Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling
2009-02-01
To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.
Flight duration and flight muscle ultrastructure of unfed hawk moths.
Wone, Bernard W M; Pathak, Jaika; Davidowitz, Goggy
2018-06-13
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Losa, G A; Graber, R; Baumann, G; Nonnenmacher, T F
1999-10-01
To evaluate the effect of steroid hormones on the ultrastructure of nuclear heterochromatin and perinuclear membranes in human MCF-7 breast cancer cells. MCF-7 cells were cultured briefly (five minutes) in the presence of 10(-9) M estrogen 17 beta-estradiol, a stimulator of cell proliferation and/or 10(-9) M glucocorticoid dexamethasone. Changes in the morphologic complexity of nuclear membrane-bound heterochromatin (NMBHC) and nuclear membranes (ENM) were assessed by means of the fractal capacity dimension, D, a noneuclidean geometric descriptor of complex, irregular bodies. 17 beta-estradiol (10(-9) M) enhanced the ultrastructural irregularity of NMBHC, as documented by the increased value of D, whereas dexamethasone (10(-9) M) reduced it when compared to NMBHC from untreated MCF-7 control cells. In contrast, neither steroid modified ENM ultrastructure. Changes in the nuclear heterochromatin complexity induced by estrogen 17 beta-estradiol occurred concomitantly with functional changes at the cell periphery, such as activation of the phospholipase C, a cell membrane-associated enzyme involved in signal transduction. Dexamethasone reduced the ultrastructural complexity of NMBHC without affecting functional processes. Fractal morphometry proved its usefulness in quantifying early ultrastructural changes in nuclear components induced in MCF-7 cells by steroid hormones, 17 beta-estradiol and dexamethasone.
Chan, Tak-Mao; Leung, Jack Kok-Hung; Sun, Yuling; Lai, Kar-Neng; Tsang, Ryan Chi-Wai; Yung, Susan
2003-06-01
Peritoneal dialysis fluid (PDF) containing amino acids has been introduced recently aiming to improve the nutritional status of PD patients. Dextrose-based PDFs have been implicated in progressive functional and structural deterioration of the peritoneal membrane. Limited data are currently available regarding the effect of amino acid-based PDF on the function and ultrastructure of human peritoneal mesothelial cells (HPMCs), which play a critical role in peritoneal membrane pathophysiology. We investigated the effects of two commercially available PDFs, which utilized dextrose (1.5% Dianeal) or amino acids (1.1% Nutrineal) as the osmotic agent, obtained from patients after a 4 h dwell, on HPMC proliferation (MTT assay and cell counting) and viability [lactate dehydrogenase (LDH)release], interleukin-6 (IL-6) secretion (commercial enzyme-linked immunosorbent assay) and ultrastructure (scanning and transmission electron microscopy). Exposure of HPMCs to 1.5% Dianeal reduced cell proliferation, total cellular protein synthesis, IL-6 secretion and cell attachment, but prolonged the cell doubling time on recovery, and increased LDH release (P<0.001, P<0.001, P<0.0001, P<0.0001, P<0.001 and P<0.001, respectively). The 1.1% Nutrineal reduced HPMC proliferation (P<0.001) and increased IL-6 secretion (P<0.0001), but did not affect cell attachment, LDH release, protein synthesis or cell doubling time. Ultrastructural studies of HPMCs exposed to Dianeal showed cell flattening, increased cell surface area, reduced microvilli, and intracellular organelles compatible with dysfunctional mitochondria. In contrast, the ultrastructural morphology of HPMCs was relatively preserved after incubation with Nutrineal. Our results showed that HPMC ultrastructure, viability and protein synthesis were better preserved with amino acid-based PDF, compared with conventional dextrose-based PDF. The significance of IL-6 induction by Nutrineal remains to be elucidated.
Aerodynamics and pollen ultrastructure in Ephedra.
Bolinder, Kristina; Niklas, Karl J; Rydin, Catarina
2015-03-01
• Pollen dispersal is affected by the terminal settling velocity (Ut) of the grains, which is determined by their size, bulk density, and by atmospheric conditions. The likelihood that wind-dispersed pollen is captured by ovulate organs is influenced by the aerodynamic environment created around and by ovulate organs. We investigated pollen ultrastructure and Ut of Ephedra foeminea (purported to be entomophilous), and simulated the capture efficiency of its ovules. Results were compared with those from previously studied anemophilous Ephedra species.• Ut was determined using stroboscopic photography of pollen in free fall. The acceleration field around an "average" ovule was calculated, and inflight behavior of pollen grains was predicted using computer simulations. Pollen morphology and ultrastructure were investigated using SEM and STEM.• Pollen wall ultrastructure was correlated with Ut in Ephedra. The relative proportion and amount of granules in the infratectum determine pollen bulk densities, and (together with overall size) determine Ut and thus dispersal capability. Computer simulations failed to reveal any functional traits favoring anemophilous pollen capture in E. foeminea.• The fast Ut and dense ultrastructure of E. foeminea pollen are consistent with functional traits that distinguish entomophilous species from anemophilous species. In anemophilous Ephedra species, ovulate organs create an aerodynamic microenvironment that directs airborne pollen to the pollination drops. In E. foeminea, no such microenvironment is created. Ephedroid palynomorphs from the Cretaceous share the ultrastructural characteristics of E. foeminea, and at least some may, therefore, have been produced by insect-pollinated plants. © 2015 Botanical Society of America, Inc.
Infrasound-induced hemodynamics, ultrastructure, and molecular changes in the rat myocardium.
Pei, Zhaohui; Sang, Hanfei; Li, Ruiman; Xiao, Pingxi; He, Jiangui; Zhuang, Zhiqiang; Zhu, Miaozhang; Chen, Jingzao; Ma, Hong
2007-04-01
Recent interest in adverse effects of infrasound on organisms arises from health concerns. We assessed the association between infrasound exposure of 5 Hz at 130 dB and changes of cardiac ultrastructure and function in rats. Thirty-two Sprague-Dawley rats were randomized into control, 1, 7, and 14 days groups for 2 h of infrasound once daily according to planned schedules. Changes of cardiac ultrastructure, hemodynamics indices, intracellular Ca(2+) concentrations ([Ca(2+)](i)), and sarcoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) were detected. Heart rates in 1 day group were significantly increased compared with control group and no significant changes in other groups. Left ventricular systolic pressures were significantly increased with time. Left ventricular diastolic end pressure and maximum rising rates of left ventricular pressure (+dl/dt) were significantly increased in 7 and 14 days groups and not changed in 1 day group, compared with control group. Maximum dropping rates of left ventricular pressure (-dl/dt) were significantly decreased in 7 and 14 days groups and not changed in 1 day group, compared with control group. In heart cells, there were several swelled mitochondria in 1 day group, more swelled mitochondria in 7 days group, platelet aggregation in the intercellular substance in 14 days group. [Ca(2+)](i) were significantly increased with time. There was a significant increase in SERCA2 in 1 day group, while a significant decrease in 7 and 14 days groups, compared with control group. Infrasound of 5 Hz at 130 dB can damage cardiac ultrastructure and function. Changes of [Ca(2+)](i) and SERCA2 play an important role in the secondary cardiac damage. (c) 2007 Wiley Periodicals, Inc.
Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging
Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A.; Bauer, Johann W.; Breitenbach, Michael
2015-01-01
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls. PMID:26143532
Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging.
Breitenbach, Jenny S; Rinnerthaler, Mark; Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A; Bauer, Johann W; Breitenbach, Michael
2015-06-01
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII,COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex- and age-matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.
Xu, Jianhua; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin
2012-03-01
To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3-/- mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3-/- mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3-/- retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%-40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3-/- retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised.
Glomerular filtration barrier in pediatric idiopathic nephrotic syndrome.
Sharma, Alok; Gupta, Ruchika; Bagga, Arvind; Dinda, Amit K
2013-03-01
Nephrotic syndrome (NS) is a common proteinuric disorder with defect in the perm-selectivity of the glomerular filtration barrier (GFB). Ultrastructural morphometric evaluation of the GFB in pediatric NS has been attempted in only a few studies. This study was aimed at qualitative and quantitative evaluation of the alterations involving the GFB in pediatric idiopathic NS with an attempt to correlate these alterations with the clinico-laboratory data. For this study, renal biopsies from nine patients with NS and two children with interstitial nephritis were included. Relevant clinical and laboratory data, including degree of 24-h proteinuria and renal function tests, were recorded. Renal biopsies were reviewed for morphologic and electron microscopic diagnosis. Ultrastructural morphometry of the GFB was performed using image analysis software. The age at onset of NS, duration of illness, presence of hypertension, and renal function tests were comparable between the group of patients with minimal change disease (MCD) and those with mesangioproliferative glomerulonephritis (mesPGN)/focal segmental glomerulosclerosis (FSGS). However, the latter group showed higher 24-h proteinuria compared with the group with MCD. Among the detected ultra-structural changes, glomerular basement membrane thickness and foot process width were significantly different between the MCD and the mesPGN/FSGS groups. The slit pore diameter in the glomeruli showed a positive correlation with the degree of proteinuria. We conclude that our study demonstrated remarkable differences in certain parameters and the glomerular ultrastructural alterations in the various categories of NS. These differences might underlie the observed variation in response of these entities to various therapies.
Velikova, Violeta; Müller, Constanze; Ghirardo, Andrea; Rock, Theresa Maria; Aichler, Michaela; Walch, Axel; Schmitt-Kopplin, Philippe
2015-01-01
Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes. PMID:25975835
Khedun, S M; Naicker, T; Moodley, J
2000-05-01
To improve the diagnostic accuracy of concurrent renal disease in hypertension of pregnancy, biopsy evaluation is essential. In addition, establishing underlying renal disease is important for prognosis on future pregnancies. We therefore designed a study to determine the diagnostic yield of postpartum renal biopsy and the nature and frequency of complications associated with this procedure. Also, to determine relationships, if any, between renal function tests and ultrastructural and histopathological findings. Fifty renal biopsies were performed in the immediate postpartum period in black African women with early onset pre-eclampsia. Each biopsy specimen was placed in a separate container and coded so that sampling was unknown to the electron microscopist. Each biopsy specimen was divided into three parts, and processed and stained for light, fluorescent and transmission electron microscopy using conventional techniques. Renal tissue biopsies were adequate for diagnostic purposes in all cases. There were no complications in any of the 50 patients studied. Ultrastructural examination confirmed the light microscopy findings. In addition the ultrastructural findings showed intramembranous deposits, foot process fusion and mesangial deposits. In 16 patients with normal renal function tests; the biopsies evaluation from these patients showed ultrastructural changes. In the remaining 34 patients with abnormal renal function tests of varying severity; biopsy evaluation from these patients showed both ultrastructural and histopathological changes. Renal biopsy procedure is safe, and ultrastructural and histological findings obtained from postpartum renal biopsies are more informative than the routine renal function tests.
