyme system is accompanied with denser packing of membrane protein complexes. Thus, at the temperatures close to 19°C the supercomplex works in the specific regime protected (or partially protected) from the uncoupling effect of fatty acids. Here we also discuss a physiological significance of the increased ATP-synthesis effectiveness at lower temperatures and the most probable character of structural rearrangement taking place at 19°C in the enzymes in the mitochondrial membrane.
Co-Translational Folding Trajectory of the HemK Helical Domain.
Mercier, Evan; Rodnina, Marina V
2018-06-26
Protein folding begins co-translationally within the restricted space of the peptide exit tunnel of the ribosome. We have already shown that the N-terminal α-helical domain of the universally conserved N 5 -glutamine methyltransferase HemK is compacted within the exit tunnel and rearranges into the native fold upon emerging from the ribosome. However, the exact folding pathway of the domain remained unclear. Here we analyzed the rapid kinetics of translation and folding monitored by fluorescence resonance energy transfer and photoinduced electron transfer using global fitting to a model for synthesis of the 112-amino acid HemK fragment. Our results suggest that the co-translational folding trajectory of HemK starts within the tunnel and passes through four kinetically distinct folding intermediates that may represent sequential docking of helices to a growing compact core. The kinetics of the process is defined entirely by translation. The results show how analysis of ensemble kinetic data can be used to dissect complex trajectories of rapid conformational rearrangements in multicomponent systems.
Faria, Luiz F O; Paschoal, Vitor H; Lima, Thamires A; Ferreira, Fabio F; Freitas, Rafael S; Ribeiro, Mauro C C
2017-10-26
A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN) 2 ], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN) 2 ]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN) 2 ]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.
Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan
2018-07-04
The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.
Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast.
Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh
2014-06-24
Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.DOI: http://dx.doi.org/10.7554/eLife.02630.001. Copyright © 2014, Zanders et al.
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-01-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue. PMID:20201984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejcha, Robert; Ludwig, Martha L.
2010-03-08
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domainmore » evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.« less
Szczałuba, Krzysztof; Nowakowska, Beata; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Klapecki, Jakub; Kutkowska-Kaźmierczak, Anna; Śmigiel, Robert; Bocian, Ewa; Radkowski, Marek; Demkow, Urszula
2016-01-01
Major congenital anomalies are detectable in 2-3 % of the newborn population. Some of their genetic causes are attributable to copy number variations identified by array comparative genomic hybridization (aCGH). The value of aCGH screening as a first-tier test in children with multiple congenital anomalies has been studied and consensus adopted. However, array resolution has not been agreed upon, specifically in the newborn or infant population. Moreover, most array studies have been focused on mixed populations of intellectual disability/developmental delay with or without multiple congenital anomalies, making it difficult to assess the value of microarrays in newborns. The aim of the study was to determine the optimal quality and clinical sensitivity of high-resolution array comparative genomic hybridization in neonates with multiple congenital anomalies. We investigated a group of 54 newborns with multiple congenital anomalies defined as two or more birth defects from more than one organ system. Cytogenetic studies were performed using OGT CytoSure 8 × 60 K microarray. We found ten rearrangements in ten newborns. Of these, one recurrent syndromic microduplication was observed, whereas all other changes were unique. Six rearrangements were definitely pathogenic, including one submicroscopic and five that could be seen on routine karyotype analysis. Four other copy number variants were likely pathogenic. The candidate genes that may explain the phenotype were discussed. In conclusion, high-resolution array comparative hybridization can be applied successfully in newborns with multiple congenital anomalies as the method detects a significant number of pathogenic changes, resulting in early diagnoses. We hypothesize that small changes previously considered benign or even inherited rearrangements should be classified as potentially pathogenic at least until a subsequent clinical assessment would exclude a developmental delay or dysmorphism.
Beklemisheva, Violetta R.; Perelman, Polina L.; Lemskaya, Natalya A.; Kulemzina, Anastasia I.; Proskuryakova, Anastasia A.; Burkanov, Vladimir N.; Graphodatsky, Alexander S.
2016-01-01
Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae–monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular. PMID:26821159
A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features
Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying
2016-01-01
Aims To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. Methods and Results We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Conclusions Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases. PMID:27648828
Deep ancestry of programmed genome rearrangement in lampreys.
Timoshevskiy, Vladimir A; Lampman, Ralph T; Hess, Jon E; Porter, Laurie L; Smith, Jeramiah J
2017-09-01
In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) associated with PGR and provide the first comparative embryological evidence in support of the idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent developmental/genetic conflicts between germline and soma. Copyright © 2017 Elsevier Inc. All rights reserved.
Economic analysis of ALK testing and crizotinib therapy for advanced non-small-cell lung cancer.
Lu, Shun; Zhang, Jie; Ye, Ming; Wang, Baoai; Wu, Bin
2016-06-01
The economic outcome of crizotinib in advanced non-small-cell lung cancer harboring anaplastic lymphoma kinase rearrangement would be investigated. Based on a mathematical model, the economic outcome of three techniques for testing ALK gene rearrangement combing with crizotinib would be evaluated and compared with traditional regimen. The impact of the crizotinib patient assistance program (PAP) was assessed. Ventana immunohistochemistry, quantitative real-time reverse transcription-polymerase chain reaction and IHC testing plus fluorescent in situ hybridization confirmation for anaplastic lymphoma kinase testing following crizotinib treatment leaded to the incremental cost-effectiveness ratios of US$16,820 and US$223,242, US$24,424 and US$223,271, and US$16,850 and US$254,668 per quality-adjusted life-year gained with and without PAP, respectively. Gene-guided crizotinib therapy might be a cost-effective alternative comparing with the traditional regimen in the PAP setting.
Chandra, Saurabh; Kapur, Reuben; Chuzhanova, Nadia; Summey, Victoria; Prentice, David; Barker, Jane; Cooper, David N; Williams, David A
2003-11-15
Kit ligand (Kitl), encoded by the Steel (Sl) locus, plays an essential role in hematopoiesis, gametogenesis, and melanogenesis during both embryonic and adult life. We have characterized a new spontaneous mutant of the Sl locus in mice designated KitlSl-20J that arose in the breeding colony at Jackson Laboratories. Heterozygous KitlSl-20J mice display a white belly spot and intercrossing results in an embryonic lethal phenotype in the homozygous state. Analysis of homozygous embryos demonstrated a significant reduction in fetal liver cellularity, colony forming unit-erythroid (CFU-E) progenitors, and a total absence of germ cells. Although expressed in vivo, recombinant mutant protein demonstrated loss of bioactivity that was correlated with lack of receptor binding. Analysis of the Sl gene transcripts in heterozygous KitlSl-20J mice revealed an in-frame tandem duplication of exon 3. A long-range polymerase chain reaction (PCR) strategy using overlapping primers in exon 3 amplified an approximately 7-kilobase (kb) product from DNA isolated from heterozygous KitlSl-20J mice but not from wild-type DNA that contained sequences from both introns 2 and 3 and an inverted intron 2 sequence, suggesting a complex rearrangement as the mechanism of the mutation. "Complexity analysis" of the sequence of the amplified product strongly suggests that local DNA motifs may have contributed to the generation of this spontaneous KitlSl-20J allele, likely mediated by a 2-step process. The KitlSl-20J mutation is a unique KitlSl allele and represents an unusual mechanism of mutation.
Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization
Park, Morgan; Deming, Clayton; Thomas, Pamela J.; Young, Alice C.; Coleman, Holly; Sison, Christina; Weingarten, Rebecca A.; Lau, Anna F.; Dekker, John P.; Palmore, Tara N.; Frank, Karen M.
2016-01-01
ABSTRACT Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli. Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae. Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists’ actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. PMID:27353756
JCAR014 and Durvalumab in Treating Patients With Relapsed or Refractory B-cell Non-Hodgkin Lymphoma
2018-04-02
BCL2 Gene Rearrangement; BCL6 Gene Rearrangement; CD19 Positive; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; High-Grade B-Cell Lymphoma With MYC, BCL2, and BCL6 Rearrangements; MYC Gene Rearrangement; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma
Plummer, Christopher W; Wei, Carolyn S; Yozwiak, Carrie E; Soheili, Arash; Smithback, Sara O; Leighton, James L
2014-07-16
An approach to the synthesis of the (iso)cyclocitrinol core structure is described. The key step is a tandem Ireland Claisen/Cope rearrangement sequence, wherein the Ireland Claisen rearrangement effects ring contraction to a strained 10-membered ring, and that strain in turn drives the Cope rearrangement under unusually mild thermal conditions. A major side product was identified as resulting from an unexpected and remarkably facile [1,3]-sigmatropic rearrangement, and a tactic to disfavor the [1,3] pathway and increase the efficiency of the tandem reaction was rationally devised.
