Sample records for comparative antimicrobial activity

  1. Semi-synthesis of dihydrochalcone derivatives and their in vitro antimicrobial activities.

    PubMed

    Awouafack, Maurice D; Kusari, Souvik; Lamshöft, Marc; Ngamga, Dieudonne; Tane, Pierre; Spiteller, Michael

    2010-04-01

    We describe the semi-synthesis of dihydrochalcone derivatives and their IN VITRO antimicrobial activities. These compounds were prepared by modifying two naturally occurring antimicrobial dihydrochalcones, erioschalcones A and B, reported by us earlier. The structures of the compounds were assigned on the basis of spectroscopic evidence and by comparing their physical and spectroscopic data with those reported in the literature. All the compounds were subjected to IN VITRO antimicrobial assays against a panel of pathogenic microorganisms, including gram-positive and gram-negative bacteria, and fungi. The antimicrobial efficacies of this class of compounds were established by correlating the activity profile of each compound with its structure and by comparing the activities of all the compounds with each other based on their structure. This should enable the development of other derivatives of the dihydrochalcone family that would serve as more potent antimicrobial agents against specific pathogens. Georg Thieme Verlag KG Stuttgart.New York.

  2. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria.

    PubMed

    Kraszewska, Joanna; Beckett, Michael C; James, Tharappel C; Bond, Ursula

    2016-07-15

    Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we screened plant peptide databases to identify peptides that share structural similarity with the human defensin peptide HBD3, which has known antimicrobial activity against food-spoiling bacteria. We show that two of the plant peptides display antimicrobial activity against bacteria associated with food spoilage. When combined with HBD3, the peptides are highly effective. We also analyzed the activity of an easily made ultrashort synthetic peptide, O3TR. We show that this small peptide also displays antimicrobial activity against food-spoiling bacteria but is not as effective as HBD3 or the plant peptides. The plant peptides identified are good candidates for development as natural additives to prevent food spoilage. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents.

    PubMed

    Chung, Shin-Hye; Cho, Soha; Kim, Kyungsun; Lim, Bum-Soon; Ahn, Sug-Joon

    2017-03-01

    To compare the antimicrobial and physical properties of experimental primers containing chlorhexidine (CHX) or ursolic acid (UA) with a commercial primer. Two antibacterial agents, 3 mg each of CHX and UA were incorporated respectively into 1 ml of Transbond XT primer (TX) to form antibacterial primers, TX-CHX and TX-UA. The antimicrobial activity of the three primers (TX, TX-CHX, and TX-UA) against Streptococcus mutans in both planktonic and biofilm phases was analyzed by determining minimum inhibitory and bactericidal concentrations and by performing growth and biofilm assays. Growth and biofilm assays were performed in both the absence and presence of thermocycling in a water tank to analyze the effects of water aging on the antimicrobial activities of primers. After bonding brackets onto bovine incisors using the primers, shear bond strength and mode of fracture were analyzed to compare physical properties. TX-CHX had stronger antimicrobial activity against S. mutans in the planktonic and biofilm phases than did TX or TX-UA. When applied, TX-CHX completely inhibited the growth and biofilm formation of S. mutans . In addition, the antimicrobial activity of TX-CHX was maintained after thermocycling. However, TX-UA did not show significant antimicrobial activity compared with TX. There was no significant difference in either shear bond strength or bond failure interface among the primers. Incorporation of CHX into an orthodontic primer may help prevent enamel demineralization around surfaces without compromising its physical properties.

  4. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis.

    PubMed

    Junevičius, Jonas; Žilinskas, Juozas; Česaitis, Kęstutis; Česaitienė, Gabrielė; Gleiznys, Darius; Maželienė, Žaneta

    2015-01-01

    In this study, we compared the antimicrobial activity of identical toothpastes differing only in silver or gold nanoparticles against the activity of one of the common toothpastes containing a chemical active ingredient. We also compared the active concentrations of the toothpastes. For this study, we selected "Royal Denta" toothpastes containing silver and gold particles, and the "Blend-A-Med Complete" toothpaste containing zinc citrate as the active ingredient. We used 8 standard microorganism cultures on the basis of their individual mechanisms of protection. The antimicrobial activity of each studied preparation was evaluated at 9 concentrations. Most effective against gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) was the "Silver Technology" – MIC was 0.004-0.0015 g/mL. Neither "Silver Technology" nor "Orange and Gold Technology" had any effect on Escherichia coli or Proteus mirabilis. Antimicrobial activity against the motile bacterium Proteus mirabilis was observed in "Silver Technology", "Orange and Gold Technology", and "Blend-A-Med Complete" – the MIC was 0.015 g/mL or lower. No antimicrobial activity against Candida albicans fungus at the studied concentrations was observed in the "Orange and Gold Technology". The toothpaste "Blend-A-Med" demonstrated the most effective antimicrobial activity - the MIC of 0.0015 g/mL and 0.015 g/mL inhibited Staphylococcus aureus and Enterococcus faecalis, respectively, and the MIC of 0.15 g/mL inhibited the growth of the bacteria Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and fungus Candida albicans. Silver in toothpaste has a greater antimicrobial effect than gold, but its effect is still inferior to that of a chemical antimicrobial agent.

  5. Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling.

    PubMed

    Han, Geon Goo; Song, Ahn Ah; Kim, Eun Bae; Yoon, Seong-Hyun; Bok, Jin-Duck; Cho, Chong-Su; Kil, Dong Yong; Kang, Sang-Kee; Choi, Yun-Jaie

    2017-07-01

    Pediococcus acidilactici is a widely used probiotic, and Salmonella enterica serovar Gallinarum (SG) is a significant pathogen in the poultry industry. In this study, we improved the antimicrobial activity of P. acidilactici against SG using UV mutation and genome shuffling (GS). To improve antimicrobial activity against SG, UV mutagenesis was performed against wild-type P. acidilactici (WT), and five mutants showed improved antimicrobial activity. To further improve antimicrobial activity, GS was performed on five UV mutants. Following GS, four mutants showed improved antimicrobial activity compared with the UV mutants and WT. The antimicrobial activity of GS1 was highest among the mutants; however, the activity was reduced when the culture supernatant was treated with proteinase K, suggesting that the improved antimicrobial activity is due to a proteinous substance such as bacteriocin. To validate the activity of GS1 in vivo, we designed multi-species probiotics and performed broiler feeding experiments. Groups consisted of no treatment (NC), avilamycin-treated (PC), probiotic group 1 containing WT (T1), and probiotic group 2 containing GS1 (T2). In broiler feeding experiments, coliform bacteria were significantly reduced in T2 compared with NC, PC, and T1. The cecal microbiota was modulated and pathogenic bacteria were reduced by GS1 oral administration. In this study, GS1 showed improved antimicrobial activity against SG in vitro and reduced pathogenic bacteria in a broiler feeding experiment. These results suggest that GS1 can serve as an efficient probiotic, as an alternative to antibiotics in the poultry industry.

  6. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration.

    PubMed

    Al-Bakri, Amal G; Afifi, Fatma U

    2007-01-01

    The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods.

  7. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses.

    PubMed

    Sreenivasan, P K; Haraszthy, V I; Zambon, J J

    2013-01-01

    This study evaluated the antimicrobial activity of two commercially available 0·05% cetylpyridinium chloride (CPC) mouthrinses with or without alcohol and examined its antimicrobial activity on oral bacterial species including fresh clinical isolates compared to a chlorhexidine mouthrinse and a control fluoride mouthrinse without CPC. Two different approaches were used to evaluate antimicrobial activity. First, the minimum inhibitory concentration (MIC) was determined for each mouthrinse against a panel of 25 micro-organisms including species associated with dental caries, gingivitis and periodontitis. Second, supragingival dental plaque obtained from 15 adults was incubated with the four mouthrinses to evaluate antimicrobial activity on micro-organisms in oral biofilms. Both CPC mouthrinses exhibited lower MIC's, that is, greater antimicrobial activity, against oral Gram-negative bacteria especially periodontal pathogens and species implicated in halitosis such as Aggregatibacter actinomycemcomitans, Campylobacter rectus, Eikenella corrodens, Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei than the control mouthrinse. Ex-vivo tests on supragingival plaque micro-organisms demonstrated significantly greater antimicrobial activity by the CPC mouthrinses (>90% killing, P < 0·001) and the chlorhexidine rinse (>98% killing, P < 0·05) compared to the control fluoride mouthrinse. Whilst the chlorhexidine mouthrinse was most effective, mouthrinses containing 0·05% CPC formulated with or without alcohol demonstrated broad-spectrum antimicrobial activity against both laboratory strains and supragingival plaque bacteria compared to a control mouthrinse without CPC. These in vitro and ex-vivo studies provide a biological rationale for previous clinical studies demonstrating the efficacy of CPC mouthrinses in reducing supragingival plaque and plaque-associated gingivitis. © 2012 The Society for Applied Microbiology.

  8. Preliminary phytochemical and antibacterial screening of Sesuvium portulacastrum in the United Arab Emirates.

    PubMed

    Al-Azzawi, Amad; Alguboori, Alyaa; Hachim, Mahmoud Y; Najat, M; Al Shaimaa, A; Sad, Maryam

    2012-10-01

    The present study describes the phytochemical profile and antimicrobial activity of Sesuvium portulacastrum. Three extracts of S. portulacastrum obtained by extraction in aqueous, ethanolic and dichloromethane solvents, respectively, were compared for their antimicrobial activity and ethanolic extract further subjected to gas chromatography-mass spectrometry (GC-MS) analysis to find out the nature of the compounds responsible for the antimicrobial activity. The antibacterial activities were assessed by measuring the diameter of the inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Compared to the aqueous and dichloromethane extract, the ethanolic extract showed better antimicrobial activity against Staphylococcus aureus and E. coli, indicating its potential application related to noscomial infections. GC-MS results revealed 22, 23-Dihydrostigmasterol, Benzoic acid, 3,4,5-trihydroxy-(Gallic acid), (2R,3R)-(-)-Epicatechin and Capsaicin in the ethanolic extract to be the molecules responsible for the antimicrobial activity of S. portulacastrum. To the best of our knowledge, this is the first report on analysis of antimicrobial components from S. portulacastrum in United Arab Emirates (UAE), and our results confer the utility of this plant extract in developing a novel broad spectrum antimicrobial agent.

  9. Antimicrobial activity of endophytic fungi from olive tree leaves.

    PubMed

    Malhadas, Cynthia; Malheiro, Ricardo; Pereira, José Alberto; de Pinho, Paula Guedes; Baptista, Paula

    2017-03-01

    In this study, the antimicrobial potential of three fungal endophytes from leaves of Olea europaea L. was evaluated and the host plant extract effect in the antimicrobial activity was examined. The volatile compounds produced by endophytes were identified by GC/MS and further correlated with the antimicrobial activity. In potato dextrose agar, both Penicillium commune and Penicillium canescens were the most effective inhibiting Gram-positive and -negative bacteria (up to 2.7-fold compared to 30 µg/mL chloramphenicol), whereas Alternaria alternata was most effective inhibiting yeasts (up to 8.0-fold compared to 25 μg/mL fluconazole). The presence of aqueous leaf extract in culture medium showed to induce or repress the antimicrobial activity, depending on the endophytic species. In the next step, various organic extracts from both A. alternata mycelium and cultured broth were prepared; being ethyl acetate extracts displayed the widest spectrum of anti-microorganisms at a minimum inhibitory concentration ≤0.095 mg/mL. The volatile composition of the fungi that displayed the highest (A. alternata) and the lowest (P. canescens) antimicrobial activity against yeasts revealed the presence of six volatiles, being the most abundant components (3-methyl-1-butanol and phenylethyl alcohol) ascribed with antimicrobial potentialities. Overall the results highlighted for the first time the antimicrobial potential of endophytic fungi from O. europaea and the possibility to be exploited for their antimicrobial agents.

  10. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

    PubMed Central

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto CP

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. PMID:26445537

  11. In-vitro antimicrobial activity and identification of bioactive components using GC-MS of commercially available essential oils in Saudi Arabia.

    PubMed

    Ashraf, Syed Amir; Al-Shammari, Eyad; Hussain, Talib; Tajuddin, Shaikh; Panda, Bibhu Prasad

    2017-11-01

    This study was designed to evaluate antimicrobial activity and chemical composition of four different plant essential oils i.e. Ginger oil (GiO), Black seed oil (BSO), Oregano oil (OO) and Rose oil (RO) against different bacterial and fungal strains. Anti-microbial activities of selected essential oils were determined by the microbiological technique using Agar well diffusion assay. After in vitro study, most of the essential oils showed antimicrobial activity against all the selected pathogens. Among all the tested oils, GiO showed strong antimicrobial activity. GiO showed highest antimicrobial activity against Shigella (119.79%), Enteococcus hirae (110.61%) and Escherichia coli (106.02%), when compared with the tetracycline (50 µg/mL) activity. However, Antifungal activity of GiO was found to be present against Candida albicans and Aspergilluas flavus , when compared with clotrimazole (50 µg/mL) activity. Among all the selected bacteria, BSO showed maximum antimicrobial activity against the E. coli followed by Citrobacter freundii. Moreover, BSO had highest zone of inhibition against the C. ablicans (33.58%). OO indicated that, Shigella had the highest sensitivity (12.6 ± 0.58, 131.25%), followed by E. hirae (19.1 ± 0.61, 96.46%) and Salmonella typhi (15.2 ± 0.27, 83.06%) when compared with tetracycline activity. OO showed poor sensitivity against all the selected fungal strains. Furthermore, Gas Chromatography analysis revealed that, Gingerol (10.86%) was the chief chemical constituents found in GiO followed by α -Sesquiphellandrene (6.29%), Zingiberene (5.88%). While, BSO, OO and RO had higher percentage of p-Cymene (6.90%), Carvacrol (15.87%) and Citronellol (8.07%) respectively. The results exhibited that the essential oils used for this study was the richest source for antimicrobial activity which indicates the presence of broad spectrum antimicrobial compounds in these essential oils. Hence, essential oils and their components can be recommended for therapeutic purposes as source of an alternative medicine.

  12. Antimicrobial Activity of 8-Quinolinols, Salicylic Acids, Hydroxynaphthoic Acids, and Salts of Selected Quinolinols with Selected Hydroxy-Acids

    PubMed Central

    Gershon, Herman; Parmegiani, Raulo

    1962-01-01

    Seventy-seven compounds were screened by the disc-plate method against strains of five bacteria and five fungi. A new constant was proposed to describe the antimicrobial activity of a compound in a defined system of organisms. This constant includes not only the inhibitory level of activity of the material but also the number of organisms inhibited. This constant, the antimicrobial spectrum index, was compared with the antimicrobial index of Albert. PMID:13898066

  13. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model.

    PubMed

    Paudel, Atmika; Panthee, Suresh; Urai, Makoto; Hamamoto, Hiroshi; Ohwada, Tomohiko; Sekimizu, Kazuhisa

    2018-01-25

    Poor pharmacokinetic parameters are a major reason for the lack of therapeutic activity of some drug candidates. Determining the pharmacokinetic parameters of drug candidates at an early stage of development requires an inexpensive animal model with few associated ethical issues. In this study, we used the silkworm infection model to perform structure-activity relationship studies of an antimicrobial agent, GPI0039, a novel nitrofuran dichloro-benzyl ester, and successfully identified compound 5, a nitrothiophene dichloro-benzyl ester, as a potent antimicrobial agent with superior therapeutic activity in the silkworm infection model. Further, we compared the pharmacokinetic parameters of compound 5 with a nitrothiophene benzyl ester lacking chlorine, compound 7, that exerted similar antimicrobial activity but had less therapeutic activity in silkworms, and examined the metabolism of these antimicrobial agents in human liver fractions in vitro. Compound 5 had appropriate pharmacokinetic parameters, such as an adequate half-life, slow clearance, large area under the curve, low volume of distribution, and long mean residence time, compared with compound 7, and was slowly metabolized by human liver fractions. These findings suggest that the therapeutic effectiveness of an antimicrobial agent in the silkworms reflects appropriate pharmacokinetic properties.

  14. Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions.

    PubMed

    Rajasekaran, Ganesan; Kamalakannan, Radhakrishnan; Shin, Song Yub

    2015-10-01

    Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL. TL-1 and TL-4 showed a little increase in antimicrobial selectivity, while TL-2 and TL-3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti-inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor-α (TNF-α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti-inflammatory activity is as follows: TL-2 ≈ TL-3 ≈ TL-4 > TL-1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti-inflammatory activity. These results apparently suggest that the anti-inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti-inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram-negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  15. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: A comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix.

    PubMed

    Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng

    2015-08-06

    We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity.

  16. Covalent Dimer Species of β-Defensin Defr1 Display Potent Antimicrobial Activity against Multidrug-Resistant Bacterial Pathogens▿

    PubMed Central

    Taylor, Karen; McCullough, Bryan; Clarke, David J.; Langley, Ross J.; Pechenick, Tali; Hill, Adrian; Campopiano, Dominic J.; Barran, Perdita E.; Dorin, Julia R.; Govan, John R. W.

    2007-01-01

    Beta defensins comprise a family of cationic, cysteine-rich antimicrobial peptides, predominantly expressed at epithelial surfaces. Previously we identified a unique five-cysteine defensin-related peptide (Defr1) that, when synthesized, is a mixture of dimeric isoforms and exhibits potent antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Here we report that Defr1 displays antimicrobial activity against an extended panel of multidrug-resistant nosocomial pathogens for which antimicrobial treatment is limited or nonexistent. Defr1 fractions were collected by high-pressure liquid chromatography and analyzed by gel electrophoresis and mass spectrometry. Antimicrobial activity was initially investigated with the type strain Pseudomonas aeruginosa PAO1. All fractions tested displayed equivalent, potent antimicrobial activity levels comparable with that of the unfractionated Defr1. However, use of an oxidized, monomeric six-cysteine analogue (Defr1 Y5C), or of reduced Defr1, gave diminished antimicrobial activity. These results suggest that the covalent dimer structure of Defr1 is crucial to antimicrobial activity; this hypothesis was confirmed by investigation of a synthetic one-cysteine variant (Defr1-1cys). This gave an activity profile similar to that of synthetic Defr1 but only in an oxidized, dimeric form. Thus, we have shown that covalent, dimeric molecules based on the Defr1 β-defensin sequence demonstrate antimicrobial activity even in the absence of the canonical cysteine motif. PMID:17353239

  17. Comparison of Antimicrobial Efficacy of Triclosan- Containing, Herbal and Homeopathy Toothpastes- An Invitro Study

    PubMed Central

    Fawaz, Mohammed Alimullah; Narahari, Rao; Shahela, Tanveer; Syed, Afroz

    2015-01-01

    Background Use of antimicrobial agents is one of the important strategies to prevent oral diseases. These agents vary in their abilities to deliver preventive and therapeutic benefits. Objectives This invitro study was conducted to assess antimicrobial efficacy of different toothpastes against various oral pathogens. Materials and Methods A total of nine toothpastes in three groups were tested for their antimicrobial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Streptococcus mutans (ATCC 0266P) and Candida albicans (Laboratory Strain) by modified agar well diffusion method. Statistical Analysis was performed using Minitab Software. A p-value of less than 0.05 was considered significant. Results Triclosan-based dental formulation with combination of fluoride (1000ppm) exhibited higher antimicrobial activity against test organisms than the combination of lower fluoride-concentration or sodium monofluorophosphate. Among herbal dentifrices, formulation containing Neem, Pudina, Long, Babool, Turmeric and Vajradanti showed significant antimicrobial activity against all the four tested microorganisms (p<0.05). However, against Streptococcus mutans, all three herbal products showed significant antimicrobial activity. Homeo products showed least antimicrobial activity on the tested strains. Formulation with kreosotum, Plantago major and calendula was significantly effective only against Streptococcus mutans. Conclusion In the present study, antimicrobial activity of the toothpaste containing both triclosan and fluoride (1000ppm) as active ingredients showed a significant difference (p< 0.05) against all four tested microflora compared to that of with lower fluoride-concentration or sodium monofluorophosphate. Of herbal groups, the only dentifrice containing several phytochemicals was found to be significantly effective and comparable to triclosan-fluoride (1000ppm) formulation. Thus, this herbal toothpaste can be used as alternative to triclosan-based formulations. However, these results might not be clinically useful unless tested invivo. PMID:26557516

  18. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity.

    PubMed

    Al-Zaydi, Khadijah M; Khalil, Hosam H; El-Faham, Ayman; Khattab, Sherine N

    2017-05-10

    Replacement of chloride ions in cyanuric chloride give several variants of 1,3,5-triazine derivatives which were investigated as biologically active small molecules. These compounds exhibit antimalarial, antimicrobial, anti-cancer and anti-viral activities, among other beneficial properties. On the other hand, treatment of bacterial infections remains a challenging therapeutic problem because of the emerging infectious diseases and the increasing number of multidrug-resistant microbial pathogens. As multidrug-resistant bacterial strains proliferate, the necessity for effective therapy has stimulated research into the design and synthesis of novel antimicrobial molecules. 1,3,5-Triazine 4-aminobenzoic acid derivatives were prepared by conventional method or by using microwave irradiation. Using microwave irradiation gave the desired products in less time, good yield and higher purity. Esterification of the 4-aminobenzoic acid moiety afforded methyl ester analogues. The s-triazine derivatives and their methyl ester analogues were fully characterized by FT-IR, NMR ( 1 H-NMR and 13 C-NMR), mass spectra and elemental analysis. All the synthesized compounds were evaluated for their antimicrobial activity. Some tested compounds showed promising activity against Staphylococcus aureus and Escherichia coli. Three series of mono-, di- and trisubstituted s-triazine derivatives and their methyl ester analogues were synthesized and fully characterized. All the synthesized compounds were evaluated for their antimicrobial activity. Compounds (10), (16), (25) and (30) have antimicrobial activity against S. aureus comparable to that of ampicillin, while the activity of compound (13) is about 50% of that of ampicillin. Compounds (13) and (14) have antimicrobial activity against E. coli comparable to that of ampicillin, while the activity of compounds (9-12) and (15) is about 50% of that of ampicillin. Furthermore, minimum inhibitory concentrations values for clinical isolates of compounds (10), (13), (14), (16), (25) and (30) were measured. Compounds (10) and (13) were more active against MRSA and E. coli than ampicillin. Invitro cytotoxicity results revealed that compounds (10) and (13) were nontoxic up to 250 µg/mL (with SI = 10) and 125 µg/mL (with SI = 5), respectively. Graphical abstract Three series of mono-, di- and trisubstituted s-triazine derivatives and their methyl ester analogues were synthesized and evaluated for their antimicrobial activity. Several compounds have antimicrobial activity against S. aureus and E. coli comparable to that of ampicillin.

  19. Antimicrobial and healing activity of kefir and kefiran extract.

    PubMed

    Rodrigues, Kamila Leite; Caputo, Lucélia Rita Gaudino; Carvalho, Jose Carlos Tavares; Evangelista, João; Schneedorf, Jose Maurício

    2005-05-01

    Kefir and its insoluble polysaccharide, kefiran, were both tested for antimicrobial and cicatrizing activities against several bacterial species and Candida albicans using an agar diffusion method. Comparator antimicrobials were also tested. Cicatrizing experiments were carried out on Wistar rats with induced skin lesions and Staphylococcus aureus inoculation, using a topical application of a 70% kefir gel. Both kefir and kefiran showed some activity against all organisms tested; the highest activity was against Streptococcus pyogenes. Cicatrizing experiments using 70% kefir gel had a protective effect on skin connective tissue and 7 days treatment enhanced wound healing compared with 5 mg/kg of neomycin-clostebol emulsion.

  20. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation.

    PubMed

    Lee, Ji-Soo; Hong, Da Young; Kim, Eun Suh; Lee, Hyeon Gyu

    2017-06-01

    The aims of this study were to improve the water solubility and antimicrobial activity of milk thistle silymarin by nanoencapsulation and to assess the functions of silymarin nanoparticle-containing film as an antimicrobial food-packaging agent. Silymarin nanoparticles were prepared using water-soluble chitosan (WCS) and poly-γ-glutamic acid (γ-PGA). As the WCS and silymarin concentrations increased, particle size and polydispersity index (PDI) significantly increased. Nanoencapsulation significantly improved the water solubility of silymarin 7.7-fold. Antimicrobial activity of silymarin was effectively improved when silymarin was entrapped within the nanocapsule compared to when it was not entrapped. Films incorporating silymarin nanoparticles had better antimicrobial activity than films incorporating free silymarin. The results suggest that silymarin nanoparticles have applications in antimicrobial food additives and food packing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vitro activity of ABT-492 against anaerobic bacteria.

    PubMed

    Sillerström, E; Wahlund, E; Nord, C E

    2004-06-01

    The purpose of the study was to determine the in vitro activity of ABT-492 compared with that of other antimicrobial agents against anaerobic bacteria. The activity of ABT-492 was investigated against 369 clinical isolates of anaerobic bacteria by the agar dilution method and was compared with that of moxifloxacin, piperacillin, cefoxitin, imipenem, clindamycin and metronidazole. ABT-492 and imipenem were the most active antimicrobial agents tested.

  2. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  3. Comparative evaluation of the antimicrobial efficacy of four chewing sticks commonly used in South India: an in vitro study.

    PubMed

    Elangovan, Arun; Muranga, Jayanthi; Joseph, Elizabeth

    2012-01-01

    The use of chewing sticks has been well documented since ancient times in India. Chewing sticks are a good alternative to the toothbrush for maintaining oral hygiene. The present study was designed and conducted to compare and evaluate the antimicrobial effects of the aqueous extracts of neem, miswak, mango, and banyan chewing sticks against two bacterial species considered the most important in the initiation and progression of dental caries, namely Streptococcus mutans and Lactobacillus acidophilus, respectively. Twigs of the above mentioned chewing sticks were sun dried and powdered, and sterile aqueous solutions of 10%, 25% and 50% concentrations were prepared. Culture plates for S mutans and L acidophilus were prepared and the growth was transferred to nutrient agar and Mueller-Hinton agar; antimicrobial activity of the extracts was tested after 72 h, using the disc diffusion method. Normal saline was used as control. The antimicrobial activity of neem, miswak, and mango extracts increased as their concentrations increased. Both banyan extract and saline showed no antimicrobial activity against the organisms tested. Based on the zones of inhibition, aqueous extracts of neem showed the most antimicrobial activity against S mutans, while miswak extracts showed superior antimicrobial activity against L acidophilus. We recommend further phytochemical and pharmacological studies to discover newer nonsynthetic tooth pastes and mouthwashes.

  4. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: A comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng

    2015-08-01

    We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity.

  5. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology.

    PubMed

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-02-15

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

  6. Antimicrobial Effect of Jasminum grandiflorum L. and Hibiscus rosa-sinensis L. Extracts Against Pathogenic Oral Microorganisms--An In Vitro Comparative Study.

    PubMed

    Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri

    2015-01-01

    To assess and compare the antimicrobial potential and determine the minimum inhibitory concentration (MIC) of Jasminum grandiflorum and Hibiscus rosa-sinensis extracts as potential anti-pathogenic agents in dental caries. Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum and Hibiscus rosa-sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus using the agar well diffusion method. The lowest concentration of every extract considered as the minimum inhibitory concentration (MIC) was determined for both test organisms. Statistical analysis was performed with one-way analysis of variance (ANOVA). At lower concentrations, hot ethanol Jasminum grandiflorum (10 μg/ml) and Hibiscus rosa-sinensis (25 μg/ml) extracts were found to have statistically significant (P≤0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 μg/ml and 25 μg/ml, respectively. A proportional increase in their antimicrobial activity (zone of inhibition) was observed. Both extracts were found to be antimicrobially active and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  7. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the results. Thus, broth microdilution and reduction percentage methods can be recommended as reliable and useful screening methods for determination of antimicrobial activity of PLGA nanoparticle formulations used particularly in drug delivery systems compared to both agar well and disk diffusion methods.

  8. Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced?

    PubMed

    Rohrer, Nadine; Widmer, Andreas F; Waltimo, Tuomas; Kulik, Eva M; Weiger, Roland; Filipuzzi-Jenny, Elisabeth; Walter, Clemens

    2010-07-01

    Use of oral antiseptics decreases the bacterial load in the oral cavity. To compare the antimicrobial activity of 3 novel oral antiseptics with that of chlorhexidine, which is considered the "gold standard" of oral hygiene. Comparative in vitro study. Four common oral microorganisms (Streptococcus sanguinis, Streptococcus mutans, Candida albicans, and Fusobacterium nucleatum) were tested under standard conditions and at different concentrations, by use of a broth dilution assay and an agar diffusion assay and by calculating the log10 reduction factor (RF). The antimicrobial activity of each antiseptic was assessed by counting the difference in bacterial densities (ie, the log10 number of colony-forming units of bacteria) before and after the disinfection process. The oral antiseptics containing octenidine (with an RF in the range of 7.1-8.24 CFU/mL) and polyhexamethylene biguanide (with an RF in the range of 7.1-8.24 CFU/mL) demonstrated antimicrobial activity comparable to that of chlorhexidine (with an RF in the range of 1.03-8.24 CFU/mL), whereas the mouth rinse containing Citroxx (Citroxx Biosciences; with an RF in the range of 0.22-1.36 CFU/mL) showed significantly weaker antimicrobial efficacy. Overall, octenidine and polyhexamethylene biguanide were more active at lower concentrations.conclusion. Oral antiseptics containing the antimicrobial agent octenidine or polyhexamethylene biguanide may be considered as potent alternatives to chlorhexidine-based preparations.

  9. Synthesis, evaluation and modeling of some triazolothienopyrimidinones as anti-inflammatory and antimicrobial agents.

    PubMed

    Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona Ma; El-Shoukrofy, Mai S; Bekhit, Alaa El-Din A; Ibrahim, Tamer M

    2017-06-01

    New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC 50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].

  10. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    PubMed

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha.

    PubMed

    Cetojevic-Simin, D D; Bogdanovic, G M; Cvetkovic, D D; Velicanski, A S

    2008-01-01

    To carry out a preliminary investigation of the biological activity of Kombucha beverages from Camellia sinensis L. (black tea) and Satureja montana L. (winter savory tea), that have consuming acidity. Cell growth effect was measured by sulforhodamine B colorimetric assay on HeLa (cervix epithelioid carcinoma), HT-29 (colon adenocarcinoma), and MCF-7 (breast adenocarcinoma). Antimicrobial activity to bacteria, yeasts and moulds was determined by agar-well diffusion method. Consuming Kombuchas had the most expressive antimicrobial activity against all investigated bacteria, except Sarcina lutea, while unfermented tea samples had no activity. Traditional Kombucha showed higher activity against Staphylococcus aureus and Escherichia coli than acetic acid, while both neutralized Kombuchas had bacteriostatic activity on Salmonella enteritidis. Examined Kombuchas did not stimulate cell proliferation of the investigated cell lines. Antiproliferative activity of winter savory tea Kombucha was comparable to that of traditional Kombucha made from black tea. Furthermore, in HeLa cell line Satureja montana L. Kombucha induced cell growth inhibition by 20% (IC20) at lower concentration compared to the activity of water extract of Satureja montana L. obtained in our previous research. Presence of more active antiproliferative component(s) in Satureja montana L. Kombucha compared to Satureja montana L. water extract and antimicrobial component(s) other than acetic acid in both Kombuchas is suggested.

  12. [In vitro studies on antioxidant and antimicrobial activities of polysaccharide from Lycoris aurea].

    PubMed

    Ru, Qiao-Mei; Pei, Zhen-Ming; Zheng, Hai-Lei

    2008-10-01

    To study the preliminary antioxidant and antimicrobial activities of polysaccharide extracted from Lycoris aurea. The scavenging activities of the polysaccharide in vitro on superoxide radical (O2-*), hydroxyl radical (*OH), alkyl radical (R*) and hydrogen peroxide (H2O2) were investigated by modified chemical systems. Meanwhile, the antimicrobial activities were tested using paper-discagar diffusion method. In general, the antioxidant activities of the polysaccharide were lower compared with Vc. However, the scavenging effects to *OH and H2O2 were parallel to Vc. Meanwhile, polysaccharide from Lycoris aurea had strong antimicrobial activities against Micrococcus luteus, Bacillus pumilus and Staphylococcus aureus. The polysaccharide extracted from L. aurea can scavenge *OH and H2O2 effectively and inhibit Gram-positive bacterias.

  13. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis

    PubMed Central

    Islam, Shawkat Md. Aminul; Ahmed, Kh Tanvir; Manik, Mohammad Kawsar; Wahid, Md. Arif; Kamal, Chowdhury Shafayat Ibne

    2013-01-01

    Objective To investigate the antioxidant, antimicrobial, cytotoxic and thrombolytic property of the fruits and leaves of Spondias dulcis (S. dulcis). Methods Methanolic extracts of fruits and leaves of S. dulcis were partitioned with chloroform and dichloromethane. The antioxidant potential of the crude extract and partitioned fractions were evaluated in terms of total phenolic content, total flavonoid content, DPPH radical scavenging potential, reducing potential and total antioxidant capacity by specific standard procedures. The antimicrobial activity was evaluated using disc diffusion method. The cytotoxicity was evaluated by using brine shrimp lethality bioassay and compared with vincristine sulfate. The thrombolytic activity was compared with streptokinase. Results The methanolic fruit extract exhibited the highest phenolic content, flavonoid content and antioxidant capacity, among the other extracts, with the highest DPPH radical scavenging activity at a concentration of 10 µg/mL (IC50: 1.91 µg/mL) and maximum reducing power at a concentration of 100 µg/mL (EC50: 3.58 µg/mL). Though all extract showed moderate antimicrobial activity against the bacterial strains, weak or no activity against fungus. The range of LC50 value of all extracts was 1.335-14.057 µg/mL which was far lower than the cut off index for cytotoxicity. All extracts exhibited statistically significant (P<0.001) thrombolytic activity. Conclusions Our study suggested that S. dulcis exhibits antimicrobial activities against a wide variety of strains while it possesses significant antioxidant, cytotoxic and thrombolytic activity. PMID:23998007

  14. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis.

    PubMed

    Islam, Shawkat Md Aminul; Ahmed, Kh Tanvir; Manik, Mohammad Kawsar; Wahid, Md Arif; Kamal, Chowdhury Shafayat Ibne

    2013-09-01

    To investigate the antioxidant, antimicrobial, cytotoxic and thrombolytic property of the fruits and leaves of Spondias dulcis (S. dulcis). Methanolic extracts of fruits and leaves of S. dulcis were partitioned with chloroform and dichloromethane. The antioxidant potential of the crude extract and partitioned fractions were evaluated in terms of total phenolic content, total flavonoid content, DPPH radical scavenging potential, reducing potential and total antioxidant capacity by specific standard procedures. The antimicrobial activity was evaluated using disc diffusion method. The cytotoxicity was evaluated by using brine shrimp lethality bioassay and compared with vincristine sulfate. The thrombolytic activity was compared with streptokinase. The methanolic fruit extract exhibited the highest phenolic content, flavonoid content and antioxidant capacity, among the other extracts, with the highest DPPH radical scavenging activity at a concentration of 10 µg/mL (IC50: 1.91 µg/mL) and maximum reducing power at a concentration of 100 µg/mL (EC50: 3.58 µg/mL). Though all extract showed moderate antimicrobial activity against the bacterial strains, weak or no activity against fungus. The range of LC50 value of all extracts was 1.335-14.057 µg/mL which was far lower than the cut off index for cytotoxicity. All extracts exhibited statistically significant (P<0.001) thrombolytic activity. Our study suggested that S. dulcis exhibits antimicrobial activities against a wide variety of strains while it possesses significant antioxidant, cytotoxic and thrombolytic activity.

  15. Antimicrobial Properties of Natural Phenols and Related Compounds

    PubMed Central

    Jurd, L.; King, A. D.; Mihara, K.; Stanley, W. L.

    1971-01-01

    Obtusastyrene (4-cinnamylphenol) displays effective antimicrobial activity in vitro against a variety of gram-positive bacteria, yeasts, and molds. The activity of obtusastyrene is not appreciably affected by pH, and its minimal inhibitory concentrations, 12 to 25 μg/ml for bacteria and 12 to 100 μg/ml for fungi, compare favorably with those of a number of synthetic, phenolic antimicrobial agents. PMID:5553287

  16. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology

    PubMed Central

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-01-01

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed. PMID:28212308

  17. Alternative Hand Contamination Technique To Compare the Activities of Antimicrobial and Nonantimicrobial Soaps under Different Test Conditions▿

    PubMed Central

    Fuls, Janice L.; Rodgers, Nancy D.; Fischler, George E.; Howard, Jeanne M.; Patel, Monica; Weidner, Patrick L.; Duran, Melani H.

    2008-01-01

    Antimicrobial hand soaps provide a greater bacterial reduction than nonantimicrobial soaps. However, the link between greater bacterial reduction and a reduction of disease has not been definitively demonstrated. Confounding factors, such as compliance, soap volume, and wash time, may all influence the outcomes of studies. The aim of this work was to examine the effects of wash time and soap volume on the relative activities and the subsequent transfer of bacteria to inanimate objects for antimicrobial and nonantimicrobial soaps. Increasing the wash time from 15 to 30 seconds increased reduction of Shigella flexneri from 2.90 to 3.33 log10 counts (P = 0.086) for the antimicrobial soap, while nonantimicrobial soap achieved reductions of 1.72 and 1.67 log10 counts (P > 0.6). Increasing soap volume increased bacterial reductions for both the antimicrobial and the nonantimicrobial soaps. When the soap volume was normalized based on weight (∼3 g), nonantimicrobial soap reduced Serratia marcescens by 1.08 log10 counts, compared to the 3.83-log10 reduction caused by the antimicrobial soap (P < 0.001). The transfer of Escherichia coli to plastic balls following a 15-second hand wash with antimicrobial soap resulted in a bacterial recovery of 2.49 log10 counts, compared to the 4.22-log10 (P < 0.001) bacterial recovery on balls handled by hands washed with nonantimicrobial soap. This indicates that nonantimicrobial soap was less active and that the effectiveness of antimicrobial soaps can be improved with longer wash time and greater soap volume. The transfer of bacteria to objects was significantly reduced due to greater reduction in bacteria following the use of antimicrobial soap. PMID:18441107

  18. Alternative hand contamination technique to compare the activities of antimicrobial and nonantimicrobial soaps under different test conditions.

    PubMed

    Fuls, Janice L; Rodgers, Nancy D; Fischler, George E; Howard, Jeanne M; Patel, Monica; Weidner, Patrick L; Duran, Melani H

    2008-06-01

    Antimicrobial hand soaps provide a greater bacterial reduction than nonantimicrobial soaps. However, the link between greater bacterial reduction and a reduction of disease has not been definitively demonstrated. Confounding factors, such as compliance, soap volume, and wash time, may all influence the outcomes of studies. The aim of this work was to examine the effects of wash time and soap volume on the relative activities and the subsequent transfer of bacteria to inanimate objects for antimicrobial and nonantimicrobial soaps. Increasing the wash time from 15 to 30 seconds increased reduction of Shigella flexneri from 2.90 to 3.33 log(10) counts (P = 0.086) for the antimicrobial soap, while nonantimicrobial soap achieved reductions of 1.72 and 1.67 log(10) counts (P > 0.6). Increasing soap volume increased bacterial reductions for both the antimicrobial and the nonantimicrobial soaps. When the soap volume was normalized based on weight (approximately 3 g), nonantimicrobial soap reduced Serratia marcescens by 1.08 log(10) counts, compared to the 3.83-log(10) reduction caused by the antimicrobial soap (P < 0.001). The transfer of Escherichia coli to plastic balls following a 15-second hand wash with antimicrobial soap resulted in a bacterial recovery of 2.49 log(10) counts, compared to the 4.22-log(10) (P < 0.001) bacterial recovery on balls handled by hands washed with nonantimicrobial soap. This indicates that nonantimicrobial soap was less active and that the effectiveness of antimicrobial soaps can be improved with longer wash time and greater soap volume. The transfer of bacteria to objects was significantly reduced due to greater reduction in bacteria following the use of antimicrobial soap.

  19. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review.

    PubMed

    Farrugia, Cher; Camilleri, Josette

    2015-04-01

    It has been reported that complete caries removal from cavities during restoration of teeth is difficult. Furthermore with the tissue saving approach it is expected that more of the saved affected tissue will possibly harbor more residual bacteria. Antimicrobial restorative filling materials would be ideal to prevent the spread of caries after completion of tooth restoration, thus preventing recurrent decay and eventually restoration failure. This paper reviews the literature on the antimicrobial properties of dental restorative filling materials. Pubmed searches on the antibacterial properties of restorative materials were carried out. Keywords were chosen to assess antibacterial properties of conventional filling materials. Methods of introducing antimicrobial agents in restorative materials were also reviewed together with the methodology used to assess antimicrobial activity. 174 articles from 1983 till 2014 were included. Adhesive materials have decreased antimicrobial activity when compared to amalgams and zinc oxides. Several techniques have been employed in order to increase the antimicrobial activity of restorative materials. Although antimicrobial activity of restorative materials is important, the introduction of antimicrobial agents/techniques should not be at the expense of other material properties. Environmental changes within a material may affect the bacterial response to the antimicrobial. Bacterial adhesion to the restorative materials should be assessed. Long term assessment of antimicrobial activity is important and is clinically relevant. The use of antimicrobial dental materials is important unless such characteristics are gained to the detriment of other material properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts

    NASA Astrophysics Data System (ADS)

    Akhir, Rabieatul Adawieah Md; Bakar, Mohd Fadzelly Abu; Sanusi, Shuaibu Babaji

    2017-10-01

    Bee bread and propolis are by-products of honey bee. The main objective of this research was to investigate the antioxidant and antimicrobial activity of stingless bee bread and propolis extracted using 70% ethanol and n-hexane. The antioxidant activity of the sample extracts were determined by spectrophotometry analysis while for the antimicrobial activity, the sample extracts were analyzed using disc diffusion and broth dilution assays. For DPPH and ABTS assays, the results showed that ethanolic extract of bee bread showed the highest free radical scavenging (%) as compared to other samples. However, FRAP values for both hexanic extracts are higher as compared to the ethanolic extracts. For disc diffusion assay, the results showed that the ethanolic extract of bee bread and propolis as well as hexanic extract of propolis were able to inhibit all tested bacteria. Meanwhile, broth dilution assay showed minimum inhibition zone (MIC) ranging from <6.67 to 33.33 µL/mL. As the conclusion, both bee bread and propolis produced by stingless bee in this study displayed antioxidant and antimicrobial effect but there are different in the degree of antioxidant and antimicrobial activity exhibited between each of the samples.

  1. Evaluation of anti-microbial activities of ZnO, citric acid and a mixture of both against Propionibacterium acnes.

    PubMed

    Bae, J Y; Park, S N

    2016-12-01

    In this study, anti-microbial activities of ZnO of three different particle sizes of citric acid (CA) and of mixtures of ZnO and CA were confirmed against Propionibacterium acnes. ZnO with the smallest particle size showed relatively high anti-microbial activity by disc diffusion assay and broth macrodilution assay. The mixtures of ZnO and CA also showed relatively high anti-microbial activity when the particle size of ZnO was the smallest. Furthermore, anti-microbial activities of ZnO, CA and the mixtures of ZnO and CA were compared through the checkerboard assay. The results indicated that a 1 : 1 ratio of ZnO and CA resulted in the highest anti-microbial activity. The substances were confirmed to have synergic anti-microbial effects. With the time-kill curve assay, the mixture of ZnO-containing CA reduced the surviving microbial content the most after 24 h. The results of our study suggest that ZnO may not only be an anti-microbial ingredient for the prevention of and treatment of acne. The results of our study suggest that ZnO may be an anti-microbial ingredient for the prevention of and treatment of acne when mixed with CA. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    PubMed

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  3. Comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain and aloe vera (all in gel formulation), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis: An in vitro study.

    PubMed

    Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy

    2012-07-01

    A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis-an in vitro study. The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5(th) day followed by aloe vera gel and papain gel.

  4. Antimicrobial effectiveness of oregano and sage essential oils incorporated into whey protein films or cellulose-based filter paper.

    PubMed

    Royo, Maite; Fernández-Pan, Idoya; Maté, Juan I

    2010-07-01

    In this study the antimicrobial effectiveness of oregano and sage essential oils (EOs) incorporated into two different matrices, whey protein isolate (WPI) and cellulose-based filter paper, was analysed. Antimicrobial properties of WPI-based films containing oregano and sage EOs were tested against Listeria innocua, Staphylococcus aureus and Salmonella enteritidis. Oregano EO showed antimicrobial activity against all three micro-organisms. The highest inhibition zones were against L. innocua. However, sage EO did not show antimicrobial activity against any of the micro-organisms. Antimicrobial activity was confirmed for both EOs using cellulose-based filter paper as supporting matrix, although it was significantly more intense for oregano EO. Inhibition surfaces were significantly greater when compared with those of the WPI films. This finding is likely due to the higher porosity and diffusivity of the active compounds in the filter paper. The interactions between the EOs and the films have a critical effect on the diffusivity of the active compounds and therefore on the final antimicrobial activity. As a result, to obtain active edible films, it is necessary to find the equilibrium point between the nature and concentration of the active compounds in the EO and the formulation of the film.

  5. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  6. Influence of Dimerization of Lipopeptide Laur-Orn-Orn-Cys-NH2 and an N-terminal Peptide of Human Lactoferricin on Biological Activity.

    PubMed

    Kamysz, Elżbieta; Sikorska, Emilia; Dawgul, Małgorzata; Tyszkowski, Rafał; Kamysz, Wojciech

    Lactoferrin (LF) is a naturally occurring antimicrobial peptide that is cleaved by pepsin to lactoferricin (LFcin). LFcin has an enhanced antimicrobial activity as compared to that of LF. Recently several hetero- and homodimeric antimicrobial peptides stabilized by a single disulfide bond linking linear polypeptide chains have been discovered. We have demonstrated that the S-S bond heterodimerization of lipopeptide Laur-Orn-Orn-Cys-NH 2 (peptide III) and the synthetic N -terminal peptide of human lactoferricin (peptide I) yields a dimer (peptide V), which is almost as microbiologically active as the more active monomer and at the same time it is much less toxic. Furthermore, it has been found that the S-S bond homodimerization of both peptide I and peptide III did not affect antimicrobial and haemolytic activity of the compounds. The homo- and heterodimerization of peptides I and III resulted in either reduction or loss of antifungal activity. This work suggests that heterodimerization of antimicrobial lipopeptides via intermolecular disulfide bond might be a powerful modification deserving consideration in the design of antimicrobial peptides.

  7. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    PubMed Central

    Steelandt, Julie; Salmon, Damien; Gilbert, Elodie; Almouazen, Eyad; Renaud, François NR; Roussel, Laurène; Haftek, Marek; Pirot, Fabrice

    2014-01-01

    Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration) as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC) suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus) and one fungal strain (Candida albicans) cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the production of nanomaterials exhibiting antimicrobial activity, suitable stability, and easily incorporable as a new ingredient in various pharmaceutical products. PMID:25278751

  8. New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatic studies.

    PubMed

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-08-20

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.

  9. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  10. [Comparative study of the antimicrobial effect of various cavity liners used in conservative dentistry].

    PubMed

    Pumarola Suñé, J; Espias Gómez, A; Canalda Sahli, C

    1989-01-01

    We have compared the microbiological activity of the following cavity liners: Life, Dycal II, Calcipulpe, Pure calcium hydroxide and Cavitec; against five different bacterial strains: Veillonella parvula, Bacteroides fragilis, Peptococcus s.p., Staphylococcus aureus, and Streptococcus beta hemolytic: The results demonstrate the higher antimicrobial activity of the manufactured cavity liners with calcium hydroxide base in comparison with the pure calcium hydroxide.

  11. Antimicrobial activity of spices.

    PubMed

    Arora, D S; Kaur, J

    1999-08-01

    Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.

  12. Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn.

    PubMed

    Apu, As; Muhit, Ma; Tareq, Sm; Pathan, Ah; Jamaluddin, Atm; Ahmed, M

    2010-01-01

    The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC(50) of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC(50) of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC(50) values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay.

  13. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe

    PubMed Central

    Bellik, Yuva

    2014-01-01

    Objective To compare in vitro antioxidant and antimicrobial activities of the essential oil and oleoresin of Zingiber officinale Roscoe. Methods The antioxidant activity was evaluated based on the ability of the ginger extracts to scavenge ABTS°+ free radical. The antimicrobial activity was studied by the disc diffusion method and minimal inhibitory concentration was determined by using the agar incorporation method. Results Ginger extracts exerted significant antioxidant activity and dose-depend effect. In general, oleoresin showed higher antioxidant activity [IC50=(1.820±0.034) mg/mL] when compared to the essential oil [IC50=(110.14±8.44) mg/mL]. In terms of antimicrobial activity, ginger compounds were more effective against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, and less effective against Bacillus cereus. Aspergillus niger was least, whereas, Penicillium spp. was higher sensitive to the ginger extracts; minimal inhibitory concentrations of the oleoresin and essential oil were 2 mg/mL and 869.2 mg/mL, respectively. Moreover, the studied extracts showed an important antifungal activity against Candida albicans. Conclusions The study confirms the wide application of ginger oleoresin and essential oil in the treatment of many bacterial and fungal diseases.

  14. Highly Stable Graphene-Based Nanocomposite (GO-PEI-Ag) with Broad-Spectrum, Long-Term Antimicrobial Activity and Antibiofilm Effects.

    PubMed

    Zhao, Rongtao; Kong, Wen; Sun, Mingxuan; Yang, Yi; Liu, Wanying; Lv, Min; Song, Shiping; Wang, Lihua; Song, Hongbin; Hao, Rongzhang

    2018-05-30

    Various silver nanoparticle (AgNP)-decorated graphene oxide (GO) nanocomposites (GO-Ag) have received increasing attention owing to their antimicrobial activity and biocompatibility; however, their aggregation in physiological solutions and the generally complex synthesis methods warrant improvement. This study aimed to synthesize a polyethyleneimine (PEI)-modified and AgNP-decorated GO nanocomposite (GO-PEI-Ag) through a facile approach through microwave irradiation without any extra reductants and surfactants; its antimicrobial activity was investigated on Gram-negative/-positive bacteria (including drug-resistant bacteria) and fungi. Compared with GO-Ag, GO-PEI-Ag acquired excellent stability in physiological solutions and electropositivity, showing substantially higher antimicrobial efficacy. Moreover, GO-PEI-Ag exhibited particularly excellent long-term effects, presenting no obvious decline in antimicrobial activity after 1 week storage in physiological saline and repeated use for three times and the lasting inhibition of bacterial growth in nutrient-rich culture medium. In contrast, GO-Ag exhibited a >60% decline in antimicrobial activity after storage. Importantly, GO-PEI-Ag effectively eliminated adhered bacteria, thereby preventing biofilm formation. The primary antimicrobial mechanisms of GO-PEI-Ag were evidenced as physical damage to the pathogen structure, causing cytoplasmic leakage. Hence, stable GO-PEI-Ag with robust, long-term antimicrobial activity holds promise in combating public-health threats posed by drug-resistant bacteria and biofilms.

  15. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  16. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  17. Antimicrobial activity of chemomechanical gingival retraction products.

    PubMed

    Hsu, Belinda; Lee, Stephanie; Schwass, Donald; Tompkins, Geoffrey

    2017-07-01

    Application of astringent hemostatic agents is the most widely used technique for gingival retraction, and a variety of products are offered commercially. However, these products may have additional unintended yet clinically beneficial properties. The authors assessed the antimicrobial activities of marketed retraction products against plaque-associated bacteria in both planktonic and biofilm assays, in vitro. The authors assessed hemostatic solutions, gels, pellets, retraction cords, pastes, and their listed active agents against a collection of microorganisms by means of conventional agar diffusion and minimum bacteriostatic and bactericidal concentration determinations. The authors then tested the most active products against monospecies biofilms grown on hydroxyapatite disks. All of the tested retraction products exhibited some antimicrobial activity. The results of the most active products were comparable with those of a marketed mouthwash. The listed retraction-active agents displayed relatively little activity when tested in pure form. At 10% dilution, some products evidenced inhibitory activity against most tested bacteria within 3 minutes of exposure, whereas others displayed variable effects after 10 minutes. The most active agents reduced, but did not completely prevent, the metabolic activity of a monospecies biofilm. Commercial gingival retraction products exhibit antimicrobial effects to various degrees in vitro. Some products display rapid bactericidal activity. The antimicrobial activity is not owing to the retraction-active agents. Biofilm bacteria are less sensitive to the antimicrobial effects of the agents. The rapidity of killing by some hemostatic agents suggests an antimicrobial effect that may be efficacious during clinical placement. The results of this in vitro study suggest that clinicians should be aware of the potential antimicrobial effects of some hemostatic agents, but more research is needed to confirm these observations in clinical use. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  18. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memariani, Hamed; Shahbazzadeh, Delavar; Sabatier, Jean-Marc

    Antimicrobial peptides are attractive candidates for developing novel therapeutic agents, since they are lethal to a broad spectrum of pathogens and have a unique low tendency for resistance development. In this study, mechanism of action and in vitro anti-pseudomonal activity of previously designed short hybrid antimicrobial peptide PV3 were investigated. Compared to ceftazidime, PV3 had not only higher antibacterial activity but also faster bactericidal activity. PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. Although the antimicrobial activity of PV3 was reduced in Mueller-Hinton broth (MHB) containing human serum, it was still active enough to eradicationmore » of bacteria at low concentrations. Compared with standard condition (MHB only), there was no significant decrease in antibacterial activity of PV3 against P. aeruginosa strains under 150 mM NaCl (p = 0.615) and 1 mM MgCl{sub 2} (p = 0.3466). Fluorescence microscopy and field emission scanning electron microscopy further indicated that PV3 killed bacteria by disrupting the cell membrane. Since PV3 has potent anti-pseudomonal activity and has little cytotoxicity in vitro, it seems plausible that the peptide should be further investigated with animal studies to support future pharmacological formulations and potential topical applications. - Highlights: • PV3 killed Pseudomonas aeruginosa by membrane-disrupting mechanism. • PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. • Short hybrid antimicrobial peptide PV3 exhibited higher and faster bactericidal activity comparing to ceftazidime.« less

  19. Phytochemical and antimicrobial study of an antidiabetic plant: Scoparia dulcis L.

    PubMed

    Latha, M; Ramkumar, K M; Pari, L; Damodaran, P N; Rajeshkannan, V; Suresh, T

    2006-01-01

    The antimicrobial and antifungal effects of different concentrations of chloroform/methanol fractions of Scoparia dulcis were investigated. The isolated fractions were tested against different bacteria like Salmonella typhii, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Proteus vulgaris and fungal strains such as Alternaria macrospora, Candida albicans, Aspergillus niger, and Fusarium oxysporum. The isolated fractions exhibited significant antimicrobial and antifungal activity against all the tested organisms compared with respective reference drugs. The isolated fractions of S. dulcis showed properties like antimicrobial and antifungal activities that will enable researchers in turn to look for application-oriented principles.

