Durability of styrene-butadiene latex modified concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.
1997-05-01
The durability of reinforced concrete structures represents a major concern to many investigators. The use of latex modified concrete (LMC) in construction has urged researchers to review and investigate its different properties. This study is part of a comprehensive investigation carried on the use of polymers in concrete. The main objective of this study to investigate and evaluate the main durability aspects of Styrene-Butadiene latex modified concrete (LMC) compared to those of conventional concrete. Also, the main microstructural characteristics of LMC were studied using a Scanning Electron Microscope (SEM). The SEM investigation of the LMC showed major differences in itsmore » microstructure compared to that of the conventional concrete. The LMC proved to be superior in its durability compared to the durability of conventional concrete especially its water tightness (measured by water penetration, absorption, and sorptivity tests), abrasion, corrosion, and sulphate resistance.« less
Rate My Stake: Interpretation of Ordinal Stake Ratings
Patricia Lebow; Grant Kirker
2014-01-01
Ordinal rating systems are commonly employed to evaluate biodeterioration of wood exposed outdoors over long periods of time. The purpose of these ratings is to compare the durability of test systems to nondurable wood products or known durable wood products. There are many reasons why these systems have evolved as the chosen method of evaluation, including having an...
Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand
NASA Astrophysics Data System (ADS)
Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.
2017-09-01
Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.
2012-05-01
Effects of Hydro-processed Renewable Jet (HRJ) blended at 50% with petroleum JP-8 on a Navistar Maxxforce D10 9.3L Engine 5a. CONTRACT NUMBER...report will be used to assess the effect of the HRJP-8 fuel on engine performance and durability as compared to JP-8. This evaluation requires that two...Hour Durability). Modifications to this procedure are primarily increases to the operating temperatures of the engine coolant, combustion air and
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-01-01
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-02-10
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.
Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan
Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less
Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...
2016-07-15
Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less
Eger, J E; Hamm, R L; Demark, J J; Chin-Heady, E; Tolley, M P; Benson, E P; Zungoli, P A; Smith, M S; Spomer, N A
2014-06-01
A durable termite bait containing 0.5% noviflumuron was evaluated for physical durability, retention of active ingredient, consumption by termites, and toxicity to termites over 5 yr in field studies at locations in Indiana, Mississippi, and South Carolina. Plots in Indiana and Mississippi included both natural rainfall and irrigated plots, while plots in South Carolina received only natural rainfall. Samples collected every 3 mo for the first 4 yr were evaluated for consumption with a 7 d no-choice bioassay using Reticulitermes flavipes (Kollar). Consumption and toxicity of 5 yr samples were evaluated in similar bioassays conducted for 42 d. Durable baits received from field sites had some cracking, and a small amount of external flaking, but no major deterioration based on visual observation. There were no significant differences in noviflumuron concentration over the 5-yr period and no trend toward reduced concentrations of noviflumuron over time. Consumption of aged durable baits over 4 yr was variable, but termites usually consumed more aged durable bait than fresh durable bait and the differences were frequently significant. There were some exceptions, but termites consumed significantly more fresh durable bait than aged durable bait in only 4% of observations. When 5 yr samples were evaluated, consumption was lowest for fresh durable bait and termites consumed significantly more aged durable bait from irrigated plots in Indiana and from both natural and irrigated plots in Mississippi than fresh durable bait. Survival of termites fed blank durable bait was significantly higher than that for termites fed any of the baits containing noviflumuron and there were no significant differences in survival among the noviflumuron durable baits. Our results suggest that the bait would be durable for at least 5 yr and possibly longer under most environmental conditions.
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
Evaluation of inlaid durable pavement markings in an Oregon snow zone.
DOT National Transportation Integrated Search
2006-04-01
The Oregon Department of Transportation (ODOT) evaluated the use of inlaid durable pavement markings within a snow zone. Three different durable pavement marking products were installed and evaluated: Dura-Stripe, a methyl methacrylate; Permaline...
Evaluation of tantalum 316 stainless steel transition joints
NASA Technical Reports Server (NTRS)
Stoner, D. R.
1972-01-01
Tubular transition joints providing a metallurgically bonded connection between tantalum and 316 stainless steel pipe sections were comparatively evaluated for durability under thermal cycling conditions approximating the operation of a SNAP-8 mercury boiler. Both coextruded and vacuum brazed transition joints of 50mm (2 inch) diameter were tested by thermal cycling 100 times between 730 C and 120 C(1350 F and 250 F) in a high vacuum environment. The twelve evaluated transition joints survived the full test sequence without developing leaks, although liquid penetrant bond line indications eventually developed in all specimens. The brazed transition joints exhibited the best dimensional stability and bond line durability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a) Maintenance during the durability evaluation can best be considered in three separate categories: (1) Normal... durability evaluation in this program will probably have considerable mileage accumulation and unknown...
NASA Astrophysics Data System (ADS)
Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto
2017-11-01
The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.
Eaton, Ellen F.; Tamhane, Ashutosh R.; Burkholder, Greer A.; Willig, James H.; Saag, Michael S.; Mugavero, Michael J.
2016-01-01
Background. Durability of antiretroviral (ARV) therapy is associated with improved human immunodeficiency virus (HIV) outcomes. Data on ARV regimen durability in recent years and clinical settings are lacking. Methods. This retrospective follow-up study included treatment-naive HIV-infected patients initiating ARV therapy between January 2007 and December 2012 in a university-affiliated HIV clinic in the Southeastern United States. Outcome of interest was durability (time to discontinuation) of the initial regimen. Durability was evaluated using Kaplan-Meier survival analyses. Cox proportional hazard analyses was used to evaluate the association among durability and sociodemographic, clinical, and regimen-level factors. Results. Overall, 546 patients were analyzed. Median durability of all regimens was 39.5 months (95% confidence interval, 34.1–44.4). Commonly prescribed regimens were emtricitabine and tenofovir with efavirenz (51%; median duration = 40.1 months) and with raltegravir (14%; 47.8 months). Overall, 67% of patients had an undetectable viral load at the time of regimen cessation. Discontinuation was less likely with an integrase strand transfer inhibitor (adjusted hazards ratio [aHR] = 0.35, P = .001) or protease inhibitor-based regimen (aHR = 0.45, P = .006) and more likely with a higher pill burden (aHR = 2.25, P = .003) and a later treatment era (aHR = 1.64, P < .001). Conclusions. Initial ARV regimen longevity declined in recent years contemporaneous with the availability of several new ARV drugs and combinations. Reduced durability mostly results from a preference for newly approved regimens rather than indicating failing therapy, as indicated by viral suppression observed in a majority of patients (67%) prior to regimen cessation. Durability is influenced by extrinsic factors including new drug availability and provider preference. Medication durability must be interpreted carefully in the context of a dynamic treatment landscape. PMID:27419181
NASA Astrophysics Data System (ADS)
Huynh, Trong-Phuoc; Hwang, Chao-Lung; Yang, Shu-Ti
2017-12-01
This experimental study evaluated the performance of normal ordinary Portland cement (OPC) concrete and high-performance concrete (HPC) that were designed by the conventional method (ACI) and densified mixture design algorithm (DMDA) method, respectively. Engineering properties and durability performance of both the OPC and HPC samples were studied using the tests of workability, compressive strength, water absorption, ultrasonic pulse velocity, and electrical surface resistivity. Test results show that the HPC performed good fresh property and further showed better performance in terms of strength and durability as compared to the OPC.
The need for performance criteria in evaluating the durability of wood products
Stan Lebow; Bessie Woodward; Patricia Lebow; Carol Clausen
2010-01-01
Data generated from wood-product durability evaluations can be difficult to interpret. Standard methods used to evaluate the potential long-term durability of wood products often provide little guidance on interpretation of test results. Decisions on acceptable performance for standardization and code compliance are based on the judgment of reviewers or committees....
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Durability evaluation of reversible solid oxide cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.
2013-11-01
An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.
Durability, value, and reliability of selected electric powered wheelchairs.
Fass, Megan V; Cooper, Rory A; Fitzgerald, Shirley G; Schmeler, Mark; Boninger, Michael L; Algood, S David; Ammer, William A; Rentschler, Andrew J; Duncan, John
2004-05-01
To compare the durability, value, and reliability of selected electric powered wheelchairs (EPWs), purchased in 1998. Engineering standards tests of quality and performance. A rehabilitation engineering center. Fifteen EPWs: 3 each of the Jazzy, Quickie, Lancer, Arrow, and Chairman models. Not applicable. Wheelchairs were evaluated for durability (lifespan), value (durability, cost), and reliability (rate of repairs) using 2-drum and curb-drop machines in accordance with the standards of the American National Standards Institute and Rehabilitation Engineering and Assistive Technology Society of North America. The 5 brands differed significantly (P
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applied. After identification of a potential failure mode, durability tests may be conducted to... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability...
Jeong, Ki Heon; Gwak, Min Jae; Moon, Sung Kyung; Lee, Sang Jun; Shin, Min Kyung
2018-06-01
Various hyaluronic acid fillers can be used for facial attenuation and rejuvenation. The efficacy and durability of hyaluronic acid fillers are of major concern to dermatologists and patients. This study aimed to evaluate three-dimensional morphology, tissue distribution, and changes in volume after injection of two different hyaluronic acid fillers. Ten Korean women were enrolled in this study. Each subject was injected with monophasic hyaluronic acid filler in one malar area and biphasic filler in the other. Clinical outcome was measured before and after injection, and after 2, 4, 6, 8, 12, and 24 weeks, using the Global Aesthetic Improvement Scale, photographs and Moire's topography. Facial magnetic resonance imaging (MRI) was performed twice over six months. Both products showed good results after injection and demonstrated good durability over time. MRI was a useful modality for assessing tissue distribution and volume changes. The effects and durability after injection of monophasic hyaluronic acid filler and biphasic hyaluronic acid filler are generally comparable.
DOT National Transportation Integrated Search
2009-01-01
Lightweight high performance concrete (LWHPC) is expected to provide high strength and high durability along with reduced weight. The purpose of this research was to evaluate and compare the prestressed LWHPC bulb-T beams and decks in two bridge stru...
Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Banks, Bruce A.
1992-01-01
To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.
Evaluation of the use of snowplowable raised pavement markers.
DOT National Transportation Integrated Search
2009-04-01
The objective of this study was to evaluate the effectiveness and durability of snowplowable raised pavement markers (RPM) installed on the RPM system in Kentucky. The durability evaluation dealt wit the marker housing. : The data show that continued...
Relative sliding durability of candidate high temperature fiber seal materials
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1992-01-01
The relative sliding durability behavior of six candidate ceramic fibers for high temperature sliding seal applications is reviewed and compared. Pin on disk tests were used to evaluate potential seal materials by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Tests were conducted in air under a 2.65 N load, at a sliding velocity of 0.025 m/sec and at temperatures from 25 to 900 C. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. For most of the fibers, friction and wear increase with test temperature. The relative fiber durability ranking correlates with tensile strength, indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A dimensional analysis of the wear data shows that the fiber durability is related to a dimensionless durability ratio which represents the ratio of the fiber strength to the fiber stresses imposed by sliding. The analysis is applicable to fibers with similar diameters and elastic moduli. Based upon the results of the research program, three fiber candidates are recommended for further study as potential seal materials. They are a silicon based complex carbide-oxide fiber, an alumina-boria-silica and an aluminosilicate fiber.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.
Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei
2018-05-29
Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.
Kohli, Shivani; Bhatia, Shekhar
2015-01-01
Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals. Spectrophotometer was used for taking color measurements based on the transmission of light through the specimens made of the selected materials which were Tooth moulding powder (DPI) and Acrylux (Ruthinium). Thirty specimens of standardized dimensions were prepared from each material. The specimens were divided into three groups of 10 each. One group of each material was immersed in tea (TajMahal) and another group of each material in cola (Pepsi) as the staining solutions. The remaining group of 10 from each material served as control and was stored in distilled water. Color measurements were obtained pre-immersion, and after 1, 15, and 30 days of immersion. Tooth moulding powder displayed better color durability than Acrylux over the 1 month immersion period in both staining solutions. Tea resulted in more discoloration compared to cola (Pepsi). The difference in the color durability of Acrylux and Tooth moulding powder may be attributed to the differences in the composition of tested resin veneering materials, i.e. their polar properties, which contribute to the absorption of staining solution, and the different brands and the strengths of the solutions.
Durability and robustness of tubular molten carbonate fuel cells
NASA Astrophysics Data System (ADS)
Kawase, Makoto
2017-12-01
One anticipated system for high-efficiency power generation is the combination of syngas from gasification and high temperature fuel cells. The system uses a pressurization system, and it takes into account poisoning by impurities in the syngas. The durability and robustness of the fuel cells used in this system are an important issue for commercial applications. This study focuses on tubular molten carbonate fuel cells (MCFCs), which seem to be relatively durable compared with conventional planar-type MCFCs. Various power generation tests were performed in order to evaluate the durability and robustness of the tubular MCFCs. After continuous generation tests at 0.3 MPa, the cell voltage decay rate was found to be 0.8 mV/1000 h at 0.2 A/cm2. Moreover, it was found to be possible to generate power stably with fuel gas containing 20 ppm H2S. When the differential pressure between the anode and cathode was set to 0.1 MPa, the power generation tests were performed without gas leakage. In addition, starting (heating) and stopping (cooling) could be done in a short period, meaning that the cold start/stop characteristics are favorable. Therefore, the tubular MCFC was confirmed to have the durability necessary for a power generation system.
Legemate, Jaap D; Kamphuis, Guido M; Freund, Jan Erik; Baard, Joyce; Zanetti, Stefano P; Catellani, Michele; Oussoren, Harry W; de la Rosette, Jean J
2018-03-10
Flexible ureteroscopy is an established treatment modality for evaluating and treating abnormalities in the upper urinary tract. Reusable ureteroscope (USC) durability is a significant concern. To evaluate the durability of the latest generation of digital and fiber optic reusable flexible USCs and the factors affecting it. Six new flexible USCs from Olympus and Karl Storz were included. The primary endpoint for each USC was its first repair. Data on patient and treatment characteristics, accessory device use, ureteroscopy time, image quality, USC handling, disinfection cycles, type of damage, and deflection loss were collected prospectively. Ureteroscopy. USC durability was measured as the total number of uses and ureteroscopy time before repair. USC handling and image quality were scored. After every procedure, maximal ventral and dorsal USC deflection were documented on digital images. A total of 198 procedures were performed. The median number of procedures was 27 (IQR 16-48; 14h) for the six USCs overall, 27 (IQR 20-56; 14h) for the digital USCs, and 24 (range 10-37; 14h) for the fiber optic USCs. Image quality remained high throughout the study for all six USCs. USC handling and the range of deflection remained good under incremental use. Damage to the distal part of the shaft and shaft coating was the most frequent reason for repair, and was related to intraoperative manual forcing. A limitation of this study is its single-center design. The durability of the latest reusable flexible USCs in the current study was limited to 27 uses (14h). Damage to the flexible shaft was the most important limitation to the durability of the USCs evaluated. Prevention of intraoperative manual forcing of flexible USCs maximizes their overall durability. Current flexible ureteroscopes proved to be durable. Shaft vulnerability was the most important limiting factor affecting durability. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Durability assessment of coarse aggregates for HMA in Maine.
DOT National Transportation Integrated Search
2012-12-01
In this study, Micro-Deval and L.A. Abrasion were used to evaluate the durability of 72 individual : coarse aggregates used for HMA in Maine. Aggregates used in hot-mix asphalt (HMA) must be : durable and resistant to abrasion and degradation. Materi...
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.
1992-01-01
In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.
Possible Concepts for Waterproofing of Norwegian TBM Railway Tunnels
NASA Astrophysics Data System (ADS)
Dammyr, Øyvind; Nilsen, Bjørn; Thuro, Kurosch; Grøndal, Jørn
2014-05-01
The aim of this paper is to evaluate and compare the durability, life expectancy and maintenance needs of traditional Norwegian waterproofing concepts to the generally more rigid waterproofing concepts seen in other European countries. The focus will be on solutions for future Norwegian tunnel boring machine railway tunnels. Experiences from operation of newer and older tunnels with different waterproofing concepts have been gathered and analyzed. In the light of functional requirements for Norwegian rail tunnels, some preliminary conclusions about suitable concepts are drawn. Norwegian concepts such as polyethylene panels and lightweight concrete segments with membrane are ruled out. European concepts involving double shell draining systems (inner shell of cast concrete with membrane) and single shell undrained systems (waterproof concrete segments) are generally evaluated as favorable. Sprayable membranes and waterproof/insulating shotcrete are welcomed innovations, but more research is needed to verify their reliability and cost effectiveness compared to the typical European concepts. Increasing traffic and reliance on public transport systems in Norway result in high demand for durable and cost effective solutions.
Toklu, Bora; Amoroso, Nicholas; Fusaro, Mario; Kumar, Sunil; Hannan, Edward L; Faxon, David P; Feit, Frederick
2013-01-01
Objective To compare the efficacy and safety of biodegradable polymer drug eluting stents with those of bare metal stents and durable polymer drug eluting stents. Design Mixed treatment comparison meta-analysis of 258 544 patient years of follow-up from randomized trials. Data sources and study selection PubMed, Embase, and Central were searched for randomized trials comparing any of the Food and Drug Administration approved durable polymer drug eluting stents (sirolimus eluting, paclitaxel eluting, cobalt chromium everolimus eluting, platinum chromium everolimus eluting, zotarolimus eluting-Endeavor, and zotarolimus eluting-Resolute) or biodegradable polymer drug eluting stents, with each other or against bare metal stents. Outcomes Long term efficacy (target vessel revascularization, target lesion revascularization) and safety (death, myocardial infarction, stent thrombosis). Landmark analysis at more than one year was evaluated to assess the potential late benefit of biodegradable polymer drug eluting stents. Results From 126 randomized trials and 258 544 patient years of follow-up, for long term efficacy (target vessel revascularization), biodegradable polymer drug eluting stents were superior to paclitaxel eluting stents (rate ratio 0.66, 95% credibility interval 0.57 to 0.78) and zotarolimus eluting stent-Endeavor (0.69, 0.56 to 0.84) but not to newer generation durable polymer drug eluting stents (for example: 1.03, 0.89 to 1.21 versus cobalt chromium everolimus eluting stents). Similarly, biodegradable polymer drug eluting stents were superior to paclitaxel eluting stents (rate ratio 0.61, 0.37 to 0.89) but inferior to cobalt chromium everolimus eluting stents (2.04, 1.27 to 3.35) for long term safety (definite stent thrombosis). In the landmark analysis after one year, biodegradable polymer drug eluting stents were superior to sirolimus eluting stents for definite stent thrombosis (rate ratio 0.29, 0.10 to 0.82) but were associated with increased mortality compared with cobalt chromium everolimus eluting stents (1.52, 1.02 to 2.22). Overall, among all stent types, the newer generation durable polymer drug eluting stents (zotarolimus eluting stent-Resolute, cobalt chromium everolimus eluting stents, and platinum chromium everolimus eluting stents) were the most efficacious (lowest target vessel revascularization rate) stents, and cobalt chromium everolimus eluting stents were the safest with significant reductions in definite stent thrombosis (rate ratio 0.35, 0.21 to 0.53), myocardial infarction (0.65, 0.55 to 0.75), and death (0.72, 0.58 to 0.90) compared with bare metal stents. Conclusions Biodegradable polymer drug eluting stents are superior to first generation durable polymer drug eluting stents but not to newer generation durable polymer stents in reducing target vessel revascularization. Newer generation durable polymer stents, and especially cobalt chromium everolimus eluting stents, have the best combination of efficacy and safety. The utility of biodegradable polymer stents in the context of excellent clinical outcomes with newer generation durable polymer stents needs to be proven. PMID:24212107
Stability and Change in Female and Male Violence across Rural and Urban Counties, 1981-2006
ERIC Educational Resources Information Center
Schwartz, Jennifer; Gertseva, Arina
2010-01-01
Two durable criminological patterns have been higher violence rates in urban compared to rural areas and by males compared to females. To derive and evaluate hypotheses related to correspondence across place and sex groups in changes in violence trends, we draw on a spatial-inequality perspective that attends to the geographic distribution of…
Advanced Face Gear Surface Durability Evaluations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Heath, Gregory F.
2016-01-01
The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.
Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers
NASA Astrophysics Data System (ADS)
Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.
2009-01-01
The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.
Durability of saw-cut joints in plain cement concrete pavements.
DOT National Transportation Integrated Search
2011-01-01
The objective of this project was to evaluate factors influencing the durability of the joints in portland cement concrete : pavement in the state of Indiana. Specifically this work evaluated the absorption of water, the absorption of deicing solutio...
Atomic Oxygen Durability Evaluation of Protected Polymers Using Thermal Energy Plasma Systems
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.; Stidham, Curtis R.; Gebauer, Linda; Lamoreaux, Cynthia M.
1995-01-01
The durability evaluation of protected polymers intended for use in low Earth orbit (LEO) has necessitated the use of large-area, high-fluence, atomic oxygen exposure systems. Two thermal energy atomic oxygen exposure systems which are frequently used for such evaluations are radio frequency (RF) plasma ashers and electron cyclotron resonance plasma sources. Plasma source testing practices such as ample preparation, effective fluence prediction, atomic oxygen flux determination, erosion measurement, operational considerations, and erosion yield measurements are presented. Issues which influence the prediction of in-space durability based on ground laboratory thermal energy plasma system testing are also addressed.
Microbial Community Analysis of Naturally Durable Wood in an Above Ground Field Test
G.T. Kirker; S.V. Diehl; P.K. Lebow
2014-01-01
This paper presents preliminary results of an above ground field test wherein eight naturally durable wood species were exposed concurrently at two sites in North America. Surface samples were taken at regular intervals from non-durable controls and compared to their more durable counterparts. Terminal Restriction Fragment Length Polymorphism was performed to...
Fifty-Year Durability Evaluation of Posts Treated with Industrial Wood Preservatives
Stan T. Lebow; Patricia Lebow; Bessie Woodward; Grant T. Kirker; Rachel Arango
2015-01-01
Long-term durability data are needed to improve service life estimates for treated wood products used as critical structural supports in industrial applications. This article reports the durability of longleaf pine (Pinus palustris) posts pressure treated with ammoniacal copper arsenate (ACA), chromated copper arsenate (CCA), creosote, or...
Grant T. Kirker; Amy Blodgett; Patricia Lebow
2015-01-01
Extracts from sawdust of four naturally durable wood species [Alaskan yellow cedar, AYC, Cupressus nootkanansis D. Don 1824; eastern red cedar, ERC, Juniperus virginiana L.; honey mesquite, HM, Prosopis glandulosa Torr.; and black locust, BL, Robinia pseudoacacia L.] were used to treat...
Evaluation of deck durability on continuous beam highway bridges.
DOT National Transportation Integrated Search
1985-01-01
In an effort to determine the extent of deck cracking on continuous steel beam bridges and the effect of the cracking on deck durability, 137 structures were visually inspected and 5 of these were selected for detailed evaluation. The general survey ...
Durability of saw-cut joints in plain cement concrete pavements : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
The main objective of this study was to evaluate factors influencing the durability of the joints in portland cement concrete pavement in the state of Indiana. : The scope of the research included the evaluation of the absorption of water in concrete...
Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete.
Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao
2016-03-07
Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.
Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete
Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao
2016-01-01
Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete. PMID:28773298
Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix
NASA Astrophysics Data System (ADS)
Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed
2017-09-01
The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.
Evaluation of a new ostomy mouldable seal: an international product evaluation.
Tielemans, Chantal; Probert, Rosalind; Forest-Lalande, Louise; Hansen, Anne Steen; Aggerholm, Søren; Ajslev, Teresa Adeltoft
2016-12-08
A new mouldable seal, Brava® Protective Seal, was evaluated by patients on aspects related to residue, durability, and preference. A total of 135 patients from four countries participated (Denmark, Germany, Japan and the USA) and the new product was compared to the patients' usual pouching systems. Less residue and easier skin cleansing was observed, which may benefit patient quality of life. The possible benefits of less residue for peristomal skin health need further investigation.
Evaluation of fly ash concrete durability containing class II durability aggregates.
DOT National Transportation Integrated Search
1986-07-01
Fly ash was used in this evaluation study to replace 15% of the cement in : Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved : sources was examined in each mix. Substitution rate was based on 1 to 1 : basis, for each pound of cem...
DOT National Transportation Integrated Search
2015-05-01
The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 5, Laminate Durability Testing. : Mechanical properties of the FRP mat...
Rebecca E. Ibach; Craig M. Clemons; Rebecca L. Schumann
2007-01-01
Although laboratory evaluations of wood-plastic composites (WPCs) are helpful in predicting long-term durability, field studies are needed to verify overall long-term durability. Field exposure can encompass numerous degradations i.e., fungal, ultraviolet light, moisture, wind, temperature, freeze/thaw, wet/ dry cycling, termites, mold, etc. that traditionally are...
Vegter, S; Tolley, K; Wilson Waterworth, T; Jones, H; Jones, S; Jewell, D
2013-08-01
The antisense ICAM-1 inhibitor alicaforsen has been studied in four phase 2 studies in ulcerative colitis (UC). Recruited patients varied as to the extent of their colitis and in the severity of disease at entry. To investigate the efficacy of alicaforsen enema in specific UC populations. Efficacy was analysed for short-term (week 6-10) and long-term (week 30) outcomes compared with either placebo or a high-dose mesalazine (mesalamine) enema in patients with disease extent up to 40 cm from the anal verge in patients with moderate or severe disease, and in patients with both of these features. Individual patient data meta-analyses of 200 patients from four phase 2 studies evaluating nightly alicaforsen 240 mg enema and comparators. Patient data were pooled and analysed in a single data set. Continuous outcomes were evaluated using anova; dichotomous outcomes were evaluated using Pearson chi-square or Fisher's exact tests. Alicaforsen showed superior efficacy vs. placebo in: patients with disease extent up to 40 cm, patients with moderate and severe disease and especially when both those conditions were satisfied. In these patient groups, mesalazine also showed short-term efficacy. At week 30, however, the efficacy of mesalazine waned and alicaforsen became significantly more efficacious. This post hoc meta-analysis showed that alicaforsen is effective in patients with active UC, especially in patients with distal disease, which is of moderate/severe activity. The efficacy of alicaforsen was durable in these sub-groups, suggesting a disease-modifying effect. This analysis suggests that alicaforsen enema may offer an effective, potentially durable response in moderate/severe distal active UC. © 2013 John Wiley & Sons Ltd.
PROTOCOL TO EVALUATE THE MOISTURE DURABILITY OF ENERGY-EFFICIENT WALLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R; Pallin, Simon B; Hun, Diana E
Walls account for about 8% of the energy used in residential buildings. This energy penalty can be reduced with higher insulation levels and increased airtightness. However, these measures can compromise the moisture durability and long-term performance of wall assemblies because they can lead to lower moisture tolerance due to reduced drying potential. To avert these problems, a moisture durability protocol was developed to evaluate the probability that an energy-efficient wall design will experience mold growth. This protocol examines the effects of moisture sources in walls through a combination of simulations and lab experiments, uses the mold growth index as themore » moisture durability indicator, and is based on a probabilistic approach that utilizes stochastically varying input parameters. The simulation tools used include a new validated method for taking into account the effects of air leakage in wall assemblies This paper provides an overview of the developed protocol, discussion of the probabilistic simulation approach and describes results from the evaluation of two wall assemblies in Climate Zones 2, 4, and 6. The protocol will be used to supply builders with wall designs that are energy efficient, moisture durable and cost-effective.« less
Adhesive groups and how they relate to the durability of bonded wood
Charles R. Frihart
2009-01-01
There is a need to develop models that evaluate the interaction of wood adhesives at the macroscopic level to explain observations on the durability of bonded wood laminate products with changing moisture conditions. This paper emphasizes a model that relates durability to strain on the bondline caused by wood swelling. The effect of this strain is discussed in...
Development and evaluation of endurance test system for ventricular assist devices.
Sumikura, Hirohito; Homma, Akihiko; Ohnuma, Kentaro; Taenaka, Yoshiyuki; Takewa, Yoshiaki; Mukaibayashi, Hiroshi; Katano, Kazuo; Tatsumi, Eisuke
2013-06-01
We developed a novel endurance test system that can arbitrarily set various circulatory conditions and has durability and stability for long-term continuous evaluation of ventricular assist devices (VADs), and we evaluated its fundamental performance and prolonged durability and stability. The circulation circuit of the present endurance test system consisted of a pulsatile pump with a small closed chamber (SCC), a closed chamber, a reservoir and an electromagnetic proportional valve. Two duckbill valves were mounted in the inlet and outlet of the pulsatile pump. The features of the circulation circuit are as follows: (1) the components of the circulation circuit consist of optimized industrial devices, giving durability; (2) the pulsatile pump can change the heart rate and stroke length (SL), as well as its compliance using the SCC. Therefore, the endurance test system can quantitatively reproduce various circulatory conditions. The range of reproducible circulatory conditions in the endurance test circuit was examined in terms of fundamental performance. Additionally, continuous operation for 6 months was performed in order to evaluate the durability and stability. The circulation circuit was able to set up a wide range of pressure and total flow conditions using the SCC and adjusting the pulsatile pump SL. The long-term continuous operation test demonstrated that stable, continuous operation for 6 months was possible without leakage or industrial device failure. The newly developed endurance test system demonstrated a wide range of reproducible circulatory conditions, durability and stability, and is a promising approach for evaluating the basic characteristics of VADs.
Lam, Ming Kai; Sen, Hanim; Tandjung, Kenneth; van Houwelingen, K Gert; de Vries, Arie G; Danse, Peter W; Schotborgh, Carl E; Scholte, Martijn; Löwik, Marije M; Linssen, Gerard C M; Ijzerman, Maarten J; van der Palen, Job; Doggen, Carine J M; von Birgelen, Clemens
2014-04-01
To evaluate the safety and efficacy of 2 novel drug-eluting stents (DES) with biodegradable polymer-based coatings versus a durable coating DES. BIO-RESORT is an investigator-initiated, prospective, patient-blinded, randomized multicenter trial in 3540 Dutch all-comers with various clinical syndromes, requiring percutaneous coronary interventions (PCI) with DES implantation. Randomization (stratified for diabetes mellitus) is being performed in a 1:1:1 ratio between ORSIRO sirolimus-eluting stent with circumferential biodegradable coating, SYNERGY everolimus-eluting stent with abluminal biodegradable coating, and RESOLUTE INTEGRITY zotarolimus-eluting stent with durable coating. The primary endpoint is the incidence of the composite endpoint target vessel failure at 1 year, consisting of cardiac death, target vessel-related myocardial infarction, or clinically driven target vessel revascularization. Power calculation assumes a target vessel failure rate of 8.5% with a 3.5% non-inferiority margin, giving the study a power of 85% (α level .025 adjusted for multiple testing). The impact of diabetes mellitus on post-PCI outcome will be evaluated. The first patient was enrolled on December 21, 2012. BIO-RESORT is a large, prospective, randomized, multicenter trial with three arms, comparing two DES with biodegradable coatings versus a reference DES with a durable coating in 3540 all-comers. The trial will provide novel insights into the clinical outcome of modern DES and will address the impact of known and so far undetected diabetes mellitus on post-PCI outcome. Copyright © 2014 The Authors. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Mccollum, Timothy A.