Moparthi, Satish Babu; Carlsson, Uno; Vincentelli, Renaud; Jonsson, Bengt-Harald; Hammarström, Per; Wenger, Jérôme
2016-01-01
Here, we study and compare the mechanisms of action of the GroEL/GroES and the TRiC chaperonin systems on MreB client protein variants extracted from E. coli. MreB is a homologue to actin in prokaryotes. Single-molecule fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence polarization anisotropy report the binding interaction of folding MreB with GroEL, GroES and TRiC. Fluorescence resonance energy transfer (FRET) measurements on MreB variants quantified molecular distance changes occurring during conformational rearrangements within folding MreB bound to chaperonins. We observed that the MreB structure is rearranged by a binding-induced expansion mechanism in TRiC, GroEL and GroES. These results are quantitatively comparable to the structural rearrangements found during the interaction of β-actin with GroEL and TRiC, indicating that the mechanism of chaperonins is conserved during evolution. The chaperonin-bound MreB is also significantly compacted after addition of AMP-PNP for both the GroEL/ES and TRiC systems. Most importantly, our results showed that GroES may act as an unfoldase by inducing a dramatic initial expansion of MreB (even more than for GroEL) implicating a role for MreB folding, allowing us to suggest a delivery mechanism for GroES to GroEL in prokaryotes. PMID:27328749
Heterogeneous activation in 2D colloidal glass-forming liquids classified by machine learning
NASA Astrophysics Data System (ADS)
Ma, Xiaoguang; Davidson, Zoey; Still, Tim; Ivancic, Robert; Schoenholz, Sam S.; Sussman, Daniel M.; Liu, A. J.; Yodh, A. G.
The trajectories of particles in colloidal glass-forming liquids are often characterized by long periods of ``in-cage'' fluctuations and rapid ``cage-breaking'' rearrangements. We study the rate of such rearrangements and its connection with local cage structures in a 2D binary mixture of poly(N-isopropyl acrylamide) spheres. We use the hopping function, Phop (t) , to identify rearrangements within particle trajectories. Then we obtain distributions of the residence time tR between consecutive rearrangements. The mean residence time tR (S) is found to correlate with the local configurations for the rearranging particles, characterized by 70 radial structural features and softness S, which ranks the structural similarities with respect to rearranging particles. Furthermore, tR (S) for particles with similar softness decays monotonically with increasing softness, indicating correlation between rearrangement rates and softness S. Finally we find that the conditional and full probability distribution functions, P (tR | S) and P (tR) , are well explained by a thermal activation model. We acknowledge financial supports from NSF-MRSEC DMR11-20901, NSF DMR16-07378, and NASA NNX08AO0G.
Recurrent DNA inversion rearrangements in the human genome
Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia; Domínguez-Vidaña, Rocío; Zepeda, Cinthya; Yañez, Omar; Gutiérrez, María; Lemus, Tzitziki; Valle, David; Avila, Ma. Carmen; Blanco, Daniel; Medina-Ruiz, Sofía; Meza, Karla; Ayala, Erandi; García, Delfino; Bustos, Patricia; González, Víctor; Girard, Lourdes; Tusie-Luna, Teresa; Dávila, Guillermo; Palacios, Rafael
2007-01-01
Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome. In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard to human genomic variation is discussed. PMID:17389356
Catalysis of concerted reactions by antibodies: the Claisen rearrangement.
Hilvert, D; Carpenter, S H; Nared, K D; Auditor, M T
1988-01-01
Monoclonal antibodies were prepared against a transition state analog inhibitor of chorismate mutase (EC 5.4.99.5). One of the antibodies catalyzes the rearrangement of chorismate to prephenate with rate accelerations of more than 2 orders of magnitude compared to the uncatalyzed reaction. Saturation kinetics were observed, and at 25 degrees C the values of kcat and Km were 1.2 X 10(-3) s-1 and 5.1 X 10(-5) M respectively. The transition state analog was shown to be a competitive inhibitor of the reaction with Ki equal to 0.6 microM. These results demonstrate the feasibility of using rationally designed immunogens to generate antibodies that catalyze concerted reactions. PMID:3393525
Schröder, Jan; Hsu, Arthur; Boyle, Samantha E.; Macintyre, Geoff; Cmero, Marek; Tothill, Richard W.; Johnstone, Ricky W.; Shackleton, Mark; Papenfuss, Anthony T.
2014-01-01
Motivation: Methods for detecting somatic genome rearrangements in tumours using next-generation sequencing are vital in cancer genomics. Available algorithms use one or more sources of evidence, such as read depth, paired-end reads or split reads to predict structural variants. However, the problem remains challenging due to the significant computational burden and high false-positive or false-negative rates. Results: In this article, we present Socrates (SOft Clip re-alignment To idEntify Structural variants), a highly efficient and effective method for detecting genomic rearrangements in tumours that uses only split-read data. Socrates has single-nucleotide resolution, identifies micro-homologies and untemplated sequence at break points, has high sensitivity and high specificity and takes advantage of parallelism for efficient use of resources. We demonstrate using simulated and real data that Socrates performs well compared with a number of existing structural variant detection tools. Availability and implementation: Socrates is released as open source and available from http://bioinf.wehi.edu.au/socrates. Contact: papenfuss@wehi.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24389656
Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.A.; Watson, J.M.; Spencer, J.A.
1996-07-01
Previous comparisons of gene location in the three major groups of mammals (eutherians, marsupials, and monotremes) have suggested that the long arm of the human X represents the ancestral mammalian X chromosome, whereas the short arm represents an autosomal region(s) recently added to the eutherian X chromosome. To identify the fusion point of this ancient X-autosome rearrangement, we have mapped four genes, three of which map near the centromere of the human Xp, in marsupials and in a monotreme. We found that ARAF1, and GATA1 are located on the X chromosome in marsupials, and ALA2 and GATA1 are also locatedmore » on the X in the platypus. This implies that the proximal short arm of the human X chromosome, including the centromere, was part of the ancestral mammalian X chromosome. The fusion point between the conserved region and the recently added regions therefore maps to human Xp11.23, although gene order on the human X indicates that there has been some rearrangement of this region. 26 refs., 3 figs., 1 tab.« less
Huang, L; Nesterenko, A; Nie, W; Wang, J; Su, W; Graphodatsky, A S; Yang, F
2008-01-01
Considering the giraffe (Giraffa camelopardalis, GCA, 2n = 30) as a primitive species, its comparative genomic data are critical for our understanding of the karyotype evolution of pecorans. Here, we have established genome-wide chromosomal homologies between giraffe, Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and human (Homo sapiens, HSA, 2n = 46) with whole sets of chromosome-specific paints from Chinese muntjac and human, in addition to providing a high-resolution G-banding karyotype of giraffe. Chinese muntjac and human chromosome paints detected 32 and 45 autosomal homologs in the genome of giraffe, respectively. Our results suggest that it would require at least thirteen fissions, six fusions and three intrachromosomal rearrangements to 'transform' the 2n = 44 eutherian ancestral karyotype to the 2n = 58 pecoran ancestral karyotype. During giraffe evolution, some ancestral eutherian syntenies (i.e. association of HSA3/21, 4/8, 7/16, 14/15, 16/19 and two forms of 12/22) have been retained, while several derived syntenies (i.e. associations of human homologous segments 2/1, 2/9, 5/19, 4/12/22, 8/9, and 10/20) have been produced. The reduction of chromosome number in giraffe from the 2n = 58 pecoran ancestral karyotype could be primarily attributed to extensive Robertsonian translocations of ancestral chromosomal segments. More complex chromosomal rearrangements (including tandem fusion, centromere repositioning and pericentric inversion) have happened during the evolution of GCA2 and GCA8. Copyright 2008 S. Karger AG, Basel.
Gold nanoparticles as a factor of influence on doxorubicin-bovine serum albumin complex
NASA Astrophysics Data System (ADS)
Goncharenko, N. A.; Pavlenko, O. L.; Dmytrenko, O. P.; Kulish, M. P.; Lopatynskyi, A. M.; Chegel, V. I.