  20. Fractionation of Mastic Gum in Relation to Antimicrobial Activity.

    PubMed

    Sharif Sharifi, Mohammad; Hazell, Stuart Loyd

    2009-04-01

    Mastic gum is a viscous light-green liquid obtained from the bark of Pistacia lentiscus var. chia. which belongs to the Anacardiaceae family. The gum has been fractionated to investigate the antimicrobial activity of the whole gum and its fractions against various strains of Helicobacter pylori. The polymeric gum fraction was separated from the essential oil and the resin (trunk exudates without essential oil) to assess and compare the anti-H. pylori activity of the polymer fraction against lower molecular weight fractions, the gum itself and masticated gum. The polymer fraction was also oxidized and assessed for antimicrobial activity.

  1. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters.

    PubMed

    Kuś, P M; Szweda, P; Jerković, I; Tuberoso, C I G

    2016-03-01

    The use of honey as an antimicrobial agent gains importance due to often ineffectiveness of conventional treatment. However, activity of honey depends mainly on its botanical and geographical origin. To date, antimicrobial potential of Polish honeys has not yet been entirely investigated. In this study, 37 unifloral samples of 14 honey types (including rare varieties) from Poland were analysed and compared with manuka honey. The most active were cornflower, thyme and buckwheat honeys. Their MICs ranged from 3·12 to 25·00%, (depending on tested micro-organism) and often were lower than for manuka honey. Additionally, colour, antioxidant activity, total phenols, pH and conductivity were assessed and significant correlations (P < 0·05) of MICs with several parameters were found. The most active were darker honeys, with strong yellow colour component, rich in phenolics, with high conductivity and water content. The honey antibacterial properties depended mainly on peroxide mechanism and were vulnerable to excessive heating, but quite stable during storage in cold. A number of honey samples showed potential as effective antimicrobial agents. The observed correlations of MICs and physical-chemical parameters help to understand better the factors impacting the antibacterial activity. Honey is a promising agent in the treatment of non-healing infected wounds. Thirty-seven unifloral samples of 14 honey varieties from Poland were analysed for their antimicrobial activity and compared with manuka honey. Several honey types exert even higher antimicrobial potential and could be introduced to wound therapy. Additionally, positive correlations of the antimicrobial activity were found, especially with yellow colour and could be important in the search and screening of the honey active against Escherichia coli. © 2015 The Society for Applied Microbiology.

  2. Comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain and aloe vera (all in gel formulation), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis: An in vitro study

    PubMed Central

    Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy

    2012-01-01

    Aim: A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis—an in vitro study. Materials and Methods: The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. Results: The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Conclusion: Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5th day followed by aloe vera gel and papain gel. PMID:22876022

  3. External immunity in ant societies: sociality and colony size do not predict investment in antimicrobials

    PubMed Central

    Halawani, Omar; Pearson, Bria; Mathews, Stephanie; López-Uribe, Margarita M.; Dunn, Robert R.; Smith, Adrian A.

    2018-01-01

    Social insects live in dense groups with a high probability of disease transmission and have therefore faced strong pressures to develop defences against pathogens. For this reason, social insects have been hypothesized to invest in antimicrobial secretions as a mechanism of external immunity to prevent the spread of disease. However, empirical studies linking the evolution of sociality with increased investment in antimicrobials have been relatively few. Here we quantify the strength of antimicrobial secretions among 20 ant species that cover a broad spectrum of ant diversity and colony sizes. We extracted external compounds from ant workers to test whether they inhibited the growth of the bacterium Staphylococcus epidermidis. Because all ant species are highly social, we predicted that all species would exhibit some antimicrobial activity and that species that form the largest colonies would exhibit the strongest antimicrobial response. Our comparative approach revealed that strong surface antimicrobials are common to particular ant clades, but 40% of species exhibited no antimicrobial activity at all. We also found no correlation between antimicrobial activity and colony size. Rather than relying on antimicrobial secretions as external immunity to control pathogen spread, many ant species have probably developed alternative strategies to defend against disease pressure. PMID:29515850

  4. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters.

    PubMed

    Heleno, Sandrina A; Ferreira, Isabel C F R; Esteves, Ana P; Ćirić, Ana; Glamočlija, Jasmina; Martins, Anabela; Soković, Marina; Queiroz, Maria João R P

    2013-08-01

    Mushroom extracts or isolated compounds may be useful in the search of new potent antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and demelanizing activities were evaluated and compared to the parent acids and G. lucidum extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even better than the one showed by commercial standards. Despite the variation in the order of parent acids and the protected glucuronide derivatives, their antimicrobial activity was always higher than the one revealed by the extract. Nevertheless, the extract was the only one with demelanizing activity against Aspergillus niger. The acetylated glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which circulate in the human organism as products of the metabolism of the parent compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The in vitro antimicrobial activity of natural infant fluoride-free toothpastes on oral micro-organisms.

    PubMed

    Carvalho, Fabíola G; Negrini, Thais De Cássia; Sacramento, Luis Victor S; Hebling, Josimeri; Spolidorio, Denise M P; Duque, Cristiane

    2011-01-01

    The objective of this study was to evaluate the antimicrobial activity of six toothpastes for infants: 3 fluoride-free experimental toothpastes--cashew-based, mango-based and without plant extract and fluoride compared with 2 commercially fluoride-free toothpastes and 1 fluoridated toothpastes. Six toothpastes for infants were evaluated in this study: (1) experimental cashew-based toothpaste; (2) experimental mango-based toothpaste; (3) experimental toothpaste without plant extract and fluoride (negative control); (4) First Teeth brand toothpaste; (5) Weleda brand toothpaste; and (6) Tandy brand toothpaste (positive control). The antimicrobial activity was recorded against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, and Candida albicans using the agar plate diffusion test. First Teeth, Weleda, mango-based toothpaste, and toothpaste without plant extract presented no antimicrobial effect against any of the tested micro-organisms. Cashew toothpaste had antimicrobial activity against S mutans, S sobrinus, and L acidophilus, but it showed no antimicrobial activity against C albicans. There was no statistical difference between the inhibition halo of cashew and Tandy toothpastes against S mutans and L acidophilus. Cashew fluoride-free toothpaste had inhibitory activity against Streptococcus mutans and Lactobacillus acidophilus, and these results were similar to those obtained for fluoridated toothpaste.

  6. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces.

    PubMed

    Zheng, Wei; Zhang, Yu; Lu, Hui-Min; Li, Dan-Ting; Zhang, Zhi-Liang; Tang, Zhen-Xing; Shi, Lu-E

    2015-05-12

    The objective of this paper was to study antimicrobial activity and safety of Enterococcus faecium KQ 2.6 (E. faecium KQ 2.6) isolated from peacock feces. Agar well diffusion method was adopted in antimicrobial activity assay. Disk diffusion test was used to determine the antibiotic resistance. The identification and virulence potential of E. faecium KQ 2.6 were investigated using PCR amplification. The results indicated that cell free supernatant (CFS) of the strain had the good antimicrobial activity against selected gram-positive and gram-negative bacteria. The biochemical characteristics of antimicrobial substances were investigated. The results indicated that the antimicrobial substances were still active after treatment with catalase and proteinase, respectively. Moreover, the stability of antimicrobial substances did not change after heat treatment at 40, 50, 60, 70 and 80°C for 30 min, respectively. The activity of antimicrobial substances remained stable at 4 and -20°C after long time storage. The antimicrobial activity of CFS was compared with that of the buffer with similar strength and pH. The inhibitory zone of the buffer was apparently smaller than that of CFS, which meant that the acid in CFS was not the only factor that was contributed to antibacterial activity of CFS. The antibiotic resistance and virulence potential were evaluated using disk diffusion test and PCR amplification. The results showed that E. faecium KQ 2.6 did not harbor any tested virulence genes such as gelE, esp, asa1, cylA, efaA and hyl. It was susceptible to most of tested antibiotics except for vancomycin and polymyxin B. E. faecium KQ 2.6 may be used as bio-preservative cultures for the production of fermented foods.

  7. Potential of Piper betle extracts on inhibition of oral pathogens.

    PubMed

    Phumat, Pimpak; Khongkhunthian, Sakornrat; Wanachantararak, Phenphichar; Okonogi, Siriporn

    2017-01-01

    In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.

  8. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells.

    PubMed

    Bankier, Claire; Cheong, Yuen; Mahalingam, Suntharavathanan; Edirisinghe, Mohan; Ren, Guogang; Cloutman-Green, Elaine; Ciric, Lena

    2018-01-01

    Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.

  9. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    PubMed

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  10. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro.

    PubMed

    Tirali, Resmiye E; Bodur, Haluk; Sipahi, Bilge; Sungurtekin, Elif

    2013-04-01

    The objective of this study was to compare the antimicrobial activity of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX) and octenidine hydrochloride (OCT) in different concentrations against endodontic pathogens in vitro. Agar diffusion procedure was used to determine the antimicrobial activity of the tested materials. Enterococcus faecalis, Candida albicans and the mixture of these were used for this study. In the agar diffusion test, 5.25% NaOCl exhibited better antimicrobial effect than the other concentrations of NaOCl for all strains. All concentrations of OCT were effective against C. albicans and E. faecalis. Some 0.2% CHX was ineffective on all microorganisms. Antibacterial effectiveness of all experimental solutions decreased on the mixture of all strains. Decreasing concentrations of NaOCl resulted in significantly reduced antimicrobial effect. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  11. Comparative activity of silver based antimicrobial composites for urinary catheters.

    PubMed

    Thokala, Nikhil; Kealey, Carmel; Kennedy, James; Brady, Damien B; Farrell, Joseph

    2018-04-04

    Biomedical polymers are an integral component in a wide range of medical device designs due to their range of desirable properties. However, extensive use of polymer materials in medical devices have also been associated with an increasing incidence of patient infections. Efforts to address this issue have included the incorporation of antimicrobial additives for developing novel antimicrobial polymeric materials. Silver with its high toxicity towards bacteria, oligodynamic effect and good thermal stability has been employed as an additive for polymeric medical devices. In the present study, commercially available elemental (Biogate) and ionic (Ultrafresh 16) silver additives were incorporated into a Polyamide 11 (PA 11) matrix using a compression press. These polymer composites were evaluated for their antimicrobial and ion release properties. Elemental silver composites were determined to retain their antimicrobial properties for extended periods and actively release silver ions for 84 days; whereas the ionic silver composites lost their ion release activity and therefore antibacterial activity after 56 days. Bacterial log reduction units of 3.87 for ionic silver and 2.41 for elemental silver was identified within 24 hr, when tested in accordance with ISO 22196 test standard; indicating that ionic silver is more efficient for short-term applications compared to elemental silver. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    PubMed

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  13. Anti-microbial activity and composition of manuka and portobello honey.

    PubMed

    Schneider, Monika; Coyle, Shirley; Warnock, Mary; Gow, Iain; Fyfe, Lorna

    2013-08-01

    Recently renewed interest in the therapeutic properties of honey has led to the search for new antimicrobial honeys. This study was undertaken to assess the antimicrobial activity and composition of a locally produced Portobello honey (PBH) on three bacteria known to infect wounds. Manuka honey (MH) was used for comparative purposes. Broth culture and agar disc diffusion assays were used to investigate the antimicrobial properties of honey. The honeys were tested at four concentrations: 75%, 50%, 10% and 1% (v/v) and compared with an untreated control. The composition of honey was determined by measuring: polyphenol content by Folin Ciocalteau method, antioxidant capacity by ferric ion reducing power assay, hydrogen peroxide (H2 O2 ) by catalase test, pH and sugar content by pH strips and refractometer, respectively. Both honeys at 75% and 50% inhibited the majority of the three bacteria tested. 10% PBH exhibited antimicrobial activity to the lesser extent than 10% MH. The difference was very significant (p ≤ 0.001). Both honeys were acidic with pH 4, and both produced H2 O2 . The sugar content of PBH was higher than MH, but the difference was not significant. The MH had significantly higher levels of the polyphenols and antioxidant activity than PBH. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn

    PubMed Central

    Apu, AS; Muhit, MA; Tareq, SM; Pathan, AH; Jamaluddin, ATM; Ahmed, M

    2010-01-01

    The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC50 of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC50 of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC50 values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay. PMID:21331191

  15. Antimicrobial efficacy of amine fluoride based tooth gels compared to a toothpaste in a phase 2/step 2 in-vitro test model

    PubMed Central

    Schiller, Anne; Großjohann, Beatrice; Welk, Alexander; Hübner, Nils-Olaf; Braun, Dagmar; Assadian, Ojan; Kramer, Axel

    2012-01-01

    Introduction: The aim of the present study was to determine the antimicrobial effect of various gel formulations on plaque formation; different tooth gels were compared to a toothpaste containing comparable antimicrobial ingredients with regard to its microbiocidal activity. The study was conducted under the assumption, that a chief requirement for the prevention of plaque formation is the combination of mechanical removal and antimicrobial activity, and not the sole capability of mechanical plaque removal. Methods: Ledermix® fluoride gel as commercially available with preservative, and without preservative and perfume oils, Elmex® gelée, and Meridol® toothpaste were tested in a standardized in-vitro test modification of the quantitative suspension test EN 1040. Instead of testing in a suspension, the respective product was directly placed on a standardized contaminated sterile stainless steel disk without adding any bio-burden. 50% egg yolk in Aqua dest. was used as a neutralizer. Results: Within 1 min, Elmex® gelée showed a RF >5 log10 against S. pyogenes and S. sanguinis. Against S. mutans, a log10 RF of ≥5 was achieved after 2 min, against C. albicans after 5 min, and against P. aeruginosa after 10 min S. aureus was the most difficult organisms to be reduced. After an application time of 10 min, only a log10 RF of 2.4 was achieved. Ledermix exceeded the antimicrobial efficacy of Elmex® gelée against S. mutans and C. albicans and was already effective against these organisms after 1 min, but did not show the same antimicrobial efficacy as Elmex® gelée against P. aeruginosa. Similar to Elmex® gelée, a required reduction of >5 log10 for antimicrobials under no organic challenge was not achieved against S. aureus. Ledermix® fluoride gel without preservatives and Ledermix® fluoride gel without preservatives and perfume oil did not show the antimicrobial efficacy of the standard Ledermix® fluoride gel formulation, indicating that the observed antimicrobial efficacy is chiefly based on the preservative, and possibly the perfume oil. Compared to the tested gels, Meridol® toothpaste was less effective and reached any antimicrobial effect >5 log10 only against S. sanguinis after 10 min. Conclusion: All unmodified tested gels showed an antimicrobial effect. Because no relevant antimicrobial efficacy against plaque forming bacteria was achieved within 2 min, in practice, an anti-plaque forming effect based on the antimicrobial action of gels cannot be assumed when used in the oral cavity. However, the results of the present study indicate that the antimicrobial efficacy of gels is determined by their formulation and that for the prevention of plaque formation the combination of mechanical removal and antimicrobial activity is not the chief requirement only, but a sustained antimicrobial effect may be of greater importance. PMID:22558041

  16. Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria

    PubMed Central

    Saeb, Amr T. M.; Alshammari, Ahmad S.; Al-Brahim, Hessa; Al-Rubeaan, Khalid A.

    2014-01-01

    Aims. To synthesize, characterize, and analyze antimicrobial activity of AgNPs of Escherichia hermannii (SHE), Citrobacter sedlakii (S11P), and Pseudomonas putida (S5). Methods. The synthesized AgNPs were examined using ultraviolet-visible spectroscopy (UV-vis) and, zeta potential, and the size and the morphology obtained from the three different isolates were also confirmed by TEM. Results. Among the three isolates tested, SHE showed the best antimicrobial activity due to the presence of small (4–12 nm) and stable (−22 mV) AgNPs. Stability of AgNPs was also investigated and found to be dependent on the nature of isolates. Conclusion. Produced AgNPs showed particle stability and antimicrobial efficacy up to 90 days of production. Our AgNPs exhibited greater antimicrobial activity compared with gentamicin against P. aeruginosa isolates and vancomycin against S. aureus and MRSA isolates at very low concentration (0.0002 mg per Microliters). PMID:25093206

  17. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin.

    PubMed

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-03-01

    Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants.

    PubMed

    Qabaha, Khaled Ibraheem

    2013-01-01

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms included six bacterial isolates (i.e. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginos, Klebsiella pneumonia, Bacillus subtilis and Micrococcus luteus) and two fungal isolates (i.e. Candida albicans and Aspergillus niger). A standard antioxidant assay was performed on the plant extracts to assess their capability in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH). Of the five tested plant extract, only Rosmarinus offcinalis extract contained significant antimicrobial activity against all eight microbial isolates including Pseudomonas aeruginosa. Extracts from other four plants exhibited a variable antimicrobial activity against all microorganisms, except Pseudomonas aeruginosa. Significant antioxidant activity was detected in all plant extracts. However, extracts from Pisidium guajava leaves contained significantly higher antioxidant activity compared to the other extracts tested. The antimicrobial and scavenging activities detected in this in vitro study in extracts from the five Palestinian medicinal plants suggest that further study is needed to identify active compounds to target diseases caused by a wide-spectrum pathogens.

  19. Screening of selected single and polyherbal Ayurvedic medicines for Antibacterial and Antifungal activity

    PubMed Central

    Kekuda, T.R Prashith; Kavya, R; Shrungashree, R.M; Suchitra, S.V

    2010-01-01

    The present study deals with antimicrobial activity of ayurvedic drugs containing single herb (Amalaki Choorna and Yastimadhu Choorna) and combination of herbs (DN-90 and Asanadi Kwatha Choorna). Disc diffusion method was used to assess antibacterial activity and antifungal activity was tested using Poison food technique. Absence of bacterial growth around the discs impregnated with the aqueous extracts of drugs and reduction of fungal growth in poisoned plates indicated antimicrobial activity. Further, the results of antibacterial activity of Amalaki choorna were comparable with standard drug Streptomycin. Asanadi Kwatha Choorna inhibited bacteria to more extent than Yastimadhu choorna and DN-90. Among fungi tested, more antifungal activity was observed against Mucor sp. The antimicrobial activity of drugs tested could be due to active principles present in them. PMID:22557355

  20. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities.

    PubMed

    Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.

  2. In-vitro evidence for efficacy of antimicrobial mouthrinses

    PubMed Central

    Pan, Pauline C.; Harper, Scott; Ricci-Nittel, Danette; Lux, Renate; Shi, Wenyuan

    2010-01-01

    SUMMARY Objectives The objective of this study was to compare the antimicrobial activity of commercially available antiseptic mouthrinses against saliva-derived plaque biofilms in static and flow-through biofilm systems in vitro. Methods Nine mouthrinses were tested in a recirculating flow-through biofilm model (RFTB) with viability assessment by ATP bioluminescence. In addition, five mouthrinses were evaluated in a batch chamber slide biofilm (BCSB) model, using live- dead staining and confocal laser scanning microscopy. Results In the RFTB model, essential oil (EO) and chlorhexidine (CHX)-containing rinses showed equivalent antimicrobial activity and were more effective than a range of cetyl pyridinium chloride (CPC1) formulations. In the BCSB model, twice-daily mouthrinse exposure demonstrated that the EO rinse was significantly more effective than rinses containing amine and stannous fluorides, a combination of CPC/CHX and CPC2. EO showed biofilm kill comparable to the CHX rinse. Conclusions The present studies have shown that mouthrinses vary significantly in their capability to kill plaque biofilm bacteria in BCSB and RFTB models. The EO mouthrinse demonstrated superior antiplaque biofilm activity to AFSF, CPC/CHX, and CPC rinses and comparable activity to CHX. The methods tested may be of value for the in-vitro screening of antiseptic rinses with different modes of antimicrobial action. PMID:20621239

  3. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group. PMID:24824737

  4. Antimicrobial-induced endotoxin and cytokine activity in an in vitro model of septicemia in foals.

    PubMed

    Bentley, Adrienne P; Barton, Michelle H; Lee, Margie D; Norton, Natalie A; Moore, James N

    2002-05-01

    To determine which antimicrobials that are used to treat neonatal foals with septicemia attributable to Escherichia coli will minimize endotoxin release from bacteria and subsequent activity of inflammatory mediators while maintaining bactericidal efficacy. Blood samples from 10 healthy foals. Escherichia coli isolates A and B were isolated from 2 septicemic foals, and minimal inhibitory concentrations (MIC) were determined for 9 antimicrobials. Five of these antimicrobials were tested in vitro at 2 and 20 times their respective MIC. Whole blood or mononuclear cells grown in tissue-culture media were incubated with 105 colony-forming units of E. coli and each antimicrobial or saline (0.9% NaCl) solution. After 6 hours, number of viable bacteria remaining was determined, and supernatant was tested for endotoxin and tumor necrosis activity. Testing in whole blood was compromised by bactericidal effects of the blood itself. In mononuclear cell suspensions, each antimicrobial significantly reduced the number of viable bacteria to low or undetectable amounts. Antimicrobials did not differ significantly in efficacy of bacterial killing. Amikacin used alone or in combination with ampicillin resulted in significantly less endotoxin activity than did ampicillin, imipenem, or ceftiofur alone. There was a correlation between TNF-alpha and endotoxin activity. Aminoglycosides appear less likely to induce endotoxemia and TNF-alpha synthesis during bactericidal treatment of E. coli septicemia, compared with beta-lactam antimicrobials. Use of ampicillin, imipenem, or ceftiofur in the treatment of septicemic neonatal foals should be accompanied by appropriate treatment for endotoxemia.

  5. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection

    PubMed Central

    Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian

    2016-01-01

    SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644

  6. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    PubMed Central

    Veldhuizen, Edwin J. A.; Keating, Eleonora; Haagsman, Henk P.; Zuo, Yi Y.; Yamashita, Cory M.; Veldhuizen, Ruud A. W.

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a “perfect storm” for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. PMID:25753641

  7. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    PubMed

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Evaluation of Anti-inflammatory and Antimicrobial Activity of AHPL/AYCAP/0413 Capsule.

    PubMed

    Nipanikar, Sanjay; Chitlange, Sohan; Nagore, Dheeraj

    2017-01-01

    Conventional therapeutic agents used for treatment of Acne are associated with various adverse effects necessitating development of safe and effective alternative therapeutic agents. In this context, a polyherbal formulation AHPL/AYCAP/0413 was developed for treatment of Acne. To evaluate Anti-inflammatory and antimicrobial activity of AHPL/AYCAP/0413. 1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYCAP/0413 in comparison with Diclofenac was assessed in carrageenan induced rat Paw edema model. 2) Anti-microbial activity for P. acne : Propionibacterium acnes were incubated under anaerobic conditions. Aliquots of molten BHI with glucose agar were used as the agar base. Formulation and clindamycin (10 μg/ml) were introduced in to the Agar wells randomly. 3) Anti-microbial activity for Staphylococcus epidermidis and Staphylococcus aureus : Staphylococcus epidermidis and Staphylococcus aureus were incubated under aerobic conditions at 37°C. TSB with glucose agar was used as the agar base. 0.5ml of formulation and clindamycin (10 μg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Significant reduction in rat paw edema (51% inhibition) was observed with formulation AHPL/AYCAP/0413 which was also comparable to that of Diclofenac (58% inhibition). Zone of inhibition for formulation was 18.33 mm, 19.20 mm and 26.30 mm for P. acnes , S. epidermidis and S. aureus respectively. This activity was also comparable to that of Clindamycin. AHPL/AYCAP/0413 capsule possesses significant Anti-inflammatory and Anti-microbial activities which further justifies its role in the management of Acne vulgaris. Anti-inflammatory and antimicrobial activities of polyherbal formulation AHPL/AYCAP/0413 were evaluatedAHPL/AYCAP/0413 contains Guduchi extract ( Tinospora cordifolia ), Manjishtha extract ( Rubia cordifolia ), Sariva extract ( Hemidesmus indicus ), Nimba extract ( Azardirachta indica ), Khadira extract ( Acacia catechu ) and Kakmachi extract ( Solanum nigrum )Anti-inflammatory activity of AHPL/AYCAP/0413 in comparison with Diclofenac was assessed in carrageenan induced rat Paw edema model. Significant reduction in rat paw edema (51% inhibition) was observed with formulation AHPL/AYCAP/0413 which was also comparable to that of Diclofenac (58% inhibition)Anti-microbial activity of AHPL/AYCAP/0413 was assessed against Propionibacterium acnes , Staphylococcus epidermidis and Staphylococcus aureus . Zone of inhibition for formulation was 18.33 mm, 19.20 mm and 26.30 mm for P. acnes , S. epidermidis and S. aureus respectively indicating 68.42%, 85.71% and 81.17% activity. This activity was also comparable to that of ClindamycinTherefore it is evident that, AHPL/AYCAP/0413 capsule possesses significant Anti-inflammatory and Anti-microbial activities which further justifies its role in the management of Acne vulgaris. Abbreviations Used : mg: Milligram, kg: Kilogram, w/v: Weight by volume, ml: Milliliters, h: Hour, BHI: Brain Heart Infusion, CFU: Colony forming units, μg: Microgram, A.I.: Activity index, P.I.: Percent inhibition, TSB: Trypticsoy Broth, mm: millimeters, P. acnes : Propionibacterium acnes , S. epidermidis : Staphylococcus epidermidis, S. aureus : Staphylococcus aureus.

  9. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens.

    PubMed

    Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R

    2012-08-01

    The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract.

    PubMed

    Awad El-Gied, Amgad A; Abdelkareem, Abdelkareem M; Hamedelniel, Elnazeer I

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  11. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    PubMed Central

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  12. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits.

    PubMed

    Burdulis, Deividas; Sarkinas, Antanas; Jasutiené, Ina; Stackevicené, Elicija; Nikolajevas, Laurynas; Janulis, Valdimaras

    2009-01-01

    Simultaneous comparison of bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L) fruits for their anthocyanin composition, antimicrobial and antioxidant activity is reported. The aim of this study was to investigate and to compare anthocyanin composition, antimicrobial and antioxidant activity in bilberry and blueberry fruits and their skins. The investigations revealed that the highest amount of total anthocyanins was observed in fruits skins of blueberry cultivars. The results, obtained by chromatographic analysis, indicated that cyanidin is a dominant anthocyanidin in bilberry and malvidin in blueberry samples. Extracts of "Herbert", "Coville", "Toro" blueberry cultivars and bilberry fruits revealed antimicrobial properties. Citrobacter freundii (ATCC 8090) and Enterococcus faecalis (ATCC29212) were the most sensitive among eight tested Gram-negative and Gram-positive bacteria. Significant differences between berry and skin extracts were not established. Studies with fruits showed that the strongest antioxidant activity possesses blueberry cultivar "Berkeley" (82.13 +/- 0.51%). Meanwhile, the amount of quenched free radicals in bilberry samples was 63.72 +/- 1.11%, respectively. The lowest antioxidant activity was estimated in blueberry cultivar "Coville". Accordingly, the strongest antiradical properties were estimated in blueberry cultivar "Ama" fruit skins. Bilberry fruit skin samples possess strong antiradical activity as well (82.69 +/- 0.37%).

  13. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Phytochemical analysis of Gymnema sylvestre and evaluation of its antimicrobial activity.

    PubMed

    Chodisetti, Bhuvaneswari; Rao, Kiranmayee; Giri, Archana

    2013-01-01

    Gymnema sylvestre (CS 149), known to be a rich source of saponins and other valuable phytochemicals, has been analysed for antimicrobial activity. The chloroform extracts of aerial and root parts of G. sylvestre exhibited higher antimicrobial activity as compared to diethyl ether and acetone. The root extracts of chloroform have shown competitive minimum inhibitory concentration and minimum bactericidal concentration values in the range of 0.04-1.28 mg mL(-1) and 0.08-2.56 mg/mL, respectively, towards the pathogens. The GC-MS analysis of chloroform extracts has shown the presence of compounds like eicosane, oleic acid, stigmasterol and vitamin E.

  15. Antimicrobial activity of allylic thiocyanates derived from the Morita-Baylis-Hillman reaction

    PubMed Central

    Sá, Marcus Mandolesi; Ferreira, Misael; Lima, Emerson Silva; dos Santos, Ivanildes; Orlandi, Patrícia Puccinelli; Fernandes, Luciano

    2014-01-01

    Bacterial resistance to commonly used antibiotics has been recognized as a significant global health issue. In this study, we carried out the screening of a family of allylic thiocyanates for their action against a diversity of bacteria and fungi with a view to developing new antimicrobial agents. Allylic thiocyanates bearing halogenated aryl groups, which were readily obtained in two steps from the Morita-Baylis-Hillman adducts, showed moderate-to-high activity against selective pathogens, including a methicillin-resistant S. aureus (MRSA) strain. In particular cases, methyl (Z)-3-(2,4-dichlorophenyl)-2-(thiocyanomethyl)-2-propenoate exhibited antimicrobial activity comparable to the reference antibiotic Imipenem. PMID:25477911

  16. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    PubMed

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  17. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  19. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains

    PubMed Central

    2012-01-01

    Background The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials Materials and methods In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). Results All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. Conclusion The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections. PMID:22364123

  20. Microwave-Assisted Synthesis of some Novel Azoles and Azolopyrimidines as Antimicrobial Agents.

    PubMed

    Gomha, Sobhi M; Farghaly, Thoraya A; Mabkhot, Yahia Nasser; Zayed, Mohie E M; Mohamed, Amany M G

    2017-02-23

    In this study, new derivatives of pyrazole, isoxazole, pyrazolylthiazole, and azolopyrimidine having a thiophene ring were synthesized under microwave irradiation. Their pharmacological activity toward bacteria and fungi inhibition was screened and compared to the references Chloramphenicol and Trimethoprim / sulphamethoxazole . The antimicrobial results of the investigated compounds revealed promising results and some derivatives have activities similar to the references used.

  1. In Vitro Activities of Panduratin A against Clinical Staphylococcus Strains▿

    PubMed Central

    Rukayadi, Yaya; Lee, Kwanghyung; Han, Sunghwa; Yong, Dongeun; Hwang, Jae-Kwan

    2009-01-01

    In vitro antistaphylococcal activities of panduratin A, a natural chalcone compound isolated from Kaempferia pandurata Roxb, were compared to those of commonly used antimicrobials against clinical staphylococcal isolates. Panduratin A had a MIC at which 90% of bacteria were inhibited of 1 μg/ml for clinical staphylococcal isolates and generally was more potent than commonly used antimicrobials. PMID:19651906

  2. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures.

    PubMed

    Hendry, E R; Worthington, T; Conway, B R; Lambert, P A

    2009-12-01

    Effective disinfection and antisepsis is pivotal in preventing infections within the healthcare setting. Chlorhexidine digluconate (CHG) is a widely used disinfectant/antiseptic possessing broad-spectrum antimicrobial activity; however, its penetration into bacterial biofilms and human skin is poor. The aim of this study was to investigate the antimicrobial efficacy of crude eucalyptus oil (EO) and its main component 1,8-cineole (a recognized permeation enhancer), alone and in combination with CHG, against a panel of clinically relevant microorganisms grown in planktonic and biofilm cultures. MICs and minimum bactericidal/fungicidal concentrations were determined for each microorganism grown in suspension and biofilm using microbroth dilution and ATP bioluminescence, respectively. Chequerboard assays were used to determine synergistic, indifferent or antagonistic interactions between CHG and EO or 1,8-cineole. Antimicrobial activity was demonstrated by CHG, EO and 1,8-cineole; however, CHG was significantly more active against microorganisms in both planktonic and biofilm modes of growth (P < 0.05). Crude EO was significantly more efficacious against microorganisms grown in suspension compared with 1,8-cineole (P < 0.05). Synergistic activity was demonstrated between CHG and both EO and 1,8-cineole against suspensions of Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli and Candida albicans, and biofilm cultures of MRSA and Pseudomonas aeruginosa. In conclusion, CHG may be combined with either crude EO or its major component 1,8-cineole for enhanced, synergistic antimicrobial activity against a wide range of microorganisms in planktonic and biofilm modes of growth; however, the superior antimicrobial efficacy associated with crude EO alone, compared with 1,8-cineole, favours its combination with CHG.

  4. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-03-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  5. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-06-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  6. Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity

    PubMed Central

    Shirolkar, Amey; Gahlaut, Anjum; Chhillar, Anil K.; Dabur, Rajesh

    2013-01-01

    Herbal medicines are highly complex and have unknown mechanisms in diseases treatment. Saraca asoca (Roxb.), De. Wild has been recommended to treat gynecological disorders and used in several commercial polyherbal formulations. In present study, efforts have been made to explore antimicrobial activity and its co-relation with the distributions of catechins in the organs of S. asoca using targeted MS/MS. Eight extracts (cold and hot water) from four different organs of S. asoca and two drugs were prepared and antimicrobial activity was assessed by microbroth dilution assay. Quantitative and qualitative analysis of catechins in crude extracts was done by using targeted and auto-MS/MS and correlated with antimicrobial activity. (+)-Catechin and (+)-epicatechin and their biosynthesis related compound were found to be up-regulated in regenerated bark and leaves extracts. (−)-Epigallocatechin was found to be significantly higher in bark water extract as compared to others but showed low antimicrobial activity. Result showed down-regulation of (−)-epigallocatechin and up-regulation of (+)-catechin and (+)-epicatechin in the regenerated bark and leaves of S. asoca. It might be the contributing factor in the antimicrobial activity of regenerated bark and leaves of the plant. The concentration of (+)-epicatechin in processed drugs (Ashokarishta) from Baidyanath was found to be seven times higher than that of Dabur Pvt. Ltd., but no antimicrobial activity was observed, indicating the variations among the plant based drugs. This will be helpful in rational use of S. asoca parts. Furthermore, the analytical method developed is sensitive, repeatable and reliable; therefore, it is suitable for quality control of herbal drugs. PMID:29403849

  7. Antimicrobial effect of 7-O-butylnaringenin, a novel flavonoid, and various natural flavonoids against Helicobacter pylori strains.

    PubMed

    Moon, Sun Hee; Lee, Jae Hoon; Kim, Kee-Tae; Park, Yong-Sun; Nah, Seung-Yeol; Ahn, Dong Uk; Paik, Hyun-Dong

    2013-10-28

    The antimicrobial effect of a novel flavonoid (7-O-butylnaringenin) on Helicobacter pylori 26695, 51, and SS1 strains and its inhibitory effect on the urease activity of the strains were evaluated and compared with those of several natural flavonoids. First, various flavonoids were screened for antimicrobial activities using the paper disc diffusion method. Hesperetin and naringenin showed the strongest antimicrobial effects among the natural flavonoids tested, and thus hesperetin and naringenin were selected for comparison with 7-O-butylnaringenin. The antimicrobial effect of 7-O-butylnaringenin was greater than that of the hesperetin and naringenin. H. pylori 51 was more sensitive to 7-O-butylnaringenin (2 log reduction of colony forming units, p < 0.05) than the other two strains at 200 μM. 7-O-Butylnaringenin also showed the highest inhibitory effect against urease activity of H. pylori. Morphological changes of H. pylori 26695 treated with these flavonoids indicated that both hesperetin and 7-O-butylnaringenin at 200 μM damaged the cell membranes.

  8. Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms.

    PubMed

    Li, Ping; Gu, Qing; Zhou, Qingqing

    2016-11-20

    Lactobacilli strains have been considered as important candidates for manufacturing "natural food", due to their antimicrobial properties and generally regarded as safe (GRAS) status. Lactobacillus plantarum LZ206 is a potential probiotic strain isolated from raw cow milk, with antimicrobial activity against various pathogens, including Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), Gram-negtive bacteria (Escherichia coli and Salmonella enterica), and fungus Candida albicans. To better understand molecular base for its antimicrobial activity, entire genome of LZ206 was sequenced. It was revealed that genome of LZ206 contained a circular 3,212,951-bp chromosome, two circular plasmids and one predicted linear plasmid. A plantaricin gene cluster, which is responsible for bacteriocins biosynthesis and could be associated with its broad-spectrum antimicrobial activity, was identified based on comparative genomic analysis. Whole genome sequencing of L. plantarum LZ206 might facilitate its applications to protect food products from pathogens' contamination in the dairy industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antibacterial activity of fresh pomegranate juice against clinical strains of Staphylococcus epidermidis

    PubMed Central

    Betanzos-Cabrera, Gabriel; Montes-Rubio, Perla Y.; Fabela-Illescas, Héctor E.; Belefant-Miller, Helen; Cancino-Diaz, Juan C.

    2015-01-01

    Background Polyphenols have received a great deal of attention due to their biological functions. Pomegranate (Punica granatum L.) is a polyphenol-rich fruit. In the past decade, studies testing the antimicrobial activity of pomegranates almost exclusively used solvent extracts instead of fresh pomegranate juice (FPJ). The use of FPJ instead of solvent extracts would reduce toxicity issues while increasing patient acceptance. We established a model to test FPJ as a natural antimicrobial agent. Objective To evaluate the antimicrobial activity of FPJ on clinical isolates of multidrug-resistant Staphylococcus epidermidis strains. Design Sixty strains of S. epidermidis isolated from ocular infections were grown in the presence of FPJ, and minimum inhibitory concentration (MIC) was determined by broth and agar dilution methods. Results FPJ at 20% had a MIC equal to 100% (MIC100%) on all 60 strains tested. This inhibition of FPJ was confirmed by the growth kinetics of a multidrug-resistant strain exposed to different concentrations of FPJ. Additionally, the antimicrobial activity of FPJ was compared against commercial beverages containing pomegranate: Ocean Spray® had a MIC100% at 20%, followed by Del Valle® with a MIC15% at 20% concentration only. The beverages Jumex® and Sonrisa® did not have any antimicrobial activity. FPJ had the highest polyphenol content and antioxidant capacity. Conclusions Overall, FPJ had antimicrobial activity, which might be attributed to its high polyphenol content and antioxidant capacity. PMID:25999265

  10. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  11. Biochemical and biological characterization of two Brassicaceae after their commercial expiry date.

    PubMed

    Ombra, Maria Neve; Cozzolino, Autilia; Nazzaro, Filomena; d'Acierno, Antonio; Tremonte, Patrizio; Coppola, Raffaele; Fratianni, Florinda

    2017-03-01

    Two Brassicaceae (Eruca sativa, Brassica oleracea var. sabauda) were stored in air and under a modified atmosphere for several days after their expiry date and then analyzed. The polyphenol content and composition, as well as the antioxidant activity of the extracts, were assessed, compared to the fresh products. Antimicrobial properties on tester strains (Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) and in vitro anti-proliferative activity were evaluated. The cabbage extracts exhibited antimicrobial activity mainly on the ninth day after the expiry date and retained significant inhibitory effects against colon carcinoma (CaCo-2) cells. The rocket salad extract exhibited antiproliferative but not antimicrobial activity. Overall, our results indicated that they might represent a good source of natural antioxidants with antimicrobial and anti-proliferative activity, also after their expiry date, suggesting their exploitation for the recovery of important biomolecules used in the food and health industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Antimicrobial, Cytotoxic, Anti-Inflammatory, and Antioxidant Activity of Culinary Processed Shiitake Medicinal Mushroom (Lentinus edodes, Agaricomycetes) and Its Major Sulfur Sensory-Active Compound-Lenthionine.

    PubMed

    Kupcova, Kristyna; Stefanova, Iveta; Plavcova, Zuzana; Hosek, Jan; Hrouzek, Pavel; Kubec, Roman

    2018-01-01

    The antimicrobial, cytotoxic, anti-inflammatory, and antioxidant properties of aqueous extracts of raw and culinary processed shiitake mushrooms were evaluated and compared with those of lenthionine (1,2,3,5,6-penta-thiepane), the principal aroma-bearing substance of the shiitake medicinal mushroom (Lentinus edodes). Antimicrobial activity was tested using a panel of 4 strains of bacteria, 2 yeasts, and 2 fungi. Cytotoxic properties were evaluated against 3 cell lines (HepG2, HeLa, PaTu), whereas the anti-inflammatory activity of tested samples was assayed based on their ability to attenuate the secretion of the cytokine tumor necrosis factor-α. Antioxidant activity was measured using in vitro DPPH and ABTS assays. It was found that lenthionine possesses significant antimicrobial properties; it is remarkably effective in inhibiting the growth of yeasts and fungi (minimum inhibitory concentration, 2-8 μg/mL) and thus is comparable to standard antifungal agents. Lenthionine is also able to decrease significantly the production of tumor necrosis factor-a and thus could be at least partly responsible for the observed anti-inflammatory effect of shiitake. On the other hand, lenthionine does not seem to contribute significantly to the well-known anticancer and antioxidant effects of the mushroom.

  13. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region.

    PubMed

    Rawat, Sandeep; Jugran, Arun K; Bahukhandi, Amit; Bahuguna, Asutosh; Bhatt, Indra D; Rawal, Ranbeer S; Dhar, Uppeandra

    2016-12-01

    Therapeutic potential of medicinal plants as a source of noble natural anti-oxidants and anti-microbial agents has been well recognised all across the globe. In this study, phenolic compounds, in vitro anti-oxidant activity and anti-microbial properties have been investigated in five Himalayan medicinal plants, (e.g., Acorus calamus, Habenaria intermedia, Hedychium spicatum, Roscoea procera and Valeriana jatamansi) in different solvent systems. R. procera exhibited significantly (p < 0.05) higher phenolics; while H. spicatum was rich in flavonoids and V. jatamansi in anti-oxidant activity. Also, R. procera and H. spicatum were found rich in gallic acid; V. jatamansi in catechin, hydroxylbenzoic acid and caffeic acid and H. intermedia in hydroxyl benzoic acid. Solvent systems showed species specific response for extraction of total flavonoids and anti-oxidant activity. All the extracts were found effective against different bacterial and fungal strains in a dose dependent manner and maximum antimicrobial activity was found in R. procera as compared to other species. All the plant extracts showed greater activity against bacterial strains as compared to fungal strains. The results of this study suggest that extract of these species can be used as natural anti-oxidant to reduce free radical mediated disorders and as natural alternative for food preservation.

  14. Antimicrobial efficacy of Cinnamomum javanicum plant extract against Listeria monocytogenes and its application potential with smoked salmon.

    PubMed

    Yuan, Wenqian; Lee, Hui Wen; Yuk, Hyun-Gyun

    2017-11-02

    Extracts from medicinal plants have been reported to possess good antimicrobial properties, but a majority of them remain unexplored. This study aimed at identifying a novel plant extract with antimicrobial activity, to validate its efficacy in food model, and to elucidate its composition and antimicrobial mechanism. A total of 125 plant extracts were screened, and Cinnamomum javanicum leaf and stem extract showed potential antimicrobial activity against Listeria monocytogenes (MIC=0.13mg/mL). Total phenolic content of the extract was 78.3mg GAE/g extract and its antioxidant activity was 57.2-326.5mg TE/g extract. When applied on cold smoked salmon, strong strain-dependent antimicrobial effectiveness was observed, with L. monocytogenes LM2 (serotype 4b) and LM8 (serotype 3a) being more resistant compared to SSA81 (serotype 1/2a). High extract concentration (16mg/mL) was needed to inhibit or reduce the growth of L. monocytogenes on smoked salmon, which resulted in surface color change. GC-MS revealed that eucalyptol (25.54 area%) was the most abundant compound in the crude extract. Both crude extract and eucalyptol induced significant membrane damages in treated L. monocytogenes. These results suggest anti-L. monocytogenes activity of C. javanicum plant extract, identified its major volatile components, and elucidated its membrane-damaging antimicrobial mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity.

    PubMed

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.

  16. Human β-Defensin 4 with Non-Native Disulfide Bridges Exhibit Antimicrobial Activity

    PubMed Central

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency. PMID:25785690

  17. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  19. Antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea (L.) Less leaf extract.

    PubMed

    Sonibare, Mubo A; Aremu, Oluwafunmilola T; Okorie, Patricia N

    2016-06-01

    Vernonia cinerea (L.) Less is used in folk medicine as a remedy for various diseases. The present study reports antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea. The antioxidant properties of solvent fractions of V. cinerea were evaluated by determining radicals scavenging activity, total flavonoid and phenolic contents measured with the 2,2-diphenyl-1-picryl hydrazyl (DPPH) test, the aluminum chloride and the Folin-ciocalteau methods, respectively. Antimicrobial activities were tested against human pathogenic microorganisms using agar diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each active extract were determined. The ethyl acetate fraction having the IC50 value of 6.50 µg/mL demonstrated comparable DPPH radical-scavenging activity with standard antioxidants, gallic acid and quercetin included in the study. All fractions displayed moderate antimicrobial potential against the tested pathogens with the zone of inhibition that ranged from 9.0 to 13.5 mm. The MIC (1.56 mg/mL) and MBC (3.13 mg/mL) indicated highest susceptibility of Candida albicans in all fractions. The results of this study showed that the solvent fractions of V. cinerea possess antioxidant and antimicrobial activities, hence justifying the folkloric use of the plant for the treatment of various ailments in traditional medicine.

  20. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria.

    PubMed

    Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa

    2018-05-07

    In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.

  1. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R.

    2007-06-01

    The paper deals with a thorough investigation on the antimicrobial activity of RF oxygen plasma and Azadirachtin (neem extract) treated cotton fabric. The hydrophilicity of cotton fabric was found to improve when treated with RF oxygen plasma. The process parameters such as electrode gap, time of exposure and oxygen pressure have been varied to study their effect on improving the hydrophilicity of the cotton fabric. The static immersion test has been carried out to assess the hydrophilicity of the oxygen plasma treated samples and the process parameters were optimized based on these test results. The formation of carbonyl group during surface modification in the plasma treated sample was analysed using FTIR studies. The surface morphology has been studied using SEM micrographs. The antimicrobial activity was imparted to the RF oxygen plasma treated samples using methanolic extract of neem leaves containing Azadirachtin. The antimicrobial activity of these samples has been analysed and compared with the activity of the cotton fabric treated with neem extract alone. The investigation reveals that the surface modification due to RF oxygen plasma was found to increase the hydrophilicity and hence the antimicrobial activity of the cotton fabric when treated with Azadirachtin.

  2. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids.

    PubMed

    Carmona, G; Rodriguez, A; Juarez, D; Corzo, G; Villegas, E

    2013-08-01

    Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a D-diastereomer of Pandinin 2, D-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of L- and D-Pin2 were to some extent similar, an important reduction in D-Pin2 hemolytic activity (30-40 %) was achieved compared to that of L-Pin2 over human erythrocytes. Furthermore, D-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of L-Pin2. Nevertheless, the antimicrobial activity of D-Pin2 was equally effective as that of L-Pin2 in microdilution assays. Yet, when D- and L-Pin2 were incubated with trypsin, elastase and whole human serum, only D-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, L- and D-Pin2 maintained similar peptide stability. Finally, when L- and D-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, D-Pin2 kept its antibiotic activity while L-Pin2 was not effective.

  3. Molecular dynamics simulation studies and in vitro site directed mutagenesis of avian beta-defensin Apl_AvBD2

    PubMed Central

    2010-01-01

    Background Defensins comprise a group of antimicrobial peptides, widely recognized as important elements of the innate immune system in both animals and plants. Cationicity, rather than the secondary structure, is believed to be the major factor defining the antimicrobial activity of defensins. To test this hypothesis and to improve the activity of the newly identified avian β-defensin Apl_AvBD2 by enhancing the cationicity, we performed in silico site directed mutagenesis, keeping the predicted secondary structure intact. Molecular dynamics (MD) simulation studies were done to predict the activity. Mutant proteins were made by in vitro site directed mutagenesis and recombinant protein expression, and tested for antimicrobial activity to confirm the results obtained in MD simulation analysis. Results MD simulation revealed subtle, but critical, structural variations between the wild type Apl_AvBD2 and the more cationic in silico mutants, which were not detected in the initial structural prediction by homology modelling. The C-terminal cationic 'claw' region, important in antimicrobial activity, which was intact in the wild type, showed changes in shape and orientation in all the mutant peptides. Mutant peptides also showed increased solvent accessible surface area and more number of hydrogen bonds with the surrounding water molecules. In functional studies, the Escherichia coli expressed, purified recombinant mutant proteins showed total loss of antimicrobial activity compared to the wild type protein. Conclusion The study revealed that cationicity alone is not the determining factor in the microbicidal activity of antimicrobial peptides. Factors affecting the molecular dynamics such as hydrophobicity, electrostatic interactions and the potential for oligomerization may also play fundamental roles. It points to the usefulness of MD simulation studies in successful engineering of antimicrobial peptides for improved activity and other desirable functions. PMID:20122244

  4. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum.

    PubMed

    Hillitt, K L; Jenkins, R E; Spiller, O B; Beeton, M L

    2017-03-01

    The susceptibility of the cell wall-free bacterial pathogens Ureaplasma spp. to Manuka honey was examined. The minimum inhibitory concentration (MIC) of Manuka honey for four Ureaplasma urealyticum and four Ureaplasma parvum isolates was determined. Sensitivity to honey was also compared to clinical isolates with resistance to tetracycline, macrolide and fluoroquinolone antibiotics. Finally step-wise resistance training was utilized in an attempt to induce increased tolerance to honey. The MIC was dependent on the initial bacterial load with 7·5 and 18·0% w/v honey required to inhibit U. urealyticum at 1 and 10 6 colour changing units (CCU), respectively, and 4·8 and 15·3% w/v required to inhibit U. parvum at 1 and 10 6  CCU respectively. MIC values were consistently lower for U. parvum compared with U. urealyticum. Antimicrobial activity was seen against tetracycline-resistant, erythromycin-resistant and ciprofloxacin-resistant isolates at 10 5  CCU. No resistance to honey was observed with 50 consecutive challenges at increasing concentrations of honey. This is the first report of the antimicrobial activity of Manuka honey against a cell wall-free bacterial pathogen. The antimicrobial activity was retained against antibiotic-resistant strains and it was not possible to generate resistant mutants. Manuka honey is known to have a broad spectrum of antimicrobial activity, with the bacterial cell wall being suggested as a predominant site of action. This study has demonstrated that Manuka honey has activity against Ureaplasma spp., a genus of cell wall-free bacteria which are intrinsically resistant to many available antibiotics making treatment inherently difficult. This is the first report of the antimicrobial activity of Manuka honey against a bacterial pathogen, in the absence of a cell well and opens scope for the use of components of Manuka honey as a therapeutic among Ureaplasma infections. © 2016 The Society for Applied Microbiology.

  5. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    PubMed Central

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. PMID:24623976

  6. Optimization of antimicrobial activity of flavonoid extracts from pomelo (Citrus grandis) peel as food wrap

    NASA Astrophysics Data System (ADS)

    Sugumaran, Kamaraj; Zakaria, Nur Zatul-'Iffah; Abdullah, Rozaini; Jalani, Nur Syazana; Zati-Hanani, Sharifah; Ibrahim, Roshita; Zakaria, Zarina

    2017-09-01

    This study has been carried out to optimize an antimicrobial activity of flavonoid extract from pomelo peels against Staphyloccus aureus (S. aureus). A comparative analysis of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity were done on two parts of peel which are albedo (inner peel) and flavedo (outer peel). Based on the result obtained, flavedo showed higher TPC, TFC and antioxidant activity (304.20 mg /g, 74.30 mg /g and 46.86 % respectively) when compared to albedo (150.98 mg /g, 52.97 mg /g and 24.70 % respectively). The effects of different extract concentration and pH on inhibition zone of S. aureus were optimized using Research Surface Methodology (RSM). The optimal condition of parameters was obtained based on the maximum zone of S. aureus inhibition at extract concentration of 200 mg/mL and pH of 4.8. The antimicrobial film has been developed by using optimal conditions by incorporating the flavonoid extract into chitosan polymer.

  7. [Study on the Chinese herbal formula for treatment of vaginitis and the antimicrobial activity in murine models].

    PubMed

    Fu, Ting-ting; Wu, Jian-yuan; Wang, Li; Ma, Yao; Wang, Ying; Liu, Ying; Ding, Hong

    2006-09-01

    To study on the various proportions of Radix Sophorae Flavescentis, Cortex Phellodendri, Fructus Cnidii and pericarp of Zanthoxylum bungeanum Maxim in the formulas, whose antimicrobial effects on E. coli, S. aureus, P. aeruginosa and C. albicans under different pH values were compared in vitro. According to Chinese ancient proved recipe, the K-B method and plate diluting method were adopted to measure antimicrobial activity, and orthogonal design to ascertain the herbal formula in vitro. Finally, murine models were established to test the antimicrobial activity in vivo through vaginal membrane irritancy experiment, negative rate of pathogeny and pathological grade of vaginal membrane. The results suggested that formulas with different proportions of the herbs had diverse antimicrobial activities, and the effect was shown to be most obvious when one milliliter drug contains 100 microl Fructus Cnidii-pericarp of Zanthoxylum bungeanum (2:1) co-extracted volatile oil and 50 microl Radix Sophorae Flavescentis and Cortex Phenodendri ethanol extraction respectively under pH6. The antimicrobial effect of the formula, which hardly had any membrane irritancy, was better than Jie Eryin in vitro and vivo. The fromula has few components and better effect, and adaptation to the pH value of vaginitis. It is a promising alternative for gynecological diseases.

  8. A case study of preservation of semi-solid preparations using the European Pharmacopoeia test: comparative efficacy of antimicrobial agents in zinc gelatin.