1994-01-01
The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.
Malkevitch, Nina V; Patterson, L Jean; Aldrich, M Kristine; Wu, Yichen; Venzon, David; Florese, Ruth H; Kalyanaraman, V S; Pal, Ranajit; Lee, Eun Mi; Zhao, Jun; Cristillo, Anthony; Robert-Guroff, Marjorie
2006-09-15
Previously, priming with replication-competent adenovirus-SIV multigenic vaccines and boosting with envelope subunits strongly protected 39% of rhesus macaques against rectal SIV(mac251) challenge. To evaluate protection durability, eleven of the protected and two SIV-infected unimmunized macaques that controlled viremia were re-challenged rectally with SIV(mac251). Strong protection was observed in 8/11 vaccinees, including two exhibiting <50 SIV RNA copies. Decreased viremia compared to naïve controls was observed in the other three. The SIV-infected unimmunized macaques modestly controlled viremia but exhibited CD4 counts < or =200, unlike the protected macaques. Durable protection was associated with significantly increased SIV-specific ELISPOT responses and lymphoproliferative responses to p27 at re-challenge. After CD8 depletion, 2 of 8 re-challenged, protected vaccinees maintained <50 SIV RNA copies; SIV RNA emerged in 6. Re-appearance of CD8 cells and restoration of SIV-specific cellular immunity coincided with viremia suppression. Overall, cellular immunity induced by vaccination and/or low-level, inapparent viremia post-first SIV(mac251) challenge, was associated with durable protection against re-challenge.
Use of recycled fine aggregate in concretes with durable requirements.
Zega, Claudio Javier; Di Maio, Angel Antonio
2011-11-01
The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparison of highway striping materials.
DOT National Transportation Integrated Search
1980-01-01
This study was undertaken to investigate problems relating to the durability of pavement striping materials used by the Department. The research was limited to an evaluation of the durability and retroreflectance characteristics of selected paints, t...
NASA Technical Reports Server (NTRS)
Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.
2011-01-01
The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.
Lorenz, Lena M; Overgaard, Hans J; Massue, Dennis J; Mageni, Zawadi D; Bradley, John; Moore, Jason D; Mandike, Renata; Kramer, Karen; Kisinza, William; Moore, Sarah J
2014-12-13
Long-Lasting Insecticidal Nets (LLINs) are one of the major malaria vector control tools, with most countries adopting free or subsidised universal coverage campaigns of populations at-risk from malaria. It is essential to understand LLIN durability so that public health policy makers can select the most cost effective nets that last for the longest time, and estimate the optimal timing of repeated distribution campaigns. However, there is limited knowledge from few countries of the durability of LLINs under user conditions. This study investigates LLIN durability in eight districts of Tanzania, selected for their demographic, geographic and ecological representativeness of the country as a whole. We use a two-stage approach: First, LLINs from recent national net campaigns will be evaluated retrospectively in 3,420 households. Those households will receive one of three leading LLIN products at random (Olyset®, PermaNet®2.0 or Netprotect®) and will be followed up for three years in a prospective study to compare their performance under user conditions. LLIN durability will be evaluated by measuring Attrition (the rate at which nets are discarded by households), Bioefficacy (the insecticidal efficacy of the nets measured by knock-down and mortality of mosquitoes), Chemical content (g/kg of insecticide available in net fibres) and physical Degradation (size and location of holes). In addition, we will extend the current national mosquito insecticide Resistance monitoring program to additional districts and use these data sets to provide GIS maps for use in health surveillance and decision making by the National Malaria Control Program (NMCP). The data will be of importance to policy makers and vector control specialists both in Tanzania and the SSA region to inform best practice for the maintenance of high and cost-effective coverage and to maximise current health gains in malaria control.
Sustainability and durability analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.
2017-09-01
The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.
Above Ground Field Evaluation and GC-MS Analysis of Naturally Durable Wood Species
G.T. Kirker; A.B. Blodgett; S.T. Lebow; C.A. Clausen
2012-01-01
Nine wood species are being evaluated in above ground field studies in Mississippi and Wisconsin. Candidate naturally durable wood (NDW) species are being rated at yearly intervals for resistance to decay, cupping, and checking. Field ratings after 12 months exposure are presented. To date, Paulownia tomentosa (PAW) and southern yellow pine (SYP)...
Characterizing fretting damage in different test media for cardiovascular device durability testing.
Weaver, J D; Ramirez, L; Sivan, S; Di Prima, M
2018-06-01
In vitro durability tests of cardiovascular devices are often used to evaluate the potential for fretting damage during clinical use. Evaluation of fretting damage is important because severe fretting can concentrate stress and lead to the loss of structural integrity. Most international standards call for the use of phosphate buffered saline (PBS) for such tests although there has been little evidence to date that the use of PBS is appropriate in terms of predicting the amount of fretting damage that would occur in vivo. In order to determine an appropriate test media for in vitro durability tests where fretting damage is being evaluated, we utilized an in vitro test that is relevant to cardiovascular devices both in terms of dimensions and materials (nitinol, cobalt-chromium, and stainless steel) to characterize fretting damage in PBS, deionized water (DIW), and heparinized porcine blood. Overall, tests conducted in blood were found to have increased levels of fretting damage over tests in DIW or PBS, although the magnitude of this difference was smaller than the variability for each test media. Tests conducted in DIW and PBS led to mostly similar amounts of fretting damage with the exception of one material combination where DIW had greatly reduced damage compared to PBS and blood. Differences in fretting damage among materials were also observed with nitinol having less fretting damage than stainless steel or cobalt-chromium. In general, evaluating fretting damage in PBS or DIW may be appropriate although caution should be used when selecting test media and interpreting results given some of the differences observed across different materials. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Arnon, N.; Trela, W.
1983-01-01
The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.
Comparison of highway striping materials : installation report.
DOT National Transportation Integrated Search
1980-01-01
This study has been undertaken to investigate problems relating to the durability of highway striping materials used by the Department The research is limited to an evaluation of the durability and retroreflectance characteristics of selected paints,...
Quick test for durability factor estimation.
DOT National Transportation Integrated Search
2010-03-01
The Missouri Department of Transportation (MoDOT) is considering the use of the AASHTO T 161 Durability Factor (DF) as an endresult : performance specification criterion for evaluation of paving concrete. However, the test method duration can exceed ...
Martin, Caitlin; Sun, Wei
2015-01-01
Transcatheter aortic valve (TAV) intervention is now the standard-of-care treatment for inoperable patients and a viable alternative treatment option for high-risk patients with symptomatic aortic stenosis. While the procedure is associated with lower operative risk and shorter recovery times than traditional surgical aortic valve (SAV) replacement, TAV intervention is still not considered for lower-risk patients due in part to concerns about device durability. It is well known that bioprosthetic SAVs have limited durability, and TAVs are generally assumed to have even worse durability, yet there is little long-term data to confirm this suspicion. In this study, TAV and SAV leaflet fatigue due to cyclic loading was investigated through finite element analysis by implementing a computational soft tissue fatigue damage model to describe the behavior of the pericardial leaflets. Under identical loading conditions and with identical leaflet tissue properties, the TAV leaflets sustained higher stresses, strains, and fatigue damage compared to the SAV leaflets. The simulation results suggest that the durability of TAVs may be significantly reduced compared to SAVs to about 7.8 years. The developed computational framework may be useful in optimizing TAV design parameters to improve leaflet durability, and assessing the effects of underexpanded, elliptical, or non-uniformly expanded stent deployment on TAV durability. PMID:26294354
Prediction of glass durability as a function of environmental conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C M
1988-01-01
A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less
Evaluation of curing compound application time on concrete surface durability : [brief].
DOT National Transportation Integrated Search
2015-05-01
Roadways that are both durable and aesthetically pleasing are primary goals of Wisconsin : Department of Transportation (WisDOT) paving projects. Recently, Portland Cement Concrete : (PCC) pavement projects constructed by WisDOT have experienced incr...
NASA Technical Reports Server (NTRS)
Johnson, W. Steven
1990-01-01
A workshop was held to help assess the state-of-the-art in evaluating the long term durability of polymeric matrix composites (PMCs) and to recommend future activities. Design and evaluation of PMCs at elevated temperatures were discussed. The workshop presentations, the findings of the workshop sessions are briefly summarized.
Arimoto, Hanayo; Harwood, James F; Nunn, Peter J; Richardson, Alec G; Gordon, Scott; Obenauer, Peter J
2015-12-01
Recently, the BG-Sentinel® trap (BGS) trap has been reconfigured for increased durability during harsh field conditions. We evaluated the attractiveness of this redesigned trap, BG-Sentinel 2® (BGS2), and its novel granular lure cartridge system relative to the original trap and lure. Granular lures containing different combinations of lactic acid, ammonia, hexanoic acid, and octenol were also evaluated. Lure cartridges with all components except octenol trapped significantly more Aedes albopictus than lures containing octenol. This new granular lure combination and original BG-Lure® system were paired with BGS and BGS2 traps to compare relative attractiveness of the lures and the traps. All evaluations were conducted under field conditions in a suburban neighborhood in northeastern Florida from July to October 2014. Overall, the average numbers of Ae. albopictus collected by BGS or BGS2 were similar regardless of the lure type (i.e., mesh bag versus granules) (P = 0.56). The functionality and durability of both trap models are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, M.; Cabrera, J.G.
1996-12-31
Demolition aggregates and artificial aggregates made with waste materials are two alternatives being studied for replacement of natural aggregates in the production of concrete. Natural aggregate sources in Europe are increasingly scarce and subject to restrictions based on environmental regulations. In many areas of the developing world sources of good quality aggregates are very limited or practically not available and therefore it has become necessary to study alternative materials. This paper presents a laboratory study on the use of demolition bricks and artificial aggregates made from fly ash-clay as coarse aggregates to make concrete. The concretes made either with demolitionmore » bricks or artificial aggregates are compared with a control mix made with natural gravel aggregates. The strength and durability characteristics of these concretes are evaluated using as a criteria compressive strength and transport properties, such as gas and water permeability. The results show clearly that concretes of good performance and durability can be produced using aggregates from demolition rubble or using artificial aggregates made with wastes such as fly ash.« less
Physical-durable performance of concrete incorporating high loss on ignition-fly ash
NASA Astrophysics Data System (ADS)
Huynh, Trong-Phuoc; Ngo, Si-Huy; Hwang, Chao-Lung
2018-04-01
This study investigates the feasibility of using raw fly ash with a high loss on ignition in concrete. The fly ash-free concrete samples were prepared with different water-to-binder (w/b) ratios of 0.35, 0.40, and 0.45, whereas the fly ash concrete samples were prepared with a constant w/b of 0.40 and with various fly ash contents (10%, 20%, and 30%) as a cement substitution. The physical properties and durability performance of the concretes were evaluated through fresh concrete properties, compressive strength, strength efficiency of cement, ultrasonic pulse velocity, and resistance to sulfate attack. Test results show that the w/b ratio affected the concrete properties significantly. The incorporation of fly ash increased the workability and reduced the unit weight of fresh concrete. In addition, the fly ash concrete samples containing up to 20% fly ash exhibited an improved strength at long-term ages. Further, all of the fly ash concrete samples showed a good durability performance with ultrasonic pulse velocity value of greater than 4100 m/s and a comparable sulfate resistance to the no-fly ash concrete.
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less
Laboratory evaluation of 100 percent fly ash cementitious systems : tech summary.
DOT National Transportation Integrated Search
2016-12-01
Long-lasting durable concrete is a must-have for departments of transportation (DOTs) in todays : construction and economic climate. Many entities are turning to alternative concrete mixtures to : ensure long-term durability such as ternary mixtur...
Salami, A; Walia, T; Bashiri, R
2015-01-01
To evaluate and compare the parental satisfaction among resin composite strip crown, preveneered stainless steel crown (PVSSC) and the newly introduced pre-fabricated primary zirconia crown for restoring maxillary primary incisors. A prospective clinical study on 39 children with carious or traumatized primary maxillary incisors. They were randomly and equally distributed in three groups and received one of the full-coronal restorations. Children were recalled to evaluate and compare parental satisfaction about performance of crowns after one year through a questionnaire. Parents were satisfied with all three tooth colored full-coronal restoration techniques. A significant relationship was found between colour of PVSSC (p=0.003) and durability of resin strip crowns (p=0.009) with the overall parental satisfaction levels. Parents who gave poor ratings in these two variables however rated their overall acceptance levels as being satisfied. Parental overall satisfaction was highest for zirconia primary crowns followed by resin composite strip crowns and lowest satisfaction was reported for pre-veneered SSCs. Parents were least satisfied with durability of resin composite strip crowns and colour of pre-veneered stainless steel crowns. However, this did not affect their overall satisfaction with these crowns.
Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity.
Lugade, Amit A; Bharali, Dhruba J; Pradhan, Vandana; Elkin, Galina; Mousa, Shaker A; Thanavala, Yasmin
2013-10-01
Chitosan nanoparticles were evaluated as a vaccine delivery system for hepatitis B surface antigen (HBsAg) in the absence of adjuvant. Nano-encapsulated HBsAg (HBsAg chitosan-NP) was endocytosed more rapidly and efficiently by dendritic cells compared to soluble HBsAg. FRET analysis demonstrated that intact nanoparticles were taken up by DCs. To determine the immunogenicity of adjuvant-free nano-encapsulated HBsAg, mice were immunized with a single dose of non-encapsulated HBsAg, HBsAg chitosan-NP, or HBsAg alum. Mice immunized with adjuvant-free nanoparticle elicited anti-HBs antibodies at significantly higher titers compared to mice immunized with HBsAg alum. Elevated numbers of BAFF-R(+) B cells and CD138+ plasma cells account for the heightened anti-HBs response in nanoparticle immunized mice. Increases in Tfh cells provide a mechanism for the accumulation of anti-HBs secreting cells. Thus, chitosan nanoparticle vaccines represent a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration. In this study, chitosan nanoparticle vaccines are demonstrated as a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration in a murine model. The authors also demonstrated superior antibody response induction compared with non-encapsulated HBs antigen and HBsAg aluminum. Copyright © 2013 Elsevier Inc. All rights reserved.
Barber, Grant E; Yajnik, Vijay; Khalili, Hamed; Giallourakis, Cosmas; Garber, John; Xavier, Ramnik; Ananthakrishnan, Ashwin N
2016-12-01
One-fifth of patients with Crohn's disease (CD) are primary non-responders to anti-tumor necrosis factor (anti-TNF) therapy, and an estimated 10-15% will fail therapy annually. Little is known about the genetics of response to anti-TNF therapy. The aim of our study was to identify genetic factors associated with primary non-response (PNR) and loss of response to anti-TNFs in CD. From a prospective registry, we characterized the response of 427 CD patients to their first anti-TNF therapy. Patients were designated as achieving primary response, durable response, and non-durable response based on clinical, endoscopic, and radiologic criteria. Genotyping was performed on the Illumina Immunochip. Separate genetic scores based on presence of predictive genetic alleles were calculated for PNR and durable response and performance of clinical and genetics models were compared. From 359 patients, 36 were adjudged to have PNR (10%), 200 had durable response, and 74 had non-durable response. PNRs had longer disease duration and were more likely to be smokers. Fifteen risk alleles were associated with PNR. Patients with PNR had a significantly higher genetic risk score (GRS) (P =8 × 10 -12 ). A combined clinical-genetic model more accurately predicted PNR when compared with a clinical only model (0.93 vs. 0.70, P <0.001). Sixteen distinct single nucleotide polymorphisms predicted durable response with a higher GRS (P =7 × 10 -13 ). The GRSs for PNR and durable response were not mutually correlated, suggesting distinct mechanisms. Genetic risk alleles can predict primary non-response and durable response to anti-TNF therapy in CD.
Degradation mechanisms and accelerated testing in PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney L; Mukundan, Rangachary
2010-01-01
The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less
Laboratory evaluation of 100 percent fly ash cementitious systems : final report 573.
DOT National Transportation Integrated Search
2016-12-01
Long-lasting, durable concrete is a must have for Departments of Transportation (DOTs) in todays construction and economic climate. Many entities are : turning to alternative concrete mixtures to ensure long-term durability such as ternary mixt...
Bonawitz, Rachael; Brennan, Alana T; Long, Lawrence; Heeren, Timothy; Maskew, Mhairi; Sanne, Ian; Fox, Matthew P
2018-06-01
In April 2010, tenofovir and abacavir replaced stavudine in public sector first-line antiretroviral therapy (ART) for children under 20 years old in South Africa. The association of both abacavir and tenofovir with fewer side effects and toxicities compared to stavudine could translate to increased durability of tenofovir or abacavir-based regimens. We evaluated changes over time in regimen durability for paediatric patients 3-19 years of age at eight public sector clinics in Johannesburg, South Africa. Cohort analysis of treatment-naïve, non-pregnant paediatric patients from 3 to 19 years old initiated on ART between April 2004 and December 2013. First-line ART regimens before April 2010 consisted of stavudine or zidovudine with lamivudine and either efavirenz or nevirapine. Tenofovir and/or abacavir was substituted for stavudine after April 2010 in first-line ART. We evaluated the frequency and type of single-drug substitutions, treatment interruptions and switches to second-line therapy. Fine and Gray competing risk regression models were used to evaluate the association of antiretroviral drug type with single-drug substitutions, treatment interruptions and second-line switches in the first 24 months on treatment. Three hundred and ninety-eight (15.3%) single-drug substitutions, 187 (7.2%) treatment interruptions and 86 (3.3%) switches to second-line therapy occurred among 2602 paediatric patients over 24-months on ART. Overall, the rate of single-drug substitutions started to increase in 2009, peaked in 2011 at 25% and then declined to 10% in 2013, well after the integration of tenofovir into paediatric regimens; no patients over the age of 3 were initiated on abacavir for first-line therapy. Competing risk regression models showed patients on zidovudine or stavudine had upwards of a fivefold increase in single-drug substitution vs. patients initiated on tenofovir in the first 24 months on ART. Older adolescents also had a two- to threefold increase in treatment interruptions and switches to second-line therapy compared to younger patients in the first 24 months on ART. The decline in single-drug substitutions is associated with the introduction of tenofovir. Tenofovir use could improve regimen durability and treatment outcomes in resource-limited settings. © 2018 John Wiley & Sons Ltd.
Long-term Durability of Immune Responses After Hepatitis A Vaccination Among HIV-Infected Adults
Wilkins, Kenneth; Lee, Andrew W.; Grosso, Anthony; Landrum, Michael L.; Weintrob, Amy; Ganesan, Anuradha; Maguire, Jason; Klopfer, Stephanie; Brandt, Carolyn; Bradley, William P.; Wallace, Mark R.; Agan, Brian K.
2011-01-01
Background. Vaccination provides long-term immunity to hepatitis A virus (HAV) among the general population, but there are no such data regarding vaccine durability among human immunodeficiency virus (HIV)–infected adults. Methods. We retrospectively studied HIV-infected adults who had received 2 doses of HAV vaccine. We analyzed blood specimens taken at 1 year, 3 years, and, when available, 6–10 years postvaccination. HAV immunoglobulin G (IgG) values of ≥10 mIU/mL were considered seropositive. Results. We evaluated specimens from 130 HIV-infected adults with a median age of 35 years and a median CD4 cell count of 461 cells/mm3 at or before time of vaccination. Of these, 49% had an HIV RNA load <1000 copies/mL. Initial vaccine responses were achieved in 89% of HIV-infected adults (95% confidence interval [CI], 83%–94%), compared with 100% (95% CI, 99%–100%) of historical HIV-uninfected adults. Among initial HIV-infected responders with available specimens, 90% (104 of 116; 95% CI, 83%–95%) remained seropositive at 3 years and 85% (63 of 74; 95% CI, 75%–92%) at 6–10 years. Geometric mean concentrations (GMCs) among HIV-infected adults were 154, 111, and 64 mIU/mL at 1, 3, and 6–10 years, respectively, compared with 1734, 687, and 684 mIU/mL among HIV-uninfected persons. Higher GMCs over time among HIV-infected adults were associated with lower log10 HIV RNA levels (β = −.12, P = .04). Conclusions. Most adults with well-controlled HIV infections had durable seropositive responses up to 6–10 years after HAV vaccination. Suppressed HIV RNA levels are associated with durable HAV responses. PMID:21606540
NASA Astrophysics Data System (ADS)
Musaramthota, Vishal
Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe environmental conditioning, fatiguing in ambient air and a combination of both. The bonds produced were durable enough to sustain the tests cases mentioned above when conditioned for 8 weeks and did not experience any loss in strength. Specimens that were aged for 80 weeks showed a degradation of 10% in their fracture toughness when compared to their baseline datasets. The effect of various exposure times needs to be further evaluated to establish the relationship of durability that is associated with the fracture toughness of ABCJ's.
In-Service Evaluation of HVOF Coated Main Landing Gear on Navy P-3 Aircraft
NASA Technical Reports Server (NTRS)
Devereaux, jon L.; Forrest, Clint
2008-01-01
Due to the environmental and health concerns with Electroplated Hard Chrome (EHC), the Hard Chrome Alternatives Team (HCAT) has been working to provide an alternative wear coating for EHC. The US Navy selected Tungsten-Carbide Cobalt (WC- 17Co) High Velocity Oxy-Fuel (HVOF) thermal spray coating for this purpose and completed service evaluations on select aircraft components to support the HCAT charter in identifying an alternative wear coating for chrome plating. Other benefits of WC-Co thermal spray coatings over EHC are enhanced corrosion resistance, improved durability, and exceptional wear properties. As part of the HCAT charter and to evaluate HVOF coatings on operational Navy components, the P-3 aircraft was selected for a service evaluation to determine the coating durability as compared to chrome plating. In April 1999, a VP-30 P-3 aircraft was outfitted with a right-hand Main Landing Gear (MLG) shock strut coated with WCCo HYOF thermal spray applied to the piston barrel and four axle journals. The HVOF coating on the piston barrel and axle journals was applied by Southwest United Industries, Inc. This HVOF coated strut assembly has since completed 6,378 landings. Teardown analysis .for this WC-Co HVOF coated MLG asset is significant in assessing the durability of this wear coating in service relative to EHC and to substantiate Life Cycle Cost (LCC) data to support a retrograde transition from EHC to HVOF thermal spray coatings. Findings from this teardown analysis may also benefit future transitions to HVOF thermal spray coatings by identifying enhancements to finishing techniques, mating bearing and liner material improvements, improved seal materials, and improvements in HVOF coating selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri
Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating ormore » a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.« less
Grant T. Kirker; Carol A. Clausen; A. B Blodgett; Stan T. Lebow
2013-01-01
More than 1,500 covered bridges remain in the United States. They are a unique part of our history; thus, replacement of bridge components is an equally important part of preserving this uncommon style of craftsmanship. The goal of this project was to evaluate seven wood species for their durability in above-ground field exposure. Chemical analysis was also conducted...
High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Bowman, Cheryl; Beach, Duane
2007-01-01
High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.
Stress Testing of the Philips 60W Replacement Lamp L Prize Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, Michael E.; Ledbetter, Marc R.; Smith, Mark
2012-04-24
The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stressmore » cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions of the Philips L Prize entry.« less
Materials research for high-speed civil transport and generic hypersonics: Composites durability
NASA Technical Reports Server (NTRS)
Allen-Lilly, Heather; Cregger, Eric; Hoffman, Daniel; Mccool, Jim
1995-01-01
This report covers a portion of an ongoing investigation of the durability of composites for the High Speed Civil Transport (HSCT) program. Candidate HSCT composites need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate the design, analysis, fabrication, and testing of equipment intended for use in validating the long-term durability of materials for the HSCT. This equipment includes thermally actuated compression and tension fixtures, hydraulic-actuated reversible load fixtures, and thermal chambers. This equipment can be used for the durability evaluation of both composite and adhesive materials. Thermally actuated fixtures are recommended for fatigue cycling when long-term thermomechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens. Long term durability testing plans for polymer matrix composite specimens are included.
Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review.
Ellinas, Kosmas; Tserepi, Angeliki; Gogolides, Evangelos
2017-12-01
Wetting control is essential for many applications, such as self-cleaning, anti-icing, anti-fogging, antibacterial action as well as anti-reflection and friction control. While significant effort has been devoted to fabricate superhydrophobic/superamphiphobic surfaces (repellent to water and other low surface tension liquids), very few polymeric superhydrophobic/superamphiphobic surfaces can be considered as durable against various externally imposed stresses (e.g. application of heating, pressure, mechanical forces, chemical, etc.). Therefore, durability tests are extremely important for applications especially when such surfaces are made of "soft" materials. Here, we review the most recent and promising efforts reported towards the realization of durable, superhydrophobic/superamphiphobic, polymeric surfaces emphasizing the durability tests performed, and some important applications. We compare and put in context the scattered durability tests reported in the literature, and present conclusions, perspectives and challenges in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.
2013-08-01
Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.
DOT National Transportation Integrated Search
2012-06-01
The Kansas Department of Transportation (KDOT) wants to construct durable concrete pavements with minimal maintenance needs. This goal can only be achieved by using durable aggregates that are resistant to freezing and thawing damage when used in con...
Jung, Yong Chae; Bhushan, Bharat
2009-12-22
Superhydrophobic surfaces with high contact angle and low contact angle hysteresis exhibit a self-cleaning effect and low drag for fluid flow. The lotus (Nelumbo nucifera) leaf is one of the examples found in nature for superhydrophobic surfaces. For the development of superhydrophobic surfaces, which is important for various applications such as glass windows, solar panels, and microchannels, materials and fabrication methods need to be explored to provide mechanically durable surfaces. It is necessary to perform durability studies on these surfaces. Carbon nanotube (CNT), composite structures which would lead to superhydrophobicity, self-cleaning, and low-drag, were prepared using a spray method. As a benchmark, structured surfaces with lotus wax were also prepared to compare with the durability of CNT composite structures. To compare the durability of the various fabricated surfaces, waterfall/jet tests were conducted to determine the loss of superhydrophobicity by changing the flow time and pressure conditions. Wear and friction studies were also performed using an atomic force microscope (AFM) and a ball-on-flat tribometer. The changes in the morphology of the structured surfaces were examined by AFM and optical imaging. We find that superhydrophobic CNT composite structures showed good mechanical durability, superior to the structured surfaces with lotus wax, and may be suitable for real world applications.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.
1998-01-01
During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.
Use of the Micro-Deval test for assessing the durability of Virginia aggregates.
DOT National Transportation Integrated Search
2007-01-01
Aggregate is one of the most widely used construction material, and the key aspect of aggregate quality is durability. In this study, the Micro-Deval test, a new test developed in France and modified by Canadians, was studied to evaluate its suitabil...
DOT National Transportation Integrated Search
2013-02-01
The arch-shaped concrete filled fiber reinforced polymer tube bridges are being constructed throughout New : England and elsewhere. The composite system durability and maintenance requirements need to be evaluated. For : this study, an asymmetric hyb...
Combustor liner durability analysis
NASA Technical Reports Server (NTRS)
Moreno, V.
1981-01-01
An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.
Comparative durability and costs analysis of ventricular shunts.
Agarwal, Nitin; Kashkoush, Ahmed; McDowell, Michael M; Lariviere, William R; Ismail, Naveed; Friedlander, Robert M
2018-05-11
OBJECTIVE Ventricular shunt (VS) durability has been well studied in the pediatric population and in patients with normal pressure hydrocephalus; however, further evaluation in a more heterogeneous adult population is needed. This study aims to evaluate the effect of diagnosis and valve type-fixed versus programmable-on shunt durability and cost for placement of shunts in adult patients. METHODS The authors retrospectively reviewed the medical records of all patients who underwent implantation of a VS for hydrocephalus at their institution over a 3-year period between August 2013 and October 2016 with a minimum postoperative follow-up of 6 months. The primary outcome was shunt revision, which was defined as reoperation for any indication after the initial procedure. Supply costs, shunt durability, and hydrocephalus etiologies were compared between fixed and programmable valves. RESULTS A total of 417 patients underwent shunt placement during the index time frame, consisting of 62 fixed shunts (15%) and 355 programmable shunts (85%). The mean follow-up was 30 ± 12 (SD) months. The shunt revision rate was 22% for programmable pressure valves and 21% for fixed pressure valves (HR 1.1 [95% CI 0.6-1.8]). Shunt complications, such as valve failure, infection, and overdrainage, occurred with similar frequency across valve types. Kaplan-Meier survival curve analysis showed no difference in durability between fixed (mean 39 months) and programmable (mean 40 months) shunts (p = 0.980, log-rank test). The median shunt supply cost per index case and accounting for subsequent revisions was $3438 (interquartile range $2938-$3876) and $1504 (interquartile range $753-$1584) for programmable and fixed shunts, respectively (p < 0.001, Wilcoxon rank-sum test). Of all hydrocephalus etiologies, pseudotumor cerebri (HR 1.9 [95% CI 1.2-3.1]) and previous shunt malfunction (HR 1.8 [95% CI 1.2-2.7]) were found to significantly increase the risk of shunt revision. Within each diagnosis, there were no significant differences in revision rates between shunts with a fixed valve and shunts with a programmable valve. CONCLUSIONS Long-term shunt revision rates are similar for fixed and programmable shunt pressure valves in adult patients. Hydrocephalus etiology may play a significant role in predicting shunt revision, although programmable valves incur higher supply costs regardless of initial diagnosis. Utilization of fixed pressure valves versus programmable pressure valves may reduce supply costs while maintaining similar revision rates. Given the importance of developing cost-effective management protocols, this study highlights the critical need for large-scale prospective observational studies and randomized clinical trials of ventricular shunt valve revisions and additional patient-centered outcomes.
Evaluation of the durability of composite tidal turbine blades.
Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique
2013-02-28
The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... delivers the appropriate exhaust flow, exhaust constituents, and exhaust temperature to the face of the... vehicles. (2) This data set must consist of randomly procured vehicles from actual customer use. The... equivalency factor. (C) The manufacturer must submit an analysis which evaluates whether the durability...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... judgement, a catalyst aging bench that follows the SBC and delivers the appropriate exhaust flow, exhaust... set must consist of randomly procured vehicles from actual customer use. The vehicles selected for... submit an analysis which evaluates whether the durability objective will be achieved for the vehicle...