Khalifa, Refaat M A; Mazen, Nawal A M; Marawan, Aziza M A; Thabit, Hasnaa T M
2011-08-01
Calcareous corpuscles were noticed by several previous workers to be present in larval and adult cestodes without knowing their function. However, nothing was mentioned in the available literature about distribution of these corpuscles and their density, structure and composition in different parts of the body of different cestodes. Hence, in the present work, a comparative study of their distribution, density, histochemical and ultrastructural characters in different parts of the body was performed in Taenia taeniaeformis and Dipylidium caninum. Due to the presence of the eggs in their gravid segments, their histochemical and ultrastructural characteristics were also studied. It was found that the size, location and density of the calcareous bodies were different in different body parts of the same and the other cestode. Histochemically, the main component of these corpuscles was calcium; while other constituents as polysaccharides, lipids, protrins and mucopolysaccharides were found in their outer rim. Ultrastructurally, they were quite similar in the two studied cestodes and different stages of their development were exhibited. Histochemically, the eggs of both cestodes were similar in their contents. However, some ultrastructural differences have been demonstrated particularly in relation to the size and shape of the rods in the embryophore and the structures in between the embryophore and onchosphere.
Xu, Jianhua; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J.; Sherry, David M.
2012-01-01
Purpose. To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Methods. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3−/− mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. Results. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3−/− mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3−/− retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%–40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3−/− retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. Conclusions. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised. PMID:22247469
Pathomechanisms of Dopamine Dysregulation in DYT1 Dystonia: Targets for Therapeutics
2016-10-01
DA release in DYT1(ΔE) knockin mice by assessing VMAT2 function, vesicle utilization, the ultrastructure of DA terminals, and D2 DA...in slice, the ultrastructure of DA terminals, D2 DA autoreceptor function nicotinic AChR (nAChR) heteroreceptors function. 2) To determine the
Schaeffer, Scott M; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie; Dhingra, Amit
2017-10-01
Comparative ultrastructural developmental time-course analysis has identified discrete stages at which the fruit plastids undergo structural and consequently functional transitions to facilitate subsequent development-guided understanding of the complex plastid biology. Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids-chromoplasts-are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant 'Granny Smith', carotenoid-predominant 'Golden Delicious', and anthocyanin-predominant 'Top Red Delicious'. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems.
The Challenges of Diagnosing Primary Ciliary Dyskinesia
O'Callaghan, Christopher; Knowles, Michael R.
2011-01-01
Primary ciliary dyskinesia (PCD) is a rare genetic disorder of ciliary structure and function. The diagnosis can be challenging, particularly when using nongenetic assays. The “gold standard” diagnostic test is ultrastructural analysis of respiratory cilia obtained by nasal scrape or brush biopsy. A few specialized centers use high-speed videomicroscopy to examine ciliary beat. Certain beat patterns correlate with ultrastructural defects, and, in some cases, subtle alterations in beat pattern can be seen when ultrastructure is normal. Recent studies have shown that nasal nitric oxide (NO) is very low in patients with PCD compared with healthy control subjects; therefore, this assay may be a useful screening or adjunctive test for PCD. Because acute respiratory illnesses may yield alterations in ciliary ultrastructure, ciliary beat, and nasal NO values, these tests should be performed during a stable baseline period. Identification of an array of PCD genes has provided the opportunity for making a definitive genetic diagnosis for PCD in some cases. All of these approaches have a role in diagnosing PCD. For example, PCD has been confirmed by identifying disease-causing mutations in a heavy dynein chain gene in individuals with normal ciliary ultrastructure but subtle defects in ciliary beat and low nasal NO. Priorities to improve nongenetic diagnostic capability include standardization of nasal NO as a screening test and the development of specialized centers using uniform approaches for the analysis of ciliary ultrastructure and ciliary beat pattern. Another chapter in this issue (see Zariwala and colleagues, pp. 430) addresses the progress toward improved capabilities for definitive genetic testing PMID:21926395
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin. PMID:23382804
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin.
Cetin Yuceer; Chuan-Yu Hsu; Nadir Erbilgin; Kier D. Klepzig
2011-01-01
The southern pine beetle (SPB) (Dendroctonus frontalis Zimmermann) is the most economically important pest of southern pine forests. Beetles carry fungal cells within specialised cuticular structures, called mycangia. Little is known about the mycangia ultrastructure or function. We used cryo-fracturing and scanning electron microscopy to examine the ultrastructural...
NASA Technical Reports Server (NTRS)
Moore, R.
1990-01-01
The object of this research was to determine how effectively the actions of a clinostat and a fluid-filled, slow-turning lateral vessel (STLV) mimic the ultrastructural effects of microgravity in plant cells. We accomplished this by qualitatively and quantitatively comparing the ultrastructures of cells grown on clinostats and in an STLV with those of cells grown at 1 g and in microgravity aboard the Space Shuttle Columbia. Columella cells of Brassica perviridis seedlings grown in microgravity and in an STLV have similar structures. Both contain significantly more lipid bodies, less starch, and fewer dictyosomes than columella cells of seedlings grown at 1 g. Cells of seedlings grown on clinostats have significantly different ultrastructures from those grown in microgravity or in an STLV, indicating that clinostats do not mimic microgravity at the ultrastructural level. The similar structures of columella cells of seedlings grown in an STLV and in microgravity suggest that an STLV effectively mimics microgravity at the ultrastructural level.
The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy
Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin
2016-01-01
Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553
Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila.
Brandt, Tobias; Mourier, Arnaud; Tain, Luke S; Partridge, Linda; Larsson, Nils-Göran; Kühlbrandt, Werner
2017-07-12
Ageing is a progressive decline of intrinsic physiological functions. We examined the impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies ( Drosophila melanogaster ) by electron cryo-tomography and respirometry. We discovered distinct age-related changes in both model organisms. Mitochondrial function and ultrastructure are maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-related changes in membrane morphology. Subpopulations of mitochondria from young and old mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is compromised and the production of peroxide radicals is increased. In about 50% of mitochondria from old flies, the inner membrane organization breaks down. This establishes a clear link between inner membrane architecture and functional decline. Mitochondria were affected by ageing to very different extents, depending on the organism and possibly on the degree to which tissues within the same organism are protected against mitochondrial damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P
2016-01-01
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; ...
2016-06-24
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong
2016-06-14
BACKGROUND Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. MATERIAL AND METHODS The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. RESULTS Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. CONCLUSIONS These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders.
NASA Technical Reports Server (NTRS)
D'Amelio, Elisa D'antoni; Des Marais, David J.; Cohen, Jehuda
1989-01-01
The ultrastructure of the submerged microbial mat from the Solar Lake (SL), Egypt, was compared to that of samples from the Guerrero Negro (GN), Mexico, salt pans. The locations and distributions of the main organisms were determined light microscopy, and the corresponding ultrathin sections were examined under TEM; chemical microprofile analyses were carried out on the day of sampling for microscopic studies. Both communities were found to be dominated by Microleus chthonoplastes, although several morphological species found in the GN mat were absent from the SL mat, including the Tropica nigra and the 'big' Microleus chthonoplastes component. The chemical microprofiles of oxygen, sulfide, pH, and the oxygenic photosynthesis in the two mats were virtually identical. In both mats, the photic zone was restricted to the upper 800 microns of the mat, and oxygenic photosynthesis was detected down to 600 microns.
Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona
2015-01-01
Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. PMID:26467239
Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona
2015-11-01
Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. © 2015 Anatomical Society.
Zhang, Zhong-ti; Yan, Lu; Zhong, Ming; Yang, Xiao-dong; Ai, Hong-jun
2007-04-01
This study was designed to study the discolored gingiva adjacent to porcelain fused to metal (PFM) crowns in terms of ultrastructure , SOD and GSH activities in 40 cases. The discolored gingival ultrastructures were observed and metal X-ray energy level was analyzed;The activities of SOD and GSH were measured and compared with normal control by student's t test and one-way ANOVA with SPSS10.0 software package. The discolored gingival ultrastructure had changes compared with the normal gingiva. Nickel and chromium were not found in the particles through X-ray energy machine within the discolored gingiva adjacent to PFM crown. The activities of SOD and GSH in discolored gingiva were significantly different from control(P<0.05) and the values at 6 to 18 months were significantly different from those at other times. The ultrastructure underwent changes in discolored gingiva after PFM restoration; the activity of SOD and GSH in discolored gingiva changed to result in apoptosis, and discoloration.
Johnson, M D; Yee, A G
1995-08-01
Recent electrophysiological investigations in this laboratory have shown that cultured mesopontine serotonergic neurons from neonatal rats evoke serotonergic and/or glutamatergic responses in themselves and in non-serotonergic neurons. Serotonergic nerve terminals in vivo are heterogeneous with respect to vesicle type, synaptic structure, and the frequency with which they form conventional synaptic contacts, but the functional correlates of this heterogeneity are unclear. We have therefore examined the ultrastructure of electrophysiologically-characterized synapses formed by cultured serotonergic neurons, and have compared the findings with the ultrastructural characteristics of serotonergic synapses reported in vivo. Dissociated rat serotonergic neurons in microcultures were identified by serotonin immunocytochemistry or by uptake of the autofluorescent serotonin analogue 5,7-dihydroxytryptamine, and were subsequently processed for electron microscopy. Unlabeled axon terminals formed numerous synapses on serotonin-immunoreactive somata and dendrites. Serotonin-immunoreactive axon terminals formed synapses on the somata, dendrites and somatodendritic spine-like appendages of serotonergic and non-serotonergic neurons. In microcultures containing a solitary serotonergic neuron that evoked glutamatergic or serotonergic/glutamatergic autaptic responses, both symmetric and asymmetric synapses were present. In addition to large dense core vesicles, individual neurons contained either microcanaliculi and microvesicles, clear round vesicles, or clear pleiomorphic vesicles. For a given cell, however, the subtypes of vesicles present in each axon terminal were similar. Thus, dissociated serotonergic and non-serotonergic raphe neurons formed functional, morphological synapses in culture. A direct examination of both the synaptic physiology and ultrastructure of single cultured serotonergic neurons indicated that these cells released serotonin and glutamate at synapses that were morphologically similar to synapses formed by serotonergic neurons in vivo. The findings also suggested that individual serotonergic neurons differ with respect to synaptic vesicle morphology, and are capable of simultaneously forming symmetric and asymmetric synapses with target cells.
Chemes, Hector E
2013-01-01
Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.
Tavakoli, J; Elliott, D M; Costi, J J
2017-08-01
The inter-lamellar matrix (ILM)-located between adjacent lamellae of the annulus fibrosus-consists of a complex structure of elastic fibers, while elastic fibers of the intra-lamellar region are aligned predominantly parallel to the collagen fibers. The organization of elastic fibers under low magnification, in both inter- and intra-lamellar regions, was studied by light microscopic analysis of histologically prepared samples; however, little is known about their ultrastructure. An ultrastructural visualization of elastic fibers in the inter-lamellar matrix is crucial for describing their contribution to structural integrity, as well as mechanical properties of the annulus fibrosus. The aims of this study were twofold: first, to present an ultrastructural analysis of the elastic fiber network in the ILM and intra-lamellar region, including cross section (CS) and in-plane (IP) lamellae, of the AF using Scanning Electron Microscopy (SEM) and second, to -compare the elastic fiber orientation between the ILM and intra-lamellar region. Four samples (lumbar sheep discs) from adjacent sections (30μm thickness) of anterior annulus were partially digested by a developed NaOH-sonication method for visualization of elastic fibers by SEM. Elastic fiber orientation and distribution were quantified relative to the tangential to circumferential reference axis. Visualization of the ILM under high magnification revealed a dense network of elastic fibers that has not been previously described. Within the ILM, elastic fibers form a complex network, consisting of different size and shape fibers, which differed to those located in the intra-lamellar region. For both regions, the majority of fibers were oriented near 0° with respect to tangential to circumferential (TCD) direction and two minor symmetrical orientations of approximately±45°. Statistically, the orientation of elastic fibers between the ILM and intra-lamellar region was not different (p=0.171). The present study used extracellular matrix partial digestion to address significant gaps in understanding of disc microstructure and will contribute to multidisciplinary ultrastructure-function studies. Visualization of the intra-lamellar matrix under high magnification revealed a dense network of elastic fibers that has not been previously described. The present study used extracellular matrix partial digestion to address significant gaps in understanding of disc microstructure and will contribute to multidisciplinary ultrastructure-function studies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Generation of a three-dimensional ultrastructural model of human respiratory cilia.