2018-04-01
The interaction between doxorubicin (Dox) and bovine serum albumin (BSA) complex with gold nanoparticles (AuNPs) was investigated by optical spectroscopy. The optical absorption of Dox and BSA solutions was studied. The formation of Dox-BSA complexes with a binding constant K = 7.56 × 106 M-2 and the number of binding sites n = 2 was found out. With pH 6.9, the concentration of complexes is an order of magnitude lower than the concentration of unbound antibiotic molecules. Optical absorption in solutions of Dox-BSA conjugates in the presence of AuNPs undergoes a significant rearrangement, which manifests the changes in the magnitude of the hydrophobic interaction of BSA with Dox, changes in the conformational state of antibiotic, and, as a consequence, a plasmon-induced change in the mechanism of complex formation. The aggregation of the Dox-AuNPs conjugate depends on the presence and concentration of BSA and in the case of formation of the Dox-BSA complex is minimal.
The Ultrafast Wolff Rearrangement in the Gas Phase
NASA Astrophysics Data System (ADS)
Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick
The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.
Analysis of genome rearrangement by block-interchanges.
Lu, Chin Lung; Lin, Ying Chih; Huang, Yen Lin; Tang, Chuan Yi
2007-01-01
Block-interchanges are a new kind of genome rearrangements that affect the gene order in a chromosome by swapping two nonintersecting blocks of genes of any length. More recently, the study of such rearrangements is becoming increasingly important because of its applications in molecular evolution. Usually, this kind of study requires to solve a combinatorial problem, called the block-interchange distance problem, which is to find a minimum number of block-interchanges between two given gene orders of linear/circular chromosomes to transform one gene order into another. In this chapter, we shall introduce the basics of block-interchange rearrangements and permutation groups in algebra that are useful in analyses of genome rearrangements. In addition, we shall present a simple algorithm on the basis of permutation groups to efficiently solve the block-interchange distance problem, as well as ROBIN, a web server for the online analyses of block-interchange rearrangements.
Arenas, Miguel
2015-04-01
NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.
Neoplastic MiR-17~92 deregulation at a DNA fragility motif (SIDD).
Schneider, Björn; Nagel, Stefan; Ehrentraut, Stefan; Kaufmann, Maren; Meyer, Corinna; Geffers, Robert; Drexler, Hans G; MacLeod, Roderick A F
2012-03-01
Chromosomal or mutational activation of BCL6 (at 3q27) typifies diffuse large B-cell lymphoma (DLBCL) which in the germinal center subtype may be accompanied by focal amplification of chromosome band 13q31 effecting upregulation of miR-17~92. Using long distance inverse-polymerase chain reaction, we mapped and sequenced six breakpoints of a complex BCL6 rearrangement t(3;13)(q27;q31)t(12;13)(p11;q31) in DLBCL cells, which places miR-17~92 antisense within the resulting ITPR2-BCL6 chimeric fusion gene rearrangement. MiR-17~92 members were upregulated ~15-fold over controls in a copy number independent manner consistent with structural deregulation. MIR17HG and ITPR2-BCL6 were, despite their close configuration, independently expressed, discounting antisense regulation. MIR17HG in t(3;13)t(12;13) cells proved highly responsive to treatment with histone deacetylase inhibitors implicating epigenetic deregulation, consistent with which increased histone-H3 acetylation was detected by chromatin immunoprecipitation near the upstream MIR17HG breakpoint. Remarkably, 5/6 DNA breaks in the t(3;13)t(12;13) precisely cut at stress-induced DNA duplex destabilization (SIDD) peaks reminiscent of chromosomal fragile sites, while the sixth lay 150 bp distant. Extended SIDD profiling showed that additional oncomiRs also map to SIDD peaks. Fluorescence in situ hybridization analysis showed that 11 of 52 (21%) leukemia-lymphoma (L-L) cell lines with 13q31 involvement bore structural rearrangements at/near MIR17HG associated with upregulation. As well as fueling genome instability, SIDD peaks mark regulatory nuclear-scaffold matrix attachment regions open to nucleosomal acetylation. Collectively, our data indict a specific DNA instability motif (SIDD) in chromosome rearrangement, specifically alterations activating miR-17~92 epigenetically via promoter hyperacetylation, and supply a model for the clustering of oncomiRs near cancer breakpoints. Copyright © 2011 Wiley-Liss, Inc.
Familial translocation involving chromosomes 1 and 9 in a patient with Philadelphia-positive CML
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, K.; Rosner, F.; Shanske, A.
1994-09-01
CML has provided a model for understanding the genetic basis of neoplasia. Approximately 5% of Philadelphia-positive patients have a variant chromosome rearrangement. We recently evaluated a patient with a previously unreported simple variant translocation that is part of a familial rearrangement. He had a constitutional translocation, t(1;9)(p21;p22), which was initially identified after his wife had a routine amniocentesis. Case report: K.H. was a 54-year-old male with CML for 4 years. He had been treated until recently with hydroxyurea. An abnormal male karyotype, 46,XY,t(1;9)(q21;p22),t(9;22)(q34;q11) was recorded from an unstimulated blood sample soon after diagnosis. Both translocations involved the same number 9more » homologue resulting in a derivative 9(1pter{r_arrow}1q21::9p22{r_arrow}9q34::22q11{r_arrow}22qter). A recent CT scan of the chest showed a lytic lesion of a rib with associated soft tissue mass in the right costo-vertebral angle. He was hospitalized for progressive pain in the right lower chest and fever, treated for a UTI, required multiple transfusions for declining hemoglobin and platelets and died shortly thereafter. Autopsy revealed widespread chloromas as part of terminal CML. At least 13 complex rearrangements involving chromosomes 1, 9 and 22 are known. Our case represents a unique rearrangement with a familial component and also unique breakpoints for a Philadelphia variant. In line with the current view of cancer as a clonal disorder, perhaps the constitutional translocation contributed to the multi-step nature of the malignant transformation. In fact, a number of cancer-specific breakpoints in both regions of 1p and 9p are involved in the familial translocation.« less
Dichotomy of Genetic Abnormalities in PEComas with Therapeutic Implications
Agaram, Narasimhan P; Sung, Yun-Shao; Zhang, Lei; Chen, Chun-Liang; Chen, Hsiao-Wei; Singer, Samuel; Dickson, Mark A.; Berger, Michael F.; Antonescu, Cristina R
2014-01-01
Perivascular epithelioid cell neoplasms (PEComa) are a family of rare mesenchymal tumors with hybrid myo-melanocytic differentiation. Although most PEComas harbor loss of function TSC1/TSC2 mutations, a small subset were reported to carry TFE3 gene rearrangements. As no comprehensive genomic study has addressed the molecular classification of PEComa, we sought to investigate by multiple methodologies the incidence and spectrum of genetic abnormalities and their potential genotype-phenotype correlations in a large group of 38 PEComas. The tumors were located in soft tissue (11 cases) and visceral sites (27) including uterus, kidney, liver, lung and urinary bladder. Combined RNA sequencing and Fluorescence In Situ Hybridization (FISH) analysis identified 9 (23%) TFE3 gene rearranged tumors, with 3 cases showing a SFPQ/PSF-TFE3 fusion and one case a novel DVL2-TFE3 gene fusion. The TFE3-positive lesions showed a distinctive nested/alveolar morphology and were equally distributed between soft tissue and visceral sites. Additionally, novel RAD51B gene rearrangements were identified in 3 (8%) uterine PEComas, which showed a complex fusion pattern and were fused to RRAGB/OPHN1 genes in two cases. Other non-recurrent gene fusions, HTR4-ST3GAL1 and RASSF1-PDZRN3, were identified in 2 cases. Targeted exome sequencing using the IMPACT assay was used to address if the presence of gene fusions are mutually exclusive from TSC gene abnormalities. TSC2 mutations were identified in 80% of the TFE3 fusion-negative cases tested. Co-existent TP53 mutations were identified in 63% of the TSC2 mutated PEComas. Our results showed that TFE3-rearranged PEComas lacked co-existing TSC2 mutations, indicating alternative pathways of tumorigenesis. In summary, this comprehensive genetic analysis significantly expands our understanding of molecular alterations in PEComas and brings forth the genetic heterogeneity of these tumors. PMID:25651471
Baum, Thierry-Pascal; Hierle, Vivien; Pasqual, Nicolas; Bellahcene, Fatena; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice Noël; Demongeot, Jacques
2006-01-01
Background Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract. Description IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(D)J genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at . Conclusion IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(D)J gene rearrangements and their applications in immune response analysis. PMID:16640788
Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies.