Mechanical properties and durability of crumb rubber concrete
NASA Astrophysics Data System (ADS)
Chylík, Roman; Trtík, Tomáš; Fládr, Josef; Bílý, Petr
2017-09-01
This paper is focused on concrete with admixture of rubber powder, generally called crumb rubber concrete (CRC). The inspiration was found in Arizona, where one of the first CRCs has been created. However, Arizona has completely different climates than Central Europe. Could we use the crumb rubber concrete on construction applications in the Central European climate too? The paper evaluates the influence of the rubber powder on material characteristics and durability of CRC. CRCs with various contents of fine and coarse crumb powder were compared. The tested parameters were slump, air content, permeability, resistance of concrete to water with deicing chemicals, compressive and splitting tensile strength. The tests showed that workability, compressive strength and permeability decreased as the amount of rubber increased, but the air content increased as the rubber content increased. Photos of air voids in cement matrix from electron microscope were captured. The results of laboratory tests showed that admixture of rubber powder in concrete could have a positive impact on durability of concrete and concurrently contribute to sustainable development. Considering the lower compressive strength, CRC is recommended for use in applications where the high strength of concrete is not required.
Evaluation of high temperature structural adhesives for extended service
NASA Technical Reports Server (NTRS)
Hill, S. G.; Peters, P. D.; Hendricks, C. L.
1982-01-01
The evaluation, selection, and demonstration of structural adhesive systems for supersonic cruise research applications, and establishment of environmental durability of selected systems for up to 20,000 hours is described. Ten candidate adhesives were initially evaluated. During screening and evaluation, these candidates were narrowed to three of the most promising for environmental durability testing. The three adhesives were LARC-13, PPQ, and NR056X. The LARC-13 was eliminated because of a lack of stability at 505 K. The NRO56X was removed from the market. The LARC-TPI was added after preliminary evaluation and an abbreviated screening test. Only PPQ and LARC-TPI remained as the reasonable candidates late into the durability testing. Large area bond panels were fabricated to demonstrate the processibility of the selected systems. Specifications were prepared to assure control over critical material and process parameters. Surface characterization concentrated primarily upon titanium surface treatments of 10 volt chronic acid anodize, 5 volt chromic acid anodize and PASA-JELL. Failure analysis was conducted on lap shear adhesive bond failures which occurred in PPQ and LARC-13 test specimens after 10,000 hours at 505 K.
Nanosilica coating for bonding improvements to zirconia.
Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin
2013-01-01
Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.
Nanosilica coating for bonding improvements to zirconia
Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin
2013-01-01
Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333
Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo
2015-08-05
Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to the synergistic effects of Cu presence and the ordered structure of catalyst.
NASA Technical Reports Server (NTRS)
McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James
2003-01-01
NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.
Thase, Michael E.
2010-01-01
Background Major depressive disorder (MDD) is highly prevalent and associated with disability and chronicity. Although cognitive therapy (CT) is an effective short-term treatment for MDD, a significant proportion of responders subsequently suffer relapses or recurrences. Purpose This design prospectively evaluates: 1) a method to discriminate CT-treated responders at lower versus higher risk for relapse; and 2) the subsequent durability of 8-month continuation phase therapies in randomized higher risk responders followed for an additional 24-months. The primary prediction is: after protocol treatments are stopped, higher risk patients randomly assigned to continuation phase CT (C-CT) will have a lower risk of relapse/recurrence than those randomized to fluoxetine (FLX). Methods Outpatients, aged 18 to 70 years, with recurrent MDD received 12–14 weeks of CT provided by 15 experienced therapists from two sites. Responders (i.e., no MDD and 17-item Hamilton Rating Scale for Depression ≤ 12) were stratified into higher and lower risk groups based on stability of remission during the last 6 weeks of CT. The lower risk group entered follow-up for 32 months; the higher risk group was randomized to 8 months of continuation phase therapy with either C-CT or clinical management plus either double-blinded FLX or pill placebo. Following the continuation phase, higher risk patients were followed by blinded evaluators for 24 months. Results The trial began in 2000. Enrollment is complete (N=523). The follow-up continues. Conclusions The trial evaluates the preventive effects and durability of acute and continuation phase treatments in the largest known sample of CT responders collected worldwide. PMID:20451668
The role of extractives in naturally durable wood species
G.T. Kirker; A.B. Blodgett; R.A. Arango; P.K. Lebow; C.A. Clausen
2013-01-01
There are numerous examples of wood species that naturally exhibit enhanced performance and longevity in outside exposure independent of preservative treatment. Wood extractives are largely considered to be the contributing factor when evaluating and predicting the performance of a naturally durable wood species. However, little test methodology exists that focuses on...
DOT National Transportation Integrated Search
1970-01-01
Concern for improving the durability of concrete has focused renewed attention on all aspects of concrete technology. Numerous proprietary products which are claimed to improve durability have been marketed as protective coatings, curing agents or co...
Composites from southern pine juvenile wood. Part 2. Durability and dimensional stability
Anton D. Pugel; Eddie W. Price; Chung-Yun Hse
1990-01-01
Southern pine juvenile and mature wood were processed into three composites: flakeboard, particleboard, and fiberboard. The durability of these composites was assessed by subjecting specimens to an ovendry-vacuumpressure-soak (ODVPS) treatment, and then evaluated for modulus of elasticity, modulus of rupture, and internal bond. Overall, juvenile wood composites had...
Durability of adhesives in plywood
Robert H. Gillespie; Bryan H. River
1976-01-01
Seven different adhesives were evaluated for durability as plywood adhesives by exposing panels and shear-test specimens to weathering at the Madison exposure site for nearly 8 years. Wet-strength loss and wood-failure changes were measured as a function of exposure time. The method of exposure accelerated the degradation that would have resulted from exposure in most...
Nitta, S; Yambe, T; Katahira, Y; Sonobe, T; Saijoh, Y; Naganuma, S; Akiho, H; Kakinuma, Y; Tanaka, M; Miura, M
1991-12-01
To evaluate the various basic designs of the pump chambers used in the ventricular assist devices (VADs), hydrodynamic endurance test was performed from the viewpoint of the durability of the prosthetic valves used in the VAD. For the hydrodynamic analysis, we designed three basic types of pump (sac type, diaphragm type, and pusher plate type) using the same material and having the same capacity and shape. Prosthetic valves in these VADs were tested from the standpoint of the water hammer effect, which affects the valve durability, to determine which pump design would be most durable as a prosthetic valve in the VAD. The water-hammer phenomenon was evaluated using the maximum pressure gradient (MPG) across the prosthetic valve in the moc circulatory loop. Maximum pump output was recorded when we used the diaphragm type model, and minimum MPG in the commonly used driving condition of the VAD were recorded when we used the sac type model. The results suggest that the sac type VAD model is the most durable design for the prosthetic value.
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...
2018-03-15
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.
Jung, Juhae; Park, Byungil; Kim, Junbom
2012-01-05
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC
2012-01-01
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426
A new method for promoting adhesion between precious metal alloys and dental adhesives.
Ohno, H; Araki, Y; Endo, K
1992-06-01
A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.
Gene pyramiding enhances durable blast disease resistance in rice
Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro
2015-01-01
Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary “arms race” between a crop and its pathogen. PMID:25586962
Gene pyramiding enhances durable blast disease resistance in rice.
Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro
2015-01-14
Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.
Gas chromatography-mass spectrometry (GC-MS) analysis of extractives of naturally durable wood
G.T. Kirker; A.B. Blodgett; S.T. Lebow; C.A. Clausen
2011-01-01
A preliminary study to evaluate naturally durable wood species in an above ground field trial using Gas Chromatography-Mass Spectrometry (GC-MS) detected differences in fatty acid extractives between species and within the same species over time. Fatty acids were extracted with chloroform: methanol mixture then methylated with sodium methoxide and fractionated using...
Del Prato, S; Foley, J E; Kothny, W; Kozlovski, P; Stumvoll, M; Paldánius, P M; Matthews, D R
2014-01-01
Aims Durability of good glycaemic control (HbA1c) is of importance as it can be the foundation for delaying diabetic complications. It has been hypothesized that early initiation of treatment with the combination of oral anti-diabetes agents with complementary mechanisms of action can increase the durability of glycaemic control compared with metformin monotherapy followed by a stepwise addition of oral agents. Dipeptidyl peptidase-4 inhibitors are good candidates for early use as they are efficacious in combination with metformin, show weight neutrality and a low risk of hypoglycaemia. We aimed to test the hypothesis that early combined treatment of metformin and vildagliptin slows β-cell deterioration as measured by HbA1c. Methods Approximately 2000 people with Type 2 diabetes mellitus who were drug-naive or who were treated with metformin for less than 1 month, and who have HbA1c of 48–58 mmol/mol (6.5–7.5%), will be randomized in a 1:1 ratio in VERIFY, a 5-year multinational, double-blind, parallel-group study designed to compare early initiation of a vildagliptin–metformin combination with standard-of-care initiation of metformin monotherapy, followed by the stepwise addition of vildagliptin when glycaemia deteriorates. Further deterioration will be treated with insulin. The primary analysis for treatment failure will be from a Cox proportional hazard regression model and the durability of glycaemic control will be evaluated by assessing treatment failure rate and the rate of loss in glycaemic control over time as co-primary endpoints. Summary VERIFY is the first study to investigate the long-term clinical benefits of early combination treatment vs. the standard-of-care metformin monotherapy with a second agent added by threshold criteria. PMID:24863949
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T
2018-02-01
Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gilbert, Christine M.
The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.
Radiation Durability of Candidate Polymer Films for the Next Generation Space Telescope Sunshield
NASA Technical Reports Server (NTRS)
Dever, Joyce; Semmel, Charles; Edwards, David; Messer, Russell; Peters, Wanda; Carter, Amani; Puckett, David
2002-01-01
The Next Generation Space Telescope (NGST), anticipated to be launched in 2009 for a 10-year mission, will make observations in the infrared portion of the spectrum to examine the origins and evolution of our universe. Because it must operate at cold temperatures in order to make these sensitive measurements, it will use a large, lightweight, deployable sunshield, comprised of several polymer film layers, to block heat and stray light. This paper describes laboratory radiation durability testing of candidate NGST sunshield polymer film materials. Samples of fluorinated polyimides CP1 and CP2, and a polvarylene ether benzimidazole. TOR-LM(TM), were exposed to 40 keV electron and 40 keV proton radiation followed by exposure to vacuum ultraviolet (VUV) radiation in the 115 to 200 nm wavelength range. Samples of these materials were also exposed to VUV without prior electron and proton exposure. Samples of polyimides Kapton HN, Kapton E, and Upilex-S were exposed to electrons and protons only, due to limited available exposure area in the VUV facility. Exposed samples were evaluated for changes in solar absorptance and thermal emittance and mechanical properties of ultimate tensile strength and elongation at failure. Data obtained are compared with previously published data for radiation durability testing of these polymer film materials.
Griesshammer, Martin; Saydam, Guray; Palandri, Francesca; Benevolo, Giulia; Egyed, Miklos; Callum, Jeannie; Devos, Timothy; Sivgin, Serdar; Guglielmelli, Paola; Bensasson, Caroline; Khan, Mahmudul; Ronco, Julian Perez; Passamonti, Francesco
2018-05-27
RESPONSE-2 is a phase 3 study comparing the efficacy and safety of ruxolitinib with the best available therapy (BAT) in hydroxyurea-resistant/hydroxyurea-intolerant polycythemia vera (PV) patients without palpable splenomegaly. This analysis evaluated the durability of the efficacy and safety of ruxolitinib after patients completed the visit at week 80 or discontinued the study. Endpoints included proportion of patients achieving hematocrit control (< 45%), proportion of patients achieving complete hematologic remission (CHR) at week 28, and the durability of hematocrit control and CHR. At the time of analysis, 93% (69/74) of patients randomized to ruxolitinib were receiving ruxolitinib; while in the BAT arm, 77% (58/75) of patients crossed over to ruxolitinib after week 28. No patient remained on BAT by week 80. Among patients who achieved a hematocrit response at week 28, the probability of maintaining response up to week 80 was 78% in the ruxolitinib arm. At week 80, durable CHR was achieved in 18 patients (24%) in the ruxolitinib arm versus 2 patients (3%) in the BAT arm. The safety profile of ruxolitinib was consistent with previous reports. These data support that ruxolitinib treatment should be considered also as a standard of care for hydroxyurea-resistant/hydroxyurea-intolerant PV patients without palpable splenomegaly.
NASA Astrophysics Data System (ADS)
Xu, Liangfei; Reimer, Uwe; Li, Jianqiu; Huang, Haiyan; Hu, Zunyan; Jiang, Hongliang; Janßen, Holger; Ouyang, Minggao; Lehnert, Werner
2018-02-01
City buses using polymer electrolyte membrane (PEM) fuel cells are considered to be the most likely fuel cell vehicles to be commercialized in China. The technical specifications of the fuel cell systems (FCSs) these buses are equipped with will differ based on the powertrain configurations and vehicle control strategies, but can generally be classified into the power-follow and soft-run modes. Each mode imposes different levels of electrochemical stress on the fuel cells. Evaluating the aging behavior of fuel cell stacks under the conditions encountered in fuel cell buses requires new durability test protocols based on statistical results obtained during actual driving tests. In this study, we propose a systematic design method for fuel cell durability test protocols that correspond to the power-follow mode based on three parameters for different fuel cell load ranges. The powertrain configurations and control strategy are described herein, followed by a presentation of the statistical data for the duty cycles of FCSs in one city bus in the demonstration project. Assessment protocols are presented based on the statistical results using mathematical optimization methods, and are compared to existing protocols with respect to common factors, such as time at open circuit voltage and root-mean-square power.
Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.
Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina
2016-01-01
Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.
Kuadima, Joseph J; Timinao, Lincoln; Naidi, Laura; Tandrapah, Anthony; Hetzel, Manuel W; Czeher, Cyrille; Pulford, Justin
2017-02-28
This study examined the acceptability, durability and bio-efficacy of pyrethroid-impregnated durable lining (DL) over a three-year period post-installation in residential homes across Papua New Guinea (PNG). ZeroVector ® ITPS had previously been installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires, DL visual inspections and group interviews (GIs) were completed with household heads at 12- and 36-months post-installation. Three DL samples were collected from all households in which it remained 36-months post-installation to evaluate the bio-efficacy of DL on Anopheles mosquitoes. Bio-efficacy testing followed WHO guidelines for the evaluation of indoor residual spraying. The DL was still intact in 86 and 39% of study homes at the two time periods, respectively. In homes in which the DL was still intact, 92% of household heads considered the appearance at 12-months post installation to be the same as, or better than, that at installation compared to 59% at 36-months post-installation. GIs at both time points confirmed continuing high acceptance of DL, based in large part of the perceived attractiveness and functionality of the material. However, participants frequently asserted that they, or their family members, had ceased or reduced their use of mosquito nets as a result of the DL installation. A total of 16 houses were sampled for bio-efficacy testing across the 4 study sites at 36-months post-installation. Overall, combining all sites and samples, both knock-down at 30 min and mortality at 24 h were 100%. The ZeroVector ® DL installation remained highly acceptable at 36-months post-installation, the material and fixtures proved durable and the efficacy against malaria vectors did not decrease. However, the DL material had been removed from over 50% of the original study homes 3 years post-installation, largely due to deteriorating housing infrastructure. Furthermore, the presence of the DL installation appeared to reduce ITN use among many participating householders. The study findings suggest DL may not be an appropriate vector control method for large-scale use in the contemporary PNG malaria control programme.
Clinical Trials in Benign Prostatic Hyperplasia: A Moving Target of Success.
Thomas, Dominique; Chung, Caroline; Zhang, Yiye; Te, Alexis; Gratzke, Christian; Woo, Henry; Chughtai, Bilal
2018-05-24
Benign prostatic hyperplasia (BPH) affects over 50% of men above the age of 50 yr. With half of these men having bothersome lower urinary tract symptoms, this area represents a hot bed of novel treatments. Many BPH therapies have favorable short-term outcomes but lack durability or well-defined adverse events (AEs). Clinical trials are a gold standard for comparing treatments. We characterized all BPH clinical trials registered worldwide from inception to 2017. A total of 251 clinical trials were included. Of the studies, 30.1% used patient-reported outcomes such as the American Urological Association Symptom Score. Approximately 70% of clinical trials studied medical interventions, while the remaining trials investigated surgical approaches. Seventy-nine percent of trials were industry sponsored, while a minority were funded without commercial interest. Only 42% of trials had 12-mo follow-up, with the majority with <3 mo of follow-up. No trials evaluated prevention, diet, behavior, or alternative methods Overall, only 23% of trials reported results. Management options for BPH need unified benchmarks of success, AEs, durability, and standard reporting for all clinical trials, regardless of outcomes. We found that the majority of clinical trials were medical intervention, with very few trials evaluating prevention, diet, behavior, or alternative methods Furthermore, a few trials reported results in peer-reviewed journals. All clinical trials need to report results regardless of outcome, and in conclusion, standardized methods are needed in order to document the successes, adverse events, and durability for all clinical trials. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Estimating Durability of Reinforced Concrete
NASA Astrophysics Data System (ADS)
Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.
2017-11-01
In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.
Durability and mechanical properties of silane cross-linked wood thermoplastic composites
Magnus Bengtsson; Nicole M. Stark; Kristiina Oksman
2007-01-01
In this study, silane cross-linked woodâpolyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked woodâ polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60%...
Ten-year performance of treated northeastern softwoods in aboveground and ground-contact exposures
Douglas M. Crawford; Rodney C. De Groot; Lee R. Gjovik
The commercial value of several softwood species of the northeastern United States could be increased if these woods could be treated to meet existing American Wood Preserversa Association (AWPA) Standards and used in durable structures. We evaluated the long-term durability of incised and unincised white pine, red pine, eastern spruce, balsam fir, and eastern hemlock...
Rodney C. De Groot; Douglas M. Crawford; Jack Norton; John Keith
2000-01-01
The durability of preservative-treated stakes of second-growth Coastal Douglas-fir was evaluated in a field plot in northern Queensland, Australia. Results from this field trial indicate that second-growth Douglas-fir can be treated with preservatives to meet Australian standards and will provide long-term durability in adverse environments. Data presented indicate...
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.
2007-01-01
Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-06-15
Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less
Synthesis and characterization of wollastonite glass-ceramics for dental implant applications.
Saadaldin, Selma A; Rizkalla, Amin S
2014-03-01
To synthesize a glass-ceramic (GC) that is suitable for non-metallic one-piece dental implant application. Three glasses in a SiO2-Al2O3-CaO-CaF2-K2O-B2O3-P2O5-CeO2-Y2O3 system were produced by wet chemistry. Differential thermal analysis (DTA) was carried out to determine the glass crystallization kinetic parameters and the heating schedules that were used for sintering of GCs. Crystalline phases and crystal morphologies were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Mechanical properties of the GCs were determined by ultrasonic and indentation tests and its machinability were evaluated. Chemical durability was carried out according to ISO 6872, whereas testing chemical degradation in tris buffered solution was executed according to ISO 10993-14. XRD of the GC specimens showed that wollastonite was the main crystalline with other secondary phases; GC2 had cristobalite as an additional phase. SEM of the GCs revealed dense acicular interlocking crystals. Young's modulus of elasticity (E), true hardness (Ho) and fracture toughness (KIC) of the GCs were 89-100GPa, 4.85-5.17GPa and 4.62-5.58MPam(0.5), respectively. All GCs were demonstrated excellent machinability. The GCs exhibited various chemical durability and degradation rates. KIC values of the GCs following chemical durability testing were not significantly different from those of the original materials (p>0.05). GC2 exhibited significantly higher KIC value compared with GC1 and GC3 (p<0.05) and its chemical durability satisfied ISO 6872 specification for dental ceramics. Wollastonite-cristobalite GC can be considered as a promising material for one-piece dental implant applications due to its strength, machinability and chemical durability. Copyright © 2014. Published by Elsevier Ltd.
Design, durability and low cost processing technology for composite fan exit guide vanes
NASA Technical Reports Server (NTRS)
Blecherman, S. S.
1979-01-01
A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two ventors, and fatigue test in dry and wet condition. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane.
An expert system for the evaluation of reinforced concrete structure durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berra, M.; Bertolini, L.; Briglia, M.C.
1999-11-01
A user-friendly expert system has been developed to evaluate primarily the durability of reinforced concrete structures, either in the design phase or during service life related to reinforcement corrosion. Besides the durability module, the ES has been provided with three other expert modules in order to support the user during the following activities: inspections, corrosion diagnosis and repair strategy (of concrete and reinforcement). Corrosion induced by carbonation and chlorides penetration and caused by concrete degradation such as sulfate attack, freeze/thaw cycles, alkali silica reaction are considered. The knowledge used for the expert system is based both on open literature andmore » international standards as well as on specific experiences and proprietary databases. The paper describes main features of the system, including the modeling of the knowledge, input data, the algorithms, the rules and the outputs for each module.« less
Discontinuously Stiffened Composite Panel under Compressive Loading
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Rivers, James M.; Chamis, Christos C.; Murthy, Pappu L. N.
1995-01-01
The design of composite structures requires an evaluation of their safety and durability under service loads and possible overload conditions. This paper presents a computational tool that has been developed to examine the response of stiffened composite panels via the simulation of damage initiation, growth, accumulation, progression, and propagation to structural fracture or collapse. The structural durability of a composite panel with a discontinuous stiffener is investigated under compressive loading induced by the gradual displacement of an end support. Results indicate damage initiation and progression to have significant effects on structural behavior under loading. Utilization of an integrated computer code for structural durability assessment is demonstrated.
ONYX versus n-BCA for embolization of cranial dural arteriovenous fistulas.
Rabinov, James David; Yoo, Albert J; Ogilvy, Christopher S; Carter, Bob S; Hirsch, Joshua A
2013-07-01
To evaluate the efficacy of n-butyl-2-cyanoacrylate (Trufill n-BCA) versus ethylene vinyl alcohol copolymer (ONYX) for the embolization of cranial dural arteriovenous fistulas (DAVF). Fifty-three consecutive patients with cranial dural AVF were treated with liquid embolic agents from November, 2003 to November, 2008. These 53 patients had 56 lesions treated with arterial embolization. Patients embolized to completion underwent follow-up angiography at 3 months to assess for durable occlusion. Twenty-one lesions were treated with n-BCA. Seven patients treated with n-BCA had initial angiographic occlusion of their DAVF, which were durable at 3 months. Six patients had adjunctive treatment with coils and/or polyvinyl alcohol particles, but none of these were occluded by endovascular treatment alone. Eleven patients underwent post-embolization surgery for closure of their DAVF. There was one death related to intractable status epilepticus at presentation. One patient developed a major stroke from venous sinus thrombosis after embolization. Thirty-five lesions were treated with ONYX in 34 patients. Twenty-nine patients treated with ONYX had initial angiographic occlusion of their DAVF by embolization alone. One patient had recurrence at 3 months and was re-treated out of 27 total follow-ups. Four patients underwent post-embolization surgical obliteration of their lesions. No deaths or major strokes occurred in this cohort. Initial angiographic occlusion (p=0.0004) and durable angiographic occlusion (p=0.0018) rates for embolization of cranial DAVF show a statistically significant higher efficacy with ONYX compared with n-BCA. Patients embolized with ONYX underwent surgery less frequently compared with those treated with n-BCA (p=0.0015).
NASA Astrophysics Data System (ADS)
Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu
2018-06-01
Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.
NASA Astrophysics Data System (ADS)
Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu
2018-05-01
Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.
Behavior Therapy for Pediatric Trichotillomania: A Randomized Controlled Trial
ERIC Educational Resources Information Center
Franklin, Martin E.; Edson, Aubrey L.; Ledley, Deborah A.; Cahill, Shawn P.
2011-01-01
Objective: To examine the efficacy and durability of a behavioral therapy (BT) protocol for pediatric TTM compared with a minimal attention control (MAC) condition. It was hypothesized that the BT condition would be superior to MAC at the end of acute treatment, and would also demonstrate durability of gains through the maintenance treatment…
Study on the durability of concrete using granulated blast furnace slag as fine aggregate
NASA Astrophysics Data System (ADS)
Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan
2018-03-01
In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.
Relative sliding durability of two candidate high temperature oxide fiber seal materials
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1991-01-01
A test program to determine the relative sliding durability of two candidate ceramic fibers for high temperature sliding seal applications is described. Pin on disk tests were used to evaluate potential seal materials. Friction during the tests and fiber wear, indicated by the extent of fibers broken in a test bundle or yarn, was measured at the end of a test. In general, friction and wear increase with test temperature. This may be due to a reduction in fiber strength, a change in the surface chemistry at the fiber/counterface interface due to oxidation, adsorption and/or desorption of surface species and, to a lesser extent, an increase in counterface surface roughness due to oxidation at elevated temperatures. The relative fiber durability correlates with tensile strength indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A simple model developed using dimensional analysis shows that the fiber durability is related to a dimensionless parameter which represents the ratio of the fiber strength to the fiber stresses imposed by sliding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.
1995-07-01
A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role thatmore » nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.« less
NASA Astrophysics Data System (ADS)
Rajczakowska, Magdalena; Łydżba, Dariusz
2016-03-01
This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young's modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.
NASA Astrophysics Data System (ADS)
Perron, Stacey
Harsh Canadian winters cause many problems in reinforced concrete structures due to damaging freezing-thawing cycles which is exacerbated by the heavy use of de-icing salts on roadways. Evaluation of concrete durability with current ASTM methods may give unreliable results and are destructive to the structure. A relatively new and novel approach to evaluating the durability of concrete uses A. C. Impedance Spectroscopy (ACIS). Hydrated cement paste (hcp), mortar, brick and vycor glass were evaluated using ACIS during drying-rewetting and freezing-thawing cycles. Thermal mechanical analysis (TMA), and differential scanning calorimetry (DSC) tests were also conducted and used as references. Results indicate that ACIS can be used to successfully evaluate the pore structure of hcp. The results from the drying-rewetting cycles are consistent with the pore coarsening theory. ACIS revealed pore structure changes consistent with the mechanical strains and pore solution chemistry. Increased pore continuity with each drying-rewetting cycle was indicated by a reduction in sample resistance. Unique tests were conducted on hydrated cement paste, mortar, brick and vycor glass that measured the ACIS and mechanical strains simultaneously while undergoing temperature changes. The temperature was lowered from 5°C to -80°C and then raised to +20°C. The ACIS results indicate that durability of the material can be assessed using the parameters R, material resistance, and phi, indicative of the frequency dispersion angle. The resistance on freezing values correlates with the amount of pore water freezing. The phi values on freezing are representative of the pore size distribution of the test sample. Resistance and phi data from freezing-thawing tests can be analyzed to assess durability of the sample. A material that is durable to freezing-thawing cycles can be described as having a high resistance at room temperature, a low freezing resistance and small changes in phi. Results were consistent among all the materials tested. Freezing-thawing tests were also conducted on specimens resaturated with salt solutions (5%, 10%, 15%). The results of these tests indicated a lower incipient freezing temperature, increase in pore blockage temperatures, and increased mobility of the pore water during freezing (increase in the change to phi). A series of test were conducted to evaluate the electrode polarization effects associated with the permittivity values at low frequencies. Teflon sheets were used to minimize the electrode polarization effects. It is shown that electrode polarization effects dominate over bulk polarization effects. Effects vary with the porosity of the material.
Regis B. Miller; Alex C. Wiedenhoeft; R. Sam Williams; Willy Stockman; Frederick Green
2003-01-01
The natural durability of 10 lesser known, commercially available Bolivian hardwoods to decay fungi was evaluated using a modified ASTM soil-block analysis for 12 weeks. The blocks were then retested for an additional 12 weeks to determine their level of decay resistance, as determined by percentage of weight loss. Astronium urundeuva, Caesalpinia cf. pluviosa,...
Combining Selective Pressures to Enhance the Durability of Disease Resistance Genes.
2016-01-01
The efficacy of disease resistance genes in plants decreases over time because of the selection of virulent pathogen genotypes. A key goal of crop protection programs is to increase the durability of the resistance conferred by these genes. The spatial and temporal deployment of plant disease resistance genes is considered to be a major factor determining their durability. In the literature, four principal strategies combining resistance genes over time and space have been considered to delay the evolution of virulent pathogen genotypes. We reviewed this literature with the aim of determining which deployment strategy results in the greatest durability of resistance genes. Although theoretical and empirical studies comparing deployment strategies of more than one resistance gene are very scarce, they suggest that the overall durability of disease resistance genes can be increased by combining their presence in the same plant (pyramiding). Retrospective analyses of field monitoring data also suggest that the pyramiding of disease resistance genes within a plant is the most durable strategy. By extension, we suggest that the combination of disease resistance genes with other practices for pathogen control (pesticides, farming practices) may be a relevant management strategy to slow down the evolution of virulent pathogen genotypes.
Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abumeri, Galib; Abdi, Frank
2012-02-16
The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less
Quantitative risk assessment of durable glass fibers.
Fayerweather, William E; Eastes, Walter; Cereghini, Francesco; Hadley, John G
2002-06-01
This article presents a quantitative risk assessment for the theoretical lifetime cancer risk from the manufacture and use of relatively durable synthetic glass fibers. More specifically, we estimate levels of exposure to respirable fibers or fiberlike structures of E-glass and C-glass that, assuming a working lifetime exposure, pose a theoretical lifetime cancer risk of not more than 1 per 100,000. For comparability with other risk assessments we define these levels as nonsignificant exposures. Nonsignificant exposure levels are estimated from (a) the Institute of Occupational Medicine (IOM) chronic rat inhalation bioassay of durable E-glass microfibers, and (b) the Research Consulting Company (RCC) chronic inhalation bioassay of durable refractory ceramic fibers (RCF). Best estimates of nonsignificant E-glass exposure exceed 0.05-0.13 fibers (or shards) per cubic centimeter (cm3) when calculated from the multistage nonthreshold model. Best estimates of nonsignificant C-glass exposure exceed 0.27-0.6 fibers/cm3. Estimates of nonsignificant exposure increase markedly for E- and C-glass when non-linear models are applied and rapidly exceed 1 fiber/cm3. Controlling durable fiber exposures to an 8-h time-weighted average of 0.05 fibers/cm3 will assure that the additional theoretical lifetime risk from working lifetime exposures to these durable fibers or shards is kept below the 1 per 100,000 level. Measured airborne exposures to respirable, durable glass fibers (or shards) in glass fiber manufacturing and fabrication operations were compared with the nonsignificant exposure estimates described. Sampling results for B-sized respirable E-glass fibers at facilities that manufacture or fabricate small-diameter continuous-filament products, from those that manufacture respirable E-glass shards from PERG (process to efficiently recycle glass), from milled fiber operations, and from respirable C-glass shards from Flakeglass operations indicate very low median exposures of 0, 0.0002, 0.007, 0.008, and 0.0025 fibers (or shards)/cm3, respectively using the NIOSH 7400 Method ("B" rules). Durable glass fiber exposures for various applications must be well characterized to ensure that they are kept below nonsignificant levels (e.g., 0.05 fibers/cm3) as defined in this risk assessment.
NASA Technical Reports Server (NTRS)
Smith, A. L.
1980-01-01
The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.
ERIC Educational Resources Information Center
Woods, Amanda M.; Bouton, Mark E.