Burgoyne, Thomas; Dixon, Mellisa; Luther, Pradeep; Hogg, Claire; Shoemark, Amelia
2012-12-01
The ultrastructures of cilia and flagella are highly similar and well conserved through evolution. Consequently, Chlamydomonas is commonly used as a model organism for the study of human respiratory cilia. Since detailed models of Chlamydomonas axonemes were generated using cryoelectron tomography, disparities among some of the ultrastructural features have become apparent when compared with human cilia. Extrapolating information on human disease from the Chlamydomonas model may lead to discrepancies in translational research. This study aimed to establish the first three-dimensional ultrastructural model of human cilia. Tomograms of transverse sections (n = 6) and longitudinal sections (n = 9) of human nasal respiratory cilia were generated from three healthy volunteers. Key features of the cilium were resolved using subatomic averaging, and were measured. For validation of the method, a model of the well characterized structure of Chlamydomonas reinhardtii was simultaneously generated. Data were combined to create a fully quantified three-dimensional reconstruction of human nasal respiratory cilia. We highlight key differences in the axonemal sheath, microtubular doublets, radial spokes, and dynein arms between the two structures. We show a decreased axial periodicity of the radial spokes, inner dynein arms, and central pair protrusions in the human model. We propose that this first human model will provide a basis for research into the function and structure of human respiratory cilia in health and in disease.
The effect of cryoprotectant on kangaroo sperm ultrastructure and mitochondrial function.
McClean, Rhett; Holt, William V; Zee, Yeng Peng; Lisle, Allan; Johnston, Stephen D
2008-12-01
This study examined the effect of cryoprotectants (20% DMSO, a 10% DMSO/10% glycerol mixture, 20% glycerol and 1M sucrose solution) on kangaroo sperm structure and function, along with the effect of varying concentrations of glycerol on sperm mitochondrial function. Eastern grey kangaroo cauda epididymidal spermatozoa were incubated for 10 min at 35 degrees C in each cryoprotectant and the plasma membrane integrity (PMI) and motility assessed using light microscopy. The same samples were fixed for TEM and the ultrastructural integrity of the spermatozoa examined. To investigate the effect of glycerol on the kangaroo sperm mitochondrial function, epididymidal spermatozoa were incubated with JC-1 in Tris-citrate media at 35 degrees C for 20 min in a range of glycerol concentrations (0%, 5%, 10%, 15% and 20%) and the mitochondrial membrane potential (MMP) and plasma membrane integrity determined. As expected, incubation of spermatozoa in 20% glycerol for 10 min resulted in a significant reduction in motility, PMI and ultrastructural integrity. Interestingly, incubation in 20% DMSO resulted in no significant reduction in motility or PMI but a significant loss of structural integrity when compared to the control spermatozoa (0% cryoprotectant). However, 20% DMSO was overall less damaging to sperm ultrastructure than glycerol, a combination of 10% glycerol and 10% DMSO, and sucrose. While all glycerol concentrations had an adverse effect on mitochondrial function, the statistical models presented for the relationship between MMP and glycerol predicted that spermatozoa, when added to 20% glycerol, would lose half of their initial MMP immediately at 35 degrees C and MMP would halve after 19.4 min at 4 degrees C. Models for the relationship between PMI and glycerol predicted that spermatozoa would lose half of their initial PMI after 1.8 min at 35 degrees C and PMI would halve after 21.1 min at 4 degrees C. These results suggest that if glycerol is to be used as a cryoprotectant for kangaroo spermatozoa then it is best administered at 4 degrees C and that mitochondrial function is more sensitive to glycerol than PMI. Future research should be directed at investigating strategies that reduce exposure of spermatozoa to glycerol during processing and that test the cryoprotective properties of 20% DMSO for kangaroo spermatozoa.
Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong
2016-01-01
Background Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. Material/Methods The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. Results Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. Conclusions These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942
Applications of emerging transmission electron microscopy technology in PCD research and diagnosis.
Shoemark, Amelia
2017-01-01
Primary Ciliary Dyskinesia (PCD) is a heterogeneous genetic condition characterized by dysfunction of motile cilia. Patients suffer from chronic infection and inflammation of the upper and lower respiratory tract. Diagnosis of PCD is confirmed by identification of a hallmark defect of ciliary ultrastructure or by identification of biallelic pathogenic mutations in a known PCD gene. Since the first description of PCD in 1976, assessment of ciliary ultrastructure by transmission electron microscopy (TEM) has been central to diagnosis and research. Electron tomography is a technique whereby a series of transmission electron micrographs are collected at different angles and reconstructed into a single 3D model of a specimen. Electron tomography provides improved spatial information and resolution compared to a single micrograph. Research by electron tomography has revealed new insight into ciliary ultrastructure and consequently ciliary function at a molecular and cellular level. Gene discovery studies in PCD have utilized electron tomography to define the structural consequences of variants in cilia genes. Modern transmission electron microscopes capable of electron tomography are increasingly being installed in clinical laboratories. This presents the possibility for the use of tomography technique in a diagnostic setting. This review describes the electron tomography technique, the contribution tomography has made to the understanding of basic cilia structure and function and finally the potential of the technique for use in PCD diagnosis.
Polishchuk, A V; Vodka, M V; Belyavskaya, N A; Khomochkin, A P; Zolotareva, E K
2016-01-01
The effects of simulated acid rain (SAR) on the ultrastructure and functional parameters of the photosynthetic apparatus were studied using 14-day-old pea leaves as test system. Pea plants were sprayed with an aqueous solution containing NaNO₃(0.2 mM) and Na₂SO₄(0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. Acid rain application caused reduction in the efficiency of the photosynthetic electron transport by 25%, which was accompanied by an increase by 85% in the quantum yield of thermal dissipation of excess light quanta. Ultrastructural changes in chloroplast were registered by transmission electron microscopy (TEM) after two days of the SAR-treatment of pea leaves. In this case, the changes in the structure of grana, heterogeneity of thylakoids packaging in granum, namely, the increase of intra-thylakoid gaps and thickness of granal thylakoids compared to the control were found. The migration of protein complexes in thylakoid membranes of chloroplasts isolated from leaves treated with SAR was suppressed. It was shown also that carbonic anhydrase activity was inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We proposed a hypothesis on the possible inactivation of thylakoid carbonic anhydrase under SAR and its involvement in the inhibition of photochemical activity of chloroplasts. The data obtained allows to suggest that acid rains negatively affect the photosynthetic apparatus disrupting the membrane system of chloroplast.
Hypertextual Ultrastructures: Movement and Containment in Texts and Hypertexts
ERIC Educational Resources Information Center
Coste, Rosemarie L.
2009-01-01
The surface-level experience of hypertextuality as formless and unbounded, blurring boundaries among texts and between readers and writers, is created by a deep structure which is not normally presented to readers and which, like the ultrastructure of living cells, defines and controls texts' nature and functions. Most readers, restricted to…
Iyomasa, Mamie Mizusaki; Issa, João Paulo Mardegan; Siéssere, Selma; Regalo, Simone Cecílio Hallak; Watanabe, Ii-sei
2008-12-01
Anatomical and physiologic components are parts of the stomatognathic system and their interaction results in integrated functional activities. Important alterations in the masticatory system originated by dental loss affect the bone, oral mucosa and muscular function. Dental arch structures specifically designed to receive and expose teeth allow performance of their functions. But the distinction between bony and soft tissues is lost when teeth are removed since there is not a specific function to be completed. The aim of this study was to evaluate the macroscopic and ultrastructural effects of the unilateral extraction of molar teeth on the suprahyoid muscles function, using twenty young male gerbils (Meriones unguiculatus) as the experimental animal model. They were divided in experimental malocclusion (n=10) and control (n=10) groups. The experimental malocclusion group was submitted to exodontia of the left upper molars and the control group was not submitted to this procedure and served as sham-operated. For macroscopic analysis of the suprahyoid muscle, the skin was uplifted and the muscles dissected individually and removed for weight analysis according to Scherle method. The electron microscopy analysis was made in ultra thin sections of small suprahyoid muscle fragments from the experimental and control groups, examined in a Jeol 1010, 880 Kv transmission electron microscope. Several micrographs at magnifications of 3000x, 6000x, 30,000x were randomly selected for the qualitative analysis of the muscle fiber ultrastructures. Sixty days after the induced unilateral occlusal alteration no macroscopic morphologic changes was detected in the suprahyoid muscles and the muscle volume differences between the right and left sides and between groups were not significant. However, in the ultrastructural analysis suprahyoid muscles showed characteristics of specific adaptation to the unilateral occlusal alteration, by the reduced density of subsarcolemmal mitochondria and the shorter and less numerous ramifications in intermyofibrilar mitochondria localized between electronlucid myofibrils. It is concluded that unilateral exodontia of all the upper left molars affect the ultrastructural morphology of suprahyoid muscle fibers.
Feng, B; Jiang, S; Yang, W; Han, D; Zhang, S
2001-02-01
To define the effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in guinea pigs. The animals involved in the study were exposed to 8 Hz infrasound at 135dB SPL for 90 minutes in a reverberant chamber. The sinusoidal pendular test (SPT), auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were respectively detected pre-exposure and at 0(within 2 hrs), 2 and 5 day after exposure. The ultrastructures of the inner ear were observed by scanning electron microscopy. The slow-phase velocity and the frequency of the vestibular nystagmus elicited by sinusoidal pendular test (SPT) declined slightly following infrasound exposure, but the changes were not significant (P > 0.05). No differences in the ABR thresholds, the latencies and the interval peak latencies of I, III, V waves were found between the normal and the experimental groups, and among experimental groups. The amplitudes of DPOAE at any frequency declined remarkably in all experimental groups. The ultrastructures of the inner ear were damaged to different extent. Infrasound could transiently depress the excitability of the vestibular end-organs, decrease the function of OHC in the organ of Corti and cause damage to the inner ear of guinea pigs.
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.