Šíchová, Jindra; Voleníková, Anna; Dincă, Vlad; Nguyen, Petr; Vila, Roger; Sahara, Ken; Marec, František
2015-05-19
Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3-4 W and 3-4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.
Fedorov, Dmitri G; Sugita, Yuji; Choi, Cheol Ho
2013-07-03
An efficient parallel implementation of QM/MM-based replica-exchange molecular dynamics (REMD) as well as umbrella samplings techniques was proposed by adopting the generalized distributed data interface (GDDI). Parallelization speed-up of 40.5 on 48 cores was achieved, making our QM/MM-MD engine a robust tool for studying complex chemical dynamics in solution. They were comparatively used to study the torsional isomerization of hydrogen peroxide in aqueous solution. All results by QM/MM-REMD and QM/MM umbrella sampling techniques yielded nearly identical potentials of mean force (PMFs) regardless of the particular QM theories for solute, showing that the overall dynamics are mainly determined by solvation. Although the entropic penalty of solvent rearrangements exists in cisoid conformers, it was found that both strong intermolecular hydrogen bonding and dipole-dipole interactions preferentially stabilize them in solution, reducing the torsional free-energy barrier at 0° by about 3 kcal/mol as compared to that in gas phase.
Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A
2017-01-01
RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.
XAS and XMCD investigation of Mn12 monolayers on gold.
Mannini, Matteo; Sainctavit, Philippe; Sessoli, Roberta; Cartier dit Moulin, Christophe; Pineider, Francesco; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante
2008-01-01
The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.
The Possibility of Improved and Higher Tc Superconductors in Hybrid Systems
2014-10-15
Approved for public release; distribution is unlimited. of the oxygen sub-lattice precisely in thin films and heterostrutures; which plays a pivotal role...to influence the structure-property affair in complex oxide thin films. We have focused our study to effectively control the oxygen position...that by varying precisely the thickness of SCO layers grown on SrTiO3, one can re-arrange the oxygen ions. In particular, we show that it is possible
Brüssel, Marc; di Dio, Philipp J.; Muñiz, Kilian; Kirchner, Barbara
2011-01-01
We carried out ab initio molecular dynamic simulations in order to determine the free energy surfaces of two selected reactions including solvents, namely a rearrangement of a ruthenium oxoester in water and a carbon dioxide addition to a palladium complex in carbon dioxide. For the latter reaction we also investigated the gas phase reaction in order to take solvent effects into account. We used two techniques to reconstruct the free energy surfaces: thermodynamic integration and metadynamics. Furthermore, we gave a reasonable error estimation of the computed free energy surface. We calculated a reaction barrier of ΔF = 59.5 ± 8.5 kJ mol−1 for the rearrangement of a ruthenium oxoester in water from thermodynamic integration. For the carbon dioxide addition to the palladium complex in carbon dioxide we found a ΔF = 44.9 ± 3.3 kJ mol−1 from metadynamics simulations with one collective variable. The investigation of the same reactions in the gas phase resulted in ΔF = 24.9 ± 6.7 kJ mol−1 from thermodynamic integration, in ΔF = 26.7 ± 2.3 kJ mol−1 from metadynamics simulations with one collective variable, and in ΔF = 27.1 ± 5.9 kJ mol−1 from metadynamics simulations with two collective variables. PMID:21541065
Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; Grob, Patricia; Nogales, Eva; Geissler, Phillip L.; Niyogi, Krishna K.; Bustamante, Carlos
2014-01-01
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets. PMID:25007326
Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; ...
2014-07-09
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arraysmore » according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.« less
An improved least cost routing approach for WDM optical network without wavelength converters
NASA Astrophysics Data System (ADS)
Bonani, Luiz H.; Forghani-elahabad, Majid
2016-12-01
Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.
Zou, Hong; Jakovlić, Ivan; Chen, Rong; Zhang, Dong; Zhang, Jin; Li, Wen-Xiang; Wang, Gui-Tang
2017-11-02
Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Toydemir, Reha; Rowe, Leslie; Hibbard, Michele; Salama, Mohamed; Shetty, Shashirekha
2010-09-01
Rearrangements of chromosome 3 involving bands 3q21 and 3q26 have been reported in about 2% of patients with acute myeloid leukemia, and rarely in myelodysplastic syndrome or chronic myelogenous leukemia (CML). To date, only six cases of inversion of both homologues have been reported. Loss of normal chromosome 3 and duplication of the inverted chromosome have been proposed as the most likely mechanism, but have not been shown experimentally. We present a 36-year-old male with an initial diagnosis of CML and resistance to imatinib mesylate. Chromosome analysis showed an inversion within the long arm of both homologues of chromosome 3 and an interstitial deletion within the long arm of one chromosome 7. The rearrangement of EVI1 locus on both homologues of chromosome 3 was confirmed by fluorescence in situ hybridization (FISH). Additional FISH studies showed a cryptic insertion of ABL1 into the BCR region, and subsequent duplication of the derivative chromosome 22. The single-nucleotide polymorphism array showed copy-neutral loss of heterozygosity on chromosomes 3 and 22, suggesting that a somatic repair mechanism is involved in the evolution of these genetic alterations. This case illustrates the complexity of genetic aberrations in neoplastic cells, and the value of array technology, used in concert with conventional cytogenetic methods, for a better understanding of the pathogenesis. 2010 Elsevier Inc. All rights reserved.
Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre
2017-01-01
High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829
Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel
2013-01-01
Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390
SAM-Dependent Enzyme-Catalysed Pericyclic Reactions in Natural Product Biosynthesis
Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi
2017-01-01
Pericyclic reactions are among the most powerful synthetic transformations to make multiple regioselective and stereoselective carbon-carbon bonds1. These reactions have been widely applied for the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centers2–6. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples, intramolecular Diels-Alder (IMDA) reaction7, Cope8 and Claisen rearrangements9, have been characterized. Here, we report the discovery of a S-adenosyl-L-methionine (SAM) dependent enzyme LepI that can catalyse stereoselective dehydration, bifurcating IMDA/hetero-DA (HDA) reactions via an ambimodal transition state, and a [3,3]-sigmatropic retro-Claisen rearrangement leading to the formation of dihydopyran core in the fungal natural product leporin10. Combined in vitro enzymatic characterization and computational studies provide evidence and mechanistic insight about how the O-methyltransferase-like protein LepI regulates the bifurcating biosynthetic reaction pathways (“direct” HDA and “byproduct recycle” IMDA/retro-Claisen reaction pathways) by utilizing SAM as the cofactor in order to converge to the desired biosynthetic end product. This work highlights that LepI is the first example of an enzyme catalysing a (SAM-dependent) retro-Claisen rearrangement. We suggest that more pericyclic biosynthetic enzymatic transformations are yet to be discovered in the intriguing enzyme toolboxes in Nature11, and propose an ever expanding role of the versatile cofactor SAM in enzyme catalysis. PMID:28902839
Chromosome Rearrangements Recovered following Transformation of Neurospora Crassa
Perkins, D. D.; Kinsey, J. A.; Asch, D. K.; Frederick, G. D.
1993-01-01
New chromosome rearrangements were found in 10% or more of mitotically stable transformants. This was shown for transformations involving a variety of different markers, vectors and recipient strains. Breakpoints were randomly distributed among the seven linkage groups. Controls using untransformed protoplasts of the same strains contained almost no rearrangements. A study of molecularly characterized Am(+) transformants showed that rearrangements are frequent when multiple ectopic integration events have occurred. In contrast, rearrangements are absent or infrequent when only the resident locus is restored to am(+) by a homologous event. Sequences of the transforming vector were genetically linked to breakpoints in 6 of 10 translocations that were examined using Southern hybridization or colony blots. PMID:8349106
Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.
Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi
2018-03-28
G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.
Cameron, Alex; Fisher, Brendan; Fisk, Nicholas; Hummel, Jessica; White, Jonathan M; Krenske, Elizabeth H; Rizzacasa, Mark A
2015-12-18
An approach to the dihydrooxepino[4,3-b]pyrrole core of diketopiperazine natural products which utilizes a vinyl pyrrole epoxide Cope rearrangement was investigated. It was found that an ester substituent on the epoxide was essential for the [3,3]-rearrangement to occur. Density functional calculations with M06-2X provided explanations for the effects of the pyrrole and ester groups on these rearrangements.
Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man
2014-01-01
The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.