    PubMed

    Favet, J; Chappuis, M L; Doelker, E

    2001-09-01

    The present study was undertaken with the aim of finding an alternative preservative system to methyl parahydroxybenzoate in zinc gelatin, which was described in the monographs of the Swiss Pharmacopoeia (until Ph. Helv. 8) and in previous editions of the German Pharmacopoeia (until DAB 7). This antimicrobial agent has now been withdrawn in the DAB, because of its potential allergy risks. As for the USP and DAB-DDR zinc gelatin preparations, they have always been devoid of any preservative agent, probably relying on the mild antimicrobial activity of zinc. A literature survey did not reveal if such an aqueous preparation containing the water-insoluble zinc oxide shows efficacious antimicrobial activity by itself. Thus, a comparative evaluation of differently preserved zinc gelatin preparations was performed using a test for the efficacy of antimicrobial preservation that has been modified with regard to the European Pharmacopoeia (EP) test to take into account the solid state of the preparations and the bactericidal effect of the zinc. Three zinc gelatin preparations were checked, either: (i), without any agent; or (ii), with 0.1% methyl parahydroxybenzoate; or (iii), with 0.5% phenoxyethanol, a broad-spectrum antimicrobial agent almost devoid of allergy risks. The three preparations behave quite differently, in particular with respect to fungi. All three preparations passed the modified EP test as far as bacteria are concerned. Even zinc gelatin without preservative is very effective, not only because of the mild antimicrobial activity of zinc (the soluble fraction of zinc oxide in the liquid phase of zinc gelatin was determined to be 13 microg/ml), but most probably because of the low water activity of the preparation (measured as around 0.81), as shown by the absence of growth of a zinc-resistant strain of Pseudomonas aeruginosa. Zinc gelatin preserved with methyl parahydroxybenzoate has a weak, although satisfactory, activity against Staphylococcus aureus. Regarding fungi, gelatin without an antimicrobial agent and that preserved with methyl parahydroxybenzoate meet the requirements for efficacy against Candida albicans, but are only bacteriostatic against Aspergillus niger. As for zinc gelatin preserved with phenoxyethanol, it displays the best activity against C. albicans and, above all, appears to be the only formulation exhibiting fungicidal activity against A. niger. It is therefore recommended to preserve zinc gelatin with this antimicrobial agent, as recently adopted in Supplement 2000 of the Swiss Pharmacopoeia.

  9. Synthesis of Chrysogeside B from Halotolerant Fungus Penicillium and Its Antimicrobial Activities Evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Ruiquan; Wang, Lei; Li, Qibo; Liao, Min; Yang, Zhikun; Huang, Yun; Lv, Cong; Zheng, Bing; Zhong, Jiangchun; Bian, Qinghua; Wang, Min; Liu, Shangzhong

    2017-04-01

    Chrysogeside B, a natural cerebroside, was efficiently synthesized from commercial feedstocks. The bioassays showed that compounds 4, 5 and 6 exhibited enhanced biological activities compared Chrysogeside B. Further studies revealed that free hydroxyl groups and glycosidic bond have significant impact on the antimicrobial activities. The synthesis of Chrysogeside B and analogues designed to allow identification of the features of this glycolipid required for recognition by tested bacteria and Hela cells is described.

  10. Antimicrobial Activity of Serbian Propolis Evaluated by Means of MIC, HPTLC, Bioautography and Chemometrics

    PubMed Central

    Trifković, Jelena; Berić, Tanja; Vovk, Irena; Milojković-Opsenica, Dušanka; Stanković, Slaviša

    2016-01-01

    New information has come to light about the biological activity of propolis and the quality of natural products which requires a rapid and reliable assessment method such as High Performance Thin-Layer Chromatography (HPTLC) fingerprinting. This study investigates chromatographic and chemometric approaches for determining the antimicrobial activity of propolis of Serbian origin against various bacterial species. A linear multivariate calibration technique, using Partial Least Squares, was used to extract the relevant information from the chromatographic fingerprints, i.e. to indicate peaks which represent phenolic compounds that are potentially responsible for the antimicrobial capacity of the samples. In addition, direct bioautography was performed to localize the antibacterial activity on chromatograms. The biological activity of the propolis samples against various bacterial species was determined by a minimum inhibitory concentration assay, confirming their affiliation with the European poplar type of propolis and revealing the existence of two types (blue and orange) according to botanical origin. The strongest antibacterial activity was exhibited by sample 26 against Staphylococcus aureus, with a MIC value of 0.5 mg/mL, and Listeria monocytogenes, with a MIC as low as 0.1 mg/mL, which was also the lowest effective concentration observed in our study. Generally, the orange type of propolis shows higher antimicrobial activity compared to the blue type. PLS modelling was performed on the HPTLC data set and the resulting models might qualitatively indicate compounds that play an important role in the activity exhibited by the propolis samples. The most relevant peaks influencing the antimicrobial activity of propolis against all bacterial strains were phenolic compounds at RF values of 0.37, 0.40, 0.45, 0.51, 0.60 and 0.70. The knowledge gained through this study could be important for attributing the antimicrobial activity of propolis to specific chemical compounds, as well as the verification of HPTLC fingerprinting as a reliable method for the identification of compounds that are potentially responsible for antimicrobial activity. This is the first report on the activity of Serbian propolis as determined by several combined methods, including the modelling of antimicrobial activity by HPTLC fingerprinting. PMID:27272728

  11. Comparative study of singlet oxygen production by photosensitiser dyes encapsulated in silicone: towards rational design of anti-microbial surfaces.

    PubMed

    Noimark, Sacha; Salvadori, Enrico; Gómez-Bombarelli, Rafael; MacRobert, Alexander J; Parkin, Ivan P; Kay, Christopher W M

    2016-10-12

    Surfaces with built-in antimicrobial activity have the potential to reduce hospital-acquired infections. One promising strategy is to create functionalised surfaces which, following illumination with visible light, are able to generate singlet oxygen under aerobic conditions. In contrast to antibiotics, the mechanism of bacterial kill by species derived from reactions with singlet oxygen is completely unselective, therefore offering little room for evolutionary adaptation. Here we consider five commercially available organic photosensitiser dyes encapsulated in silicone polymer that show varied antimicrobial activity. We correlate density functional theory calculations with UV-Vis spectroscopy, electron paramagnetic resonance spectroscopy and singlet oxygen production measurements in order to define and test the elements required for efficacious antimicrobial activity. Our approach forms the basis for the rational in silico design and spectroscopic screening of simple and efficient self-sterilising surfaces made from cheap, low toxicity photosensitiser dyes encapsulated in silicone.

  12. The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

    PubMed Central

    Soscia, Stephanie J.; Kirby, James E.; Washicosky, Kevin J.; Tucker, Stephanie M.; Ingelsson, Martin; Hyman, Bradley; Burton, Mark A.; Goldstein, Lee E.; Duong, Scott; Tanzi, Rudolph E.; Moir, Robert D.

    2010-01-01

    Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies. PMID:20209079

  13. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  14. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies.

    PubMed

    Samiei, Mohammad; Farjami, Afsaneh; Dizaj, Solmaz Maleki; Lotfipour, Farzaneh

    2016-01-01

    Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Silver Sucrose Octasulfate (IASOS™) as a Valid Active Ingredient into a Novel Vaginal Gel against Human Vaginal Pathogens: In Vitro Antimicrobial Activity Assessment

    PubMed Central

    Marianelli, Cinzia; Petrucci, Paola; Comelli, Maria Cristina; Calderini, Gabriella

    2014-01-01

    This in vitro study assessed the antimicrobial properties of a novel octasilver salt of Sucrose Octasulfate (IASOS) as well as of an innovative vaginal gel containing IASOS (SilSOS Femme), against bacterial and yeast pathogens isolated from human clinical cases of symptomatic vaginal infections. In BHI and LAPT culture media, different ionic silver concentrations and different pHs were tested. IASOS exerted a strong antimicrobial activity towards all the pathogens tested in both culture media. The results demonstrated that salts and organic compounds present in the culture media influenced IASOS efficacy only to a moderate extent. Whereas comparable MBCs (Minimal Bactericidal Concentrations) were observed for G. vaginalis (10 mg/L Ag+), E. coli and E. aerogenes (25 mg/L Ag+) in both media, higher MBCs were found for S. aureus and S. agalactiae in LAPT cultures (50 mg/L Ag+ versus 25 mg/L Ag+). No minimal concentration totally inhibiting the growth of C. albicans was found. Nevertheless, in both media at the highest ionic silver concentrations (50–200 mg/L Ag+), a significant 34–52% drop in Candida growth was observed. pH differently affected the antimicrobial properties of IASOS against bacteria or yeasts; however, a stronger antimicrobial activity at pH higher than the physiological pH was generally observed. It can be therefore concluded that IASOS exerts a bactericidal action against all the tested bacteria and a clear fungistatic action against C. albicans. The antimicrobial activity of the whole vaginal gel SilSOS Femme further confirmed the antimicrobial activity of IASOS. Overall, our findings support IASOS as a valid active ingredient into a vaginal gel. PMID:24897299

  16. Comparative evaluation of antimicrobial efficacy of various root canal filling materials along with aloevera used in primary teeth: a microbiological study.

    PubMed

    Kriplani, R; Thosar, N; Baliga, M S; Kulkarni, P; Shah, N; Yeluri, R

    2013-01-01

    this study was conducted to evaluate the antimicrobial effectiveness of 6 root canal filling materials and a negative control agent against 18 strains of bacteria isolated from infected root canals of primary molar teeth using agar diffusion assay. Aloevera with sterile water Zinc oxide and Eugenol, Zinc oxide-Eugenol with aloevera, Calcium hydroxide and sterile water, Calcium hydroxide with sterile water and aloevera, Calcium hydroxide and Iodoform (Metapex) and Vaseline (Control). MIC and MBC of aloevera was calculated. All materials except Vaseline showed varied antimicrobial activity against the test bacterias. The zones of inhibition were ranked into 4 inhibition categories based on the proportional distribution of the data. All the 18 bacterial isolates were classified under 2 groups based on Gram positive and Gram negative aerobes. Statistical analysis was carried out to compare the antimicrobial effectiveness between materials tested with each of the bacterial groupings. Aloevera + Sterile Water was found to have superior antimicrobial activity against most of the microorganisms followed by ZOE + Aloevera, calcium hydroxide + Aloevera, ZOE, calcium hydroxide, Metapex in the descending order and Vaseline showed no inhibition.

  17. Antimicrobial Stewardship Programs: Comparison of a Program with Infectious Diseases Pharmacist Support to a Program with a Geographic Pharmacist Staffing Model

    PubMed Central

    Ma, Andrew; Clegg, Daniel; Fugit, Randolph V.; Pepe, Anthony; Goetz, Matthew Bidwell; Graber, Christopher J.

    2015-01-01

    Background: Stewardship of antimicrobial agents is an essential function of hospital pharmacies. The ideal pharmacist staffing model for antimicrobial stewardship programs is not known. Objective: To inform staffing decisions for antimicrobial stewardship teams, we aimed to compare an antimicrobial stewardship program with a dedicated Infectious Diseases (ID) pharmacist (Dedicated ID Pharmacist Hospital) to a program relying on ward pharmacists for stewardship activities (Geographic Model Hospital). Methods: We reviewed a randomly selected sample of 290 cases of inpatient parenteral antibiotic use. The electronic medical record was reviewed for compliance with indicators of appropriate antimicrobial stewardship. Results: At the hospital staffed by a dedicated ID pharmacist, 96.8% of patients received initial antimicrobial therapy that adhered to local treatment guidelines compared to 87% of patients at the hospital that assigned antimicrobial stewardship duties to ward pharmacists (P < .002). Therapy was modified within 24 hours of availability of laboratory data in 86.7% of cases at the Dedicated ID Pharmacist Hospital versus 72.6% of cases at the Geographic Model Hospital (P < .03). When a patient’s illness was determined not to be caused by a bacterial infection, antibiotics were discontinued in 78.0% of cases at the Dedicated ID Pharmacist Hospital and in 33.3% of cases at the Geographic Model Hospital (P < .0002). Conclusion: An antimicrobial stewardship program with a dedicated ID pharmacist was associated with greater adherence to recommended antimicrobial therapy practices when compared to a stewardship program that relied on ward pharmacists. PMID:26405339

  18. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships.

    PubMed

    Starr, Charles G; Maderdrut, Jerome L; He, Jing; Coy, David H; Wimley, William C

    2018-06-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. In vitro antimicrobial activity and chemical composition of the essential oil of Foeniculum vulgare Mill.

    PubMed

    Aprotosoaie, Ana Clara; Hăncianu, Monica; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Cioană, Oana; Gille, Elvira; Stănescu, Ursula

    2008-01-01

    In our study, four samples of volatile oil from Foeniculum vulgare, cultivated in different pedoclimatic conditions, were investigated for their antimicrobial activity and chemical composition. Organisms. Staphylococcus aureus ATCC 25923, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, Candida albicans were included in the report. Antimicrobial susceptibility tests. The comparative inhibitory activity of volatile oil samples with other antimicrobial agents was quantitative determined by minimum inhibitory concentration (MIC). Oil samples are the volatile oils extracted by steam distillation, from two ecological vegetative populations of Foeniculum vulgare. Gas chromatography coupled to mass spectrometry (GC-MS) was used to determine the chemical composition of the essential oils. All oil samples have a good activity against E. coli and S. aureus at low concentrations. Against B. cereus and P. aeruginosa these oil samples are less active. The oil samples were generally bactericidal at a concentration up to twofold or fourfold higher than the MIC value. Significantly synergic activity with amoxicillin or tetracycline showed all fennel samples against E. coli, Sarcina lutea and B. subtilis strains. Fennel oil samples have shown high activity against Candida albicans. No significant antimicrobial activity variations were observed for Foeniculum vulgare volatile oil samples obtained after two or three years cultivation period. The most important identified compounds in all samples of fennel volatile oils were trans-anethole, estragole, fenchone, limonene, alpha-pinene and gamma-terpinene.

  20. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  1. Antimicrobial efficacy of an innovative emulsion of medium chain triglycerides against canine and feline periodontopathogens.

    PubMed

    Laverty, G; Gilmore, B F; Jones, D S; Coyle, L; Folan, M; Breathnach, R

    2015-04-01

    To test the in vitro antimicrobial efficacy of a non-toxic emulsion of free fatty acids against clinically relevant canine and feline periodontopathogens Antimicrobial kill kinetics were established utilising an alamarBlue(®) viability assay against 10 species of canine and feline periodontopathogens in the biofilm mode of growth at a concentration of 0·125% v/v medium chain triglyceride (ML:8) emulsion. The results were compared with 0·12% v/v chlorhexidine digluconate and a xylitol-containing dental formulation. Mammalian cellular cytotoxicity was also investigated for both the ML:8 emulsion and chlorhexidine digluconate (0·25 to 0·0625% v/v) using in vitro tissue culture techniques. No statistically significant difference was observed in the antimicrobial activity of the ML:8 emulsion and chlorhexidine digluconate; a high percentage kill rate (>70%) was achieved within 5 minutes of exposure and was maintained at subsequent time points. A statistically significant improvement in antibiofilm activity was observed with the ML:8 emulsion compared with the xylitol-containing formulation. The ML:8 emulsion possessed a significantly lower (P < 0·001) toxicity profile compared with the chlorhexidine digluconate in mammalian cellular cytotoxicity assays. The ML:8 emulsion exhibited significant potential as a putative effective antimicrobial alternative to chlorhexidine- and xylitol- based products for the reduction of canine and feline periodontopathogens. © 2015 British Small Animal Veterinary Association.

  2. Comparative evaluation of antimicrobials for textile applications.

    PubMed

    Windler, Lena; Height, Murray; Nowack, Bernd

    2013-03-01

    Many antimicrobial technologies are available for textiles. They may be used in many different textile applications to prevent the growth of microorganisms. Due to the biological activity of the antimicrobial compounds, the assessment of the safety of these substances is an ongoing subject of research and regulatory scrutiny. This review aims to give an overview on the main compounds used today for antimicrobial textile functionalization. Based on an evaluation of scientific publications, market data as well as regulatory documents, the potential effects of antimicrobials on the environment and on human health were considered and also life cycle perspectives were taken into account. The characteristics of each compound were summarized according to technical, environmental and human health criteria. Triclosan, silane quaternary ammonium compounds, zinc pyrithione and silver-based compounds are the main antimicrobials used in textiles. The synthetic organic compounds dominate the antimicrobials market on a weight basis. On the technical side the application rates of the antimicrobials used to functionalize a textile product are an important parameter with treatments requiring lower dosage rates offering clear benefits in terms of less active substance required to achieve the functionality. The durability of the antimicrobial treatment has a strong influence on the potential for release and subsequent environmental effects. In terms of environmental criteria, all compounds were rated similarly in effective removal in wastewater treatment processes. The extent of published information about environmental behavior for each compound varies, limiting the possibility for an in-depth comparison of all textile-relevant parameters across the antimicrobials. Nevertheless the comparative evaluation showed that each antimicrobial technology has specific risks and benefits that should be taken into account in evaluating the suitability of different antimicrobial products. The results also indicated that nanoscale silver and silver salts that achieve functionality with very low application rates offer clear potential benefits for textile use. The regular care of textiles consumes lots of resources (e.g. water, energy, chemicals) and antimicrobial treatments can play a role in reducing the frequency and/or intensity of laundering which can give potential for significant resource savings and associated impact on the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID:27494336

  4. Encrypted Antimicrobial Peptides from Plant Proteins.

    PubMed

    Ramada, M H S; Brand, G D; Abrão, F Y; Oliveira, M; Filho, J L Cardozo; Galbieri, R; Gramacho, K P; Prates, M V; Bloch, C

    2017-10-16

    Examples of bioactive peptides derived from internal sequences of proteins are known for decades. The great majority of these findings appear to be fortuitous rather than the result of a deliberate and methodological-based enterprise. In the present work, we describe the identification and the biological activities of novel antimicrobial peptides unveiled as internal fragments of various plant proteins founded on our hypothesis-driven search strategy. All putative encrypted antimicrobial peptides were selected based upon their physicochemical properties that were iteratively selected by an in-house computer program named Kamal. The selected peptides were chemically synthesized and evaluated for their interaction with model membranes. Sixteen of these peptides showed antimicrobial activity against human and/or plant pathogens, some with a wide spectrum of activity presenting similar or superior inhibition efficacy when compared to classical antimicrobial peptides (AMPs). These original and previously unforeseen molecules constitute a broader and undisputable set of evidences produced by our group that illustrate how the intragenic concept is a workable reality and should be carefully explored not only for microbicidal agents but also for many other biological functions.

  5. Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis

    NASA Astrophysics Data System (ADS)

    Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.

    2017-07-01

    Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.

  6. Antimicrobial Effect of 7-O-Butylnaringenin, a Novel Flavonoid, and Various Natural Flavonoids against Helicobacter pylori Strains

    PubMed Central

    Moon, Sun Hee; Lee, Jae Hoon; Kim, Kee-Tae; Park, Yong-Sun; Nah, Seung-Yeol; Ahn, Dong Uk; Paik, Hyun-Dong

    2013-01-01

    The antimicrobial effect of a novel flavonoid (7-O-butylnaringenin) on Helicobacter pylori 26695, 51, and SS1 strains and its inhibitory effect on the urease activity of the strains were evaluated and compared with those of several natural flavonoids. First, various flavonoids were screened for antimicrobial activities using the paper disc diffusion method. Hesperetin and naringenin showed the strongest antimicrobial effects among the natural flavonoids tested, and thus hesperetin and naringenin were selected for comparison with 7-O-butylnaringenin. The antimicrobial effect of 7-O-butylnaringenin was greater than that of the hesperetin and naringenin. H. pylori 51 was more sensitive to 7-O-butylnaringenin (2 log reduction of colony forming units, p < 0.05) than the other two strains at 200 μM. 7-O-Butylnaringenin also showed the highest inhibitory effect against urease activity of H. pylori. Morphological changes of H. pylori 26695 treated with these flavonoids indicated that both hesperetin and 7-O-butylnaringenin at 200 μM damaged the cell membranes. PMID:24169409

  7. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents.

    PubMed

    Czyzewski, Ann M; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Chongsiriwatana, Nathaniel P; Yuen, Eddie; Hancock, Robert E W; Barron, Annelise E

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.

  8. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    NASA Astrophysics Data System (ADS)

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.

  9. Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human β-defensins 2 and 3.

    PubMed

    Spudy, Björn; Sönnichsen, Frank D; Waetzig, Georg H; Grötzinger, Joachim; Jung, Sascha

    2012-10-12

    Antimicrobial peptides participate in the first line of defence of many organisms against pathogens. In humans, the family of β-defensins plays a pivotal role in innate immunity. Two human β-defensins, β-defensin-2 and -3 (HBD2 and HBD3), show substantial sequence identity and structural similarity. However, HBD3 kills Staphylococcus (S.) aureus with a 4- to 8-fold higher efficiency compared to HBD2, whereas their activities against Escherichia (E.) coli are very similar. The generation of six HBD2/HBD3-chimeric molecules led to the identification of distinct molecular regions which mediate their divergent killing properties. One of the chimeras (chimera C3) killed both E. coli and S. aureus with an even higher efficacy compared to the wild-type molecules. Due to the broad spectrum of its antimicrobial activity against many human multidrug-resistant pathogens, this HBD2/HBD3-chimeric peptide represents a promising candidate for a new class of antibiotics. In order to investigate the structural basis of its exceptional antimicrobial activity, the peptide's tertiary structure was determined by NMR spectroscopy, which allowed its direct comparison to the published structures of HBD2 and HBD3 and the identification of the activity-increasing molecular features. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: an attempt to enhance its oral bioavailability

    PubMed Central

    Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Khan, Shahzeb; Faidah, Hani S; Naseemullah; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul

    2017-01-01

    Background Silibinin has gained in importance in the past few decades as a hepatoprotector and is used widely as oral therapy for toxic liver damage, liver cirrhosis, and chronic inflammatory liver diseases, as well as for the treatment of different types of cancers. Unfortunately, it has low aqueous solubility and inadequate dissolution, which results in low oral bioavailability. Materials and methods In this study, nanoparticles (NPs) of silibinin, which is a hydrophobic drug, were manufactured using two cost-effective methods. Antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN) were used. The prepared NPs were characterized using different analytical techniques such as scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffractometry (XRD) and were sifted for their bioavailability through in vitro dissolution and solubility studies. Moreover, the prepared NPs were evaluated for antimicrobial activity against a battery of bacteria and yeast. Results DSC and XRD studies indicated that the prepared NPs were amorphous in nature, with more solubility and dissolution compared to the crystalline form of this drug. NPs prepared through the EPN method had better results than those prepared using the APSP method. Antimicrobial activities of the NPs were improved compared to the unprocessed drugs, while having comparable activities to standard antimicrobial drugs. Conclusion Results indicate that the NPs have significantly increased solubility, dissolution rate, and antimicrobial activities due to the conversion of crystalline structure into amorphous form. PMID:28553075

  11. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey.

    PubMed

    Alma, Mehmet Hakki; Mavi, Ahmet; Yildirim, Ali; Digrak, Metin; Hirata, Toshifumi

    2003-12-01

    In the present study, essential oil from the leaves of Syrian oreganum [Origanum syriacum L. (Lauraceae)] grown in Turkish state forests of the Dortyol district, Turkey, was obtained by steam distillation. The chemical composition of oil was analysed by GC and GC-MS, and was found to contain 49.02% monoterpenes, 36.60% oxygenated monoterpenes and 12.59% sesquiterpenes. The major components are as follows: gamma-terpinene, carvacrol, p-cymene and beta-caryophyllene. Subsequently, the reducing power, antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activities of the essential oil were studied. The reducing power was compared with ascorbic acid, and the other activities were compared with 2,6-di-tert-butyl-4-methyl phenol (BHT, butylated hydroxytoluene). The results showed that the activities were concentration dependent. The antioxidant activities of the oil were slightly lower than those of ascorbic acid or BHT, so the oil can be considered an effective natural antioxidant. Antimicrobial activities of the essential oil from the leaves of Origanum syriacum was also determined on 16 microorganisms tested using the agar-disc diffusion method, and showed antimicrobial activity against 13 of these.

  12. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  13. Antioxidant and Antimicrobial Activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea

    PubMed Central

    Park, Jin Hwa; Lee, Yun Jin; Kim, Yeon Ho; Yoon, Ki Sun

    2017-01-01

    The objective of this study was to investigate the antioxidant and antimicrobial properties of quinoa cultivated in Korea and to compare it with imported quinoa from the USA and Peru. The highest amount of total flavonoid contents (TFC) with 20.91 mg quercetin equivalents/100 g was measured in quinoa seed extract cultivated in Korea, while the total phenolic contents (TPC) were significantly higher in quinoa from the USA (16.28 mg gallic acid equivalents/100 g). In addition, quinoa extracts cultivated in Korea displayed a superior antioxidant ability in both, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl values. There was a high correlation between TFC and antioxidant activity and a low correlation between TPC and antioxidant activity. The antimicrobial activity of the quinoa extracts was determined using a disc diffusion assay and optical density method. In both assays, the quinoa seed extracts did not have strong antimicrobial activity against foodborne bacteria, including Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Salmonella Typhimurium, and Campylobacter jejuni. PMID:29043217

  14. Evaluation of anti-inflammatory and antimicrobial activity of AHPL/AYTOP/0213 cream

    PubMed Central

    Nipanikar, Sanjay U.; Nagore, Dheeraj; Chitlange, Soham S.; Buzruk, Devashree

    2017-01-01

    Background: Acne vulgaris is almost a widespread disease occurring in all races. Propionibacterium acnes initiate acne and inflammatory mediators aggravate it. Conventional therapies for acne include comedolytic, anti-inflammatory, and anti-biotic agents. Due to adverse effects of these therapies, people are searching for alternative options. In this context, a polyherbal formulation AHPL/AYTOP/0213 cream was developed for the treatment of Acne. Objective: The objective of this study is to study anti-inflammatory and antimicrobial activities of AHPL/AYTOP/0213 cream. Materials and Methods: Skin irritation study was conducted on AHPL/AYTOP/0213 cream as per OECD guidelines. (1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYTOP/0213 cream in comparison with diclofenac sodium cream was assessed in carrageenan-induced rat paw edema model. (2) Antimicrobial activity for P. acnes: P. acnes were incubated under anaerobic conditions. Aliquots of molten brain–heart infusion with glucose agar were used as the agar base. Formulation and clindamycin (10 mg/ml) were introduced in to the Agar wells randomly. (3) Antimicrobial activity for Staphylococcus epidermidis and Staphylococcus aureus: bacteria were incubated under aerobic conditions at 37°C. Tryptic soy broth with glucose agar was used as the agar base. A volume of 0.5 ml of formulation and clindamycin (10 mg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Results: AHPL/AYTOP/0213 cream is nonirritant. Significant reduction in rat paw edema (43%) was observed with AHPL/AYTOP/0213 which was also comparable to diclofenac sodium cream (56.09%). Zone of inhibition for formulation was 20.68 mm, 28.20 mm, and 21.40 mm for P. acnes, S. epidermidis and S. aureus, respectively, which was comparable to clindamycin. The minimum inhibitory concentration of formulation AHPL/AYTOP/0213 obtained in anti-microbial study was 2.5 mg/mL. Conclusion: AHPL/AYTOP/0213 cream is nonirritant and possesses significant anti-inflammatory and antimicrobial activities, which further justifies its role in the management of acne vulgaris. PMID:29861599

  15. Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens.

    PubMed

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Gorfer, Markus; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown "cryptic" secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3-4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.

  16. Fungi Treated with Small Chemicals Exhibit Increased Antimicrobial Activity against Facultative Bacterial and Yeast Pathogens

    PubMed Central

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Wagner, Martin; Strauss, Joseph

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown “cryptic” secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3–4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances. PMID:25121102

  17. Surface attachment of active antimicrobial coatings onto conventional plastic-based laminates and performance assessment of these materials on the storage life of vacuum packaged beef sub-primals.

    PubMed

    Clarke, David; Tyuftin, Andrey A; Cruz-Romero, Malco C; Bolton, Declan; Fanning, Seamus; Pankaj, Shashi K; Bueno-Ferrer, Carmen; Cullen, Patrick J; Kerry, Joe P

    2017-04-01

    Two antimicrobial coatings, namely Sodium octanoate and Auranta FV (a commercial antimicrobial composed of bioflavonoids, citric, malic, lactic, and caprylic acids) were used. These two antimicrobials were surface coated onto the inner polyethylene layer of cold plasma treated polyamide films using beef gelatin as a carrier and coating polymer. This packaging material was then used to vacuum pack beef sub-primal cuts and stored at 4 °C. A control was prepared using the non-coated commercial laminate and the same vacuum packaged sub-primal beef cuts. During storage, microbial and quality assessments were carried out. Sodium octanoate treated packages significantly (p < 0.05) reduced microbial counts for all bacteria tested with an increase of 7 and 14 days, respectively compared to control samples. No significant effect on pH was observed with any treatment. The results suggested that these food grade antimicrobials have the potential to be used in antimicrobial active packaging applications for beef products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: a systematic review and meta-analysis.

    PubMed

    de Almeida, C M; da Rosa, W L O; Meereis, C T W; de Almeida, S M; Ribeiro, J S; da Silva, A F; Lund, Rafael Guerra

    2018-06-01

    The purpose of this study was to evaluate the efficacy of orthodontic bonding systems containing different antimicrobial agents, as well as the influence of antimicrobial agent incorporation in the bonding properties of these materials. Eight databases were searched: PubMed (Medline), Web of Science, Scopus, Lilacs, Ibecs, BBO, Scielo and Google Scholar. Any study that evaluated antimicrobial activity in experimental or commercial orthodontic bonding systems was included. Data were tabulated independently and in duplicated by two authors on pre-designed data collection form. The global analysis was carried out using a random-effects model, and pooled-effect estimates were obtained by comparing the standardised mean difference of each antimicrobial orthodontic adhesive with the respective control group. A p-value < .05 was considered as statistically significant. Thirty-two studies were included in the qualitative analysis; of these, 22 studies were included in the meta-analysis. Antimicrobial agents such as silver nanoparticles, benzalkonium chloride, chlorhexidine, triclosan, cetylpyridinium chloride, Galla chinensis extract, acid ursolic, dimethylaminododecyl methacrylate, dimethylaminohexadecyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 1,3,5-triacryloylhexahydro-1,3,5-triazine, zinc oxide and titanium oxide have been incorporated into orthodontic bonding systems. The antimicrobial agent incorporation in orthodontic bonding systems showed higher antimicrobial activity than the control group in agar diffusion (overall standardised mean difference: 3.71; 95% CI 2.98 to 4.43) and optical density tests (0.41; 95% CI -0.05 to 0.86) (p < .05). However, for biofilm, the materials did not present antimicrobial activity (6.78; 95% CI 4.78 to 8.77). Regarding bond strength, the global analysis showed antimicrobial orthodontic bonding systems were statistically similar to the control. Although there is evidence of antibacterial activity from in vitro studies, clinical and long-term studies are still necessary to confirm the effectiveness of antibacterial orthodontic bonding systems in preventing caries disease.

  19. Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents.

    PubMed

    Kim, Jaeeun; Hahn, Ji-Sook; Franklin, Michael J; Stewart, Philip S; Yoon, Jeyong

    2009-01-01

    The aim of the study was to determine the susceptibility of active and dormant cell populations from Pseudomonas aeruginosa biofilms to non-antibiotic antimicrobial agents such as chlorine, hydrogen peroxide and silver ions in comparison with antibiotics. Active cells in colony biofilm were differentially labelled by induction of a green fluorescent protein (GFP). Active and dormant cells were sorted in phosphate buffered solution by flow cytometry. Reductions in viability were determined with plate counts. The spatial pattern of metabolic activity in colony biofilm was verified, and the active and dormant cells were successfully sorted according to the GFP intensity. Active cells had bigger cell size and higher intracellular density than dormant cells. While dormant cells were more tolerant to tobramycin and silver ions, active cells were more tolerant to chlorine. Metabolically active cells contain denser intracellular components that can react with highly reactive oxidants such as chlorine, thereby reducing the available concentrations of chlorine. In contrast, the concentrations of silver ions and hydrogen peroxide were constant during treatment. Aerobically grown stationary cells were significantly more tolerant to chlorine unlike other antimicrobial agents. Chlorine was more effective in inactivation of metabolically inactive dormant cells and also more effective under anaerobic conditions. The high oxidative reactivity and rapid decay of chlorine might influence the different antimicrobial actions of chlorine compared with antibiotics. This study contributes to understanding the effects of dormancy and the presence of oxygen on the susceptibility of P. aeruginosa biofilm to a wide range of antimicrobial agents.

  20. Use of antimicrobials for animals in New Zealand, and in comparison with other countries.

    PubMed

    Hillerton, J E; Irvine, C R; Bryan, M A; Scott, D; Merchant, S C

    2017-03-01

    To describe the use of antimicrobial drugs for food animals in New Zealand, based on sales data reported to government, changes over time, and in comparison with other countries and human use. Data were sourced from official government and industry reports covering 26 European countries, Australia, Canada, New Zealand and the United States of America in 2012, the last year data were available for all countries. The data included antimicrobial sales, and animal and human populations. Antimicrobial use was estimated based on the amount of active ingredient sold, per standardised biomass (population correction unit). The estimated usage of antimicrobials for food animals in New Zealand for 2012 was 9.4 mg active ingredient/kg biomass. Total sales of antimicrobials between 2005-14 increased on average by 2.5% or 1.5 tonnes per year. Over the same time total animal biomass decreased by an estimated 4.3%, with the main decrease being in sheep (25%) and beef cattle (17%), while dairy cattle increased (28%). In the countries examined, the estimated usage of antimicrobials in food producing animals in 2012 varied from 3.8 to 341 mg active ingredient/kg biomass, in Norway and Italy, respectively, with use in New Zealand being the third lowest. Usage of antimicrobials for human health in New Zealand in 2012 was estimated at 121 mg active ingredient/kg biomass, being ranked sixteenth of the countries compared. Use in humans was 12.9 times the use in animals. New Zealand was the third lowest user of antimicrobials in animal production and used much less than in human medicine. This is the first report of baseline data which may be used by the New Zealand animal health industry to develop, and measure success in, approaches to maximise the life of antimicrobials for animal health and welfare. New Zealand veterinarians will soon have to make changes to adopt the World Health Organisation's global action plan to manage antimicrobial resistance. Having a benchmark of current antimicrobial use will inform priorities and allow measurement of the impact of future programmes.

  1. Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; El-Gaby, Mohamed S A; Safwat, Nesreen A; Elaasser, Mahmoud M; Soliman, Aiten M

    2016-11-29

    A series of novel heterocyclic thioureas 3a-u containing sulfonamide moiety have been synthesized by the condensation of isothiocyanatobenzenesulfonamide 2 with a variety of heterocyclic amines. The newly synthesized heterocyclic thioureas were investigated for their antimicrobial and anticancer activity. The in vitro antibacterial and antifungal activity were done using well diffusion method. Interestingly, compounds 3j and 3m, showed similar or better activity compared with the reference drug against the tested microorganisms. Although, 3j was less active among its analogues to inhibit the breast carcinoma cells, it exhibit strong broad spectrum antimicrobial activities. However, The results of the cytotoxic activity revealed that compound 3p was the most active against the breast carcinoma cell line (MCF-7) giving promising IC 50 value of 1.72 μg/mL, compared with reference drug (5-flourouracil) with IC 50 value of 4.8 μg/mL. The most potent compounds in cytotoxic activity 3b and 3p were further docked inside the active site of CAIX and were found to exhibit a proper binding with the active site amino acids according to their bond lengths, angles and conformational energy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Efficacy of newly formulated ointment containing 20% active antimicrobial honey in treatment of burn wound infections.

    PubMed

    Tasleem, Samiyah; Naqvi, Syed Baqir Shyum; Khan, Saadat Ali; Hashmi, Khursheed

    2013-01-01

    Honey has been familiar to possess antimicrobial potential to clear infection against burn wound infecting bacteria since ancient times. The objective of the study was to evaluate the efficacy of the newly formulated honey ointment during the treatment of burn wound infections. The Experimental (Non comparative) study was conducted at outpatient department of Dermatology, Fauji Foundation Hospital, Rawalpindi from November 2009 to October 2010. The antimicrobial activity of different Pakistani floral sources (Acacia nilotica species indica, Zizyphus, Helianthus annuus and Carisa opaca) honey samples were investigated by disc diffusion method against freshly isolated burn wounds infecting bacteria. Ointment containing 20% active antimicrobial honey was formulated as a sovereign remedy. A total number of twenty patients with second degree of burn wounds on different parts of the body were studied. A thin layer of honey ointment on gauze was applied to the wounds two to three times a day up to the complete healing. During microbiological study, Pakistani honey samples were discovered to exhibit a very promising antimicrobial activity against all the wound infecting microorganisms tested. Clinical trials demonstrated that the topical application of honey ointment have significant control of infections arising form pathogenic bacteria and up to 100% healing results were observed in all burn wound cases within mean healing time for the duration of 8.15 (3-18) days time period. Newly formulated ointment containing 20% active antimicrobial honey is more effective and low-cost alternative preparation for the treatment of burn wound infections.

  3. In vitro Antimicrobial Activity of Traditional Plant Used in Mestizo Shamanism from the Peruvian Amazon in Case of Infectious Diseases

    PubMed Central

    Roumy, Vincent; Gutierrez-Choquevilca, Andréa-Luz; Lopez Mesia, Jean Pierre; Ruiz, Lastenia; Ruiz Macedo, Juan Celidonio; Abedini, Amin; Landoulsi, Ameni; Samaillie, Jennifer; Hennebelle, Thierry; Rivière, Céline; Neut, Christel

    2015-01-01

    Context: Our survey was performed near Iquitos (Peruvian Amazon) and its surroundings and leads us to consider Mestizo ethnomedical practices. The plant species reported here are traditionally used for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed, and 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto (Peru). Material and Method: The minimum inhibitory concentrations (MICs) of the plant crude extracts were carried out using the agar dilution method and ranged between 0.075 and 5.0 mg/ml. Results: Of the 40 plants analyzed, 9 species showed MIC ≤0.3 mg/ml (Anacardium occidentale, Couroupita guianensis, Croton lechleri, Davilla rugosa, Erythrina amazonica, Jacaranda copaia subsp. Spectabilis, Oenocarpus bataua, Peperomia macrostachya, and Phyllanthus urinaria) for one or several of the 36 microorganisms and only 6 drug extracts were inactive. Among the 40 plants, 13 were evaluated for the first time for an antibacterial activity. Conclusion: This evaluation of the antimicrobial activity of 40 plants using an approved standard methodology allowed comparing those activities against various microbes to establish antimicrobial spectra of standardized plant extracts, and give support to the traditional use of these plants. It may also help discovering new chemical classes of antimicrobial agents that could serve against multi-resistant bacteria. SUMMARY This study leads us to consider Mestizo ethnomedical practices near Iquitos (Peruvian Amazon) and its surroundings. The plant species reported here are traditionally used for ailments related to microbial infections. 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto. PMID:27013805

  4. In vitro Antimicrobial Activity of Traditional Plant Used in Mestizo Shamanism from the Peruvian Amazon in Case of Infectious Diseases.

    PubMed

    Roumy, Vincent; Gutierrez-Choquevilca, Andréa-Luz; Lopez Mesia, Jean Pierre; Ruiz, Lastenia; Ruiz Macedo, Juan Celidonio; Abedini, Amin; Landoulsi, Ameni; Samaillie, Jennifer; Hennebelle, Thierry; Rivière, Céline; Neut, Christel

    2015-10-01

    Our survey was performed near Iquitos (Peruvian Amazon) and its surroundings and leads us to consider Mestizo ethnomedical practices. The plant species reported here are traditionally used for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed, and 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto (Peru). The minimum inhibitory concentrations (MICs) of the plant crude extracts were carried out using the agar dilution method and ranged between 0.075 and 5.0 mg/ml. Of the 40 plants analyzed, 9 species showed MIC ≤0.3 mg/ml (Anacardium occidentale, Couroupita guianensis, Croton lechleri, Davilla rugosa, Erythrina amazonica, Jacaranda copaia subsp. Spectabilis, Oenocarpus bataua, Peperomia macrostachya, and Phyllanthus urinaria) for one or several of the 36 microorganisms and only 6 drug extracts were inactive. Among the 40 plants, 13 were evaluated for the first time for an antibacterial activity. This evaluation of the antimicrobial activity of 40 plants using an approved standard methodology allowed comparing those activities against various microbes to establish antimicrobial spectra of standardized plant extracts, and give support to the traditional use of these plants. It may also help discovering new chemical classes of antimicrobial agents that could serve against multi-resistant bacteria. This study leads us to consider Mestizo ethnomedical practices near Iquitos (Peruvian Amazon) and its surroundings. The plant species reported here are traditionally used for ailments related to microbial infections. 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto.

  5. Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory-antimicrobial agents and their docking studies with COX-1/COX-2 active sites.

    PubMed

    Chandak, Navneet; Kumar, Pawan; Kaushik, Pawan; Varshney, Parul; Sharma, Chetan; Kaushik, Dhirender; Jain, Sudha; Aneja, Kamal R; Sharma, Pawan K

    2014-08-01

    Synthesis of total eighteen 2-amino-substituted 4-coumarinylthiazoles including sixteen new compounds (3a-o and 5b) bearing the benzenesulfonamide moiety is described in the present report. All the synthesized target compounds were examined for their in vivo anti-inflammatory (AI) activity and in vitro antimicrobial activity. Results revealed that six compounds (3 d, 3 f, 3 g, 3 h, 3 j and 3 n) exhibited pronounced anti-inflammatory activity comparable to the standard drug indomethacin. AI results were further confirmed by the docking studies of the most active (3n) and the least active compound (3a) with COX-1 and COX-2 active sites. In addition, most of the compounds exhibited moderate antimicrobial activity against Gram-positive bacteria as well as fungal yeast, S. cervisiae. Comparison between 3 and 5 indicated that incorporation of additional substituted pyrazole nucleus into the scaffold significantly enhanced AI activity.

  6. Comparative Evaluation of Raw and Ripe Fruits of Forsythia suspensa by HPLC-ESI-MS/MS Analysis and Anti-Microbial Assay.

    PubMed

    Qu, Jialin; Yan, Xinjia; Li, Chunyan; Wen, Jing; Lu, Chongning; Ren, Jungang; Peng, Ying; Song, Shaojiang

    2017-04-01

    A multi-component quantification fingerprint based on high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry technique has been established for the comparative analysis of raw and ripe fruits of Forsythia suspensa originated from different provinces. Eighteen bioactive constituents including three phenylethanoid glycosides derivatives, six phenolic acids, three flavonoids, four phenylpropanoids, one fatty acid and one terpenoid were identified and quantified. Total contents of phenylethanoid glycosides, phenylpropanoids and flavonoids from raw samples were found much higher than those from ripe samples, while total content of phenolic acids showed a contrary tendency. Moreover, the anti-microbial activities were comparatively assayed for the first time using five different bacterial strains. Results revealed a positive relationship between contents of total phenolic and anti-microbial activity. The results obtained in the present study may provide useful information for future utilization of F. suspensa. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Potential of the polymer poly-[2-(tert-butylamino) methylstyrene] as antimicrobial packaging material for meat products.

    PubMed

    Dohlen, S; Braun, C; Brodkorb, F; Fischer, B; Ilg, Y; Kalbfleisch, K; Lorenz, R; Robers, O; Kreyenschmidt, M; Kreyenschmidt, J

    2016-10-01

    The objective of the study was to investigate the antimicrobial potential of a new SAM(®) polymer poly(TBAMS) as packaging material for meat products. The influence of temperature, time and product factors on the antimicrobial activity of poly(TBAMS) against different bacteria was determined using a modified test method based on the Japanese Industrial Standard 2801:2000. Results showed a significant reduction in bacterial counts on poly(TBAMS) compared with the reference material of several meat-specific micro-organisms after 24 h at 7°C. Bacterial counts of Staphylococcus aureus, Listeria monocytogenes, Lactobacillus spp., Brochothrix thermosphacta and Escherichia coli were reduced by >4·0 log10  units. Pseudomonas fluorescens was less sensitive to poly(TBAMS) within 24 h between 2 and 7°C. Prolonging the storage time to 48 h, however, resulted in an increased reduction rate. Furthermore, antimicrobial activity was also observed if meat components in the form of meat extract, meat juice or bovine serum albumin protein were present. Antimicrobial activity was also achieved if inoculated with mixed cultures. Poly(TBAMS) showed antimicrobial properties under conditions typical for meat supply chains. Poly(TBAMS) bears a high potential to increase safety and shelf life of meat products. © 2016 The Society for Applied Microbiology.

  8. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine.

    PubMed

    Zahi, Mohamed Reda; El Hattab, Mohamed; Liang, Hao; Yuan, Qipeng

    2017-04-15

    The objective of this research was to investigate the synergism between ε-polylysine and d-limonene and develop a novel nanoemulsion system by merging the positive effect of these two antimicrobial agents. Results from the checkerboard method showed that ε-polylysine and d-limonene exhibit strong synergistic and useful additive effects against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae. In addition, d-limonene nanoemulsion with the inclusion of ε-polylysine was successfully prepared by high pressure homogenizer technology. Its antimicrobial efficiency was compared with pure d-limonene nanoemulsion by measuring the minimal inhibitory concentration, electronic microscope observation and the leakage of the intercellular constituents. The results demonstrated a wide improvement of the antimicrobial activity of d-limonene nanoemulsion following the inclusion of ε-polylysine. Overall, the current study may have a valuable contribution to make in developing a more efficient antimicrobial system in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC.

    PubMed

    Veiga, R S; De Mendonça, S; Mendes, P B; Paulino, N; Mimica, M J; Lagareiro Netto, A A; Lira, I S; López, B G-C; Negrão, V; Marcucci, M C

    2017-04-01

    This study investigates the antimicrobial activity in Staphylococcus aureus isolates (methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA)) and antioxidant activity of green propolis, Baccharis dracunculifolia DC extracts and Artepillin C™. The amount of Artepillin C in different extracts was determined by high performance liquid chromatography analysis. Minimum inhibitory concentration 90 (MIC90) was determined using 40 isolates of S. aureus inoculated in Müeller-Hinton agar culture medium containing the green propolis and B. dracunculifolia DC extracts. PVEE (green propolis ethanolic extract) and BDEH (B. dracunculifolia hexanic extract) showed the greatest antimicrobial activity with MIC90 values of 246·3 and 295·5 μg ml -1 respectively. Green propolis ethanolic and hexanic extracts (PVEE and PVEH respectively) showed the greatest antioxidant activity assessed by DPPH (1,1-diphenyl-2-picryl hydrazyl radical) with IC 50 values of 13·09 and 95·86 μg ml -1 respectively. Green propolis ethanolic displays better antimicrobial and antioxidant activities compared to other extracts. These activities may be related to the presence of Artepillin C in synergism with the other constituents of the extracts. In this study, the antimicrobial activity of the extracts of green propolis and B. dracunculifolia DC demonstrated in MRSA and MSSA clinical isolates indicated that they can be important tools to treat infections caused by these bacteria. © 2017 The Society for Applied Microbiology.

  10. Antimicrobial activity of a novel adhesive containing chlorhexidine gluconate (CHG) against the resident microflora in human volunteers.

    PubMed

    Carty, Neal; Wibaux, Anne; Ward, Colleen; Paulson, Daryl S; Johnson, Peter

    2014-08-01

    To evaluate the antimicrobial activity of a new, transparent composite film dressing, whose adhesive contains chlorhexidine gluconate (CHG), against the native microflora present on human skin. CHG-containing adhesive film dressings and non-antimicrobial control film dressings were applied to the skin on the backs of healthy human volunteers without antiseptic preparation. Dressings were removed 1, 4 or 7 days after application. The bacterial populations underneath were measured by quantitative cultures (cylinder-scrub technique) and compared with one another as a function of time. The mean baseline microflora recovery was 3.24 log10 cfu/cm(2). The mean log reductions from baseline measured from underneath the CHG-containing dressings were 0.87, 0.78 and 1.30 log10 cfu/cm(2) on days 1, 4 and 7, respectively, compared with log reductions of 0.67, -0.87 and -1.29 log10 cfu/cm(2) from underneath the control film dressings. There was no significant difference between the log reductions of the two treatments on day 1, but on days 4 and 7 the log reduction associated with the CHG adhesive was significantly higher than that associated with the control adhesive. The adhesive containing CHG was associated with a sustained antimicrobial effect that was not present in the control. Incorporating the antimicrobial into the adhesive layer confers upon it bactericidal properties in marked contrast to the non-antimicrobial adhesive, which contributed to bacterial proliferation when the wear time was ≥4 days. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  11. Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities

    PubMed Central

    2013-01-01

    Background Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens. Results The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1β, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1β, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed. Conclusions Altogether, these data revealed that the degree of environmental microbial exposure of the hen moderately stimulated the egg innate defence, by reinforcing some specific antimicrobial activities to protect the embryo and to insure hygienic quality of table eggs. PMID:23758641

  12. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

    PubMed

    Toroglu, Sevil

    2007-07-01

    Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.

  13. Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P▿

    PubMed Central

    O'Shea, Eileen F.; O'Connor, Paula M.; Cotter, Paul D.; Ross, R. Paul; Hill, Colin

    2010-01-01

    Two-component salivaricin P-like bacteriocins have demonstrated potential as antimicrobials capable of controlling infections in the gastrointestinal tract (GIT). The anti-Listeria activity of salivaricin P is optimal when the individual peptides Sln1 and Sln2 are added in succession at a 1:1 ratio. However, as degradation by digestive proteases may compromise the functionality of these peptides within the GIT, we investigated the potential to create salivaricin variants with enhanced resistance to the intestinal protease trypsin. A total of 11 variants of the salivaricin P components, in which conservative modifications at the trypsin-specific cleavage sites were explored in order to protect the peptides from trypsin degradation while maintaining their potent antimicrobial activity, were generated. Analysis of these variants revealed that eight were resistant to trypsin digestion while retaining antimicrobial activity. Combining the complementary trypsin-resistant variants Sln1-5 and Sln2-3 resulted in a MIC50 of 300 nM against Listeria monocytogenes, a 3.75-fold reduction in activity compared to the level for wild-type salivaricin P. This study demonstrates the potential of engineering bacteriocin variants which are resistant to specific protease action but which retain significant antimicrobial activity. PMID:20581174

  14. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork.

  15. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions.

    PubMed

    Moein, Mahmoodreza R; Zomorodian, Kamiar; Pakshir, Keyvan; Yavari, Farnoosh; Motamedi, Marjan; Zarshenas, Mohammad M

    2015-01-01

    Resistance to antibacterial agents has become a serious problem for global health. The current study evaluated the antimicrobial activities of essential oil and respective fractions of Trachyspermum ammi (L.) Sprague. Seeds of the essential oil were extracted and fractionated using column chromatography. All fractions were then analyzed by gas chromatography/mass spectrometry. Antifungal and antibacterial activities of the oil and its fractions were assessed using microdilution method. Compounds γ-terpinene (48.07%), ρ-cymene (33.73%), and thymol (17.41%) were determined as major constituents. The effect of fraction II was better than total essential oil, fraction I, and standard thymol. The greater effect of fraction II compared to standard thymol showed the synergistic effects of the ingredients in this fraction. As this fraction and also total oil were effective on the studied microorganism, the combination of these products with current antimicrobial agents could be considered as new antimicrobial compounds in further investigations. © The Author(s) 2014.

  16. Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential.

    PubMed

    Du, Juan; Singh, Hina; Yi, Tae-Hoo

    2017-03-01

    The present study described biosynthesis of silver nanoparticles (AgNPs) using a bacterial strain Novosphingobium sp. THG-C3, isolated from soil, and their application in antibacterial activity. The maximum absorbance values of the synthesized AgNPs was measured at 406 nm in ultraviolet-visible spectrophotometry and were mostly spherical in shape with particle size in range of 8-25 nm by field emission transmission electron microscopy analysis. X-ray diffraction pattern corresponding to planes (111), (200), (220), and (311) demonstrated the crystalline nature of the AgNPs. The synthesized AgNPs exhibited antimicrobial activity against various pathogens inculding Staphylococcus aureus, Candida tropicalis, Pseudomonas aeruginosa, Escherichia coli, Vibrio parahaemolyticus, Candida albicans, Salmonella enterica, Bacillus subtilis, and Bacillus cereus. In addition, the AgNPs in combination with commercial antibiotics enhanced antimicrobial activity against P. aeruginosa, S. enterica, E. coli, and V. parahaemolyticus. The AgNPs synthesized by strain Novosphingobium sp. THG-C3 are comparatively simple, green, cost-effective, and may serve as a potential antimicrobial agent.

  17. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria. © 2015 Institute of Food Technologists®

  18. Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel.

    PubMed

    Son, Hyeri; Park, Sunhyung; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2016-12-05

    The goal of this study was to develop a desiccation resistant antimicrobial surface using biofilm of competitive exclusion (CE) microorganism inhibitory to Staphylococcus aureus. We isolated 161 microorganisms from soils, foods, and food-contact surfaces that are inhibitory to S. aureus. Among them, three CE microorganisms (Streptomyces spororaveus strain Gaeunsan-18, Bacillus safensis strain Chamnamu-sup 5-25, and Pseudomonas azotoformans strain Lettuce-9) exhibiting strong antibacterial activity and high growth rates were selected for evaluation. These isolates formed biofilms within 24h on stainless steel coupons (SSCs) immersed in Bennet's broth and tryptic soy broth at 25°C. Cells in these biofilms showed significantly (P≤0.05) enhanced resistance to a desiccation (43% relative humidity [RH]) compared to those attached to SSCs but not in biofilms. The antimicrobial activities of biofilms formed by these isolates on SSCs against S. aureus at 25°C and 43% RH were determined. Compared to SSCs lacking biofilms formed by CE microorganisms, populations of S. aureus on SSCs harboring CE biofilms were significantly lower (P≤0.05). Results indicate that persistent antimicrobial activity against S. aureus on stainless steel surfaces can be achieved by the presence of biofilms of CE microorganisms. This information will be useful when developing strategies to improve the microbiological safety of foods during storage, processing, and distribution by facilitating the development of effective antimicrobial food-contact surfaces. Copyright © 2016. Published by Elsevier B.V.

  19. In vitro evaluation of antimicrobial and antioxidant activities of methanolic extract of Jasminum humile leaves.

    PubMed

    Nain, Parminder; Kumar, Ashok; Sharma, Sunil; Nain, Jaspreet

    2011-10-01

    To evaluate in vitro antimicrobial and antioxidant activities of methanolic extract of Jasminum humile (J. humile) leaves extract. Methanolic extract of J. humile was evaluated for its antimicrobial activity by using agar well diffusion method & their possible antioxidant assay by two complementary test systems, namely DPPH and hydrogen peroxide scavenging activity. These various antioxidant activities were compared to standard antioxidants such as ascorbic acid for both the tests. In the DPPH & hydrogen peroxide scavenging activity, the IC(50) value of methanol extract was 70.43 μg/mL & 60.79 μg/mL respectively. Further, the extract showed inhibitory activity for Gram-positive and negative bacteria at different concentrations. The maximum antibacterial activity of extract was exhibited against Staphylococcus aureus (S. aureus) at concentration 50 mg/mL when compared with ciprofloxacin These results clearly indicate that J. humile is effective in scavenging free radicals and has the potential to be a powerful antioxidant. Thus, the results obtained in the present study indicate that J. humile leaves extract could be considered as a potential source of natural antioxidants and that could be used as an effective source against bacterial diseases. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  20. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction.