2008-01-01
Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…
Documenting the Durability and Service Life of Pressure-treated Wood
Stan Lebow; Bessie Woodward; Patricia Lebow
2014-01-01
Estimates of service life are increasingly used to compare life cycle costs of building materials. Because of a lack of published data for treated wood, some users assume a relatively low service life for wood in comparison to alternative materials. Such bias against durable wood products may cause alternative materials to appear more economical. This paper discusses...
Comparative durability of timber bridges in the USA
James P. Wacker; Brian K. Brashaw
2017-01-01
As engineers begin to utilize life-cycle-cost design approaches for timber bridges, there is a necessity for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This national study was...
Serruys, Patrick W; Farooq, Vasim; Kalesan, Bindu; de Vries, Ton; Buszman, Pawel; Linke, Axel; Ischinger, Thomas; Klauss, Volker; Eberli, Franz; Wijns, William; Morice, Marie Claude; Di Mario, Carlo; Corti, Roberto; Antoni, Diethmar; Sohn, Hae Y; Eerdmans, Pedro; Rademaker-Havinga, Tessa; van Es, Gerrit-Anne; Meier, Bernhard; Jüni, Peter; Windecker, Stephan
2013-08-01
This study sought to report the final 5 years follow-up of the landmark LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) trial. The LEADERS trial is the first randomized study to evaluate biodegradable polymer-based drug-eluting stents (DES) against durable polymer DES. The LEADERS trial was a 10-center, assessor-blind, noninferiority, "all-comers" trial (N = 1,707). All patients were centrally randomized to treatment with either biodegradable polymer biolimus-eluting stents (BES) (n = 857) or durable polymer sirolimus-eluting stents (SES) (n = 850). The primary endpoint was a composite of cardiac death, myocardial infarction (MI), or clinically indicated target vessel revascularization within 9 months. Secondary endpoints included extending the primary endpoint to 5 years and stent thrombosis (ST) (Academic Research Consortium definition). Analysis was by intention to treat. At 5 years, the BES was noninferior to SES for the primary endpoint (186 [22.3%] vs. 216 [26.1%], rate ratio [RR]: 0.83 [95% confidence interval (CI): 0.68 to 1.02], p for noninferiority <0.0001, p for superiority = 0.069). The BES was associated with a significant reduction in the more comprehensive patient-orientated composite endpoint of all-cause death, any MI, and all-cause revascularization (297 [35.1%] vs. 339 [40.4%], RR: 0.84 [95% CI: 0.71 to 0.98], p for superiority = 0.023). A significant reduction in very late definite ST from 1 to 5 years was evident with the BES (n = 5 [0.7%] vs. n = 19 [2.5%], RR: 0.26 [95% CI: 0.10 to 0.68], p = 0.003), corresponding to a significant reduction in ST-associated clinical events (primary endpoint) over the same time period (n = 3 of 749 vs. n = 14 of 738, RR: 0.20 [95% CI: 0.06 to 0.71], p = 0.005). The safety benefit of the biodegradable polymer BES, compared with the durable polymer SES, was related to a significant reduction in very late ST (>1 year) and associated composite clinical outcomes. (Limus Eluted From A Durable Versus ERodable Stent Coating [LEADERS] trial; NCT00389220). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Field tack coat evaluator (ATACKer)
DOT National Transportation Integrated Search
2004-12-15
Asphalt tack coats are applied during pavement construction to ensure bond between pavement layers, thus providing a more durable pavement. A prototype tack coat evaluation device (TCED) was developed to evaluate the tensile and torque-shear strength...
Field tack coat evaluator (ATACKer).
DOT National Transportation Integrated Search
2004-12-14
Asphalt tack coats are applied during pavement construction to ensure bond between pavement layers, thus providing : a more durable pavement. A prototype tack coat evaluation device (TCED) was developed to evaluate the tensile and : torque-shear stre...
Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe
2014-02-22
Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.
2014-01-01
Background Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. Results The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. Conclusions This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens. PMID:24559060
Importance of microscopy in durability studies of solidified and stabilized contaminated soils
Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.
1999-01-01
Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or archived in a laboratory, warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.
Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M
2015-01-01
Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.
Durability Testing of Commercial Ceramic Materials
NASA Technical Reports Server (NTRS)
Schienle, J. L.
1996-01-01
Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.
Takahashi, Shuntaro; Chiba, Hiroshi; Kato, Takashi; Endo, Shota; Hayashi, Takehiro; Todoroki, Naoto; Wadayama, Toshimasa
2015-07-28
The oxygen reduction reaction (ORR) activity and durability of various Au(x)/Pt100 nanoparticles (where x is the atomic ratio of Au against Pt) are evaluated herein. The samples were fabricated on a highly-oriented pyrolytic graphite substrate at 773 K through sequential arc-plasma depositions of Pt and Au. The electrochemical hydrogen adsorption charges (electrochemical surface area), particularly the characteristic currents caused by the corner and edge sites of the Pt nanoparticles, decrease with increasing Au atomic ratio (x). In contrast, the specific ORR activities of the Au(x)/Pt100 samples were dependent on the atomic ratios of Pt and Au: the Au28/Pt100 sample showed the highest specific activity among all the investigated samples (x = 0-42). As for ORR durability evaluated by applying potential cycles between 0.6 and 1.0 V in oxygen-saturated 0.1 M HClO4, Au28/Pt100 was the most durable sample against the electrochemical potential cycles. The results clearly showed that the Au atoms located at coordinatively-unsaturated sites, e.g. at the corners or edges of the Pt nanoparticles, can improve the ORR durability by suppressing unsaturated-site-induced degradation of the Pt nanoparticles.
Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres.
Osmond-McLeod, Megan J; Poland, Craig A; Murphy, Fiona; Waddington, Lynne; Morris, Howard; Hawkins, Stephen C; Clark, Steve; Aitken, Rob; McCall, Maxine J; Donaldson, Ken
2011-05-13
It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. © 2011 Osmond-McLeod et al; licensee BioMed Central Ltd.
Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres
2011-01-01
Background It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. Results After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. Conclusions These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. PMID:21569450
d-Cycloserine enhances durability of social skills training in autism spectrum disorder.
Wink, Logan K; Minshawi, Noha F; Shaffer, Rebecca C; Plawecki, Martin H; Posey, David J; Horn, Paul S; Adams, Ryan; Pedapati, Ernest V; Schaefer, Tori L; McDougle, Christopher J; Swiezy, Naomi B; Erickson, Craig A
2017-01-01
d-Cycloserine (DCS) enhances extinction learning across species, but it has proven challenging to identify consistent benefit of DCS when added to therapeutic interventions. We conducted a placebo-controlled trial of DCS to potentiate social skills training in autism spectrum disorder (ASD) but found substantial improvement in both the DCS and placebo groups at the conclusion of active treatment. Here, we assess the impact of DCS 11 weeks following active treatment to evaluate the impact of DCS on treatment response durability. Study participants included 60 outpatient youth with ASD, ages 5-11 years, all with IQ above 70, and significantly impaired social functioning who completed a 10-week active treatment phase during which they received weekly single doses of 50 mg of DCS or placebo administered 30 min prior to group social skills training. Following the 10-week active treatment phase, blinded follow-up assessments occurred at week 11 and week 22. The primary outcome measure for our durability of treatment evaluation was the parent-rated social responsiveness scale (SRS) total raw score at week 22. Analysis of the SRS total raw score demonstrated significant decrease for the DCS group compared to the placebo group ( p = 0.042) indicating greater maintenance of treatment effect in the DCS group. DCS was well tolerated, with irritability being the most frequently reported adverse effect in both groups. The findings of this study suggest that DCS may help youth with ASD to maintain skills gained during sort-term social skills training. Larger-scale studies with longer follow-up will be necessary to further understand the long-term impact of DCS paired with structured social skills training. ClinicalTrials.gov, NCT01086475.
Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Cantrell, Gidget
1994-01-01
Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura
2016-01-01
Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura
2015-11-01
Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.
Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2017-10-01
To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.
NASA Astrophysics Data System (ADS)
Qu, Jing
Conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. These polymers provide an improved interface compared to metal and semiconducting electrodes because of their ionic conductivity, relatively lower stiffness, and ability to incorporate biological molecules. Even though the signal transfer and biocompatibility of conjugated polymers are superior compared as the biointerfacing materials, the durability has been the weakest part for the long-term applications. Even though some efforts have been made to improve the durability of conjugated polymers, little quantitative information of the improved cohesion, adhesion and durability has been reported. In this thesis, the methods of improving the durability of conjugated polymer films, especially PEDOT, were investigated, including alternating the processing methods and components in synthesis. The 7-month in vivo testing showed that the durability of PEDOT films still needed to be improved. As a coating for biosignal transfer, the cohesion, adhesion and electrochemical stability of PEDOT are vital to determine the long-term performance. Not much information hd been developed around the cohesion and adhesion. A thin film cracking method was developed to measure the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effectiveness of crosslinker and adhesion promoter was demonstrated by this method. It was shown that 5 mole% addition of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). With the modification of EDOT-acid to the surface of stainless steel substrate, the interfacial shear strength was improved from 11.8 MPa to 32.5 MPa. To correlate the adhesion with the durability of PEDOT coatings, a tribology test was introduced. It was found that the durability of PEDOT on Au electrode was much exceptionally good, and even better than the adhesion promoted coatings with EDOT-acid on stainless steel and ITO substrates. The characterization method developed in this thesis made a critical difference in systematically comparing different materials, and provided valuable information for materials development and selection.
The central role of wood biology in understanding the durability of wood-coating interactions
Alex C. Wiedenhoeft
2007-01-01
To design effectively for durability, one must actively and honestly assess the material properties and limitations of each of the components in the design system; wood or wood composite, and the coating. Inasmuch as wood coatings are manufactured to specified tolerances from known materials, we have control of that component of the system. Compared to manmade...
Durability of one-part polyurethane bonds to wood improved by HMR coupling agent
Charles B. Vick; E. Arnold Okkonen
2000-01-01
In a previous study on the strength and durability of a new class of wood adhesives called one-part polyurethanes, four commercial one-part polyurethanes, along with a resorcinol-formaldehyde adhesive representing a standard of performance, were compared in bonds to yellow birch and Douglas-fir in a series of industry-accepted tests (7). The polyurethanes all performed...
Recent advances in the mechanical durability of superhydrophobic materials.
Milionis, Athanasios; Loth, Eric; Bayer, Ilker S
2016-03-01
Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. Copyright © 2015 Elsevier B.V. All rights reserved.
MSW fly ash stabilized with coal ash for geotechnical application.
Kamon, M; Katsumi, T; Sano, Y
2000-09-15
The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.
Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting
2013-01-01
Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247
NASA Astrophysics Data System (ADS)
Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru
2018-03-01
The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.
NASA Astrophysics Data System (ADS)
Kolisko, Jiri; Balík, Lukáš; Kostelecka, Michaela; Pokorný, Petr
2017-09-01
HSC (High Strength Concrete) is increasingly used for bearing bridge structures nowadays. Bridge structures in the Czech Republic are exposed to severe conditions in winter time and durability of the concrete is therefore a crucial requirement. The high strength and low water absorption of HSC suggests that the material will have high durability. However, the situation may not be so straightforward. We carried out a study of the very poor durability of HSC concrete C70/85 used to produce prestresed beams 37.1 m in length to build a 6-span highway bridge. After the beams were cast, a production control test indicated some problems with the durability of the concrete. There was a danger that 42 of the beams would not be suitable for use. All participants in the bridge project finally decided, after extensive discussions, to attempt to improve the durability of the concrete by applying a hydrophobic agent. Paper will present the results of comparative tests of four hydrophobic agents in order to choose one for real application and describes this application on construction site.
A review of polymer electrolyte membrane fuel cell durability test protocols
NASA Astrophysics Data System (ADS)
Yuan, Xiao-Zi; Li, Hui; Zhang, Shengsheng; Martin, Jonathan; Wang, Haijiang
Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.
Freeze-thaw durability of microwave cured air-entrained concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pheeraphan, T.; Leung, C.K.Y.
1997-03-01
The strength development of concrete can be greatly accelerated by curing with microwave energy. Microwave curing can therefore be beneficial to construction operations such as concrete precasting and repair. To provide freeze-thaw durability for infrastructure applications, air entrainment has to be introduced. In this investigation, the freeze-thaw resistance of microwave cured air-entrained concrete is measured, and compared to that of air-entrained concrete under normal curing. Their compressive strength at 14 days and air-void characteristics are also measured and compared. The test results indicate that microwave curing can impair the freeze-thaw durability of high w/c concrete but not for low w/cmore » concrete. Also, under microwave curing, the decrease in strength due to air entrainment becomes more significant. Based on these observations, it is recommended that for microwave cured air-entrained concrete, a low w/c ratio should be employed.« less
Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate
Yuan, Xiongzhou; Xu, Weiting; Sun, Wei; Xing, Feng; Wang, Weilun
2015-01-01
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
Generator Set Durability Testing Using 25% ATJ Fuel Blend
2016-02-01
Table Page Table 1. Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 3 Table 2... Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 4 Table 3. Chemical & Physical...Properties of Evaluated 25% ATJ Blend .................................................... 5 Table 4. Chemical & Physical Properties of Evaluated 25
Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.
2003-01-01
This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.
Can melamine-based wood primers help in understanding bonded wood durability?
Charles R. Frihart; Jermal G. Chandler
2006-01-01
Melamineâformaldehyde adhesives form wood bonds with exterior durability, and the melamine is more easily studied because of its significant nitrogen content (compared with the lack of nitrogen in wood components). In addition, some melamineâformaldehyde chemicals reduce wood swelling [6], enter into wood cell walls [7], and strengthen them [8]. This information led to...
Vlachojannis, Georgios J; Smits, Pieter C; Hofma, Sjoerd H; Togni, Mario; Vázquez, Nicolás; Valdés, Mariano; Voudris, Vassilis; Slagboom, Ton; Goy, Jean-Jaques; den Heijer, Peter; van der Ent, Martin
2017-06-26
This analysis investigates the 5-year outcomes of the biodegradable polymer biolimus-eluting stent (BP-BES) and durable polymer everolimus-eluting stent (DP-EES) in an all-comers population undergoing percutaneous coronary intervention. Recent 1- and 3-year results from randomized trials have indicated similar safety and efficacy outcomes of BP-BES and DP-EES. Whether benefits of the biodegradable polymer device arise over longer follow-up is unknown. Moreover, in-depth, prospective, long-term follow-up data on metallic drug-eluting stents with durable or biodegradable polymers are scarce. The COMPARE II trial (Abluminal Biodegradable Polymer Biolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent) was a prospective, randomized, multicenter, all-comers trial in which 2,707 patients were randomly allocated (2:1) to BP-BES or DP-EES. The pre-specified endpoint at 5 years was major adverse cardiac events, a composite of cardiac death, nonfatal myocardial infarction, or target vessel revascularization. Five-year follow-up was available in 2,657 patients (98%). At 5 years, major adverse cardiac events occurred in 310 patients (17.3%) in the BP-BES group and 142 patients (15.6%) in the DP-EES group (p = 0.26). The rate of the combined safety endpoint all-cause death or myocardial infarction was 15.0% in the BP-BES group versus 14.8% in the DP-EES group (p = 0.90), whereas the efficacy measure target vessel revascularization was 10.6% versus 9.0% (p = 0.18), respectively. Interestingly, definite stent thrombosis rates did not differ between groups (1.5% for BP-BES vs. 0.9% for DP-EES; p = 0.17). The 5-year analysis comparing biodegradable polymer-coated BES and the durable polymer-coated EES confirms the initial early- and mid-term results regarding similar safety and efficacy outcomes in this all-comers percutaneous coronary intervention population. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Durability of Ti-6Al-4V/LaRC-PETI-5 adhesive bonded system for HSCT applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvatareddy, H.; Pasricha, A.; Dillard, D.A.
1996-12-31
Structural adhesive joints are being widely used and studied as alternatives to conventional fasteners in the aerospace, automotive, and other industries. Adhesive bonding offers advantages such as lower weight and lower manufacturing costs. Furthermore, high performance adhesives which are currently being synthesized (e.g. epoxies, phenolics, acrylics, thermoplastic polyimides) offer other useful properties such as higher modulus, higher toughness, and stability at high temperatures. In the present study, the durability of the Ti-6Al-4V/LaRC PETI-5 adhesive bonded system is being evaluated utilizing double cantilever beam (DCB) fracture specimens. These DCB tests have been used extensively to study adhesive joints. The current studymore » is part of a comprehensive study to develop a durable material system for application in the proposed mach 2.4 high speed civil transport (HSCT) aircraft. According to the design criteria, the material system to be used on the aircraft should be durable for over 60,000 hours of flight encountering temperatures during flight in the range of 177{degrees}C. Physical aging and chemical aging of the adhesive material are some of the important issues which have to be evaluated and taken into consideration for predicting the bond durability. In order to simulate the service environment conditions of the HSCT, the Ti-6Al-4V/LaRC PETI-5 bonds were aged in one of three temperatures; 150, 177, and 204{degrees}C, at one of three different environments; atmospheric air, and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa).« less
Improving degradation resistance of sisal fiber in concrete through fiber surface treatment
NASA Astrophysics Data System (ADS)
Wei, Jianqiang; Meyer, Christian
2014-01-01
As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.
Quantitative models for aggregate: some types and examples from Oklahoma carbonate rocks
Bliss, James D.
1999-01-01
Evaluation of data for three engineering variable--absorption, bulk specific gravity, and freeze-thaw durability (350 cycles)--was made for quarries in carbonate rocks in Oklahoma that supply aggregate. It was found that lower Palrozoic carbonate rocks (Cambrian through Devonian) are likely to make a better quality aggregate than upper Paleozoic (Mississippian to Permian) carbonate rocks. In addition, freeze-thaw durability can be forecast from absorption and is exemplary for lower Paleozoic carbonate rocks.
The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials
NASA Technical Reports Server (NTRS)
Reuter, L. L.; Munson, J. B.
1977-01-01
Five Kevlar based laminates and three Kevlar based coated materials were designed, hand made, and tested against comparative conventional Dacron based materials for strength, peel, tear, puncture, creases, and handle. Emphasis was placed on evaluating geometric orientation of constituents, use of elastomeric film in place of high modulus films, and the use of flying thread loom bias reinforcement of Kevlar yarns. Whereas, the performance of the Kevlar laminates was severely degraded by crease effects, significant gains in overall performance factors were shown for the coated Kevlar materials.
Analysis on mechanics response of long-life asphalt pavement at moist hot heavy loading area
NASA Astrophysics Data System (ADS)
Xu, Xinquan; Li, Hao; Wu, Chuanhai; Li, Shanqiang
2018-04-01
Based on the durability of semi-rigid base asphalt pavement test road in Guangdong Yunluo expressway, by comparing the mechanics response of modified semi-rigid base, RCC base and inverted semi-rigid base with the state of continuous, using four unit five parameter model to evaluate rut depth of asphalt pavement structure, and through commonly used fatigue life prediction model to evaluate fatigue performance of three types of asphalt pavement structure. Theoretical calculation and four years tracking observation results of test road show that rut depth of modified semi-rigid base asphalt pavement is the minimum, the road performance is the best, and the fatigue performance is the optimal.
Evaluation of alternative snowplowable markers and snowplowing procedures.
DOT National Transportation Integrated Search
2013-06-01
The objectives of this study were to investigate viable alternatives to the currently approved snowplowable raised pavement marker and alternative methods and equipment used to snowplow roadways. The study included evaluating any potential durable an...
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.
1998-01-01
Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.
1998-01-01
Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Quenouille, J; Paulhiac, E; Moury, B; Palloix, A
2014-06-01
The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.
Brown, Philip S.; Bhushan, Bharat
2015-01-01
Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716
TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.
Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V
2017-08-01
Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.
Leivo, Joni; Virjula, Sanni; Vanhatupa, Sari; Kartasalo, Kimmo; Kreutzer, Joose; Miettinen, Susanna; Kallio, Pasi
2017-07-01
Polydimethylsiloxane (PDMS) is widely used in dynamic biological microfluidic applications. As a highly hydrophobic material, native PDMS does not support cell attachment and culture, especially in dynamic conditions. Previous covalent coating methods use glutaraldehyde (GA) which, however, is cytotoxic. This paper introduces a novel and simple method for binding collagen type I covalently on PDMS using ascorbic acid (AA) as a cross-linker instead of GA. We compare the novel method against physisorption and GA cross-linker-based methods. The coatings are characterized by immunostaining, contact angle measurement, atomic force microscopy and infrared spectroscopy, and evaluated in static and stretched human adipose stem cell (hASC) cultures up to 13 days. We found that AA can replace GA as a cross-linker in the covalent coating method and that the coating is durable after sonication and after 6 days of stretching. Furthermore, we show that hASCs attach and proliferate better on AA cross-linked samples compared with physisorbed or GA-based methods. Thus, in this paper, we provide a new PDMS coating method for studying cells, such as hASCs, in static and dynamic conditions. The proposed method is an important step in the development of PDMS-based devices in cell and tissue engineering applications. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Schaffer, Jeremy E.; Nauman, Eric A.; Stanciu, Lia A.
2012-08-01
Yield strengths exceeding 1 GPa with elastic strains exceeding 1 pct were measured in novel bioabsorbable wire materials comprising high-purity iron (Fe), manganese (Mn), magnesium (Mn), and zinc (Zn), which may enable the development of self-expandable, bioabsorbable, wire-based endovascular stents. The high strength of these materials is attributed to the fine microstructure and fiber textures achieved through cold drawing techniques. Bioabsorbable vascular stents comprising nutrient metal compositions may provide a means to overcome the limitations of polymer-based bioabsorbable stents such as excessive strut thickness and poor degradation rate control. Thin, 125- μm wires comprising combinations of ferrous alloys surrounding a relatively anodic nonferrous core were manufactured and tested using monotonic and cyclic techniques. The strength and durability properties are tested in air and in body temperature phosphate-buffered saline, and then they were compared with cold-drawn 316L stainless steel wire. The antiferromagnetic Fe35Mn-Mg composite wire exhibited more than 7 pct greater elasticity (1.12 pct vs 1.04 pct engineering strain), similar fatigue strength in air, an ultimate strength of more than 1.4 GPa, and a toughness exceeding 35 mJ/mm3 compared with 30 mJ/mm3 for 316L.
Fukunishi, Miya; Inoue, Yuuki; Morisaki, Hirobumi; Kuwata, Hirotaka; Ishihara, Kazuhiko; Baba, Kazuyoshi
The aim of this study was to examine the ability of a poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butylmethacrylate-co-2-methacryloyloxyethyloxy-p-azidobenzoate) (PMBPAz) coating on polymethyl methacrylate (PMMA)-based dental resin to inhibit bacterial plaque formation, as well as the polymer's durability against water soaking and chemical exposure. Successful application of PMBPAz on PMMA surfaces was confirmed by x-ray photoelectron spectroscopy (XPS) and measuring the static air contact angle in water. The anti-adhesive effects to bacterial plaque were evaluated using Streptococcus mutans biofilm formation assay. The mechanical and chemical durabilities of the PMBPAz coating on the PMMA surfaces were examined using soaking and immersion tests, respectively. XPS signals for phosphorus and nitrogen atoms and hydrophilic status on PMMA surfaces treated with PMBPAz were observed, indicating the presence of the polymer on the substrates. The treated PMMA surfaces showed significant inhibition of S mutans biofilm formation compared to untreated surfaces. The PMBPAz coating was preserved after water soaking and chemical exposure. In addition, water soaking did not decrease the ability of treated PMMA to inhibit biofilm formation compared to treated PMMA specimens not subjected to water soaking. This study suggests that PMBPAz coating may represent a useful modification to PMMA surfaces for inhibiting denture plaque accumulation.
NASA Technical Reports Server (NTRS)
Stanic, Vesna; Braun, James; Hoberecht, Mark
2003-01-01
Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of MEAs out of the nine total membranes failed the test. The evaluation results showed that fuel cell operating conditions (current, pressure, stoichiometric flow rates) were the parameters that influenced the durability of MEAs. In addition, the durability test results indicated that the type of membrane was also an important parameter for MEA durability. At accelerated test conditions, the MEAs with casted membranes failed during the 400 hour test. However, the MEAs prepared from the casted membrane with support as well as extruded membranes, both passed the 400h durability test at accelerated operating test conditions. As a result of the MEA accelerated durability tests, four MEAs were selected for further endurance testing. These tests are being carried out with four-cell stacks under nominal fuel cell operating conditions.
Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming
2016-01-01
In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
NASA Technical Reports Server (NTRS)
Sumner, I. E.; Ruckle, D. L.
1980-01-01
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.
This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvementsmore » are needed to meet chemical durability requirements.« less
Evaluation of Automobile Drivetrain Components to Improve Fuel Economy
DOT National Transportation Integrated Search
1979-03-01
Wide ratio range automatic transmissions with lockup torque converters could be in production by the early 1980's. In order to evaluate their impact upon fuel economy, emissions, driveability, acceleration, and durability, four 1975 Chrysler automobi...
Evaluating performance-based test and specifications for sulfate resistance in concrete
DOT National Transportation Integrated Search
2000-12-01
This research project involved an experimental evaluation of the sulfate resistance of various concretes and mortars for the purpose of establishing performance-based specifications for the durability of concrete against sulfate attack. The research ...
Evaluation of Durisol Sound Wall
DOT National Transportation Integrated Search
2000-08-01
The purpose of this final report is to evaluate the durability of Durisol noise barriers constructed in Lehigh County, Lancaster County, and Delaware County. The noise barriers constructed in each of the three counties were manufactured by one of thr...
Toward improved durability in advanced aircraft engine hot sections
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E. (Editor)
1989-01-01
The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.
The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The
Effects from the Reduction of Air Leakage on Energy and Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hun, Diana E.; Childs, Phillip W.; Atchley, Jerald Allen
2014-01-01
Buildings are responsible for approximately 40% of the energy used in the US. Codes have been increasing building envelope requirements, and in particular those related to improving airtightness, in order to reduce energy consumption. The main goal of this research was to evaluate the effects from reductions in air leakage on energy loads and material durability. To this end, we focused on the airtightness and thermal resistance criteria set by the 2012 International Energy Conservation Code (IECC).
Wang, Yue; Gregory, Cherry; Minor, Mark A
2018-06-01
Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.
Durability of coconut shell powder (CSP) concrete
NASA Astrophysics Data System (ADS)
Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.
2017-11-01
The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.
Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash
2015-01-01
Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications. PMID:26421315
Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash
2015-01-01
Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.
Strength analysis of aged polymer composites subjected to tensile loads
NASA Astrophysics Data System (ADS)
Valesyan, S.
2018-04-01
It follows from the obtained data that the change of durability of the getinacks in stretching significantly depends on the pressing pressure value both at the age of 1 year and at the age of 4 years. According to the data, in the case of samples of the first series, the ageing has not practically affected the durability of getinacks in stretching. In the case of samples of other series, the increase of age from 1 year to 4 years results in an increase of the getinacks durability, in particular, the increase is about 9% for the third series. Comparing the values of failure tensile stresses given in the handbook of electrotechnics materials [1] with the data obtained by experimental investigation of aged glass textolite (GFRP composite-laminate) with the woven fiber orientation 0° and 90°, one can see a corresponding increase by approximately 25% and 35%. The test results are approximated and compared with the experimental data. The corresponding figures are plotted on the basis of these data.
A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes
Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi
2015-01-01
Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045
A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.
Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi
2015-11-23
Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.
Ias'kov, I M; Troshin, V P; Kirillov, S K; Korolev, A A; Martynovich, A I
2008-01-01
The article reviews the research work of the authors on the strength properties of the mucous membrane of the stomach in patients with peptic ulcer and in experiment with quamatel application. Experiments were performed in laboratory animals and resected stomachs of patients with duodenal or stomach ulcer and complications requiring scheduled surgical treatment. The results of the research into the maximum tension (durability) of the stomach mucous membrane, antrum, and the periulcer area are described. For both localizations of the ulcer, the mucous membrane of the antrum was found to exhibit the least durability, while the highest durability was exhibited by the mucous membrane of the periulcer area. In the case of bulbar ulcer, the durability of the mucous membrane was shown to decrease with an increase in the number of aggravations. An inverse relationship between the strength properties and the intensity of hydrochloric acid production was observed.
Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure
Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne
2013-01-01
The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamentalmore » materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.« less
2018-01-01
ABSTRACT Induction of broadly cross-reactive antiviral humoral responses with the capacity to target globally diverse circulating strains is a key goal for HIV-1 immunogen design. A major gap in the field is the identification of diverse HIV-1 envelope antigens to evaluate vaccine regimens for binding antibody breadth. In this study, we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic and geographic diversity to cover the global epidemic, with a focus on sexually acquired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique antigenicity was determined by nonredundancy (Spearman correlation), and antigens were clustered using partitioning around medoids (PAM) to identify antigen diversity. Cross-validation demonstrated that the PAM method was better than selection by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding antibody in longitudinal samples from the RV144 clinical trial revealed the striking heterogeneity among individual vaccinees in maintaining durable responses. These data support the idea that a major goal for vaccine development is to improve antibody levels, breadth, and durability at the population level. Elucidating the level and durability of vaccine-elicited binding antibody breadth needed for protection is critical for the development of a globally efficacious HIV vaccine. IMPORTANCE The path toward an efficacious HIV-1 vaccine will require characterization of vaccine-induced immunity that can recognize and target the highly genetically diverse virus envelope glycoproteins. Antibodies that target the envelope glycoproteins, including diverse sequences within the first and second hypervariable regions (V1V2) of gp120, were identified as correlates of risk for the one partially efficacious HIV-1 vaccine. To build upon this discovery, we experimentally and computationally evaluated humoral responses to define envelope glycoproteins representative of the antigenic diversity of HIV globally. These diverse envelope antigens distinguished binding antibody breadth and durability among vaccine candidates, thus providing insights for advancing the most promising HIV-1 vaccine candidates. PMID:29386288
Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL
Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle
Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion
NASA Astrophysics Data System (ADS)
Udegbunam, Ogechukwu Christian
Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods were then used to determine the service life of the structure.
Cloughesy, Timothy F; Landolfi, Joseph; Vogelbaum, Michael A; Ostertag, Derek; Elder, James B; Bloomfield, Stephen; Carter, Bob; Chen, Clark C; Kalkanis, Steven N; Kesari, Santosh; Lai, Albert; Lee, Ian Y; Liau, Linda M; Mikkelsen, Tom; Nghiemphu, Phioanh; Piccioni, David; Accomando, William; Diago, Oscar R; Hogan, Daniel J; Gammon, Dawn; Kasahara, Noriyuki; Kheoh, Thian; Jolly, Douglas J; Gruber, Harry E; Das, Asha; Walbert, Tobias
2018-05-12
Vocimagene amiretrorepvec (Toca 511) is an investigational gamma-retroviral replicating vector encoding cytosine deaminase that, when used in combination with extended-release 5-fluorocytosine (Toca FC), results preclinically in local production of 5-fluorouracil, depletion of immune-suppressive myeloid cells, and subsequent induction of anti-tumor immunity. Recurrent high grade glioma (rHGG) patients have a high unmet need for effective therapies that produce durable responses lasting more than 6 months. In this setting, relapse is nearly universal and most responses are transient. In this Toca 511 ascending-dose phase I trial (NCT01470794), HGG patients who recurred after standard of care underwent surgical resection, received Toca 511 injected into resection cavity wall followed by orally administered cycles of Toca FC. Among 56 patients, durable complete responses were observed. A subgroup was identified based on Toca 511 dose and entry requirements for the follow-up phase III study. In this subgroup, which included both IDH1-mutant and -wildtype tumors, the durable response rate is 21.7%. Median duration of follow-up for responders is 35.7+ months. As of August 25, 2017, all responders remain in response and are alive, 33.9+ to 52.2+ months after Toca 511 administration, suggesting a positive association of durable response with overall survival. Multi-year durable responses have been observed in rHGG patients treated with Toca 511 & Toca FC in a phase I trial and the treatment will be further evaluated in a randomized phase III trial. Among IDH1 mutant patients treated at first recurrence, there may be an enrichment of complete responders.