Huang, Fang; Yang, Yan-yan; Shi, Min; Li, Jun-ying; Chen, Zong-qi; Chen, Fu-shou; Chen, Xue-xin
2010-12-01
The hemocytes of different types encountered in the diamondback moth Plutella xylostella larvae of each instar and the development of the differential hemocytes counts were herein presented. Hemocytes classes/populations characterized based on their affinity with fluorescent dye (acridine orange) and ultrastructural differences comprised the prohemcoytes (<10-16%), plasmatocytes (22-65%), granulocytes (25-72%), oenocytoids (<1-9%), and spherulocytes (<1%). Prohemcoytes were the smallest cells with a comparatively tremendous nucleus. Plasmatocytes and granulocytes occupied the main proportion of total cell numbers. Oenocytoids were in a most stable presence, i.e. rotund in a diameter of 10 μm and with a nucleus deviated from the central location; however, sometimes with two nuclei which were adjoining with each other. Spherulocytes were rare and only could be observed occasionally. Ultrastructural investigation revealed that hemocytes in the diamondback moth larvae were of the typical model as in the Lepidoptera insect larvae. It is interesting to find that the cell which could phagocytize bacteria in vitro was granulocyte, not the other types of hemocytes, although plasmatocyte was usually declared to participate in this reaction in various previous studies. Copyright © 2010 Elsevier Ltd. All rights reserved.
Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days
NASA Astrophysics Data System (ADS)
Popova, A. F.; Sytnik, K. M.
The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).
Canron, Marie-Hélène; Bouillot, Sandrine; Favereaux, Alexandre; Petry, Klaus G; Vital, Anne
2003-03-01
Ultrastructural immunolabeling of peripheral nervous system components is an important tool to study the relation between structure and function. Owing to the scarcity of certain antigens and the dense structure of the peripheral nerve, a pre-embedding technique is likely appropriate. After several investigations on procedures for pre-embedding immunolabeling, we propose a method that offers a good compromise between detection of antigenic sites and preservation of morphology at the ultrastructural level, and that is easy to use and suitable for investigations on peripheral nerve biopsies from humans. Pre-fixation by immersion in paraformaldehyde/glutaraldehyde is necessary to stabilize the ultrastructure. Then, ultrasmall gold particles with silver enhancement are advised. Antibodies against myelin protein zero and myelin basic protein were chosen for demonstration. The same technique was applied to localize a 35 kDa myelin protein.
Krause, Martin; Theiss, Carsten; Brüne, Martin
2017-11-01
Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elangbam, C.S.; Qualls, C.W.; Confer, A.W.
1991-08-01
Hepatic lobules are composed of hepatocytes organized in three microcirculatory zones (periportal, midzonal, and centrilobular). The hepatocytes in each of these zones contain enzymes which are involved in various biochemical reactions. The predominant location of the mixed-function oxidation system in the liver lobule is the centrilobular zone. Ultrastructural changes in the hepatocytes not only correlate with biochemical events of detoxification but also with toxic effects of a parent compound or its metabolites. The objectives of this study was to characterize the ultrastructural alterations in the liver of wild cotton rats (Sigmodon hispidus) following exposure to polychlorinated biphenyls (PCB) contaminated habitat.
Ultrastructural hepatocellular features associated with severe hepatic lipidosis in cats.
Center, S A; Guida, L; Zanelli, M J; Dougherty, E; Cummings, J; King, J
1993-05-01
In this study, we compared hepatic ultrastructure in healthy cats, in cats with severe hepatic lipidosis, and in cats with experimentally induced, chronic, extrahepatic bile duct occlusion. Ultrastructural features unique to the lipidosis syndrome included an apparent reduction in number of peroxisomes and alteration in their morphologic features. The quantity of endoplasmic reticulum, Golgi complexes, and lysosomes was subjectively reduced, and paucity of cytosolic glycogen was observed. Bile canaliculi appeared collapsed because of cytosolic distention with lipid. Mitochondria were reduced in number and were markedly pleomorphic. Cristae assumed a variety of shapes, lengths, and orientations. Ultrastructural features of bile duct occlusion were similar to those described in other species and differed from those in cats with hepatic lipidosis.
Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.
Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio
2018-01-23
Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.
Bochimoto, Hiroki; Matsuno, Naoto; Ishihara, Yo; Shonaka, Tatsuya; Koga, Daisuke; Hira, Yoshiki; Nishikawa, Yuji; Furukawa, Hiroyuki; Watanabe, Tsuyoshi
2017-01-01
The effects of warm machine perfusion preservation of liver grafts donated after cardiac death on the intracellular three-dimensional ultrastructure of the organelles in hepatocytes remain unclear. Here we analyzed comparatively the ultrastructure of the endomembrane systems in porcine hepatocytes under warm ischemia and successive hypothermic and midthermic machine perfusion preservation, a type of the warm machine perfusion. Porcine liver grafts which had a warm ischemia time of 60 minutes were perfused for 4 hours with modified University of Wisconsin gluconate solution. Group A grafts were preserved with hypothermic machine perfusion preservation at 8°C constantly for 4 hours. Group B grafts were preserved with rewarming up to 22°C by warm machine perfusion preservation for 4 hours. An analysis of hepatocytes after 60 minutes of warm ischemia by scanning electron microscope revealed the appearance of abnormal vacuoles and invagination of mitochondria. In the hepatocytes preserved by subsequent hypothermic machine perfusion preservation, strongly swollen mitochondria were observed. In contrast, the warm machine perfusion preservation could preserve the functional appearance of mitochondria in hepatocytes. Furthermore, abundant vacuoles and membranous structures sequestrating cellular organelles like autophagic vacuoles were frequently observed in hepatocytes after warm machine perfusion preservation. In conclusion, the ultrastructure of the endomembrane systems in the hepatocytes of liver grafts changed in accordance with the temperature conditions of machine perfusion preservation. In addition, temperature condition of the machine perfusion preservation may also affect the condition of the hepatic graft attributed to autophagy systems, and consequently alleviate the damage of the hepatocytes.
Ultrastructure of canine vasoformative tumors.
Madewell, B R; Griffey, S M; Munn, R J
1992-01-01
The transmission electron microscope was used to examine 20 spontaneous canine hemangiosarcomas or hemangiopericytomas in order to define their fine ultrastructural features, and to compare those features with descriptions of human counterpart neoplasms. From specimen to specimen the neoplasms examined showed considerable structural heterogeneity but, in composite, appeared similar to the prototype human tumors. These data suggest that the canine hemangiosarcoma and hemangiopericytoma might serve as comparative models for studies of the morphogenesis of vasoformative neoplasms.
Hermanns-Lê, Trinh; Reginster, Marie-Annick; Piérard-Franchimont, Claudine; Delvenne, Philippe; Piérard, Gérald E.; Manicourt, Daniel
2012-01-01
The distinction between the Ehlers-Danlos syndrome hypermobile type (EDSH) and the benign joint hypermobility syndrome (BJHS) is unclear. The aim of the present study was to compare skin ultrastructural abnormalities of EDSH and BJHS among different families. Skin of 23 EDSH, 27 BJHS, and 41 asymptomatic subjects from 17 families was examined using transmission electron microscopy. Similar ultrastructural abnormalities were found irrespective of the Beighton score. Flower-like collagen fibrils represented the key change and elastic fibers were altered as well. Beighton score is a clinical parameter rating joint mobility that appeared unrelated to quantitative and qualitative collagen ultrastructural alterations in the skin. Some EDSH family members fit with BJHS diagnosis. BJHS possibly represents a mild variant of EDSH. PMID:23091361
Remodeling of the rat distal colon in diabetes: function and ultrastructure.
Siegman, Marion J; Eto, Masumi; Butler, Thomas M
2016-01-15
This study seeks to define and explain remodeling of the distal colon in the streptozotocin (STZ)-treated rat model of diabetes through analysis of resting and active length dependence of force production, chemical composition, and ultrastructure. Compared with untreated controls, the passive stiffness on extension of the diabetic muscle is high, and active force produced at short muscle lengths is amplified but is limited by an internal resistance to shortening. The latter are accounted for by a significant increase in collagen type 1, with no changes in types 3 and 4. In the diabetic colon, ultrastructural studies show unique, conspicuous pockets of collagen among muscle cells, in addition to a thickened basement membrane and an extracellular space filled with collagen fibers and various fibrils. Measurements of DNA and total protein content revealed that the diabetic colon underwent hypertrophy, along with a proportional increase in actin and myosin contents, with no change in the actin-to-myosin ratio. Active force production per cross-sectional area was not different in the diabetic and normal muscles, consistent with the proportionality of changes in contractile proteins. The stiffness and the limit to shortening of the diabetic colon were significantly reduced by treatment with the glycation breaker alagebrium chloride (ALT-711), with no change in collagen contents. Functionally, this study shows that, in diabetes, the production of collagen type 1 and glycation increase stiffness, which limits distensibility on filling and limits shortening and expulsion of contents, both of which can be alleviated by treatment with ALT-711. Copyright © 2016 the American Physiological Society.
Investigation of Light Manipulation by the Ultrastructure of Marine Diatoms
2009-11-13
added effect of the semiconductor EL emission is to be identified or its function optimised. In other biological organisms, such as insecta...nanopatterned ultrastructures comprising periodic or quasi-periodic spatial variations in refractive index, give rise to strong photonic effects . These... effects are well documented across a broad range of species through many detailed optical studies13-15. A number of them have gone on to inspire
Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T
2015-09-01
The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex
de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara
2016-01-01
Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225
Akhtar, Saeed; Alkatan, Hind M; Kirat, Omar; Khan, Adnan A; Almubrad, Turki
2015-06-01
We report the ultrastructure and 3D transmission electron tomography of collagen fibrils (CFs), proteoglycans (PGs), and microfibrils within the CF of corneas of patients with macular corneal dystrophy (MCD). Three normal corneas and three MCD corneas from three Saudi patients (aged 25, 31, and 49 years, respectively) were used for this study. The corneas were processed for light and electron microscopy studies. 3D images were composed from a set of 120 ultrastructural images using the program "Composer" and visualized using the program "Visuliser Kai". 3D image analysis of MCD cornea showed a clear organization of PGs around the CF at very high magnification and degeneration of the microfibrils within the CF. Within the MCD cornea, the PG area in the anterior stroma was significantly larger than in the middle and posterior stroma. The PG area in the MCD cornea was significantly larger compared with the PG area in the normal cornea. The CF diameter and inter-fibrillar spacing of the MCD cornea were significantly smaller compared with those of the normal cornea. Ultrastructural 3D imaging showed that the production of unsulfated keratin sulfate (KS) may lead to the degeneration of micro-CFs within the CFs. The effect of the unsulfated KS was higher in the anterior stroma compared with the posterior stroma.
Santini, D; Gelli, M C; Mazzoleni, G; Ricci, M; Severi, B; Pasquinelli, G; Pelusi, G; Martinelli, G
1989-08-01
The histologic, histochemical, immunohistochemical, and ultrastructural features of Brenner tumor (BT) were studied. BT was compared with transitional bladder cells, and close similarities between the two tissues were identified. Abundant glycogen in all cellular layers, an alcianophilic/sialomucinic surface mucous coat, and argyrophilic cells characterized both BT and bladder epithelium. Immunohistochemically, chromogranin and neuron-specific enolase reactivity was observed in all cases examined. An additional relevant finding was the presence of serotonin-storing cells in both BT and urothelium. Moreover, carcinoembryonic antigen, epithelial membrane antigen, and keratin reaction were found in BT and urothelium, indicating an additional antigenic similarity. Additionally, malignant Brenner tumor was ultrastructurally found to share many common features with the bladder tissue. The distinct histochemical, ultrastructural, and antigenic pattern of BT, primarily of the transitional type, is emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrier, Olivier; Moules, Vincent; Carron, Coralie
Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtypemore » origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.« less
Hydrogen-rich saline attenuates spinal cord hemisection-induced testicular injury in rats.