    PubMed

    Chenni, Mohammed; El Abed, Douniazad; Rakotomanomana, Njara; Fernandez, Xavier; Chemat, Farid

    2016-01-19

    Solvent-free microwave extraction (SFME) and conventional hydro-distillation (HD) were used for the extraction of essential oils (EOs) from Egyptian sweet basil (Ocimum basilicum L.) leaves. The two resulting EOs were compared with regards to their chemical composition, antioxidant, and antimicrobial activities. The EO analyzed by GC and GC-MS, presented 65 compounds constituting 99.3% and 99.0% of the total oils obtained by SFME and HD, respectively. The main components of both oils were linalool (43.5% SFME; 48.4% HD), followed by methyl chavicol (13.3% SFME; 14.3% HD) and 1,8-cineole (6.8% SFME; 7.3% HD). Their antioxidant activity were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging method. The heating conditions effect was evaluated by the determination of the Total Polar Materials (TPM) content. The antimicrobial activity was investigated against five microorganisms: two Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and one yeast, Candida albicans. Both EOs showed high antimicrobial, but weak antioxidant, activities. The results indicated that the SFME method may be a better alternative for the extraction of EO from O. basilicum since it could be considered as providing a richer source of natural antioxidants, as well as strong antimicrobial agents for food preservation.

  1. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis.

    PubMed

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Showmaker, Kurt C; Smith, Leif; Peterson, Daniel G; Lu, Shien

    2016-06-01

    Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. 1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium.

    PubMed

    Carter, Glen P; Harjani, Jitendra R; Li, Lucy; Pitcher, Noel P; Nong, Yi; Riley, Thomas V; Williamson, Deborah A; Stinear, Timothy P; Baell, Jonathan B; Howden, Benjamin P

    2018-06-01

    Enterococcus faecium is an important nosocomial pathogen. It has a high propensity for horizontal gene transfer, which has resulted in the emergence of MDR strains that are difficult to treat. The most notorious of these, vancomycin-resistant E. faecium, are usually treated with linezolid or daptomycin. Resistance has, however, been reported, meaning that new therapeutics are urgently needed. The 1,2,4-oxadiazoles are a recently discovered family of antimicrobials that are active against Gram-positive pathogens and therefore have therapeutic potential for treating E. faecium. However, only limited data are available on the activity of these antimicrobials against E. faecium. To determine whether the 1,2,4-oxadiazole antimicrobials are active against MDR and daptomycin-non-susceptible E. faecium. The activity of the 1,2,4-oxadiazole antimicrobials against vancomycin-susceptible, vancomycin-resistant and daptomycin-non-susceptible E. faecium was determined using susceptibility testing, time-kill assays and synergy assays. Toxicity was also evaluated against human cells by XTT and haemolysis assays. The 1,2,4-oxadiazoles are active against a range of MDR E. faecium, including isolates that display non-susceptibility to vancomycin and daptomycin. This class of antimicrobial displays rapid bactericidal activity and demonstrates superior killing of E. faecium compared with daptomycin. Finally, the 1,2,4-oxadiazoles act synergistically with daptomycin against E. faecium, with subinhibitory concentrations reducing the MIC of daptomycin for non-susceptible isolates to a level below the clinical breakpoint. The 1,2,4-oxadiazoles are active against MDR and daptomycin-non-susceptible E. faecium and hold great promise as future therapeutics for treating infections caused by these difficult-to-treat isolates.

  3. Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt.

    PubMed

    El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H

    2013-11-01

    The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.

  4. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): characterization, antimicrobial activities and membrane interactions.

    PubMed

    Gusmão, Karla A G; Dos Santos, Daniel M; Santos, Virgílio M; Cortés, María Esperanza; Reis, Pablo V M; Santos, Vera L; Piló-Veloso, Dorila; Verly, Rodrigo M; de Lima, Maria Elena; Resende, Jarbas M

    2017-01-01

    The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus , namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions.

  5. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    PubMed Central

    Fjell, Christopher D.; Waldbrook, Matt; Chongsiriwatana, Nathaniel P.; Yuen, Eddie; Hancock, Robert E. W.; Barron, Annelise E.

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. PMID:26849681

  6. Activity of Topical Antimicrobial Agents Against Multidrug-Resistant Bacteria Recovered from Burn Patients

    DTIC Science & Technology

    2010-01-01

    produced by Pseudomonas fluorescens [19] Inhibition of RNA and protein synthesis by targeting the isoleucine-binding site on the isoleucyl-transfer-RNA...multidrug-resistant (MDR) bacteria. We compared two methods of determining topical antimicrobial susceptibilities. Methods: Isolates of Pseudomonas ...aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), extended spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae, and

  7. Functional assessment of encapsulated citral for controlling necrotic enteritis in broiler chickens.

    PubMed

    Yang, Yuexi; Wang, Qi; Diarra, Moussa S; Yu, Hai; Hua, Yufei; Gong, Joshua

    2016-04-01

    Development of viable alternatives to antibiotics to control necrotic enteritis (NE) caused by Clostridium perfringensis becoming urgent for chicken production due to pessures on poultry producers to limit or stop the use of antibiotics in feed. We have previously identified citral as a potential alternative to antibiotics. Citral has strong antimicrobial activity and can be encasupsulated in a powder form for protection from loss during feed processing, storage, and intestinal delivery. In the present study, encapsulated citral was evaluated both in vitro and in vivo for its antimicrobial activity against C. perfringens Encapsulation did not adversely affect the antimicrobial activity of citral. In addition, encapsulated citral was superior to the unencapsulated form in retaining its antimicrobial activity after treatment with simulated gastrointestinal fluids and in the presence of chicken intestinal digesta. In addition, the higher antimicrobial activity of encapsulated citral was confirmed in digesta samples from broilers that had been gavaged with encapsulated or unencapsulated citral. In broilers infected with C. perfringens, the diets supplemented with encapsualted citral at both 250 and 650 μg/g significantly reduced intestinal NE lesions, which was comparable to the effect of bacitracin- and salinomycin-containing diets. However, supplementation with the encapsulated citral appeared to have no significant impact on the intestinal burden of Lactobacillus These data indicate that citral can be used to control NE in chickens after proper protection by encapsulation. © Crown copyright 2016.

  8. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.

    PubMed

    Payne, Joanna E; Dubois, Alice V; Ingram, Rebecca J; Weldon, Sinead; Taggart, Clifford C; Elborn, J Stuart; Tunney, Michael M

    2017-09-01

    There is a clear need for new antimicrobials to improve current treatment of chronic lung infection in people with cystic fibrosis (CF). This study determined the activities of antimicrobial peptides (AMPs) and ivacaftor, a novel CF transmembrane conductance regulator potentiator, for CF treatment. Antimicrobial activities of AMPs [LL37, human β-defensins (HβD) 1-4 and SLPI] and ivacaftor against clinical respiratory isolates (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp., Achromobacter spp. and Stenotrophomonas maltophilia) were determined using radial diffusion and time-kill assays, respectively. Synergy of LL37 and ivacaftor with tobramycin was determined by time-kill, with in vivo activity of ivacaftor and tobramycin compared using a murine infection model. LL37 and HβD3 were the most active AMPs tested, with MICs ranging from 3.2- ≥ 200 mg/L and 4.8- ≥ 200 mg/L, respectively, except for Achromobacter that was resistant. HβD1 and SLPI demonstrated no antimicrobial activity. LL37 demonstrated synergy with tobramycin against 4/5 S. aureus and 2/5 Streptococcus spp. isolates. Ivacaftor demonstrated bactericidal activity against Streptococcus spp. (mean log 10 decrease 3.31 CFU/mL) and bacteriostatic activity against S. aureus (mean log 10 change 0.13 CFU/mL), but no activity against other genera. Moreover, ivacaftor demonstrated synergy with tobramycin, with mean log 10 decreases of 5.72 CFU/mL and 5.53 CFU/mL at 24 h for S. aureus and Streptococcus spp., respectively. Ivacaftor demonstrated immunomodulatory but no antimicrobial activity in a P. aeruginosa in vivo murine infection model. Following further modulation to enhance activity, AMPs and ivacaftor offer real potential as therapeutics to augment antibiotic therapy of respiratory infection in CF. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. The antibacterial effect of four mouthwashes against streptococcus mutans and escherichia coli.

    PubMed

    Ghapanchi, Janan; Lavaee, Fatemeh; Moattari, Afagh; Shakib, Mahmood

    2015-04-01

    To evaluate the antimicrobial properties of several mouthwash concentrations on oral Streptococcus mutans and Escherichia coli. The study was conducted at Shiraz Medicine School in 2011. Serial dilutions of Chlorohexidin, Oral B and Persica and Irsha (2,4,8,16,64,128) were prepared in Muller-Hinton media. Minimum inhibitory concentration was visually determined and defined as the lowest concentration of each oral washing which inhibited > 95% growth reduction compared to the growth control well. Chlorhexidine, Oral B and Irsha mouthwash inhibited Streptococcus mutans even with diluted concentrations. Also, Chlorhexidine and Oral B prohibited Escherichia coli with different potencies. But Persica had no antimicrobial activity against either Escherichia coli or Streptococcus mutans. Chlorhexidine, Irsha, and Oral B mouthwashes can be used for antimicrobial effects, especially on Streptococcus mutans. This chemical activity of mouthwashes is an adjuvant for mechanical removing of plaque. However, the antimicrobial effect of Persicaremains controversial.

  10. Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    NASA Astrophysics Data System (ADS)

    Wisdom, Cate; Vanoosten, Sarah Kay; Boone, Kyle W.; Khvostenko, Dmytro; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2016-08-01

    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

  11. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    PubMed

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Synthesis and evaluation of hetero- and homo-dimers of ribosome-targeting antibiotics: Antimicrobial activity, in vitro inhibition of translation, and drug resistance

    PubMed Central

    Berkov-Zrihen, Yifat; Green, Keith D.; Labby, Kristin J.; Feldman, Mark; Garneau-Tsodikova, Sylvie; Fridman, Micha

    2013-01-01

    In this study, we describe the synthesis of a full set of homo- and hetero-dimers of three intact structures of different ribosome-targeting antibiotics: tobramycin, clindamycin, and chloramphenicol. Several aspects of the biological activity of the dimeric structures were evaluated including antimicrobial activity, inhibition of in vitro bacterial protein translation, and the effect of dimerization on the action of several bacterial resistance mechanisms that deactivate tobramycin and chloramphenicol. This study demonstrates that covalently linking two identical or different ribosome-targeting antibiotics may lead to (i) a broader spectrum of antimicrobial activity, (ii) improved inhibition of bacterial translation properties compared to that of the parent antibiotics, and (iii) reduction in the efficacy of some drug-modifying enzymes that confer high levels of resistance to the parent antibiotics from which the dimers were derived. PMID:23786357

  13. Efficacy of Antimicrobial Agents for Food Contact Applications: Biological Activity, Incorporation into Packaging, and Assessment Methods: A Review.

    PubMed

    Mousavi Khaneghah, Amin; Hashemi, Seyed Mohammad Bagher; Eş, Ismail; Fracassetti, Daniela; Limbo, Sara

    2018-07-01

    Interest in the utilization of antimicrobial active packaging for food products has increased in recent years. Antimicrobial active packaging involves the incorporation of antimicrobial compounds into packaging materials, with the aim of maintaining or extending food quality and shelf life. Plant extracts, essential oils, organic acids, bacteriocins, inorganic substances, enzymes, and proteins are used as antimicrobial agents in active packaging. Evaluation of the antimicrobial activity of packaging materials using different methods has become a critical issue for both food safety and the commercial utilization of such packaging technology. This article reviews the different types of antimicrobial agents used for active food packaging materials, the main incorporation techniques, and the assessment methods used to examine the antimicrobial activity of packaging materials, taking into account their safety as food contact materials.

  14. In vitro evaluation of cytotoxic, anti-proliferative, anti-oxidant, apoptotic, and anti-microbial activities of Cladonia pocillum.

    PubMed

    Ersoz, M; Coskun, Z M; Acikgoz, B; Karalti, I; Cobanoglu, G; Cesal, C

    2017-08-15

    The aim of this study was to investigate the anti-proliferative, apoptotic, cytotoxic, and anti-oxidant effects of extracts from the lichen Cladonia pocillumon human breast cancer cells (MCF-7), and to characterize the anti-microbial features.  MCF-7 cells were treated with methanolic C. pocillum extract for 24h. The cytotoxicity of the extract was tested with MTT. Moreover, its anti-proliferative effects were examined with immunocytochemical method. Apoptosis and biochemical parameters were detected in MCF-7. The methanol and chloroform extracts of the lichen were tested for anti-microbial activity against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using the disc diffusion method and calculation of minimal inhibitory concentrations. Although BrdU incorporation was not observed in MCF-7 cells treated with methanol extract at a concentration above 0.2 mg/mL, a significant decrease was observed int he percentage of PCNA immunoreactive cells in groups treated with 0.2, 0.4, 06, and 0.8 mg/mL methanol extracts of C.pocillum (49±6.3, 44±5.2, 23±2.5, 0, respectively) compared to that of control (85±4.5). The percentage of apoptotic cells significantly increased in groups treated with 0.2, 0.4, 0.6, and 0.8 mg/mL extracts of the C.pocillum (54±3.5, 76±2.6, 77±1.8, 82±4.2, respectively) compared with that of control group (3.9±1.5).The half-maximal inhibitory concentration of the methanol extract against MCF-7 cells was 0.802 mg/mL .Although the chloroform extract showed more effective anti-microbial activity overall, the methanol extract showed higher anti-fungal activity. Collectively, the results of our study indicate that C.pocillum extracts have strong anti-microbial and apoptotic effects. This lichen therefore shows potential for development as a natural anti-microbial, anti-oxidant, and apoptotic agent.

  15. [Antimicrobial treatment in complicated intraabdominal infections--current situation].

    PubMed

    Vyhnánek, F

    2009-04-01

    Compared to other infections, intraabdominal infections include wide spectrum of infections of various severity, have different ethiology, which is frequently polymicrobial, show different microbiological results, which are difficult to interpret. The role of surgical intervention is essential. Intraabdominal infections are common causes of morbidity and mortality. Their prognosis is significantly improved with early and exact diagnosis, appropriate surgical or radiological intervention and timely effective antimicrobial therapy. Practitioners may choose between older or more modern antibiotics, between monotherapy or combination therapy, however, they should also consider clinical condition of the patient, the antibiotic's spectrum of activity, the treatment timing and its duration, the dose and dosing scheme of the particular antimicrobials. Furthermore, antimicrobial therapy should be used with caution, with the aim to prevent development of antimicrobial resistence. Inappropriate choice of antimicrobials in initial empiric therapy results in relapsing infections, surgical intervention and prolongation of hospitalization, and even death rates reflect adequate and timely empiric therapy.

  16. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  17. Influence of Smear Layer on the Antimicrobial Activity of a Sodium Hypochlorite/Etidronic Acid Irrigating Solution in Infected Dentin.

    PubMed

    Morago, Ana; Ordinola-Zapata, Ronald; Ferrer-Luque, Carmen María; Baca, Pilar; Ruiz-Linares, Matilde; Arias-Moliz, María Teresa

    2016-11-01

    The aim of this study was to evaluate the influence of the smear layer on the antimicrobial activity of a 2.5% sodium hypochlorite (NaOCl)/9% etidronic acid (HEBP) irrigating solution against bacteria growing inside dentin tubules. Dentin tubules were infected with Enterococcus faecalis by centrifugation. After 5 days of incubation, the smear layer had formed in half of the samples, which were then treated with 2.5% NaOCl either alone or combined with 9% HEBP for 3 minutes. The percentage of dead cells in infected dentinal tubules was measured using confocal laser scanning microscopy and the live/dead technique. The smear layer on the surface of the root canal wall was also observed by scanning electron microscopy. Results of the percentage of dead cells were compared using parametric tests after subjecting data to the normalized Anscombe transformation. The level of significance was P < .05. In the absence of the smear layer, 2.5% NaOCl alone and combined with 9% HEBP showed high antimicrobial activity without significant differences between the 2. The smear layer reduced the antimicrobial activity of 2.5% NaOCl significantly, whereas the solution with HEBP was not affected. No dentin tubules free of the smear layer were obtained in the 2.5% NaOCl group. In the case of 2.5% NaOCl/9% HEBP, 95.40% ± 3.63% of dentin tubules were cleaned. The presence of the smear layer reduced the antimicrobial activity of 2.5% NaOCl. The combination of 2.5% NaOCl/9% HEBP exerted antimicrobial activity that was not reduced by the smear layer. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Synthetic hepcidin from fish: Uptake and protection against Vibrio anguillarum in sea bass (Dicentrarchus labrax).

    PubMed

    Álvarez, Claudio Andrés; Acosta, Félix; Montero, Daniel; Guzmán, Fanny; Torres, Elisa; Vega, Belinda; Mercado, Luis

    2016-08-01

    The generation of a variety of new therapeutic agents to control and reduce the effects of pathogen in aquaculture is urgently needed. The antimicrobial peptides (AMPs) are one of the major components of the innate defenses and typically have broad-spectrum antimicrobial activity. However, absorption and distributions of exogenous AMPs for therapeutics application on farmed fish species need to be studied. Previous studies in our laboratory have shown the properties of hepcidin as an effective antimicrobial peptide produced in fish in response to LPS and iron. Therefore, we decided to investigate the antimicrobial activity of four synthetic variants of hepcidin against Vibrio anguillarum in vitro, and using the more effective peptide we demonstrated the pathogen's ability to protect against the infection in European Sea bass. Additionally the uptake of this peptide after ip injection was demonstrated, reaching its distribution organs such as intestine, head kidney, spleen and liver. The synthetic peptide did not show cytotoxic effects and significantly reduced the accumulated mortalities percentage (23.5%) compared to the European Sea bass control (72.5%) at day 21. In conclusion, synthetic hepcidin shows antimicrobial activity against V. anguillarum and the in vivo experiments suggest that synthetic hepcidin was distributed trough the different organs in the fish. Thus, synthetic hepcidin antimicrobial peptide could have high potential for therapeutic application in farmed fish species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthesis, characterization, antimicrobial and enzymatic activity of 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione

    NASA Astrophysics Data System (ADS)

    Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Fátima C. Guedes da Silva, M.; Sulaiman, Othman; Rahman, Syed Ziaur; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran

    2011-12-01

    The crystal structure of the title compound, 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione has been determined by single crystal X-ray diffraction. It crystallizes in the monoclinic space group P2 1/c with Z = 4. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. The compound showed potential antimicrobial activity comparable to that of clinically used antimicrobial agents against selected microorganisms. It has selective and moderate inhibitory activity on butyryl cholinesterase enzyme and could serve as potential lead compound for synthesis of more bioactive derivatives.

  20. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay

    PubMed Central

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product’s activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate. Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium. The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds. PMID:29845058

  1. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    PubMed

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  2. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance.

    PubMed

    DeLorenzo, M E; Brooker, J; Chung, K W; Kelly, M; Martinez, J; Moore, J G; Thomas, M

    2016-04-01

    Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities. © 2014 Wiley Periodicals, Inc.

  3. Intestinal manipulation affects mucosal antimicrobial defense in a mouse model of postoperative ileus

    PubMed Central

    Hieggelke, Lena; Schneiker, Bianca; Lysson, Mariola; Stoffels, Burkhard; Nuding, Sabine; Wehkamp, Jan; Kikhney, Judith; Moter, Annette; Kalff, Joerg C.

    2018-01-01

    Aim To explore the effects of abdominal surgery and interleukin-1 signaling on antimicrobial defense in a model of postoperative ileus. Methods C57BL/6 and Interleukin-1 receptor type I (IL-1R1) deficient mice underwent intestinal manipulation to induce POI. Expression of mucosal IL-1α, IL-1β and IL-1R1 and several antimicrobial peptides and enzymes were measured by quantitative PCR or ELISA, western blotting or immunohistochemistry. Bacterial overgrowth was determined by fluorescent in-situ hybridization and counting of jejunal luminal bacteria. Translocation of aerobic and anaerobic bacteria into the intestinal wall, mesenteric lymph nodes, liver and spleen was determined by counting bacterial colonies on agar plates 48h after plating of tissue homogenates. Antimicrobial activity against E. coli and B. vulgatus was analyzed in total and cationic fractions of small bowel mucosal tissue homogenates by a flow cytometry-based bacterial depolarization assay. Results Jejunal bacterial overgrowth was detected 24h after surgery. At the same time point, but not in the early phase 3h after surgery, bacterial translocation into the liver and mesenteric lymph nodes was observed. Increased antimicrobial activity against E. coli was induced within early phase of POI. Basal antimicrobial peptide and enzyme gene expression was higher in the ileal compared to the jejunal mucosa. The expression of lysozyme 1, cryptdin 1, cryptdin 4 and mucin 2 were reduced 24h after surgery in the ileal mucosa and mucin 2 was also reduced in the jejunum. Postoperative IL-1α and IL-1β were increased in the postoperative mucosa. Deficiency of IL-1R1 affected the expression of antimicrobial peptides during homeostasis and POI. Conclusion Small bowel antimicrobial capacity is disturbed during POI which is accompanied by bacterial overgrowth and translocation. IL-1R1 is partially involved in the gene expression of mucosal antimicrobial peptides. Altered small bowel antimicrobial activity may contribute also to POI development and manifestation in patients undergoing abdominal surgery. PMID:29652914

  4. The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity.

    PubMed

    Jacob, Binu; Rajasekaran, Ganesan; Kim, Eun Young; Park, Il-Seon; Bang, Jeong-Kyu; Shin, Song Yub

    2016-05-01

    Sheep myeloid antimicrobial peptide-29 (SMAP-29) is a cathelicidin-related antimicrobial peptide derived from sheep myeloid cells. In order to investigate the effects of L-to-D-amino acid substitution in SMAP-29 on bacterial selectivity, membrane interaction and anti-inflammatory activity, we synthesized its two D-enantiomeric peptides (SMAP-29-E1 and SMAP-29-E2 containing D-Ile and D-allo-Ile, respectively) and two diastereomeric peptides (SMAP-29-D1 and SMAP-29-D2). Additionally, in order to address the effect of L-to-D-amino acid substitution in the N-terminal helical peptide of SMAP-29 (named SMAP-18) on antimicrobial activity, we synthesized its two D-enantiomeric peptides (SMAP-18-E1 and SMAP-18-E2), which are composed of D-amino acids entirely. L-to-D-amino acid substitution in membrane-targeting AMP, SMAP-29 did not affect its antimicrobial activity. However, D-allo-Ile containing-SMAP-29-E2 and SMAP-29-D2 exhibited less hemolytic activity compared to D-Ile containing-SMAP-29-E1 and SMAP-29-D1, respectively. L-to-D-amino acid substitution in intracellular targeting-AMPs, SMAP-18 and buforin-2 improved antimicrobial activity by 2- to eightfold. The improved antimicrobial activity of the D-isomers of SMAP-18 and buforin-2 seems to be due to the stability against proteases inside bacterial cells. Membrane depolarization and dye leakage suggested that the membrane-disruptive mode of SMAP-29-D1 and SMAP-29-D2 is different from that of SMAP-29, SMAP-29-E1, and SMAP-29-E2. L-to-D-amino acid substitution in SMAP-29 improved anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. In summary, we propose here that D-allo-Ile substitution is a more powerful strategy for increasing bacterial selectivity than D-Ile substitution in the design of D-enantiomeric and diastereomeric AMPs. SMAP-29-D1, and SMAP-29-D2 with improved bacterial selectivity and anti-inflammatory activity can serve as promising candidates for the development of anti-inflammatory and antimicrobial agents.

  5. A new effective assay to detect antimicrobial activity of filamentous fungi.

    PubMed

    Pereira, Eric; Santos, Ana; Reis, Francisca; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa; Almeida-Aguiar, Cristina

    2013-01-15

    The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Comparative antimicrobial activity, in vitro and in vivo, of soft N-chloramine systems and chlorhexidine.

    PubMed Central

    Selk, S H; Pogány, S A; Higuchi, T

    1982-01-01

    Antimicrobial activity of the following four new N-chloramine compounds was evaluated: two chlorinated simple amino acids, a chlorinated half-ester of succinic acid, and a chlorinated half-ester of glutaric acid. For comparison, the known bactericidal agents 3-chloro-4,4-dimethyl-2-oxazolidinone and chlorhexidine were evaluated by the same procedure. The contact germicidal efficiency screen was used to examine the in vitro bactericidal activity of all six compounds in the absence and presence of 5% horse serum or 5% Triton X-100. The four new compounds were found to have greater germicidal activity than the other compounds tested and to exhibit low toxicity and skin irritation values. The in vivo bactericidal activity was evaluated in two studies. In the occlusion test, three of the four new compounds plus chlorhexidine diacetate were tested. The N-chloramines were significantly superior to chlorhexidine in preventing the expansion of the normal flora under occlusion. In the scrub test, a gloved-hand wash method was used to compare the antimicrobial effect of a 1% solution of the chlorinated half-ester of succinic acid in triacetin with that of a commercial germicidal hand wash containing 4% chlorhexidine gluconate. The two preparations exhibited essentially the same hand-degerming activity. PMID:6805433

  7. Phenotypic and genotypic anti-microbial resistance profiles of campylobacters from untreated feedlot cattle and their environment.

    PubMed

    Minihan, D; Whyte, P; O'mahony, M; Cowley, D; O'halloran, F; Corcoran, D; Fanning, S; Collins, J D

    2006-05-01

    Anti-microbial resistance is an emerging public health issue. Farmed animals may act as reservoirs and potential sources of anti-microbial resistant Campylobacters. The aim of this study was to investigate the anti-microbial resistance profile of cattle and environmental Campylobacter isolates from normal untreated feedlot cattle, the role of the gyrA Thr-86-Ile mutation in ciprofloxacin-resistant Campylobacter jejuni isolates and the involvement of the tripartite CmeABC efflux system for multi-resistant C. jejuni isolates. The phenotypic anti-microbial resistance testing was carried out on 500 Campylobacter isolates (445 cattle isolates and 55 environmental isolates). In general, there was a higher level of anti-microbial resistance for the environmental isolates compared with the animal isolates, 45% of the animal isolates were resistant to one or more of the seven anti-microbials compared with 84% of the environmental isolates. The combined cattle and environmental Campylobacters had 34 (6.8%) isolates resistant to three or more of the seven anti-microbials tested on all isolates and 11 (2.2%) isolates were resistant to the seven anti-microbials. There was a substantial level of ciprofloxacin-resistant Campylobacters in both animal (8.5%) and environmental (21.8%) isolates. The gyrA Thr-86-Ile mutation was only present in five of 22 ciprofloxacin-resistant C. jejuni isolates investigated. No multi-drug-resistant associated mutation was detected in the CmeB or the CmeR regions investigated. In conclusion, our study observed a substantial level of Campylobacter anti-microbial resistance, highlighting the need for an active anti-microbial surveillance program for food animals in Ireland and the importance of the chosen sampling point can have on the findings of such a program.

  8. Influence of Amphibian Antimicrobial Peptides and Short Lipopeptides on Bacterial Biofilms Formed on Contact Lenses

    PubMed Central

    Maciejewska, Magdalena; Bauer, Marta; Neubauer, Damian; Kamysz, Wojciech; Dawgul, Malgorzata

    2016-01-01

    The widespread use of contact lenses is associated with several complications, including ocular biofilm-related infections. They are very difficult to manage with standard antimicrobial therapies, because bacterial growth in a biofilm is associated with an increased antibiotic resistance. The principal aim of this study was to evaluate the efficacy of antimicrobial peptides (AMPs) in eradication of bacterial biofilms formed on commercially available contact lenses. AMPs were synthesized according to Fmoc/tBu chemistry using the solid-phase method. Minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of the compounds were determined. Anti-biofilm activity of the antimicrobial peptides determined at different temperatures (25 °C and 37 °C) were compared with the effectiveness of commercially available contact lens solutions. All of the tested compounds exhibited stronger anti-biofilm properties as compared to those of the tested lens solutions. The strongest activity of AMPs was noticed against Gram-positive strains at a temperature of 25 °C. Conclusions: The results of our experiments encourage us toward further studies on AMPs and their potential application in the prophylaxis of contact lens-related eye infections. PMID:28773992

  9. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial, insect-repellent and anticholinesterase activities.

    PubMed

    Demirci, Betul; Yusufoglu, Hasan Soliman; Tabanca, Nurhayat; Temel, Halide Edip; Bernier, Ulrich R; Agramonte, Natasha M; Alqasoumi, Saleh Ibrahim; Al-Rehaily, Adnan Jathlan; Başer, Kemal Husnu Can; Demirci, Fatih

    2017-07-01

    The essential oil (EO) of the aerial parts of Rhanterium epapposum Oliv. (Asteraceae), was obtained by hydrodistillation. The oil was subsequently analyzed by both GC-FID and GC-MS, simultaneously. Forty-five components representing 99.2% of the oil composition were identified. The most abundant compounds were camphene (38.5%), myrcene (17.5%), limonene (10.1%) and α-pinene (8.7%). Referring to the ethnobotanical utilization, an insecticidal assay was performed, where the oil repelled the yellow fever mosquito Aedes aegypti L. at a minimum effective dose (MED of 0.035 ± 0.010 mg/cm 2 ) compared to the positive control DEET (MED of 0.015 ± 0.004 mg/cm 2 ). Additionally, the in vitro antimicrobial activity against a panel of pathogens was determined using a microdilution method. The acetyl- and butyrylcholine esterase inhibitory activities were measured using the colorimetric Ellman method. The bioassay results showed that the oil was rather moderate in antimicrobial and cholinesterase inhibitions when compared to the standard compounds.

  10. Comparative in vitro antimicrobial efficacy of commercial ear cleaners.

    PubMed

    Swinney, Alison; Fazakerley, Jennifer; McEwan, Neil; Nuttall, Tim

    2008-12-01

    The aim of this study was to compare the antimicrobial efficacy of ear cleaners against Staphylococcus intermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. Single isolates of each organism were incubated in duplicate at 38 degrees C for 30 min with each ear cleaner diluted 1/2 to 1/256 in phosphate-buffered saline. Positive and negative controls were included. Aliquots were then incubated for 16-18 h on sheep blood agar (bacteria) or for 3 days on Sabouraud's dextrose agar (Malassezia) at 38 degrees C. The lowest dilutions exhibiting 100% antimicrobial efficacy for S. intermedius were: Cleanaural Dog 1/32; Sancerum 1/16; Otoclean 1/4; EpiOtic 1/2; MalAcetic 1/2; and Triz Plus 1/2. The results for P. aeruginosa were Sancerum and Triz Plus 1/16; Cleanaural Dog and EpiOtic 1/8; Otoclean 1/4; and MalAcetic 1/2. Results for M. pachydermatis were: Cleanaural Dog 1/32; Sancerum, Otoclean, EpiOtic and Triz Plus 1/8; and MalAcetic 1/4. Cleanaural Cat, MalAcetic HC and Triz EDTA did not display any antimicrobial activity at any dilution. Antimicrobial activity appeared to be associated with the presence of isopropyl alcohol, parachlorometaxylenol and a low pH. The results of this study may help clinicians make evidence-based decisions when selecting ear cleaners for use in individual cases.

  11. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium

    NASA Astrophysics Data System (ADS)

    Alshareef, A.; Laird, K.; Cross, R. B. M.

    2017-12-01

    Silver nanoparticles (AgNPs) have been shown to exhibit strong antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria including antibiotic resistant strains. This study aims to compare the bactericidal effect of different shaped AgNPs (spherical and truncated octahedral) against Escherichia coli and Enterococcus faecium. The antimicrobial activity of a range of concentrations (50, 100, 1000 μg/ml) was determined over 24 h using both optical density and viable counts. Truncated octahedral AgNPs (AgNOct) were found to be more active when compared with spherical AgNPs (AgNS). The difference in shape resulted in differences in efficacy which may be due to the higher surface area of AgNOct compared to AgNS, and differences in active facets and surface energies, with AgNPs having a bacteriostatic effect and AgNOct being bactericidal after 4 h. The results suggest that AgNPs can be used as effective growth inhibitors in different microorganisms, rendering them applicable to various medical devices and antimicrobial control systems.

  12. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens.

    PubMed

    Topuz, Osman Kadir; Özvural, Emin Burçin; Zhao, Qin; Huang, Qingrong; Chikindas, Michael; Gölükçü, Muharrem

    2016-07-15

    The purpose of this research was to investigate antimicrobial effects of nano emulsions of anise oil (AO) on the survival of common food borne pathogens, Listeria monocytogenes and Escherichia coli O157:H7. Series of emulsions containing different level of anise oil as potential antimicrobial delivery systems were prepared. Antimicrobial activities of bulk anise oil and its emulsions (coarse and nano) was tested by the minimum inhibitory concentration and time kill assay. Our results showed that bulk anise oil reduced the population of E. coli O157:H7 and L. monocytogenes by 1.48 and 0.47 log cfu/ml respectively after 6 h of contact time. However, under the same condition anise oil nanoemulsion (AO75) reduced E. coli O157:H7 and L. monocytogenes count by 2.51 and 1.64 log cfu/ml, respectively. Physicochemical and microbial analyses indicated that both nano and coarse emulsions of anise oil showed better and long-term physicochemical stability and antimicrobial activity compared to bulk anise oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biologically active and thermally stable polymeric Schiff base and its metal polychelates: Their synthesis and spectral aspects

    NASA Astrophysics Data System (ADS)

    Rasool, Raza; Hasnain, Sumaiya

    2015-09-01

    New metal polychelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) obtained by the interaction of metal acetates with polymeric Schiff base containing formaldehyde and piperazine, have been investigated. Structural and spectroscopic properties have been evaluated by elemental analysis, FT-IR and 1H-NMR. Geometry of the chelated polymers was confirmed by magnetic susceptibility measurements, UV-Visible spectroscopy and Electron Spin Resonance. The molecular weight of the polymer was determined by gel permeation chromatography (GPC). Thermogravimetric analysis indicated that metal polychelates were more thermally stable than their corresponding ligand. All compounds were screened for their antimicrobial activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, (bacteria) and Candida albicans, Microsporum canis, Cryptococcus neoformans (fungi) by agar well diffusion method. Interestingly, the polymeric Schiff base was found to be antimicrobial in nature but less effective as compared to the metal polychelates. On the basis of thermal and antimicrobial behavior, these polymers hold potential applications as thermally resistant antimicrobial and antifouling coating materials as well as antimicrobial packaging materials.

  14. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery

    NASA Astrophysics Data System (ADS)

    da Silva, Indjara Mallmann; Boelter, Juliana Ferreira; da Silveira, Nádya Pesce; Brandelli, Adriano

    2014-07-01

    There is increased interest on the use of natural antimicrobial peptides in biomedicine and food preservation technologies. In this study, the antimicrobial activity of nisin encapsulated into nanovesicles containing polyanionic polysaccharides was investigated. Nisin was encapsulated in phosphatidylcholine (PC) liposomes containing chitosan or chondroitin sulfate by the thin-film hydration method and tested for antimicrobial activity against Listeria spp. The mean particle size of PC liposomes was 145 nm and varied to 210 and 134 nm with the incorporation of chitosan and chondroitin sulfate, respectively. Nisin-containing nanovesicles with and without incorporation of polysaccharides had a zeta potential values around -20 mV, showing mostly spherical structures when observed by transmission electron microscopy. Encapsulated nisin had similar efficiency as free nisin in inhibiting Listeria spp. isolated from bovine carcass, and greater efficiency in inhibiting Listeria monocytogenes. The formulation containing chitosan was more stable and more efficient in inhibiting L. monocytogenes when compared to the other nanovesicles tested. After 24 h, the viable cell counts were 2 log lower as compared with the other treatments and 7 log comparing to controls.

  15. Template engineered biopotent macrocyclic complexes involving furan moiety: Molecular modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-08-01

    Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.

  16. Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl)methyl] indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs.

    PubMed

    El-Sayed, Weal A; Abdel Megeid, Randa E; Abbas, Hebat-Allah S

    2011-07-01

    New 1-[(tetrazol-5-yl)methyl]indole derivatives, their acyclic nucleoside analogs and the corresponding glycoside derivatives were synthesized. Furthermore, the [)(1,2,4-triazol-3-yl)methyl])-2H-tetrazole derivative as well as the corresponding thioglucoside were prepared. The synthesized compounds were tested for their antimicrobial activity against Aspergillus Niger, Penicillium sp, Candida albican, Bacillus subtilis, Streptococcus lacti, Escherichia coli, Pseudomonas sp., and streptomyces sp. Compounds 3, 5 and 19b exhibited potent antibacterial activity and compounds 4, 5 and 10 exhibited high activities against the tested fungi compared with fusidic acid.

  17. The in vitro Antimicrobial Activity and Chemometric Modelling of 59 Commercial Essential Oils against Pathogens of Dermatological Relevance.

    PubMed

    Orchard, Ané; Sandasi, Maxleene; Kamatou, Guy; Viljoen, Alvaro; van Vuuren, Sandy

    2017-01-01

    This study reports on the inhibitory concentration of 59 commercial essential oils recommended for dermatological conditions, and identifies putative compounds responsible for antimicrobial activity. Essential oils were investigated for antimicrobial activity using minimum inhibitory concentration assays. Ten essential oils were identified as having superior antimicrobial activity. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry and the data analysed with the antimicrobial activity using multivariate tools. Orthogonal projections to latent structures models were created for seven of the pathogens. Eugenol was identified as the main biomarker responsible for antimicrobial activity in the majority of the essential oils. The essential oils mostly displayed noteworthy antimicrobial activity, with five oils displaying broad-spectrum activity against the 13 tested micro-organisms. The antimicrobial efficacies of the essential oils highlight their potential in treating dermatological infections and through chemometric modelling, bioactive volatiles have been identified. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Anti-microbial Activity of Urine after Ingestion of Cranberry: A Pilot Study.

    PubMed

    Lee, Yee Lean; Najm, Wadie I; Owens, John; Thrupp, Laurie; Baron, Sheryl; Shanbrom, Edward; Cesario, Thomas

    2010-06-01

    We explore the anti-microbial activity of urine specimens after the ingestion of a commercial cranberry preparation. Twenty subjects without urinary infection, off antibiotics and all supplements or vitamins were recruited. The study was conducted in two phases: in phase 1, subjects collected the first morning urine prior to ingesting 900 mg of cranberry and then at 2, 4 and 6 h. In phase 2, subjects collected urine on 2 consecutive days: on Day 1 no cranberry was ingested (control specimens), on Day 2, cranberry was ingested. The pH of all urine specimens were adjusted to the same pH as that of the first morning urine specimen. Aliquots of each specimen were independently inoculated with Escherichia coli, Klebsiella pneumoniae or Candida albicans. After incubation, colony forming units/ml (CFU ml(-1)) in the control specimen was compared with CFU ml(-1) in specimens collected 2, 4 and 6 h later. Specimens showing ≥50% reduction in CFU ml(-1) were considered as having 'activity' against the strains tested. In phase 1, 7/20 (35%) subjects had anti-microbial activity against E. coli, 13/20 (65%) against K. pneumoniae and 9/20 (45%) against C. albicans in specimens collected 2-6 h after ingestion of cranberry. In phase 2, 6/9 (67%) of the subjects had activity against K. pneumoniae. This pilot study demonstrates weak anti-microbial activity in urine specimens after ingestion of a single dose of commercial cranberry. Anti-microbial activity was noted only against K. pneumoniae 2-6 h after ingestion of the cranberry preparation.

  19. Synthesis and Evaluation of Antimicrobial and Antibiofilm Properties of A-Type Procyanidin Analogues against Resistant Bacteria in Food.

    PubMed

    Alejo-Armijo, Alfonso; Glibota, Nicolás; Frías, María P; Altarejos, Joaquín; Gálvez, Antonio; Salido, Sofía; Ortega-Morente, Elena

    2018-03-07

    Natural A-type procyanidins have shown very interesting biological activities, such as their proven antiadherence properties against pathogenic bacteria. In order to find the structural features responsible for their activities, we describe herein the design and synthesis of six A-type procyanidin analogues and the evaluation of their antimicrobial and antibiofilm properties against 12 resistant bacteria, both Gram positive and Gram negative, isolated from organic foods. The natural A-type procyanidin A-2, which had known antiadherence activity, was also tested as a reference compound for the comparative studies. Within the series, analogue 4, which had a NO 2 group on ring A, showed the highest antimicrobial activity (MIC of 10 μg/mL) and was one of the best molecules at preventing biofilm formation (up to 40% decreases at 100 μg/mL) and disrupting preformed biofilms (up to 40% reductions at 0.1 μg/mL). Structure-activity relationships are also analyzed.

  20. Antimicrobial activities of pomelo (Citrus maxima) seed and pulp ethanolic extract

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Damayanti, Vina; Tristantini, Dewi; Hermansyah, Heri; Wijanarko, Anondho; Olivia, Yuko

    2018-02-01

    Grapefruit (Citrus paradisi) seed extract is generally used as naturopathic medications, supplements, antiseptic and disinfecting agents and also as preservatives in food and cosmetics products. In vitro studies have demonstrated that grapefruit seed extract has anti bacterial properties against a range of gram-positive and gram-negative organisms. Indonesian grapefruit, known as pomelo (C. maxima), has similar characteristics, contents and is under the same genus (Citrus) as grapefruit; however it has not been completely utilized as a preservative. In this work we analyze the antimicrobial activities of ethanolic extract of Indonesian pomelo (C. maxima) seeds and pulp compared to the grapefruit (C. paradisi) seeds and pulp ethanolic extract. Ethanolic extracts of pomelo and grapefruit seeds and pulp are investigated for activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans. The level of antimicrobial effects is established using agar diffusion method. Both of the ethanolic do not show any antimicrobial activities against C. albicans. The ethanolic extract of pomelo seeds and pulp used in this research give positive results with growth inhibition effect on B. subtilis, S. aureus and E. coli. The zones of inhibition ranges from 22 - 30 mm in diameter, which is higher to grapefruit seeds and pulp ethanolic extract (17 - 25 mm). Ethanolic extract of pomelo seeds and pulp has an antimicrobial effect, which makes it a natural preparation for use as an alternative preservative for food and cosmetic.

  1. Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria

    PubMed Central

    Kim, Hyunsook

    2016-01-01

    Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation. PMID:28115890

  2. Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria.

    PubMed

    Kim, Dong-Hyeon; Jeong, Dana; Kim, Hyunsook; Kang, Il-Byeong; Chon, Jung-Whan; Song, Kwang-Young; Seo, Kun-Ho

    2016-01-01

    Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus , Staphylococcus aureus , Listeria monocytogenes , Enterococcus faecalis , Escherichia coli , Salmonella Enteritidis , Pseudomonas aeruginosa , and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus , E. coli , S . Enteritidis, P. aeruginosa , and C. sakazakii were inhibited, while B. cereus , S. aureus , E. coli , S . Enteritidis, P. aeruginosa , and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus , S . Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.

  3. Antimicrobial activity of a novel adhesive containing chlorhexidine gluconate (CHG) against the resident microflora in human volunteers

    PubMed Central

    Carty, Neal; Wibaux, Anne; Ward, Colleen; Paulson, Daryl S.; Johnson, Peter

    2014-01-01

    Objectives To evaluate the antimicrobial activity of a new, transparent composite film dressing, whose adhesive contains chlorhexidine gluconate (CHG), against the native microflora present on human skin. Methods CHG-containing adhesive film dressings and non-antimicrobial control film dressings were applied to the skin on the backs of healthy human volunteers without antiseptic preparation. Dressings were removed 1, 4 or 7 days after application. The bacterial populations underneath were measured by quantitative cultures (cylinder-scrub technique) and compared with one another as a function of time. Results The mean baseline microflora recovery was 3.24 log10 cfu/cm2. The mean log reductions from baseline measured from underneath the CHG-containing dressings were 0.87, 0.78 and 1.30 log10 cfu/cm2 on days 1, 4 and 7, respectively, compared with log reductions of 0.67, −0.87 and −1.29 log10 cfu/cm2 from underneath the control film dressings. There was no significant difference between the log reductions of the two treatments on day 1, but on days 4 and 7 the log reduction associated with the CHG adhesive was significantly higher than that associated with the control adhesive. Conclusions The adhesive containing CHG was associated with a sustained antimicrobial effect that was not present in the control. Incorporating the antimicrobial into the adhesive layer confers upon it bactericidal properties in marked contrast to the non-antimicrobial adhesive, which contributed to bacterial proliferation when the wear time was ≥4 days. PMID:24722839

  4. Triterpenoids from Acacia ataxacantha DC: antimicrobial and antioxidant activities.

    PubMed

    Amoussa, Abdou Madjid O; Lagnika, Latifou; Bourjot, Mélanie; Vonthron-Senecheau, Cathérine; Sanni, Ambaliou

    2016-08-12

    Acacia ataxacantha is a medicinal specie used extensively in traditional medicine of Benin republic to treat infectious diseases. Our previous study showed interesting antibacterial and antifungal activities against six strains of bacteria and six strains of fungi. The aim of this study was to investigate the antimicrobial and antioxidant activities of compounds isolated from A. ataxacantha. Chromatographic and spectroscopic methods were used to isolate and identify three compounds (1-3) from the bark of A. ataxacantha. Phytochemical investigation of A. ataxacantha (Fabaceae) led to the isolation of three triterpenoids (1-3). The structure of isolated compounds was established by differents spectroscopic methods such as UV, (1)H NMR, (13)C NMR, 2D NMR and Mass. All isolated compounds were tested for antimicrobial activity using agar disc-diffusion and microdilution methods. The radical scavenging activity of isolated compounds was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Phytochemical investigation led to the isolation and identification of lupeol (1), betulinic acid (2) and betulinic acid-3-trans-caffeate (3). Moderate antimicrobial activity was obtained with compound 3 against methicillin-resitant Staphylococcus aureus, Enterococcus feacalis and Pseudomonas aeruginosa with MIC value of 25 μg/ml and Staphylococcus aureus (MIC of 50 μg/ml). Compounds 3 was more active against Staphylococcus epidermidis and Candida albicans with a MIC value of 12.5 μg/ml in boths cases. Compounds 3 had also interesting antioxidant activity with an IC50 of 3.57 μg/ml compared to quercetin (1.04 μg/ml). The overall results of this study provide evidence that the compound 3, isolated from A. ataxacantha, exhibit antimicrobial activity against Gram-positive and Gram-negative bacteria and yeast, especially against C. albicans.

  5. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  6. Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carrot L.) juice essential oil.

    PubMed

    Ma, Tingting; Luo, Jiyang; Tian, Chengrui; Sun, Xiangyu; Quan, Meiping; Zheng, Cuiping; Kang, Lina; Zhan, Jicheng

    2015-03-01

    The effect of three processing units (blanching, enzyme liquefaction, pasteurisation) on chemical composition and antimicrobial activity of carrot juice essential oil was investigated in this paper. A total of 36 compounds were identified by GC-MS from fresh carrot juice essential oil. The main constituents were carotol (20.20%), sabinene (12.80%), β-caryophyllene (8.04%) and α-pinene (6.05%). Compared with the oil of fresh juice, blanching and pasteurisation could significantly decrease the components of the juice essential oil, whereas enzyme liquefaction had no considerable effect on the composition of juice essential oil. With regard to the antimicrobial activity, carrot juice essential oil could cause physical damage and morphological alteration on microorganisms, while the three different processing units showed noticeable differences on the species of microorganisms, the minimum inhibitory concentration and minimum bactericidal concentration. Results revealed that the carrot juice essential oil has great potential for application as a natural antimicrobial applied in pharmaceutical and food industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents.

    PubMed

    Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu

    2016-01-01

    Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties.

  8. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    PubMed Central

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  9. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids.

    PubMed

    Oliveira, Daniela A; Salvador, Ana Augusta; Smânia, Artur; Smânia, Elza F A; Maraschin, Marcelo; Ferreira, Sandra R S

    2013-04-10

    The possibility of increasing the aggregated value of the huge amount of residues generated by wineries around the world foment studies using the grape pomace - the residue from the wine production, composed by seed, skin and stems - to obtain functional ingredients. Nowadays, consumers in general prefer natural and safe products mainly for food and cosmetic fields, where the supercritical fluid extraction is of great importance due to the purity of the extracts provided. Therefore, the objective of this work is to evaluate the global extraction yield, the antimicrobial activity and the composition profile of Merlot and Syrah grape pomace extracts obtained by supercritical CO2 (SC-CO2) and CO2 added with co-solvent at pressures up to 300 bar and temperatures of 50 and 60 °C. The results were compared with the ones obtained by Soxhlet and by ultrasound-assisted leaching extraction methods. The main components from the extracts, identified by HPLC, were gallic acid, p-OH-benzoic acid, vanillic acid and epicatechin. The antibacterial and antifungal activities of the extracts were evaluated using four strains of bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa) and three fungi strains (Candida albicans, Candida parapsilosis, Candida krusei). Despite lower extraction yield results, the supercritical fluid extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds. Syrah extracts were less efficient against the microorganisms tested and Merlot extracts were more active against Gram-positive bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Antimicrobial effect of various calcium hydroxide on Porphyromonas endodontalis in vitro].

    PubMed

    Du, Ting-ting; Qiu, Li-hong; Jia, Ge; Yang, Di; Guo, Yan

    2012-04-01

    To compare the antimicrobial activity of Endocal, calcium hydroxide paste, Calxyl, Vitapex on Porphyromonas endodontalis(P.e). (1) The antimicrobial activity of different calcium hydroxide on P.e was examined at different exposure times by dynamic nephelometry. (2) 85 freshly extracted single-rooted human teeth were selected and cut at the amelocemental junction. All roots were randomly divided into five groups. The bacteria were incubated in each canal and were sampled and counted before and after enveloping five kinds of intercanal medicine seeded. Student's t test, One-way ANOVA were used with SPSS11.0 software package for statistical analysis. The bacteria from each group were reduced significantly after intracanal medication (P<0.05). The antibacterial efficacy of Endocal and calcium hydroxide paste were superior to others under dynamic nephelometry test (P<0.05). Endocal, calcium hydroxide paste, Calxyl, Vitapex had strong inhibitory effect on P.e from infected root canals, and the rate of bacteria clearance was 95%. The antimicrobial activity of Endocal was significantly greater than others (P<0.05). Endocal, calcium hydroxide paste, Calxyl and Vitapex were effective for intercanal disinfection. The antibacterial activity of Endocal is greater than Vitapex.

  11. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  12. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity.

    PubMed

    Kim, Eun Young; Rajasekaran, Ganesan; Shin, Song Yub

    2017-08-18

    KR-12-a5 is a 12-meric α-helical antimicrobial peptide (AMP) with dual antimicrobial and anti-inflammatory activities designed from human cathelicidin LL-37. We designed and synthesized a series of d-amino acid-substituted analogs of KR-12-a5 with the aim of developing novel α-helical AMPs that possess higher cell selectivity than KR-12-a5, while maintaining the anti-inflammatory activity. d-amino acid incorporation into KR-12-a5 induced a significant improvement in the cell selectivity by 2.6- to 13.6-fold as compared to KR-12-a5, while maintaining the anti-inflammatory activity. Among the three analogs, KR-12-a5 (6- D L) with d-amino acid in the polar-nonpolar interface (Leu 6 ) showed the highest cell selectivity (therapeutic index: 61.2). Similar to LL-37, KR-12-a5 and its analogs significantly inhibited the expression and secretion of NO, TNF-α, IL-6 and MCP-1 from LPS-stimulated RAW264.7 cells. KR-12-a5 and its analogs showed a more potent antimicrobial activity against antibiotic-resistant bacteria, including clinically isolated MRSA, MDRPA, and VREF than LL-37 and melittin. Furthermore, compared to LL-37, KR-12-a5 and its analogs showed greater synergistic effects with conventional antibiotics, such as chloramphenicol, ciprofloxacin, and oxacillin against MDRPA; KR-12-a5 and its analogs had a FICI range between 0.25 and 0.5, and LL-37 had a range between 0.75 and 1.5. KR-12-a5 and its analogs were found to be more effective anti-biofilm agents against MDRPA than LL-37. In addition, KR-12-a5 and its analogs maintained antimicrobial activity in physiological salts and human serum. SYTOX Green uptake and membrane depolarization studies revealed that KR-12-a5 and its analogs kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that KR-12-a5 and its analogs can be developed further as novel antimicrobial/anti-inflammatory agents to treat antibiotic-resistant infections. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Antimicrobial drug use in Austrian pig farms: plausibility check of electronic on-farm records and estimation of consumption.

    PubMed

    Trauffler, M; Griesbacher, A; Fuchs, K; Köfer, J

    2014-10-25

    Electronic drug application records from farmers from 75 conventional pig farms were revised and checked for their plausibility. The registered drug amounts were verified by comparing the farmers' records with veterinarians' dispensary records. The antimicrobial consumption was evaluated from 2008 to 2011 and expressed in weight of active substance(s), number of used daily doses (nUDD), number of animal daily doses (nADD) and number of product-related daily doses (nPrDD). All results were referred to one year and animal bodyweight (kg biomass). The data plausibility proof revealed about 14 per cent of unrealistic drug amount entries in the farmers' records. The annual antimicrobial consumption was 33.9 mg/kg/year, 4.9 UDDkg/kg/year, 1.9 ADDkg/kg/year and 2.5 PrDDkg/kg/year (average). Most of the antimicrobials were applied orally (86 per cent) and at group-level. Main therapy indications were metaphylactic/prophylactic measures (farrow-to-finish and fattening farms) or digestive tract diseases (breeding farms). The proportion of the 'highest priority critically important antimicrobials' was low (12 per cent). After determination of a threshold value, farms with a high antimicrobial use could be detected. Statistical tests showed that the veterinarian had an influence on the dosage, the therapy indication and the active substance. Orally administered antimicrobials were mostly underdosed, parenterally administered antimicrobials rather correctly or overdosed. British Veterinary Association.