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-01-01
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875
Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N
2016-06-15
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.
Shimoda, Masashi; Miyoshi-Takai, Maiko; Irie, Shintaro; Tanabe, Akihito; Obata, Atsushi; Okauchi, Seizo; Hirukawa, Hidenori; Kimura, Tomohiko; Kohara, Kenji; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki
2017-01-01
Dipeptidyl peptidase-4 (DPP-4) inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m 2 ) but not in the nonobese group (BMI < 25 kg/m 2 ). These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.
Bond durability of universal adhesive to bovine enamel using self-etch mode.
Suzuki, Soshi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Sai, Keiichi; Takimoto, Masayuki; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi
2018-04-01
The purpose of this study was to examine the enamel bond durability of universal adhesives in the self-etch mode under 2-year water storage and thermal cycling conditions. Three commercially available universal adhesives and a gold standard two-step self-etch adhesive were used. Ten specimens of bovine enamel were prepared per test group, and shear bond strength (SBS) was measured to determine the bonding durability after thermal cycling (TC) or long-term water storage (WS). The bonded specimens were divided into three groups: (1) specimens subjected to TC, where the bonded specimens were stored in 37 °C distilled water for 24 h before being subjected to 3000, 10,000, 20,000 or 30,000 TC; (2) specimens stored in 37 °C distilled water for 3 months, 6 months, 1 year or 2 year; and (3) specimens stored in 37 °C distilled water for 24 h, serving as a baseline. The two-step self-etch adhesive showed significantly higher SBS than the universal adhesives tested, regardless of the type of degradation method. All universal adhesives showed no significant enamel SBS reductions in TC and WS, when compared to baseline and the other degradation conditions. Compared to the bond strengths obtained with the two-step self-etch adhesive, significantly lower bond strengths were obtained with universal adhesives. However, the enamel bond durability of universal adhesives was relatively stable under both degradation conditions tested. The present data indicate that the enamel bond durability of universal adhesives in the self-etch mode might be sufficient for clinical use.
Combined doxorubicin and cyclophosphamide chemotherapy for nonresectable feline fibrosarcoma.
Barber, L G; Sørenmo, K U; Cronin, K L; Shofer, F S
2000-01-01
A retrospective evaluation was performed on 12 cats with nonresectable, histopathologically confirmed fibrosarcomas that were treated with doxorubicin and cyclophosphamide chemotherapy. All of the tumors were located in sites potentially used for vaccination. Six cats had a greater than 50% decrease in gross tumor burden. However, the responses were not durable, with a median response duration of 125 days. All cats developed progressive disease. When animals that received other treatments after doxorubicin-based chemotherapy were eliminated from the analysis, median survival time was significantly longer for cats that responded to chemotherapy compared with the median survival time for nonresponders (242 and 83 days, respectively). These findings may serve as a basis for further evaluating the role of chemotherapy in the treatment of vaccine-associated sarcomas.
Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura
2016-01-01
We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533
Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.
2010-01-01
Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478
Volvo Penta 4.3 GL E15 Emissions and Durability Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoubul, G.; Cahoon, M.; Kolb, R.
2011-10-01
A new Volvo Penta carbureted 4.3 GL engine underwent emissions and dynamometer durability testing from break-in to expected end of life using an accelerated ICOMIA marine emissions cycle and E15 fuel. Only ethanol content was controlled. All aging used splash-blended E15 fuel. Exhaust emissions, exhaust gas temperature, torque, power, barometric pressure, air temperature, and fuel flow were measured at five intervals using site-blended E15 aging fuel and certification fuel (E0). The durability test cycle showed no noticeable impact on mechanical durability or engine power. Emissions performance degraded beyond the certification limit for this engine family, mostly occurring by 28% ofmore » expected life. Such degradation is inconsistent with prior experience. Comparisons showed that E15 resulted in lower CO and HC, but increased NOX, as expected for non-feedback-controlled carbureted engines with increased oxygen in the fuel. Fuel consumption also increased with E15 compared with E0. Throughout testing, poor starting characteristics were exhibited on E15 fuel for hot re-start and cold-start. Cranking time to start and smooth idle was roughly doubled compared with typical E0 operation. The carburetor was factory-set for lean operation to ensure emissions compliance. Test protocols did not include carburetor adjustment to account for increased oxygen in the E15 fuel.« less
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.
1999-01-01
Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linard, Joshua; Hall, Steve
9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprapmore » was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D 50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D 50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D 50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability classifications are further explained in Section 9.4.2.2.« less
Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.
Timm, Richard W; Asher, Ryan M; Tellio, Karalyn R; Welling, Alissa L; Clymer, Jeffrey W; Amaral, Joseph F
2014-01-01
Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5-7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1-7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5-7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Sealing 5-7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5-7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5-7 mm vessels are shown to be reliable and durable in in vivo preclinical studies.
Chung, Woo Jin; Nguyen, Dinh Duc; Bui, Xuan Thanh; An, Sang Woo; Banu, J Rajesh; Lee, Sang Moon; Kim, Sung Su; Moon, Dea Hyun; Jeon, Byong Hun; Chang, Soon Woong
2018-05-01
In this study, a magnetically separable, highly active, and recyclable photocatalyst was synthesized by physico-chemical incorporation of Ag, TiO 2 , and Fe 3 O 4 into one structure. The physical and chemical properties of the catalysts were evaluated by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, and diffuse reflectance spectroscopy. The Ag-supported magnetic TiO 2 composite demonstrated desirable properties and features such as a narrow band gap of 1.163 eV, modifiable structure, and high degradation efficiency. The activity and durability of the synthesized photocatalyst in the degradation of methyl orange (MO) in aqueous solutions under visible light irradiation and different experimental conditions were evaluated and compared to those of commercial TiO 2 and Ag/TiO 2 composites. It was found that the synthesized composite showed a much higher MO photodegradation efficiency than the other composites under visible light irradiation. Moreover, it exhibited a high photocatalytic activity and was recoverable and durable; its photocatalytic efficiency in MO removal was consistently higher than 93.1% after five reuses without any evident signs of deactivation. Thus, the developed photocatalyst is a very promising material for practical applications in environmental pollution remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Field evaluation of skid resistant surfaces : final report : part I.
DOT National Transportation Integrated Search
1970-06-01
This project was undertaken to establish a thin bituminous surface course that would possess good skid resistant qualities as well as, being both economical and durable. : This is the final report on the evaluation of skid resistant surfaces which wa...
40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... manufacturer's engineering evaluation of appropriate high-altitude emission testing, all light-duty vehicles..., development tests, or other appropriate information and good engineering judgment. (2) Evaporative/Refueling... manufacturer's engineering evaluation of appropriate testing and/or design parameters, all light-duty vehicles...
NASA Technical Reports Server (NTRS)
Sood, Bhanu; Evans, John; Daniluk, Kelly; Sturgis, Jason; Davis, Milton; Petrick, David
2017-01-01
In this reliability life cycle evaluation of the SpaceCube 2.0 processor card, a partially populated version of the card is being evaluated to determine its durability with respect to typical GSFC mission loads.
Function evaluation of asphalt mixture with industrially produced BOF slag aggregate.
Zhao, Meiling; Wu, Shaopeng; Chen, Zongwu; Li, Chao
2016-07-04
Laboratory research suggested that basic oxygen furnace (BOF) slag-based asphalt mixture was a functional material. However, the BOF slag aggregate's quality was difficult to control when it was heavily used in entity engineering. The primary objective of this research was to evaluate the functional performances of asphalt mixture containing BOF slag coarse aggregate (BSCA), which was from an industrialized production line. Limestone mixture was a control group. The Marshall method was first adopted to design asphalt mixtures. The performances of limestone asphalt mixture and BOF slag asphalt mixture including fatigue failure resistance and moisture stability were then evaluated and compared. Results showed that the asphalt mixture containing BSCA possessed better durability, which meant the quality of BSCA from industrialized production lines was well controlled and this BSCA can be heavily used in entity engineering.
Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview
NASA Technical Reports Server (NTRS)
Shin, Euy-Sik Eugene
2015-01-01
Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.
Validation of Organics for Advanced Stirling Convertor (ASC)
NASA Astrophysics Data System (ADS)
Shin, E. Eugene; Scheiman, Dan; Cybulski, Michelle; Quade, Derek; Inghram, Linda; Burke, Chris
2008-01-01
Organic materials are an essential part of the Advanced Stirling Convertor (ASC) construction as adhesives, potting, wire insulation, lubrication coatings, bobbins, bumpers, insulators, thread lockers. Since a long lifetime of such convertors to be used in the Advanced Stirling Radioisotope Generator (ASRG), sometimes up to 17 years, is required in various space applications such as Mars rovers, deep space missions, and lunar surface power, performance, durability and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations. The objective of this study was to evaluate, validate, and recommend organics for use in ASCs. Systematic and extensive evaluation methodologies were developed and conducted for various organic materials. The overall efforts dealing with organics materials for the last several years are summarized in the key areas, e.g., process-fabrication optimization, adhesive bonding integrity, outgassing, thermal stability, and durability
3500-hour durability testing of ceramic materials for automotive gas turbine engines
NASA Technical Reports Server (NTRS)
Carruthers, W. D.; Richerson, D. W.; Benn, K. W.
1980-01-01
A two-year durability program was performed by AiResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500 F and 3500 hr. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered alpha-SiC and Pure Carbon Co. (British Nuclear Fuels, Ltd.) Refel reaction sintered silicon carbide. These materials were initially exposed to 350 hr/1750 cycles at 1200 and 1370 C. Subsequent exposures to 1050, 2100 and 3500 hr were performed on those materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimensional and weight changes, dye penetrant, specific damping capacity changes, SEM fractography, and X-ray diffraction.
Trish, Erin; Ginsburg, Paul; Gascue, Laura; Joyce, Geoffrey
2017-09-01
Nearly one-third of Medicare beneficiaries are enrolled in a Medicare Advantage (MA) plan, yet little is known about the prices that MA plans pay for physician services. Medicare Advantage insurers typically also sell commercial plans, and the extent to which MA physician reimbursement reflects traditional Medicare (TM) rates vs negotiated commercial prices is unclear. To compare prices paid for physician and other health care services in MA, traditional Medicare, and commercial plans. Retrospective analysis of claims data evaluating MA prices paid to physicians and for laboratory services and durable medical equipment between 2007 and 2012 in 348 US core-based statistical areas. The study population included all MA and commercial enrollees with a large national health insurer operating in both markets, as well as a 20% sample of TM beneficiaries. Enrollment in an MA plan. Mean reimbursement paid to physicians, laboratories, and durable medical equipment suppliers for MA and commercial enrollees relative to TM rates for 11 Healthcare Common Procedure Coding Systems (HCPCS) codes spanning 7 sites of care. The sample consisted of 144 million claims. Physician reimbursement in MA was more strongly tied to TM rates than commercial prices, although MA plans tended to pay physicians less than TM. For a mid-level office visit with an established patient (Current Procedural Terminology [CPT] code 99213), the mean MA price was 96.9% (95% CI, 96.7%-97.2%) of TM. Across the common physician services we evaluated, mean MA reimbursement ranged from 91.3% of TM for cataract removal in an ambulatory surgery center (CPT 66984; 95% CI, 90.7%-91.9%) to 102.3% of TM for complex evaluation and management of a patient in the emergency department (CPT 99285; 95% CI, 102.1%-102.6%). However, for laboratory services and durable medical equipment, where commercial prices are lower than TM rates, MA plans take advantage of these lower commercial prices, ranging from 67.4% for a walker (HCPCS code E0143; 95% CI, 66.3%-68.5%) to 75.8% for a complete blood cell count (CPT 85025; 95% CI, 75.0%-76.6%). Traditional Medicare's administratively set rates act as a strong anchor for physician reimbursement in the MA market, although MA plans succeed in negotiating lower prices for other health care services for which TM overpays. Reforms that transition the Medicare program toward some premium support models could substantially affect how physicians and other clinicians are paid.
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric
2016-10-01
Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Durable thin film coatings for reflectors used in low earth orbit
NASA Technical Reports Server (NTRS)
Mcclure, Donald J.
1989-01-01
This paper discusses the properties of thin film coatings used to provide a durable reflective surface for solar concentrators used in the solar dynamic system designed for the Space Station. The material system to be used consists of an adhesion promotion layer, a silver reflective layer, and a protective layer of aluminum oxide and silicon dioxide. The performance characteristics of this system are described and compared to those of several alternative systems which use aluminum as the reflective layer.
Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren
2013-07-24
Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.
Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete
Lee, Swoo-Heon; Hong, Ki-Nam; Park, Jae-Kyu; Ko, Jung
2014-01-01
This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA) to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C). However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete. PMID:28788703
Possibilities of using aluminate cements in high-rise construction
NASA Astrophysics Data System (ADS)
Kaddo, Maria
2018-03-01
The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.
Evaluation of curing compound application time on concrete surface durability.
DOT National Transportation Integrated Search
2015-03-01
The effect of curing compound application time after concrete finishing was examined in the study. Times of 30 minutes, 2 hours and 4 hours were considered and repeatability was evaluated with comparisons to a Phase I portion of the study. Scaling re...
DOT National Transportation Integrated Search
2002-05-01
A two part laboratory experimental program was conducted to evaluate strength and durability of various concrete mix : designs. In Part I of the study, the influence of using Grade 120 ground granulated blast furnace slag (GGBFS) on the : strength an...
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna
2016-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.
Is Repeat PTA of a Failing Hemodialysis Fistula Durable?
Bountouris, Ioannis; Kristmundsson, Thorarinn; Dias, Nuno; Zdanowski, Zbigniew; Malina, Martin
2014-01-01
Purpose. Our objective was to evaluate the outcome of percutaneous transluminal angioplasty (PTA) and particularly rePTA in a failing arteriovenous fistula (AV-fistula). Are multiple redilations worthwhile? Patients and Methods. All 159 stenoses of AV fistulas that were treated with PTA, with or without stenting, during 2008 and 2009, were included. Occluded fistulas that were dilated after successful thrombolysis were also included. Median age was 68 (interquartile range 61.5-78.5) years and 75% were male. Results. Seventy-nine (50%) of the primary PTAs required no further reintervention. The primary patency was 61% at 6 months and 42% at 12 months. Eighty (50%) of the stenoses needed at least one reintervention. Primary assisted patency (defined as patency after subsequent reinterventions) was 89% at 6 months and 85% at 12 months. The durability of repeated PTAs was similar to the durability of the primary PTA. However, an early primary PTA carried a higher risk for subsequent reinterventions. Successful dialysis was achieved after 98% of treatments. Nine percent of the stenoses eventually required surgical revision and 13% of the fistulas failed permanently. Conclusion. The present study suggests that most failing AV-fistulas can be salvaged endovascularly. Repeated PTA seems similarly durable as the primary PTA.
Grossi, Victoria; Lerer, Trudy; Griffiths, Anne; LeLeiko, Neal; Cabrera, Jose; Otley, Anthony; Rick, James; Mack, David; Bousvaros, Athos; Rosh, Joel; Grossman, Andrew; Saeed, Shehzaad; Kay, Marsha; Boyle, Brendan; Oliva-Hemker, Maria; Keljo, David; Pfefferkorn, Marian; Faubion, William; Kappelman, Michael D; Sudel, Boris; Markowitz, James; Hyams, Jeffrey S
2015-10-01
It is important to determine the effects of immunomodulators on the ability of children to remain on infliximab therapy for Crohn's disease (durability of therapy), given the potential benefits and risks of concomitant therapy-especially with thiopurines in male patients. We investigated how immunomodulatory treatment affects the durability of infliximab therapy. We collected data from the Pediatric Inflammatory Bowel Disease Collaborative Research Group Registry, from January 2002 through August 2014, on 502 children with Crohn's disease who participated in a prospective multicenter study. Data were collected from patients who received at least a 3-dose induction regimen of infliximab, and their concomitant use of immunomodulators: no thiopurine or methotrexate treatment, treatment for 6 months or less during infliximab therapy, or treatment for more than 6 months during infliximab therapy. The probabilities (± standard error) that children remained on infliximab therapy for 1 year, 3 years, and 5 years after the treatment began were 0.84 ± 0.02, 0.69 ± 0.03, and 0.60 ± 0.03, respectively. Age, sex, and disease extent or location did not affect the durability of infliximab therapy. Greater length of concomitant use of immunomodulators was associated with increased time of infliximab therapy. The probability that patients with more than 6 months of immunomodulator use remained on infliximab therapy for 5 years was 0.70 ± 0.04, compared with 0.48 ± 0.08 for patients who did not receive immunomodulators and 0.55 ± 0.06 for patients who received immunomodulators for 6 months or less (P < .001). In boys who received immunomodulators for 6 months or more after starting infliximab, the overall durability of infliximab therapy was greater among patients receiving methotrexate than thiopurine (P < .01); the probabilities that they remained on infliximab therapy for 5 years were 0.97 ± 0.03 vs 0.58 ± 0.08, respectively. In children with Crohn's disease, concomitant treatment with an immunomodulator for more than 6 months after starting infliximab therapy increases the chances that patients will remain on infliximab. In boys, methotrexate appears to increase the durability of infliximab therapy compared with thiopurine. Copyright © 2015. Published by Elsevier Inc.
Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.
1998-01-01
Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.
Assessment of a 40-kilowatt stirling engine for underground mining applications
NASA Technical Reports Server (NTRS)
Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.
1982-01-01
An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.
Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less
Vlachojannis, Georgios J; Smits, Pieter C; Hofma, Sjoerd H; Togni, Mario; Vázquez, Nicolás; Valdés, Mariano; Voudris, Vassilis; Puricel, Serban; Slagboom, Ton; Goy, Jean-Jacques; den Heijer, Peter; van der Ent, Martin
2015-07-01
The aim of this analysis was to compare the long-term safety and efficacy of the biodegradable polymer biolimus-eluting stent (BES) with that of the durable polymer everolimus-eluting stent (EES). The COMPARE II study was a prospective, randomised, multicentre, all-comers trial in which 2,707 patients were randomly allocated (2:1) to BES or EES. The pre-specified endpoint at three years was major adverse cardiac events (MACE), a composite of cardiac death, non-fatal myocardial infarction (MI), or target vessel revascularisation (TVR). Moreover, the combined endpoint all-cause death or MI was analysed as a safety, and TVR as an efficacy measure. Three-year follow-up was available in 2,683 patients (99.1%). At three years, MACE occurred in 213 patients (11.9%) in the BES group and in 101 patients (11.1 %) in the EES group (p=0.57). The rate of the combined safety endpoint all-cause death or MI was 9.3% in the BES group vs. 8.4% (p=0.52), while the efficacy measure TVR was 7.6% in BES vs. 6.5% (p=0.27). Interestingly, definite stent thrombosis rates did not differ between groups (1.2% for BES vs. 0.8%, p=0.33). At three-year follow-up, MACE as well as safety and efficacy measures including stent thrombosis were not statistically different between the biodegradable polymer-coated BES and the durable polymer-coated EES. ClinicalTrials.gov Identifier: NCT01233453.
Technical Adequacy of the SWPBIS Tiered Fidelity Inventory
ERIC Educational Resources Information Center
McIntosh, Kent; Massar, Michelle M.; Algozzine, Robert F.; George, Heather Peshak; Horner, Robert H.; Lewis, Timothy J.; Swain-Bradway, Jessica
2017-01-01
Full and durable implementation of school-based interventions is supported by regular evaluation of fidelity of implementation. Multiple assessments have been developed to evaluate the extent to which schools are applying the core features of school-wide positive behavioral interventions and supports (SWPBIS). The "SWPBIS Tiered Fidelity…
DOT National Transportation Integrated Search
2002-05-01
A two part laboratory experimental program was conducted to evaluate strength and durability of various concrete : mix designs. In Part I of the study, the influence of using Grade 120 ground granulated blast furnace slag (GGBFS) : on the strength an...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, D.
2011-10-01
Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deteriorationmore » that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.« less
Brown, Philip S.; Bhushan, Bharat
2015-01-01
Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971
USGS VDP Infrasound Sensor Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slad, George William; Merchant, Bion J.
2016-10-01
Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.
Alternatives to SiOx for protective scan mirror coatings in remote sensing instruments
NASA Astrophysics Data System (ADS)
MacDonald, Michael E.
1999-09-01
Mirrors in remote sensing instruments require durable dielectric coatings, both to prevent oxidation of the reflective surface and to protect it during cleaning. IR absorption bands within widely-used SiOx coatings produce scene radiance and instrument background variations as a function of scan mirror angle which motivate the search for possible substitute materials. In this work several candidate coatings are evaluated including CeF3, HfO2, MgF2 SrF2, and Y2O3. This evaluation consists of reflectance, adhesion, and durability measurements of mirrors with an aluminum reflective surface over-coated with these materials. S-polarized and P- polarized reflectance measurements are presented between 2 and 20 micrometers for incidence angles between 40 and 50 degrees. This angular range is sufficient to scan the earth disk from geostationary orbit. Additional measurements at 45 degrees incidence are presented between 2 and 55 micrometers , covering the IR wavelength range of interest for earth radiation budget sensors. Comparisons are drawn with measurements of scan- mirror witness samples from the imaging and sounding instruments used in the Geostationary Operational Environmental Satellite (GOES). These witness samples exhibit reflectance variations arising from IR absorption bands in the SiOx protective coatings used in these mirrors. The spectral characteristics of several of the alternate materials are found to be quite attractive, however durable coatings of some of these materials require elevated deposition temperature which are incompatible with the nickel-coated beryllium scan mirror substrate construction used in GOES. This work present the achievable reflectance and durability of these alternate dielectric protective coatings at the deposition temperature constraints imposed by the scan mirror substrate. The prospects for substituting one of these coatings for SiOx are evaluated, and contrasted with the capability of radiometric calibration techniques to deal with the reflectance variations produced by SiOx coatings.
NASA Technical Reports Server (NTRS)
Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.
2003-01-01
Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.
Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo
2017-06-01
Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Handbook of experiences in the design and installation of solar heating and cooling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, D.S.; Oberoi, H.S.
1980-07-01
A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)
Re-Tooling the Agency's Engineering Predictive Practices for Durability and Damage Tolerance
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Knight, Norman F., Jr.
2017-01-01
Over the past decade, the Agency has placed less emphasis on testing and has increasingly relied on computational methods to assess durability and damage tolerance (D&DT) behavior when evaluating design margins for fracture-critical components. With increased emphasis on computational D&DT methods as the standard practice, it is paramount that capabilities of these methods are understood, the methods are used within their technical limits, and validation by well-designed tests confirms understanding. The D&DT performance of a component is highly dependent on parameters in the neighborhood of the damage. This report discusses D&DT method vulnerabilities.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.
Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna
2016-01-01
This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.
Probabilistic modeling of the indoor climates of residential buildings using EnergyPlus
Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.; ...
2017-04-25
The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The
Medicare Beneficiary Satisfaction with Durable Medical Equipment Suppliers
Hoerger, Thomas J.; Finkelstein, Eric A.; Bernard, Shulamit L.
2001-01-01
CMS has recently launched a series of initiatives to control Medicare spending on durable medical equipment (DME) and prosthetics, orthotics, and supplies (DMEPOS). An important question is how these initiatives will affect beneficiary satisfaction. Using survey data, we analyze Medicare beneficiary satisfaction with DMEPOS suppliers in two Florida counties. Our results show that beneficiaries are currently highly satisfied with their DMEPOS suppliers. Beneficiary satisfaction is positively related to rapid delivery, training, dependability, and frequency of service. Results of our analysis can be used as baseline estimates in evaluating CMS initiatives to reduce Medicare payments for DMEPOS. PMID:12500367
G.T. Kirker; A.B. Blodgett; S. Lebow; C.A. Clausen
2013-01-01
Extractive content and composition is a vital component of naturally durable woods; however, variability in extractives can limit their usefulness in the field. Two extractive-free, non-durable wood species were pressure treated with ethanol-toluene extractives from 8 durable wood species. Extracted Southern pine, Paulownia and unextracted Southern pine blocks were...
Shah, Eric D; Siegel, Corey A; Chong, Kelly; Melmed, Gil Y
2015-08-01
The comparative effectiveness of treatments for moderate-to-severe Crohn's disease can be influenced by the likelihood of remaining on medication. We aimed to clarify this treatment durability by assessing subject discontinuations from clinical trials in the context of treatment efficacy. We conducted a literature search for double-blind RCT of Crohn's disease therapies recommended in international guidelines or with recent positive phase III trial results. Durability was defined through study discontinuation due to adverse events or disease exacerbation represented by number needed to discontinue (NND). Efficacy was defined as clinical remission represented by number needed to treat (NNT). The primary endpoint was NND/NNT, with a higher value representing more durable and effective treatment. Treatment with azathioprine/6-mercaptopurine (AZA/6MP) was associated with more discontinuations than with clinical remission (NND/NNT = 0.92) in maintenance trials. For induction, methotrexate was associated with similar rates of discontinuations and remission (NND/NNT = 1.4). In one maintenance trial, the remission rate for methotrexate was greater than the study discontinuation rate (NND/NNT = 23.3). In contrast, anti-TNF trials revealed greater durability among induction (no excess discontinuation) and maintenance (NND/NNT = 37.9) trials. Trials of anti-trafficking agents had fewer discontinuations in the drug treatment arms than placebo resulting in most favorable NND/NNT ratios. For patients with Crohn's disease, biologic therapies had higher durability than immunomodulators for induction and maintenance therapy. We also report the results of a novel NND/NNT ratio that should be validated in a prospective head-to-head placebo-controlled trial.
Martinez, J C; Caprio, M A
2016-03-27
Recent detection of western corn rootworm resistance to Bt (Bacillus thuringiensis) corn prompted recommendations for the use of integrated pest management (IPM) with planting refuges to prolong the durability of Bt technologies. We conducted a simulation experiment exploring the effectiveness of various IPM tools at extending durability of pyramided Bt traits. Results indicate that some IPM practices have greater merits than others. Crop rotation was the most effective strategy, followed by increasing the non-Bt refuge size from 5 to 20%. Soil-applied insecticide use for Bt corn did not increase the durability compared with planting Bt with refuges alone, and both projected lower durabilities. When IPM participation with randomly selected management tools was increased at the time of Bt commercialization, durability of pyramided traits increased as well. When non-corn rootworm expressing corn was incorporated as an IPM option, the durability further increased.For corn rootworm, a local resistance phenomenon appeared immediately surrounding the resistant field (hotspot) and spread throughout the local neighborhood in six generations in absence of mitigation. Hotspot mitigation with random selection of strategies was ineffective at slowing resistance, unless crop rotation occurred immediately; regional mitigation was superior to random mitigation in the hotspot and reduced observed resistance allele frequencies in the neighborhood. As resistance alleles of mobile pests can escape hotspots, the scope of mitigation should extend beyond resistant sites. In the case of widespread resistance, regional mitigation was less effective at prolonging the life of the pyramid than IPM with Bt deployment at the time of commercialization. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.
40 CFR 610.62 - Driveability tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be conducted at zero device-miles for all vehicles included in the durability fleet, and at approximately zero device-miles at low ambient temperatures (0 °F-20 °F). Driveability evaluation procedures...
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.
2018-04-01
The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
Corominas, Albert; Fossas, Enric
2015-01-01
We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.
Test report : alternative fuels propulsion durability evaluation
DOT National Transportation Integrated Search
2012-08-28
This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...
Evaluation of Wet-Weather Retroreflectivity
DOT National Transportation Integrated Search
2010-08-01
The Oregon Department of Transportation (ODOT) requires performance and durability testing of all pavement marking materials before they can be applied on construction projects on state highways. Manufacturers apply materials on a two-year test deck ...
Cell emulation and preliminary results.
DOT National Transportation Integrated Search
2016-07-01
This report details preliminary results of the testing plan implemented by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV battery cells ar...
NASA Astrophysics Data System (ADS)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen
2017-11-01
This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.
This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. Thesemore » glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.« less
Kwon, Sungjun; Kim, Jeehoon; Kang, Seungwoo; Lee, Youngki; Baek, Hyunjae
2014-01-01
Abstract We propose CardioGuard, a brassiere-based reliable electrocardiogram (ECG) monitoring sensor system, for supporting daily smartphone healthcare applications. It is designed to satisfy two key requirements for user-unobtrusive daily ECG monitoring: reliability of ECG sensing and usability of the sensor. The system is validated through extensive evaluations. The evaluation results showed that the CardioGuard sensor reliably measure the ECG during 12 representative daily activities including diverse movement levels; 89.53% of QRS peaks were detected on average. The questionnaire-based user study with 15 participants showed that the CardioGuard sensor was comfortable and unobtrusive. Additionally, the signal-to-noise ratio test and the washing durability test were conducted to show the high-quality sensing of the proposed sensor and its physical durability in practical use, respectively. PMID:25405527
NASA Technical Reports Server (NTRS)
Stidham, Curtis R.; Rutledge, Sharon K.; Sechkar, Edward A.; Flaherty, David S.; Roig, David M.; Edwards, Jonathan L.
1994-01-01
A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed.
PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability
NASA Astrophysics Data System (ADS)
Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei
2018-02-01
As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.
Microclimatic Variation Within Sleeve Cages Used in Ecological Studies
Nelson, Lori A.; Rieske, Lynne K.
2014-01-01
Abstract Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm 2 , were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083
Experimental Evaluation of a High Speed Flywheel for an Energy Cache System
NASA Astrophysics Data System (ADS)
Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.
2011-03-01
A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2010 CFR
2010-07-01
... incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney... principal's subsequent incompetence. As with a durable special power of attorney, a springing durable... than those specified in paragraph (b) of this section may be negotiated under a springing durable...
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2014 CFR
2014-07-01
... incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney... principal's subsequent incompetence. As with a durable special power of attorney, a springing durable... than those specified in paragraph (b) of this section may be negotiated under a springing durable...