Ge, Li; Wei, Li-Hua; Du, Chang-Qing; Song, Guo-Hua; Xue, Ya-Zhuo; Shi, Hao-Shen; Yang, Ming; Yin, Xin-Xin; Li, Run-Ting; Wang, Xue-Er; Wang, Zhen; Song, Wen-Gang
2017-06-27
To study how hydrogen-rich saline (HS) promotes the recovery of testicular biological function in a hemi-sectioned spinal cord injury (hSCI) rat model, a right hemisection was performed at the T11-T12 of the spinal cord in Wistar rats. Animals were divided into four groups: normal group; vehicle group: sham-operated rats administered saline; hSCI group: subjected to hSCI and administered saline; HRST group: subjected to hSCI and administered HS. Hind limb neurological function, testis index, testicular morphology, mean seminiferous tubular diameter (MSTD) and seminiferous epithelial thickness (MSET), the expression of heme oxygenase-1 (HO-1), mitofusin-2 (MFN-2), and high-mobility group box 1 (HMGB-1), cell ultrastructure, and apoptosis of spermatogenic cells were studied. The results indicated that hSCI significantly decreased the hind limb neurological function, testis index, MSTD, and MSET, and induced severe testicular morphological injury. The MFN-2 level was decreased, and HO-1 and HMGB-1 were overexpressed in testicular tissues. In addition, hSCI accelerated the apoptosis of spermatogenic cells and the ultrastructural damage of cells in the hypophysis and testis. After HS administration, all these parameters were considerably improved, and the characteristics of hSCI testes were similar to those of normal control testes. Taken together, HS administration can promote the recovery of testicular biological function by anti-oxidative, anti-inflammatory, and anti-apoptotic action. More importantly, HS can inhibit the hSCI-induced ultrastructural changes in gonadotrophs, ameliorate the abnormal regulation of the hypothalamic-pituitary-testis axis, and thereby promote the recovery of testicular injury. HS administration also inhibited the hSCI-induced ultrastructural changes in testicular spermatogenic cells, Sertoli cells and interstitial cells.
Hydrogen-rich saline attenuates spinal cord hemisection-induced testicular injury in rats
Ge, Li; Wei, Li-Hua; Du, Chang-Qing; Song, Guo-Hua; Xue, Ya-Zhuo; Shi, Hao-Shen; Yang, Ming; Yin, Xin-Xin; Li, Run-Ting; Wang, Xue-er; Wang, Zhen; Song, Wen-Gang
2017-01-01
To study how hydrogen-rich saline (HS) promotes the recovery of testicular biological function in a hemi-sectioned spinal cord injury (hSCI) rat model, a right hemisection was performed at the T11–T12 of the spinal cord in Wistar rats. Animals were divided into four groups: normal group; vehicle group: sham-operated rats administered saline; hSCI group: subjected to hSCI and administered saline; HRST group: subjected to hSCI and administered HS. Hind limb neurological function, testis index, testicular morphology, mean seminiferous tubular diameter (MSTD) and seminiferous epithelial thickness (MSET), the expression of heme oxygenase-1 (HO-1), mitofusin-2 (MFN-2), and high-mobility group box 1 (HMGB-1), cell ultrastructure, and apoptosis of spermatogenic cells were studied. The results indicated that hSCI significantly decreased the hind limb neurological function, testis index, MSTD, and MSET, and induced severe testicular morphological injury. The MFN-2 level was decreased, and HO-1 and HMGB-1 were overexpressed in testicular tissues. In addition, hSCI accelerated the apoptosis of spermatogenic cells and the ultrastructural damage of cells in the hypophysis and testis. After HS administration, all these parameters were considerably improved, and the characteristics of hSCI testes were similar to those of normal control testes. Taken together, HS administration can promote the recovery of testicular biological function by anti-oxidative, anti-inflammatory, and anti-apoptotic action. More importantly, HS can inhibit the hSCI-induced ultrastructural changes in gonadotrophs, ameliorate the abnormal regulation of the hypothalamic-pituitary-testis axis, and thereby promote the recovery of testicular injury. HS administration also inhibited the hSCI-induced ultrastructural changes in testicular spermatogenic cells, Sertoli cells and interstitial cells. PMID:28404953
Ultrastructural demonstration of chemical modification of melanogenesis in hairless mouse skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, M.; Gellin, G.A.; Hoshino, S.
1982-02-01
We investigated chemical and physical modifications of the genetically determined ultrastructure of melanosomes. The flank skin of hairless mice was treated with ultraviolet energy (UV) shorter than 320 nm or with a combination of a photosensitizer and UV (PUVA treatment). All melanosomes in the induced melanocytes and those in resident melanocytes in the ear skin showed eumelanogenesis, although the degree of melanin deposition differed considerably according to the induction process. Eumelanogenesis was most advanced in the resident melanocytes while PUVA-induced melanocytes showed more immature premelanosomes. We then topically applied 4-tertiary butyl catechol on the skin. The depigmenting agent caused anmore » appearance of pheomelanosomes. The alteration in melanogenesis was seen most distinctly in premelanosomes of the PUVA-induced cells. Altered ultrastructure was also observed in matured melanosomes; this change was most apparent in the resident melanocytes. These findings indicate that cells with eumelanogenesis may undergo pheomelanogenesis. The present study demonstrated effects of chemicals on genetically determined function of melanocytes by quantitative analysis of melanosome ultrastructure.« less
Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting
2016-07-01
The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P<0.01) and the SOD activities were lower while the MDA levels were higher (P<0.01) in the HIBD group. No significant differences in ultrastructure, the latency of F-VEPs or SOD/MDA levels were identified between the HBO-treated HIBD group and the normal control group (P>0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.
2011-01-01
Until recently, the histology and ultrastructural events of spermatogenesis in reptiles were relatively unknown. Most of the available morphological information focuses on specific stages of spermatogenesis, spermiogenesis, and/or of the mature spermatozoa. No study to date has provided complete ultrastructural information on the early events of spermatogenesis, proliferation and meiosis in class Reptilia. Furthermore, no comprehensive data set exists that describes the ultrastructure of the entire ontogenic progression of germ cells through the phases of reptilian spermatogenesis (mitosis, meiosis and spermiogenesis). The purpose of this review is to provide an ultrastructural and histological atlas of spermatogenesis in reptiles. The morphological details provided here are the first of their kind and can hopefully provide histological information on spermatogenesis that can be compared to that already known for anamniotes (fish and amphibians), birds and mammals. The data supplied in this review will provide a basic model that can be utilized for the study of sperm development in other reptiles. The use of such an atlas will hopefully stimulate more interest in collecting histological and ultrastructural data sets on spermatogenesis that may play important roles in future nontraditional phylogenetic analyses and histopathological studies in reptiles. PMID:22319673
The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function.
Nascimento, Ana Isabel; Mar, Fernando Milhazes; Sousa, Mónica Mendes
2018-05-02
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type. Copyright © 2018. Published by Elsevier Ltd.
Aust, Gabriela; Boldt, Andreas; Fritsch, Sebastian; Keil, Isabel; Koch, Holger; Möbius, Robert; Scheidt, Holger A.; Wagner, Martin F. X.; Hammer, Niels
2016-01-01
Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin. PMID:26960134
Functional Utrastructure of Genlisea (Lentibulariaceae) Digestive Hairs
Płachno, Bartosz Jan; Kozieradzka-Kiszkurno, Małgorzata; Świątek, Piotr
2007-01-01
Background and Aims Digestive structures of carnivorous plants produce external digestive enzymes, and play the main role in absorption. In Lentibulariaceae, the ultrastructure of digestive hairs has been examined in some detail in Pinguicula and Utricularia, but the sessile digestive hairs of Genlisea have received very little attention so far. The aim of this study was to fill this gap by expanding their morphological, anatomical and histochemical characterization. Methods Several imaging techniques were used, including light, confocal and electron microscopy, to reveal the structure and function of the secretory hairs of Genlisea traps. This report demonstrates the application of cryo-SEM for fast imaging of whole, physically fixed plant secretory structures. Key Results and Conclusion The concentration of digestive hairs along vascular bundles in subgenus Genlisea is a primitive feature, indicating its basal position within the genus. Digestive hairs of Genlisea consist of three compartments with different ultrastructure and function. In subgenus Tayloria the terminal hair cells are transfer cells, but not in species of subgenus Genlisea. A digestive pool of viscous fluid occurs in Genlisea traps. In spite of their similar architecture, the digestive-absorptive hairs of Lentibulariaceae feature differences in morphology and ultrastructure. PMID:17550910
Giglio, Anita; Brandmayr, Pietro; Dalpozzo, Renato; Sindona, Giovanni; Tagarelli, Antonio; Talarico, Federica; Brandmayr, Tullia Zetto; Ferrero, Enrico A
2009-05-01
This study documents the defensive function of flavored humor secreted by the abdominal glands of Carabus lefebvrei pupae. The morphology and the ultrastructure of these glands were described and the volatile compounds of glands secretion were identified by gas chromatography/mass spectrometry. The ultrastructure analysis shows an acinose complex formed by about 50 clusters. Each cluster has 20 glandular units and the unit-composed of one secretory and one canal cell lying along a duct-belongs to the class 3 cell type of Quennedey (1998). In the cytoplasm, the secretory cell contains abundant rough endoplasmatic reticula, glycogen granules, numerous mitochondria, and many well-developed Golgi complexes producing electron-dense secretory granules. Mitochondria are large, elongated, and often adjoining electronlucent vesicles. The kind and the origin of secretory granules varying in size and density were discussed. The chemical analysis of the gland secretion revealed the presence of a mixture of low molecular weight terpenes, ketones, aldehydes, alcohols, esters, and carboxylic acids. Monoterpenes, especially linalool, were the major products. We supposed that ketones, aldehydes, alcohols, esters, and carboxylic acids have a deterrent function against the predators and monoterpenes provide a prophylaxis function against pathogens. (c) 2008 Wiley-Liss, Inc.
Mitro, A; Gallatz, K; Palkovits, M; Kiss, A
2013-04-01
The ependymal cells, considered today as an active participant in neuroendocrine functions, were investigated by electron microscopy in the central canal of the lowest spinal cord, the filum terminale (FT), in adult rats. In this area of the spinal cord, the central canal is covered by a heterogeneous population of ependymal cells. The aim of the present work was to compare the regional features of the ependymal cells in two different parts of the FT with a special regard to their ultrastructure. Two parts of the FT were selected for the ultrastructural observations: the rostral (rFT) and the caudal (cFT) ones. The rTF was removed at the level of the immediate continuation of the conus medullaris, while the cFT 30 mm further caudally. After formaldehyde fixation, the spinal cord was removed and cut into small blocks for electron microscopic processing. The material was embedded into durcupan, contrasted with uranyl acetate, lead citrate as well as osmium tetroxide, and investigated under JEOL 1200 EX electron microscope. In the rFT, the ependymal lining is pseudostratified and one-layered in the cFT, whereas the shape of the ependymal cells may vary from cuboidal to flatten in the rostro-caudal direction. The basal membrane of many ependymal cells possesses deep invaginations, so called "filum terminale labyrinths". Many neuronal processes occur in the pericanalicular neuropil. In contrast to the rFT, the cFT is less rich in the neuropil particles. Some of the ependymal cells concurrently reach both the intracanalicular and extracanalicular cerebrospinal fluid (CSF), thus they may represent a new variant of the ependymal cells designated as "bridge cells of the FT". The present data indicate that the FT ependymal cells exhibit clear differences in anatomy as well as ultrastructure that may reflect their distinct functional activity. Therefore, observations presented here may serve for the better understanding of the physiological role of the individual ependymal areas in this special portion of the rat spinal cord.