  15. Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in-vitro study

    PubMed Central

    Sharma, Rama; Reddy, Vamsi Krishna L; Prashant, GM; Ojha, Vivek; Kumar, Naveen PG

    2014-01-01

    Context: Several studies have demonstrated the activity of natural plants on the dental biofilm and caries development. But few studies on the antimicrobial activity of coffee-based solutions were found in the literature. Further there was no study available to check the antimicrobial effect of coffee solutions with different percentages of chicory in it. Aims: To evaluate the antimicrobial activity of different combinations of coffee-chicory solutions and their anti-adherence effect on Streptococcus mutans to glass surface. Materials and Methods: Test solutions were prepared. For antimicrobial activity testing, tubes containing test solution and culture medium were inoculated with a suspension of S. mutans followed by plating on Brain Heart Infusion (BHI) agar. S. mutans adherence to glass in presence of the different test solutions was also tested. The number of adhered bacteria (CFU/mL) was determined by plating method. Statistical Analysis: Statistical significance was measured using one way ANOVA followed by Tukey's post hoc test. P value < 0.05 was considered statistically significant. Results: Pure chicory had shown significantly less bacterial count compared to all other groups. Groups IV and V had shown significant reduction in bacterial counts over the period of 4 hrs. Regarding anti-adherence effect, group I-IV had shown significantly less adherence of bacteria to glass surface. Conclusions: Chicory exerted antibacterial effect against S. mutans while coffee reduced significantly the adherence of S. mutans to the glass surface. PMID:25328299

  16. Caryocar brasiliense supercritical CO2 extract possesses antimicrobial and antioxidant properties useful for personal care products

    PubMed Central

    2014-01-01

    Background The cosmetic and pharmaceutical industries have an increasing interest in replacing synthetic antimicrobials in dermatological products due to increased microbial resistance to conventional antimicrobial agents. Pequi (Caryocar brasiliense) is a native fruit tree of the Brazilian Cerrado, specifically used in cosmetics, in the food industry, and for medicinal purposes. Leishmanicidal and antifungal activities have been reported previously. This study was designed to evaluate the antimicrobial and antioxidant activities of a C. brasiliense extract obtained by supercritical CO2 extraction. Methods The minimum inhibitory concentrations (MICs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were determined by the classical microdilution method. Antiseptic activity against these organisms was evaluated by the plate diffusion method. The antioxidant potential of the extract was evaluated using a method based on the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The extract’s chemical profile was analyzed for the presence of alkaloids, saponins, anthraquinones, steroids, tannins, flavonoids, and phenolic compounds according to standard colorimetric methods. Results The C. brasiliense supercritical CO2 extract exhibits antimicrobial activity against all bacteria tested. It also possesses antioxidant activity, when compared to a vitamin E standard. Conclusions The C. brasiliense supercritical CO2 extract may be useful for the development of personal care products, primarily for antiseptic skin products that inactivate, reduce, prevent, or arrest the growth of microorganisms with the inherent intent to mitigate or prevent disease as well as products that minimize damage caused by free radicals. PMID:24565304

  17. Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: Synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.

    2015-07-01

    A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.

  18. Proximate, Phytochemical, and In Vitro Antimicrobial Properties of Dried Leaves from Ocimum gratissimum.

    PubMed

    Talabi, Justina Y; Makanjuola, Solomon Akinremi

    2017-09-01

    Ocimum gratissimum is a common plant in the tropics and has been used in food and medicine. Its usage in food and medicine could be attributed to its phtyochemical and antimicrobial properties. In this study we investigated the proximate, phytochemical, and antimicrobial attributes of air dried leaves of O. gratissimum . The aqueous extract was found to contain phtyochemicals with alkaloid and saponin present in appreciable amounts. The proximate analysis (crude protein and crude fibre content were 15.075% and 17.365%, respectively) showed that the leaf could be a good source of protein and fibre. The aqueous ethanolic extract of the leaf exhibited activity against a wider range of organisms when compared to the aqueous extract at the investigated concentrations. Aqueous ethanolic extracts of O. gratissimum leaf was active against Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , and Bacillus cereus and the aqueous extract of the leaf was active against P. aeruginosa .

  19. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37.

    PubMed

    Nan, Yong Hai; Bang, Jeong-Kyu; Jacob, Binu; Park, Il-Seon; Shin, Song Yub

    2012-06-01

    To develop novel antimicrobial peptides (AMPs) with shorter lengths, improved prokaryotic selectivity and retained lipolysaccharide (LPS)-neutralizing activity compared to human cathelicidin AMP, LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. Among the IG-19 analogs, the analog a4 showed the highest prokaryotic selectivity, but much lower LPS-neutralizing activity compared to parental LL-37. The analogs, a5, a6, a7 and a8 with higher hydrophobicity displayed LPS-neutralizing activity comparable to that of LL-37, but much lesser prokaryotic selectivity. These results indicate that the proper hydrophobicity of the peptides is crucial to exert the amalgamated property of LPS-neutralizing activity and prokaryotic selectivity. Furthermore, to increase LPS-neutralizing activity of the analog a4 without a remarkable decrease in prokaryotic selectivity, we synthesized Trp-substituted analogs (a4-W1 and a4-W2), in which Phe(5) or Phe(15) of a4 is replaced by Trp. Despite their same prokaryotic selectivity, a4-W2 displayed much higher LPS-neutralizing activity compared to a4-W1. When compared with parental LL-37, a4-W2 showed retained LPS-neutralizing activity and 2.8-fold enhanced prokaryotic selectivity. These results suggest that the effective site for Trp-substitution when designing novel AMPs with higher LPS-neutralizing activity, without a remarkable reduction in prokaryotic selectivity, is the amphipathic interface between the end of the hydrophilic side and the start of the hydrophobic side rather than the central position of the hydrophobic side in their α-helical wheel projection. Taken together, the analog a4-W2 can serve as a promising template for the development of therapeutic agents for the treatment of endotoxic shock and bacterial infection. Copyright © 2012. Published by Elsevier Inc.

  20. Anti-listerial Bactericidal Activity of Lactobacillus plantarum DM5 Isolated from Fermented Beverage Marcha.

    PubMed

    Das, Deeplina; Goyal, Arun

    2013-09-01

    The strain Lactobacillus plantarum DM5 was isolated from fermented beverage Marcha of Sikkim and explored for its antagonistic activity against food-borne pathogens. The cell-free supernatant of L. plantarum DM5 showed antibacterial activity of 6,400 AU/mL in MRS medium (pH 6.0) against the indicator strain Staphylococcus aureus. MRS medium supplemented with 15 g/L of maltose at 37 °C under static condition yielded highest antimicrobial activity (6,400 AU/mL) with 3 % increase in specific activity when compared to 20 g/L glucose. The antimicrobial compound was heat stable (60 min at 100 °C) and was active over a wide pH range. It showed bactericidal effect on S. aureus and Listeria monocytogenes by causing 96 and 98 % of cell lysis, respectively. The cell morphology of the treated S. aureus and L. monocytogenes was completely deformed as revealed by scanning electron microscopy, suggesting the high potential of L. plantarum DM5 as natural preservatives in food industry. The antimicrobial compound was purified by 80 % ammonium sulphate precipitation and showed antimicrobial activity of 12,800 AU/mL with 19-fold purification and a molecular mass of 15.2 kDa, indicating the proteinaceous nature of the compound.

  1. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora

    PubMed Central

    2012-01-01

    Background Artemisia parviflora leaf extracts were evaluated for potential antimicrobial and antioxidant properties. Antimicrobial susceptibility assay was performed against ten standard reference bacterial strains. Antioxidant activity was analyzed using the ferric thiocyanate and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Radical scavenging activity and total phenolic content were compared. Phytochemical analyses were performed to identify the major bioactive constitution of the plant extract. Results Hexane, methanol and ethyl acetate extracts of A. parviflora leaves exhibited good activity against the microorganisms tested. The n-hexane extract of A. parviflora showed high inhibition of the growth of Pseudomonas aeruginosa, Escherichia coli and Shigella flexneri. Methanol extract showed strong radical scavenging and antioxidant activity, other extracts showed moderate antioxidant activity. The major derivatives present in the extracts are of terpenes, steroids, phenols, flavonoids, tannins and volatile oil. Conclusions The results obtained with n-hexane extract were particularly significant as it strongly inhibited the growth of P. aeruginosa, E. coli and S. flexneri. The major constituent of the n-hexane extract was identified as terpenes. Strong antioxidant activity could be observed with all the individual extracts. The antimicrobial and antioxidant property of the extracts were attributed to the secondary metabolites, terpenes and phenolic compounds present in A. parviflora and could be of considerable interest in the development of new drugs. PMID:23171441

  2. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei.

    PubMed

    Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S

    2016-02-01

    Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.

  3. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf.

    PubMed

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-11-25

    Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Insights into the Antimicrobial Mechanism of Action of Human RNase6: Structural Determinants for Bacterial Cell Agglutination and Membrane Permeation

    PubMed Central

    Pulido, David; Arranz-Trullén, Javier; Prats-Ejarque, Guillem; Velázquez, Diego; Torrent, Marc; Moussaoui, Mohammed; Boix, Ester

    2016-01-01

    Human Ribonuclease 6 is a secreted protein belonging to the ribonuclease A (RNaseA) superfamily, a vertebrate specific family suggested to arise with an ancestral host defense role. Tissue distribution analysis revealed its expression in innate cell types, showing abundance in monocytes and neutrophils. Recent evidence of induction of the protein expression by bacterial infection suggested an antipathogen function in vivo. In our laboratory, the antimicrobial properties of the protein have been evaluated against Gram-negative and Gram-positive species and its mechanism of action was characterized using a membrane model. Interestingly, our results indicate that RNase6, as previously reported for RNase3, is able to specifically agglutinate Gram-negative bacteria as a main trait of its antimicrobial activity. Moreover, a side by side comparative analysis with the RN6(1–45) derived peptide highlights that the antimicrobial activity is mostly retained at the protein N-terminus. Further work by site directed mutagenesis and structural analysis has identified two residues involved in the protein antimicrobial action (Trp1 and Ile13) that are essential for the cell agglutination properties. This is the first structure-functional characterization of RNase6 antimicrobial properties, supporting its contribution to the infection focus clearance. PMID:27089320

  5. A New Method of Producing a Natural Antibacterial Peptide by Encapsulated Probiotics Internalized with Inulin Nanoparticles as Prebiotics.

    PubMed

    Cui, Lian-Hua; Yan, Chang-Guo; Li, Hui-Shan; Kim, Whee-Soo; Hong, Liang; Kang, Sang-Kee; Choi, Yun-Jaie; Cho, Chong-Su

    2018-04-28

    Synbiotics are a combination of probiotics and prebiotics, which lead to synergistic benefits in host welfare. Probiotics have been used as an alternative to antibiotics. Among the probiotics, Pediococcus acidilactici (PA) has shown excellent antimicrobial activity against Salmonella Gallinarum (SG) as a major poultry pathogen and has improved the production performances of animals. Inulin is widely used as a prebiotic for the improvement of animal health and growth. The main aim of this study is to investigate the effect of the antimicrobial activity of inulin nanoparticles (INs)-internalized PA encapsulated into alginate/chitosan/alginate (ACA) microcapsules (MCs) in future in vivo application. The prepared phthalyl INs (PINs) were characterized by DLS and FE-SEM. The contents of phthal groups in phthalyl inulin were estimated by ¹H-NMR measurement as 25.1 mol.-%. The sizes of the PINs measured by DLS were approximately 203 nm. Internalization into PA was confirmed by confocal microscopy and flow cytometry. Antimicrobial activity of PIN-internalized probiotics encapsulated into ACA MCs was measured by co-culture antimicrobial assays on SG. PIN-internalized probiotics had a higher antimicrobial ability than that of ACA MCs loaded with PA/inulin or PA. Interestingly, when PINs were treated with PA and encapsulated into ACA MCs, as a natural antimicrobial peptide, pediocin was produced much more in the culture medium compared with other groups inulin-loaded ACA MCs and PA-encapsulated into ACA MCs.

  6. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    NASA Astrophysics Data System (ADS)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Truşcă, Roxana; Vasile, Eugeniu; Iordache, Florin; Chifiriuc, Mariana-Carmen; Holban, Alina Maria

    2015-05-01

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET-TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  7. Comparative study of the chemical profiling, antioxidant and antimicrobial activities of essential oils of different parts of Thymus willdenowii Boiss & Reut.

    PubMed

    Ouknin, Mohamed; Romane, Abderrahmane; Costa, Jean; Majidi, Lhou

    2018-02-27

    The analysis of Thymus willdenowii Boiss & Reut essential oils (TW EOs) shows 33 components accounting for (96.3-97.7%) of all identified. The main constituents of TW EOs were thymol (35.5-47.3%), p-cymene (13.9-23.8%), γ-terpinene (8.9-20.3%). The antioxidant assays revealed that all TW EOs tested showed strong activities, the antimicrobial effect of TW EOs has been tested against isolated clinical strains of Proteus mirabilis (ATCC 35659), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231), Bacillus cereus (ATCC 10876), and Aspergillus brasilliensis (ATCC 16404). The antimicrobial test indicates that TW EOs show an inhibition effect against all the tested bacteria with a MIC of 6.9 to 27.6 μg/mL -1 . These results proving that the essential oils extracted from Thymus willdenowii Boiss & Reut may be a new potential source of natural antimicrobial applied in pharmaceutical and food industries.

  8. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-09-01

    Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys.

    PubMed

    Kolayli, Sevgi; Can, Zehra; Yildiz, Oktay; Sahin, Huseyin; Karaoglu, Sengul Alpay

    2016-01-01

    This study was planned to investigate some physicochemical and anti-inflammatory, antioxidant, antimicrobial properties of three different degrees of unifloral characters of chestnut honeys. Antihyaluronidase, antiurease and antimicrobial activities were evaluated as anti-inflammatory characteristics. Total phenolic contents, flavonoids, tannins, phenolic profiles, ferric-reducing antioxidant power (FRAP), scavenging activities of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS + ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were evaluated as antioxidant properties. Color, optical rotation, conductivity, moisture, pH and ash content were evaluated as physicochemical parameters, and some sugars content, prolin, diastase, HMF and minerals (Na, K, Ca, P, Fe, Cu and Zn) were evaluated as chemical and biochemical parameters. All studied physicochemical and biological active properties were changed in line with the unifloral character of the chestnut honeys. A higher unifloral character was found associated with greater apitherapeutic capacity of the honey, as well as biological active compounds.

  10. Anti-acne activities of pulsaquinone, hydropulsaquinone, and structurally related 1, 4-quinone derivatives.

    PubMed

    Cho, Soon-Chang; Sultan, Md Zakir; Moon, Surk-Sik

    2009-04-01

    Quinone type compound, pulsaquinone 1, isolated from the aqueous ethanol extract of the roots of Pulsatilla koreana exhibited antimicrobial activities against an anaerobic non-spore-forming gram-positive bacillus, Propionibacterium acnes, which is related with the pathogenesis of the inflamed lesions in a common skin disease, acne vulgaris. Compound 1 was unstable on standing and thus converted to more stable compound 2, namely hydropulsaquinone by hydrogenation, whose activity was comparable to mother compound 1 (MIC for 1 and 2 against P. acnes: 2.0 and 4.0 microg/mL, respectively). Other structurally-related quinone derivatives (3-13) were also tested for structure-activity relationship against anaerobic and aerobic bacteria, and fungi. The antimicrobial activity was fairly good when the quinone moiety was fused with a nonpolar 6- or 7-membered ring on the right side whether or not conjugated (1,4-naphtoquinone derivatives 3-5), while simple quinone compounds 6-9 showed poor activity. It seems that the methoxy groups at the left side of the quinone function deliver no considerable antimicrobial effect.

  11. The constituents of essential oil: antimicrobial and antioxidant activity of Micromeria congesta Boiss. & Hausskn. ex Boiss. from East Anatolia.

    PubMed

    Herken, Emine Nur; Celik, Ali; Aslan, Mustafa; Aydınlık, Nilüfer

    2012-09-01

    The chemical composition, antimicrobial activity, total phenol content, total antioxidant activity, and total oxidant status of the essential oil from Micromeria congesta Boiss. & Hausskn. ex Boiss. were investigated. Steam distillation was used to obtain the essential oil, and the chemical analyses were performed by gas chromatography-mass spectrometry. The antimicrobial activity was tested by an agar disc diffusion method against the tested microorganisms: Bacillus subtilis NRRL B-744, Bacillus cereus NRRL B-3711, Staphylococcus aureus ATCC 12598, S. aureus ATCC 25923, S. aureus ATCC 25933, Escherichia coli 0157H7, E. coli ATCC25922, Micrococcus luteus NRLL B-4375, Enterococcus faecalis ATCC 19433, Proteus vulgaris RSKK 96026, and Yersinia enterecolitica RSKK 1501. The major compounds found in volatiles of M. congesta were piperitone oxide, linalool oxide, veratrole, pulegone, dihydro carvone, naphthalene, iso-menthone, para-menthone, and cyclohexanone. Compared to that of reference antibiotics, the antibacterial activity of the essential oil is considered as significant. Results showed that M. congesta has the potential for being used in food and medicine depending on its antioxidant and antibacterial activity.

  12. Comparative Activity of Pradofloxacin, Enrofloxacin, and Azithromycin against Bartonella henselae Isolates Collected from Cats and a Human ▿

    PubMed Central

    Biswas, Silpak; Maggi, Ricardo G.; Papich, Mark G.; Keil, Daniel; Breitschwerdt, Edward B.

    2010-01-01

    Using Bartonella henselae isolates from cats and a human, the activity of pradofloxacin was compared with those of enrofloxacin and azithromycin. By Etest and disc diffusion assay, pradofloxacin showed greater antimicrobial activity than did other antibiotics. We conclude that pradofloxacin may prove useful for the treatment of B. henselae infections. PMID:20007401

  13. [Comparative effectiveness of antimicrobial action of antiseptics against pathogens of chronic purulent otitis media].

    PubMed

    Paliĭ, G K; Barilo, A S; Chesnokova, A A

    1992-12-01

    Comparable antimicrobial and disinfecting action of decamethoxine and silver preparations on pathogens of chronic purulent otitis media (CPOM) was studied. The clinical isolates of staphylococci proved to be most sensitive to decamethoxine whose MBcC conformed to 16.5 micrograms/ml. The antimicrobial action on Proteus spp. and Pseudomonas aeruginosa was less pronounced. The required concentrations for bactericidal action on these pathogens were 69 and 93.5 micrograms/ml, respectively. The antimicrobial activity of the silver preparations such as poviargol, collargol and protargol was low. Depending on the microbial species, the bactericidal effect of the silver preparations was 12-235 times lower than that of decamethoxin. It was also shown that decamethoxin had a high disinfecting action on CPOM pathogens. It was noted that decamethoxin had a marked ability to increase the bactericidal action of poviargol (by 2-14 times) and its disinfecting action (by 2 times) on Proteus spp., E. coli and Ps. aeruginosa.

  14. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    PubMed Central

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  15. Salivary defense system alters in vegetarian

    PubMed Central

    Amirmozafari, Nour; Pourghafar, Houra; Sariri, Reyhaneh

    2013-01-01

    Purpose The aim of this research was investigating antimicrobial and enzymatic antioxidant activities in salivary fluids of vegetarians as compared to normal subjects. Material & Methods Antimicrobial activity of the saliva samples was evaluated against four clinically important bacteria. The biological activities of three of the main antioxidant enzymes of saliva were measured using appropriate methods of enzyme assay in both groups. Results According to the results, saliva obtained from vegetarians showed a reduced inhibitory effect on growth of Staphylococcus aureus, Klebsiella oxytoca, Pseudomonas aeruginosa and Escherichia coli as compared to those obtained from the non-vegetarian subjects. The activity of salivary peroxidase, catalase and superoxide dismutase showed a statistically marked decrease in vegetarian group. Conclusions According to our literature survey, this is the first report on the antibacterial and antioxidant capacity in saliva of vegetarians. Results obtained from the present study have opened a new line of research with the basis of saliva as a research tool. PMID:25737889

  16. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-12-01

    The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.

  17. In situ green synthesis of antimicrobial carboxymethyl chitosan-nanosilver hybrids with controlled silver release.

    PubMed

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial carboxymethyl chitosan-nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO 3 ), 2) CMC and glucose (adding glucose before AgNO 3 ), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6-20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO 3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli . Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3.

  18. The use of unirradiated and γ-irradiated zinc oxide nanoparticles as a preservative in cosmetic preparations

    PubMed Central

    Hosny, Alaa El-Dien MS; Kashef, Mona T; Taher, Hadeer A; El-Bazza, Zeinab E

    2017-01-01

    Purpose Microbial contamination of different cosmetic preparations, as a result of preservative failure, presents a major public health threat. Also, most of the known preservatives have serious consumer side effects. The antimicrobial activity of zinc oxide nanoparticles (ZnO NP) is well documented. Therefore, we aimed to determine the possible use of unirradiated and γ-irradiated ZnO NP as a cosmetic preservative. Methods The possible use of ZnO NP as a preservative was tested and compared to commonly used preservatives using a challenge test. Their activity was tested in six different types of preparations. The effect of γ radiation on the antimicrobial activity of ZnO NP was tested through determination of the obtained zone diameters against different microorganisms and the total aerobic microbial count in tested preparations. The antimicrobial activity, of unirradiated and γ-irradiated ZnO NP during storage was also determined. Results ZnO NP were superior to other commonly used preservatives in all tested cosmetic preparations. They pass the challenge test in all types of tested preparations. γ irradiation enhanced their antimicrobial activity in all tested preparations. The irradiation causes a reduction in NP sizes that is directly proportional to the applied radiation dose. Upon storage, ZnO NP were effective in maintaining the microbial count of the product within the acceptable range. Their activity in stored products was enhanced by γ irradiation. Conclusion Unirradiated and γ-irradiated ZnO NP can be used as effective preservatives. They are compatible with the components of all tested products. γ irradiation enhanced the antimicrobial activity of ZnO NP. PMID:28979119

  19. Poly(2-oxazoline)-Antibiotic Conjugates with Penicillins.

    PubMed

    Schmidt, Martin; Bast, Livia K; Lanfer, Franziska; Richter, Lena; Hennes, Elisabeth; Seymen, Rana; Krumm, Christian; Tiller, Joerg C

    2017-09-20

    The conjugation of antibiotics with polymers is rarely done, but it might be a promising alternative to low-molecular-weight derivatization. The two penicillins penicillin G (PenG) and penicillin V (PenV) were attached to the end groups of different water-soluble poly(2-oxazoline)s (POx) via their carboxylic acid function. This ester group was shown to be more stable against hydrolysis than the β-lactam ring of the penicillins. The conjugates are still antimicrobially active and up to 20 times more stable against penicillinase catalyzed hydrolysis. The antibiotic activity of the conjugates against Staphylococcus aureus in the presence of penicillinase is up to 350 times higher compared with the free antibiotics. Conjugates with a second antimicrobial function, a dodecyltrimethylammonium group (DDA-X), at the starting end of the PenG and PenV POx conjugates are more antimicrobially active than the conjugates without DDA-X and show high activity in the presence of penicillinase. For example, the conjugates DDA-X-PEtOx-PenG and DDA-X-PEtOx-PenV are 200 to 350 times more active against S. aureus in the presence of penicillinase and almost as effective as the penicillinase stable cloxacollin (Clox) under these conditions. These conjugates show even greater activity compared to cloxacollin without this enzyme present. Further, both conjugates kill Escherichia coli more effectively than PenG and Clox.

  20. Ertapenem: a new opportunity for outpatient parenteral antimicrobial therapy.

    PubMed

    Tice, Alan D

    2004-06-01

    Ertapenem is a parenteral carbapenem antimicrobial with pharmacological properties that allow it to be given once daily. This makes it a consideration for outpatient parenteral antimicrobial therapy (OPAT). In comparison with information from the OPAT Outcomes Registry, ertapenem seems well suited for the types of infections and bacteria that are commonly treated with OPAT, plus it has additional activity against anaerobic bacteria. This added spectrum makes it possible to treat complicated skin/skin-structure, complicated intra-abdominal and pelvic infections with a single antibiotic instead of the multiple agents that have usually been required. Ertapenem is also comparable to other OPAT antimicrobials in terms of adverse effects and clinical outcomes. This antimicrobial can be given with any delivery model, although its stability when mixed is such that daily preparation or self-mixing systems need to be considered. Ertapenem should be added to the growing list of once-daily parenteral antibiotics that can be given to outpatients.

  1. Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus.

    PubMed

    Ramis, Ivy B; Vianna, Júlia S; Reis, Ana Júlia; von Groll, Andrea; Ramos, Daniela F; Viveiros, Miguel; da Silva, Pedro E Almeida

    2018-06-18

    New drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus ; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus . Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism. Georg Thieme Verlag KG Stuttgart · New York.

  2. Phytochemical analysis, antimicrobial, antioxidant and urease inhibitory potential of Cyphostemma digitatum Lam.

    PubMed

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammad Mansour; Ali, Jawad; Rauf, Abdur

    2015-01-01

    In this paper we report the antimicrobial, antiradical and urease inhibitory potential along with photochemical investigation of the crude extracts of Cyphostemma digitatum Lam. Phytochemical screening of both the crude (hot/cold) alcoholic and aqueous extracts of C. digitatum showed the presence of alkaloids, flavonoids, saponins, coumarins, steroids, terpenoids and tannins. The crude methanolic extract (hot/cold) exhibited good antioxidant activity, while the aqueous extract was a weak antioxidant. The crude methanolic extract was found to be more active against Bacillus subtilis, while both the extracts showed moderate antifungal potential, the methanolic crude extract showed good urease inhibitory activity compared with the aqueous crude extract.

  3. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas.

    PubMed

    Waites, Ken B; Crabb, Donna M; Duffy, Lynn B

    2003-12-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were < or =1 microg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms.

  4. Comparative In Vitro Susceptibilities and Bactericidal Activities of Investigational Fluoroquinolone ABT-492 and Other Antimicrobial Agents against Human Mycoplasmas and Ureaplasmas

    PubMed Central

    Waites, Ken B.; Crabb, Donna M.; Duffy, Lynn B.

    2003-01-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were ≤1 μg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms. PMID:14638513

  5. Investigation of the role of interleukin-6 and hepcidin antimicrobial peptide in the development of anemia with age

    PubMed Central

    McCranor, Bryan J.; Langdon, Jacqueline M.; Prince, Olivier D.; Femnou, Laurette K.; Berger, Alan E.; Cheadle, Chris; Civin, Curt I.; Kim, Airie; Rivera, Seth; Ganz, Tomas; Vaulont, Sophie; Xue, Qian-Li; Walston, Jeremy D.; Roy, Cindy N.

    2013-01-01

    Anemia is common in older adults and associated with adverse health outcomes in epidemiological studies. A thorough understanding of the complex pathophysiological mechanisms driving anemia in the elderly is lacking; but inflammation, iron restriction, and impaired erythroid maturation are thought to influence the phenotype. We hypothesized that interleukin-6 contributes to this anemia, given its pro-inflammatory activities, its ability to induce hepcidin antimicrobial peptide, and its negative impact on several tissues in older adults. We tested this hypothesis by comparing changes in indices of inflammation, iron metabolism and erythropoiesis in aged C57BL/6 mice to aged mice with targeted deletions of interleukin-6 or hepcidin antimicrobial peptide. Circulating neutrophil and monocyte numbers and inflammatory cytokines increased with age. Decline in hemoglobin concentration and red blood cell number indicated that C57BL/6, interleukin-6 knockout mice, and hepcidin antimicrobial peptide knockout mice all demonstrated impaired erythropoiesis by 24 months. However, the interleukin-6 knock out genotype and the hepcidin antimicrobial peptide knock out genotype resulted in improved erythropoiesis in aged mice. Increased erythropoietic activity in the spleen suggested that the erythroid compartment was stressed in aged C57BL/6 mice compared to aged interleukin-6 knockout mice. Our data suggest C57BL/6 mice are an appropriate mammalian model for the study of anemia with age. Furthermore, although interleukin-6 and hepcidin antimicrobial peptide are not required, they can participate in the development of anemia in aging mice, and could be targeted, pre-clinically, with existing interventions to determine the feasibility of such agents for the treatment of anemia in older adults. PMID:23996485

  6. Antimicrobial Activities of Clove and Thyme Extracts

    PubMed Central

    Nzeako, B C; Al-Kharousi, Zahra S N; Al-Mahrooqui, Zahra

    2006-01-01

    Objective: It has been postulated that geographical locations of the herbs affect the constituents of their essential oils and thus the degree of their antimicrobial action. This study examine two samples of clove obtained from Sri Lanka and Zanzibar and two samples of thyme from Iran and Oman to determine the antimicrobial potential of their extracted oils. Method: The active agents in each plant were extracted by steam distillation and by boiling. The antimicrobial activities of the extracts were determined at neat and by two-fold dilutions in well agar diffusion technique using Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes, Corynebacterium species, Salmonella species, Bacteroides fragilis and Candida albicans. Results: All oil extracts possessed antimicrobial activity against all bacteria and yeast tested. Their water extracts exhibited lower antimicrobial activity, though thyme aqueous extract was active only against S. aureus. The lowest concentration of antimicrobial activity (0.1% i.e., 1:1024) was obtained with thyme oil extract using Candida albicans. There was no significant difference in antimicrobial activity between clove obtained from Sri Lanka or Zanzibar or thyme obtained from Iran or Oman. Conclusion: Our experiment showed that the country of origin of the herbs has no effect on their antimicrobial activity. However, further work is necessary to ascertain why Candida albicans displayed remarkable degree of sensitivity with the extracts than all the other organisms test. PMID:21748125

  7. Comparative Study of Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Selected Aromatic Plants from Balkan Peninsula.

    PubMed

    Stanković, Nemanja; Mihajilov-Krstev, Tatjana; Zlatković, Bojan; Matejić, Jelena; Stankov Jovanović, Vesna; Kocić, Branislava; Čomić, Ljiljana

    2016-05-01

    The objective of the present study to perform a comparative analysis of the chemical composition, antioxidant, and antimicrobial activities of the essential oils of plant species Hyssopus officinalis, Achillea grandifolia, Achillea crithmifolia, Tanacetum parthenium, Laserpitium latifolium, and Artemisia absinthium from Balkan Peninsula. The chemical analysis of essential oils was performed by using gas chromatography and gas chromatography-mass spectrometry. Monoterpenes were dominant among the recorded components, with camphor in T. parthenium, A. grandifolia, and A. crithmifolia (51.4, 45.4, and 25.4 %, respectively), 1,8-cineole in H. officinalis, A. grandifolia, and A. crithmifolia (49.1, 16.4, and 14.8 %, respectively), and sabinene in L. latifolium and A. absinthium (47.8 and 21.5 %). The antiradical and antioxidant activities were determined by using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging methods. The essential oil of A. grandifolia has shown the highest antioxidant activity [IC50 of 33.575 ± 0.069 mg/mL for 2,2-diphenyl-1-picrylhydrazyl and 2.510 ± 0.036 mg vitamin C/g for the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay]. The antimicrobial activity against 16 multiresistant pathogenic bacteria isolated from human source material was tested by the broth microdilution assay. The resulting minimum inhibitory concentration/minimum bactericidal concentration values ranged from 4.72 to 93.2 mg/mL. Therefore, the essential oils of the plant species included in this study may be considered to be prospective natural sources of antimicrobial substances, and may contribute as effective agents in the battle against bacterial multiresistance. Georg Thieme Verlag KG Stuttgart · New York.

  8. Antimicrobial activity of fluoride and its in vivo importance: identification of research questions.

    PubMed

    Van Loveren, C

    2001-01-01

    This manuscript discusses the antimicrobial activity of fluoride and its in vivo importance in order to identify research questions. There is a lot of information on mechanisms by which fluoride may interfere with bacterial metabolism and dental plaque acidogenicity. The antimicrobial activity of fluoride products is enhanced when fluoride is associated with antimicrobial cations like Sn(2+) and amine. It is not clear whether the antimicrobial mechanisms of fluoride are operating in vivo or even to what extent antimicrobial activity can contribute to caries prevention. This latter question may be the most important one in research. Copyright 2001 S. Karger AG, Basel.

  9. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control system that is environmental friendly and suitable for use in indoor environments. PMID:25974109

  10. Antimicrobial activity of pomegranate peel extracts as affected by cultivar.

    PubMed

    Rosas-Burgos, Ema C; Burgos-Hernández, Armando; Noguera-Artiaga, Luis; Kačániová, Miroslava; Hernández-García, Francisca; Cárdenas-López, José L; Carbonell-Barrachina, Ángel A

    2017-02-01

    Some studies have reported that different parts of the pomegranate fruit, especially the peel, may act as potential antimicrobial agents and thus might be proposed as a safe natural alternative to synthetic antimicrobial agents. The high tannin content, especially punicalagin, found in pomegranate extracts, has been reported as the main compound responsible for such antimicrobial activity. Because the pomegranate peel chemical composition may vary with the type of cultivar (sweet, sour-sweet and sour), pomegranates may also differ with respect to their antimicrobial capacity. The extract from PTO8 pomegranate cultivar peel had the highest antimicrobial activity, as well as the highest punicalagins (α and β) and ellagic acid concentrations. In the results obtained from both antibacterial and antifungal activity studies, the sour-sweet pomegranate cultivar PTO8 showed the best antimicrobial activity, and the highest ellagic acid concentrations. The results of the present study suggest that ellagic acid content has a significant influence on the antimicrobial activity of the pomegranate extracts investigated. The pomegranate peel of the PTO8 cultivar is a good source of antifungal and antibacterial compounds, and may represent an alternative to antimicrobial agents of synthetic origin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    PubMed Central

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-01-01

    Objective To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. PMID:24093784

  12. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens.

    PubMed

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-12-01

    To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  13. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  14. Comparative study of antimicrobial efficiency of metallurgical slags suitable for construction applications

    NASA Astrophysics Data System (ADS)

    Strigac, J.; Stevulova, N.; Mikusinec, J.; Varecka, L.; Hudecova, D.

    2017-10-01

    The article deals with comparative study of antimicrobial efficiency of metallurgical slags suitable for construction applications. The tested slags were as follows: granulated blast-furnace slag (GS1), air cooled blast-furnace slag (AS2), demetallized steel slag (DS3), calcerous ladle slag (LS4), slag from copper refining (CS5). The antimicrobial activity was tested on selected representatives of bacteria, yeasts, and filamentous fungi. The highest antibacterial activity possessed LS4, which intensely inhibited growth of bacteria with the lowest concentration of slag (10%) in the growth media. 100% inhibition of growth of some bacteria was observed only in slags LS4, DS3 and AS2 in concentrations 20% - 60% of slag. Antibacterial activity of slag samples was decreasing in the order: LS4 > DS3 > AS2 > GS1 > CS5. Growth of all model yeasts was 100% inhibited at as low concentration as 20% of slag GS1 and DS3, and 10% of slag LS4. Antiyeast activity of slags was decreasing in the order: LS4 > GS1 = DS3 > AS2 > CS5. Regarding that filamentous fungi were selectively sensitive to presence of slags, it is possible to determine only approximate order of inhibition effectiveness of slags to fungi: LS4 > GS1 = DS3 > AS2 = CS5.

  15. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil

    PubMed Central

    Mahboubi, M; Kazempour, N

    2011-01-01

    Background and Objectives The aim of this study was to evaluate the chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oils against different kinds of microorganisms in vitro. Material and Methods The antimicrobial activity was evaluated by micro broth dilution assay and the chemical composition of essential oils was analyzed by GC and GC/MS. Results Thymol, p-cymene, γ-terpinene and carvacrol were the main components of S. hortensis oil while thymol, γ-terpinene, and o-cymene were the major components of T. copticum oil. Two essential oils exhibited strong antimicrobial activity but the antimicrobial activity of T. copticum oil was higher than that of S. hortensis oil. Conclusion Thymol as a main component of oils plays an important role in antimicrobial activity. PMID:22530088

  16. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    PubMed Central

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  17. Comparative evaluation of antimicrobial activity of hydroalcoholic extract of Aloe vera, garlic, and 5% sodium hypochlorite as root canal irrigants against Enterococcus faecalis: An in vitro study.

    PubMed

    Karkare, Swati Ramesh; Ahire, Nivedita Pramod; Khedkar, Smita Uday

    2015-01-01

    Enterococcus faecalis are the most resistant and predominant microorganisms recovered from root canals of teeth where previous treatment has failed. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. In dentistry, phytomedicines has been used as an anti-inflammatory, antibiotic, analgesic, sedative, and also as an endodontic irrigant. In endodontics, because of the cytotoxic reactions of most of the commercial intracanal medicaments and their inability to eliminate bacteria completely from dentinal tubules, the trend is shifting toward use of biologic medication extracted from natural plants. To compare the antimicrobial efficacy of newer irrigating agents which would probably be as effective or more and at the same time less irritating to the tissues than sodium hypochlorite (NaOCl). The objective of this study was to compare the antimicrobial activity of saturated and diluted (1:1) hydroalcoholic extract of Aloe vera, garlic, and 5% NaOCl against E. faecalis using the commonly used agar diffusion method. Saturated hydroalcoholic extract of A. vera showed the highest zone of inhibition against E. faecalis. NaOCl, which is considered as gold standard, also showed higher zones of inhibition.

  18. Antimicrobial properties of cultivable bacteria associated with seaweeds in the Gulf of Mannar on the southeast coast of India.

    PubMed

    Thilakan, B; Chakraborty, K; Chakraborty, R D

    2016-08-01

    In this study, 234 bacterial strains were isolated from 7 seaweed species in the Gulf of Mannar on the southeast coast of India. The strains having consistent antimicrobial activity were chosen for further studies, and this constituted about 9.8% of the active strains isolated. Phylogenetic analysis using 16S rDNA sequencing with the help of classical biochemical identification indicated the existence of 2 major phyla, Firmicutes and Proteobacteria. Antimicrobial activity analysis combined with the results of amplifying genes encoding for polyketide synthetase and nonribosomal peptide synthetase showed that seaweed-associated bacteria had broad-spectrum antimicrobial activity. These epibionts might be beneficial to seaweeds by limiting or preventing the development of competing or fouling bacteria. Phylogenetic analysis of ketosynthase (KS) regions with respect to the diverse range of KS domains showed that the KS domains from the candidate isolates were of Type I. The bacterial cultures retained their antimicrobial activities after plasmid curing, which further suggested that the antimicrobial activity of these isolates was not encoded by plasmid, and the genes encoding the antimicrobial product might be present within the genome. Seaweed-associated bacteria with potential antimicrobial activity suggested that the seaweed species are an ideal ecological niche harboring specific bacterial diversity representing a largely underexplored source of antimicrobial secondary metabolites.

  19. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  20. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  1. Inhibition of verocytotoxigenic Escherichia coli by antimicrobial peptides caseicin A and B and the factors affecting their antimicrobial activities.

    PubMed

    McDonnell, Mary J; Rivas, Lucia; Burgess, Catherine M; Fanning, Séamus; Duffy, Geraldine

    2012-02-15

    The antimic robial activities of caseicin A and B antimicrobial peptides (AMPs) were assessed against a selection of verocytotoxigenic Escherichia coli (VTEC) strains (n=11), other bacterial pathogenic and spoilage bacteria (n=7), using a model broth system. The ability of the AMPs to retain their antimicrobial activities against a strain of E. coli O157:H7 380-94 under various test conditions (pH, temperature, water activity, sodium chloride concentrations, inoculum size and the presence of competitive microflora) was assessed and the minimum inhibitory concentrations (MIC) and number of surviving E. coli O157:H7 calculated. The mean number of VTEC surviving after exposure to 2 mg/ml caseicin A and B was reduced by 4.96 and 4.19 log(10) cfu/ml compared to the respective controls. The susceptibility of E. coli O157:H7 to the caseicin AMPs decreased as temperature, pH, water activity and inoculum size were reduced. The presence of sodium chloride (0.5-2.5%) did not affect the activity of caseicin A (p>0.05), however it did inhibit the activity of caseicin B. The presence of a competitive microflora cocktail did not significantly (p>0.05) affect the activities of the AMPs for the majority of the concentrations tested. Using a quantitative PCR assay, the levels of verotoxins (vt1 and vt2) expressed by E. coli O157:H7 following exposure to a sub-inhibitory concentration (0.5 mg/ml) of caseicin A showed that the verotoxin levels did not differ from the levels produced by the control cultures. The antimicrobial activity of caseicin A against E. coli O157:H7 was also tested in a model rumen system, however concentrations of ≥2 mg/ml did not significantly (p>0.05) reduce E. coli O157:H7 numbers in the model system over a 24 h period. The application of caseicin AMPs in food and/or animal production may be valuable in combination with other antimicrobials although further research is required. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Durability of Anti-Infective Effect of Long-Term Silicone Sheath Catheters Impregnated with Antimicrobial Agents

    PubMed Central

    Tcholakian, Robert K.; Raad, Issam I.

    2001-01-01

    This study was performed to test the long-term antimicrobial efficacy of impregnated silicone catheters comprising an antimicrobial layer sandwiched between an external surface sheath and a luminal surface silicone sheath. The design of the catheter permits the introduction of various antimicrobials in addition to anticoagulants or antifibrins in the antimicrobial layer and allows their gradual release over a period of months after insertion. The in vitro data presented show that the catheter can provide antimicrobial activity for 90 days, after being replated for 15 7-day cycles of replating. When the catheters were immersed in human serum and incubated at 37°C, they demonstrated significant antimicrobial activity after more than 325 days of incubation. The significant long-term in vitro antimicrobial activity observed may imply effective in vivo activity for almost 1 year after insertion and could serve as a cost-effective alternative to surgically implantable silicone catheters. PMID:11408213

  3. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L.

    PubMed

    Ghannadi, A; Bagherinejad, Mr; Abedi, D; Jalali, M; Absalan, B; Sadeghi, N

    2012-12-01

    Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities. The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity. Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products.

  5. An in vitro evaluation of antimicrobial activity of five herbal extracts and comparison of their activity with 2.5% sodium hypochlorite against Enterococcus faecalis.

    PubMed

    Saxena, Divya; Saha, Suparna Ganguly; Saha, Mainak Kanti; Dubey, Sandeep; Khatri, Margie

    2015-01-01

    Sodium hypochlorite is the most widely used irrigant in endodontic practice, but it has various disadvantages. Literature has shown that herbal products such as Propolis, Azadirachta indica (AI), Triphala, Curcuma longa, and Morinda citrifolia (MC) possess good antimicrobial properties and thus can be used as potential endodontic irrigants. To evaluate and compare the antimicrobial activity of five herbal extracts, i.e., Propolis, AI, Triphala, C. longa, and MC with that of 2.5% sodium hypochlorite against Enterococcus faecalis. E. faecalis American Type Culture Collection 21292 was inoculated onto brain heart infusion agar plate. Discs impregnated with herbal medicaments were placed on the inoculated plates and incubated at 37°C aerobically for 24 h and growth inhibition zones were measured. Mean zone of inhibition in descending order was found as sodium hypochlorite > Propolis > AI > Triphala > C. longa = MC > ethanol. Statistical analysis was performed using one-way analysis of variance which showed a significant difference in the zone of inhibition of sodium hypochlorite and Propolis (P < 0.001). Propolis showed highest zone of inhibition among all the herbal extracts next to sodium hypochlorite. Propolis and AI have significant antimicrobial activity against E. faecalis.

  6. Phytochemical screening, antioxidants and antimicrobial potential of Lantana camara in different solvents

    PubMed Central

    Naz, Rabia; Bano, Asghari

    2013-01-01

    Objective To evaluate the antioxidant activity, hydrogen peroxide radicals scavenging activity, reducing power, the total phenolic and flavonoids contents, and antimicrobial and antifungal activities of methanol, ethanol and water extracts of leaves of Lantana camara (L. camara). Methods Methanol, ethanol and water extracts were evaluated against four Gram positive and Gram negative bacterial isolates (Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis) and two fungal strains (Aspergillus fumigatus and Aspergillus flavus). Methanol extract at different concentrations was tested for antioxidant potential and phytochemicals were determined by using spectrophotometric method. Results The total phenolic content was (40.859±0.017) mg gallic acid/g in the leaves of L. camara, while the total flavonoids was (53.112±0.199) mg/g dry weight. Methanol leaf extract of L. camara showed maximum antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa and was also effective against other bacterial strains as compared to ethanol and aqueous extracts of leaves. The methanol leaf extract of L. camara exhibited significant inhibition (71%) and (66%) against Aspergillus fumigatus and Aspergillus flavus respectively. Conclusions The methanol extract of the L. camara leaves is effective against selected bacterial and fungal strains. Its phytochemical contents have broad antimicrobial properties and the plant might be a novel source of antimicrobial drug.

  7. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  8. Synthesis and antimicrobial activity of 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl) propyl)piperidine derivatives against pathogens of Lycopersicon esculentum: a structure-activity evaluation study.

    PubMed

    Vinaya, K; Kavitha, R; Ananda Kumar, C S; Benaka Prasad, S B; Chandrappa, S; Deepak, S A; Nanjunda Swamy, S; Umesha, S; Rangappa, K S

    2009-01-01

    Several 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl)propyl)piperidine derivatives 8(a-j) were prepared by the treatment of substituted benzhydryl chlorides with 4-(3-(piperidin-4-yl)propyl)piperidine followed by N-sulfonation with sulfonyl chlorides in the presence of dry methylene dichloride and triethyl amine. The synthesized compounds were characterized by (1)H-NMR, IR, and elemental analysis. All the synthesized compounds were evaluated in vitro for their efficacy as antimicrobial agents by artificial inoculation technique against standard strains of two important bacterial viz., Xanthomonas axonopodis pv. vesicatoria and Ralstonia solanacearum as well as and two fungal pathogens namely Alternaria solani and Fusarium solani of tomato plants. We have briefly investigated the structure-activity relation studies and reveal that the nature of substitutions on benzhydryl ring and sulfonamide ring influences the antibacterial activity. Among the synthesized new compounds 8b, 8d, 8g, 8h, 8i, and 8j were showed significant potent antimicrobial activities compared to the standard drugs chloramphenicol, mancozeb.

  9. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages.

    PubMed

    Yang, Hyun-Ju; Song, Kyung Bin

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging.

  10. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages

    PubMed Central

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging. PMID:27433114

  11. A Comparison between Characterization and Biological Properties of Brazilian Fresh and Aged Propolis

    PubMed Central

    Schmidt, Eduardo Morgado; Stock, Daniele; Chada, Fabio José Garcia; Finger, Daiane; Christine Helena Frankland Sawaya, Alexandra; Eberlin, Marcos Nogueira; Felsner, Maria Lurdes; Quináia, Sueli Pércio; Torres, Yohandra Reyes

    2014-01-01

    Objective. As propolis is a highly valued bee product, we aimed to verify the quality of aged propolis, investigating their phenolic and flavonoid composition, levels of toxic metals, radical scavenging and antimicrobial activities. Material and Methods. Samples of fresh and aged propolis of six different beekeepers, from the same geographical location, were investigated in terms of their phenolic and flavonoid composition and levels of Pb, Cd, and Cr, as well as radical scavenging and antimicrobial activities. Results. The two groups of propolis had similar qualitative composition by HPLC-PDA and ESI(-)-MS. Fresh propolis and aged propolis show no differences when average values of extraction yield, flavonoids, EC50, or MIC were compared and both types of propolis showed good antimicrobial activity at low concentrations. Only levels of phenolic compounds were higher in fresh propolis. Conclusion. The propolis samples considered in this study, aged or fresh, had similar qualitative composition, although they were collected in different periods. Samples only differed in their levels of total phenolic content. Moreover, aged propolis conserves significant radical scavenging and antimicrobial properties. We suggest that aged propolis should not be discarded but explored for alternative applications. PMID:25530958

  12. Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent.

    PubMed

    Kaboré, Donatien; Nielsen, Dennis Sandris; Sawadogo-Lingani, Hagrétou; Diawara, Bréhima; Dicko, Mamoudou Hama; Jakobsen, Mogens; Thorsen, Line

    2013-03-01

    Maari is a spontaneously alkaline fermented food condiment made from baobab tree seeds. Due to the spontaneous nature of maari fermentations growth of the opportunistic human pathogen Bacillus cereus is occasionally observed. Bacillus subtilis strains are important for alkaline seed fermentations because of their enzymatic activities contributing to desirable texture, flavor and pH development. Some B. subtilis strains have antimicrobial properties against B. cereus. In the present work, three bacteriocin producing B. subtilis strains (B3, B122 and B222) isolated from maari were tested. The production of antimicrobial activity by the three strains was found to be greatly influenced by the substrate. All three B. subtilis strains produced antimicrobial activity against B. cereus NVH391-98 in BHI broth as determined by the agar well diffusion assay, whereas no antimicrobial activity was detected in whole cooked baobab seeds and in 10% (w/v) grinded baobab seeds. Incorporation of BHI with up to 5% (w/w) grinded baobab seeds enhanced the antimicrobial activity of B. subtilis compared with pure BHI in a strain dependent manner. Incorporation of BHI with 50% (w/w) baobab grinded seeds decreased the antimicrobial activity. Addition of the inorganic salts FeCl₃, MgSO₄ and MnSO₄ has previously been reported to increase bacteriocin production of B. subtilis, but the addition of these salts to 10% (w/v) grinded baobab seed broth did not cause antimicrobial activity. Survival of B. cereus NVH391-98 in co-culture with B. subtilis was tested in BHI broth, 10% (w/v) grinded baobab seed based broth and during baobab seed fermentation to produce maari. B. cereus NVH391-98 grew well in all three substrates in mono-culture. All the 3 B. subtilis strains were able to decrease B. cereus NVH391-98 to levels below the detection limit (<10 CFU/ml) in BHI, but not in baobab seed based substrates, even though the outgrowth of B. cereus NVH391-98 was delayed by up to 40 h. In conclusion, production of antimicrobial activity by the investigated B. subtilis strains is highly substrate-specific and strain-specific. The three B. subtilis strains delayed but did not prevent B. cereus outgrowth during baobab seed fermentations. Maari is produced through mixed microbial population fermentations. B. subtilis co-starter culture candidates originating from maari which are able to prevent pathogen outgrowth remain to be identified. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  14. CHARACTERIZATION OF A NARROW SPECTRUM ANTIMICROBIAL THAT EXHIBITS SPECIFIC ACTIVITY AGAINST UROPATHOGENIC BACTERIA

    DTIC Science & Technology

    2017-08-28

    NARROW-SPECTRUM ANTIMICROBIAL THAT EXHIBITS SPECIFIC ACTIVITY AGAINST UROPATHOGENIC BACTERIA by Caitlin M. Barrows Courtney M. Cowell Jennifer...From - To) October 2015 – September 2016 4. TITLE AND SUBTITLE CHARACTERIZATION OF A NARROW-SPECTRUM ANTIMICROBIAL THAT EXHIBITS SPECIFIC ACTIVITY ...objective of the work described in this report is to identify a narrow-spectrum antimicrobial that exhibits targeted activity against uropathogenic

  15. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    PubMed Central

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  16. 76 FR 18564 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... attractive antimicrobial target. The chrysophaetin exhibits antimicrobial activity against drug resistant... analogues will show similar antimicrobial activity to the natural products and will utilize the same... distinct antimicrobial compounds. Attack newly validated antibacterial targeted protein FtsZ. These...

  17. Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas

    PubMed Central

    Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan

    2016-01-01

    Objective: This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). Materials and Methods: J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. Results: The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. Conclusion: The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy. PMID:27516977

  18. Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas.

    PubMed

    Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan

    2016-01-01

    This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy.

  19. Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs.

    PubMed

    Abdul Qadir, Muhammad; Shahzadi, Syeda Kiran; Bashir, Asad; Munir, Adil; Shahzad, Shabnam

    2017-01-01

    The study was designed to evaluate the phenolic, flavonoid contents and antioxidant and antimicrobial activities of onion ( Allium cepa ), garlic ( Allium sativum ), mint ( Mentha spicata ), thyme ( Thymus vulgaris ), oak ( Quercus ), aloe vera ( Aloe barbadensis Miller), and ginger ( Zingiber officinale ). All extracts showed a wide range of total phenolic contents, that is, 4.96 to 98.37 mg/100 g gallic acid equivalents, and total flavonoid contents, that is, 0.41 to 17.64 mg/100 g catechin equivalents. Antioxidant activity (AA) was determined by measuring reducing power, inhibition of peroxidation using linoleic acid system, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity. Different extracts inhibited oxidation of linoleic acid by 16.6-84.2% while DPPH radical scavenging activity (IC 50 values) ranged from 17.8% to 79.1  μ g/mL. Reducing power at 10 mg/mL extract concentration ranged from 0.11 to 0.84 nm. Furthermore the extracts of these medicinal herbs in 80% methanol, 80% ethanol, 80% acetone, and 100% water were screened for antimicrobial activity by disc diffusion method against selected bacterial strains, Staphylococcus aureus , Escherichia coli , Bacillus subtilis , and Pasteurella multocida , and fungal strains, Aspergillus niger , Aspergillus flavus, Rhizopus solani , and Alternaria alternata . The extracts show better antimicrobial activity against bacterial strains as compared to fungal strains. Results of various assays were analyzed statistically by applying appropriate statistical methods.

  20. Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs

    PubMed Central

    Abdul Qadir, Muhammad; Bashir, Asad; Munir, Adil

    2017-01-01

    The study was designed to evaluate the phenolic, flavonoid contents and antioxidant and antimicrobial activities of onion (Allium cepa), garlic (Allium sativum), mint (Mentha spicata), thyme (Thymus vulgaris), oak (Quercus), aloe vera (Aloe barbadensis Miller), and ginger (Zingiber officinale). All extracts showed a wide range of total phenolic contents, that is, 4.96 to 98.37 mg/100 g gallic acid equivalents, and total flavonoid contents, that is, 0.41 to 17.64 mg/100 g catechin equivalents. Antioxidant activity (AA) was determined by measuring reducing power, inhibition of peroxidation using linoleic acid system, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity. Different extracts inhibited oxidation of linoleic acid by 16.6–84.2% while DPPH radical scavenging activity (IC50 values) ranged from 17.8% to 79.1 μg/mL. Reducing power at 10 mg/mL extract concentration ranged from 0.11 to 0.84 nm. Furthermore the extracts of these medicinal herbs in 80% methanol, 80% ethanol, 80% acetone, and 100% water were screened for antimicrobial activity by disc diffusion method against selected bacterial strains, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pasteurella multocida, and fungal strains, Aspergillus niger, Aspergillus flavus, Rhizopus solani, and Alternaria alternata. The extracts show better antimicrobial activity against bacterial strains as compared to fungal strains. Results of various assays were analyzed statistically by applying appropriate statistical methods. PMID:28316626

  1. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells.