Weng, Mao-Lun; Blazier, John C; Govindu, Madhumita; Jansen, Robert K
2014-03-01
Geraniaceae plastid genomes are highly rearranged, and each of the four genera already sequenced in the family has a distinct genome organization. This study reports plastid genome sequences of six additional species, Francoa sonchifolia, Melianthus villosus, and Viviania marifolia from Geraniales, and Pelargonium alternans, California macrophylla, and Hypseocharis bilobata from Geraniaceae. These genome sequences, combined with previously published species, provide sufficient taxon sampling to reconstruct the ancestral plastid genome organization of Geraniaceae and the rearrangements unique to each genus. The ancestral plastid genome of Geraniaceae has a 4 kb inversion and a reduced, Pelargonium-like small single copy region. Our ancestral genome reconstruction suggests that a few minor rearrangements occurred in the stem branch of Geraniaceae followed by independent rearrangements in each genus. The genomic comparison demonstrates that a series of inverted repeat boundary shifts and inversions played a major role in shaping genome organization in the family. The distribution of repeats is strongly associated with breakpoints in the rearranged genomes, and the proportion and the number of large repeats (>20 bp and >60 bp) are significantly correlated with the degree of genome rearrangements. Increases in the degree of plastid genome rearrangements are correlated with the acceleration in nonsynonymous substitution rates (dN) but not with synonymous substitution rates (dS). Possible mechanisms that might contribute to this correlation, including DNA repair system and selection, are discussed.
Cario, Gunnar; Zimmermann, Martin; Romey, Renja; Gesk, Stefan; Vater, Inga; Harbott, Jochen; Schrauder, André; Moericke, Anja; Izraeli, Shai; Akasaka, Takashi; Dyer, Martin J S; Siebert, Reiner; Schrappe, Martin; Stanulla, Martin
2010-07-01
High-level expression of the cytokine receptor-like factor 2 gene, CRLF2, in precursor B-cell acute lymphoblastic leukemia (pB-ALL) was shown to be caused by a translocation involving the IGH@ locus or a deletion juxtaposing CRLF2 with the P2RY8 promoter. To assess its possible prognostic value, CRLF2 expression was analyzed in 555 childhood pB-ALL patients treated according to the Acute Lymphoblastic Leukemia Berlin-Frankfurt-Münster 2000 (ALL-BFM 2000) protocol. Besides CRLF2 rearrangements, high-level CRLF2 expression was seen in cases with supernumerary copies of the CRLF2 locus. On the basis of the detection of CRLF2 rearrangements, a CRLF2 high-expression group (n = 49) was defined. This group had a 6-year relapse incidence of 31% plus or minus 8% compared with 11% plus or minus 1% in the CRLF2 low-expression group (P = .006). This difference was mainly attributable to an extremely high incidence of relapse (71% +/- 19%) in non-high-risk patients with P2RY8-CRLF2 rearrangement. The assessment of CRLF2 aberrations may therefore serve as new stratification tool in Berlin-Frankfurt-Münster-based protocols by identifying additional high-risk patients who may benefit from an intensified and/or targeted treatment.
A general heuristic for genome rearrangement problems.
Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni
2014-06-01
In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results.
Detection of gene expression changes at chromosomal rearrangement breakpoints in evolution
2012-01-01
Background We study the relation between genome rearrangements, breakpoints and gene expression. Genome rearrangement research has been concerned with the creation of breakpoints and their position in the chromosome, but the functional consequences of individual breakpoints remain virtually unknown, and there are no direct genome-wide studies of breakpoints from this point of view. A question arises of what the biological consequences of breakpoint creation are, rather than just their structural aspects. The question is whether proximity to the site of a breakpoint event changes the activity of a gene. Results We investigate this by comparing the distribution of distances to the nearest breakpoint of genes that are differentially expressed with the distribution of the same distances for the entire gene complement. We study this in data on whole blood tissue in human versus macaque, and in cerebral cortex tissue in human versus chimpanzee. We find in both data sets that the distribution of distances to the nearest breakpoint of "changed expression genes" differs little from this distance calculated for the rest of the gene complement. In focusing on the changed expression genes closest to the breakpoints, however, we discover that several of these have previously been implicated in the literature as being connected to the evolutionary divergence of humans from other primates. Conclusions We conjecture that chromosomal rearrangements occasionally interrupt the regulatory configurations of genes close to the breakpoint, leading to changes in expression. PMID:22536904
Ciuladaite, Zivile; Preiksaitiene, Egle; Utkus, Algirdas; Kučinskas, Vaidutis
2014-01-01
Large pericentric inversions in chromosome 10 are rare chromosomal aberrations with only few cases of familial inheritance. Such chromosomal rearrangements may lead to production of unbalanced gametes. As a result of a recombination event in the inversion loop, 2 recombinants with duplicated and deficient chromosome segments, including the regions distal to the inversion, may be produced. We report on 2 relatives in a family with opposite terminal chromosomal rearrangements of chromosome 10, i.e. rec(10)dup(10p)inv(10) and rec(10)dup(10q)inv(10), due to familial pericentric inversion inv(10)(p15.1q26.12). Based on array-CGH results, we characterized the exact genomic regions involved and compared the clinical features of both patients with previous reports on similar pericentric inversions and regional differences within 10p and 10q. The fact that both products of recombination are viable indicates a potentially high recurrence risk of unbalanced offspring. This report of unbalanced rearrangements in chromosome 10 in 2 generations confirms the importance of screening for terminal imbalances in patients with idiopathic intellectual disability by molecular cytogenetic techniques such as FISH, MLPA or microarrays. It also underlines the necessity for FISH to define structural characteristics of such cryptic intrachromosomal rearrangements and the underlying cytogenetic mechanisms. © 2014 S. Karger AG, Basel.
Gas-phase nitrosation of ethylene and related events in the C2H4NO+ landscape.
Gerbaux, Pascal; Dechamps, Noemie; Flammang, Robert; Nam, Pham Cam; Nguyen, Minh Tho; Djazi, Fayçal; Berruyer, Florence; Bouchoux, Guy
2008-06-19
The C2H4NO(+) system has been examined by means of quantum chemical calculations using the G2 and G3B3 approaches and tandem mass spectrometry experiments. Theoretical investigation of the C2H4NO(+) potential-energy surface includes 19 stable C2H4NO(+) structures and a large set of their possible interconnections. These computations provide insights for the understanding of the (i) addition of the nitrosonium cation NO(+) to the ethylene molecule, (ii) skeletal rearrangements evidenced in previous experimental studies on comparable systems, and (iii) experimental identification of new C2H4NO(+) structures. It is predicted from computation that gas-phase nitrosation of ethylene may produce C2H4(*)NO(+) adducts, the most stable structure of which is a pi-complex, 1, stabilized by ca. 65 kJ/mol with respect to its separated components. This complex was produced in the gas phase by a transnitrosation process involving as reactant a complex between water and NO(+) (H2O.NO(+)) and the ethylene molecule and fully characterized by collisional experiments. Among the other C 2H 4NO (+) structures predicted by theory to be protected against dissociation or isomerization by significant energy barriers, five were also experimentally identified. These finding include structures CH3CHNO(+) (5), CH 3CNOH (+) ( 8), CH3NHCO(+) (18), CH3NCOH(+) (19), and an ion/neutral complex CH2O...HCNH(+) (12).
Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc
2013-08-16
In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.
Zhao, Jing; Chen, Xiaotong; Zheng, Jing; Kong, Mei; Wang, Bo; Ding, Wei
2018-02-21
ROS1 immunohistochemistry (IHC) using D4D6 antibody is a useful tool for screening patients with non-small-cell lung cancer (NSCLC) who may be suitable for targeted therapy. Many studies and our data have identified cases that express the ROS1 protein strongly but are negative for ROS1 by fluorescence in-situ hybridisation (FISH). The present study investigated the driver mutation and clinicopathological characteristics of 26 discordant cases (ROS1 IHC-positive but FISH-negative) to find new clues for distinguishing real ROS1-rearranged cases. Tumours from 26 discordant cases were analysed for clinicopathological characteristics, mutations in EGFR, KRAS, ERBB2, BRAF and PIK3CA; fusions in ALK and RET; and amplifications in MET, ERBB2 and ROS1. ROS1-rearranged NSCLCs were significantly more likely to be found in younger patients and at an advanced stage; they showed cribriform features, extracellular mucus and psammoma bodies, whereas ROS1-discordant cases were found in older patients at a relatively early tumour-node-metastasis (TNM) stage and showed a lepidic growth pattern (all P < 0.001). Most ROS1-rearranged NSCLCs had no concurrent mutation, whereas 73% of discordant cases harboured genetic aberrations, including EGFR and ERBB2. Compared with general lung adenocarcinomas, ERBB-2 abnormality was disproportionately high in ROS1-discordant cases. Moreover, we optimised the scoring criteria for ROS1 IHC as 'H score > 150 and no concurrent mutations'; the specificity was then increased to 81.6%. Compared with ROS1-rearranged cases, ROS1-discordant patients showed distinct clinical and morphological features and often harboured another oncogenic driver alteration. The use of optimised screening criteria will increase the specificity of ROS1 antibody. © 2018 John Wiley & Sons Ltd.