Ultrastructure of the root cap of Arabidopsis Thaliana L. Heynh under spaceflight conditions
NASA Technical Reports Server (NTRS)
1983-01-01
Peculiarities of the ultrastructural organization of Arabidopsis root cap cells grown from the stage of two cotyledonous leaves in the Svetoblok-1 apparatus aboard the Salyut 6 research orbital station and in the laboratory are assessed. It is established that under conditions of real space flight vacuolization of the root cap cells increses considerably compared to the control variant. Changes in the topography and ulstrastructure of amyloplasts as well as lysis of cell walls are observed in the material under study. An assumption is advanced on analogous cell responses observed at the ultrastructural level to weightlessness and clinostatic conditions.
de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara
2016-04-01
The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.
Martins, Fabiane F; Beguelini, Mateus R; Puga, Cintia C I; Morielle-Versute, Eliana; Vilamaior, Patricia S L; Taboga, Sebastião R
2016-07-01
The male reproductive accessory glands (RAGs) are important organs that contribute to the secretion of different substances that composed the ejaculate. Despite this important function, their composition, anatomy and function vary widely between species. Thus, the RAGs of three species of phyllostomid bats were morphologically and ultrastructurally characterized and compared in this study. The RAGs of the three analyzed species are composed of a prostate and a pair of bulbourethral glands (BG). In all species, the prostate is composed of three well-defined regions (ventral, dorsolateral and dorsal regions). The ventral region showed an atypical epithelium (undefined) with no obvious cellular limits and a holocrine PAS-positive secretion. The dorsolateral region of Carollia perspicillata and Phyllostomus discolor showed a pseudostratified cubic morphology, and that from Glossophaga soricina had a columnar morphology endowed with cytoplasmic projections and stereocilia. The dorsal region of the three analyzed species is composed of a pseudostratified columnar epithelium endowed with stereocilia; however, G. soricina also presented cytoplasmic projections in the apical portions of the secretory cells similar to those in the dorsolateral region. The BG of the three analyzed species are composed of a pseudostratified columnar epithelium including basal and PAS-positive secretory cells. In conclusion, this study morphologically and ultrastructurally characterized the RAGs of three species of phyllostomid bats, demonstrating the presence of a novel third prostatic region in species of this family. The results also showed the absence of seminal vesicles and ampullary glands, and better characterized the holocrine pattern of the prostatic ventral region, which is unique to bats. Copyright © 2016 Elsevier GmbH. All rights reserved.
The morphology and ultrastructure of salivary glands of Zoraptera (Insecta).
Dallai, R; Mercati, D; Mashimo, Y; Machida, R; Beutel, R G
2017-07-01
The salivary glands of two species of Zoraptera, Zorotypus caudelli and Zorotypus hubbardi, were examined and documented mainly using transmission electron microscopy (TEM). The results obtained for males and females of the two species are compared and functional aspects related to ultrastructural features are discussed. The salivary glands are divided into two regions: the secretory cell region and the long efferent duct, the latter with its distal end opening in the salivarium below the hypopharyngeal base. The secretory region consists of a complex of secretory cells provided with microvillated cavities connected by short ectodermal ducts to large ones, which are connected with the long efferent duct. The secretory cell cytoplasm contains a large system of rough endoplasmic reticulum and Golgi apparatus producing numerous dense secretions. The cells of the efferent duct, characterized by reduced cytoplasm and the presence of long membrane infoldings associated with mitochondria, are possibly involved in fluid uptaking from the duct lumen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ordóñez, N G; Mackay, B
2000-01-01
Because of a fancied light microscopic resemblance to transitional epithelium (urothelium), Brenner tumor (BT) of the ovary is commonly described as a transitional cell neoplasm. An inability to detect a great deal of similarity between the two at the ultrastructural level prompted this electron microscopic study comparing 3 benign Brenner tumors with normal urothelium and 6 transitional cell carcinomas (TCC) of varying histologic grade from the urinary bladder. To complement the ultrastructural observations, the immunophenotype of 8 benign BTs was evaluated together with that of 12 TCCs of the bladder using antibodies to thrombomodulin (TM), cytokeratin 20, cytokeratin 7, and carcinoembryonic antigen (CEA), all of which have been shown to react with TCCs of urothelial origin. At the ultrastructural level, there was only limited evidence of a morphologic likeness between the epithelial cells of BTs and those of the benign or neoplastic urothelium. The immunophenotype of the two tumors also differed significantly in that there was no reactivity for TM or cytokeratin 20 in the BTs, while these markers were expressed in the TCCs. Both BTs and TCCs were positive for cytokeratin 7 and may express CEA.
Centriole Remodeling during Spermiogenesis in Drosophila.
Khire, Atul; Jo, Kyoung H; Kong, Dong; Akhshi, Tara; Blachon, Stephanie; Cekic, Anthony R; Hynek, Sarah; Ha, Andrew; Loncarek, Jadranka; Mennella, Vito; Avidor-Reiss, Tomer
2016-12-05
The first cell of an animal (zygote) requires centrosomes that are assembled from paternally inherited centrioles and maternally inherited pericentriolar material (PCM) [1]. In some animals, sperm centrioles with typical ultrastructure are the origin of the first centrosomes in the zygote [2-4]. In other animals, however, sperm centrioles lose their proteins and are thought to be degenerated and non-functional during spermiogenesis [5, 6]. Here, we show that the two sperm centrioles (the giant centriole [GC] and the proximal centriole-like structure [PCL]) in Drosophila melanogaster are remodeled during spermiogenesis through protein enrichment and ultrastructure modification in parallel to previously described centrosomal reduction [7]. We found that the ultrastructure of the matured sperm (spermatozoa) centrioles is modified dramatically and that the PCL does not resemble a typical centriole. We also describe a new phenomenon of Poc1 enrichment of the atypical centrioles in the spermatozoa. Using various mutants, protein expression during spermiogenesis, and RNAi knockdown of paternal Poc1, we found that paternal Poc1 enrichment is essential for the formation of centrioles during spermiogenesis and for the formation of centrosomes after fertilization in the zygote. Altogether, these findings demonstrate that the sperm centrioles are remodeled both in their protein composition and in ultrastructure, yet they are functional and are essential for normal embryogenesis in Drosophila. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming
2017-11-02
Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.
Morphological and biochemical examination of Cosmos 1887 rat heart tissue. Part 1: Ultrastructure
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Popova, I. A.; Kato, K.; Stevenson, J.; Miquel, J.; Sapp, W.
1990-01-01
Morphological changes were observed in the left ventricle of rat heart tissue from animals flown on the Cosmos 1887 biosatellite for 12.5 days. These tissues were compared to the synchronous and vivarium control hearts. While many normal myofibrils were observed, others exhibited ultrastructural alterations, i.e., damaged and irregular-shaped mitochondria and generalized myofibrillar edema. Analysis of variance (ANOVA) of the volume density data revealed a statistically significant increase in glycogen and a significant decrease in mitochondria compared to the synchronous and vivarium controls. Point counting indicated an increase in lipid and myeloid bodies and a decrease in microtubules, but these changes were not statistically significant. In addition, the flight animals exhibited some patchy loss of protofibrils (actin and myosin filaments) and some abnormal supercontracted myofibrils that were not seen in the controls. This study was undertaken to gain insight into the mechanistic aspects of cardiac changes in both animals and human beings as a consequence of space travel. Cardiac hypotrophy and fluid shifts have been observed after actual or simulated weightlessness and raise concerns about the functioning of the heart and circulatory system during and after travel in space.
Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong
2016-01-01
Background: Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. Methods: The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Results: Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (CcO), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 (P<0.05). Conclusion: The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression. PMID:27830025
Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong
2016-01-01
Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.
Yurchenko, O V; Todor, I N; Khayetsky, I K; Tregubova, N A; Lukianova, N Yu; Chekhun, V F
2010-12-01
To study the ultrastructure and some functional indexes of tumor cells treated with stabilized iron nanoparticles in vitro. 3-[4,5dimethylthiazol-2-1]-2,5-diphenyltetrazolium bromide (MTT)-test, electron microscopy, polarography with applying of closed Clark's electrode. It was shown that cultivation of cells with stabilized Fe(3)O(4) leads to intracellular accumulation of ferromagnetic nanoparticles. The most active ferromagnetic uptake by cells has been observed after 24 and 48 h of incubation. The presence of ferromagnetic in cells led to altered mitochondrial structure that caused the decrease of oxygen uptake rate in the cells of all studied lines. Ferromagnetic released from the majority of cells via exocytosis or clasmacytosis after a certain period of time. The number of dead cells or cells with severe damage was moderate, so cytotoxic action of stabilized iron oxide nanoparticles was minimal toward the studied cell lines. the presence of ferromagnetic nanoparticles in culture medium led to alterations in mitochondria ultrastructural organization and decrease of oxygen uptake by mitochondria in sensitive and anticancer-drugs resistant cells.
Imai, S; Konttinen, Y T; Tokunaga, Y; Maeda, T; Hukuda, S; Santavirta, S
1997-09-01
The present study investigated ultrastructural characteristics of calcitonin gene-related peptide-immunoreactive nerve fibers in the posterior longitudinal ligament of the rat lumbar spine. To provide a morphologic basis for assessment of the afferent and, in particular, efferent functions of calcitonin gene-related peptide immunoreactive nerves in the posterior longitudinal ligament and their eventual role in degenerative spondylarthropathies and low back pain. Previous studies using light-microscopic localization of sensory neuronal markers such as calcitonin gene-related peptide have reported the presence of sensory fibers in the supporting structures of the vertebral column. Meanwhile, accumulating research data have suggested efferent properties for calcitonin gene-related peptide, i.e., a trophic action that alters the intrinsic properties of target cells not through transient action of synaptic transmission, but through long-lasting signal transmission by the secreted neuropeptides. To verify such trophic, paracrine actions of the calcitonin gene-related peptide-containing fibers in the posterior longitudinal ligament, however, ultrastructural details of the terminals and their spatial relationship to their eventual target structures have to be elucidated. Rat posterior longitudinal ligaments were stained immunohistochemically for calcitonin gene-related peptide. Light-microscopic analysis of the semithin sections facilitated subsequent electron microscopy of specific sites of the posterior longitudinal ligament to determine ultrastructural details and nerve fiber-target relationships. The rat lumbar posterior longitudinal ligament was found to be innervated by two distinctive calcitonin gene-related peptide immunoreactive nerve networks. In immunoelectronmicroscopy, the fibers of the deep network had numerous free nerve endings, whereas those of the superficial network showed spatial associations with other non-calcitonin gene-related peptide immunoreactive components of the network. In both systems, naked axons not covered by the Schwann cells made close spatial contact with smooth muscle cells: of blood vessels and resident posterior longitudinal ligament fibroblasts. The ultrastructural characteristics of the innervation of the rat posterior longitudinal ligament would be compatible not only with a nociceptive function, but also with neuromodulatory, vasoregulatory, and trophic functions, as has already been established in some visceral organs.