    PubMed

    Loughlin, R; Gilmore, B F; McCarron, P A; Tunney, M M

    2008-04-01

    The aim of this study was to compare both the antimicrobial activity of terpinen-4-ol and tea tree oil (TTO) against clinical skin isolates of meticillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) and their toxicity against human fibroblast cells. Antimicrobial activity was compared by using broth microdilution and quantitative in vitro time-kill test methods. Terpinen-4-ol exhibited significantly greater bacteriostatic and bactericidal activity, as measured by minimum inhibitory and bactericidal concentrations, respectively, than TTO against both MRSA and CoNS isolates. Although not statistically significant, time-kill studies also clearly showed that terpinen-4-ol exhibited greater antimicrobial activity than TTO. Comparison of the toxicity of terpinen-4-ol and TTO against human fibroblasts revealed that neither agent, at the concentrations tested, were toxic over the 24-h test period. Terpinen-4-ol is a more potent antibacterial agent against MRSA and CoNS isolates than TTO with neither agent exhibiting toxicity to fibroblast cells at the concentrations tested. Terpinen-4-ol should be considered for inclusion as a single agent in products formulated for topical treatment of MRSA infection. However, further work would initially be required to ensure that resistance would not develop with the use of terpinen-4-ol as a single agent.

  2. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat

    PubMed Central

    El Abed, Nariman; Kaabi, Belhassen; Smaali, Mohamed Issam; Chabbouh, Meriem; Habibi, Kamel; Mejri, Mondher; Marzouki, Mohamed Nejib; Ben Hadj Ahmed, Sami

    2014-01-01

    The chemical composition, antioxidant and antimicrobial activities, and the preservative effect of Thymus capitata essential oil against Listeria monocytogenes inoculated in minced beef meat were evaluated. The essential oil extracted was chemically analyzed by gas chromatography-mass spectrometry. Nineteen components were identified, of which carvacrol represented (88.89%) of the oil. The antioxidant activity was assessed in vitro by using both the DPPH and the ABTS assays. The findings showed that the essential oil exhibited high antioxidant activity, which was comparable to the reference standards (BHT and ascorbic acid) with IC50 values of 44.16 and 0.463 μg/mL determined by the free-radical scavenging DPPH and ABTS assays, respectively. Furthermore, the essential oil was evaluated for its antimicrobial activity using disc agar diffusion and microdilution methods. The results demonstrated that the zone of inhibition varied from moderate to strong (15–80 mm) and the minimum inhibition concentration values ranged from 0.32 to 20 mg/mL. In addition, essential oil evaluated in vivo against Listeria monocytogenes showed clear and strong inhibitory effect. The application of 0.25 or 1% (v/w) essential oil of T. capitata to minced beef significantly reduced the L. monocytogenes population when compared to those of control samples (P-value  <0.01). PMID:24719640

  3. Application of Gelidium corneum edible films containing carvacrol for ham packages.

    PubMed

    Lim, G O; Hong, Y H; Song, K B

    2010-01-01

    We prepared an edible film of Gelidium corneum (GC) containing carvacrol as an antimicrobial and antioxidative agent. The GC film containing carvacrol significantly decreased the WVP, while TS and %E values were increased, compared to the film without carvacrol. Increasing amounts of an antimicrobial agent increased antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes. Application of the film to ham packaging successfully inhibited the microbial growth and lipid oxidation of ham during storage. Our results indicate that GC film can be a useful edible packaging material for food products, and the incorporation of carvacrol in the GC film may extend the shelf life.

  4. Antimicrobial and antioxidant activities of substituted 4H-1, 4-benzothiazines

    NASA Astrophysics Data System (ADS)

    Sharma, Praveen Kumar; Chaucer, Puneet; Kumar, Gulshan; Parihar, Leena

    2017-07-01

    Antioxidant and antimicrobial activity of substituted benzothiazine was investigated. Antioxidant activity of 3,7-dimethyl-2-(4'-morpholinylcarbonyl)-4H-1,4-benzothiazine was tested by the use of 2-diphenyl-1-picrylhydrazyl radical(DPPH). In addition 3,7-dimethyl-2-(4'-morpholinylcarbonyl)-4H-1,4-benzothiazine was examined for its antimicrobial activity against bacteria, Bacillus subtilis, B. flexus, B. alkalophilus, as well as their antifungal activity against Aspergillus nigrum, A. Flexus and show potential antimicrobial activities.

  5. Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album

    PubMed Central

    Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.

    2006-01-01

    The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199

  6. In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis.

    PubMed

    Jurczyk, Karolina; Nietzsche, Sandor; Ender, Claudia; Sculean, Anton; Eick, Sigrun

    2016-11-01

    The aim of the present study was to assess the antimicrobial activity of a sodium hypochlorite formulation including its components against bacteria associated with periodontal disease. Sodium hypochlorite formulation (NaOCl gel), its components sodium hypochlorite (NaOCl), and the activating vehicle were compared with 0.1 % chlorhexidine digluconate (CHX) solution. The antimicrobial activity was proven by determination of minimal inhibitory concentrations (MIC), minimal bactericidal concentrations, and killing assays. Furthermore, the influence on formation as well as on a 4-day-old 6-species biofilm was tested. Except for one strain (Parvimonas micra ATCC 33270 in case of NaOCl gel), the MICs both of the CHX solution and NaOCl gel did not exceed 10 % of the formulations' concentration. In general, MICs of the NaOCl gel were equal as of the CHX solution against Gram-negatives but higher against Gram-positive bacteria. CHX but not NaOCl gel clearly inhibited biofilm formation; however, the activity of NaOCl gel was more remarkable on a 4-day-old biofilm. NaOCl killed bacteria in the biofilm and interfered with the matrix. The NaOCl gel acts antimicrobial in particular against Gram-negative species associated with periodontitis. Moreover, its component NaOCl hypochlorite is able to alter biofilm matrices. The NaOCl gel may represent a potential alternative for adjunctive topical antimicrobial treatment in periodontitis.

  7. Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose-nisin bio-composite suspension.

    PubMed

    Weishaupt, Ramon; Heuberger, Lukas; Siqueira, Gilberto; Gutt, Beatrice; Zimmermann, Tanja; Maniura-Weber, Katharina; Salentinig, Stefan; Faccio, Greta

    2018-05-16

    The occurrence of resistance to antibiotics has posed a high demand for novel strategies to fight bacterial infections. Antimicrobial peptides (AMPs) are a promising alternative to con-ventional antibiotics. However, their poor solubility in water and sensitivity to degradation has limited their application. Here we report the design of a smart, pH-responsive antimicro-bial nanobiocomposite material based on the AMP nisin and oxidized nanofibrillated cellulose (TONFC). Morphological transformations of the nano-scale structure of nisin functionalized TONFC fibrils were discovered at pH values between pH 5.8 and 8.0 using small angle X-ray scattering (SAXS). Complementary zeta potential measurements indicate that electrostatic-attractions between the negatively charged TONFC surface and the positively charged nisin molecules are responsible for the integration of nisin. Contrary, shifting the pH level or in-creasing the ionic strength reduce the nisin binding capacity of TONFC. Biological evaluation studies using a bioluminescence-based reporter strain of Bacillus subtilis and a clinically rele-vant strain of Staphylococcus aureus indicated a significantly higher antimicrobial activity of the TONFC-nisin biocomposite compared to the pure nisin against both strains under physio-logical pH and ionic strength conditions. The in-depth characterization of this new class of an-timicrobial bio-composite material based on nanocellulose and nisin, may guide the rational design of sustainable antimicrobial materials.

  8. Antimicrobial activity of ProRoot MTA in contact with blood

    PubMed Central

    Farrugia, C.; Baca, P.; Camilleri, J.; Arias Moliz, M. T.

    2017-01-01

    Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations. PMID:28128328

  9. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest.

    PubMed

    Poaty, Bouddah; Lahlah, Jasmina; Porqueres, Félicia; Bouafif, Hassine

    2015-06-01

    Essential oils (EOs) were steam-extracted from the needles and twigs of balsam fir, black spruce, white spruce, tamarack, jack pine and eastern white cedar that remained after logging in eastern Canada. These EOs, similarly to that from Labrador tea and other commercial EOs from Chinese cinnamon, clove and lemon eucalyptus, exhibited many common constituent compounds (mainly α-pinene, β-pinene, limonene and bornyl acetate) making up 91% of each oil based on gas chromatography-mass spectrometry analysis. All of these oils exhibited antibacterial properties, especially when examined in closed tube assay compared to the traditional 96-well microliter format. These antimicrobial activities (minimum inhibitory concentration ≥ 0.2% w/v), comparable to those of exotic EOs, were shown against common pathogenic bacteria and fungi. The antioxidant potential of the boreal samples was determined by the 1,1-diphenyl-2-picrylhydrazyl radical scavenging (concentration providing 50% inhibition ≥ 7 mg/ml) and reducing power methods. Finally, this investigation revealed some boreal EOs to be potential antimicrobial and antioxidant agents that would notably benefit products in the personal hygiene and care industry.

  10. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    NASA Astrophysics Data System (ADS)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  11. Comparative study of the antimicrobial activity of native and exotic plants from the Caatinga and Atlantic Forest selected through an ethnobotanical survey.

    PubMed

    Castelo Branco Rangel de Almeida, Cecília de Fátima; de Vasconcelos Cabral, Daniela Lyra; Rangel de Almeida, Camila Castelo Branco; Cavalcanti de Amorim, Elba Lúcia; de Araújo, Janete Magali; de Albuquerque, Ulysses Paulino

    2012-02-01

    The idea that many commonly used medicinal plants may lead to the discovery of new drugs has encouraged the study of local knowledge of these resources. An ethnobotanical survey of species traditionally used for the treatment of infectious diseases was undertaken in two areas of northeastern Brazil: one in the Caatinga (dry forest) and another in the Atlantic Forest (humid forest). Initially, diffusion tests using paper disks and subsequently, for extracts presenting significant results (inhibition halos above 15 mm), minimum inhibitory concentrations were determined. The activity was evaluated as a percentage for each species, comparing the diameters of the inhibition halos and the number of positive results against the seven microorganisms studied. Extracts were classified into three categories: strong activity-species with halos exceeding 16 mm, moderate activity-species with halos between 13 mm and 15 mm and low activity-species with halos below 12 mm. We selected 34 species, 20 from the Caatinga and 14 from the Atlantic Forest. In the Caatinga, 50% of the 20 plant extracts studied had strong antimicrobial activity, 25% had moderate activity and 15% had low activity. In the Atlantic Forest, 28.5% of the 14 plant extracts studied showed strong activity, with 14.5% having moderate activity and 28.5% having low activity. The microorganism that was most susceptible to the extracts from the Caatinga, was Mycobacterium smegmatis; 85% of the species tested were able to inhibit its growth. The organism that was susceptible to the highest number of plant species (71%) from the Atlantic Forest was Staphylococcus aureus. Extracts from the Caatinga showed a trend of superior antimicrobial activity compared to the species from the Atlantic Forest, in terms of both inhibiting a greater variety of microorganisms and demonstrating higher activity against susceptible strains.

  12. Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast.

    PubMed

    El Wahidi, M; El Amraoui, B; El Amraoui, M; Bamhaoud, T

    2015-05-01

    The aim of this work is the screening of the antimicrobial activity of seaweed extracts against pathogenic bacteria and yeasts. The antimicrobial activity of the dichloromethane and ethanol extracts of ten marine macroalgae collected from the Moroccan's Atlantic coast (El-Jadida) was tested against two Gram+ (Bacillus subtilis and Staphylococcus aureus) and two Gram- (Escherichia coli and Pseudomonas aeruginosa) human pathogenic bacteria, and against two pathogenic yeasts (Candida albicans and Cryptococcus neoformans) using the agar disk-diffusion method. Seven algae (70%) of ten seaweeds are active against at least one pathogenic microorganisms studied. Five (50%) are active against the two studied yeast with an inhibition diameter greater than 15 mm for Cystoseira brachycarpa. Six (60%) seaweeds are active against at least one studied bacteria with five (50%) algae exhibiting antibacterial inhibition diameter greater than 15 mm. Cystoseira brachycarpa, Cystoseira compressa, Fucus vesiculosus, and Gelidium sesquipedale have a better antimicrobial activity with a broad spectrum antimicrobial and are a potential source of antimicrobial compounds and can be subject of isolation of the natural antimicrobials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  14. [In-vitro activity of panipenem against clinical isolates in 2006].

    PubMed

    Yoshida, Sanae; Koga, Tetsufumi; Kakuta, Masayo; Kobayashi, Intetsu; Matsuzaki, Kaoru; Urabe, Eriko; Omika, Kaoru; Hasegawa, Miyuki; Sato, Yumie

    2008-02-01

    The antimicrobial activity of various antibiotics against clinical bacterial isolates recovered from patients with infectious diseases at the medical facilities in the Kanto region between March and September 2006 was evaluated. A total of 1030 clinical isolates were available for susceptibility tests: 420 aerobic Gram-positive organisms, 520 aerobic Gram-negative organisms, 30 anaerobic Gram-positive organisms and 60 anaerobic Gram-negative pathogens. Antimicrobial susceptibility data for Streptococcus pneumoniae and Haemophilus influenzae isolates from pediatric and adult patients were analyzed separately. Panipenem (PAPM), imipenem (IPM), meropenem (MEPM), biapenem (BIPM), doripenem (DRPM), cefozopran (CZOP), cefepime (CFPM), and sulbactam/cefoperazone (SBT/CPZ) were used as test antibiotics. PAPM, IPM and DRPM exhibited excellent in vitro antibacterial activities against methicillin-susceptible Staphylococcus, with all isolates exhibiting a MIC of < or =0.06 microg/mL. Against Streptococcus including penicillin-resistant S. pneumoniae, PAPM demonstrated the strongest antibacterial activity among the carbapenems with a MIC range of < or =0.06 to 0.12 microg/mL. Against Enterobacteriaceae, MEPM showed the strongest antibacterial activity, and PAPM had comparable activity to IPM. Against the extended-spectrum beta-lactamase producing Escherichia coli, Klebsiella species and Proteus species, the MICs for the cephems were high, however, those for the carbepenems were low. Against H. influenzae, PAPM had comparable activity to IPM. With respect to anaerobes, each of the carbapenems tested demonstrated almost the same strong antibacterial activity. In conclusion, 13 years has passed since PAPM was launched in 1993, PAPM still maintains potent antibacterial activity and is considered an effective antimicrobial agent for various types of infectious diseases.

  15. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents.

    PubMed

    Lamie, Phoebe F; Phillopes, John N; El-Gendy, Ahmed O; Rarova, Lucie; Gruz, Jiri

    2015-09-14

    Sixteen new phthalimide derivatives were synthesized and evaluated for their in vitro anti-microbial, anti-oxidant and anti-inflammatory activities. The cytotoxicity for all synthesized compounds was also determined in cancer cell lines and in normal human cells. None of the target derivatives had any cytotoxic activity. (ZE)-2-[4-(1-Hydrazono-ethyl) phenyl]isoindoline-1,3-dione (12) showed remarkable anti-microbial activity. Its activity against Bacillus subtilis was 133%, 106% and 88.8% when compared with the standard antibiotics ampicillin, cefotaxime and gentamicin, respectively. Compound 12 also showed its highest activities in Gram negative bacteria against Pseudomonas aeruginosa where the percentage activities were 75% and 57.6% when compared sequentially with the standard antibiotics cefotaxime and gentamicin. It was also found that the compounds 2-[4-(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13b) and 2-[4-(3-methyl-5-thioxo-4-phenyl-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13c) had anti-oxidant activity. 4-(N'-{1-[4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-phenyl]-ethylidene}-hydrazino)-benzenesulfonamide (17c) showed the highest in vitro anti-inflammatory activity of the tested compounds (a decrease of 32%). To determine the mechanism of the anti-inflammatory activity of 17c, a docking study was carried out on the COX-2 enzyme. The results confirmed that 17c had a higher binding energy score (-17.89 kcal/mol) than that of the ligand celecoxib (-17.27 kcal/mol).

  16. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study

    PubMed Central

    Devaraj, C.G.; Agarwal, Payal

    2016-01-01

    Introduction Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. Aim To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. Materials and Methods A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. Results At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control. Conclusion Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level. PMID:27135002

  17. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study.

    PubMed

    Eswar, Pranati; Devaraj, C G; Agarwal, Payal

    2016-03-01

    Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control. Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level.

  18. Dentifrice Containing Extract of Rosmarinus officinalis Linn.: An Antimicrobial Evaluation.

    PubMed

    Valones, Marcela Agne Alves; Higino, Jane Sheila; Souza, Paulo Roberto Eleutério; Crovella, Sérgio; Caldas, Arnaldo de França; Carvalho, Alessandra de Albuquerque Tavares

    2016-01-01

    This study aimed to evaluate the antimicrobial activity of a dentifrice containing an alcoholic extract of rosemary on oral bacteria, compared to a commercially available herbal dentifrice. Standard strains of Streptococcus mutans (ATCC 25175), Streptococcus oralis (ATCC 9811) and Lactobacillus rhamnosus (ATCC 7469) were used, as well as different toothpastes based on rosemary (TR), on propolis (TH), triclosan (positive control) (TPC) and non-fluoridated dentifrice (negative control) (TNC). Bacteria were seeded in Petri dishes and paper discs soaked with dilutions of dentifrice placed on the plates. The inhibition halos were analyzed. It was observed that TR did not show statistical difference in relation to the TH to inhibit S. mutans and S. oralis, while TH was more active against L. rhamnosus. The toothpaste containing rosemary extract had the ability to inhibit the growth of S. mutans, S. oralis and L. rhamnosus, revealing an antimicrobial activity similar to commercially available toothpastes for inhibition of S. mutans and S. oralis.

  19. Bioequivalence and in vitro antimicrobial activity between generic and brand-name levofloxacin.

    PubMed

    Sun, Hsin-Yun; Liao, Hsiao-Wei; Sheng, Meng-Huei; Tai, Hui-Min; Kuo, Ching-Hua; Sheng, Wang-Huei

    2016-07-01

    Generic agents play a crucial role in reducing the cost of medical care in many countries. However, the therapeutic equivalence remains a great concern. Our study aims to assess the in vitro antimicrobial activity and bioequivalence between generic and brand-name levofloxacin. Enantiomeric purity test, dissolution test, and in vitro antimicrobial susceptibility against seven clinically important pathogens by the agar dilution method were employed to assess the similarity between four generic products and brand-name levofloxacin (Daiichi Sankyo). All the generic and brand-name levofloxacin passed enantiomeric purity test. The results of dissolution tests were not similar among the generic products and the brand-name levofloxacin. Compared with the generic products, the brand-name levofloxacin had the smallest mean variations (-25% to 13%) with reference standard (United States Pharmacopeia levofloxacin Reference Standards). Variations were observed particularly in dissolution profiles and in vitro activity between generic products and brand-name levofloxacin. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    PubMed Central

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  1. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  2. Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major).

    PubMed

    Hsu, Jung-Chieh; Lin, Li-Ching; Tzen, Jason T C; Chen, Jyh-Yih

    2011-05-01

    The antimicrobial peptide, chrysophsin-1, exhibits antimicrobial activities with similar efficiencies for both gram-negative and gram-positive bacteria. In this study, we examined the antitumor activity and modulation of the inflammatory response of a synthetic chrysophsin-1 peptide. In vitro results showed that chrysophsin-1 had greater inhibitory effects against human fibrosarcoma (HT-1080), histiocytic lymphoma (U937), and epithelial carcinoma (HeLa) cells. LDH release by HeLa cells was comparable to that of an MTS assay after treatment with 1.5-3 μg/ml chrysophsin-1 for 24h. Under SEM and TEM observations, we found no intact cell membranes after chrysophsin-1 treatment of HeLa cells for 8h. The suggested mechanism of the cytotoxic activity of chrysophsin-1 was disruption of cancer cell membranes. In addition, we also examined caspase-3, -8, and -9 activities by Western blotting; the results excluded the participation of apoptosis in chrysophsin-1's effect on HeLa cells. Stimulation by lipopolysaccharide induced tumor necrosis factor (TNF)-α which was able to modulate chrysophsin-1 treatment of RAW264.7 cells and inhibited endogenous TNF-α release but did not block its secretion. With data from this study, we demonstrate that chrysophsin-1 has antimicrobial and antitumor activities and modulates the inflammatory response in RAW264.7 cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae.

    PubMed

    Borba, Renata S; Spivak, Marla

    2017-09-12

    Honey bees have immune defenses both as individuals and as a colony (e.g., individual and social immunity). One form of honey bee social immunity is the collection of antimicrobial plant resins and the deposition of the resins as a propolis envelope within the nest. In this study, we tested the effects of the propolis envelope as a natural defense against Paenibacillus larvae, the causative agent of American foulbrood (AFB) disease. Using colonies with and without a propolis envelope, we quantified: 1) the antimicrobial activity of larval food fed to 1-2 day old larvae; and 2) clinical signs of AFB. Our results show that the antimicrobial activity of larval food was significantly higher when challenged colonies had a propolis envelope compared to colonies without the envelope. In addition, colonies with a propolis envelope had significantly reduced levels of AFB clinical signs two months following challenge. Our results indicate that the propolis envelope serves as an antimicrobial layer around the colony that helps protect the brood from bacterial pathogen infection, resulting in a lower colony-level infection load.

  4. Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds.

    PubMed

    Sharma, Priyanka R; Kamble, Sunil; Sarkar, Dhiman; Anand, Amitesh; Varma, Anjani J

    2016-06-01

    Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000μg/ml, as compared to anti-TB drug Isoniazid 0.3μg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug. Copyright © 2016. Published by Elsevier B.V.

  5. Antimicrobial activity of natural products against Clostridium difficile in vitro.

    PubMed

    Roshan, N; Riley, T V; Hammer, K A

    2017-05-10

    To investigate the antimicrobial activity of various natural products against Clostridium difficile in vitro. The antibacterial activity of 20 natural products was determined by the agar well diffusion and broth microdilution assays against four C. difficile strains, three comparator organisms and four gastrointestinal commensal organisms. Of the raw natural products, garlic juice had the highest activity. The most active processed products were peppermint oil and the four pure compounds trans-cinnamaldehyde, allicin, menthol and zingerone. Furthermore, Bacteroides species had similar susceptibility to C. difficile to most natural products; however, Lactobacillus casei was less susceptible. The combined effect of natural products with vancomycin or metronidazole was determined using the conventional checkerboard titration method and the fractional inhibitory concentration index was calculated. The results showed a possible synergism between trans-cinnamaldehyde and vancomycin and partial synergy between trans-cinnamaldehyde and metronidazole. The study indicates a range of antimicrobial activity of natural products against C. difficile and suggests that they may be useful as alternative or complementary treatments for C. difficile infection (CDI), particularly as most are able to be given orally. This study encourages further investigation of natural products for treatment of CDI. © 2017 The Society for Applied Microbiology.

  6. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  7. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.

    PubMed

    Jenner, Zachary B; Crittenden, Christopher M; Gonzalez, Martín; Brodbelt, Jennifer S; Bruns, Kerry A

    2017-05-01

    Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for l-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations. © 2017 Wiley Periodicals, Inc.

  8. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  9. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    NASA Astrophysics Data System (ADS)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  10. GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial.

    PubMed

    Hidayathulla, S; Shahat, A A; Ahamad, S R; Al Moqbil, A A N; Alsaid, M S; Divakar, D D

    2018-05-01

    We evaluated the in vitro antioxidant and antimicrobial potential of Schimpera arabica extract and fractions (2-Hexadecen-1-ol and beta sitosterol). Free radical scavenging activity was estimated by using ABTS and DPPH methods, reducing power and iron chelation was studied to investigate antioxidant potential of the extracts. Well-diffusion method was utilized to evaluate the antimicrobial activity of the extracts. Gas chromatography-mass spectroscopy analysis of the extract revealed the presence of 27 compounds. Phenolic and flavonoid contents were found in high amount (7·6-18 mg GAE, mg g -1 ; 3·2-10·8 mg catechin, mg g -1 ) in dry plant material. Among all the extracts, 2-Hexadecen-1-ol and beta sitosterol were the major constituents of crude extract and exhibited significant antioxidant potential as well antimicrobial activity; however, all other fractions also exhibited fare degree of antioxidant potential. 93% DPPH was scavenged by 100 μg ml -1 of the ethyl acetate fraction; in ABTS assay chelation was 86·2 and 88% in ferric chloride reducing power assay. Schimpera arabica is naturally present and used in food preparation in most Arabian nations. The characterization of S. arabica would provide an insight into its medicinal use as home remedial for bacterial infection and as antioxidant. Significant and comparable antimicrobial activity was demonstrated by both 2-Hexadecen-1-ol and beta sitosterol fractions. The results suggest that S. arabica contain a good amount of natural antioxidants of medicinal importance. However, further investigations are needed to characterize the further activity of 2-Hexadecen-1-ol and beta sitosterol in vivo. © 2018 The Society for Applied Microbiology.

  11. New insights on antimicrobial efficacy of copper surfaces in the healthcare environment: a systematic review.

    PubMed

    Chyderiotis, S; Legeay, C; Verjat-Trannoy, D; Le Gallou, F; Astagneau, P; Lepelletier, D

    2018-03-29

    Hospital-acquired infections (HAIs) are a major public health issue. The potential of antimicrobial copper surfaces in reducing HAIs' rates is of interest but remains unclear. We conducted a systematic review of studies assessing the activity of copper surfaces (colony-forming unit (CFU)/surface, both in vitro and in situ) as well as clinical studies. In vitro study protocols were analysed through a tailored checklist developed specifically for this review, in situ studies and non-randomized clinical studies were assessed using the ORION (Outbreak Reports and Intervention studies Of Nosocomial infection) checklist and randomized clinical studies using the CONSORT guidelines. The search was conducted using PubMed database with the keywords 'copper' and 'surfaces' and 'healthcare associated infections' or 'antimicrobial'. References from relevant articles, including reviews, were assessed and added when appropriate. Articles were added until 30 August 2016. Overall, 20 articles were selected for review including 10 in vitro, eight in situ and two clinical studies. Copper surfaces were found to have variable antimicrobial activity both in vitro and in situ, although the heterogeneity in the designs and the reporting of the results prevented conclusions from being drawn regarding their spectrum and activity/time compared to controls. Copper effect on HAIs incidence remains unclear because of the limited published data and the lack of robust designs. Most studies have potential conflicts of interest with copper industries. Copper surfaces have demonstrated an antimicrobial activity but the implications of this activity in healthcare settings are still unclear. No clear effect on healthcare associated infections has been demonstrated yet. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei

    PubMed Central

    Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T

    2006-01-01

    Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542

  13. In Vitro Efficacy of Diallyl Sulfides against the Periodontopathogen Aggregatibacter actinomycetemcomitans

    PubMed Central

    Ganeshnarayan, Krishnaraj; Velusamy, Senthil Kumar; Fine, Daniel H.

    2012-01-01

    The in vitro antibacterial effects of diallyl sulfide (DAS) against the Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans, the key etiologic agent of the severe form of localized aggressive periodontitis and other nonoral infections, were studied. A. actinomycetemcomitans was treated with garlic extract, allicin, or DAS, and the anti-A. actinomycetemcomitans effects of the treatment were evaluated. Garlic extract, allicin, and DAS significantly inhibited the growth of A. actinomycetemcomitans (greater than 3 log; P < 0.01) compared to control cells. Heat inactivation of the garlic extracts significantly reduced the protein concentration; however, the antimicrobial effect was retained. Purified proteins from garlic extract did not exhibit antimicrobial activity. Allicin lost all its antimicrobial effect when it was subjected to heat treatment, whereas DAS demonstrated an antimicrobial effect similar to that of the garlic extract, suggesting that the antimicrobial activity of garlic extract is mainly due to DAS. An A. actinomycetemcomitans biofilm-killing assay performed with DAS showed a significant reduction in biofilm cell numbers, as evidenced by both confocal microscopy and culture. Scanning electron microscopy (SEM) analysis of DAS-treated A. actinomycetemcomitans biofilms showed alterations of colony architecture indicating severe stress. Flow cytometry analysis of OBA9 cells did not demonstrate apoptosis or cell cycle arrest at therapeutic concentrations of DAS (0.01 and 0.1 μg/ml). DAS-treated A. actinomycetemcomitans cells demonstrated complete inhibition of glutathione (GSH) S-transferase (GST) activity. However, OBA9 cells, when exposed to DAS at similar concentrations, showed no significant differences in GST activity, suggesting that DAS-induced GST inhibition might be involved in A. actinomycetemcomitans cell death. These findings demonstrate that DAS exhibits significant antibacterial activity against A. actinomycetemcomitans and that this property might be utilized for exploring its therapeutic potential in treatment of A. actinomycetemcomitans-associated oral and nonoral infections. PMID:22330917

  14. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    PubMed

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  15. Antimicrobial and Antibiofilm Activity of Human Milk Oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii.

    PubMed

    Ackerman, Dorothy L; Craft, Kelly M; Doster, Ryan S; Weitkamp, Jörn-Hendrik; Aronoff, David M; Gaddy, Jennifer A; Townsend, Steven D

    2018-03-09

    In a previous study, we reported that human milk oligosaccharides (HMOs) isolated from five donor milk samples possessed antimicrobial and antibiofilm activity against Streptococcus agalactiae, also known as Group B Streptococcus or GBS. Herein, we present a broader evaluation of the antimicrobial and antibiofilm activity by screening HMOs from 14 new donors against three strains of GBS and two of the ESKAPE pathogens of particular interest to child health, Staphylococcus aureus and Acinetobacter baumannii. Growth and biofilm assays showed that HMOs from these new donors possessed antimicrobial and antibiofilm activity against all three strains of GBS, antibiofilm activity against methicillin-resistant S. aureus strain USA300, and antimicrobial activity against A. baumannii strain ATCC 19606.

  16. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications.

    PubMed

    Kramer, B; Thielmann, J; Hickisch, A; Muranyi, P; Wunderlich, J; Hauser, C

    2015-03-01

    The objective of this study was the fundamental investigation of the antimicrobial efficiency of various hop extracts against selected foodborne pathogens in vitro, as well as their activity against Listeria monocytogenes in a model meat marinade and on marinated pork tenderloins. In a first step, the minimum inhibitory concentrations (MIC) of three hop extracts containing either α- or β-acids or xanthohumol were determined against test bacteria including L. monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli by a colorimetric method based on the measurement of bacterial metabolic activity. Moreover, the influence of either lactic or citric acid on the antimicrobial activity of the hop extracts was evaluated. The efficiency of hop extracts as a natural food preservative was then tested in a model meat marinade at 2 and 8°C, respectively, and finally on marinated pork. The experiments showed that Gram-positive bacteria were strongly inhibited by hop extracts containing β-acids and xanthohumol (MIC values of 6.3 and 12.5 ppm, respectively), whereas the antimicrobial activity of the investigated α-acid extract was significantly lower (MIC values of 200 ppm). Gram-negative bacteria were highly resistant against all tested hop extracts. Acidification of the test media led to a decrease of the MIC values. The inhibitory activity of the hop extracts against L. monocytogenes was strongly reduced in a fat-containing model meat marinade, but the efficiency of β-acids in this matrix could be increased by lowering pH and storage temperatures. By applying 0.5 % β-acids at pH = 5 in a model marinade, the total aerobic count of pork tenderloins was reduced up to 0.9 log10 compared with marinated pork without hop extract after 2 weeks of storage at 5°C. β-acid containing hop extracts have proven to possess a high antimicrobial activity against Gram-positive bacteria in vitro and in a practice-related application for food preservation. Antimicrobial hop extracts could be used as natural preservatives in food applications to extend the shelf life and to increase the safety of fresh products. © 2014 The Society for Applied Microbiology.

  17. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat.

    PubMed

    Rahman, P Mujeeb; Mujeeb, V M Abdul; Muraleedharan, K

    2017-04-01

    As a breakthrough to open up the industrial use of novel environmentally benign packaging material, we propose the first report on portable chitosan-ZnO nano-composite pouches that will serve as elite entrants in smart packaging. A facile, one pot procedure was adopted for the preparation of the C-ZnC films. In order to tune the property of C-ZnC films, four different composite films were prepared by varying the concentration of ZnO. The prepared films were found to be much superior when compared to bare chitosan and other conventional films. Two bacterial strains that commonly contaminate in packed meat were selected as target microbes to elucidate the antimicrobial activity of the prepared C-ZnO film. Detailed investigations revealed that the antimicrobial efficiency is linearly related to the amount of ZnO nano-particles in the composite. The C-2 films exhibited excellent antimicrobial activity and was fabricated into packaging pouches for raw meat. The prepared pouches showed significant action against the microbes in raw meat owing to its complete inhibition of microbial growth on the sixth day of storage at 4°C. The C-2 pouches stand as a top-notch material when compared to polyethylene bag in extending the shelf life of raw meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Potential use of tea extract as a complementary mouthwash: comparative evaluation of two commercial samples.

    PubMed

    Esimone, C O; Adikwu, M U; Nwafor, S V; Okolo, C O

    2001-10-01

    To evaluate the potential of using tea extracts as complementary mouthwash and to test the comparative efficacy of two commercial samples. A randomized controlled trial with 30 healthy human volunteers was carried out. The subjects were randomly assigned to 5 groups of 6 subjects per group. The ability of Ndu tea (from Cameroon) and Lipton tea (from Nigeria) to reduce colony forming units (CFU) in the liquid expectorated after 60 seconds of gargling from the mouth of the volunteers at 5 and 60 minutes were evaluated. These were compared to the values obtained from bank water and Minty Brett (thymol 0.047%), a standard antiseptic. University of Nigeria, Nsukka, Enugu State, Nigeria. Thirty healthy human volunteers (18 males and 12 females, between 22-30 years of age) who met the eligibility requirement of being nonsmokers and not taking any other antimicrobial agent were selected for the study. Relative to the bank water, the results indicated that the hot water extract of both teas significantly (p < 0.05) reduced CFU per milliliter in the liquid expectorated after gargling at both 5 and 60 minutes. Minty Brett showed higher activity than both tea extracts; however, unlike Minty Brett both extracts still reduced the CFU per milliliter at time 60 minutes (an indication of longer duration of activity). The combination of the tea extracts with sodium lauryl sulfate (1.2% w/v), a surfactant and emulsifier, significantly increased the antimicrobial activity relative to each tea alone. Comparatively, the activity of Ndu tea was found to be slightly higher than that of Lipton tea but this was not significant (p < 0.05). Lipton and Ndu tea extracts potently reduced the CFU per milliliter. This activity was potentiated by sodium lauryl sulfate. Although Minty Brett had more potent antimicrobial activity, both tea extracts have longer duration of activity. The results indicate the potential usefulness of tea extracts as a complementary mouthwash.

  19. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic.

    PubMed

    Niu, Fuge; Pan, Weichun; Su, Yujie; Yang, Yanjun

    2016-12-01

    Natural biopolymer stabilized oil-in-water emulsions were formulated using ovalbumin (OVA), gum arabic (GA) solutions and their complexes. The influence of interfacial structure of emulsion (OVA-GA bilayer and OVA/GA complexes emulsions) on the physical properties and antimicrobial activity of thyme oil (TO) emulsion against Escherichia coli (E. coli) was evaluated. The results revealed that the two types of emulsions with different oil phase compositions remained stable during a long storage period. The oil phase composition had an appreciable influence on the mean particle diameter and retention of the TO emulsions. The stable emulsion showed a higher minimum inhibitory concentration (MIC), and the TO emulsions showed an improved long-term antimicrobial activity compared to the pure thyme oil, especially complexes emulsion at pH 4.0. These results provided useful information for developing protection and delivery systems for essential oil using biopolymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens.

    PubMed

    Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei

    2017-02-01

    As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  2. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05233e

  3. Chemical and biological evaluation of Ranunculus muricatus.

    PubMed

    Khan, Farhat Ali; Zahoor, Muhammad; Khan, Ezzat

    2016-03-01

    Ranunculus muricatus is commonly known as spiny fruit buttercup and is used in the treatment of intermittent fevers, gout and asthma. Qualitative analysis of phytochemicals of Ranunculus muricatus indicated the presence of saponins, tannins, phenols, flavonoids and alkaloids. Saponins were present in high amount as compared with other chemicals. Inorganic and heavy metals constituents were determined. Heavy metals estimation in the sample showed that iron was present in high amount followed by zinc even then the concentration of these metals is below acceptable limit. The physical parameters, antioxidant and antimicrobial activities of the extracts were determined. Acetone extract fraction showed optimal antioxidant activity as compared to ethanol and chloroform fractions of the candidate plant. The antimicrobial and antifungal activities of the crude extract and extract fractions were determined by well agar diffusion method. Highest zone of inhibitions were observed for crude extract followed by acetone extract fraction against Micrococcus luteus. Antifungal activities were high for crude extracts against Candida Albican. Findings of this study show that Ranunculus muricatus has a good medicinal impact.

  4. Antibacterial properties of root canal lubricants: a comparison with commonly used irrigants.

    PubMed

    Wong, Samantha; Mundy, Lance; Chandler, Nicholas; Upritchard, Jenine; Purton, David; Tompkins, Geoffrey

    2014-12-01

    The aim was to assess in vitro the antibacterial activity of 10 root canal lubricants. K-Y Jelly personal lubricant, RC-Prep, File-Eze, File-Rite, EndoPrep Gel, Endosure Prep Crème 15%, Prep-Rite, Glyde, SlickGel ES and Alpha Glide were selected and compared in their antimicrobial properties to seven irrigants. Serial dilutions of each agent in tryptic soy broth were inoculated with either Enterococcus faecalis or Pseudomonas aeruginosa and incubated at 37C for 24 h. During incubation bacterial growth was measured by optical density (A(600)), and samples removed for cultivation on tryptic soy broth agar. Against both test bacteria after 1 h incubation, six lubricants recorded minimum bactericidal concentrations ranging from 1/10 to 1/80, whereas the inhibitory activity of the irrigants ranged from 1/20 to 1/640. Under these conditions, several lubricants exhibited antimicrobial activity comparable with some irrigants. Three irrigants, Consepsis (containing chlorhexidine), Endosure EDTA/C (containing cetrimide) and EndoPrep Solution (containing cetrimide), showed superior antibacterial action to lubricants against both species. The irrigants containing ethylenediamine tetraacetic acid and cetrimide were the most effective against both bacterial species at all time intervals. Antimicrobial activity of the lubricants did not correlate to pH values, which ranged from 2.9 to 10.3. Root canal lubricants have antibacterial properties that may help to disinfect canals. © 2014 Australian Society of Endodontology.

  5. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations

    PubMed Central

    Machado, Kamilla N.; Kaneko, Telma M.; Young, Maria Cláudia M.; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H.

    2017-01-01

    Background: Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Methods: Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. Results: The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. Conclusions: The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa. PMID:28930241

  6. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations.

    PubMed

    Machado, Kamilla N; Kaneko, Telma M; Young, Maria Cláudia M; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H

    2017-05-01

    Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa.

  7. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains

    PubMed Central

    Torres, Ieda Maria Sapateiro; Bento, Etiene Barbosa; Almeida, Larissa da Cunha; de Sá, Luisa Zaiden Carvalho Martins; Lima, Eliana Martins

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs. PMID:24031917

  8. Evaluation of antimicrobial effect of azadirachtin plant extract (Soluneem (™)) on commonly found root canal pathogenic microorganisms (viz. Enterococcus faecalis) in primary teeth: A microbiological study.

    PubMed

    Shah, Shanal; Venkataraghavan, Karthik; Choudhary, Prashant; Mohammad, Shameer; Trivedi, Krishna; Shah, Shalin G

    2016-01-01

    The aim of this study is to evaluate the antimicrobial activity of Soluneem ™ when used as an irrigating solution along with other commonly used irrigating solution sodium hypochlorite (NaOCl) against Enterococcus faecalis. Microorganism used in this study was E. faecalis (Microbial Type Culture Collection 439). Test substance used was Soluneem ™, which was obtained from Vittal Mallya Scientific Research Foundation (VMSRF), Bengaluru. This study was conducted in a microbiology laboratory (Biocare Research India Pvt., Ltd. Laboratory, Ahmedabad, Gujarat) to evaluate the antimicrobial effect of Soluneem ™ (Azadirachtin) on E. faecalis. Antimicrobial activity testing was performed using the macrobroth dilution method according to the Clinical Laboratory Standards Institute guidelines. All determinations were performed thrice. Minimum bactericidal concentration (MBC) was seen as 2.6% for Soluneem ™ while the same was seen at 0.1% for NaOCl. Independent sample t-test was carried out to compare the MBC of Soluneem ™ and NaOCl, which showed that there was no statistically significant difference between them, i.e., 2.6% Soluneem ™ was as effective as 0.1% NaOCl. Soluneem ™ showed antimicrobial activity against E. faecalis at various concentrations. It was also found that the efficacy of Soluneem ™ at 2.6% concentration and above was relatively similar to that of gold standard irrigating solution (NaOCl) on inhibition of E. faecalis.

  9. Palladium(II) and platinum(II) derivatives of benzothiazoline ligands: Synthesis, characterization, antimicrobial and antispermatogenic activity

    NASA Astrophysics Data System (ADS)

    Sharma, Krishna; Singh, R. V.; Fahmi, Nighat

    2011-01-01

    A series of Pd(II) and Pt(II) complexes with two N ∩S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl 2 and PtCl 2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.

  10. Chemotherapeutic potential of cow urine: A review

    PubMed Central

    Randhawa, Gurpreet Kaur; Sharma, Rajiv

    2015-01-01

    In the grim scenario where presently about 70% of pathogenic bacteria are resistant to at least one of the drugs for the treatment, cue is to be taken from traditional/indigenous medicine to tackle it urgently. The Indian traditional knowledge emanates from ayurveda, where Bos indicus is placed at a high pedestal for numerous uses of its various products. Urine is one of the products of a cow with many benefits and without toxicity. Various studies have found good antimicrobial activity of cow’s urine (CU) comparable with standard drugs such as ofloxacin, cefpodoxime, and gentamycin, against a vast number of pathogenic bacteria, more so against Gram-positive than negative bacteria. Interestingly antimicrobial activity has also been found against some resistant strains such as multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae. Antimicrobial action is enhanced still further by it being an immune-enhancer and bioenhancer of some antibiotic drugs. Antifungal activity was comparable to amphotericin B. CU also has anthelmintic and antineoplastic action. CU has, in addition, antioxidant properties, and it can prevent the damage to DNA caused by the environmental stress. In the management of infectious diseases, CU can be used alone or as an adjunctive to prevent the development of resistance and enhance the effect of standard antibiotics. PMID:26401404

  11. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  12. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications.

    PubMed

    Riga, Esther K; Vöhringer, Maria; Widyaya, Vania Tanda; Lienkamp, Karen

    2017-10-01

    Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    PubMed

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Purification and characterization of antimicrobial peptides from the Caribbean frog, Leptodactylus validus (Anura: Leptodactylidae).

    PubMed

    King, Jay D; Leprince, Jérôme; Vaudry, Hubert; Coquet, Laurent; Jouenne, Thierry; Conlon, J Michael

    2008-08-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from the Caribbean frog Leptodactylus validus Garman, 1888 led to the identification of three peptides with previously undescribed sequences that were structurally similar to those of antimicrobial peptides isolated from other species of leptodactylid frogs. These paralogs have been termed ocellatin-V1 (GVVDILKGAGKDLLAHALSKLSEKV.NH(2)), ocellatin-V2 (GVLDILKGAGKDLLAHALSKISEKV.NH(2)), and ocellatin-V3 (GVLDILTGAGKDLLAHALSKLSEKV.NH(2)). The very low antimicrobial potency (MIC>200microM) against Escherichia coli and Staphylococcus aureus associated with the peptides is probably a consequence of their lack of amphipathicity and reduced cationicity compared with active members of the ocellatin family from related species.

  15. Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L

    PubMed Central

    Ghannadi, A; Bagherinejad, MR; Abedi, D; Jalali, M; Absalan, B; Sadeghi, N

    2012-01-01

    Background and Objectives Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities. Materials and Methods The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity. Results and Conclusion Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products. PMID:23205247

  16. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon

    PubMed Central

    Rea, Mary C.; Dobson, Alleson; O'Sullivan, Orla; Crispie, Fiona; Fouhy, Fiona; Cotter, Paul D.; Shanahan, Fergus; Kiely, Barry; Hill, Colin; Ross, R. Paul

    2011-01-01

    Vancomycin, metronidazole, and the bacteriocin lacticin 3147 are active against a wide range of bacterial species, including Clostridium difficile. We demonstrate that, in a human distal colon model, the addition of each of the three antimicrobials resulted in a significant decrease in numbers of C. difficile. However, their therapeutic use in the gastrointestinal tract may be compromised by their broad spectrum of activity, which would be expected to significantly impact on other members of the human gut microbiota. We used high-throughput pyrosequencing to compare the effect of each antimicrobial on the composition of the microbiota. All three treatments resulted in a decrease in the proportion of sequences assigned to the phyla Firmicutes and Bacteroidetes, with a corresponding increase in those assigned to members of the Proteobacteria. One possible means of avoiding such “collateral damage” would involve the application of a narrow-spectrum antimicrobial with specific anti-C. difficile activity. We tested this hypothesis using thuricin CD, a narrow-spectrum bacteriocin produced by Bacillus thuringiensis, which is active against C. difficile. The results demonstrated that this bacteriocin was equally effective at killing C. difficile in the distal colon model but had no significant impact on the composition of the microbiota. This offers the possibility of developing a targeted approach to eliminating C. difficile in the colon, without collateral damage. PMID:20616009

  17. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.

    PubMed

    Yu, Hyeon-Hee; Kim, Kang-Ju; Cha, Jeong-Dan; Kim, Hae-Kyoung; Lee, Young-Eun; Choi, Na-Young; You, Yong-Ouk

    2005-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) bacteria have been responsible for substantial morbidity and mortality in hospitals because they usually have multidrug resistance. Some natural products are candidates as new antibiotic substances. In the present study, we investigated the antimicrobial activity of berberine, the main antibacterial substance of Coptidis rhizoma (Coptis chinensis Franch) and Phellodendri cortex (Phellodendron amurense Ruprecht), against clinical isolates of MRSA, and the effects of berberine on the adhesion to MRSA and intracellular invasion into human gingival fibroblasts (HGFs). Berberine showed antimicrobial activity against all tested strains of MRSA. Minimum inhibition concentrations (MICs) of berberine against MRSA ranged from 32 to 128 microg/mL. Ninety percent inhibition of MRSA was obtained with 64 microg/mL or less of berberine. In the checkerboard dilution test, berberine markedly lowered the MICs of ampicillin and oxacillin against MRSA. An additive effect was found between berberine and ampicillin, and a synergistic effect was found between berberine and oxacillin against MRSA. In the presence of 1-50 microg/mL berberine, MRSA adhesion and intracellular invasion were notably decreased compared with the vehicle-treated control group. These results suggest that berberine may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA adhesion and intracellular invasion in HGFs.

  18. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis.

    PubMed

    Ho, K Y; Tsai, C C; Chen, C P; Huang, J S; Lin, C C

    2001-03-01

    The antimicrobial activity of honokiol and magnolol, the main constituents of Magnolia officinalis was investigated. The antimicrobial activity was assayed by the agar dilution method using brain heart infusion medium and the minimum inhibitory concentration (MIC) were determined for each compound using a twofold serial dilution assay. The results showed that honokiol and magnolol have a marked antimicrobial effect (MIC = 25 microg/mL) against Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Micrococcus luteus and Bacillus subtilis, but did not show antimicrobial activity (MIC > or = 100 microg/mL) for Shigella flexneii, Staphylococcus epidermidis, Enterobacter aerogenes, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa. Our results indicate that honokiol and magnolol, although less potent than tetracycline, show a significant antimicrobial activity for periodontal pathogens. Hence we suggest that honokiol and magnolol might have the potential to be an adjunct in the treatment of periodontitis. Copyright 2001 John Wiley & Sons, Ltd.

  19. Relationship between Chemical Structure and Antimicrobial Activities of Isothiocyanates from Cruciferous Vegetables against Oral Pathogens.

    PubMed

    Ko, Mi-Ok; Kim, Mi-Bo; Lim, Sang-Bin

    2016-12-28

    We evaluated the potentials of 10 isothiocyanates (ITCs) from cruciferous vegetables and radish root hydrolysate for inhibiting the growth of oral pathogens, with an emphasis on assessing any structure-function relationship. Structural differences in ITCs impacted their antimicrobial activities against oral pathogens differently. The indolyl ITC (indol-3-carbinol) was the most potent inhibitor of the growth of oral pathogens, followed by aromatic ITCs (benzyl ITC (BITC) and phenylethyl ITC (PEITC)) and aliphatic ITCs (erucin, iberin, and sulforaphene). Sulforaphene, which is similar in structure, but has one double bond, showed higher antimicrobial activity than sulforaphane. Erucin, which has a thiol group, showed higher antimicrobial activity than sulforaphane, which has a sulfinyl group. BITC and iberin with a short chain exhibited higher antimicrobial potential than PEITC and sulforaphane with a longer chain, respectively. ITCs have strong antimicrobial activities and may be useful in the prevention and management of dental caries.

  20. An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and oyster (Pleurotus ostreatus) mushrooms.

    PubMed

    Hearst, Rachel; Nelson, David; McCollum, Graham; Millar, B Cherie; Maeda, Yasunori; Goldsmith, Colin E; Rooney, Paul J; Loughrey, Anne; Rao, J R; Moore, John E

    2009-02-01

    Antibiotic agents have been in widespread and largely effective therapeutic use since their discovery in the 20th century. However, the emergence of multi-drug resistant pathogens now presents an increasing global challenge to both human and veterinary medicine. It is now widely acknowledged that there is a need to develop novel antimicrobial agents to minimize the threat of further antimicrobial resistance. With this in mind, a study was undertaken to examine the antimicrobial properties of aqueous extracts of 'exotic' Shiitake and Oyster mushrooms on a range of environmental and clinically important microorganisms. Several batches of Shiitake and oyster mushrooms were purchased fresh from a local supermarket and underwent aqueous extraction of potential antimicrobial components. After reconstitution, aqueous extracts were tested qualitatively against a panel of 29 bacterial and 10 fungal pathogens, for the demonstration of microbial inhibition. Our data quantitatively showed that Shiitake mushroom extract had extensive antimicrobial activity against 85% of the organisms it was tested on, including 50% of the yeast and mould species in the trial. This compared favourably with the results from both the Positive control (Ciprofloxacin) and Oyster mushroom, in terms of the number of species inhibited by the activity of the metabolite(s) inherent to the Shiitake mushroom. This small scale study shows the potential antimicrobial effects of Shitake extracts, however further work to isolate and identify the active compound(s) now requires to be undertaken. Once these have been identified, suitable pharmaceutical delivery systems should be explored to allow concentrated extracts to be prepared and delivered optimally, rather than crude ingestion of raw material, which could promote further bacterial resistance.

  1. Native and dry-heated lysozyme interactions with membrane lipid monolayers: Lipid packing modifications of a phospholipid mixture, model of the Escherichia coli cytoplasmic membrane.

    PubMed

    Derde, Melanie; Nau, Françoise; Guérin-Dubiard, Catherine; Lechevalier, Valérie; Paboeuf, Gilles; Jan, Sophie; Baron, Florence; Gautier, Michel; Vié, Véronique

    2015-04-01

    Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial,insect-repellent and anticholinesterase activities

    USDA-ARS?s Scientific Manuscript database

    Essential oils from Rhanterium epapposum Oliv. (Asteraceae) was investigated for its repellent, antimicrobial and acetyl- and butyrylcholine esterase inhibitory activities. The oil showed good repellent activity while oils demonstrated weak in antimicrobial and cholinesterase inhibitions. Terpenoids...

  3. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    DTIC Science & Technology

    2013-08-01

    antimicrobial nanoparticles, chelating agents, and peptides . ACKNOWLEDGMENTS We thank Stephanie A. Brown and Hunter Radetsky for technical support. Funding...AUG 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial activity of nanoemulsion in combination with...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Antimicrobial Activity of Nanoemulsion in Combination

  4. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase.

    PubMed

    Murillo-Martínez, María M; Tello-Solís, Salvador R; García-Sánchez, Miguel A; Ponce-Alquicira, Edith

    2013-04-01

    The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation. © 2013 Institute of Food Technologists®

  5. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection.

    PubMed

    Zhou, X; Yang, C; Li, Y; Liu, X; Wang, Y

    2015-08-19

    Berberine is a plant alkaloid with antimicrobial activity against a variety of microorganisms. In this study, the antimicrobial properties of berberine against multi-drug resistant field isolates of Staphylococcus epidermidis were investigated using berberine alone or in combination with a commonly used antibiotics in veterinary clinics, including penicillin, lincomycin, and amoxicillin. The results indicated that the minimum inhibitory concentrations of berberine, penicillin, lincomycin, and amoxicillin against field S. epidermidis isolates were 2-512, 0.8-213, 0.4-1024, and 0.4-256 mg/mL, respectively. Furthermore, the synergistic effects of antimicrobial activity against these multi-drug resistant isolates were observed when the berberine was combined with penicillin, lincomycin, or amoxicillin; no antagonistic effect of the combination was detected in any of the clinical isolates. These observations were further confirmed using a time-killing assay, in which a combination of 2 agents yielded a greater than 2.03-2.44 log10 decrease in colony-forming unit/mL compared with each agent alone. These findings suggest that berberine is a promising compound for preventing and treating multi-drug resistant S. epidermidis infected mastitis in dairy cows either alone or in combination with other commonly used antibiotics, such as penicillin, lincomycin, and amoxicillin.

  6. Composition and antimicrobial activity of the essential oils of Laserpitium latifolium L. and L. ochridanum Micevski (Apiaceae).

    PubMed

    Popović, Višnja B; Petrović, Silvana D; Milenković, Marina T; Drobac, Milica M; Couladis, Maria A; Niketić, Marjan S

    2015-01-01

    The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC-FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α-pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth-microdilution method against four Gram-positive and three Gram-negative bacteria and two Candida albicans strains. Except the L. latifolium underground-parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0-73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  8. Antimicrobial activity of Nigerian medicinal plants

    PubMed Central

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  9. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles.

    PubMed

    Chong, Eui-Seok; Hwang, Gi Byoung; Nho, Chu Won; Kwon, Bo Mi; Lee, Jung Eun; Seo, Sungchul; Bae, Gwi-Nam; Jung, Jae Hee

    2013-02-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ~90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effects of antimicrobial treatment on fiberglass-acrylic filters.

    PubMed

    Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A

    2004-01-01

    The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.