Kodama, Tatsushi; Motoi, Noriko; Ninomiya, Hironori; Sakamoto, Hiroshi; Kitada, Kunio; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Nomura, Kimie; Nagano, Hiroko; Ishii, Nobuya; Terui, Yasuhito; Hatake, Kiyohiko; Ishikawa, Yuichi
2014-11-01
EML4-ALK is a driver oncogene in non-small-cell lung cancer (NSCLC) and has been developed into a promising molecular target for antitumor agents. Although EML4-ALK is reported to be formed by inversion of chromosome 2, other mechanisms of this gene fusion remain unknown. This study aimed to examine the mechanism of EML4-ALK rearrangement using a novel cell line with the EML4-ALK fusion gene. An EML4-ALK-positive cell line, termed JFCR-LC649, was established from pleomorphic carcinoma, a rare subtype of NSCLC. We investigated the chromosomal aberrations using fluorescence in situ hybridization and comparative genomic hybridization (CGH). Alectinib/CH5424802, a selective ALK inhibitor, was evaluated in the antitumor activity against JFCR-LC649 in vitro and in vivo xenograft model. We established an EML4-ALK-positive cell line, termed JFCR-LC649, derived from a patient with NSCLC and revealed that the JFCR-LC649 cells harbor variant 3 of the EML4-ALK fusion with twofold copy number gain. Interestingly, comparative genomic hybridization and metaphase-fluorescence in situ hybridization analysis showed that in addition to two normal chromosome 2, JFCR-LC649 cells contained two aberrant chromosome 2 that were fragmented and scattered. These observations provided the first evidence that EML4-ALK fusion in JFCR-LC649 cells was formed in chromosome 2 by a distinct mechanism of genomic rearrangement, termed chromothripsis. Furthermore, a selective ALK inhibitor alectinib/CH5424802 suppressed tumor growth of the JFCR-LC649 cells through inhibition of phospho-ALK in vitro and in vivo in a xenograft model. Our results suggested that chromothripsis may be a mechanism of oncogenic rearrangement of EML4-ALK. In addition, alectinib was effective against EML4-ALK-positive tumors with ALK copy number gain mediated by chromothripsis.
2013-01-01
Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no disadvantage in employing these genes for phylogenetic inference. PMID:24053406
ALK-rearranged pulmonary adenocarcinoma in Thai Patients: From diagnosis to treatment efficacy.
Incharoen, Pimpin; Reungwetwattana, Thanyanan; Saowapa, Sakditad; Kamprerasart, Kaettipong; Pangpunyakulchai, Duangjai; Arsa, Lalida; Jinawath, Artit
2016-05-03
Anaplastic lymphoma kinase (ALK) gene rearrangement is detected in 3% to 13% of non-small cell lung carcinoma patients, and these patients benefit from ALK inhibitors. The aim of this study was to determine the prevalence, the clinical and histological characteristics and the treatment outcomes of ALK-rearranged lung adenocarcinoma using immunohistochemistry (IHC) IHC, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) methodologies. A total of 268 pulmonary adenocarcinoma patients were screened for ALK expression by ALK IHC, which was confirmed by FISH and/or RT-PCR for ALK gene rearrangement. The treatment outcomes of ALK-rearranged patients were retrospectively reviewed. ALK gene rearrangement was identified in 26 cases (9.7%) with no EGFR co-mutation, and it showed significant associations with younger age, female sex and non-smoker status (p < 0.05). A cribriform growth pattern was identified as the dominant histologic feature, and a solid signet ring cell component was focally present in a minority of the cases. Among 12 ALK-rearranged patients with conventional treatment, seven cases in the early stage of disease were cured and alive, and five patients in the late stage of the disease progressed and died, with a median overall survival (OS) at 14 months. Of the 14 patients receiving crizotinib, all of them had clinical benefit from crizotinib treatment, with one patient having a complete response (CR), 12 patients having a partial response (PR) and one patient having stable disease (SD). On the cutoff date, six of 14 patients were continuing crizotinib treatment with a median time of response of 7.5 (3-13) months, while eight patients had disease progression, and five of them died with a median OS at 8 months. ALK gene rearrangement tended to occur in younger, non-smoking, female patients. ALK IHC is a reliable screening method to detect ALK gene rearrangement. Crizotinib therapy provided treatment benefit in ALK-rearranged adenocarcinoma patients especially in advanced stages of the disease.
Su, Xuan; He, Caiyun; Ma, Jiangjun; Tang, Tao; Zhang, Xiao; Ye, Zulu; Long, Yakang; Shao, Qiong
2016-01-01
RET/PTC rearrangements, resulting in aberrant activity of the RET protein tyrosine kinase receptor, occur exclusively in papillary thyroid cancer (PTC). In this study, we examined the association between RET/PTC rearrangements and thyroid hormone homeostasis, and explored whether concomitant diseases such as nodular goiter and Hashimoto's thyroiditis influenced this association. A total of 114 patients diagnosed with PTC were enrolled in this study. Thyroid hormone levels, clinicopathological parameters and lifestyle were obtained through medical records and surgical pathology reports. RET/PTC rearrangements were detected using TaqMan RT-PCR and validated by direct sequencing. No RET/PTC rearrangements were detected in benign thyroid tissues. RET/PTC rearrangements were detected in 23.68% (27/114) of PTC tissues. No association between thyroid function, clinicopathological parameters and lifestyle was observed either in total thyroid cancer patients or the subgroup of patients with concomitant disease. In the subgroup of PTC patients without concomitant disease, RET/PTC rearrangement was associated with multifocal cancer (P = 0.018). RET/PTC rearrangement was also correlated with higher TSH levels at one month post-surgery (P = 0.037). Based on likelihood-ratio regression analysis, the RET/PTC-positive PTC cases showed an increased risk of multifocal cancers in the thyroid gland (OR = 5.57, 95% CI, 1.39–22.33). Our findings suggest that concomitant diseases such as nodular goiter and Hashimoto's thyroiditis in PTC may be a confounding factor when examining the effects of RET/PTC rearrangements. Excluding the potential effect of this confounding factor showed that RET/PTC may confer an increased risk for the development of multifocal cancers in the thyroid gland. Aberrantly increased post-operative levels of TSH were also associated with RET/PTC rearrangement. Together, our data provides useful information for the treatment of papillary thyroid cancer. PMID:27802347
Brady, Brenna L; Bassing, Craig H
2011-09-15
Developmental stage-specific regulation of transcriptional accessibility helps control V(D)J recombination. Vβ segments on unrearranged TCRβ alleles are accessible in CD4(-)/CD8(-) (double-negative [DN]) thymocytes, when they recombine, and inaccessible in CD4(+)/CD8(+) (double-positive [DP]) thymocytes, when they do not rearrange. Downregulation of Vβ accessibility on unrearranged alleles is linked with Lat-dependent β-selection signals that inhibit Vβ rearrangement, stimulate Ccnd3-driven proliferation, and promote DN-to-DP differentiation. Transcription and recombination of Vβs on VDJβ-rearranged alleles in DN cells has not been studied; Vβs upstream of functional VDJβ rearrangements have been found to remain accessible, yet not recombine, in DP cells. To elucidate contributions of β-selection signals in regulating Vβ transcription and recombination on VDJβ-rearranged alleles, we analyzed wild-type, Ccnd3(-/-), and Lat(-/-) mice containing a preassembled functional Vβ1DJCβ1 (Vβ1(NT)) gene. Vβ10 segments located just upstream of this VDJCβ1 gene were the predominant germline Vβs that rearranged in Vβ1(NT/NT) and Vβ1(NT/NT)Ccnd3(-/-) thymocytes, whereas Vβ4 and Vβ16 segments located further upstream rearranged at similar levels as Vβ10 in Vβ1(NT/NT)Lat(-/-) DN cells. We previously showed that Vβ4 and Vβ16, but not Vβ10, are transcribed on Vβ1(NT) alleles in DP thymocytes; we now demonstrate that Vβ4, Vβ16, and Vβ10 are transcribed at similar levels in Vβ1(NT/NT)Lat(-/-) DN cells. These observations indicate that suppression of Vβ rearrangements is not dependent on Ccnd3-driven proliferation, and DN residence can influence the repertoire of Vβs that recombine on alleles containing an assembled VDJCβ1 gene. Our findings also reveal that β-selection can differentially silence rearrangement of germline Vβ segments located proximal and distal to functional VDJβ genes.