[The C-cell system of the thyroid in rats following a flight on the Kosmos 1667 biosatellite].
Plakhuta-Plakutina, G I; Dmitrieva, N P; Amirkhanian, E A
1988-01-01
Histological, electron-microscopic and morphometric investigations of the thyroid gland of Wistar SPF male rats (aged 3 months) flown for 7 days on Cosmos-1667 showed that its parenchyma was functionally active and changed but little as compared to the controls. However, at an acute stage of adaptation to microgravity C-cells showed morphological signs of their functional decline: the number of low activity cells and cells whose cytoplasm contained secretory granules increased, the volume of nuclei decreased significantly (by 16.2% as compared to the control), and dystrophic changes seen ultrastructurally appeared. These observations together with the results obtained in prolonged animal flights suggest that in microgravity the synthesis and excretion of the hormone calcitonin diminish. In combination with other factors, the functional decline of C-cells inhibits bone neoformation and enhances bone resorption.
Basile, Adriana; Sorbo, Sergio; Conte, Barbara; Cardi, Manuela; Esposito, Sergio
2013-11-01
Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days. At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens. When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition. These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Teixeira, R D; Scheltinga, D M; Trauth, S E; Colli, G R; Báo, S N
2002-06-01
The ultrastructure of the spermatozoa of Cnemidophorus gularis gularis, Cnemidophorus ocellifer, and Kentropyx altamazonica is described for the first time. Mature spermatozoa of Cnemidophorus spp. and K. altamazonica differ in the occurrence of a perforatorial base plate, the enlargement of axonemal fibers 3 and 8, and shape of mitochondria. The comparisons of the ultrastructure sperm of Cnemidophorus spp. and K. altamazonica with Ameiva ameiva [J. Morphol. (2002) in press] suggest that Ameiva and Cnemidophorus are more similar to each other than either is to Kentropyx. Statistical analyses reveal that sperm of all three species studied are significantly different in the following dimensions: head, acrosome, distal centriole length, and nuclear shoulders width. There was no variable statistically different between the Cnemidophorus spp. only. The length of the tail, midpiece, entire sperm, and nuclear rostrum are significantly different between K. altamazonica and Cnemidophorus spp. Our results indicate that sperm ultrastructure presents intra and intergeneric variability.
Ultrastructural and elemental analysis of sialoliths and their comparison with nephroliths.
Rakesh, Nagaraju; Bhoomareddy Kantharaj, Yashoda Devi; Agarwal, Manjushree; Agarwal, Kunal
2014-02-01
Sialoliths are common in the submandibular gland and its duct system, although their exact cause of formation is still a matter of debate. The aims of this study were to: (a) analyze sialoliths ultrastructurally, and to determine the role of foreign bodies or organic materials in the formation of sialolith nuclei; and (b) compare nephroliths with sialoliths ultrastructurally. Three sialoliths and two nephroliths were analyzed ultrastructurally by a scanning electron microscope and X-ray diffractometer. The main structures of the sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In nephroliths, calcium oxalate, calcium phosphate, and struvite crystals were found. The energy-dispersive X-ray microanalysis found that sialoliths and nephroliths were predominantly composed of elements comprising calcium, phosphorous, magnesium, sodium, chloride, silicon, iron, and potassium. Sialoliths in the submandibular salivary glands might form secondary to sialadenitis, but not via a luminal organic nidus. © 2014 Wiley Publishing Asia Pty Ltd.
Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin
2014-03-01
1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.
Balint, Bela; Vucetić, Dusan; Trajković-Lakić, Zlatija; Petakov, Marijana; Bugarski, Diana; Brajusković, Goran; Taseski, Jovan
2002-01-01
Cryopreservation of platelets is of great interest, since it could extend the shelf life of therapeutic platelet concentrates and facilitate stockpiling and inventory control in blood banking. Despite the use of many cryopreservation procedures the optimal cryopreservation procedure is not defined yet. We have compared the cryopreservation of human platelets by various protocols employing controlled-rate and non-controlled-rate freezing procedures in combination with different concentrations of DMSO (6% and 10%) or 5% DMSO + 6% HES combination. After storage for 1 to 3 months, samples were thawed and analyzed. Measurements included cell recovery, platelet viability according to hypotonic shock response (HSR), platelet aggregation with ADP, morphological and ultrastructural properties of defrozen platelets. Our findings show that the application of our original procedure for controlled-rate freezing consisting of six cooling steps (cooling rate 1 degree C/min) with compensation of released heat of fusion (cooling rate 2 degrees C/min) has significantly influenced the quality of thawed platelets. At the same time, a concentration of 6% DMSO proved to be the most effective. In summary, cryopreservation of human platelets using controlled-rate freezing procedure in combination with lower (6%) DMSO concentration resulted in less damage from freezing and higher recovered function of platelets.
Ming, Zhu; Feng, Shicheng; Yilihamu, Ailimire; Ma, Qiang; Yang, Shengnan
2018-01-01
Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme activity, and decomposition capability of P. chrysosporium was investigated to reflect the potential toxicity of fullerene. C60 did not change the fresh and dry weights of P. chrysosporium but C60-COOH inhibited the weight gain at high concentrations. Both C60 and C60-COOH destroyed the fibrous structure of the mycelia. The ultrastructure of P. chrysosporium was changed by C60-COOH. Pristine C60 did not affect the enzyme activity of the P. chrysosporium culture system while C60-COOH completely blocked the enzyme activity. Consequently, in the liquid culture, P. chrysosporium lost the decomposition activity at high C60-COOH concentrations. The decreased capability in degrading wood was observed for P. chrysosporium exposed to C60-COOH. Our results collectively indicate that chemical functionalization enhanced the toxicity of fullerene to white rot fungi and induced the loss of decomposition activity. The environmental risks of fullerene and its disturbance to the carbon cycle are discussed. PMID:29470407
Random field assessment of nanoscopic inhomogeneity of bone
Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu
2010-01-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to present the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. PMID:20817128
Ogedengbe, O O; Jegede, A I; Onanuga, I O; Offor, U; Peter, A I; Akang, E N; Naidu, E C S; Azu, O O
2018-04-01
The effects of Virgin coconut oil as an adjuvant to highly active antiretroviral therapy (HAART) were investigated on the testicular ultrastructure and biochemical markers in rats. Twenty male Sprague-Dawley rats, weighing 153-169 g were divided into four groups and treated as follows: control A (distilled water), B (HAART), C (HAART+Virgin coconut oil 10 ml/kg) and D (Virgin coconut oil [VCO] 10 ml/kg). Testicular segments were evaluated using transmission electron microscopy. Serum was assayed for testosterone, luteinising hormone, follicle stimulating hormone and testicular tissue for malondialdehyde and glutathione. Ultrastructure of basement membrane (Bm), mitochondria and spermatocytes was normal in the control group. HAART-treated group showed significant increase (p < .01) in Bm thickness with significant decrease in Leydig cell nuclear diameter (p < .05) and volume (p < .01) when compared with control group. Mitochondrial cristae appear collapsed, and Sertoli cells showed cytoplasmic vacuolations. HAART+VCO group showed improved ultrastructural details in Bm, and Sertoli cell and Leydig cells show abundant lipid droplets. Virgin coconut oil-treated group showed thinning of Bm with otherwise normal ultrastructural features of organelles. HAART-treated group showed significant increase (p < .01) in testosterone levels. There was no significant effect on malondialdehyde and glutathione levels. Virgin coconut oil improved testicular morphology and reversed HAART-induced ultrastructural alterations. Further studies on putative mechanism are required. © 2017 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Popova, A.
The results of the experiments with two species of a green alga ?hlorella in spaceflight conditions and under altered gravity testified that the regular rearrangements has been revealed first of all in the cell mitochondriome. Such reorganizations were observed at auto- and geterotrophic regimes of the culture growth in the experiments of average duration (9-18 days) and also in long-term experiments (30 days - 4.5 months) (Popova, 1999). The mitochondria rearrangements become apparent at intensification of the cell proliferation, which results in increasing a relative volume of the mitohondria per cell (up to 5.3 % in microgravity compared to the control - 2.1 %). Moreover, the size of these organelles and their cristae increased in the experimental cells. The indicated mitochondria changes were accompanied by intensifying the electron density of a matrix and often by well-ordered topography of the cristae. Taking into account that the main set of the enzymes catalyzing the oxidative phosphorylation and conduction of the electrons are localized in the cristae membranes, the considerable growth of the mitochondria size and the cristae areas testified probably about a high functional activity of these organelles. Our investigations were carried out with the purpose to check the functional state of mitochondria under altered gravity (using slow horizontal clinorotator) and under influence of the inhibitory agent, separating an oxidation and oxidative phosphorylation. The ultrastructural peculiarities of the mitochondria as the energetic organelles were studied under the different 2,4- dinitrophenole concentrations and during the different terms of clinoritation at the logarithmic and stationary phases of Chlorella culture growth. The various characters of the mitochondria rearrangements and their relative volumes per cell were revealed under 2,4-dinitrophenole influence compared to the different terms of microgravity and altered gravity influences. The obtained results about various ultrastructural mitochondrial rearrangements and their total volume per cell under influence of 2,4- dinitrophenole are discussed by help of the obtained early data of adenylate content, activity, and topography of Mg2+-activated-ATPase in Chlorella cells under altered gravity.
Bhardwaj, Jitender K; Saraf, Priyanka
2014-12-01
Organophosphate pesticides (OPs) like malathion interfere with normal ovarian function resulting in an increased incidence of atresia and granulosa cell apoptosis that plays a consequential role in the loss of ovarian follicles or follicular atresia. The aim of present study was to assess malathion-induced (100 nM) reproductive stress, ultrastructural damage and changes in apoptosis frequency in ovarian granulosa cells of antral follicles. Transmission electron microscopy (TEM) was employed for ultrastructural characterization, oxidative stress was evaluated using thiobarbituric acid reactive substances (TBARS) assay to measure lipid peroxidation, and apoptosis was quantified via flow cytometry. By TEM, apoptosis was identified by the presence of an indented nuclear membrane with blebbing, pyknotic crescent-shaped fragmented nuclei, increased vacuolization, degenerating mitochondria, and lipid droplets. The results indicate a significant increase in malondialdehyde (MDA) level (nmols/g wet tissue) at a 100 nM dose of malathion i.e. 7.57±0.033*, 8.53±0.12*, and 12.87±0.78** at 4, 6, or 8 h, respectively, as compared with controls (6.07±0.033, p<0.01*, p<0.05**) showing a positive correlation between malathion-induced lipid peroxidation and percentage of granulosa cell apoptosis (r=1; p<0.01). The parallel use of these three methods enabled us to determine the role of malathion in inducing apoptosis as a consequence of cytogenetic damage and oxidative stress generated in granulosa cells of antral follicles.
Ultrastructure of free-ending nerve fibres in oesophageal epithelium.