Structural Optimization of a Knuckle with Consideration of Stiffness and Durability Requirements
Kim, Geun-Yeon
2014-01-01
The automobile's knuckle is connected to the parts of the steering system and the suspension system and it is used for adjusting the direction of a rotation through its attachment to the wheel. This study changes the existing material made of GCD45 to Al6082M and recommends the lightweight design of the knuckle as the optimal design technique to be installed in small cars. Six shape design variables were selected for the optimization of the knuckle and the criteria relevant to stiffness and durability were considered as the design requirements during the optimization process. The metamodel-based optimization method that uses the kriging interpolation method as the optimization technique was applied. The result shows that all constraints for stiffness and durability are satisfied using A16082M, while reducing the weight of the knuckle by 60% compared to that of the existing GCD450. PMID:24995359
Effect of Sizings on the Durability of High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Allred, Ronald E.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.
2003-01-01
To increase performance and durability of high-temperature composite for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizing commercially supplied on most carbon fiber are not compatible with polyimides. In this study, the chemistry of sizing on two high modulus carbon fiber (M40J and M60J, Tiray) was characterized. A continuous desizling system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the butter bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.
Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M
The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (p<0.05) initial shear bond strengths and shear fatigue strengths than those without, regardless of the adhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (p<0.05) than on those without, regardless of etching mode. The results of this study suggest that the oxygen inhibition layer of universal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.
2004-01-01
Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.
The measurements of temperature and deformations of car radiators
NASA Astrophysics Data System (ADS)
Peta, Katarzyna; Grochalski, Karol
2017-10-01
In the study main factors influencing the exploitative durability of the aluminum radiators used in motorization were classified. Special attention was put to thermal strains occurring during the usage of a car. The causes of theirs formation were identified, including disproportionate distribution of temperature in the construction of radiator, which changes cyclically depending on the characteristics of cooling fluid flow. In order to evaluate the influence of temperature and deformations of radiators on their durability, resistance tensometry method was used supplemented with temperature measurements with the use of thermoelements. Three linear resistive tensometers and three thermoelements were placed in the key areas of radiator (the inlet and outlet of cooling liquid to the heat exchanger and separator of the areas). Measurements were carried out during the examination of the durability of radiators on thermal shocks, which is one of the most basic examinations that imitates conditions of their work and verifies mechanical durability of products. Critical areas in the radiator were located, which are the most vulnerable to damages, including cracks. After the conducted research measurements of tightness were carried out, which verification is one of the most important requirements set for products in contact with intermediary medium in heat exchange. The study was supplemented with the observation of metallographic structures of the areas of fatigue cracks.
Is Repeat PTA of a Failing Hemodialysis Fistula Durable?
Zdanowski, Zbigniew
2014-01-01
Purpose. Our objective was to evaluate the outcome of percutaneous transluminal angioplasty (PTA) and particularly rePTA in a failing arteriovenous fistula (AV-fistula). Are multiple redilations worthwhile? Patients and Methods. All 159 stenoses of AV fistulas that were treated with PTA, with or without stenting, during 2008 and 2009, were included. Occluded fistulas that were dilated after successful thrombolysis were also included. Median age was 68 (interquartile range 61.5–78.5) years and 75% were male. Results. Seventy-nine (50%) of the primary PTAs required no further reintervention. The primary patency was 61% at 6 months and 42% at 12 months. Eighty (50%) of the stenoses needed at least one reintervention. Primary assisted patency (defined as patency after subsequent reinterventions) was 89% at 6 months and 85% at 12 months. The durability of repeated PTAs was similar to the durability of the primary PTA. However, an early primary PTA carried a higher risk for subsequent reinterventions. Successful dialysis was achieved after 98% of treatments. Nine percent of the stenoses eventually required surgical revision and 13% of the fistulas failed permanently. Conclusion. The present study suggests that most failing AV-fistulas can be salvaged endovascularly. Repeated PTA seems similarly durable as the primary PTA. PMID:24587906
Emerging Minimally Invasive Treatment Options for Male Lower Urinary Tract Symptoms.
Magistro, Giuseppe; Chapple, Christopher R; Elhilali, Mostafa; Gilling, Peter; McVary, Kevin T; Roehrborn, Claus G; Stief, Christian G; Woo, Henry H; Gratzke, Christian
2017-12-01
Lower urinary tract symptoms (LUTS) are one of the most common and troublesome nonmalignant conditions affecting quality of life in aging men. A spectrum of established medical and surgical options is available to provide relief of bothersome LUTS. Both the adverse events of medication and the morbidity with surgical treatment modalities have to be counterbalanced against efficacy. Novel minimally invasive treatment options aim to be effective, ideally to be performed in an ambulatory setting under local anaesthesia and to offer a more favourable safety profile than existing reference techniques. A comprehensive, narrative review of novel minimally invasive treatment modalities for the management of male LUTS due to benign prostatic enlargement is presented. Medline, PubMed, Cochrane database, and Embase were screened for randomised controlled trials (RCTs), clinical trials, and reviews on novel minimally invasive treatment options for male LUTS due to benign prostatic enlargement. With regard to newly devised intraprostatic injectables (botulinum neurotoxin A, NX1207, PRX302), PRX302 is currently the only substance that was superior to placebo in a phase 3 RCT providing proof of efficacy and safety. The prostatic urethral lift technique has been evaluated in several phase 3 trials showing rapid and durable relief of LUTS without compromising sexual function in carefully selected patients without a prominent median lobe. The first clinical experience of the temporary implantable nitinol device demonstrated that implantation of this novel device is a safe procedure, easy, and fast to perform. Further studies are required to evaluate efficacy, durability, and to define appropriate patient selection. New ablative approaches like the image guided robotic waterjet ablation (AquaBeam) or procedures based on convective water vapour energy (Rezūm) are in the early stages of development. Prostatic artery embolization performed by interventional radiologists at specialised centres shows a high technical success rate in the treatment of bothersome LUTS. However, a substantial clinical failure rate and a particular spectrum of complications not commonly seen after urologic interventions do occur and need to be critically evaluated. Initial promising clinical results on novel minimally invasive treatment options indicate efficacy comparable to standard techniques, often associated with a more favourable safety profile, in particular with preservation of sexual function. Many of these techniques are in their infancy and based on experience of new developments in the past. Further RCTs are required to evaluate efficacy, safety, and durability of novel techniques with long-term follow-up and careful evaluation of the selection criteria, which have been applied in clinical trials. The prostatic urethral lift is the only procedure with Level 1 evidence data and that can therefore be recommended for treatment of male LUTS in clinical practice for selected patients. Minimally invasive treatment options have been developed to provide relief of lower urinary tract symptoms comparable to standard surgical techniques with a more favourable safety profile. However, long-term clinical evaluation is still needed for most of these innovations before they can be recommended to be an effective replacement for standard surgical treatment. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmis, Michael; Luttrell, Gerald; Ripepi, Nino
The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less
Groppo, Chiara; Tomatis, Maura; Turci, Francesco; Gazzano, Elena; Ghigo, Dario; Compagnoni, Roberto; Fubini, Bice
2005-01-08
In the Italian western Alps, asbestos mineralization (both chrysotile and tremolite amphibole) takes place from serpentinites, together with other less common asbestiform minerals not regulated by the current legislation. In the context of a study on the evaluation of the asbestos risk in this area, the possible role played by the associated asbestiform minerals in the overall toxicity of the airborne fraction has been examined. The first mineral investigated was balangeroite [(Mg,Fe2+,Fe3+,Mn2+)42Si16O54(OH)36], an iron-rich asbestiform contaminant of chrysotile from the Balangero mine (Piedmont), which crystallizes as rigid and brittle fibers. In order to prepare a sample in a form appropriate for chemical and cellular tests, the fibers were separated from the rock and comminuted without damage to their crystalline structure and surface state (as confirmed by X-ray diffraction [XRD] and ultraviolet-visible [UV-Vis] spectroscopy). The first properties examined were durability in simulated body fluids (Gamble's solution) and toxicity to epithelial cells. When compared to UICC crocidolite (the amphibole blue asbestos, regarded as the most pathogenic form), balangeroite appears even more durable than crocidolite. Balangeroite and UICC crocidolite showed a similar in vitro cytotoxic effect on a human epithelial cell line, as evidenced by leakage of intracellular lactate dehydrogenase (LDH) activity, which, observed after a 24-h incubation, was dose dependent and maximal at 12 microg/cm2 for each fiber type. Data show that chemical composition, form, durability, and cell toxicity indicate balangeroite as a potentially harmful fibrous mineral that needs to be examined by further chemical and cellular tests.
Ochman, Alexander R; Lipinski, Christopher A; Handler, Jeffrey A; Reaume, Andrew G; Saporito, Michael S
2012-07-01
MLR-1023 [Tolimidone; CP-26154; 2(1H)-pyrimidinone, 5-(3-methylphenoxy)] is an allosteric Lyn kinase activator that reduces blood glucose levels in mice subjected to an oral glucose tolerance test (J Pharmacol Exp Ther 342:15-22, 2012). The current studies were designed to define the role of insulin in MLR-1023-mediated blood glucose lowering, to evaluate it in animal models of type 2 diabetes, and to compare it to the activities of selected existing diabetes therapeutics. Results from these studies show that in an acute oral glucose tolerance test MLR-1023 evoked a dose-dependent blood glucose-lowering response that was equivalent in magnitude to that of metformin without eliciting a hypoglycemic response. In streptozotocin-treated, insulin-depleted mice, MLR-1023 administration did not affect blood glucose levels. However, MLR-1023 potentiated the glucose-lowering activity of exogenously administered insulin, showing that MLR-1023-mediated blood glucose lowering was insulin-dependent. In a hyperinsulinemic/euglycemic clamp study, orally administered MLR-1023 increased the glucose infusion rate required to sustain blood glucose levels, demonstrating that MLR-1023 increased insulin receptor sensitivity. In chronically treated db/db mice, MLR-1023 elicited a dose-dependent and durable glucose-lowering effect, reduction in HbA1c levels and preservation of pancreatic β-cells. The magnitude of effect was equivalent to that seen with rosiglitazone but with a faster onset of action and without causing weight gain. These studies show that MLR-1023 is an insulin receptor-potentiating agent that produces a rapid-onset and durable blood glucose-lowering activity in diabetic animals.
Feitosa, Victor Pinheiro; Bazzocchi, Maria Giulia; Putignano, Angelo; Orsini, Giovanna; Luzi, Arlinda Luzi; Sinhoreti, Mário Alexandre Coelho; Watson, Timothy F; Sauro, Salvatore
2013-11-01
To compare the effects of two etching procedures using meta-phosphoric (MPA) or ortho-phosphoric acid (OPA) on dentine demineralisation, resin-dentine bonds durability and interface nanoleakage/ultra-morphology. Middle-dentine specimens were etched using 37% OPA (15s) or 40% MPA (60s) and submitted to infrared spectroscopy (FTIR) or ultra-morphology dye-assisted (calcium-staining) confocal microscopy (Ca-CLSM). A three-step etch-and-rinse adhesive was formulated, applied onto dentine and light-cured for 30s before composite build-up. After 24h, the dentine-bonded specimens were cut into 1mm(2) beams; half were immediately submitted to microtensile bond strength (μTBS) and half stored in DW for six months. The μTBS results were analysed with repeated-measures ANOVA and Tukey's test (p<0.05). Further teeth were bonded and prepared for interface nanoleakage/ultra-morphology confocal evaluation. FTIR and Ca-CLSM analyses showed dicalcium phosphate dihydrate (Brushite) precipitation in MPA-etched dentine and on the bottom (front of demineralisation) of the OPA-etched dentine. Statistical analysis showed similar μTBS for both etching procedures after 24h. The μTBS of specimens in OPA-group dropped significantly (p<0.05) after six month; the specimens in the MPA group showed no statistically difference (p>0.05). CLSM depicted no evident sign of nanoleakage within the resin-dentine interface of the MPA-treated specimens, while the specimens in OPA-group presented intense nanoleakage and interface degradation. The use of MPA (60s) as an alternative dentine conditioning agent in etch-and-rinse bonding procedures may be a suitable strategy to create more durable resin-dentine bonds. Copyright © 2013 Elsevier Ltd. All rights reserved.
[The durability of three self-etch adhesives bonded to dentin].
Tian, Fu-Cong; Wang, Xiao-Yan; Gao, Xue-Jun
2013-04-01
To investigate the durability of self-etch adhesives bonded to dentin in vitro. Forty-two extracted human molars were selected and occlusal dentin surfaces were exposed. The teeth were randomly distributed into three groups based on adhesives applied. The one-step self-etch adhesive B(Adper Prompt) and C(G-Bond) and two-step self-etch adhesive A (Clearfil SE bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up, after 24 h water storage, the teeth were sectioned longitudinally into sticks (1.0 mm×1.0 mm bonding area) for microtensile testing or slabs (1 mm thick) for scanning electron microscopec (SEM) observation. Bonding strength (mTBS) and nano-leakage were evaluated immediately after cutting or after 6 months in water. The mTBS was analyzed using one-way ANOVA (SPSS 13.0). The nanoleakage was observed by SEM with a backscattered electron detector. Both adhesives and water storage time affected the mTBS. All adhesives showed decreased bond strength after six-month water aging [A dropped from (40.60 ± 5.76) MPa to (36.04 ± 3.15) MPa; B dropped from (19.06 ± 1.50) MPa to (11.19 ± 1.97) MPa; C dropped from (17.75 ± 1.10) MPa to (9.14 ± 1.15) MPa] (P < 0.05). B and C showed lower mTBS than A after aging (P < 0.05). Compared to A, nanoleakage was more obvious after aging for B and C. All self-etch adhesives tested were probably influenced by water aging, however, the two-step adhesive showed better durability than the one-step adhesives.
Fouda, Genevieve G.; Cunningham, Coleen K.; McFarland, Elizabeth J.; Borkowsky, William; Muresan, Petronella; Pollara, Justin; Song, Lin Ye; Liebl, Brooke E.; Whitaker, Kaylan; Shen, Xiaoying; Vandergrift, Nathan A.; Overman, R. Glenn; Yates, Nicole L.; Moody, M. Anthony; Fry, Carrie; Kim, Jerome H.; Michael, Nelson L.; Robb, Merlin; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; Ferrari, Guido; Tomaras, Georgia D.; Permar, Sallie R.
2015-01-01
Background Infant responses to vaccines can be impeded by maternal antibodies and immune system immaturity. It is therefore unclear whether human immunodeficiency virus type 1 (HIV-1) vaccination would elicit similar responses in adults and infants. Method HIV-1 Env–specific antibody responses were evaluated in 2 completed pediatric vaccine trials. In the Pediatric AIDS Clinical Trials Group (PACTG) 230 protocol, infants were vaccinated with 4 doses of Chiron rgp120 with MF59 (n = 48), VaxGen rgp120 with aluminum hydroxide (alum; n = 49), or placebo (n = 19) between 0 and 20 weeks of age. In PACTG 326, infants received 4 doses of ALVAC-HIV-1/AIDSVAX B/B with alum (n = 9) or placebo (n = 13) between 0 and 12 weeks of age. Results By 52 weeks of age, the majority of maternally acquired antibodies had waned and vaccine Env-specific immunoglobulin G (IgG) responses in vaccinees were higher than in placebo recipients. Chiron vaccine recipients had higher and more-durable IgG responses than VaxGen vaccine recipients or ALVAC/AIDSVAX vaccinees, with vaccine-elicited IgG responses still detectable in 56% of recipients at 2 years of age. Remarkably, at peak immunogenicity, the concentration of anti-V1V2 IgG, a response associated with a reduced risk of HIV-1 acquisition in the RV144 adult vaccine trial, was 22-fold higher in Chiron vaccine recipients, compared with RV144 vaccinees. Conclusion As exemplified by the Chiron vaccine regimen, vaccination of infants against HIV-1 can induce robust, durable Env-specific IgG responses, including anti-V1V2 IgG. PMID:25170104
Takahashi, Nana; Iwasa, Fuminori; Inoue, Yuuki; Morisaki, Hirobumi; Ishihara, Kazuhiko; Baba, Kazuyoshi
2014-08-01
The polymer 2-methacryloyloxyethyl phosphorylcholine is currently used on medical devices to prevent infection. Denture plaque-associated infection is regarded as a source of serious dental and medical complications in the elderly population, and denture hygiene, therefore, is an issue of considerable importance for denture wearers. Furthermore, because denture bases are exposed to mechanical stresses, for example, denture brushing, the durability of the coating is important for retaining the antiadhesive function of 2-methacryloyloxyethyl phosphorylcholine. The purpose of this study is to investigate the durability and antiadhesive activity of two 2-methacryloyloxyethyl phosphorylcholine polymer coating techniques: poly-2-methacryloyloxyethyl phosphorylcholine grafting and poly-2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate coating. It was revealed that 2-methacryloyloxyethyl phosphorylcholine polymer coating of the denture base resin polymethyl methacrylate decreases bacterial biofilm formation. Durability was examined by rhodamine staining and elemental surface analysis and by determining the wetting properties of the 2-methacryloyloxyethyl phosphorylcholine polymer-modified polymethyl methacrylate after a friction test that comprised 500 brushing cycles. Antiadhesive activity was examined by using a Streptococcus mutans biofilm formation assay. Poly-2-methacryloyloxyethyl phosphorylcholine-grafted polymethyl methacrylate retained 2-methacryloyloxyethyl phosphorylcholine units and antiadhesive activity even after repetitive mechanical stress, whereas co-n-butyl methacrylate-coated polymethyl methacrylate did not. These results demonstrated that graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on denture surfaces may contribute to the durability of the coating and prevent microbial retention. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle
NASA Astrophysics Data System (ADS)
Kim, Jaehyun; Oh, Jinho; Choi, Hanho
2010-06-01
Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.
Thrombopoietin-receptor agonists for children with immune thrombocytopenia: a systematic review.
Zhang, Jiaxing; Liang, Yi; Ai, Yuan; Xie, Juan; Li, Youping; Zheng, Wenyi
2017-10-01
We conducted a systematic review to assess the efficacy and safety of Thrombopoietin-receptor agonists (TPOras) for pediatric immune thrombocytopenia (ITP). We searched PubMed, Embase and Cochrane Library from their earliest records to January 2017. Randomized controlled trials (RCTs) were included. Primary outcomes were durable response and clinically significant bleeding. Secondary outcomes were overall response, overall bleeding events, the use of rescue medication and adverse events (AEs). Five randomized RCTs (261participants) were included. Compared with placebo group, the proportion of patients achieving durable platelet response was significantly higher in Eltrombopag (P = 0.0004) or Romiplostim (P = 0.002) group, so was the overall response in Eltrombopag [RR = 2.64, 95% CI (1.58, 4.44)] or Romiplostim [RR = 5.05, 95% CI (2.21, 11.53)] group. Both clinically significant bleeding (P = 0.04) and total bleeding (P = 0.01) in Eltrombopag group were significantly less frequent than those in placebo group, while no significant difference between Romiplostim and placebo group. The proportion of patients receiving rescue medication, the incidence of overall AEs and serious AEs between TPO-receptor agonists and placebo group were not significantly different. TPOras might improve both durable and overall platelet response in pediatric ITP, compared with placebo.
Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.
Mengal, Naveed; Syed, Uzma; Malik, Samander Ali; Ali Sahito, Iftikhar; Jeong, Sung Hoon
2016-11-20
Pyrovatex CP New, is a commonly used organophosphorus based flame retardant (FR) reagent for cellulosic materials. However, it has a drawback of high formaldehyde release when used with methylated melamine (MM) based cross-linker, a known carcinogenous compound. In the present approach, a durable and sustainable flame retarding recipe formulation for lyocell fabrics is developed using citric acid (CA) as a cross-linker. The FR finish was applied by pad-dry-cure process. The treated fabrics were characterized for surface morphology, elemental analysis, TG analysis, char study and FT-IR spectroscopy. Furthermore, flame retardancy, washing durability, formaldehyde release and breaking strength were also assessed, and compared with the conventional MM based FR recipe. The fabric samples treated with 400gL(-1) of FR with either 40 or 80gL(-1) of CA demonstrate flame retardancy even after 10 washing cycles. Furthermore, a 75% reduction in formaldehyde release is achieved. Higher char yield and lower decomposition temperature are found compared to untreated and FR+ MM treated lyocell. Such an improved sustainable recipe formulation can be used for lyocell fabric without any health risk in apparel wear. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2006-10-01
Missourian strata were studied in eastern Kansas to evaluate the build-and-fill controls on strata deposited in association with high-amplitude glacioeustatic sea-level fluctuations. Results from this study show that creation of relief in high-freque...
Evaluate the contribution of the mixture components on the longevity and performance of FC-5.
DOT National Transportation Integrated Search
2014-05-01
The focus of the project was to evaluate how to improve the longevity of FDOTs FC-5 mixtures. In particular, what FC-5 mixture : components have the greatest impact on improving the cracking and durability of the FC-5 mixture. The data mining of F...
Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust
Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.
2017-01-01
This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand. PMID:28452346
Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability
NASA Astrophysics Data System (ADS)
French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.
2010-10-01
Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.
Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F
2016-02-08
This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.
Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust
NASA Astrophysics Data System (ADS)
Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.
2017-04-01
This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.
NASA Astrophysics Data System (ADS)
Iswanto, A. H.; Sucipto, T.; Nadeak, S. S. D.; Fatriasari, W.
2017-03-01
In general, the weakness of particleboard using urea formaldehyde (UF) resin has a low dimensional stability. This reasearch intends to improve its properties by post-treatment technique using several water repellent materials. The post-treatment effect on dimensional stability and durability properties of particleboard against to subterranean and dry termites has been evaluated. Sample was dipped into water reppelent solution namely parafin, palm oil, silicon and water proof for 3 minutes. Furthermore, they were oven dried at 50°C for 24 hours. The results showed that the density varied of 0.60 to 0.74 g/cm3. The post-treatment of particleboard increases the density value. Water absorption and thickness swelling of board were varied of 29.35% to 114.99% and 13.23 to 37.31%, respectively. This treatment also improved up the thickness swelling to 65%. The best durability of board to subterranean and dry termite attack has found on silicon and waterproof treatment, respectively.
Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke
2017-05-31
Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.
Structural characterization of UHPC waffle bridge deck and connections : [tech transfer summary].
DOT National Transportation Integrated Search
2014-07-01
Contribute to design an innovative and durable precast deck alternative : using ultra-high performance concrete (UHPC) for accelerated bridge : construction : Evaluate the structural characteristics of the UHPC waffle deck, : critical connect...
30 CFR 27.39 - Tests to determine resistance to vibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.39 Tests to... to verify the reliability and durability of a methane-monitoring system or component(s) thereof where...
Key Royale bridge five year evaluation : [summary].
DOT National Transportation Integrated Search
2013-06-01
The Florida Department of Transportation (FDOT) : maintains more than 6,500 bridges. Considering : the expense of repair and replacement of bridges, : extending their durability and service life is : important. Of special concern for bridges in : mar...
Evaluation of Virginia's first heated bridge.
DOT National Transportation Integrated Search
2000-12-01
This study is a contribution to the Heated Bridge Technology Program established in 1991 under the Intermodal Surface Transportation Efficiency Act. The goal of the program was to find durable and environmentally friendly heated bridge technologies f...
Evaluation of bridge deck with shrinkage-compensating concrete.
DOT National Transportation Integrated Search
2016-04-01
Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...
Khallouk, Samira; Voisin, Roger; Portier, Ulysse; Polidori, Joël; Van Ghelder, Cyril; Esmenjaud, Daniel
2013-08-01
Root-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown. The Ma plum resistance (R) gene, with a complete spectrum, and the RMia peach R gene, with a more restricted spectrum, both provide total control of Meloidogyne incognita, the model parthenogenetic species of the genus and the most important RKN in terms of economic losses. We investigated the durability of the resistance to this nematode conferred by these genes, comparing the results obtained with those for the tomato Mi-1 reference gene. In multiyear experiments, we applied a high and continuous nematode inoculum pressure by cultivating nematode-infested susceptible tomato plants with either Prunus accessions carrying Ma or RMia R genes, or with resistant tomato plants carrying the Mi-1 gene. Suitable conditions for Prunus development were achieved by carrying out the studies in a glasshouse, in controlled conditions allowing a short winter leaf fall and dormancy. We first assessed the plum accession 'P.2175', which is heterozygous for the Ma gene, in two successive 2-year evaluations, for resistance to two M. incognita isolates. Whatever the isolate used, no nematodes reproducing on P.2175 were detected, whereas galls and nematodes reproducing on tomato plants carrying Mi-1 were observed. In a second experiment with the most aggressive isolate, interspecific full-sib material (P.2175 × ['Garfi' almond × 'Nemared' peach]), carrying either Ma or RMia (from Nemared) or both (in the heterozygous state) or neither of these genes, was evaluated for 4 years. No virulent nematodes developed on Prunus spp. carrying R genes, whereas galling and virulent individuals were observed on Mi-1-resistant tomato plants. Thus, the resistance to M. incognita conferred by Ma in Prunus material in both a pure-plum and an interspecific genetic background, or by RMia in an interspecific background, appears to be durable, highlighting the value of these two genes for the creation of Prunus rootstock material.
Evaluation of the durability of 3D printed keys produced by computational processing of image data
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Kerlin, Scott
2016-05-01
Possession of a working 3D printed key can, for most practical purposes, convince observers that an illicit attempt to gain premises access is authorized. This paper seeks to assess three things. First, work has been performed to determine how easily the data for making models of keys can be obtained through manual measurement. It then presents work done to create a model of the key and determine how easy key modeling could be (particularly after a first key of a given key `blank' has been made). Finally, it seeks to assess the durability of the keys produced using 3D printing.
Li, Qiang; Tong, Zichuan; Wang, Lefeng; Zhang, Jianjun; Ge, Yonggui; Wang, Hongshi; Li, Weiming; Xu, Li; Ni, Zhuhua
2013-01-01
Introduction With long-term follow-up, whether biodegradable polymer drug-eluting stents (DES) is efficient and safe in primary percutaneous coronary intervention (PCI) remains a controversial issue. This study aims to assess the long-term efficacy and safety of DES in PCI for ST-segment elevation myocardial infarction (STEMI). Material and methods A prospective, randomized single-blind study with 3-year follow-up was performed to compare biodegradable polymer DES with durable polymer DES in 332 STEMI patients treated with primary PCI. The primary end point was major adverse cardiac events (MACE) at 3 years after the procedure, defined as the composite of cardiac death, recurrent infarction, and target vessel revascularization. The secondary end points included in-segment late luminal loss (LLL) and binary restenosis at 9 months and cumulative stent thrombosis (ST) event rates up to 3 years. Results The rate of the primary end points and the secondary end points including major adverse cardiac events, in-segment late luminal loss, binary restenosis, and cumulative thrombotic event rates were comparable between biodegradable polymer DES and durable polymer DES in these 332 STEMI patients treated with primary PCI at 3 years. Conclusions Biodegradable polymer DES has similar efficacy and safety profiles at 3 years compared with durable polymer DES in STEMI patients treated with primary PCI. PMID:24482648
Space Technology Research Vehicle (STRV)-2 program
NASA Astrophysics Data System (ADS)
Shoemaker, James; Brooks, Paul; Korevaar, Eric J.; Arnold, Graham S.; Das, Alok; Stubstad, John; Hay, R. G.
2000-11-01
The STRV-2 program is the second in a series of three collaborative flight test programs between the U.S. Ballistic Missile Defense Organization (BMDO) and the United Kingdom (UK) Minstry of Defence (MoD). The STRV-2 Experiment Module contains five major experiments to provide proof-of-concept data on system design, data on the mid-earth orbit (MEO) space environment, and data on durability of materials and components operating in the MEO environment. The UK Defence Evaluation and Research Agency (DERA) has provided a mid- wavelength infrared (MWIF) imager to evaluate passive detection of aircraft from space. BMDO, in conjunction with the US Air Force Research Laboratory (AFRL) and the National Aeronautics and Space Administration (NASA), have provided experiments to evaluate use of adaptive structures for vibration suppression, to investigate the use of high bandwidth laser communications to transmit data from space to ground or airborne receivers, to study the durability of materials and components in the MEO space environment, and to measure radiation and micrometeoroid/debris fluence. These experiments are mounted on all- composite structure. This structure provides a significant reduction in weight and cost over comparable aluminum designs while maintaining the high stiffness required by optical payloads. In 1994, STRV-2 was manifested for launch by the DOD Space Test Program. STRV-2, the primary payload on the Tri-Service eXperiment (TSX)-5 spacecraft, was successfully launched on 7 June 2000 on a Pegasus XL from Vandenbery AFB, CA. The STRV-2 program, like the companion STRV-1 program, validates the viability of multi-national, multi-agency collaborations to provide cost effective acquisition of space test data. The experimental data to be obtained will reduce future satellite risk and provide guidelines for further system development.
The TEMPO Trial at 5 Years: Transoral Fundoplication (TIF 2.0) Is Safe, Durable, and Cost-effective.
Trad, Karim S; Barnes, William E; Prevou, Elizabeth R; Simoni, Gilbert; Steffen, Jennifer A; Shughoury, Ahmad B; Raza, Mamoon; Heise, Jeffrey A; Fox, Mark A; Mavrelis, Peter G
2018-04-01
Questions remain about the therapeutic durability of transoral incisionless fundoplication (TIF). In this study, clinical outcomes were evaluated at 5 years post-TIF 2.0. A total of 63 chronic gastroesophageal reflux disease (GERD) sufferers with troublesome symptoms refractory to proton pump inhibitor (PPI) therapy, absent or ≤2 cm hiatal hernia, and abnormal esophageal acid exposure were randomized to the TIF group or PPI group. Following the 6-month evaluation, all patients in the PPI group elected for crossover to TIF; therefore, all 63 patients underwent TIF 2.0 with EsophyX 2 device. Primary outcome was elimination of daily troublesome regurgitation and atypical symptoms at the 5-year follow-up. Secondary outcomes were improvement in symptom scores, PPI use, reoperations, and patient health satisfaction. The cost-effectiveness of TIF 2.0 was also estimated. Of 63 patients, 60 were available at 1 year, 52 at 3 years, and 44 at 5 years for evaluation. Troublesome regurgitation was eliminated in 88% of patients at 1 year, 90% at 3 years, and 86% at 5 years. Resolution of troublesome atypical symptoms was achieved in 82% of patients at 1 year, 88% at 3 years, and 80% at 5 years. No serious adverse events occurred. There were 3 reoperations by the end of the 5-year follow-up. At the 5-year follow-up, 34% of patients were on daily PPI therapy as compared with 100% of patients at screening. The total GERD Health-related quality-of-life score improved by decreasing from 22.2 to 6.8 at 5 years ( P < .001). In this patient population, the TIF 2.0 procedure provided safe and sustained long-term elimination of troublesome GERD symptoms.
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1975-01-01
Several groups of nickel cadmium cells were tested for the durability of their separator materials. The cells were rated at 6.0 ampere-hours, and contained double ceramic seals. Two cells in each group were fitted with pressure gauge assemblies. Results are presented for various brands of separator materials.
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...
2018-03-03
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Evaluation of self-consolidating concrete.