Immunoglobulin λ Gene Rearrangement Can Precede κ Gene Rearrangement
Berg, Jörg; Mcdowell, Mindy; Jäck, Hans-Martin; ...
1990-01-01
Imore » mmunoglobulin genes are generated during differentiation of B lymphocytes by joining gene segments. A mouse pre-B cell contains a functional immunoglobulin heavy-chain gene, but no light-chain gene. Although there is only one heavy-chain locus, there are two lightchain loci: κ and λ .t has been reported that κ loci in the germ-line configuration are never (in man) or very rarely (in the mouse) present in cells with functionally rearranged λ -chain genes. Two explanations have been proposed to explain this: (a) the ordered rearrangement theory, which postulates that light-chain gene rearrangement in the pre-B cell is first attempted at the κ locus, and that only upon failure to produce a functional κ chain is there an attempt to rearrange the λ locus; and (b) the stochastic theory, which postulates that rearrangement at the λ locus proceeds at a rate that is intrinsically much slower than that at the κ locus. We show here that λ -chain genes are generated whether or not the κ locus has lost its germ-line arrangement, a result that is compatible only with the stochastic theory.« less
Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations
Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D’Hont, Angélique
2017-01-01
Abstract Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. PMID:28575404
Yuan, Siqi; Zheng, Yuchi; Zeng, Xiaomao
2016-01-01
Recent improvements in next-generation sequencing (NGS) technologies can facilitate the obtainment of mitochondrial genomes. However, it is not clear whether NGS could be effectively used to reconstruct the mitogenome with high gene rearrangement. These high rearrangements would cause amplification failure, and/or assembly and alignment errors. Here, we choose two frogs with rearranged gene order, Amolops chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect the mitogenome assembly and alignment by using NGS. The mitogenomes with gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in the mitogenome of A. chunganensis and Q. boulengeri are typical neobatrachian pattern except for rearrangements at the position of “WANCY” tRNA genes cluster. Further, the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM. Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri. PMID:27994980
Drbalova, Jitka; Musilova, Petra; Kubickova, Svatava; Sebestova, Hana; Vahala, Jiri; Rubes, Jiri
2014-01-01
The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.
Seabury, Christopher M.; Dowd, Scot E.; Seabury, Paul M.; Raudsepp, Terje; Brightsmith, Donald J.; Liboriussen, Poul; Halley, Yvette; Fisher, Colleen A.; Owens, Elaine; Viswanathan, Ganesh; Tizard, Ian R.
2013-01-01
Data deposition to NCBI Genomes This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N’s). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds. PMID:23667475
Code of Federal Regulations, 2013 CFR
2013-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2012 CFR
2012-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2011 CFR
2011-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2010 CFR
2010-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2014 CFR
2014-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
A BAC clone fingerprinting approach to the detection of human genome rearrangements
Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco
2007-01-01
We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769
Lorenz, Susanne; Barøy, Tale; Sun, Jinchang; Nome, Torfinn; Vodák, Daniel; Bryne, Jan-Christian; Håkelien, Anne-Mari; Fernandez-Cuesta, Lynnette; Möhlendick, Birte; Rieder, Harald; Szuhai, Karoly; Zaikova, Olga; Ahlquist, Terje C.; Thomassen, Gard O. S.; Skotheim, Rolf I.; Lothe, Ragnhild A.; Tarpey, Patrick S.; Campbell, Peter; Flanagan, Adrienne
2016-01-01
In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies. PMID:26672768
Vargas, A Cristina; Selinger, Christina I; Satgunaseelan, Laveniya; Cooper, Wendy A; Gupta, Ruta; Stalley, Paul; Brown, Wendy; Soper, Judy; Schatz, Julie; Boyle, Richard; Thomas, David M; Tattersall, Martin H N; Bhadri, Vivek A; Maclean, Fiona; Bonar, S Fiona; Scolyer, Richard A; Karim, Rooshdiya Z; McCarthy, Stanley W; Mahar, Annabelle; O'Toole, Sandra A
2016-12-01
Recurrent Ewing sarcoma breakpoint region 1 (EWSR1) gene rearrangements characterize a select group of bone and soft tissue tumours. In our routine diagnostic practice with fluorescence in-situ hybridization (FISH), we have occasionally observed EWSR1 gene rearrangements in tumours not associated classically with EWSR1 translocations. This study aimed to review our institutional experience of this phenomenon and also to highlight the occurrence of unusual EWSR1 FISH signals (i.e. 5' centromeric region or 3' telomeric region signals) that do not fulfil the published diagnostic criteria for rearrangements. Using an EWSR1 break-apart probe, we performed FISH assays on formalin-fixed paraffin-embedded tissue sections from 135 bone and soft tissue specimens as part of their routine diagnostic work-up. EWSR1 gene rearrangements were identified in 51% of cases, 56% of which also showed an abnormal FISH signal pattern (in addition to classically rearranged signals). However, atypical FISH signals were present in 45% of the non-rearranged cases. In addition, we observed tumours unrelated to those described classically as EWSR1-associated that were technically EWSR1-rearranged in 6% of cases. Borderline levels of rearrangement (affecting 10-30% of lesional cells) were present in an additional 17% of these cases. While our study confirmed that FISH is a sensitive and specific tool in the diagnosis of EWSR1-associated tumours, atypical FISH signals and classical rearrangement in entities other than EWSR1-associated tumours can occur. Therefore, it is essential that the FISH result not be used as an isolated test, but must be evaluated in the context of clinical features, imaging, pathological and immunohistochemical findings. © 2016 John Wiley & Sons Ltd.
Clinical Activity of Alectinib in Advanced RET-Rearranged Non-Small Cell Lung Cancer.
Lin, Jessica J; Kennedy, Elizabeth; Sequist, Lecia V; Brastianos, Priscilla K; Goodwin, Kelly E; Stevens, Sara; Wanat, Alexandra C; Stober, Lisa L; Digumarthy, Subba R; Engelman, Jeffrey A; Shaw, Alice T; Gainor, Justin F
2016-11-01
Chromosomal rearrangements involving rearranged during transfection gene (RET) occur in 1% to 2% of NSCLCs and may confer sensitivity to rearranged during transfection (RET) inhibitors. Alectinib is an anaplastic lymphoma kinase tyrosine kinase inhibitor (TKI) that also has anti-RET activity in vitro. The clinical activity of alectinib in patients with RET-rearranged NSCLC has not yet been reported. We have described four patients with advanced RET-rearranged NSCLC who were treated with alectinib (600 mg twice daily [n = 3] or 900 mg twice daily [n = 1]) as part of single-patient compassionate use protocols or off-label use of the commercially available drug. Four patients with metastatic RET-rearranged NSCLC were identified. Three of the four had received prior RET TKIs, including cabozantinib and experimental RET inhibitors. In total, we observed two (50%) objective radiographic responses after treatment with alectinib (one confirmed and one unconfirmed), with durations of therapy of 6 months and more than 5 months (treatment ongoing), respectively. Notably, one of these two patients had his dose of alectinib escalated to 900 mg twice daily and had clinical improvement in central nervous system metastases. In addition, one patient (25%) experienced a best response of stable disease lasting approximately 6 weeks (the drug discontinued for toxicity). A fourth patient who was RET TKI-naive had primary progression while receiving alectinib. Alectinib demonstrated preliminary antitumor activity in patients with advanced RET-rearranged NSCLC, most of whom had received prior RET inhibitors. Larger prospective studies with longer follow-up are needed to assess the efficacy of alectinib in RET-rearranged NSCLC and other RET-driven malignancies. In parallel, development of more selective, potent RET TKIs is warranted. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G
2011-09-02
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.
Zhang, Fan; Saini, Adesh K.; Shin, Byung-Sik; Nanda, Jagpreet; Hinnebusch, Alan G.