  11. A systems biology approach to investigate the antimicrobial activity of oleuropein.

    PubMed

    Li, Xianhua; Liu, Yanhong; Jia, Qian; LaMacchia, Virginia; O'Donoghue, Kathryn; Huang, Zuyi

    2016-12-01

    Oleuropein and its hydrolysis products are olive phenolic compounds that have antimicrobial effects on a variety of pathogens, with the potential to be utilized in food and pharmaceutical products. While the existing research is mainly focused on individual genes or enzymes that are regulated by oleuropein for antimicrobial activities, little work has been done to integrate intracellular genes, enzymes and metabolic reactions for a systematic investigation of antimicrobial mechanism of oleuropein. In this study, the first genome-scale modeling method was developed to predict the system-level changes of intracellular metabolism triggered by oleuropein in Staphylococcus aureus, a common food-borne pathogen. To simulate the antimicrobial effect, an existing S. aureus genome-scale metabolic model was extended by adding the missing nitric oxide reactions, and exchange rates of potassium, phosphate and glutamate were adjusted in the model as suggested by previous research to mimic the stress imposed by oleuropein on S. aureus. The developed modeling approach was able to match S. aureus growth rates with experimental data for five oleuropein concentrations. The reactions with large flux change were identified and the enzymes of fifteen of these reactions were validated by existing research for their important roles in oleuropein metabolism. When compared with experimental data, the up/down gene regulations of 80% of these enzymes were correctly predicted by our modeling approach. This study indicates that the genome-scale modeling approach provides a promising avenue for revealing the intracellular metabolism of oleuropein antimicrobial properties.

  12. Antimicrobial Efficacy of Octenidine Hydrochloride and Calcium Hydroxide with and Without a Carrier: A Broth Dilution Analysis.

    PubMed

    Varghese, Vinaya Susan; Uppin, Veerendra; Bhat, Kishore; Pujar, Madhu; Hooli, Amruta B; Kurian, Nirmal

    2018-01-01

    An efficient antimicrobial agent action is required for a predetermined time period for absolute elimination of root canal microbes. Till date, there is limited or no data on the antimicrobial effect of octenidine as an intracanal medicament with chitosan (CTS) as a carrier against Candida albicans and Enterococcus faecalis . The aim of this microbiological study was to compare the antimicrobial efficacy of octenidine hydrochloride (OHC) and calcium hydroxide (Ca[OH] 2 ) as intracanal medicaments, both independently and along with CTS as a carrier molecule against the common resistant endodontic pathogens. A total of 160 single-rooted anterior teeth were selected, root canal preparation was done, and teeth were divided into two groups and contaminated with C. albicans and E. faecalis , which were further divided into four test groups each according to intracanal medicaments used. CTS was used as a vehicle for OHC and Ca(OH) 2 and antimicrobial assessment was performed on day 2 and day 7 following broth dilution method. Dentine samples were collected after each time interval, and the number of colony-forming units was determined. All four medicaments used in this study showed antifungal and antibacterial activity that diminished from day 2 to day 7. Group I (OHC alone) and Group IV (Ca[OH] 2 alone) showed significant antimicrobial activity against C. albicans and E. faecalis , respectively, than the other groups. A combination of OHC + CTS and Ca(OH) 2 + CTS produced inferior results than that of the medicaments used alone.

  13. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity.

    PubMed

    Pagno, Carlos H; Costa, Tania M H; de Menezes, Eliana W; Benvenutti, Edilson V; Hertz, Plinho F; Matte, Carla R; Tosati, Juliano V; Monteiro, Alcilene R; Rios, Alessandro O; Flôres, Simone H

    2015-04-15

    Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands

    NASA Astrophysics Data System (ADS)

    Poonam; Kumar, Rajesh; Boora, Priti; Khatkar, Anurag; Khatkar, S. P.; Taxak, V. B.

    2016-01-01

    The ternary terbium(III) complexes [Tb(HDAP)3ṡbiq], [Tb(HDAP)3ṡdmph] and [Tb(HDAP)3ṡbathophen] were prepared by using methoxy substituted hydroxyketone ligand HDAP (2-hydroxy-4,6-dimethoxyacetophenone) and an ancillary ligand 2,2-biquinoline or 5,6-dimethyl-1,10-phenanthroline or bathophenanthroline respectively. The ligand and synthesized complexes were characterised based on elemental analysis, FT-IR and 1H NMR. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes by thermogravimetric analysis. Photophysical properties such as excitation spectra, emission spectra and luminescence decay curves of the complexes were investigated in detail. The main green emitting peak at 548 nm can be attributed to 5D4 → 7F5 of Tb3+ ion. Thus, these complexes might be used to make a bright green light-emitting diode for display purpose. In addition the in vitro antibacterial activities of HDAP and its Tb(III) complexes against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and antifungal activities against Candida albicans and Aspergillus niger are reported. The Tb3+ complexes were found to be more potent antimicrobial agent as compared to the ligand. Among all these complexes, [Tb(HDAP)3ṡbathophen] exhibited excellent antimicrobial activity which proves its potential usefulness as an antimicrobial agent. Furthermore, in vitro antioxidant activity tests were carried out by using DPPH method which indicates that the complexes have considerable antioxidant activity when compared with the standard ascorbic acid.

  15. Evaluation of the flora of northern Mexico for in vitro antimicrobial and antituberculosis activity.

    PubMed

    Molina-Salinas, G M; Pérez-López, A; Becerril-Montes, P; Salazar-Aranda, R; Said-Fernández, S; de Torres, N Waksman

    2007-02-12

    The aim of the present study was to evaluate the potential antimicrobial activity of 14 plants used in northeast México for the treatment of respiratory diseases, against drug-sensitive and drug-resistant strains of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae type b and Mycobacterium tuberculosis. Forty-eight organic and aqueous extracts were tested against these bacterial strains using a broth microdilution test. No aqueous extracts showed antimicrobial activity, whereas most of the organic extracts presented antimicrobial activity against at least one of the drug-resistant microorganisms tested. Methanol-based extracts from the roots and leaves of Leucophyllum frutescens and ethyl ether extract from the roots of Chrysanctinia mexicana showed the greatest antimicrobial activity against the drug-resistant strain of Mycobacterium tuberculosis; the minimal inhibitory concentration (MIC) were 62.5, 125 and 62.5 microg/mL, respectively; methanol-based extract from the leaves of Cordia boissieri showed the best antimicrobial activity against the drug-resistant strain of Staphylococcus aureus (MIC 250 microg/mL); the hexane-based extract from the fruits of Schinus molle showed considerable antimicrobial activity against the drug-resistant strain of Streptococcus pneumoniae (MIC 62.5 microg/mL). This study supports that selecting plants by ethnobotanical criteria enhances the possibility of finding species with activity against resistant microorganisms.

  16. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    NASA Astrophysics Data System (ADS)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  17. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Akram, Fatma Elzahraa; El-Tayeb, Tarek; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-08-17

    Silver nanoparticles (AgNPs) are potential antimicrobials agents, which can be considered as an alternative to antibiotics for the treatment of infections caused by multi-drug resistant bacteria. The antimicrobial effects of double and triple combinations of AgNPs, visible blue light, and the conventional antibiotics amoxicillin, azithromycin, clarithromycin, linezolid, and vancomycin, against ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) were investigated. The antimicrobial activity of AgNPs, applied in combination with blue light, against selected isolates of MRSA was investigated at 1/2-1/128 of its minimal inhibitory concentration (MIC) in 24-well plates. The wells were exposed to blue light source at 460 nm and 250 mW for 1 h using a photon emitting diode. Samples were taken at different time intervals, and viable bacterial counts were determined. The double combinations of AgNPs and each of the antibiotics were assessed by the checkerboard method. The killing assay was used to test possible synergistic effects when blue light was further combined to AgNPs and each antibiotic at a time against selected isolates of MRSA. The bactericidal activity of AgNPs, at sub-MIC, and blue light was significantly (p < 0.001) enhanced when both agents were applied in combination compared to each agent alone. Similarly, synergistic interactions were observed when AgNPs were combined with amoxicillin, azithromycin, clarithromycin or linezolid in 30-40 % of the double combinations with no observed antagonistic interaction against the tested isolates. Combination of the AgNPs with vancomycin did not result in enhanced killing against all isolates tested. The antimicrobial activity against MRSA isolates was significantly enhanced in triple combinations of AgNPs, blue light and antibiotic, compared to treatments involving one or two agents. The bactericidal activities were highest when azithromycin or clarithromycin was included in the triple therapy compared to the other antibiotics tested. A new strategy can be used to combat serious infections caused by MRSA by combining AgNPs, blue light, and antibiotics. This triple therapy may include antibiotics, which have been proven to be ineffective against MRSA. The suggested approach would be useful to face the fast-growing drug-resistance with the slow development of new antimicrobial agents, and to preserve last resort antibiotics such as vancomycin.

  18. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    PubMed

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. Copyright 2001 John Wiley & Sons, Ltd.

  19. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms.

    PubMed

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-12-01

    Streptococcus mutans in dental plaque biofilms play a role in caries development. The biofilm's complex structure enhances the resistance to antimicrobial agents by limiting the transport of active agents inside the biofilm. The authors assessed the ability of high-velocity water microsprays to enhance delivery of antimicrobials into 3-d-old S. mutans biofilms. Biofilms were exposed to a 90° or 30° impact, first using a 1-µm tracer bead solution (10 9 beads/mL) and, second, a 0.2% chlorhexidine (CHX) or 0.085% cetylpyridinium chloride (CPC) solution. For comparison, a 30-s diffusive transport and simulated mouthwash were also performed. Confocal microscopy was used to determine number and relative bead penetration depth into the biofilm. Assessment of antimicrobial penetration was determined by calculating the killing depth detected by live/dead viability staining. The authors first demonstrated that the microspray was able to deliver significantly more microbeads deeper in the biofilm compared with diffusion and mouthwashing exposures. Next, these experiments revealed that the microspray yielded better antimicrobial penetration evidenced by deeper killing inside the biofilm and a wider killing zone around the zone of clearance than diffusion alone. Interestingly the 30° impact in the distal position delivered approximately 16 times more microbeads and yielded approximately 20% more bacteria killing (for both CHX and CPC) than the 90° impact. These data suggest that high-velocity water microsprays can be used as an effective mechanism to deliver microparticles and antimicrobials inside S. mutans biofilms. High shear stresses generated at the biofilm-burst interface might have enhanced bead and antimicrobial delivery inside the remaining biofilm by combining forced advection into the biofilm matrix and physical restructuring of the biofilm itself. Further, the impact angle has potential to be optimized both for biofilm removal and active agents' delivery inside biofilm in those protected areas where some biofilm might remain. © International & American Associations for Dental Research 2016.

  20. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    PubMed Central

    2012-01-01

    Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics. PMID:22947243

  1. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness.

    PubMed

    Nadal, Anna; Montero, Maria; Company, Nuri; Badosa, Esther; Messeguer, Joaquima; Montesinos, Laura; Montesinos, Emilio; Pla, Maria

    2012-09-04

    The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics.

  2. In situ green synthesis of antimicrobial carboxymethyl chitosan–nanosilver hybrids with controlled silver release

    PubMed Central

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial carboxymethyl chitosan–nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO3), 2) CMC and glucose (adding glucose before AgNO3), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6–20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli. Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3. PMID:28458539

  3. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: in vitro antimicrobial activities and effects on growth performance.

    PubMed

    Mathlouthi, N; Bouzaienne, T; Oueslati, I; Recoquillay, F; Hamdi, M; Urdaci, M; Bergaoui, R

    2012-03-01

    The present study was conducted to characterize the in vitro antimicrobial activities of 3 essential oils [oregano, rosemary, and a commercial blend of essential oils (BEO)] against pathogenic and nonpathogenic bacteria and to evaluate their effects on broiler chicken performances. The chemical composition of the essential oils was determined using the gas chromatography interfaced with a mass spectroscopy. The disc diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC) were applied for the determination of antimicrobial activities of essential oils. In vivo study, a total of seven hundred fifty 1-d-old male broiler chickens were assigned to 6 dietary treatment groups: basal diet (control; CON), CON + 44 mg of avilamycin/kg (A), CON + 100 mg of rosemary essential oil/kg (ROS), CON + 100 mg of oregano essential oil/kg (OR), CON + 50 mg of rosemary and 50 mg of oregano essential oils/kg (RO), and CON + 1,000 mg of BEO/kg (essential oil mixture, EOM). The essential oils isolated from rosemary and oregano were characterized by their greater content of 1,8-cineole (49.99%) and carvacrol (69.55%), respectively. The BEO was mainly represented by the aldehyde (cinnamaldehyde) and the monoterpene (1,8-cineole) chemical groups. The results of the disc diffusion method indicated that the rosemary essential oil had antibacterial activity (P ≤ 0.05) against only 3 pathogenic bacteria, Escherichia coli (8 mm), Salmonella indiana (11 mm), and Listeria innocua (9 mm). The essential oil of oregano had antimicrobial activities (P ≤ 0.05) on the same bacteria as rosemary but also on Staphylococcus aureus (22 mm) and Bacillus subtilis (12 mm). Oregano essential oil had greater (P ≤ 0.05) antimicrobial activities against pathogenic bacteria than rosemary essential oil but they had no synergism between them. The BEO showed an increased antimicrobial activity (P ≤ 0.05) against all studied bacteria (pathogenic and nonpathogenic bacteria) except for Lactobacillus rhamnosus. The supplementation of the basal diet with avilamycin or essential oils improved (P ≤ 0.05) broiler chicken BW, BW gain, and G:F compared with the CON diet. There were no differences in growth performances among birds fed A, ROS, OR, RO, or EOM diets. In general, essential oils contained in rosemary, oregano, and BEO can substitute for growth promoter antibiotics. Although the 3 essential oils had different antimicrobial activities, they exhibited the same efficiency in broiler chickens.

  4. Comparison of the Antimicrobial Effect of Chlorhexidine and Saline for Irrigating a Contaminated Open Fracture Model

    DTIC Science & Technology

    2012-12-01

    bacteria after irrigation, with aqueous CHG at a range of concentrations comparing irrigation with saline alone. Conclusions: This study does not support the...from high irrigation pressures and cytotoxic solutions has been shown to allow bacteria to thrive. We believe this is due to a “rebound” of bacteria ...physically removing bacteria with an active chemical antimicrobial effect without damaging host tissue. CHG was synthesized in the 1950s.6 It was quickly

  5. In vitro microbiological evaluation of novel bis pyrazolones.

    PubMed

    Narayana Rao, D V; Raghavendra Guru Prasad, A; Spoorthy, Y N; Raghunatha Rao, D; Ravindranath, L K

    2014-03-01

    Two series of bis pyrazolones (one with 3-methyl substituent and the other one with 3-amino substituent on the pyrazolone ring) were synthesized by the cyclization reaction between various hydrazides with esters/cyano esters in ethanolic medium. Structures of newly synthesized compounds were confirmed by elemental analysis, IR, (1)H NMR and mass spectral data. These compounds were screened for antibacterial and antifungal activities. The compounds of series 3 with amino substituent demonstrated better activity than the compounds of series 2 with methyl substituent on the pyrazolone ring. Compounds "e, f, c and d" showed higher antimicrobial activity than the compounds "b and a". The antimicrobial potentials of the synthesized compounds were compared with that of standards. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones.

    PubMed

    Praveen, Chandrasekaran; Ayyanar, Asairajan; Perumal, Paramasivan Thirumalai

    2011-07-01

    An operation friendly protocol for the synthesis of novel di(indolyl)indolin-2-ones via Cu(OTf)(2) catalyzed bis-addition of N-allyl and N-propargyl indole with isatin was developed. This methodology allowed us to achieve the products in excellent yields without requiring purification technique like column chromatography. All the synthesized compounds were evaluated for their in vivo anticonvulsant activity against maximal electroshock test. Six compounds showed maximum activity compared to the standard drug phenytoin. The scope of the new molecules as antimicrobial agents were tested against two bacterial strains (Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Evaluation of wound healing property of Caesalpinia mimosoides Lam.

    PubMed

    Bhat, Pradeep Bhaskar; Hegde, Shruti; Upadhya, Vinayak; Hegde, Ganesh R; Habbu, Prasanna V; Mulgund, Gangadhar S

    2016-12-04

    Caesalpinia mimosoides Lam. is one of the important traditional folk medicinal plants in the treatment of skin diseases and wounds used by healers of Uttara Kannada district of Karnataka state (India). However scientific validation of documented traditional knowledge related to medicinal plants is an important path in current scenario to fulfill the increasing demand of herbal medicine. The study was carried out to evaluate the claimed uses of Caesalpinia mimosoides using antimicrobial, wound healing and antioxidant activities followed by detection of possible active bio-constituents. Extracts prepared by hot percolation method were subjected to preliminary phytochemical analysis followed by antimicrobial activity using MIC assay. In vivo wound healing activity was evaluated by circular excision and linear incision wound models. The extract with significant antimicrobial and wound healing activity was investigated for antioxidant capacity using DPPH, nitric oxide, antilipid peroxidation and total antioxidant activity methods. Total phenolic and flavonoid contents were also determined by Folin-Ciocalteu, Swain and Hillis methods. Possible bio-active constituents were identified by GC-MS technique. RP-UFLC-DAD analysis was carried out to quantify ethyl gallate and gallic acid in the plant extract. Preliminary phytochemical analysis showed positive results for ethanol and aqueous extracts for all the chemical constituents. The ethanol extract proved potent antimicrobial activity against both bacterial and fungal skin pathogens compared to other extracts. The efficacy of topical application of potent ethanol extract and traditionally used aqueous extracts was evidenced by the complete re-epithelization of the epidermal layer with increased percentage of wound contraction in a shorter period. However, aqueous extract failed to perform a consistent effect in the histopathological assessment. Ethanol extract showed effective scavenging activity against DPPH and nitric oxide free radicals with an expressive amount of phenolic and moderate concentration of flavonoid contents. Ethyl gallate and gallic acid were found to be the probable bio-active compounds evidenced by GCMS and RP-UFLC-DAD analysis. The study revealed the significant antimicrobial, wound healing and antioxidant activities of tender parts of C. mimosoides and proved the traditional folklore knowledge. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Antimicrobial activity of fresh garlic juice: An in vitro study

    PubMed Central

    Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.

    2015-01-01

    Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724

  9. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  10. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    PubMed Central

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  11. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion.

    PubMed

    Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne

    2018-04-15

    The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    PubMed

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  13. A novel direct contact method for the assessment of the antimicrobial activity of dental cements.

    PubMed

    Costa, E M; Silva, S; Madureira, A R; Cardelle-Cobas, A; Tavaria, F K; Pintado, M M

    2013-06-01

    Dental cements are a crucial part of the odontological treatment, however, due to the hazardous nature and reduced biological efficiency of some of the used materials, newer and safer alternatives are needed, particularly so those possessing higher antimicrobial activity than their traditional counterparts. The evaluation of the antimicrobial properties of solid and semi-solid antimicrobials, such as dental cements and gels, is challenging, particularly due to the low sensitivity of the current methods. Thus, the main aim of this study was the evaluation of the antimicrobial activity of a novel chitosan containing dental cement while simultaneous assessing/validating a new, more efficient, method for the evaluation of the antimicrobial activity of solid and gel like materials. The results obtained showed that the proposed method exhibited a higher sensitivity than the standard 96 well microtiter assay and allowed the determination of bactericidal activity. Additionally, it is interesting to note that the chitosan containing cement, which presented higher antimicrobial activity than the traditional zinc oxide/eugenol mix, was capable of inducing a viable count reduction above 5 log of CFU for all of the studied microorganisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils

    PubMed Central

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M.

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM. PMID:26457111

  15. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications.

    PubMed

    Azlin-Hasim, Shafrina; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P; Morris, Michael A

    2016-01-01

    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia.

    PubMed

    Ghanmi, Fadoua; Carré-Mlouka, Alyssa; Vandervennet, Manon; Boujelben, Ines; Frikha, Doniez; Ayadi, Habib; Peduzzi, Jean; Rebuffat, Sylvie; Maalej, Sami

    2016-05-01

    Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.

  17. In vitro evaluation of the potential for resistance development to ceragenin CSA-13

    PubMed Central

    Pollard, Jake E.; Snarr, Jason; Chaudhary, Vinod; Jennings, Jacob D.; Shaw, Hannah; Christiansen, Bobbie; Wright, Jonathan; Jia, Wenyi; Bishop, Russell E.; Savage, Paul B.

    2012-01-01

    Objectives Though most bacteria remain susceptible to endogenous antimicrobial peptides, specific resistance mechanisms are known. As mimics of antimicrobial peptides, ceragenins were expected to retain antibacterial activity against Gram-positive and -negative bacteria, even after prolonged exposure. Serial passaging of bacteria to a lead ceragenin, CSA-13, was performed with representative pathogenic bacteria. Ciprofloxacin, vancomycin and colistin were used as comparators. The mechanisms of resistance in Gram-negative bacteria were elucidated. Methods Susceptible strains of Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii were serially exposed to CSA-13 and comparators for 30 passages. MIC values were monitored. Alterations in the Gram-negative bacterial membrane composition were characterized via mass spectrometry and the susceptibility of antimicrobial-peptide-resistant mutants to CSA-13 was evaluated. Results S. aureus became highly resistant to ciprofloxacin after <20 passages. After 30 passages, the MIC values of vancomycin and CSA-13 for S. aureus increased 9- and 3-fold, respectively. The Gram-negative organisms became highly resistant to ciprofloxacin after <20 passages. MIC values of colistin for P. aeruginosa and A. baumannii increased to ≥100 mg/L after 20 passages. MIC values of CSA-13 increased to ∼20–30 mg/L and plateaued over the course of the experiment. Bacteria resistant to CSA-13 displayed lipid A modifications that are found in organisms resistant to antimicrobial peptides. Conclusions CSA-13 retained potent antibacterial activity against S. aureus over the course of 30 serial passages. Resistance generated in Gram-negative bacteria correlates with modifications to the outer membranes of these organisms and was not stable outside of the presence of the antimicrobial. PMID:22899801

  18. Antimicrobial agents from Licaria puchuri-major and their synergistic effect with polygodial.

    PubMed

    Himejima, M; Kubo, I

    1992-05-01

    The resistance of the seeds of Licaria puchuri-major (Lauraceae) to decomposition in nature seems to be due largely to chemical defense, since its n-hexane extract contains antimicrobial principles in quantity, with a broad antimicrobial spectrum. In order to identify the active principles, the n-hexane extract was steam-distilled to yield a distillate and a residue. Subsequent bioassay indicated that the distillate retained the original broad antimicrobial activity, while the residue exhibited almost no activity. Gc-ms analysis showed that the distillate contained four phenolic compounds, seven monoterpenes, and one sesquiterpene. In contrast, the residue contained, almost exclusively, lauric acid. In the detailed antimicrobial assay with the pure compounds identified, most of them showed broad, but moderate, antimicrobial activity. Some of the components identified in the distillate were combined with polygodial [1] in order to enhance their antifungal activity. Unexpectedly, while polygodial did not synergize the antifungal activity of any of the compounds tested, the antifungal activity of polygodial was significantly increased when combined with aromatic substances such as anethole, safrole, or methyleugenol.

  19. Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications

    NASA Astrophysics Data System (ADS)

    Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria

    2017-12-01

    We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.

  20. Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications

    PubMed Central

    Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria

    2017-01-01

    Abstract We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required. PMID:28804527

  1. Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications.

    PubMed

    Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria

    2017-01-01

    We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.

  2. Chemical composition, antioxidant and antibacterial activities of two Spondias species from Northeastern Brazil.

    PubMed

    da Silva, Ana Raquel Araújo; de Morais, Selene Maia; Marques, Márcia Maria Mendes; de Oliveira, Danielle Ferreira; Barros, Caroline Costa; de Almeida, Raimundo Rafael; Vieira, Ícaro Gusmão Pinto; Guedes, Maria Izabel Florindo

    2012-06-01

    The leaves of Spondias tuberosa Arr. Cam. (Anacardiaceae) and Spondias mombin L. have been traditionally used for medicinal purposes. Some studies reveal their antibacterial, antimicrobial, and antiviral properties. Determine the chemical composition, antioxidant, and antimicrobial activities of Spondias species to justify its ethnopharmacological use. Spondias species extracts were prepared with methanol:water 80:20 and analyzed by silica gel column chromatography and reversed phase liquid chromatography (HPLC). The antioxidant activity was evaluated by scavenging the radicals 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+) and measuring antimicrobial activity (agar well diffusion method, minimum inhibitory concentration and minimum bactericidal concentrations). The HPLC analysis of Spondias extracts demonstrated the occurrence of high yield of flavonoids. Found in S. mombin were quercetin (2.36 ± 0.01 mg/g) and ellagic acid (41.56 ± 0.01 mg/g) and in S. tuberosa species rutin (53.38 ± 1.71 mg/g), quercetin (24.46 ± 0.87 mg/g), and ellagic acid (169.76 ± 0.17 mg/g). The antibacterial activity of the extracts against the various bacteria strains varied from 8.8 to 20.1 mm. MIC values from 62.5 to 125 µg/mL were satisfactory when compared with other plant products. Medium DPPH scavenging activity IC₅₀ for Spondias extracts varied from 0.042 to 0.558 mg/mL and for ABTS from 0.089 to 0.465 mg/mL. DPPH scavenging activity for constituent ellagic acid IC₅₀ = 0.042 mg/mL and for quercetin IC₅₀ = 0.081 mg/mL. The chemical study of Spondias leaf extracts showed the occurrence of quercetin, rutin and ellagic acid, substances with relevant antioxidant and antimicrobial activities.

  3. Antibacterial Activity, Antioxidant Effect and Chemical Composition of Propolis from the Región del Maule, Central Chile.

    PubMed

    Nina, Nélida; Quispe, Cristina; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Feresín, Gabriela Egly; Lima, Beatriz; Leiva, Elba; Schmeda-Hirschmann, Guillermo

    2015-10-06

    Propolis is commercialized in Chile as an antimicrobial agent. It is obtained mainly from central and southern Chile, but is used for the same purposes regardless of its origin. To compare the antimicrobial effect, the total phenolic (TP), the total flavonoid (TF) content and the phenolic composition, 19 samples were collected in the main production centers in the Región del Maule, Chile. Samples were extracted with MeOH and assessed for antimicrobial activity against Gram (+) and Gram (-) bacteria. TP and TF content, antioxidant activity by the DPPH, FRAP and TEAC methods were also determined. Sample composition was assessed by HPLD-DAD-ESI-MS/MS. Differential compounds in the samples were isolated and characterized. The antimicrobial effect of the samples showed MICs ranging from 31.5 to > 1000 µg/mL. Propolis from the central valley was more effective as antibacterial than those from the coastal area or Andean slopes. The samples considered of interest (MIC ≤ 62.5 µg/mL) showed effect on Escherichia coli, Pseudomonas sp., Yersinia enterocolitica and Salmonella enteritidis. Two new diarylheptanoids, a diterpene, the flavonoids pinocembrin and chrysin were isolated and elucidated by spectroscopic and spectrometric means. Some 29 compounds were dereplicated by HPLC-MS and tentatively identified, including nine flavones/flavonol derivatives, one flavanone, eight dihydroflavonols and nine phenyl-propanoids. Propolis from the Región del Maule showed large variation in antimicrobial effect, antioxidant activity and composition. So far the presence of diarylheptanoids in samples from the coastal area of central Chile can be considered as a marker of a new type of propolis.

  4. Antimicrobial activity of Caesalpinia pulcherrima, Euphorbia hirta and Asystasia gangeticum.

    PubMed

    Sudhakar, M; Rao, Ch V; Rao, P M; Raju, D B; Venkateswarlu, Y

    2006-07-01

    The ethanolic extracts of the dry fruits of Caesalpinia pulcherrima, aerial parts of Euphorbia hirta and flowers of Asystasia gangeticum were tested for antimicrobial activity. The three plants exhibited a broad spectrum of antimicrobial activity, particularly against Escherichia coli (enteropathogen), Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus.

  5. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraliya, Jagdish D., E-mail: jdbaraliya@yahoo.co.in; Joshi, Hiren H., E-mail: jdbaraliya@yahoo.co.in

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  6. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  7. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Baraliya, Jagdish D.; Joshi, Hiren H.

    2014-04-01

    We report the results of biological study on core-shell structured MFe2O4 (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe2O4 nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  8. Phytochemical analysis, antimicrobial, antioxidant activities and total phenols of Ferulago carduchorum in two vegetative stages (flower and fruit).

    PubMed

    Golfakhrabadi, Fereshteh; Shams Ardekani, Mohammad Reza; Saeidnia, Soodabeh; Yousefbeyk, Fatemeh; Jamalifar, Hossein; Ramezani, Nasrin; Akbarzadeh, Tahmineh; Khanavi, Mahnaz

    2016-03-01

    Ferulago carduchorum (Apiaceae family) is an endemic plant of Iran. The crude extract and four fractions of aerial parts of F. carduchorum in two vegetative stages (flower and fruit) were studied for their total phenolic contents, antimicrobial and antioxidant activities using folin-ciocalteu assay, micro dilution method and DPPH assay, respectively. The results indicated that the best antioxidant activity was determined in flower crude extract (IC50=0.44 mg/mL). The flower ethyl acetate fraction (FLE) showed better antimicrobial and antifungal activities than other fractions. So, FLE was selected for phytochemical investigations, resulting in isolation of a flavonoid (hesperetin). Hesperetin showed antimicrobial activity. The results showed that the antimicrobial and antioxidant effects during the flowering are obviously more than the fruit season.

  9. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    PubMed Central

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their purified fractions and their pure secondary metabolites. PMID:23360506

  10. Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol.

    PubMed

    Yogiara; Hwang, S J; Park, S; Hwang, J-K; Pan, J-G

    2015-05-01

    Preservative agents determining the shelf life of cosmetic products must have effective antimicrobial activity while meeting safety requirements for topical use. In this study, we determined the antimicrobial activity of 1,2-hexanediol against several Gram-positive and Gram-negative bacteria. Antimicrobial susceptibility tests have shown that 1,2-hexanediol exhibits broad-spectrum activity against Gram-positive and Gram-negative bacteria with MICs of 0·5-2% (v/v). The bactericidal concentration of 1,2-hexanediol was ranging from 1 to 2 × MIC as demonstrated by time-kill curve assay. A membrane depolarization assay showed that 1,2-hexanediol disrupted the cytoplasmic membrane potential. A checkerboard assay indicated that the effective concentration of 1,2-hexanediol was reduced up to 0·25-0·5 × MIC when combined with macelignan and octyl gallate against Gram-positive bacteria. However, this combination was not effective against Gram-negative bacteria. A turbidity reduction assay demonstrated that the combination of a high concentration of 1,2-hexanediol with food-grade antimicrobial compounds could trigger lytic activity towards Bacillus cereus cells. The remaining cell turbidity was 24·6 and 22·2% when 2% of 1,2-hexanediol was combined with 8 mg l(-1) octyl gallate or with 32 mg l(-1) macelignan respectively. This study showed that food-grade antimicrobial compounds may be used in combination with 1,2-hexanediol to increase its efficacy as a preservative agent in cosmetics. The antimicrobial activity of 1,2-hexanediol against Gram-positive and Gram-negative bacteria was potentiated with food-grade antimicrobials including xanthorrhizol, macelignan, panduratin A and octyl gallate, which have already been reported to display anti-inflammatory and other beneficial activities related to cosmetics. Therefore, the combination of 1,2-hexanediol and these food-grade antimicrobial agents would have benefits not only for increasing the antimicrobial activity but also in cosmetics use. © 2015 The Society for Applied Microbiology.

  11. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    NASA Astrophysics Data System (ADS)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  12. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging.

    PubMed

    Wen, Peng; Zhu, Ding-He; Feng, Kun; Liu, Fang-Jun; Lou, Wen-Yong; Li, Ning; Zong, Min-Hua; Wu, Hong

    2016-04-01

    A novel antimicrobial packaging material was obtained by incorporating cinnamon essential oil/β-cyclodextrin inclusion complex (CEO/β-CD-IC) into polylacticacid (PLA) nanofibers via electrospinning technique. The CEO/β-CD-IC was prepared by the co-precipitation method and SEM and FT-IR spectroscopy analysis indicated the successful formation of CEO/β-CD-IC, which improved the thermal stability of CEO. The CEO/β-CD-IC was then incorporated into PLA nanofibers by electrospinning and the resulting PLA/CEO/β-CD nanofilm showed better antimicrobial activity compared to PLA/CEO nanofilm. The minimum inhibitory concentration (MIC) of PLA/CEO/β-CD nanofilm against Escherichia coli and Staphylococcus aureus was approximately 1 mg/ml (corresponding CEO concentration 11.35 μg/ml) and minimum bactericidal concentration (MBC) was approximately 7 mg/ml (corresponding CEO concentration 79.45 μg/ml). Furthermore, compared with the casting method, the mild electrospinning process was more favorable for maintaining greater CEO in the obtained film. The PLA/CEO/β-CD nanofilm can effectively prolong the shelf life of pork, suggesting it has potential application in active food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms.

    PubMed

    Bua, A; Usai, D; Donadu, M G; Delgado Ospina, J; Paparella, A; Chaves-Lopez, C; Serio, A; Rossi, C; Zanetti, S; Molicotti, P

    2017-10-11

    The antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) essential oil was studied in different pathogens species and its cytotoxicity activity was determinated on different cellular lines. Despite the good antibacterial activity of A. inulaefolium, it has been cytotoxic at low concentrations. Consequently it might be interesting to determine the antimicrobial activity and cytotoxicity of the major compounds of this essential oil.

  14. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  15. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity.

    PubMed

    Dhand, Chetna; Venkatesh, Mayandi; Barathi, Veluchami Amutha; Harini, Sriram; Bairagi, Samiran; Goh Tze Leng, Eunice; Muruganandham, Nandhakumar; Low, Kenny Zhi Wei; Fazil, Mobashar Hussain Urf Turabe; Loh, Xian Jun; Srinivasan, Dinesh Kumar; Liu, Shou Ping; Beuerman, Roger W; Verma, Navin Kumar; Ramakrishna, Seeram; Lakshminarayanan, Rajamani

    2017-09-01

    There is a growing demand for durable advanced wound dressings for the management of persistent infections after deep burn injuries. Herein, we demonstrated the preparation of durable antimicrobial nanofiber mats, by taking advantage of strong interfacial interactions between polyhydroxy antibiotics (with varying number of OH groups) and gelatin and their in-situ crosslinking with polydopamine (pDA) using ammonium carbonate diffusion method. Polydopamine crosslinking did not interfere with the antimicrobial efficacy of the loaded antibiotics. Interestingly, incorporation of antibiotics containing more number of alcoholic OH groups (N OH  ≥ 5) delayed the release kinetics with complete retention of antimicrobial activity for an extended period of time (20 days). The antimicrobials-loaded mats displayed superior mechanical and thermal properties than gelatin or pDA-crosslinked gelatin mats. Mats containing polyhydroxy antifungals showed enhanced aqueous stability and retained nanofibrous morphology under aqueous environment for more than 4 weeks. This approach can be expanded to produce mats with broad spectrum antimicrobial properties by incorporating the combination of antibacterial and antifungal drugs. Direct electrospinning of vancomycin-loaded electrospun nanofibers onto a bandage gauze and subsequent crosslinking produced non-adherent durable advanced wound dressings that could be easily applied to the injured sites and readily detached after treatment. In a partial thickness burn injury model in piglets, the drug-loaded mats displayed comparable wound closure to commercially available silver-based dressings. This prototype wound dressing designed for easy handling and with long-lasting antimicrobial properties represents an effective option for treating life-threatening microbial infections due to thermal injuries. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Antimicrobial mortar surfaces for the improvement of hygienic conditions.

    PubMed

    De Muynck, W; De Belie, N; Verstraete, W

    2010-01-01

    To evaluate the effectiveness of various antimicrobial mortar formulations in inhibiting the growth of a selection of pathogens of environmental and hygienic concern. Mortar prisms containing triclosan-incorporated fibres or different concentrations of silver copper zeolites were incubated with Escherichia coli, Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus at 4 or 20 degrees C for 24 h. From plate counting, a substantial bactericidal effect (>4 log units) could only be observed for the mortar specimens containing more than 3% zeolites on cement weight base, the effect being more pronounced at 20 degrees C compared to 4 degrees C. No inhibitory effect could be observed for mortar specimens containing antimicrobial fibres. Adenosinetriphosphate (ATP) measurements allowed for a rapid indication of the occurrence of antimicrobial activity. In order to obtain a bactericidal effect on mortar surfaces, concentrations of silver copper zeolites of more then 3% are required. To our knowledge, this is the first study in which the effectiveness of various antimicrobial mortar mixtures towards the inhibition of pathogens has been evaluated in a quantitative way. Antimicrobial concrete mixtures can be used for the improvement of the hygienic conditions in a variety of environments.

  17. The US national antimicrobial resistance monitoring system.

    PubMed

    Gilbert, Jeffrey M; White, David G; McDermott, Patrick F

    2007-10-01

    The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.

  18. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    PubMed

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  19. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity.

    PubMed

    Huang, En; Yang, Xu; Zhang, Liwen; Moon, Sun Hee; Yousef, Ahmed E

    2017-04-01

    A new bacterial isolate, Paenibacillus sp. OSY-N, showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria. Antimicrobials produced by this strain were purified by reverse-phase high-performance liquid chromatography. Structural analysis, using mass spectrometry, of a single active HPLC fraction revealed two known cyclic lipopeptides (BMY-28160 and permetin A), a new cyclic lipopeptide, and the linear counterparts of these cyclic compounds. The latter were designated as paenipeptins A, B and C, respectively. The paenipeptins have not been reported before as naturally occurring products. Paenipeptins B and C differ at the acyl side chain; paenipeptin C contains a C8-, instead of C7-fatty acyl side chain. To demonstrate unequivocally the antimicrobial activity of the linear forms of this family of cyclic lipopeptides, analogs of the paenipeptins were synthesized chemically and their antimicrobial activity was tested individually. The synthetic linear lipopeptide with an octanoic acid side chain (designated as paenipeptin C΄) showed potent antimicrobial activity with minimum inhibitory concentrations of 0.5-4.0 μg/mL for Gram-negative and 0.5-32 μg/mL for Gram-positive bacteria. Findings demonstrated that peptide cyclization in this lipopeptide family is not essential for their antimicrobial activity. Most importantly, linear lipopeptides are more accessible than their cyclic counterparts through chemical synthesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Perspectives and Peptides of the Next Generation

    NASA Astrophysics Data System (ADS)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  1. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax.

    PubMed

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-12-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO₂-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  2. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    PubMed Central

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-01-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing. PMID:23342386

  3. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans.

    PubMed

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-09-01

    Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.

  4. Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications.

    PubMed

    Incoronato, A L; Buonocore, G G; Conte, A; Lavorgna, M; Nobile, M A Del

    2010-12-01

    Silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles were obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and to be reduced by thermal treatment. The Ag-MMT nanoparticles were embedded in agar, zein, and poly(ε-caprolactone) polymer matrices. These nanocomposites were tested in vitro with a three-strain cocktail of Pseudomonas spp. to assess antimicrobial effectiveness. The results indicate that Ag-MMT nanoparticles embedded into agar may have antimicrobial activity against selected spoilage microorganisms. No antimicrobial effects were recorded with active zein and poly(ε-caprolactone). The water content of the polymeric matrix was the key parameter associated with antimicrobial effectiveness of this active system intended for food packaging applications.

  5. Antimicrobial synergy between carprofen and doxycycline against methicillin-resistant Staphylococcus pseudintermedius ST71.

    PubMed

    Brochmann, Rikke Prejh; Helmfrid, Alexandra; Jana, Bimal; Magnowska, Zofia; Guardabassi, Luca

    2016-06-24

    New therapeutic strategies are needed to face the rapid spread of multidrug-resistant staphylococci in veterinary medicine. The objective of this study was to identify synergies between antimicrobial and non-antimicrobial drugs commonly used in companion animals as a possible strategy to restore antimicrobial susceptibility in methicillin-resistant Staphylococcus pseudintermedius (MRSP). A total of 216 antimicrobial/non-antimicrobial drug combinations were screened by disk diffusion using a clinical MRSP sequence type (ST) 71 strain resistant to all six antimicrobials tested (ampicillin, ciprofloxacin, clindamycin, doxycycline, oxacillin and trimethoprim/sulfamethoxazole). The most promising drug combination (doxycycline-carprofen) was further assessed by checkerboard testing extended to four additional MRSP strains belonging to ST71 or ST68, and by growth inhibition experiments. Seven non-antimicrobial drugs (bromhexine, acepromazine, amitriptyline, clomipramine, carprofen, fluoxetine and ketoconazole) displayed minimum inhibitory concentrations (MICs) ranging between 32 and >4096 mg/L, and enhanced antimicrobial activity of one or more antimicrobials. Secondary screening by checkerboard assay revealed a synergistic antimicrobial effect between carprofen and doxycycline, with the sum of the fractional inhibitory concentration indexes (ΣFICI) ranging between 0.3 and 0.5 depending on drug concentration. Checkerboard testing of multiple MRSP strains revealed a clear association between synergy and carriage of tetK, which is a typical feature of MRSP ST71. An increased growth inhibition was observed when MRSP ST71 cells in exponential phase were exposed to 0.5/32 mg/L of doxycycline/carprofen compared to individual drug exposure. Carprofen restores in vitro susceptibility to doxycycline in S. pseudintermedius strains carrying tetK such as MRSP ST71. Further research is warranted to elucidate the molecular mechanism behind the identified synergy and its linkage to tetK.

  6. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    PubMed

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  7. Growth Inhibition of Cronobacter sakazakii in Experimentally Contaminated Powdered Infant Formula by Kefir Supernatant.

    PubMed

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kang, Il-Byeong; Kim, Hyunsook; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2015-09-01

    Kefir is a type of fermented milk containing lactic and acetic acid bacteria and yeast. In this study, we evaluated the antimicrobial activity of kefir supernatant against Cronobacter sakazakii in powdered infant formula (PIF). In a spot-on-lawn test, the growth of 20 C. sakazakii strains, including 10 clinical and 10 food isolates, was completely inhibited in the presence of kefir supernatant. Significant differences in the diameters of inhibition zones were observed upon treatment with kefir compared with the results for Lactobacillus kefiri and Candida kefyr culture supernatants or solutions of lactic and acetic acid and ethyl alcohol in the agar well diffusion test (P < 0.05). The addition of 100 μl of kefir supernatant to 1 ml of nutrient broth completely inhibited the growth of C. sakazakii, as evaluated by spectrophotometry. The antimicrobial activity of kefir supernatant in experimentally contaminated PIF was also tested; we found no viable C. sakazakii cells remaining in PIF rehydrated with 30% kefir supernatant solution for 1 h, demonstrating that the antimicrobial activity of kefir supernatant against C. sakazakii could be applied in real food samples.

  8. Antimicrobial activity of four root canal sealers against endodontic pathogens.

    PubMed

    Lai, C C; Huang, F M; Yang, H W; Chan, Y; Huang, M S; Chou, M Y; Chang, Y C

    2001-12-01

    The antibacterial effects of various types of widely used endodontic sealers have not been compared systematically on facultative or obligate anaerobic endodontic pathogens. The aim of this study was to evaluate the antimicrobial properties of four commonly used endodontic sealers: two epoxy-resin-based sealers (AH26, AH plus), one zinc-oxide eugenol-based sealer (N2), and one calcium hydroxide-based sealer (Sealapex). The testing microbes were four facultative anaerobic species (Streptococcus mutans, Streptococcus sanguis, Escherichia coli, and Staphylococcus aureus) and four obligate anaerobic species (Porphyromonas gingivalis, Porphyromonas endodontalis, Fusobacterium nucleatum, and Prevotella intermedia). The freshly mixed sealers were placed into the prepared wells of agar plates inoculated with the test microorganisms. After varying periods of incubation (2 days for facultative anaerobic species and 7 days for obligate anaerobic species), the zones of growth inhibition were observed and measured. All the sealers were distinctly different from each other in their antimicrobial activity. The sealers showed different inhibitory effects depending on the types and bacterial strains. N2 containing formaldehyde and eugenol proved to be the most effective against the microorganisms. The extreme antimicrobial potency of this root canal sealer must be weighted against its pronounced tissue toxic effect.

  9. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli.

    PubMed

    Cao, Wei; Zhou, Yuxun; Ma, Yushu; Luo, Qingping; Wei, Dongzhi

    2005-04-01

    Adenoregulin is a 33 amino acid antimicrobial peptide isolated from the skin of the arboreal frog Phyllomedusa bicolor. Natural adenoregulin is synthesized with an amidated valine residue at C-terminus and shows lethal effects against filamentous fungi, as well as a broad spectrum of pathogenic microorganisms. A synthetic gene for adenoregulin (ADR) with an additional amino acid glutamine at C-terminus was cloned into pET32a vector to allow expression of ADR as a Trx fusion protein in Escherichia coli BL21(DE3). The resulting expression level of the fusion protein could reach up to 20% of the total cell proteins. The fusion protein could be purified effectively by Ni2+-chelating chromatography. Released from the fusion protein by enterokinase cleavage and purified to homogeneity, the recombinant ADR displayed antimicrobial activity similar to that of the synthetic ADR reported earlier. Comparing the antimicrobial activities of the recombinant adenoregulin with C-amidated terminus to that without an amidated C-terminus, we found that the amide of glutamine at C-terminus of ADR improved its potency on certain microorganisms such as Tritirachium album and Saccharomyces cerevisiae.

  10. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  11. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  12. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria.

    PubMed

    Kumari, Madhuree; Pandey, Shipra; Giri, Ved Prakash; Bhattacharya, Arpita; Shukla, Richa; Mishra, Aradhana; Nautiyal, C S

    2017-04-01

    Spherical, rectangular, penta, and hexagonal silver nanoparticles of different dimensions were biosynthesized in an eco-friendly manner by biocontrol agent, Trichoderma viride by manipulating physical parameters, pH, temperature, and reaction time. The particles were characterized by UV-vis spectroscopy; Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Fourier Transform Infra-red Spectroscopy (FTIR). Shape and size dependent antimicrobial activity of nanoparticles against human pathogens was observed. Maximum inhibition was found with spherical nanoparticles (2-5 nm) showing 40, 51, 43, 53.9 and 55.8% against Shigella sonnei, Escherichia coli, Serratia marcescens, Staphylococcus. aureus and Pseudomonas aeruginosa respectively, where as pentagonal and hexagonal nanoparticles (50-100 nm) demonstrated 32, 41, 31, 42.84 and 42.80% of inhibition as compared to control. Nanoparticles of different geometry and dimension established enhanced antagonistic activity against pathogens with all the tested antibiotics. Excellent antimicrobial efficacy was obtained with spherical nanoparticles of 2-5 nm with ampicillin and penicillin. Shape and size played major role in enhancing antimicrobial potential of silver nanoparticles, both singly and synergistically with antibiotics which can be exploited to combat the spread of multidrug resistant pathogens. Copyright © 2016. Published by Elsevier Ltd.

  13. Study of the nanomaterials and their antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and the morphology of Ni-coated CNTs were investigated by scanning electron microscopy (SEM), dispersive x-ray analysis (EDX) and thermo gravimetric analysis (TGA). The SEM results revealed that CNTs provide an excellent surface for electrochemical deposition of nanomaterials. Ni nanoparticles were homogeneously electrodeposited on the surfaces of SWNTs. Antimicrobial activity of CNTs was determined by broth dilution method using six different bacterial strains, three strains of gram negative and three strains of gram positive bacteria. The gram positive bacteria include Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis . The gram negative bacteria include Eshericia coli, Klebsiella pneumonia and Pseudomonas aerugenosa. Bactericidal rate was calculated. Based on the results Ni-coated CNTs show much stronger bactericidal property comparing to SWNTs and XD-grade CNTs.

  14. Proposed phase 2/ step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride.

    PubMed

    Schedler, Kathrin; Assadian, Ojan; Brautferger, Uta; Müller, Gerald; Koburger, Torsten; Classen, Simon; Kramer, Axel

    2017-02-13

    Currently, there is no agreed standard for exploring the antimicrobial activity of wound antiseptics in a phase 2/ step 2 test protocol. In the present study, a standardised in-vitro test is proposed, which allows to test potential antiseptics in a more realistically simulation of conditions found in wounds as in a suspension test. Furthermore, factors potentially influencing test results such as type of materials used as test carrier or various compositions of organic soil challenge were investigated in detail. This proposed phase 2/ step 2 test method was modified on basis of the EN 14561 by drying the microbial test suspension on a metal carrier for 1 h, overlaying the test wound antiseptic, washing-off, neutralization, and dispersion at serial dilutions at the end of the required exposure time yielded reproducible, consistent test results. The difference between the rapid onset of the antiseptic effect of PVP-I and the delayed onset especially of polihexanide was apparent. Among surface-active antimicrobial compounds, octenidine was more effective than chlorhexidine digluconate and polihexanide, with some differences depending on the test organisms. However, octenidine and PVP-I were approximately equivalent in efficiency and microbial spectrum, while polihexanide required longer exposure times or higher concentrations for a comparable antimicrobial efficacy. Overall, this method allowed testing and comparing differ liquid and gel based antimicrobial compounds in a standardised setting.

  15. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  16. Comparison of antimicrobial activity of selected, commercially available wound dressing materials.

    PubMed

    Szweda, Piotr; Gorczyca, Grzegorz; Tylingo, Robert

    2018-05-02

    The aim of our study was to examine the antimicrobial potential of eight selected, commercially available wound dressings containing different antimicrobial agents: silver, chlorhexidine acetate, povidone-iodine, and manuka honey. The materials were tested against four reference strains of bacteria: Staphylococcus aureus (PCM 2051), Staphylococcus epidermidis (PCM 2118), Pseudomonas aeruginosa (ATCC 27853), and Escherichia coli (K12), using the disc diffusion-like method and a time-killing assay. For both experiments, the highest activity against all four tested strains of bacteria was observed in the case of Mepilex Ag, which contains silver as an antibacterial agent. Incubation for four hours of a 10x10mm 2 piece of this material in 10ml cells suspension (concentration: 10 9 -10 10 CFU/ml) resulted in complete elimination of bacteria of all four strains tested. The same results were obtained for a povidone-iodine containing dressing, Inadine, though its activity was lower in the disc diffusion assay. Silvercel, Aquacel Ag and Melgisorb Ag, which also contain silver, also exhibited a satisfactory level of activity. In the case of Aquacel Ag, 24 hours' incubation resulted in complete elimination of the cells of both Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa.The Escherichia coli cells were killed after only four hours' treatment. High effectiveness against Escherichia coli was also demonstrated for Silvercel. However, 24 hours' includation was required for complete elimination of the cells of this bacteria strain. High activity against all tested bacteria, but only in the disc diffusion assay, was observed for Algivon, which contains manuka honey. The Medisorb Silver Pad, containing silver, and Bactigras, which contains chlorhexidine acetate, revealed much lower antimicrobial activity, particularly noticeable in the time-killing assay. In addition, we also tested the anti-staphylococcal activity of a biopolymer material impregnated with lysostaphin. Results revealed that its activity against Staphylococcus aureus was comparable to the most active wound dressings impregnated with silver or inadine. Some important differences in the antimicrobial potential of investigated materials have been found. The presented results could be of interest to clinicians managing wounds.

  17. Structure-activity relationships in defensin dimers: a novel link between beta-defensin tertiary structure and antimicrobial activity.

    PubMed

    Campopiano, Dominic J; Clarke, David J; Polfer, Nick C; Barran, Perdita E; Langley, Ross J; Govan, John R W; Maxwell, Alison; Dorin, Julia R

    2004-11-19

    Defensins are cationic antimicrobial peptides that have a characteristic six-cysteine motif and are important components of the innate immune system. We recently described a beta-defensin-related peptide (Defr1) that had potent antimicrobial activity despite having only five cysteines. Here we report a relationship between the structure and activity of Defr1 through a comparative study with its six cysteine-containing analogue (Defr1 Y5C). Against a panel of pathogens, we found that oxidized Defr1 had significantly higher activity than its reduced form and the oxidized and reduced forms of Defr1 Y5C. Furthermore, Defr1 displayed activity against Pseudomonas aeruginosa in the presence of 150 mm NaCl, whereas Defr1 Y5C was inactive. By using nondenaturing gel electrophoresis and Fourier transform ion cyclotron resonance mass spectrometry, we observed Defr1 and Defr1 Y5C dimers. Two complementary fragmentation techniques (collision-induced dissociation and electron capture dissociation) revealed that Defr1 Y5C dimers form by noncovalent, weak association of monomers that contain three intramolecular disulfide bonds. In contrast, Defr1 dimers are resistant to collision-induced dissociation and are only dissociated into monomers by reduction using electron capture. This is indicative of Defr1 dimerization being mediated by an intermolecular disulfide bond. Proteolysis and peptide mass mapping revealed that Defr1 Y5C monomers have beta-defensin disulfide bond connectivity, whereas oxidized Defr1 is a complex mixture of dimeric isoforms with as yet unknown inter- and intramolecular connectivities. Each isoform contains one intermolecular and four intramolecular disulfide bonds, but because we were unable to resolve the isoforms by reverse phase chromatography, we could not assign each isoform with a specific antimicrobial activity. We conclude that the enhanced activity and stability of this mixture of Defr1 dimeric isoforms are due to the presence of an intermolecular disulfide bond. This first description of a covalently cross-linked member of the defensin family provides further evidence that the antimicrobial activity of a defensin is linked to its ability to form stable higher order structures.

  18. Effect of amino acid substitution on biological activity of cyanophlyctin-β and brevinin-2R

    NASA Astrophysics Data System (ADS)

    Ghorani-Azam, Adel; Balali-Mood, Mahdi; Aryan, Ehsan; Karimi, Gholamreza; Riahi-Zanjani, Bamdad

    2018-04-01

    Antimicrobial peptides (AMPs), as ancient immune components, are found in almost all types of living organisms. They are bioactive components with strong antibacterial, antiviral, and anti-tumor properties. In this study, we designed three sequences of antimicrobial peptides to study the effects of structural changes in biological activity compared with original peptides, cyanophlyctin β, and brevinin-2R. For antibacterial activity, two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeroginosa) were assayed. Unlike cyanophlyctin β and brevinin-2R, the synthesized peptide (brevinin-M1, brevinin-M2 and brevinin-M3) showed no considerable antibacterial properties. Hemolytic activity of these peptides was also ignorable even at very high concentrations of 2 mg/ml. However, after proteolytic digestion by trypsin, the peptides showed antibacterial activity comparable to their original template sequences. Structural prediction suggested that the motif sequence responsible for antibacterial activity may be re-exposed to bacterial cell membrane after proteolytic digestion. Also, findings showed that only a small change in primary sequence and therefore structure of peptides may result in a significant alteration in biological activity.

  19. Interaction of antimicrobial arginine-based cationic surfactants with liposomes and lipid monolayers.

    PubMed

    Castillo, José A; Pinazo, Aurora; Carilla, Josep; Infante, M Rosa; Alsina, M Asunción; Haro, Isabel; Clapés, Pere

    2004-04-13

    The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.