DOT National Transportation Integrated Search
2003-01-01
Conventional concrete tends to present a problem with regard to adequate consolidation in thin sections or areas of congested reinforcement, which leads to a large volume of entrapped air voids and compromises the strength and durability of the concr...
Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete
DOT National Transportation Integrated Search
2014-11-01
Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...
He, Zhengdi; Chen, Lingling; Shimada, Yasushi; Tagami, Junji; Ruan, Shuangchen
2017-03-31
This study aimed to investigate self-etching bonding systems penetrating in sub-surface dentin layer after Er:YAG laser irradiation and micro-shear bonding durability over a period of 1 year. Dentin slices obtained from extracted human third molars were prepared. Two self-etching adhesive systems were evaluated: Clearfil SE Bond and Clearfil Tri-S Bond. Specimens were tested for micro-shear bond strength with one of the following treatments: Er:YAG laser irradiation and 600-grit silicon paper polishing at 24 h, 7 days, 6 months and 1 year. The adhesive interfaces between bonding agents and lased cervical dentin were studied. No hybrid layer could be observed for lased dentin. The slim resin tags could be seen penetrating through the lased subsurface layer. Bond strength to lased dentin after 6 months and 1 year were significantly decreased (p<0.05).
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...
2017-08-30
Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less
Yetisen, Ali K; Qu, Hang; Manbachi, Amir; Butt, Haider; Dokmeci, Mehmet R; Hinestroza, Juan P; Skorobogatiy, Maksim; Khademhosseini, Ali; Yun, Seok Hyun
2016-03-22
Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.
The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence.
Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J
2017-01-01
The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data.
The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence
Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J.
2017-01-01
The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data. PMID:29209284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku
2011-04-01
The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less
Mark Mankowski; Barbar Hassan; Amy Blodgett; Grant T. Kirker
2016-01-01
Natural durable wood species are those which exhibit innate tolerance to wood decay organisms such as fungi and termites. The goal of this study was to evaluate 4 wood species (Dalbergia sissoo, Cedrus deodara, Morus alba and Pinus roxburghii) from Pakistan in order to determine their resistance to both a model brown (
Chapter 14: Evaluating the Leaching of Biocides from Preservative-Treated Wood Products
Stan T. Lebow
2014-01-01
Leaching of biocides is an important consideration in the long term durability and any potential for environmental impact of treated wood products. This chapter discusses factors affecting biocide leaching, as well as methods of evaluating rate and quantity of biocide released. The extent of leaching is a function of preservative formulation, treatment methods, wood...
NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges
NASA Astrophysics Data System (ADS)
Crawford, Kenneth C.
2016-06-01
The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.
Solé, M; Valera, M; Gómez, M D; Sölkner, J; Molina, A; Mészáros, G
2017-05-01
Longevity/durability is a relevant trait in racehorses. Genetic analysis and knowledge of factors that influence number of harness race starts would be advantageous for both horse welfare and the equine industry. To perform a genetic analysis on harness racing using number of races as a measure of longevity/durability and to identify factors associated with career length in Spanish Trotter Horses (STH). Longitudinal study. Performance data (n = 331,970) on the STH population for harness racing at national level between 1990 and 2014 were used. A grouped data model was fitted to assess factors influencing the risk of ending harness racing career and to estimate the heritability and breeding values for total number of harness races starts as an indicator of horses' longevity and durability. The model included sex, age at first race and first start earnings as time-independent effects, and the calendar year, driver, trainer, racetrack category and season of competition as time-dependent effects. Across the whole dataset, the average number of harness races horses achieved in Spain was 54.7 races, and this was associated with the horses' sex, age at first race and first start earnings, calendar year, driver, racetrack category, and season. The heritability estimated (0.17 ± 0.01) for number of harness race starts indicates that a beneficial response to direct genetic selection can be expected. Data on horses' health status were not available. Horses' total number of harness race starts is a promising tool for genetic analysis and the evaluation of racing longevity and durability. The estimated heritability provides evidence to support the application of genetic selection of total career number of races to improve longevity/durability of STH. © 2016 EVJ Ltd.
A comparative study of aluminum and steel culverts : progress report no. 4.
DOT National Transportation Integrated Search
1971-01-01
The results of a comparative study of aluminum and steel culverts at six test sites throughout Virginia indicate that satisfactory durability can be expected of aluminum pipe under exposure to most of the soil and water conditions in the state. The p...
Optimizing the durability of the coarse fraction of porous asphalt RAP for effective recycling
NASA Astrophysics Data System (ADS)
Holleran, Irina; Wilson, Douglas J.; Black, Philippa; Holleran, Glynn; Walubita, Lubinda F.
2017-09-01
Porous asphalt (PA) durability depends not only on the binder used to manufacture the mix, but also on the aggregates chosen, particularly the coarse fraction component. Aggregates for PA should be of the highest quality and highly durable to withstand the effects of weather and traffic. To recycle PA into a new PA mix, without compromising the long-term performance, the durability of the recovered aggregates from PA-derived reclaimed asphalt pavement (RAP) should be assessed alongside the aged binder properties. In this study, the Micro-Deval (MD) Abrasion test, combined with water absorption, was found to be a good predictor of asphalt mix performance for PA. Minerology of the aggregates is an important factor when setting limits for MD loss. New Zealand (NZ) aggregates are significantly younger in geological terms, and chemically and physically less stable compared to the aggregates used in many other countries. This is especially true for greywacke, the most used aggregate in NZ for road construction. If the MD limits reported in some literature are applied to NZ PA-derived RAP aggregates, poor performing material can be erroneously incorporated in asphalt mixes. Findings from this study contributes in understanding how PA-derived RAP can be recycled into new value PA mixes.
Park, Sin Young; Cheong, Won Jo
2015-09-01
This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ansong, Eric
2015-01-01
This article examined the association between household consumer durable assets and maternal health-seeking behavior. Several studies have suggested a relationship between households' socioeconomic status (SES) and health outcomes. However, SES is a multidimensional concept that encompasses variables, such as wealth, education, and income. By grouping these variables together as one construct, prior studies have not provided enough insight into possible independent associations with health outcomes. This study used data from the 2008 Ghana Demographic and Health Survey of 2,065 women aged between 15 and 49 years to examine the association between household consumer durables (a component of SES) and maternal health-seeking behavior in Ghana. Results from a set of generalized linear models indicated that household consumer durable assets were positively associated with four measures of maternal health-seeking behaviors, namely, seeking prenatal care from skilled health personnel, delivery by skilled birth attendant, place of delivery, and the number of antenatal visits. Also, households with more assets whose residents lived in urban areas were more likely to use skilled health personnel before and during delivery, and at an approved health facility, compared those who lived in rural areas. Implications for health interventions and policies that focus on the most vulnerable households are discussed.
Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl
2012-11-01
Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.
Laboratory and field evaluation of concrete paving curing effectiveness.
DOT National Transportation Integrated Search
2009-12-01
Ensuring that sufficient water is available in hydrating concrete is of great importance to produce durable : concrete and achieve both short- and long-term performance of concrete pavement. Excessive early-age : evaporation from the surface of concr...
Micro-deval coarse aggregate test evaluation
DOT National Transportation Integrated Search
2001-05-01
Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...
Laboratory evaluation of 100% fly ash cementitious systems containing Ekkomaxx.
DOT National Transportation Integrated Search
2013-09-01
Long-lasting, durable concrete is a must have for DOTs in todays construction : and economic climate. Many entities are turning to alternative concrete : mixtures, such as ternary mixtures, lower w/cm ratios, lower cementitious : materials cont...
Evaluation of new binders using newly developed fracture energy test : [summary].
DOT National Transportation Integrated Search
2013-07-01
The flexibility and cohesion that give asphalt concrete its performance characteristics largely derive from the properties of binders. The durability of binders affects the function and lifetime of paving, and considering how extensive Floridas ro...
Distribution of voids in field concrete.
DOT National Transportation Integrated Search
1978-01-01
This study was intended to evaluate the air void characteristics of concrete in an attempt to identify, quantitatively or semi-quantitatively, different types of voids and to predict their influence on strength and durability. At the outset, it was a...
Battery cycling and calendar aging: year one testing results.
DOT National Transportation Integrated Search
2016-07-01
This report is meant to provide an update on the ongoing battery testing performed by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV batte...
Evaluation of bridge deck with shrinkage-compensating concrete : VCTIR report detail.
DOT National Transportation Integrated Search
2016-01-01
Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solutions....
Federal Highway Administration 100-year coating study.
DOT National Transportation Integrated Search
2012-11-01
The Federal Highway Administration 100-Year Coating Study was initiated in August 2009 to search for durable : coating systems at a reasonable cost. The objective of the study was to identify and evaluate coating materials that can : provide 100 year...
Liu, Junpeng; Janjua, Zaid A; Roe, Martin; Xu, Fang; Turnbull, Barbara; Choi, Kwing-So; Hou, Xianghui
2016-12-02
A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1 H ,1 H ,2 H ,2 H -perfluorooctyltriethoxysilane (POTS) using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.
NASA Astrophysics Data System (ADS)
Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey
2015-08-01
Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.
Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong
2017-12-01
Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).
Natural fibres actuators for smart bio-inspired hygromorph biocomposites
NASA Astrophysics Data System (ADS)
Le Duigou, Antoine; Requile, Samuel; Beaugrand, Johnny; Scarpa, Fabrizio; Castro, Mickael
2017-12-01
Hygromorph biocomposite (HBC) actuators make use of the transport properties of plant fibres to generate an out-of-plane displacement when a moisture gradient is present. HBC actuators possess a design based on the bilayer configuration of natural hygromorph actuators (like pine cone, wheat awn, Selaginella lepidophyll). In this work we present a series of design guidelines for HBCs with improved performance, low environmental footprints and high durability in severe environments. We develop a theoretical actuating response (curvature) formulation of maleic anhydride polypropylene (MAPP)/plant fibres based on bimetallic actuators theory. The actuation response is evaluated as a function of the fibre type (flax, jute, kenaf and coir). We demonstrate that the actuation is directly related to the fibre microstructure and its biochemical composition. The jute and flax fibres appear to be the best candidates for use in HBCs. Flax/MAPP and jute/MAPP HBCs exhibit similar actuating behaviours during the sorption phase (amplitude and speed), but different desorption characteristics due to the combined effect of the lumen size, fibre division and biochemical composition on the desorption mechanism. During hygromechanical fatigue tests the jute/MAPP HBCs exhibit a drastic improvement in durability compared to their flax counterparts. We also provide a demonstration on how HBCs can be used to trigger deployment of more complex structures based on Origami and Kirigami designs.
NASA Astrophysics Data System (ADS)
Rodríguez-Abad, Isabel; Klysz, Gilles; Martínez-Sala, Rosa; Balayssac, Jean Paul; Mené-Aparicio, Jesús
2016-12-01
The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.
Preparation of orthophosphate glasses in the MgO-CaO-SiO2-Nb2O5-P2O5 system.
Lee, Sungho; Ueda, Kyosuke; Narushima, Takayuki; Nakano, Takayoshi; Kasuga, Toshihiro
2017-01-01
Niobia/magnesia-containing orthophosphate invert glasses were successfully prepared in our earlier work. Orthophosphate groups in the glasses were cross-linked by tetrahedral niobia (NbO4) and magnesia. The aim of this work is to prepare calcium orthophosphate invert glasses containing magnesia and niobia, incorporating silica, and to evaluate their structures and releasing behaviors. The glasses were prepared by melt-quenching, and their structures and ion-releasing behaviors were evaluated. 31P solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies showed the glasses consist of orthophosphate (PO4), orthosilicate (SiO4), and NbO4 tetrahedra. NbO4 and MgO in the glasses act as network formers. By incorporating SiO2 into the glasses, the chemical durability of the glasses was slightly improved. The glasses reheated at 800°C formed the orthophosphate crystalline phases, such as β-Ca3(PO4)2, Mg3(PO4)2 and Mg3Ca3(PO4)4 in the glasses. The chemical durability of the crystallized glasses was slightly improved. Orthosilicate groups and NbO4 in the glasses coordinated with each other to form Si-O-Nb bonds. The chemical durability of the glasses was slightly improved by addition of SiO2, since the field strength of Si is larger than that of Ca or Mg.
Guerrero, A; Goñi, S; Allegro, V R
2009-06-15
The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.
Elimination of deck joints using a corrosion resistant FRP approach
NASA Astrophysics Data System (ADS)
Aleti, Ashok Reddy
The research presented herein describes the development of durable link slabs for jointless bridge decks based on using FRP grid for reinforcement. Specifically, the ductility of the FRP material was utilized to accommodate bridge deck deformations imposed by girder deflection, temperature variations, and concrete shrinkage. It would also provide a solution to a number of deterioration problems associated with bridge deck joints. The design concept of the link slabs was then examined to form the basis of design for FRP grid link slabs. Improved design of FRP grid link slab/concrete deck slab interface was confirmed in the numerical analysis. The mechanical properties between the FRP grid and concrete were evaluated. The behavior of the link slab was investigated and confirmed for durability. The results indicated that the technique would allow simultaneous achievement of structural need (lower flexural stiffness of the link slab approaching the behavior of a hinge) and durability need of the link slab. Also, the development length results confirm that the bond between the FRP grid and the concrete was highly improved. The overall investigation supports the contention that durable jointless concrete bridge decks may be designed and constructed with FRP grid link slabs. It is recommended that the link slab technique be used during new construction of the bridge decks and in repair and retrofit of the bridge decks.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay
2018-01-01
The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.
Gilbert, P B; Ribaudo, H J; Greenberg, L; Yu, G; Bosch, R J; Tierney, C; Kuritzkes, D R
2000-09-08
At present, many clinical trials of anti-HIV-1 therapies compare treatments by a primary endpoint that measures the durability of suppression of HIV-1 replication. Several durability endpoints are compared. Endpoints are compared by their implicit assumptions regarding surrogacy for clinical outcomes, sample size requirements, and accommodations for inter-patient differences in baseline plasma HIV-1-RNA levels and in initial treatment response. Virological failure is defined by the non-suppression of virus levels at a prespecified follow-up time T(early virological failure), or by relapse. A binary virological failure endpoint is compared with three time-to-virological failure endpoints: time from (i) randomization that assigns early failures a failure time of T weeks; (ii) randomization that extends the early failure time T for slowly responding subjects; and (iii) virological response that assigns non-responders a failure time of 0 weeks. Endpoint differences are illustrated with Agouron's trial 511. In comparing high with low-dose nelfinavir (NFV) regimens in Agouron 511, the difference in Kaplan-Meier estimates of the proportion not failing by 24 weeks is 16.7% (P = 0.048), 6.5% (P = 0.29) and 22.9% (P = 0.0030) for endpoints (i), (ii) and (iii), respectively. The results differ because NFV suppresses virus more quickly at the higher dose, and the endpoints weigh this treatment difference differently. This illustrates that careful consideration needs to be given to choosing a primary endpoint that will detect treatment differences of interest. A time from randomization endpoint is usually recommended because of its advantages in flexibility and sample size, especially at interim analyses, and for its interpretation for patient management.
Aggregate Freezing-Thawing Performance Using the Iowa Pore Index : final report.
DOT National Transportation Integrated Search
2016-10-01
In cold climates, the use of non-durable aggregate leads to premature pavement deterioration due to damage caused by freezing-thawing cycles. Differentiating durable and non-durable aggregates is a crucial yet challenging task. The frost durability o...
State-of-the-Art Report About Durability of Post-Tensioned Bridge Substructures
DOT National Transportation Integrated Search
1999-10-01
Durability design requires an understanding of the factors influencing durability and the measures necessary to improve durability of concrete structures. The objectives of this report are to: 1. Survey the condition of bridge substructures in Texas;...
Sensitivity study on durability variables of marine concrete structures
NASA Astrophysics Data System (ADS)
Zhou, Xin'gang; Li, Kefei
2013-06-01
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
Highly efficient and durable TiN nanofiber electrocatalyst supports.
Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young
2015-11-28
To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.
Development and freeze-thaw durability of high flyash-content concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadi, J.
1987-01-01
Objectives were to investigate the effects on concrete strength, drying shrinkage, freeze-thaw durability, and air-void system parameters of replacing various amounts of portland cement with different types of fly ash and to compare selected characteristics of such fly-ash concretes and fly-ash concretes containing a high-range water-reducing admixture to those of a control mixture. It was concluded that concrete mixtures with 90-day compressive strengths equal to the control could be produced when large amounts of cement were replaced by fly ash. In addition, when the high-range water-reducing admixtures was employed, very large amounts of cement could be replaced by fly ashmore » to yield mixtures whose compressive strengths were equal to or greater than the strengths of the control mix at all ages. The maximum amount of cement that could be replaced for equal-strength mixtures depended upon the nature of the fly ash. Drying shrinkage of plain fly-ash concretes and fly-ash concretes containing the high-range water-reducing admixture were similar to those of the control mix. The optimum fly-ash content in a concrete is comparable in strength and durability to a conventional (control) concrete was influenced by the chemical and physical characteristics of the fly ash.« less
NASA Astrophysics Data System (ADS)
Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo
2017-09-01
The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.
Teli, M D; Sheikh, Javed
2012-06-01
Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes. Copyright © 2012 Elsevier B.V. All rights reserved.
Research, development and application of noncombustible Beta fiber structures. [for Apollo
NASA Technical Reports Server (NTRS)
Dillon, J. J.; Cobb, E. S.
1975-01-01
Beta fiber was selected as the primary material for flexible fibrous structures used in spacecraft and crew systems applications in the Apollo program because it was noncombustible in a 100 percent oxygen atmosphere up to 16.5 psia. It met NASA criteria for outgassing, toxicity, odor, and crew comfort, and possessed sufficient durability to last through the mission. Topics discussed include: study of spacecraft applications; design of Beta fiber textile structures to meet the requirements; selection of surface treatments (finishes, coatings, and printing systems) to impart the required durability and special functional use to the textile structures; development of sewing and fabrication techniques; and testing and evaluation programs, and development of production sources.
Durability of aircraft composite materials
NASA Technical Reports Server (NTRS)
Dextern, H. B.
1982-01-01
Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.
Peng, Shan; Bhushan, Bharat
2016-01-01
Superoleophobic aluminum surfaces are of interest for self-cleaning, anti-smudge (fingerprint resistance), anti-fouling, and corrosion resistance applications. In the published literature on superoleophobic aluminum surfaces, mechanical durability, self-cleaning, and anti-smudge properties data are lacking. Microstep structure has often been used to prepare superhydrophobic aluminum surfaces which produce the microstructure. The nanoreticula structure has also been used, and is reported to be able to trap air-pockets, which are desirable for a high contact angle. In this work, the microstep and nanoreticula structures were produced on aluminum surfaces to form a hierarchical micro/nanostructure by a simple two-step chemical etching process. The hierarchical structure, when modified with fluorosilane, made the surface superoleophobic. The effect of nanostructure, microstructure, and hierarchical structure on wettability and durability were studied and compared. The superoleophobic aluminum surfaces were found to be wear resistant, self-cleaning, and have anti-smudge and corrosion resistance properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei
2015-01-01
Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190
Abu Nawareg, Manar; Elkassas, Dina; Zidan, Ahmed; Abuelenain, Dalia; Abu Haimed, Tariq; Hassan, Ali H; Chiba, Ayaka; Bock, Thorsten; Agee, Kelli; Pashley, David H
2016-02-01
The aim of the current study was to evaluate the effect of 2% CHX and 2% CHX-methacrylate compared to the resin-dentin bonds created by a two-step etch-and-rinse adhesive system after 24h, 6min and 12min. Microtensile bond strengths and interfacial nanoleakage within resin-dentin interfaces created by Adper Single Bond 2, with or without CHX or CHX-methacrylate pre-treatment for 30s on acid-etched dentin surfaces, were evaluated after 24h, 6min and 12min of storage in distilled water at 37°C. Twelve months of storage resulted in a significant decrease in microtensile bond strength in the control group, and significant increases in silver nanoleakage. In contrast, Single Bond 2+CHX, and to a greater extent CHX-methacrylate, significantly reduced the rate of deterioration of resin-dentin interfaces over the 12min water storage period, in terms of bond strength. Similar to Single Bond 2+CHX, Single Bond+CHX-methacrylates reduced the degradation of resin-bonded interfaces over a 12 month storage period. Thus it can be concluded that Single Bond 2+CHX-methacrylate may be important to improve durability of bonded interfaces and therefore, prolong the life span of adhesive restorations. Although CHX primers have been shown to enhance the durability of etch-and-rinse adhesives, that protection is lost after 2h. The use of CHX-methacrylate should last much longer since it may copolymerize with adhesive monomers, unlike CHX. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Micro-Deval coarse aggregate test evaluation : final report.
DOT National Transportation Integrated Search
2001-05-01
Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...
Evaluation of bonding agent application on concrete patch performance.
DOT National Transportation Integrated Search
2014-08-01
The durability of partial depth repair is directly related to the bond strength between the repair material and existing : concrete. Bond strength development sensitivity to wait time with the use of bonding agents in partial depth repair was : inves...
Comparison of performance criteria for evaluating stake test data
Stan T. Lebow; Patricia K. Lebow; Grant T. Kirker
2017-01-01
Stake tests are a critical part of evaluating durability of wood in ground-contact, but there is a lack of criteria for interpreting stake test results. This paper discusses criteria that might be used to determine if short term ratings indicate satisfactory longterm performance. Ratings of 19 by 19 mm stakes from multiple plots in the Harrison Experimental Forest,...
Thin film temperature sensors, phase 3. [for engine-test evaluation
NASA Technical Reports Server (NTRS)
Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.; Anderson, W. L.
1982-01-01
A thin film thermocouple system installation suitable for engine test evaluation was designed, and an engine test plan was prepared. Film adherence, durability, accuracy, and drift characteristics were improved. Film thickness was increased to 14 microns, and drift was reduced to less than 0.02 percent of Fahrenheit temperature per hour on actual turbine blades at 1255 K.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, George H.; Ezzo, Maureen B.
1994-01-01
This paper presents the results of a NASA funded contract and Sikorsky research and development programs to evaluate structural composite components in flight service on Sikorsky Model S-76 helicopters. Selected components were removed and tested at prescribed intervals over a nine year time frame. Four horizontal stabilizers and thirteen tail rotor spars were returned from commercial service in West Palm Beach, Florida and in the Gulf Coast region of Louisiana to determine the long term effects of operations in hot and humid climates on component performance. Concurrent with the flight component evaluation, panels of materials used in their fabrication were exposed to the environment in ground racks. Selected panels were tested annually to determine the effects of exposure on physical and mechanical properties. The results of 55,741 component flight hours and 911 months of field exposure are reported and compared with initial Federal Aviation Administration (FAA) certification data. The findings of this program have provided increased confidence in the long term durability of advanced composite materials used in helicopter structural applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, K.
Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aimmore » of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.« less
Rubia-Rubia, J; Arias, A; Sierra, A; Aguirre-Jaime, A
2011-07-01
We compared a range of alternative devices with core body temperature measured at the pulmonary artery to identify the most valid and reliable instrument for measuring temperature in routine conditions in health services. 201 patients from the intensive care unit of the Candelaria University Hospital, Canary Islands, admitted to hospital between April 2006 and July 2007. All patients (or their families) gave informed consent. Readings from gallium-in-glass, reactive strip and digital in axilla, infra-red ear and frontal thermometers were compared with the pulmonary artery core temperature simultaneously. External factors suspected of having an influence on the differences were explored. The cut-off point readings for each thermometer were fixed for the maximum negative predictive value in comparison with the core temperature. The validity, reliability, accuracy, external influence, the waste they generated, ease of use, speed, durability, security, comfort and cost of each thermometer was evaluated. An ad hoc overall valuation score was obtained from these parameters for each instrument. For an error of ± 0.2°C and concordance with respect to fever, the gallium-in-glass thermometer gave the best results. The largest area under the receiver operating characteristic (ROC) curve is obtained by the digital axillar thermometer with probe (0.988 ± 0.007). The minimum difference between readings was given by the infrared ear thermometer, in comparison with the core temperature (-0.1 ± 0.3°C). Age, weight, level of conscience, male sex, environmental temperature and vaso-constrictor medication increases the difference in the readings and fever treatment reduces it, although this is not the same for all thermometers. The compact digital axillar thermometer and the digital thermometer with probe obtained the highest overall valuation score. If we only evaluate the aspects of validity, reliability, accuracy and external influence, the best thermometer would be the gallium-in-glass after 12 min. The gallium-in-glass thermometer is less accurate after only 5 min in comparison with the reading taken after being placed for 12 min. If we add the evaluation of waste production, ease-of-use, speed, durability, security, patient comfort and costs, the thermometers that obtain the highest score are the compact digital and digital with probe in right axilla. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers
Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F.
2016-01-01
This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP’s effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production. PMID:28787905
The design and fabrication of two portal vein flow phantoms by different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin
2014-02-15
Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less
NASA Astrophysics Data System (ADS)
Dombrovskis, Johanna K.; Palmqvist, Anders E. C.
2017-07-01
Development of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells with high activity and durability and with optimal water management properties is of outmost technological importance and highly challenging. Here we study the possibilities offered through judicious selection of small molecular precursors used for the formation of ordered mesoporous carbon-based non-precious metal ORR catalysts. By combining two complementary precursors, we present a one-pot synthesis that leads to a composite material consisting of transition metal ion-chelating ordered mesoporous carbon and multi-walled carbon nanotubes (TM-OMC/CNT). The resulting composite materials show high specific surface areas and a carbon structure that exhibits graphitic signatures. The synthesis procedure allows for tuning of the carbon structure, the surface area, the pore volume and the ratio of the two components of the composite. The TM-OMC/CNT composites were processed into membrane electrode assemblies and evaluated in single cell fuel cell measurements where they showed a combination of good ORR activity and very high durability.
Evaluation of Surface Fatigue Strength Based on Surface Temperature
NASA Astrophysics Data System (ADS)
Deng, Gang; Nakanishi, Tsutomu
Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.
Stolovitzky, J Pablo; Mehendale, Neelesh; Matheny, Keith E; Brown, William J; Rieder, Anthony A; Liepert, Douglas R; Tseng, Ewen; Gould, Andrew
2018-05-21
Background Chronic rhinosinusitis (CRS) is a devastating disease affecting nearly 30 million people in the United States. An interim analysis of data from the present study suggested that, in patients who had previously failed medical therapy, balloon sinus dilation (BSD) plus medical management (MM) provides a significant improvement in the quality of life (QOL) at 24 weeks postprocedure compared to MM alone. Objective The primary objective of this final analysis was to evaluate the durability of treatment effects through the 52-week follow-up. Methods Adults aged 19 and older with CRS who had failed MM elected either BSD plus MM or continued MM. Patients were evaluated at 2 (BSD arm only), 12, 24, and 52 weeks posttreatment. Balloon dilations were performed either as an office-based procedure under local anesthesia or in the operating room per physicians' and patients' discretion. The primary end point was change in patient-reported QOL as measured by Chronic Sinusitis Survey (CSS) total score from baseline to the 24-week follow-up. Secondary outcomes including changes in CSS, Rhinosinusitis Disability Index (RSDI), and Sino-Nasal Outcome Test (SNOT) total and subscores, sinus medication usage, missed days of work/school, number of medical care visits, and sinus infections from baseline to the 52-week follow-up are reported here within. Results BSD led to sustained greater improvements in self-reported QOL using the CSS and RSDI total scores with a trend toward improvement in the SNOT-20 total score from baseline to the 52-week follow-up compared to continued MM. There were no changes in medication usage apart from nasal steroid usage for which the MM cohort had an increase in usage. There were no device-related serious adverse events. Conclusion The current analysis highlights the safety, effectiveness, and durability of BSD in CRS patients aged 19 and older who had previously failed MM.
40 CFR 86.094-26 - Mileage and service accumulation; emission requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-duty vehicles. It prescribes mileage and service accumulation requirements for durability data vehicles... Durability Program of § 86.094-13(d), and for emission data vehicles regardless of the durability program employed. Service accumulation requirements for durability data vehicles run under the Alternative Service...
76 FR 43808 - Designation of Biobased Items for Federal Procurement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... thermal shipping containers, including durable and non-durable thermal shipping containers as... able to utilize this Web site as one tool to determine the availability of qualifying biobased products... containers and the subcategories are (1) durable thermal shipping containers, and (2) non-durable thermal...
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Research on Durability of Big Recycled Aggregate Self-Compacting Concrete Beam
NASA Astrophysics Data System (ADS)
Gao, Shuai; Liu, Xuliang; Li, Jing; Li, Juan; Wang, Chang; Zheng, Jinkai
2018-03-01
Deflection and crack width are the most important durability indexes, which play a pivotal role in the popularization and application of the Big Recycled Aggregate Self-Compacting Concrete technology. In this research, comparative study on the Big Recycled Aggregate Self-Compacting Concrete Beam and ordinary concrete beam were conducted by measuring the deflection and crack width index. The results show that both kind of concrete beams have almost equal mid-span deflection value and are slightly different in the maximum crack width. It indicates that the Big Recycled Aggregate Self-Compacting Concrete Beam will be a good substitute for ordinary concrete beam in some less critical structure projects.
Peera, S Gouse; Arunchander, A; Sahu, A K
2016-08-14
Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ∼110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity and long term durability of the Fe-Co/NF-GNF catalyst make it a promising ORR electrocatalyst for the fuel cell cathode reaction.
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following a determination that the named payee is incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney is similar to a durable power of attorney except... special power of attorney, a springing durable special power of attorney is created by the principal's use...
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following a determination that the named payee is incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney is similar to a durable power of attorney except... special power of attorney, a springing durable special power of attorney is created by the principal's use...
Robert, Caroline; Ribas, Antoni; Hamid, Omid; Daud, Adil; Wolchok, Jedd D; Joshua, Anthony M; Hwu, Wen-Jen; Weber, Jeffrey S; Gangadhar, Tara C; Joseph, Richard W; Dronca, Roxana; Patnaik, Amita; Zarour, Hassane; Kefford, Richard; Hersey, Peter; Zhang, Jin; Anderson, James; Diede, Scott J; Ebbinghaus, Scot; Hodi, F Stephen
2017-12-28
Purpose Pembrolizumab provides durable antitumor activity in metastatic melanoma, including complete response (CR) in about 15% of patients. Data are limited on potential predictors of CR and patient disposition after pembrolizumab discontinuation after CR. We describe baseline characteristics and long-term follow-up in patients who experienced CR with pembrolizumab in the KEYNOTE-001 study ( ClinicalTrials.gov identifier: NCT01295827). Patients and Methods Patients with ipilimumab-naive or -treated advanced/metastatic melanoma received one of three dose regimens of pembrolizumab. Eligible patients who received pembrolizumab for ≥ 6 months and at least two treatments beyond confirmed CR could discontinue therapy. Response was assessed every 12 weeks by central Response Evaluation Criteria in Solid Tumors version 1.1. For this analysis, CR was defined per investigator assessment, immune-related response criteria, and potential predictors of CR were evaluated using univariate and multivariate analyses. Results Of 655 treated patients, 105 (16.0%) achieved CR after median follow-up of 43 months. At data cutoff, 92 patients (87.6%) had CR, with median follow-up of 30 months from first CR. Fourteen (13.3%) patients continued to receive treatment for a median of ≥ 40 months. Pembrolizumab was discontinued by 91 patients (86.7%), including 67 (63.8%) who proceeded to observation without additional anticancer therapy. The 24-month disease-free survival rate from time of CR was 90.9% in all 105 patients with CR and 89.9% in the 67 patients who discontinued pembrolizumab after CR for observation. Tumor size and programmed death-ligand 1 status were among the baseline factors independently associated with CR by univariate analysis. Conclusion Patients with metastatic melanoma can have durable complete remission after discontinuation of pembrolizumab, and the low incidence of relapse after median follow-up of approximately 2 years from discontinuation provides hope for a cure for some patients. The mechanisms underlying durable CR require further investigation.