2015-01-01
The translation preinitiation complex (PIC) is thought to assume an open conformation when scanning the mRNA leader, with AUG recognition evoking a closed conformation and more stable P site interaction of Met-tRNAi; however, physical evidence is lacking that AUG recognition constrains interaction of mRNA with the 40S binding cleft. We compared patterns of hydroxyl radical cleavage of rRNA by Fe(II)-BABE tethered to unique sites in eIF1A in yeast PICs reconstituted with mRNA harboring an AUG or near-cognate (AUC) start codon. rRNA residues in the P site display reduced cleavage in AUG versus AUC PICs; and enhanced cleavage in the AUC complexes was diminished by mutations of scanning enhancer elements of eIF1A that increase near-cognate recognition in vivo. This suggests that accessibility of these rRNA residues is reduced by accommodation of Met-tRNAi in the P site (PIN state) and by their interactions with the anticodon stem of Met-tRNAi. Our cleavage data also provide evidence that AUG recognition evokes dissociation of eIF1 from its 40S binding site, ejection of the eIF1A-CTT from the P-site and rearrangement to a closed conformation of the entry channel with reduced mobility of mRNA. PMID:25670678
NASA Astrophysics Data System (ADS)
Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard
2013-08-01
In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.
Wang, Hao; Liu, Jinghui; Lin, Shuyan; Wang, Beilei; Xing, Mingluan; Guo, Zonglou; Xu, Lihong
2014-10-01
Cyanobacteria-derived toxin microcystin-LR (MCLR) has been widely investigated in its effects on normal cells, there is little information concerning its effects on cancer cells. In the present study, the SMMC-7721 human liver cancer cell line treated with MCLR was used to investigate the change of PP2A, cytoskeleton rearrangement, phosphorylation levels of PP2A substrates that related with cytoskeleton stability and explored underlying mechanisms. Here, we confirmed that MCLR entered into SMMC-7721 cells, bound to PP2A/C subunit and inhibited the activity of PP2A. The upregulation of phosphorylation of the PP2A/C subunit and PP2A regulation protein α4, as well as the change in the association of PP2A/C with α4, were responsible for the decrease in PP2A activity. Another novel finding is that the rearrangement of filamentous actin and microtubules led by MCLR may attribute to the increased phosphorylation of HSP27, VASP and cofilin due to PP2A inhibition. As a result of weakened interactions with PP2A and alterations in its subcellular localization, Rac1 may contribute to the cytoskeletal rearrangement induced by MCLR in SMMC-7721 cells. The current paper presents the first report demonstrating the characteristic of PP2A in MCLR exposed cancer cells, which were more susceptible to MCLR compared with the normal cell lines we previously found, which may be owing to the absence of some type of compensatory mechanisms. The hyperphosphorylation of cytoskeleton-associated proteins and Rac1 inactivation which were induced by inhibition of PP2A are shown to be involved in cytoskeleton rearrangement. Copyright © 2014 Elsevier Ltd. All rights reserved.
MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia
Verboon, Lonneke J.; Obulkasim, Askar; de Rooij, Jasmijn D.E.; Katsman, Jenny E.; Sonneveld, Edwin; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Pieters, Rob; Cloos, Jacqueline; Kaspers, Gertjan J.L.; Klusmann, Jan-Henning; Zwaan, Christian Michel; Fornerod, Maarten; van den Heuvel-Eibrink, Marry M.
2016-01-01
The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosis-relapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLL-rearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements. PMID:27351222
Numerical Modelling Of The V-J Combinations Of The T Cell Receptor TRA/TRD Locus
Dariz, Aurélie; Baum, Thierry Pascal; Hierle, Vivien; Demongeot, Jacques; Marche, Patrice Noël; Jouvin-Marche, Evelyne
2010-01-01
T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity. PMID:20174554
New progress in snake mitochondrial gene rearrangement.
Chen, Nian; Zhao, Shujin
2009-08-01
To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction.
Miyaoka, Masashi; Kikuti, Yara Y; Carreras, Joaquim; Ikoma, Haruka; Hiraiwa, Shinichiro; Ichiki, Akifumi; Kojima, Minoru; Ando, Kiyoshi; Yokose, Tomoyuki; Sakai, Rika; Hoshikawa, Masahiro; Tomita, Naoto; Miura, Ikuo; Takata, Katsuyoshi; Yoshino, Tadashi; Takizawa, Jun; Bea, Silvia; Campo, Elias; Nakamura, Naoya
2018-02-01
Most high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements are aggressive B-cell lymphomas. Occasional double-hit follicular lymphomas have been described but the clinicopathological features of these tumors are not well known. To clarify the characteristics of double-hit follicular lymphomas, we analyzed 10 cases of double-hit follicular lymphomas and 15 cases of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements for clinicopathological and genome-wide copy-number alterations and copy-neutral loss-of-heterozygosity profiles. For double-hit follicular lymphomas, the median age was 67.5 years (range: 48-82 years). The female/male ratio was 2.3. Eight patients presented with advanced clinical stage. The median follow-up time was 20 months (range: 1-132 months). At the end of the follow-up, 8 patients were alive, 2 patients were dead including 1 patient with diffuse large B-cell lymphoma transformation. Rearrangements of MYC/BCL2, MYC/BCL6, and MYC/BCL2/BCL6 were seen in 8, 1, and 1 cases, respectively. The partner of MYC was IGH in 6 cases. There were no cases of histological grade 1, 4 cases of grade 2, 5 cases of grade 3a, and 1 case of grade 3b. Two cases of grade 3a exhibited immunoblast-like morphology. Immunohistochemistry demonstrated 9 cases with ≥50% MYC-positive cells. There was significant difference in MYC intensity (P=0.00004) and MIB-1 positivity (P=0.001) between double-hit follicular lymphomas and high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. The genome profile of double-hit follicular lymphomas was comparable with conventional follicular lymphomas (GSE67385, n=198) with characteristic gains of 2p25.3-p11.1, 7p22.3-q36.3, 12q11-q24.33, and loss of 18q21.32-q23 (P<0.05). In comparison with high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements, double-hit follicular lymphomas had fewer copy-number alterations and minimal common region of gain at 2p16.1 (70%), locus also significant against conventional follicular lymphomas (P=0.0001). In summary, double-hit follicular lymphomas tended to be high-grade histology, high MYC protein expression, high MYC/IGH fusion, and minimal common region of gain at 2p16.1. Double-hit follicular lymphomas seemed to be a different disease from high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements and have an indolent clinical behavior similar to follicular lymphomas without MYC rearrangement.
Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon
Kuhn, Patrick; Draycheva, Albena; Vogt, Andreas; Petriman, Narcis-Adrian; Sturm, Lukas; Drepper, Friedel; Warscheid, Bettina; Wintermeyer, Wolfgang
2015-01-01
Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex. PMID:26459600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg 2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg 2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg 2+ binds first to the M1 site as a complex with ATP and is followed by Mg 2+ binding to themore » M2 site. Furthermore, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less
Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.; ...
2015-11-12
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg 2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg 2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg 2+ binds first to the M1 site as a complex with ATP and is followed by Mg 2+ binding to themore » M2 site. Furthermore, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less
Analysis of splicing complexes on native gels.
Ares, Manuel
2013-10-01
Splicing requires a complex set of ATP-dependent macromolecular associations that lead to the rearrangement of just a few covalent bonds in the pre-mRNA substrate. Seeing only the covalent bonds breaking and forming is seeing only a very small part of the process. Analysis of native splicing complexes into which the radiolabeled substrate has been assembled, but not necessarily completely reacted, has provided a good understanding of the process. This protocol describes a gel method for detecting and analyzing yeast splicing complexes formed in vitro on a radiolabeled pre-mRNA substrate. Complexes formed during the splicing reaction are quenched by dilution and addition of an excess of RNA, which is thought to strip nonspecifically bound proteins from the labeled substrate RNA. After loading on a low-percentage, low-cross-linking ratio composite agarose-acrylamide gel (in 10% glycerol), labeled bands are detected. These can be extracted and shown to contain small nuclear RNAs (snRNAs) and partly reacted pre-mRNA.
10 CFR 2.909 - Rearrangement or suspension of proceedings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Rearrangement or suspension of proceedings. 2.909 Section 2.909 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND.../or National Security Information § 2.909 Rearrangement or suspension of proceedings. In any...
10 CFR 2.909 - Rearrangement or suspension of proceedings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Rearrangement or suspension of proceedings. 2.909 Section 2.909 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND.../or National Security Information § 2.909 Rearrangement or suspension of proceedings. In any...
An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides
DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.
2010-01-01
A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848