  20. Molecular docking and inhibition studies on the interactions of Bacopa monnieri's potent phytochemicals against pathogenic Staphylococcus aureus.

    PubMed

    Emran, Talha Bin; Rahman, Md Atiar; Uddin, Mir Muhammad Nasir; Dash, Raju; Hossen, Md Firoz; Mohiuddin, Mohammad; Alam, Md Rashadul

    2015-04-17

    Bacopa monnieri Linn. (Plantaginaceae), a well-known medicinal plant, is widely used in traditional medicine system. It has long been used in gastrointestinal discomfort, skin diseases, epilepsy and analgesia. This research investigated the in vitro antimicrobial activity of Bacopa monnieri leaf extract against Staphylococcus aureus and the interaction of possible compounds involved in this antimicrobial action. Non-edible plant parts were extracted with ethanol and evaporated in vacuo to obtain the crude extract. A zone of inhibition studies and the minimum inhibitory concentration (MIC) of plant extracts were evaluated against clinical isolates by the microbroth dilution method. Docking study was performed to analyze and identify the interactions of possible antimicrobial compounds of Bacopa monnieri in the active site of penicillin binding protein and DNA gyrase through GOLD 4.12 software. A zone of inhibition studies showed significant (p < 0.05) inhibition capacity of different concentrations of Bacopa monnieri's extract against Staphylococcus aureus. The extract also displayed very remarkable minimum inhibitory concentrations (≥16 μg/ml) which was significant compared to that (≥75 μg/ml) of the reference antibiotic against the experimental strain Staphylococcus aureus. Docking studies recommended that luteolin, an existing phytochemical of Bacopa monnieri, has the highest fitness score and more specificity towards the DNA gyrase binding site rather than penicillin binding protein. Bacopa monnieri extract and its compound luteolin have a significant antimicrobial activity against Staphylococcus aureus. Molecular binding interaction of an in silico data demonstrated that luteolin has more specificity towards the DNA gyrase binding site and could be a potent antimicrobial compound.

  1. Incorporating Phage Therapy into WPI Dip Coatings for Applications on Fresh Whole and Cut Fruit and Vegetable Surfaces.

    PubMed

    Vonasek, Erica L; Choi, Angela H; Sanchez, Juan; Nitin, Nitin

    2018-06-15

    There is a significant unmet need to develop antimicrobial solutions to reduce the risk of contamination in fresh produce. Bacteriophages have been proposed as a potential approach for controlling foodborne pathogens. This study evaluated the combination of edible dip coatings with T7 bacteriophages on whole and cut produce. The evaluation includes an assessment of phage loading, phage storage stability, antimicrobial activity, and phage stability during simulated gastric digestion on sliced cucumbers, sliced apples, and whole cherry tomatoes. In this evaluation, phages coated on fresh produce using edible whey protein isolate (WPI) were compared with phages coated from an aqueous suspension (control coating). The results demonstrated that WPI coatings load more phages than the control and enhanced phage stability during cold storage (4 °C) for cut apples and whole cherry tomatoes. Phage stability decreased by 1 to 3 log(PFU) in a simulated gastric environment. Phage antimicrobial activity against Escherichia coli BL21 decreased 2 to 4 log(CFU) of bacteria on cut apples and whole cherry tomatoes, while no significant bacterial reduction was observed for sliced cucumbers. Overall, the results show that WPI dip coating provides phage loading, stability, and antimicrobial activity to produce surfaces compared to the control coating, and thus may be considered an effective approach for extending phage therapy on fresh produce. The practical application is to prevent bacterial cross contamination of fresh produce by using a combination of edible coating with bacteriophages. The results demonstrate enhanced loading and stability of phages on fresh produce when used in combination with an edible coating. © 2018 Institute of Food Technologists®.

  2. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Differential In Vitro and In Vivo Toxicities of Antimicrobial Peptide Prodrugs for Potential Use in Cystic Fibrosis

    PubMed Central

    Schütte, André; Reeves, Emer; Greene, Catherine; Humphreys, Hilary; Mall, Marcus; Fitzgerald-Hughes, Deirdre; Devocelle, Marc

    2016-01-01

    There has been considerable interest in the use of antimicrobial peptides (AMPs) as antimicrobial agents for the treatment of many conditions, including cystic fibrosis (CF). The challenging conditions of the CF patient lung require robust AMPs that are active in an environment of high proteolytic activity but that also have low cytotoxicity and immunogenicity. Previously, we developed prodrugs of AMPs that limited the cytotoxic effects of AMP treatment by rendering the antimicrobial activity dependent on the host enzyme neutrophil elastase (NE). However, cytotoxicity remained an issue. Here, we describe the further optimization of the AMP prodrug (pro-AMP) model for CF to produce pro-WMR, a peptide with greatly reduced cytotoxicity (50% inhibitory concentration against CFBE41o- cells, >300 μM) compared to that of the previous group of pro-AMPs. The bactericidal activity of pro-WMR was increased in NE-rich bronchoalveolar lavage (BAL) fluid from CF patients (range, 8.4% ± 6.9% alone to 91.5% ± 5.8% with BAL fluid; P = 0.0004), an activity differential greater than that of previous pro-AMPs. In a murine model of lung delivery, the pro-AMP modification reduced host toxicity, with pro-WMR being less toxic than the active peptide. Previously, host toxicity issues have hampered the clinical application of AMPs. However, the development of application-specific AMPs with modifications that minimize toxicity similar to those described here can significantly advance their potential use in patients. The combination of this prodrug strategy with a highly active AMP has the potential to produce new therapeutics for the challenging conditions of the CF patient lung. PMID:26902766

  4. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    NASA Astrophysics Data System (ADS)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-05-01

    TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  5. Inhibitory effects of Caesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus.

    PubMed

    Kim, Kang-Ju; Yu, Hyeon-Hee; Jeong, Seung-Il; Cha, Jung-Dan; Kim, Shin-Moo; You, Yong-Ouk

    2004-03-01

    In the present study, we investigated antimicrobial activity of Caesalpinia sappan against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and effect of Caesalpinia sappan extract on the invasion of MRSA to human mucosal fibroblasts (HMFs). Chloroform, n-butanol, methanol, and aqueous extracts of the Caesalpinia sappan showed antimicrobial activity against standard methicillin-sensitive Staphylococcus aureus (MSSA) as well as MRSA. Methanol extract of Caesalpinia sappan demonstrated a higher inhibitory activity than n-butanol, chloroform, and aqueous extracts. In the checkerboard dilution method, methanol extract of Caesalpinia sappan markedly lowered the minimal inhibitory concentrations (MICs) of ampicillin and oxacillin against MRSA. To determine whether methanol extract of Caesalpinia sappan inhibits the MRSA invasion to HMFs, the cells were treated with various sub-MIC concentrations of methanol extract and bacterial invasion was assayed. MRSA invasion was notably decreased in the presence of 20-80 microg/ml of Caesalpinia sappan extract compared to the control group. The effect of Caesalpinia sappan extract on MRSA invasion appeared dose-dependent. These results suggest that methanol extract of Caesalpinia sappan may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA invasion to HMFs.

  6. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan.

    PubMed

    Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil

    2016-06-01

    In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Synthesis, Characterisation, Molecular Docking, Anti-microbial and Anti-diabetic Screening of Substituted 4-indolylphenyl-6-arylpyrimidine-2-imine Derivatives.

    PubMed

    Ramya, Veerasamy; Vembu, Santhirakasu; Ariharasivakumar, Ganesan; Gopalakrishnan, Manathusamy

    2017-09-01

    The purpose of the research is to synthesise a novel series of (E)-2-(4-(1H-indol-3-yl)-6-p-substituted phenylpyrimidin-2-yl)dimethylguanidine derivatives since 3-(1H-indol-3-yl)-1-p-substituted phenylprop-2-en-1-one and evaluate their molecular docking studies, antimicrobial, and anti-diabetic activities. Among all the synthesized compounds ( 11a-g ), compound 11a exhibits excellent CDOCKER energy (-11.36 kcal/mol). The entire compounds ( 11a-g ) confirm very good antimicrobial activity towards the tested microorganisms. In the in vitro anti-diabetic studies, compounds (11a, 11c, and 11g) confirm higher alpha-amylase and alpha-glucosidase inhibition activity. In the in vivo anti-diabetic activities, the synthesized compounds (11a-g) (10 mg/kg, p.o.) investigated by the streptozotocin (60 mg/kg, ip) -nicotinamide (120 mg/kg, p.o.) - induced model in adult male albino Wistar rat and these derivatives show considerable fasting blood glucose level when compared to metformin hydrochloride a potent and well-known anti-diabetic drug as a reference. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Environmental fate of two sulfonamide antimicrobial agents in soil.

    PubMed

    Accinelli, Cesare; Koskinen, William C; Becker, Joanna M; Sadowsky, Michael J

    2007-04-04

    Veterinary antimicrobial agents have been detected in a number of environmental samples, including agricultural soils. In this study, we investigated the persistence and sorption of the sulfonamides sulfamethazine (SMZ) and sulfachloropyridine (SCP) in soil and their potential effects on soil microorganisms. The sulfonamides dissipated more rapidly from the silt loam soil as compared to the sandy soil. Average half-lives of SMZ and SPC among the two soils were 18.6 and 21.3 days, respectively. The presence of liquid swine slurry (5% v/w) decreased sulfonamide persistence in the silt loam soil. The lower persistence of the antimicrobials in liquid swine slurry-amended soil was likely due to higher microbial activity, as compared to unamended soil, and/or to the greater bioavailability of the sulfonamides to degrading microorganisms, as estimated by sorption isotherms. Concentrations of SMZ and SPC up to 100 microg g-1 had no effect on antimicrobial degradation rates and soil microorganisms. These studies suggest that higher sulfonamide concentrations would be necessary to affect the main processes controlling their environmental fates in soil, but at the concentrations normally found in the environment, there would be little or no effects.

  9. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy.

    PubMed

    Liu, Beijun; Huang, Haifeng; Yang, Zhibin; Liu, Beiyin; Gou, Sanhu; Zhong, Chao; Han, Xiufeng; Zhang, Yun; Ni, Jingman; Wang, Rui

    2017-02-01

    Currently, antimicrobial peptides have attracted considerable attention because of their broad-sprectum activity and low prognostic to induce antibiotic resistance. In our study, for the first time, a series of side-chain hybrid dimer peptides J-AA (Anoplin-Anoplin), J-RR (RW-RW), and J-AR (Anoplin-RW) based on the wasp peptide Anoplin and the arginine- and tryptophan-rich hexapeptide RW were designed and synthesized by click chemistry, with the intent to improve the antimicrobial efficacy of peptides against bacterial pathogens. The results showed that all dimer analogues exhibited up to a 4-16 fold increase in antimicrobial activity compared to the parental peptides against bacterial strains. Furthermore, the antimicrobial activity was confirmed by time-killing kinetics assay with two strains which showed that these dimer analogues at 1, 2×MIC were rapidly bactericidal and reduced the initial inoculum significantly during the first 2-6h. Notably, dimer peptides showed synergy and additivity effects when used in combination with conventional antibiotics rifampin or penicillin respectively against the multidrug-resistant strains. In the Escherichia coli-infected mouse model, all of hybrid dimer analogues had significantly lower degree of bacterial load than the untreated control group when injected once i.p. at 5mg/kg. In addition, the infected mice by methicillin-resistant (MRSA) strain could be effectively treated with J-RR. All of dimer analogues had membrane-active action mode. And the membrane-dependent mode of action signifies that peptides functions freely and without regard to conventional resistant mechanisms. Circular dichroism analyses of all dimer analogues showed a general predominance of α-helix conformation in 50% trifluoroethanol (TFE). Additionally, the acute toxicities study indicated that J-RR or J-AR did not show the signs of toxicity when adult mice exposed to concentration up to 120mg/kg. The 50% lethal dose (LD 50 ) of J-AA was 53.6mg/kg. In conclusion, to design and synthesize side chain-hybrid dimer analogues via click chemistry may offer a new strategy for antibacterial therapeutic option. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus.

    PubMed

    Dean, Scott N; Bishop, Barney M; van Hoek, Monique L

    2011-05-23

    Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their anti-microbial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low μg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH). We previously identified an 11-residue imperfectly repeated pattern (ATRA motif) within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A), as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and anti-biofilm activities. The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of anti-microbials and potential future topical therapeutics for treating chronic wound infections.

  11. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.

    PubMed

    Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M

    2016-06-01

    Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.

  12. A prospective, observational study comparing the PK/PD relationships of generic Meropenem (Mercide®) to the innovator brand in critically ill patients.

    PubMed

    Mer, Mervyn; Snyman, Jacques Rene; van Rensburg, Constance Elizabeth Jansen; van Tonder, Jacob John; Laurens, Ilze

    2016-01-01

    Clinicians' skepticism, fueled by evidence of inferiority of some multisource generic antimicrobial products, results in the underutilization of more cost-effective generics, especially in critically ill patients. The aim of this observational study was to demonstrate equivalence between the generic or comparator brand of meropenem (Mercide ® ) and the leading innovator brand (Meronem ® ) by means of an ex vivo technique whereby antimicrobial activity is used to estimate plasma concentration of the active moiety. Patients from different high care and intensive care units were recruited for observation when prescribed either of the meropenem brands under investigation. Blood samples were collected over 6 hours after a 30 minute infusion of the different brands. Meropenem concentration curves were established against United States Pharmacopeia standard meropenem (Sigma-Aldrich) by using standard laboratory techniques for culture of Klebsiella pneumoniae. Patients' plasma samples were tested ex vivo, using a disc diffusion assay, to confirm antimicrobial activity and estimate plasma concentrations of the two brands. Both brands of meropenem demonstrated similar curves in donor plasma when concentrations in vials were confirmed. Patient-specific serum concentrations were determined from zones of inhibition against a standard laboratory Klebsiella strain ex vivo, confirming at least similar in vivo concentrations as the concentration curves (90% confidence interval) overlapped; however, the upper limit of the area under the curve for the ratio comparator/innovator exceeded the 1.25-point estimate, i.e., 4% higher for comparator meropenem. This observational, in-practice study demonstrates similar ex vivo activity and in vivo plasma concentration time curves for the products under observation. Assay sensitivity is also confirmed. Current registration status of generic small molecules is in place. The products are therefore clinically interchangeable based on registration status as well as bioassay results, demonstrating sufficient overlap for clinical comfort. The slightly higher observed comparator meropenem concentration (4%) is still clinically acceptable due to the large therapeutic index and should ally fears of inferiority.

  13. Analysis and separation of residues important for the chemoattractant and antimicrobial activities of beta-defensin 3.

    PubMed

    Taylor, Karen; Clarke, David J; McCullough, Bryan; Chin, Wutharath; Seo, Emily; Yang, De; Oppenheim, Joost; Uhrin, Dusan; Govan, John R W; Campopiano, Dominic J; MacMillan, Derek; Barran, Perdita; Dorin, Julia R

    2008-03-14

    beta-Defensins are important in mammalian immunity displaying both antimicrobial and chemoattractant activities. Three canonical disulfide intramolecular bonds are believed to be dispensable for antimicrobial activity but essential for chemoattractant ability. However, here we show that HBD3 (human beta-defensin 3) alkylated with iodoactemide and devoid of any disulfide bonds is still a potent chemoattractant. Furthermore, when the canonical six cysteine residues are replaced with alanine, the peptide is no longer active as a chemoattractant. These findings are replicated by the murine ortholog Defb14. We restore the chemoattractant activity of Defb14 and HBD3 by introduction of a single cysteine in the fifth position (Cys V) of the beta-defensin six cysteine motif. In contrast, a peptide with a single cysteine at the first position (Cys I) is inactive. Moreover, a range of overlapping linear fragments of Defb14 do not act as chemoattractants, suggesting that the chemotactic activity of this peptide is not dependent solely on an epitope surrounding Cys V. Full-length peptides either with alkylated cysteine residues or with cysteine residues replaced with alanine are still strongly antimicrobial. Defb14 peptide fragments were also tested for antimicrobial activity, and peptides derived from the N-terminal region display potent antimicrobial activity. Thus, the chemoattractant and antimicrobial activities of beta-defensins can be separated, and both of these functions are independent of intramolecular disulfide bonds. These findings are important for further understanding of the mechanism of action of defensins and for therapeutic design.

  14. Effect of a single polymorphism in the Japanese quail NK-lysin gene on antimicrobial activity.

    PubMed

    Ishige, Taichiro; Hara, Hiromi; Hirano, Takashi; Kono, Tomohiro; Hanzawa, Kei

    2016-01-01

    NK-lysins are cationic peptides that play important roles in host protection, and are an important constituent of innate immunity. We identified nine single-nucleotide polymorphisms (SNPs) in the NK-lysin open reading frame (ORF) from 32 Japanese quails in six strains: A, B, ND, K, P, and Y. The G to A substitution at nucleotide position 272 in the ORF resulted in a Gly (G) to Asp (D) amino acid substitution (Cj31G and Cj31D alleles). The Cj31D allele was detected in P (frequency 0.76) and Y (frequency 0.03) strains. We compared the antimicrobial activities of four synthetic peptides from the helix 2-loop-helix 3 region of avian NK-lysins against Escherichia coli: Cj31G and Cj31D from quail and Gg29N and Gg29D from chicken. The antimicrobial activities of the four peptides decreased in the following order: Gg29N > Cj31G > Gg29D > Cj31D (P < 0.05). Although there were no differences in the predicted secondary structure of the Cj31G and Cj31D, the net charge of the Cj31G was higher than that of Cj31D. These data indicated that the antimicrobial activity of CjNKL is influenced by net charge, similar to that which has been observed in chicken. © 2015 Japanese Society of Animal Science.

  15. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria: Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder

    PubMed Central

    Ross, Z. M.; O'Gara, E. A.; Hill, D. J.; Sleightholme, H. V.; Maslin, D. J.

    2001-01-01

    The antimicrobial effects of aqueous garlic extracts are well established but those of garlic oil (GO) are little known. Methodologies for estimating the antimicrobial activity of GO were assessed and GO, GO sulfide constituents, and garlic powder (GP) were compared in tests against human enteric bacteria. Test methodologies were identified as capable of producing underestimates of GO activity. Antimicrobial activity was greater in media lacking tryptone or cysteine, suggesting that, as for allicin, GO effects may involve sulfhydryl reactivity. All bacteria tested, which included both gram-negative and -positive bacteria and pathogenic forms, were susceptible to garlic materials. On a weight-of-product basis, 24 h MICs for GO (0.02 to 5.5 mg/ml, 62 enteric isolates) and dimethyl trisulfide (0.02 to 0.31 mg/ml, 6 enteric isolates) were lower than those for a mixture of diallyl sulfides (0.63 to 25 mg/ml, 6 enteric isolates) and for GP, which also exhibited a smaller MIC range (6.25 to 12.5 mg/ml, 29 enteric isolates). Viability time studies of GO and GP against Enterobacter aerogenes showed time- and dose-dependent effects. Based upon its thiosulfinate content, GP was more active than GO against most bacteria, although some properties of GO are identified as offering greater therapeutic potential. Further exploration of the potential of GP and GO in enteric disease control appears warranted. PMID:11133485

  17. Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul.

    PubMed

    Silva-Lacerda, G R; Santana, R C F; Vicalvi-Costa, M C V; Solidônio, E G; Sena, K X F R; Lima, G M S; Araújo, J M

    2016-03-04

    Actinobacteria are known to produce various secondary metabolites having antibiotic effects. This study assessed the antimicrobial potential of actinobacteria isolated from the rhizosphere of Caesalpinia pyramidalis Tul. from the Caatinga biome. Sixty-eight actinobacteria isolates were evaluated for antimicrobial activity against different microorganisms by disk diffusion and submerged fermentation, using different culture media, followed by determination of minimum inhibitory concentration (MIC) and chemical prospecting of the crude extract. Of the isolates studied, 52.9% of those isolated at 37°C and 47.05% of those isolated at 45°C had activity against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Fusarium moniliforme, and Candida albicans. When compared with others actinobacteria, the isolate C1.129 stood out with better activity and was identified by 16S rDNA gene analysis as Streptomyces parvulus. The crude ethanol extract showed an MIC of 0.97 μg/mL for MRSA and B. subtilis, while the ethyl acetate extract showed MIC of 3.9 μg/mL for S. aureus and MRSA, showing the greatest potential among the metabolites produced. Chemical prospecting revealed the presence of mono/sesquiterpenes, proanthocyanidin, triterpenes, and steroids in both crude extracts. This study evaluates S. parvulus activity against multi-resistant microorganisms such as MRSA. Thus, it proves that low-fertility soil, as is found in the Caatinga, may contain important microorganisms for the development of new antimicrobial drugs.

  18. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis.

    PubMed

    Sharma, Rahul; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    The present study is designed to explore the localized delivery of fluconazole using mucoadhesive polymeric nanofibers. Drug-loaded polymeric nanofibers were fabricated by the electrospinning method using polyvinyl alcohol (PVA) as the polymeric constituent. The prepared nanofibers were found to be uniform, non-beaded and non-woven, with the diameter of the fibers ranging from 150 to 180 nm. Further drug release studies indicate a sustained release of fluconazole over a period of 6 h. The results of studies on anti-microbial activity indicated that drug-loaded polymeric nanofibers exhibit superior anti-microbial activity against Candida albicans, when compared to the plain drug.

  19. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity

    PubMed Central

    Zhang, Shi-Kun; Song, Jin-wen; Gong, Feng; Li, Su-Bo; Chang, Hong-Yu; Xie, Hui-Min; Gao, Hong-Wei; Tan, Ying-Xia; Ji, Shou-Ping

    2016-01-01

    AR-23 is a melittin-related peptide with 23 residues. Like melittin, its high α-helical amphipathic structure results in strong bactericidal activity and cytotoxicity. In this study, a series of AR-23 analogues with low amphipathicity were designed by substitution of Ala1, Ala8 and Ile17 with positively charged residues (Arg or Lys) to study the effect of positively charged residue distribution on the biological viability of the antimicrobial peptide. Substitution of Ile17 on the nonpolar face with positively charged Lys dramatically altered the hydrophobicity, amphipathicity, helicity and the membrane-penetrating activity against human cells as well as the haemolytic activity of the peptide. However, substitution on the polar face only slightly affected the peptide biophysical properties and biological activity. The results indicate that the position rather than the number of positively charged residue affects the biophysical properties and selectivity of the peptide. Of all the analogues, A(A1R, A8R, I17K), a peptide with Ala1-Arg, Ala8-Arg and Ile17-Lys substitutions, exhibited similar bactericidal activity and anti-biofilm activity to AR-23 but had much lower haemolytic activity and cytotoxicity against mammalian cells compared with AR-23. Therefore, the findings reported here provide a rationalization for peptide design and optimization, which will be useful for the future development of antimicrobial agents. PMID:27271216

  20. Speed of recovery from acute exacerbations of chronic obstructive pulmonary disease after treatment with antimicrobials : results of a two-year study.

    PubMed

    Miravitlles, Marc; Zalacain, Rafael; Murio, Cristina; Ferrer, Montserrat; Alvarez-Sala, José L; Masa, Juan F; Verea, Héctor; Ros, Fernando; Vidal, Rafael

    2003-01-01

    We performed a multicentre study under a 2-year observational protocol that included data on time to recovery from acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) in patients receiving moxifloxacin and comparator antimicrobials. Outpatients with moderate or severe COPD were recruited from respiratory clinics throughout Spain. Moxifloxacin was available in year 2, and was to be prescribed to 50% of patients in that period in a non-randomised allocation. Time to recovery was compared in successfully treated AE-COPD; cross-sectionally for all AE-COPD over 2 years, first AE-COPD and all AE-COPD in year 2, and longitudinally in patients receiving comparator antimicrobials for AE-COPD in year 1 and moxifloxacin in year 2. 614 AE-COPD were treated in 441 patients over 2 years (mean age 66.7 +/- 8.3 years, 98% males, mean forced expiratory volume in 1 second [FEV(1)] 35.9 +/- 8.8%). Mean time to recovery overall was 4.6 days (SD 3.3) with moxifloxacin 400 mg/day for 5 days, and 5.8 days (SD 4.6) with comparators (p < 0.01), which were most frequently amoxicillin/clavulanic acid 500/125mg/8h, clarithromycin 500mg/12h and cefuroxime axetil 500mg/12h for 7-10 days. Longitudinal analysis showed that 27 patients treated with moxifloxacin in the second year of the study recovered in a mean of 3.7 days (SD 3.1), and the same patients treated with comparator antimicrobials in year one recovered in a mean of 6.8 days (SD 4.6) [p = 0.02]. In contrast, in 66 patients treated with comparator antimicrobials in both years, mean time to recovery was 7.4 days (SD 7.3) in year one and 5.5 days (SD 3.5) in year two (p = 0.24). All subgroup analyses showed a statistically significant reduction of 18-25% in time to recovery with moxifloxacin compared with other antibiotics. Moxifloxacin significantly reduced time to recovery from AE-COPD in patients with moderate to severe disease by approximately 20% (>1 day) compared with other antimicrobials. Faster recovery should result in earlier return to work or normal activities, and to social and economic savings.

  1. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  2. Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces.

    PubMed

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. [Studies on antimicrobial activity of extracts from thyme].

    PubMed

    Fan, M; Chen, J

    2001-08-01

    The extracts from thyme by water and ethanol, thyme essential oil, thymol and carvacrol were used as antimicrobial agents in this paper. The results show that all antimicrobial agents used have strong inhibition activity against Staphalococcus aureus, Bacillus subtilis, Escherichia coli.

  4. Comparative studies on polyphenolic profile and antimicrobial activity of propolis samples selected from distinctive geographical areas of Hungary.

    PubMed

    Molnár, Szabolcs; Mikuska, Kata; Patonay, Katalin; Sisa, Krisztina; Daood, Hussein G; Némedi, Erzsébet; Kiss, Attila

    2017-06-01

    The present paper reports about a comparative survey on the chemical composition, antioxidant activity and in vitro antimicrobial activity of selected propolis samples collected in Hungary. The total levels of polyphenolic compounds including flavonoids in ethanolic extracts of propolis were assessed. The major constituents of ethanolic extracts of propolis were analysed by gas chromatography/mass spectrometry analysis. Total phenolic content was determined spectrophotometrically using a Folin-Ciocalteu reagent. Free radical scavenging activities were evaluated by means of 2,2-diphenyl-1-picrylhydrazyl assay. In vitro inhibitory activity was investigated against eight different bacterial strains by agar well diffusion assay. An extensive comparison was carried out regarding general parameters and specific polyphenolic components. The experimental data led to the observation that there is considerable variability in terms of the quality and the biological value of the distinctive propolis samples. These findings confirm the hypothesis of the study; versatile experimental results are required for proper, well-reasoned, balanced and standardised industrial applications. The major flavonoid components were found to be chrysin and pinocembrin; however, versatile minor components were also detected. The total polyphenol content of ethanolic extracts of propolis ranged between 104.6 mg/g and 286.9 mg/g (gallic acid equivalent). The radical scavenging activity of ethanolic extracts of propolis varied between 101.7 mg/g and 286.9 mg/g (ascorbic acid equivalent). As the quality of propolis depends on the season, vegetation and the area of collection, marked differences were found among the different products examined in terms of both composition and general characteristics. The studied samples exhibited significant differences in term of antimicrobial activities.

  5. Comparison of Cinnamon Essential Oils from Leaf and Bark with Respect to Antimicrobial Activity and Sensory Acceptability in Strawberry Shake.

    PubMed

    Brnawi, Wafaa I; Hettiarachchy, Navam S; Horax, Ronny; Kumar-Phillips, Geetha; Seo, Han-Seok; Marcy, John

    2018-02-01

    Cinnamon leaf and bark essential oils have long been used as natural preservatives and flavoring agents in foods. This study determined antimicrobial effects of leaf and bark of cinnamon essential oils (CEOs) against 2 foodborne pathogens, Salmonella Typhimurium (S.T.) and Listeria monocytogenes (L.m.), at 2 initial bacterial levels (4- and 9-log CFU/mL) in strawberry shakes. The antimicrobial study of CEOs at 0.1% and 0.5% in strawberry shakes against S.T. and L.M. showed a significant difference (P < 0.05) in log reductions of both bacterial growth at low (4-log CFU/mL) and high (9-log CFU/mL) initial bacterial levels. Addition of 0.5% CEOs into strawberry shakes at 4 °C completely inhibited both bacteria after a period of 8 d storage. Shelf-life study showed that acidity and total solid content were not affected during storage. The strawberry shakes containing bark CEO had higher ratings of sensory acceptability compared to leaf CEO, with or without the addition of 1% masking agent. In conclusion, this study demonstrated that CEO derived from bark was better than that from leaf in terms of their antimicrobial activity and sensory aspect. This study demonstrates that essential oils derived from cinnamon bark and leaf have the potential to be used as natural antimicrobial ingredient in milk beverages with respect to sensory aspect. This finding promotes the acceptance of natural antimicrobials among consumers, while providing enhanced safer products to the food industry application. © 2018 Institute of Food Technologists®.

  6. Antimicrobial Efficacy of Octenidine Hydrochloride and Calcium Hydroxide with and Without a Carrier: A Broth Dilution Analysis

    PubMed Central

    Varghese, Vinaya Susan; Uppin, Veerendra; Bhat, Kishore; Pujar, Madhu; Hooli, Amruta B.; Kurian, Nirmal

    2018-01-01

    Background: An efficient antimicrobial agent action is required for a predetermined time period for absolute elimination of root canal microbes. Till date, there is limited or no data on the antimicrobial effect of octenidine as an intracanal medicament with chitosan (CTS) as a carrier against Candida albicans and Enterococcus faecalis. Aim: The aim of this microbiological study was to compare the antimicrobial efficacy of octenidine hydrochloride (OHC) and calcium hydroxide (Ca[OH]2) as intracanal medicaments, both independently and along with CTS as a carrier molecule against the common resistant endodontic pathogens. Materials and Methods: A total of 160 single-rooted anterior teeth were selected, root canal preparation was done, and teeth were divided into two groups and contaminated with C. albicans and E. faecalis, which were further divided into four test groups each according to intracanal medicaments used. CTS was used as a vehicle for OHC and Ca(OH)2 and antimicrobial assessment was performed on day 2 and day 7 following broth dilution method. Dentine samples were collected after each time interval, and the number of colony-forming units was determined. Results: All four medicaments used in this study showed antifungal and antibacterial activity that diminished from day 2 to day 7. Group I (OHC alone) and Group IV (Ca[OH]2 alone) showed significant antimicrobial activity against C. albicans and E. faecalis, respectively, than the other groups. Conclusion: A combination of OHC + CTS and Ca(OH)2+ CTS produced inferior results than that of the medicaments used alone. PMID:29599588

  7. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    PubMed

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  8. Comparison of virucidal activity of alcohol-based hand sanitizers versus antimicrobial hand soaps in vitro and in vivo.

    PubMed

    Steinmann, J; Paulmann, D; Becker, B; Bischoff, B; Steinmann, E; Steinmann, J

    2012-12-01

    Three ethanol-based sanitizers were compared with three antimicrobial liquid soaps for their efficacy to inactivate polio-, adeno-, vaccinia- and bovine viral diarrhoea virus (BVDV) as well as feline calicivirus (FCV) and murine norovirus (MNV) as surrogates for human norovirus in a suspension test. Additionally, sanitizers and soaps were examined against MNV in a modified fingerpad method. All sanitizers sufficiently inactivated the test viruses in the suspension test whereas two soaps were active only against vaccinia virus and BVDV. In the modified fingerpad test a povidone-iodine-containing soap was superior to the sanitizers whereas the other two soaps showed no activity. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. Development of a Sustained Antiplaque and Antimicrobial Chewing Gum of a Decapeptide.

    PubMed

    Al-Ghananeem, Abeer M; Leung, Kai P; Faraj, Jabar; DeLuca, Patrick P

    2017-08-01

    The objective of this paper was to design a chewing gum formulation delivery system in situations where typical dental hygiene practice is not practical. Thus, an analog of decapeptide KSL (KSL-W), known to possess antimicrobial and antiplaque activity, was incorporated into a chewing gum formulation containing cetylpyridinium chloride (CPC). The effect of the excipients, xylitol, and peppermint oil on active ingredients in vitro release was also assessed. Gum formulations were prepared with different excipient parameters, including heating xylitol and gum base at 65 or 85°C, using ground and unground xylitol, and the addition of 1.5, 3, and 7% peppermint oil, to determine the effect of these changes on the in vitro release of KSL-W and CPC using a chewing machine. The antimicrobial and antiplaque activities of solutions released from chewed gum formulation as well as prepared standard solutions with different concentrations were tested against placebo. The optimal temperature to avoid crystallization of xylitol during preparation was 65°C. Grinding xylitol to 104.5 μm improved release of active ingredients as compared to commercially unground xylitol. Peppermint oil had opposite effects on release of KSL-W and CPC. Peppermint oil at 1.5% was determined to be suitable (91 and 88% of KSL-W and CPC released, respectively, after 40 min). The gum formulation illustrated good sustained release of KSL-W and CPC with antibacterial and antiplaque activities after chewing. An effective antimicrobial and antiplaque chewing gum formulation was developed. This formulation has the potential to overcome oral hygiene issues in those unable to follow normal dental protocols.

  10. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Kumar, Naresh; Willcox, Mark D P

    2013-01-07

    To develop a stable antimicrobial contact lens, which is effective against the International Organization for Standardization (ISO) panel microorganisms, Acanthamoeba castellanii and drug resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Melimine was covalently incorporated into etafilcon A lenses. The amount of peptide present on the lens surface was quantified using amino acid analysis. After coating, the heat stability (121°C), lens surface hydrophobicity (by captive bubble), and in vitro cytotoxicity to mouse L929 cells of the lenses were investigated. Antimicrobial activity against the micro-organisms was evaluated by viable plate count and fluorescence microscopy, measuring the proportion of cell death compared with control lenses with no melimine. The most effective concentration was determined to be 152 ± 44 μg lens(-1) melimine on the lens surface. After coating, lenses were relatively hydrophilic and were nontoxic to mammalian cells. The activity remained high after autoclaving (e.g., 3.1, 3.9, 1.2, and 1.0 log inhibition against P. aeruginosa, S. aureus, A. castellanii, and Fusarium solani, respectively). Fluorescence microscopy confirmed significantly reduced (P < 0.001) adhesion of viable bacteria to melimine contact lenses. Viable count confirmed that lenses were active against all the bacteria and fungi from the ISO panel, Acanthamoeba and gave at least 2 log inhibition against all the multidrug resistant S. aureus and P. aeruginosa strains. Melimine may offer excellent potential for development as a broad spectrum antimicrobial coating for contact lenses, showing activity against all the bacterial and fungal ISO panel microorganisms, Acanthamoeba, and antibiotic resistant strains of P. aeruginosa and S. aureus.

  11. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs.

    PubMed

    Arias, Mauricio; McDonald, Lindsey J; Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2014-10-01

    Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using "click chemistry" and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17-25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by "click chemistry" and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.

  12. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Akihiro, E-mail: a-wada@nagasaki-u.ac.jp; Wong, Pooi-Fong; Hojo, Hironobu

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radialmore » diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.« less

  14. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    PubMed

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An In Vitro Comparison of PMMA and Calcium Sulfate as Carriers for the Local Delivery of Gallium(III) Nitrate to Staphylococcal Infected Surgical Sites

    PubMed Central

    Garcia, Rebecca A.; Tennent, David J.; Chang, David; Wenke, Joseph C.; Sanchez, Carlos J.

    2016-01-01

    Antibiotic-loaded bone cements, including poly(methyl methacrylate) (PMMA) and calcium sulfate (CaSO4), are often used for treatment of orthopaedic infections involving Staphylococcus spp., although the effectiveness of this treatment modality may be limited due to the emergence of antimicrobial resistance and/or the development of biofilms within surgical sites. Gallium(III) is an iron analog capable of inhibiting essential iron-dependent pathways, exerting broad antimicrobial activity against multiple microorganisms, including Staphylococcus spp. Herein, we evaluated PMMA and CaSO4 as carriers for delivery of gallium(III) nitrate (Ga(NO3)3) to infected surgical sites by assessing the release kinetics subsequent to incorporation and antimicrobial activity against S. aureus and S. epidermidis. PMMA and to a lesser extent CaSO4 were observed to be compatible as carriers for Ga(NO3)3, eluting concentrations with antimicrobial activity against planktonic bacteria, inhibiting bacterial growth, and preventing bacterial colonization of beads, and effective against established bacterial biofilms of S. aureus and S. epidermidis. Collectively, our in vitro results indicate that PMMA is a more suitable carrier compared to CaSO4 for delivery of Ga(NO3)3; moreover they provide evidence for the potential use of Ga(NO3)3 with PMMA as a strategy for the prevention and/or treatment for orthopaedic infections. PMID:26885514

  16. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  17. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.

    PubMed

    Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V

    2018-01-01

    The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  18. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  19. Synthesis, lipophilicity and antimicrobial activity evaluation of some new thiazolyl-oxadiazolines

    PubMed Central

    STOICA, CRISTINA IOANA; IONUȚ, IOANA; PÎRNĂU, ADRIAN; POP, CARMEN; ROTAR, ANCUȚA; VLASE, LAURIAN; ONIGA, SMARANDA; ONIGA, OVIDIU

    2015-01-01

    Background and aims Synthesis of new potential antimicrobial agents and evaluation of their lipophilicity. Methods Ten new thiazolyl-oxadiazoline derivatives were synthesized and their structures were validated by 1H-NMR and mass spectrometry. The lipophilicity of the compounds was evaluated using the principal component analysis (PCA) method. The necessary data for applying this method were obtained by reverse-phase thin-layer chromatography (RP-TLC). The antimicrobial activities were tested in vitro against four bacterial strains and one fungal strain. Results The lipophilicity varied with the structure but could not be correlated with the antimicrobial activity, since this was modest. Conclusions We have synthesized ten new heterocyclic compounds. After their physical and chemical characterization, we determined their lipophilicity and screened their antimicrobial activity. PMID:26733751

  20. Comparison of short-term health and performance effects related to prophylactic administration of tulathromycin versus tilmicosin in long-hauled, highly stressed beef stocker calves.

    PubMed

    Nickell, J S; White, B J; Larson, R L; Blasi, D A; Renter, D G

    2008-01-01

    Health and feed performance parameters of 293 beef stocker calves at risk for bovine respiratory disease were compared after metaphylactic administration of one of two antimicrobials (tulathromycin or tilmicosin) with different durations of activity; the antimicrobial was administered 1 day after arrival. Calves that received metaphylactic tulathromycin displayed significant improvement in morbidity, mortality, and first-treatment success rates (P<.05) compared with tilmicosin-treated calves. Tulathromycin-treated calves also showed a significantly improved average daily gain and feed:gain ratio (P<.05) compared with tilmicosin-treated calves. Under conditions of this study, calves receiving tulathromycin were healthier through a 43-day growing phase compared with calves receiving tilmicosin. This health difference likely accounted for the differences in feed performance between the treatment groups.

  1. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers

    PubMed Central

    Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo

    2016-01-01

    Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644

  2. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions.

    PubMed

    Zhu, Jun-You; Tang, Chuan-He; Yin, Shou-Wei; Yang, Xiao-Quan

    2018-02-01

    Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improved antimicrobial compound production by a new isolate Streptomyces hygroscopicus MTCC 4003 using Plackett-Burman design and response Surface methodology.

    PubMed

    Singh, Neha; Rai, Vibhuti

    2012-01-01

    An active strain, isolated from soil of Chhattisgarh, India, showed broad-spectrum antimicrobial activity against various pathogenic bacteria and fungi in glucose soybean meal broth. Strain was characterized as Streptomyces hygroscopicus MTCC 4003 based on 16S rRNA sequencing from Microbial Type culture Collection (MTCC), IMTECH, Chandigarh, India. Identification of the purified antimicrobial compound was done by using Infra-red (IR), Mass, Ultraviolet (UV), 1H and 13C nuclear magnetic resonance (NMR) spectra. Plackett-Burman design (PBD) and response surface methodology (RSM) methods were used for the optimization of antibiotic production. Effects of the four medium components soybean meal, glucose, CaCO3 and MgSO4 showed positive effect on antibiotic production, were investigated with the help of PBD. The individual and interaction effects of the selected variables were determined by RSM using central composite design (CCD). Applying statistical design, antibiotic production was improved nearly ten times (412 mg/L) compared with unoptimized production medium (37 mg/L).

  4. Synthesis and anti-microbial potencies of 1-(2-hydroxyethyl)-3-alkylimidazolium chloride ionic liquids: microbial viabilities at different ionic liquids concentrations.

    PubMed

    Hossain, M Ismail; El-Harbawi, Mohanad; Alitheen, Noorjahan Banu Mohamed; Noaman, Yousr Abdulhadi; Lévêque, Jean-Marc; Yin, Chun-Yang

    2013-01-01

    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Retention of antimicrobial activity in plaque and saliva following mouthrinse use in vivo.

    PubMed

    Otten, M P T; Busscher, H J; van der Mei, H C; Abbas, F; van Hoogmoed, C G

    2010-01-01

    The aim of this study was to determine the contribution of plaque and saliva towards the prolonged activity, also called substantivity, of three antimicrobial mouthrinses (Listerine®, Meridol®, Crest Pro Health®), used in combination with a toothpaste (Prodent Coolmint®). Volunteers brushed for 4 weeks with a toothpaste without antimicrobial claims, while during the last 2 weeks half of the volunteers used an antimicrobial mouthrinse in addition to brushing. At the end of the experimental period, plaque and saliva samples were collected 6 h after oral hygiene, and bacterial concentrations and viabilities were determined. The contribution of plaque and saliva towards substantivity was assessed by combining plaque obtained after mechanical cleaning only with plaque and saliva obtained after additional use of an antimicrobial rinse. Subsequently, resulting viabilities of the combined plaques were determined. The viabilities of plaque samples after additional rinsing with mouthrinses were lower than of plaque obtained after mechanical cleaning only, regardless of the rinse involved. Moreover, plaque collected 6 h after rinsing with antimicrobial mouthrinses contained a surplus of antimicrobial activity. Only Listerine showed decreased viability in saliva, but none of the mouthrinses showed any residual antimicrobial activity in saliva. The findings indicate that plaque left behind after mechanical cleaning contributes to the prolonged substantivity of antimicrobial mouthrinses. Copyright © 2010 S. Karger AG, Basel.

  6. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  7. Eggshell bacterial load is related to antimicrobial properties of feathers lining barn swallow nests.

    PubMed

    Peralta-Sánchez, Juan Manuel; Soler, Juan José; Martín-Platero, Antonio Manuel; Knight, Rob; Martínez-Bueno, Manuel; Møller, Anders Pape

    2014-02-01

    The use of feathers to line bird's nests has traditionally been interpreted as having a thermoregulatory function. Feather-degrading bacteria growing on feathers lining nests may have antimicrobial properties, which may provide an additional benefit to lining nests with feathers. We test the hypothesis that the production of antimicrobial substances by feather bacteria affects the microbiological environment of the nest, and therefore the bacterial density on eggshells and, indirectly, hatching success. These effects would be expected to differ between nests lined with pigmented and white feathers, because bacteria grow differently on feathers of different colors. We experimentally manipulated the composition of pigmented and unpigmented feathers in nests of the barn swallow (Hirundo rustica) and studied the antimicrobial properties against the keratin-degrading bacterium Bacillus licheniformis of bacteria isolated from feathers of each color. Analyzed feathers were collected at the end of the incubation period, and antimicrobial activity was defined as the proportion of bacteria from the feathers that produce antibacterial substances effective against B. licheniformis. Our experimental manipulation affected antimicrobial activity, which was higher in nests with only white feathers at the beginning of incubation. Moreover, white feathers showed higher antimicrobial activity than black ones. Interestingly, antimicrobial activity in feathers of one of the colors correlated negatively with bacterial density on feather of the opposite color. Finally, antimicrobial activity of white feathers was negatively related to eggshell bacterial load. These results suggest that antimicrobial properties of feathers in general and of white feathers in particular affect the bacterial environment in nests. This environment in turn affects the bacterial load on eggshells, which may affect hatching success.

  8. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.

    PubMed

    MacDougall, Conan

    2017-03-25

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.

  9. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity

    PubMed Central

    2017-01-01

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity (“flower diagrams”). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students. PMID:28381885

  10. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese.

    PubMed

    Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Acedo-Félix, Evelia; González-Córdova, Aarón F; Vallejo-Cordoba, Belinda

    2015-12-01

    Lactobacillus spp. from Mexican Cocido cheese were shown to produce bacteriocin-like substances (BLS) active against Staphylococcus aureus,Listeria innocua,Escherichia coli, andSalmonella typhimurium by using the disk diffusion method. Crude extracts of Lactobacillus fermentum showed strong inhibitory activity against Staph. aureus, L. innocua, E. coli, and Salmonella cholerae. Complete inactivation of antimicrobial activity was observed after treatment of crude extracts with proteinase K, pronase, papain, trypsin, and lysozyme, confirming their proteinaceous nature. However, antimicrobial activity was partly lost for some of the crude extracts when treated with α-amylase, indicating that carbohydrate moieties were involved. The antimicrobial activity of the crude extracts was stable at 65°C for 30min over a wide pH range (2-8), and addition of potassium chloride, sodium citrate, ethanol, and butanol did not affect antibacterial activity. However, antimicrobial activity was lost after heating at 121°C for 15min, addition of methanol or Tween 80. Fourteen out of 18 Lactobacillus spp. showed antimicrobial activity against different test microorganisms, and 12 presented bacteriocin-like substances. Generation time and growth rate parameters indicated that the antimicrobial activity of crude extracts from 3 different strains was effective against the 4 indicator microorganisms. One of the crude extracts showed inhibition not only against gram-positive but also against gram-negative bacteria. Bacteriocin-like substances produced by this specific Lactobacillus strain showed potential for application as a food biopreservative. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections.

    PubMed

    Sadhasivam, S; Palanivel, S; Ghosh, S

    2016-12-01

    Antimicrobials from natural sources have gained immense importance in recent times to combat the global challenge of antibiotic resistance. Essential oils are implicated in antimicrobial action against several species. Here, we have screened nine commercially available essential oils for their antimicrobial activity against organisms associated with skin, scalp and nail infections mainly Propionibacterium acnes, Malassezia spp., Candida albicans and Trichophyton spp. Among nine essential oils, Boswellia serrata essential oil demonstrated superior antimicrobial activity against all the micro-organisms and surprisingly it showed maximum activity against Trichophyton spp. The gas chromatography-mass spectrometry analysis of B. serrata oil indicates a major composition of α thujene, ρ cymene and sabinene. Additionally, B. serrata oil was found to inhibit Staphylococcus epidermidis biofilm, and its combination with azoles has shown synergistic activity against azole-resistant strain of C. albicans. These broad-spectrum antimicrobial activities of B. serrata oil will make it an ideal candidate for topical use. Eradication of skin and nail infections still remain a challenge and there are serious concerns regarding the recurrence of the diseases associated with these infections. Antimicrobials from plant sources are gaining importance in therapeutics because they encounter minimal challenges of emergence of resistance. We have demonstrated the antimicrobial activity of Boswellia serrata essential oil against micro-organisms involved in skin, scalp and nail infections, especially if it has shown favourable synergistic antifungal activity in combination with azoles against the azole-resistant Candida albicans strain. Thus, B. serrata oil can be one of the plausible therapeutic agents for management of skin, scalp and nail infections. © 2016 The Society for Applied Microbiology.

  12. Antibacterial activity of antibacterial cutting boards in household kitchens.

    PubMed

    Kounosu, Masayuki; Kaneko, Seiichi

    2007-12-01

    We examined antibacterial cutting boards with antibacterial activity values of either "2" or "4" in compliance with the JIS Z 2801 standard, and compared their findings with those of cutting boards with no antibacterial activity. These cutting boards were used in ten different households, and we measured changes in the viable cell counts of several types of bacteria with the drop plate method. We also identified the detected bacterial flora and measured the minimum antimicrobial concentrations of several commonly used antibacterial agents against the kinds of bacteria identified to determine the expected antibacterial activity of the respective agents. Cutting boards with activity values of both "2" and "4" proved to be antibacterial in actual use, although no correlation between the viable cell counts and the antibacterial activity values was observed. In the kitchen environment, large quantities of Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were detected, and it was confirmed that common antibacterial agents used in many antibacterial products are effective against these bacterial species. In addition, we measured the minimum antimicrobial concentrations of the agents against lactobacillus, a typical good bacterium, and discovered that this bacterium is less sensitive to these antibacterial agents compared to more common bacteria.

  13. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus

    PubMed Central

    CHOI, JI HAE; JANG, A YEUNG; LIN, SHUNMEI; LIM, SANGYONG; KIM, DONGHO; PARK, KYUNGHO; HAN, SANG-MI; YEO, JOO-HONG; SEO, HO SEONG

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is difficult to treat using available antibiotic agents. Honeybee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The venom contains predominantly biologically active compounds, however, the therapeutic effects of such materials when used to treat MRSA infections have not been investigated extensively. The present study evaluated bee venom and its principal active component, melittin, in terms of their antibacterial activities and in vivo protection against MRSA infections. In vitro, bee venom and melittin exhibited comparable levels of antibacterial activity, which was more marked against MRSA strains, compared with other Gram-positive bacteria. When MRSA-infected mice were treated with bee venom or melittin, only the latter animals were successfully rescued from MRSA- induced bacteraemia or exhibited recovery from MRSA-infected skin wounds. Together, the data of the present study demonstrated for the first time, to the best of our knowledge, that melittin may be used as a promising antimicrobial agent to enhance the healing of MRSA-induced wounds. PMID:26330195

  14. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  15. Antimicrobial activity of blended essential oil preparation.

    PubMed

    Tadtong, Sarin; Suppawat, Supatcha; Tintawee, Anchalee; Saramas, Phanida; Jareonvong, Suchada; Hongratanaworakit, Tapanee

    2012-10-01

    Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Sigma fic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Sigma fic

  16. Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins.

    PubMed

    Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina

    2017-01-01

    Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Antibiotic Screening of Urine Culture for Internal Quality Audit at Amrita Hospital, Kochi.

    PubMed

    Suresh, Aswathy; Gopinathan, Anusha; Dinesh, Kavitha R; Kumar, Anil

    2017-07-01

    Urine antimicrobial activity is a seldom analysed laboratory test which greatly impacts the quantification of urine specimens. Presence of antimicrobial activity in the urine reduces the bacterial load in these specimens. Hence, the chances of erroneously reporting insignificant bacteriuria can be reduced on analysis of the antimicrobial activity in urine. The aim of the study was to measure the antimicrobial activity of urine samples obtained from patients in a tertiary care hospital. A total of 100 urine specimens were collected from the study group. Tests like wet mount, Gram staining and culture were performed. Antimicrobial susceptibility testing was done on the bacteria isolated from each specimen. The urine specimens were reported as significant bacteriuria (>105 Colony Forming Unit (CFU)/ml) and insignificant bacteriuria (<105 CFU/ml - clean catch midstream urine; <102 CFU/ml - catheterized urine sample) according to the CFU/ml. Staphylococcus aureus ATCC ® 25923 ™ and Escherichia coli ATCC ® 25922 ™ were used to identify the presence of antimicrobial activity in the urine sample by Urine Anti-Bacterial substance Assay (UABA). McNemar test was used for statistical analysis using Statistical Package for the Social Sciences (SPSS) version 21.0. On analysis of the antimicrobial activity of urine sample with the prior antibiotic history of the patients, 17 were true positives and 43 were true negatives. Twenty six of samples with UABA positivity were culture negative and 28 samples with UABA positivity were culture positive. Sensitivity and specificity of the test was 85% and 53.8% respectively. Accuracy of the test was 60%. The p-value of UABA was <0.001. Enterobacteriaceae was the most common bacterial family isolated from the urine specimens. A total of 85% patients responded to treatment. Presence of antimicrobial activity in urine has a great impact on the interpretation of urine culture reports. Identification of urine antimicrobial activity helps in evaluating the quantification of bacterial growth reported in urine culture. It facilitates speedy recovery of patients by early administration of antibiotics.

  18. Identification of Phenolic Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Euphorbia Tirucalli L.

    PubMed Central

    de Araújo, Keline Medeiros; de Lima, Alessandro; Silva, Jurandy do N.; Rodrigues, Larissa L.; Amorim, Adriany G. N.; Quelemes, Patrick V.; dos Santos, Raimunda C.; Rocha, Jefferson A.; de Andrades, Éryka O.; Leite, José Roberto S. A.; Mancini-Filho, Jorge; da Trindade, Reginaldo Almeida

    2014-01-01

    Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC), and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid. PMID:26784670

  19. C-terminal Lysine-Linked Magainin 2 with Increased Activity Against Multidrug-Resistant Bacteria.

    PubMed

    Lorenzón, Esteban N; Santos-Filho, Norival A; Ramos, Matheus A S; Bauab, Tais M; Camargo, Ilana L B C; Cilli, Eduardo M

    2016-01-01

    Due to the growing problem of antibiotic-resistant microorganisms, the development of novel antimicrobial agents is a very important challenge. Dimerization of cationic antimicrobial peptides (cAMPs) is a potential strategy for enhancing antimicrobial activity. Here, we studied the effects of magainin 2 (MG2) dimerization on its structure and biological activity. Lysine and glutamic acid were used to synthesize the C- and N-terminal dimers of MG2, respectively, in order to evaluate the impact of linker position used to obtain the dimers. Both MG2 and its dimeric versions showed a random coil structure in aqueous solution. However, in the presence of a structure-inducing solvent or a membrane mimetic, all peptides acquired helical structure. N-terminal dimerization did not affect the biological activity of the peptide. On the other hand, the C-terminal dimer, (MG2)2K, showed antimicrobial activity 8-16 times higher than that of MG2, and the time required to kill Escherichia coli was lower. The enhanced antimicrobial activity was related to membrane permeabilization. (MG2)2K was also more active against multidrug-resistant bacteria of clinical origin. Overall, the results presented here demonstrate that C-terminal lysine-linked dimerization improve the activity of MG2, and (MG2)2K can be considered as a potential antimicrobial agent.

  20. Evaluation of the Antimicrobial Activity of Lysostaphin-Coated Hernia Repair Meshes▿

    PubMed Central

    Satishkumar, Rohan; Sankar, Sriram; Yurko, Yuliya; Lincourt, Amy; Shipp, John; Heniford, B. Todd; Vertegel, Alexey

    2011-01-01

    Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes. PMID:21709102

Top