Evaluation of 3D Additively Manufactured Canine Brain Models for Teaching Veterinary Neuroanatomy.
Schoenfeld-Tacher, Regina M; Horn, Timothy J; Scheviak, Tyler A; Royal, Kenneth D; Hudson, Lola C
Physical specimens are essential to the teaching of veterinary anatomy. While fresh and fixed cadavers have long been the medium of choice, plastinated specimens have gained widespread acceptance as adjuncts to dissection materials. Even though the plastination process increases the durability of specimens, these are still derived from animal tissues and require periodic replacement if used by students on a regular basis. This study investigated the use of three-dimensional additively manufactured (3D AM) models (colloquially referred to as 3D-printed models) of the canine brain as a replacement for plastinated or formalin-fixed brains. The models investigated were built based on a micro-MRI of a single canine brain and have numerous practical advantages, such as durability, lower cost over time, and reduction of animal use. The effectiveness of the models was assessed by comparing performance among students who were instructed using either plastinated brains or 3D AM models. This study used propensity score matching to generate similar pairs of students. Pairings were based on gender and initial anatomy performance across two consecutive classes of first-year veterinary students. Students' performance on a practical neuroanatomy exam was compared, and no significant differences were found in scores based on the type of material (3D AM models or plastinated specimens) used for instruction. Students in both groups were equally able to identify neuroanatomical structures on cadaveric material, as well as respond to questions involving application of neuroanatomy knowledge. Therefore, we postulate that 3D AM canine brain models are an acceptable alternative to plastinated specimens in teaching veterinary neuroanatomy.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William
2011-01-01
Human exploration of space beyond low Earth orbit (LEO) requires a safe living and working environment for crew. Composite materials are one type of material being investigated by NASA as a multi-functional structural approach to habitats for long-term use in space or on planetary surfaces with limited magnetic fields and atmosphere. These materials provide high strength with the potential for decreased weight and increased radiation protection of crew and electronics when compared with conventional aluminum structures. However, these materials have not been evaluated in a harsh radiation environment, as would be experienced outside of LEO or on a planetary surface. Thus, NASA has been investigating the durability of select composite materials in a long-term radiation environment. Previously, NASA exposed composite samples to a simulated, accelerated 30-year radiation treatment and tensile stresses similar to those of a habitat pressure vessel. The results showed evidence of potential surface oxidation and enhanced cross-linking of the matrix. As a follow-on study, we performed the same accelerated exposure alongside an exposure with a decreased dose rate. The slower dose ]rate is comparable to a realistic scenario, although still accelerated. Strain measurements were collected during exposure and showed that with a fastdose rate, the strain decreased with time, but with a slow ]dose rate, the strain increased with time. After the radiation exposures, samples were characterized via tensile tests, flexure tests, Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). The results of these tests will be discussed.
NASA Astrophysics Data System (ADS)
Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.
2017-12-01
This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.
Evaluation of pavement permeability in Mississippi.
DOT National Transportation Integrated Search
2003-07-01
The proper compaction of hot mix asphalt (HMA) pavements is vital for a stable and durable pavement. For dense-graded mixtures, it has been recommended that the initial in-place air voids at the time of construction should not be below 3 percent or a...
Polymer concrete overlay test program : Lebanon Ditch Bridge : final report.
DOT National Transportation Integrated Search
1983-01-01
This report presents information on the installation of a thin polymer concrete overlay and the evaluation of its durability after a 15-month in-service period. The project was performed by the Oregon State Highway Division under the sponsorship of t...
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1985-01-01
The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems.
Evaluation and optimization of durable pervious concrete for use in urban areas
DOT National Transportation Integrated Search
2008-02-01
Although pervious concrete was first used in the nineteenth century, it has only recently begun to increase in popularity. As urban areas expand, the problems associated with runoff management have become more challenging. The focus on the negative e...
DOT National Transportation Integrated Search
2009-01-01
Part 1Pavement Condition Evaluation, Impact, and Durability; Part 2Concrete Pavement Preservation, Repair, and Rehabilitation; Part 3Concrete Pavement Repair Techniques and Experiences; Part 4Concrete Pavement Surface Texture; Part 5Emergin...
40 CFR 610.50 - Test configurations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Test configurations. 610.50 Section 610.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
Evaluation of the Long-Term Durability of Joints Cut Using Early Entry Saws on Rigid Pavements
DOT National Transportation Integrated Search
2011-01-01
Early-entry sawing is an attractive operation to expedite the construction of jointed concrete pavements; however, : there are some concerns that the early-entry sawing may compromise the pavements long-term performance. The Illinois : Department ...
US-23 aggregate test road long-term performance evaluation : final report.
DOT National Transportation Integrated Search
2017-03-24
The US-23 Aggregate Test Road was constructed in 1992 with the main purpose to determine the influence of coarse : aggregate of varying frost susceptibility on long-term concrete durability. The pavement structure for the entire Test Road consists : ...
DOT National Transportation Integrated Search
2008-11-01
The report describes research that evaluated the use of supplementary cementitious materials (SCM) to improve the service life of bridges constructed in severe marine environments. The SCM studied included ultra-fine fly ash, ground granulated blast ...
Evaluation of Portland cement concrete with internal curing capabilities : tech summary.
DOT National Transportation Integrated Search
2016-09-01
Proper curing is the key to durable and sustainable concrete structures. When a concrete mixture is : designed, delivered, poured, and consolidated, curing is the last and the most critical part for a quality final : product. Insufficient curing of c...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
Seismic evaluation and retrofit of deteriorated concrete bridge components.
DOT National Transportation Integrated Search
2013-06-01
Corrosion of steel bars in reinforced concrete structures is a major durability problem for bridges constructed in the New York State : (NYS). The heavy use of deicing salt compounds this problem. Corrosion of steel bars results in loss of steel cros...
Evaluation of PCC long-term durability using intermediate sized gravels to optimize mix gradations.
DOT National Transportation Integrated Search
2010-04-01
With the implementation of the 2000 Q-MC specification, an incentive is provided to produce an optimized gradation to improve placement characteristics. Also, specifications for slip-formed barrier rail have changed to require an optimized gradation....
Corrosion evaluation of novel coatings for steel components of highway bridges : [summary].
DOT National Transportation Integrated Search
2015-04-01
Steel components make up all or part of Florida bridges. Many are subject to harsh marine : environments, but all are exposed to Floridas high humidity and rainfall, which can lead to : corrosion. Durable protective coatings are needed to protect ...
Durability and smart condition assessment of ultra-high performance concrete in cold climates.
DOT National Transportation Integrated Search
2016-12-31
The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...
Multi-factor Effects on the Durability of Recycle Aggregate Concrete
NASA Astrophysics Data System (ADS)
Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie
2016-05-01
Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.
Durability of an inorganic polymer concrete coating
NASA Astrophysics Data System (ADS)
Wasserman, Kenneth
The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.
Isaacson, Stuart; Shill, Holly A; Vernino, Steven; Ziemann, Adam; Rowse, Gerald J
2016-10-19
Neurogenic orthostatic hypotension (nOH) is associated with insufficient norepinephrine release in response to postural change. The objective of this study was to evaluate the long-term safety and durability of efficacy of the norepinephrine precursor droxidopa in patients with symptomatic nOH. This multinational study consisted of 3 sequential phases: a 3-month open-label droxidopa treatment phase followed by a 2-week double-blind, placebo-controlled withdrawal phase, and a 9-month open-label extension phase in which all patients received droxidopa. Patients were adults diagnosed with symptomatic nOH associated with Parkinson's disease, multiple system atrophy, pure autonomic failure, dopamine β-hydroxylase deficiency, or nondiabetic autonomic neuropathy. Efficacy was evaluated using patient- and investigator-reported questionnaire responses and the orthostatic standing test. Safety was assessed through adverse event (AE) reports and vital signs. A total of 102 patients received treatment with droxidopa. Initial improvements from baseline in patient-reported nOH symptom severity and impact on daily activities, evaluated using the Orthostatic Hypotension Questionnaire, exceeded 50% and were maintained throughout the 12-month study. Decreased nOH severity was also reflected in clinician and patient ratings on the Clinical Global Impression questionnaire. Standing systolic and diastolic blood pressures were increased from baseline throughout the study with droxidopa treatment. The most frequently reported AEs were falls, urinary tract infection, and headache. There was a low incidence (≤2%) of cardiac AEs (eg, first-degree atrioventricular block, supraventricular extrasystoles). Long-term, open-label treatment with droxidopa for up to 12 months was generally well tolerated and provided durable improvements in nOH signs and symptoms.
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Evolutionary model of an anonymous consumer durable market
NASA Astrophysics Data System (ADS)
Kaldasch, Joachim
2011-07-01
An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal, while the growth rates exhibit a Laplace distribution. Large price deviations from the mean price are also governed by a Laplace distribution (fat tails). These results are in agreement with empirical findings. The explicit comparison of the time evolution of consumer durables with empirical investigations confirms the close relationship between price decline and Gompertz diffusion, while the product life cycle can be described qualitatively for a long time period.
42 CFR 414.229 - Other durable medical equipment-capped rental items.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.229 Other durable medical... 42 Public Health 3 2011-10-01 2011-10-01 false Other durable medical equipment-capped rental items...
42 CFR 414.229 - Other durable medical equipment-capped rental items.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.229 Other durable medical... 42 Public Health 3 2010-10-01 2010-10-01 false Other durable medical equipment-capped rental items...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
2012-01-01
Background Indoor residual spraying (IRS) is a primary method of malaria vector control, but its potential impact is constrained by several inherent limitations: spraying must be repeated when insecticide residues decay, householders can tire of the annual imposition and campaign costs are recurrent. Durable lining (DL) can be considered an advanced form of long-lasting IRS where insecticide is gradually released from an aesthetically attractive wall lining material to provide vector control for several years. A multicentre trial was carried out in Equatorial Guinea, Ghana, Mali, South Africa and Vietnam to assess the feasibility, durability, bioefficacy and household acceptability of DL, compared to conventional IRS or insecticide-treated curtains (LLITCs), in a variety of operational settings. Methods This study was conducted in 220 households in traditional rural villages over 12-15 months. In all sites, rolls of DL were cut to fit house dimensions and fixed to interior wall surfaces (usually with nails and caps) by trained teams. Acceptability was assessed using a standardized questionnaire covering such topics as installation, exposure reactions, entomology, indoor environment, aesthetics and durability. Bioefficacy of interventions was evaluated using WHO cone bioassay tests at regular intervals throughout the year. Results The deltamethrin DL demonstrated little to no decline in bioefficacy over 12-15 months, supported by minimal loss of insecticide content. By contrast, IRS displayed a significant decrease in bioactivity by 6 months and full loss after 12 months. The majority of participants in DL households perceived reductions in mosquito density (93%) and biting (82%), but no changes in indoor temperature (83%). Among those households that wanted to retain the DL, 73% cited protective reasons, 20% expressed a desire to keep theirs for decoration and 7% valued both qualities equally. In Equatorial Guinea, when offered a choice of vector control product at the end of the trial (DL, IRS or LLITCs), DL consistently emerged as the most popular intervention regardless of the earlier household allocation. Conclusions Just as long-lasting insecticidal nets overcame several of the technical and logistical constraints associated with conventionally treated nets and then went to scale, this study demonstrates the potential of DL to sustain user compliance and overcome the operational challenges associated with IRS. PMID:23107112
Ultra-High Temperature Thermal Barrier Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Eric; Gell, Maurice; Wang, Jiwen
In this project, HiFunda LLC worked with the University of Connecticut (UConn) to demonstrate an attractive option for thermal barrier coatings (TBCs), namely yttrium aluminum garnet (YAG), which was well known to have proven thermal stability and excellent high-temperature mechanical properties. YAG and other higher temperature TBCs have not been used to date because they exhibit inadequate durability, resulting from (a) poor erosion resistance and (b) greater thermal expansion mismatch strains compared to 7YSZ. UConn had previously demonstrated that the solution precursor plasma spray (SPPS) process could produce a durable 7YSZ TBC resulting from a highly strain tolerant microstructure, consistingmore » of through-coating-thickness vertical cracks. HiFunda/UConn reasoned at the start of Phase I that such a strain-tolerant microstructure could produce durable, higher temperature TBCs. The Phase I work demonstrated the feasibility of that concept and of SPPS YAG TBCs. The Phase II work demonstrated that SPPS YAG coating possessed the necessary range of properties to be a viable high temperature TBC, including cyclic durability and reduced elevated temperature thermal conductivity. The SPPS YAG TBCs were shown to have the potential to be used at temperatures 200°C higher than APS YSZ, based on thermal stability, sinter resistance, and CMAS resistance. The overall technical objectives of this Phase 2A project were to further improve the commercial viability of SPPS by improving their performance capabilities and manufacturing economics. The improved performance capability was to be achieved through: (1) further reductions in thermal conductivity, which allows higher gas temperatures and/or thinner coatings to achieve similar gas temperatures; and (2) improved resistance to calcium magnesium alumnoslicate (CMAS) attack of the TBCs, which can yield improved lifetimes. The improved thermal conductivity and CMAs resistance was to be accomplished through compositional and microstructural optimization. Finally, the key metrics to improve the process economics were increased deposition rate and efficiency. In addition to these technical objectives, there were commercialization objectives of getting key commercialization partners to evaluate and qualify the SPPS YAG technology independently so that the technology readiness level (TRL) of the technology could be sufficiently advanced to facilitate Phase III strategic partnerships, leading to eventual commercialization consistent with the overall objectives of the DOE SBIR/STTR program. All the Phase 2A goals were successfully achieved.« less
Highly Dispersed Alloy Catalyst for Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek S. Murthi; Izzo, Elise; Bi, Wu
2013-01-08
Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them withmore » existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.« less
Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao
2015-05-01
Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.
Effect of boron waste on the properties of mortar and concrete.
Topçu, Iker Bekir; Boga, Ahmet Raif
2010-07-01
Utilization of by-products or waste materials in concrete production are important subjects for sustainable development and industrial ecology concepts. The usages as mineral admixtures or fine aggregates improve the durability properties of concrete and thus increase the economic and environmental advantages for the concrete industry. The effect of clay waste (CW) containing boron on the mechanical properties of concrete was investigated. CW was added in different proportions as cement additive in concrete. The effect of CW on workability and strength of concrete were analysed by fresh and hardened concrete tests. The results obtained were compared with control concrete properties and Turkish standard values. The results showed that the addition of CW had a small effect upon the workability of the concrete but an important effect on the reduction of its strength. It was observed that strength values were quite near to that of control concrete when not more than 10% CW was used in place of cement. In addition to concrete specimens, replacing cement with CW produced mortar specimens, which were investigated for their strength and durability properties. The tests of SO( 4) (2-) and Cl(-) effect as well as freeze-thaw behaviour related to the durability of mortar were performed. Consequently, it can be said that some improvements were obtained in durability properties even if mechanical properties had decreased with increasing CW content.
Comparison of shrinkage related properties of various patch repair materials
NASA Astrophysics Data System (ADS)
Kristiawan, S. A.; Fitrianto, R. S.
2017-02-01
A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.
Selection of suitable NDT methods for building inspection
NASA Astrophysics Data System (ADS)
Pauzi Ismail, Mohamad
2017-11-01
Construction of modern structures requires good quality concrete with adequate strength and durability. Several accidents occurred in the civil constructions and were reported in the media. Such accidents were due to poor workmanship and lack of systematic monitoring during the constructions. In addition, water leaking and cracking in residential houses was commonly reported too. Based on these facts, monitoring the quality of concrete in structures is becoming more and more important subject. This paper describes major Non-destructive Testing (NDT) methods for evaluating structural integrity of concrete building. Some interesting findings during actual NDT inspections on site are presented. The NDT methods used are explained, compared and discussed. The suitable methods are suggested as minimum NDT methods to cover parameters required in the inspection.
Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce
1992-01-01
A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications as described. This work represents the first reporting of the sliding durability of this material system. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 C to 900 C, loads from 1.3 to 21.2 Newtons, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter, elastic modulus, and a pretest fiber heat treatment on friction and wear were measured. In most cases, wear increased with temperature. Friction ranged from about 0.36 at 500 C and low velocity (0.025 m/s) to over 1.1 at 900 C and high velocity (0.25 m/s). The pretest fiber heat treatment, which caused significant durability reductions for alumina-boria-silica ceramic fibers tested previously, had little effect on the alumina-silica fibers tested here. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications.
3D PRINTING SUSTAINABLE BUILDING COMPONENTS FOR FACADES AND AS WINDOW ELEMENTS
The façade elements we design will be targeted at the construction industry and will be evaluated in the context of rapid manufacturing, energy conservation, thermal performance, structural strength, durability and construction assembly. The façade element des...
Evaluation of the strength of cement-treated aggregate for pavement bases.
DOT National Transportation Integrated Search
2006-01-01
Cement-treated aggregate (CTA) is commonly used to provide a stable base for pavements that are placed over weak soil subgrades. Because CTA reduces the thickness of the aggregate required to provide a durable base by approximately one-half, using it...
DOT National Transportation Integrated Search
2014-08-01
The goal of everyone in the transportation community is to build bridges : that are economic, easy to construct, and durable. Therefore, accelerating : bridge construction through the use of precast concrete or prefabricated : steel girders is a comm...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
Laboratory comparison of several tests for evaluating the transport properties of concrete.
DOT National Transportation Integrated Search
2006-01-01
The transport properties of concrete are a primary element in determining the durability of concrete. In this study, several new test methods that directly measure aspects of fluid and ionic transport in concrete were examined. ASTM C 1543 and ASTM C...
Evaluation of retroreflective durability of raised pavement markers : final report.
DOT National Transportation Integrated Search
1975-08-01
The Louisiana Department of Highways began using reflectorized raised pavement markers on a large scale basis in 1967 when such markers were placed on the Mississippi River Bridge along Route I-10 at Baton Rouge. The Department has engaged in a consi...
Tube suction test for evaluating durability of cementitiously stabilized soils.
DOT National Transportation Integrated Search
2011-06-01
In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...
Evaluation of Portland Cement Concrete with Internal Curing Capabilities : Research Project Capsule
DOT National Transportation Integrated Search
2012-09-01
Proper curing is the key to durable and sustainable concrete structures. When a concrete mixture : is designed, delivered, poured, and consolidated, curing is the last and the most critical part for : a fi nal product of great quality. Insuffi cient ...
40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... manufacturer's engineering evaluation of appropriate high-altitude emission testing, all light-duty vehicles... tests, development tests, or other appropriate information and good engineering judgment. (B) In lieu of... emission tests, development tests, or other appropriate information and good engineering judgment. (C) A...
Tube suction test for evaluating durability of cementitiously stabilized soils.
DOT National Transportation Integrated Search
2011-06-01
In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (FT/ : W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moistur...
Evaluation of the RapidAir 457 air void analyzer.
DOT National Transportation Integrated Search
2012-03-01
An adequate air void system is imperative to produce concrete with freeze-thaw durability in a wet freeze environment such as found in Iowa. Specifications rely on a percentage of air obtained in the plastic state by the pressure meter. Actual, in pl...
DOT National Transportation Integrated Search
2006-12-07
Laboratory studies have found that reducing the particle size of D-cracking susceptible coarse aggregates will greatly : improve the durability of concrete exposed to freeze-thaw conditions. A test road located on State Route 2 near : Vermilion, Ohio...
Summary of NASA research on thermal-barrier coatings
NASA Technical Reports Server (NTRS)
Stepka, F. S.; Liebert, C. H.; Stecura, S.
1977-01-01
A durable, two-layer, plasma-sprayed coating consisting of a ceramic layer over a metallic layer was developed that has the potential of insulating hot engine parts and thereby reducing metal temperatures and coolant flow requirements and/or permitting use of less costly and complex cooling configurations and materials. The investigations evaluated the reflective and insulative capability, microstructure, and durability of several coating materials on flat metal specimens, a combustor liner, and turbine vanes and blades. In addition, the effect on the aerodynamic performance of a coated turbine vane was measured. The tests were conducted in furnaces, cascades, hot-gas rigs, an engine combustor, and a research turbojet engine. Summaries of current research related to the coating and potential applications for the coating are included.
Study of the activity of the local adding [ash from palm plantation wastes
NASA Astrophysics Data System (ADS)
Rezig, D.; Bentabba, M. T.
2018-05-01
The objectify of this work is to study the activity of the ash by substitution of 25℅ cement of mineral powder ash from palm plantation wastes, and its influences mechanical performances on mortar. Such as the resistance of the compression, the traction, and durability by reducing calcium hydroxide content Ca[OH]2 generated by chemical reaction of cement, which has a harmful effect in durability. The activity of this waste was evaluated in the utilized of mechanic attempts resistance of the compression and flexion in 28 day] was also studied, the obtained results shows the best result of the index of ash activity is i=0,69 was obtained in mixing cement with CRS.
Loveridge, Melanie J; Lain, Michael J; Huang, Qianye; Wan, Chaoying; Roberts, Alexander J; Pappas, George S; Bhagat, Rohit
2016-11-09
Hybrid anode materials consisting of micro-sized silicon (Si) particles interconnected with few-layer graphene (FLG) nanoplatelets and sodium-neutralized poly(acrylic acid) as a binder were evaluated for Li-ion batteries. The hybrid film has demonstrated a reversible discharge capacity of ∼1800 mA h g -1 with a capacity retention of 97% after 200 cycles. The superior electrochemical properties of the hybrid anodes are attributed to a durable, hierarchical conductive network formed between Si particles and the multi-scale carbon additives, with enhanced cohesion by the functional polymer binder. Furthermore, improved solid electrolyte interphase (SEI) stability is achieved from the electrolyte additives, due to the formation of a kinetically stable film on the surface of the Si.
Ceramic thermal-barrier coatings for cooled turbines
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Stepka, F. S.
1976-01-01
Coating systems consisting of a plasma sprayed layer of zirconia stabilized with either yttria, magnesia or calcia over a thin alloy bond coat have been developed, their potential was analyzed and their durability and benefits evaluated in a turbojet engine. The coatings on air cooled rotating blades were in good condition after completing as many as 500 two-minute cycles of engine operation between full power at a gas temperature of 1644 K and flameout, or as much as 150 hours of steady state operation on cooled vanes and blades at gas temperatures as high as 1644 K with 35 start and stop cycles. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.
Application of ultra-high performance concrete to bridge girders.
DOT National Transportation Integrated Search
2009-02-01
"Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...
Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aciermo, J.; Richards, H.; Spindler, F.
1983-10-01
A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bedmore » boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.« less
Design, manufacture and testing of an FBG-instrumented composite wing
NASA Astrophysics Data System (ADS)
Abouzeida, E.; Quinones, V.; Gowayed, Y.; Soobramaney, P.; Flowers, G.; Black, R. J.; Costa, J. M.; Faridian, F.; Moslehi, B.
2014-02-01
In this work, our research team investigated the efficacy of using optical static and dynamic strain sensing with embedded Fiber Bragg Gratings (FBGs) in structural health monitoring (SHM) of a model composite airplane wing. A one-fourth scale model of a T38 airplane wing was designed and manufactured using fabric reinforced polymer matrix composites with FBG sensors embedded under the top layer of the composite. The accuracy and durability of the sensors were evaluated at the coupon and structural levels utilizing static and dynamic testing. Strain measurements using embedded FBGs with an optical interrogator were found to be in agreement with values measured using other strain measuring devices and with results obtained using finite element analysis (ANSYS®). Preferred locations for the FBG sensors were identified in accordance with contour maps of internal strain distributions resulting from critical load cases. Manufacturing techniques used to address handling, survivability and durability of the embedded sensors during and post manufacturing of the composites were evaluated and optimized.
Investigating a Non-Mesh Mosquito Net among Outdoor Sleeping Nomadic Communities in Kenya
Gore-Langton, Georgia R.; Mungai, James; Alenwi, Nfornuh; Abagira, Abdullahi; Bicknell, Owen M.; Harrison, Rebecca E.; Hassan, Farah Amin; Munga, Stephen; Eves, Katie; Juma, Elizabeth; Allan, Richard
2015-01-01
Rising reports of exophagic malaria vectors make even more pressing the need for alternatives to traditional, mesh, long-lasting insecticidal nets (LLINs) designed for indoor sleeping and often inadequate in the protection of outdoor-sleeping populations. This study tests and evaluates the retention, utilization, and durability of novel, non-mesh nets designed for outdoor use. Longitudinal, cross-sectional surveys were conducted, the physical condition of nets was assessed, and bio-efficacy and insecticide content were tested. At 22 months, retention was 98.0%; 97.1% of nets fell within the World Health Organization (WHO) category of being in “good” condition; none were in the “torn” category. At 18 months post-distribution, 100% of nets had at least WHO Pesticide Evaluation Scheme (WHOPES)-acceptable levels of insecticide, this proportion was 66.7% at 22 months. This novel mosquito net has the potential to provide a durable and context-specific tool to prevent malaria among traditionally hard-to-protect and highly vulnerable populations. PMID:26416107
Compositional threshold for Nuclear Waste Glass Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.
2013-04-24
Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.
Combined hydrophobicity and mechanical durability through surface nanoengineering
Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; ...
2015-04-08
This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability.
Fouda, Genevieve G; Cunningham, Coleen K; McFarland, Elizabeth J; Borkowsky, William; Muresan, Petronella; Pollara, Justin; Song, Lin Ye; Liebl, Brooke E; Whitaker, Kaylan; Shen, Xiaoying; Vandergrift, Nathan A; Overman, R Glenn; Yates, Nicole L; Moody, M Anthony; Fry, Carrie; Kim, Jerome H; Michael, Nelson L; Robb, Merlin; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Liao, Hua-Xin; Haynes, Barton F; Montefiori, David C; Ferrari, Guido; Tomaras, Georgia D; Permar, Sallie R
2015-02-15
Infant responses to vaccines can be impeded by maternal antibodies and immune system immaturity. It is therefore unclear whether human immunodeficiency virus type 1 (HIV-1) vaccination would elicit similar responses in adults and infants. HIV-1 Env-specific antibody responses were evaluated in 2 completed pediatric vaccine trials. In the Pediatric AIDS Clinical Trials Group (PACTG) 230 protocol, infants were vaccinated with 4 doses of Chiron rgp120 with MF59 (n=48), VaxGen rgp120 with aluminum hydroxide (alum; n=49), or placebo (n=19) between 0 and 20 weeks of age. In PACTG 326, infants received 4 doses of ALVAC-HIV-1/AIDSVAX B/B with alum (n=9) or placebo (n=13) between 0 and 12 weeks of age. By 52 weeks of age, the majority of maternally acquired antibodies had waned and vaccine Env-specific immunoglobulin G (IgG) responses in vaccinees were higher than in placebo recipients. Chiron vaccine recipients had higher and more-durable IgG responses than VaxGen vaccine recipients or ALVAC/AIDSVAX vaccinees, with vaccine-elicited IgG responses still detectable in 56% of recipients at 2 years of age. Remarkably, at peak immunogenicity, the concentration of anti-V1V2 IgG, a response associated with a reduced risk of HIV-1 acquisition in the RV144 adult vaccine trial, was 22-fold higher in Chiron vaccine recipients, compared with RV144 vaccinees. As exemplified by the Chiron vaccine regimen, vaccination of infants against HIV-1 can induce robust, durable Env-specific IgG responses, including anti-V1V2 IgG. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Quan, Hong-zhu; Kasami, Hideo
2014-01-01
In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.
Development of New Cementitious Caterials by Alkaline Activating Industrial by-Products
NASA Astrophysics Data System (ADS)
Fernández-Jimenez, A.; García-Lodeiro, I.; Palomo, A.
2015-11-01
The alkaline activation of aluminosiliceous industrial by-products such as blast furnace slag and fly ash is widely known to yield binders whose properties make them comparable to or even stronger and more durable than ordinary Portland cement. The present paper discusses activation fundamentals (such as the type and concentration of alkaline activator and curing conditions) as well as the structure of the cementitious gels formed (C-A-S-H, N-A-S-H). The durability and strength of these systems make these materials apt for use in many industrial applications, such as precast concrete elements (masonery blocks, railroad sleepers), protective coatings for materials with low fire ratings and lightweight elements.
NASA Technical Reports Server (NTRS)
Brinson, R. F.
1985-01-01
A method for lifetime or durability predictions for laminated fiber reinforced plastics is given. The procedure is similar to but not the same as the well known time-temperature-superposition principle for polymers. The method is better described as an analytical adaptation of time-stress-super-position methods. The analytical constitutive modeling is based upon a nonlinear viscoelastic constitutive model developed by Schapery. Time dependent failure models are discussed and are related to the constitutive models. Finally, results of an incremental lamination analysis using the constitutive and failure model are compared to experimental results. Favorable results between theory and predictions are presented using data from creep tests of about two months duration.
Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.
2010-01-01
Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.
DOT National Transportation Integrated Search
2014-01-01
TxDOT Project 0-6009 was a comprehensive interdisciplinary research effort that has developed the ability : to predict asphalt oxidative hardening over time and pavement depth, and the impact of this hardening on : mixture durability. The many interr...
Evaluation of Canadian unconfined aggregate freeze-thaw tests for identifying nondurable aggregates.
DOT National Transportation Integrated Search
2012-06-01
Concrete is the most widely used material in construction. Aggregates contribute 60% to 75% of the total volume : of concrete. The aggregates play a key role in concrete durability. The U.S. Midwest has many aggregates that can : show distress in the...
DOT National Transportation Integrated Search
2015-12-01
Higher tra c coupled with heavier loads led the asphalt industry to introduce polymer-modi ed : binders to enhance the durability and strength of HMA pavements. Numerous research projects : showed that G*/Sin, the high temperature speci ca...
Evaluation of wild walnut Juglans spp. for resistance to crown gall disease
USDA-ARS?s Scientific Manuscript database
Crown gall (CG) disease of walnut is caused by the ubiquitous soil-borne bacterium, Agrobacterium tumefaciens. The most widely used rootstock Paradox, an interspecific hybrid between Juglans hindsii and Juglans regia, is typically highly susceptible to A. tumefaciens. Identification of a durable sou...