Robles-Chillida, E M; Rodrigo, J; Mayo, I; Arnedo, A; Gómez, A
1981-01-01
For the first time, at the ultrastructural level, the existence of free-ending, intraepithelial nerve fibres has been demonstrated in the oesophagus wall of adult cats and monkeys. Their form, the way they penetrate the epithelium, their location within the epithelium and their relationships with neighbouring cells have been established. A sensory function is suggested for this type of ending. Images Figs. 1-4 Figs. 5-6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Figs. 14-15 Figs. 16-17 PMID:7333951
Marine bivalve geochemistry and shell ultrastructure from modern low pH environments
NASA Astrophysics Data System (ADS)
Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W. W.; Buhl, D.; Hall-Spencer, J. M.; Baggini, C.; Fehr, K. T.; Immenhauser, A.
2011-10-01
Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
Echinococcus multilocularis Leuckart, 1863 (Taeniidae): new data on sperm ultrastructure.
Miquel, Jordi; Świderski, Zdzisław; Azzouz-Maache, Samira; Pétavy, Anne-Françoise
2016-06-01
The present study establishes the ultrastructural organisation of the mature spermatozoon of Echinococcus multilocularis, which is essential for future research on the location of specific proteins involved in the sperm development in this species and also in Echinococcus granulosus. Thus, the ultrastructural characteristics of the sperm cell are described by means of transmission electron microscopy. The spermatozoon of E. multilocularis is a filiform cell, which is tapered at both extremities and lacks mitochondria. It exhibits all the characteristics of type VII spermatozoon of tapeworms, namely a single axoneme, crested bodies, spiralled cortical microtubules and nucleus, a periaxonemal sheath and intracytoplasmic walls. Other characteristics observed in the male gamete are the presence of a >900-nm long apical cone in its anterior extremity and only the axoneme in its posterior extremity. The ultrastructural characters of the spermatozoon of E. multilocularis are compared with those of other cestodes studied to date, with particular emphasis on representatives of the genus Taenia. The most interesting finding concerns the presence of two helical crested bodies in E. multilocularis while in the studied species of Taenia, there is only one crested body. Future ultrastructural studies of other species of the genus Echinococcus would be of particular interest in order to confirm whether or not the presence of two crested bodies is a characteristic of this genus.
CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultrastructure and Hyperkinetic Cilia
Horani, Amjad; Brody, Steven L.; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Ta-shma, Asaf; Wilson, Kate S.; Bayly, Philip V.; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Elpeleg, Orly; Kerem, Eitan
2013-01-01
Background Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. Methods Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. Results A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. Conclusion Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable ultrastructural defects of the ciliary axoneme, emphasizing the role of the nexin-dynein regulatory complex and the limitations of certain methods for PCD diagnosis. PMID:23991085
NASA Technical Reports Server (NTRS)
Spangenberg, D. B.; Coccaro, E.; Schwarte, R.; Lowe, B.
1996-01-01
Ultrastructural studies of the statocysts and touch-plates of graviceptors (rhopalia) of Aurelia ephyrae revealed that (1) touch-plate hair cells are present; and (2) cytoplasmic strands from the hair cell bases extend from the neurite plexus to touch similar strands from the lithocytes. This close association of hair cell neurites and statocysts may have important implications regarding the transmitting and processing of positional information with respect to the gravity vector. Graviceptors of ephyrae which developed while weightless in microgravity were compared with controls at the ultrastructural level. We found that hair cells of ephyrae which developed in microgravity had fewer lipid droplets in the large spaces near their bases as compared with 1 g controls. In the ephyrae from the first microgravity experiment, hair cells had more large apical vacuoles with filamentous content than were found in hair cells of ephyrae from the second experiment and controls. The neurite plexus and the network of cytoplasmic strands extending to the statocysts were not different in microgravity-developed ephyrae from controls. Behavioral differences in swimming and orienting in ephyrae in microgravity and controls (reported earlier) were not explained by morphological differences in the hair cells of the touch-plates or the statocysts, although functional differences apparently occurred.
Buchholz, C; Adelung, D
1980-01-01
The ultrastructure of the steroid producing Y-organ and the mandibular organ of the crustaceans Hemigrapsus nudus and Carcinus maenas has been studied with reference to the well investigated steroid secreting cells (SSC) of mammals. In accordance with the most important characteristic of mammalian SSC, abundant SER could be shown in the Y-organ, where it is unevenly distributed. The amount of SER seems to vary in correlation with the secretion of moulting hormone during the moult cycle. Most Y-organ cells contain a great number of mitochondria of the tubular type, another important characteristic of mammalian SSC. The ultrastructure of the mandibular organ of C. maenas differs considerably from that of the Y-organ. Some SER was found, mitochondria of unusual shape and size were conspicuous. No definite conclusion as to the function of the mandibular organ is yet to be drawn.
Savik, Z F; Rokhlenko, K D
1981-01-01
Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.
Henry, R P; Jackson, S A; Mangum, C P
1996-10-01
The horseshoe crab, Limulus polyphemus, may be unique among marine arthropods in that both its book gills and its coxal gland may serve as sites of ion transport. We have therefore examined the ultrastructure of these organs, as well as the distribution and relative levels of two major transport-related enzymes: the Na+ + K+ ATPase and carbonic anhydrase (CA). The ventral surface of the central region of each lamella shows the typical ultrastructural specializations for ion transport: 10 μm cell thickness, an extensive network of tubules originating from infoldings of the basal membrane, and a high density of mitochondria. This region also contains high levels of activity of the Na+ + K+ ATPase and CA. The distribution of ion transporting epithelium and transport enzymes is identical in each of the five gill books. The peripheral region of the lamellae of each gill book is specialized for passive gas exchange. The ultrastructural and biochemical profile of the coxal gland is similar to that of the central-ventral region of the gill. Limulus possesses the same general mechanism of ion regulation seen in euryhaline decapod crustaceans, but the structural and functional components are uniquely distributed.
Di Palma, A; Seeman, O D; Alberti, G
2017-07-01
Gamasine mites, mainly of the taxon Dermanyssina, possess a secondarily evolved insemination system (sperm access system), of which there are two, generally recognized, structurally different types, the laelapid- and the phytoseiid-type. The ultrastructure of the female sperm access system in Afrocypholaelaps africana is described. It consists of paired insemination pores, opening between the bases of legs three and four, and paired cuticle-lined tubules that converge into a large, sack-like spermatheca, remarkably cuticle-lined as well. The entire spermatheca and part of the tubules are embedded in a peculiar syncytial tissue where numerous sperm cells are present. The general organization of this insemination system is of the laelapid-type. However, it presents striking structural differences, compared with the systems described in Varroa destructor and Hattena cometis, the other gamasine mites having a laelapid-type system studied ultrastructurally until now. The functional morphology, complexity and variations of the sperm access system in Dermanyssina are discussed and correlated with the evolutionary biology of the group.
Mladineo, Ivona; Petrić, Mirela; Hrabar, Jerko; Bočina, Ivana; Peharda, Melita
2012-05-01
In total 480 individuals of Mytilus galloprovincialis were sampled monthly from October 2009 to September 2010, at the shellfish farm in the Mali Ston Bay, south Adriatic Sea (Croatia) in order to assess the extent of pathology imposed by two parasites, Eugymnanthea inquilina (Cnidaria) and Urastoma cyprinae (Turbellaria). Although a deteriorating impact on host reproduction or condition index was lacking, we evidenced ultrastructural and functional alteration in host cells at the attachment site. Ultrastructural changes included hemocytic encapsulation of the turbellarian and cell desquamation in medusoid infestation. Caspase positive reaction inferred by immunohistochemistry (IHC) was triggered in cases of turbellarian infestation, in contrast with hydroids, suggesting that the former exhibits more complex host-parasite interaction, reflected in the persistent attempts of the parasite to survive bivalve reaction. We have evidenced that both organisms trigger specific host reaction that although not costly in terms of host reproductive cycle or growth, results in mild tissue destruction and hemocyte activation. A lower degree of tissue reaction was observed in cases of hydroid infestation, compared to turbellarian. Copyright © 2012 Elsevier Inc. All rights reserved.
Laghezza Masci, Valentina; Di Luca, Marco; Gambellini, Gabriella; Taddei, Anna Rita; Belardinelli, Maria Cristina; Guerra, Laura; Mazzini, Massimo; Fausto, Anna Maria
2015-07-01
The morphology and ultrastructure of female accessory reproductive glands of Anopheles maculipennis s.s., Anopheles labranchiae and Anopheles stephensi were investigated by light and electron microscopy. The reproductive system in these species is characterized by two ovaries, two lateral oviducts, a single spermatheca and a single accessory gland. The gland is globular and has a thin duct which empties into the vagina, near the opening of the spermathecal duct. Significant growth of the accessory reproductive gland is observed immediately after blood meal, but not at subsequent digestion steps. At ultrastructural level, the gland consists of functional glandular units belonging to type 3 ectodermal glands. The secretory cells are elongated and goblet shaped, with most of their cytoplasm and large nucleus in the basal part, close to the basement lamella. Finely fibrous electron-transparent material occupies the secretory cavity that is in contact with the end of a short efferent duct (ductule) emerging from the gland duct. The present study is the first detailed description of female accessory gland ultrastructure in Anophelinae and provides insights into the gland's functional role in the reproductive biology of these insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yu; Zhong, Cuiping; Hong, Liu
2009-12-18
Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110more » dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.« less
Entrapment of hepatocyte spheroids in a hollow fiber bioreactor as a potential bioartificial liver.
Wu, F J; Peshwa, M V; Cerra, F B; Hu, W S
1995-01-01
A bioartificial liver (BAL) employing xenogeneic hepatocytes has been developed as a potential interim support for patients in hepatic failure. For application in human therapy, the BAL requires a substantial increase in liver-specific functions. Cultivation of hepatocytes as spheroids leads to enhanced liver specific functions. We explored the possibility of entrapping spheroids into the BAL in order to improve device performance. Rat hepatocyte spheroids were entrapped in collagen gel within the lumen fibers of the BAL. The morphology and ultrastructure of collagen-entrapped spheroids resembled those of suspended spheroids formed on petri dishes. Albumin synthesis and P-450 enzyme activity were measured as markers of liver specific functions of spheroids entrapped in the BAL. At least a 4-fold improvement in these functions was observed compared to BAL devices entrapped with dispersed hepatocytes in collagen gels.
Comparing different preparation methods to study human fibrin fibers and platelets using TEM.
Buys, Antoinette V; Pretorius, Etheresia
2012-06-01
For the study of cellular ultrastructure, the sample needs to be stabilized by fixation, with the ultimate aim to preserve the native tissue organization and to protect the tissue against later stages of preparation. Chemical and freezing fixation are most used, and chemical fixation employs agents that permeate tissues and cells by diffusion and covalently bind with their major biochemical constituents to fix them. Most widely used chemical fixatives are aldehydes, e.g., formaldehyde and glutaraldehyde, which are noncoagulating, crosslinking agents. Cryofixation methods for ultrastructural studies are also popular, and high-pressure freezing immobilizes all cell constituents and arrests biological activity by removing the thermal energy from the system. In the current research, we used platelet-rich plasma (PRP) to study expansive fibrin fibers and platelet ultrastructure to compare the two fixation techniques. We also used thrombin and calcium chloride as a clotting agent to determine the technique most suitable for the formation of extensive fibrin networks. Chemically fixated fibrin fibers were more compact and condensed and also showed a banding pattern on longitudinal sections. High-pressure frozen samples were more dispersed while platelets fixated showed better preserved cellular membranes and organelle structure. PRP coagulated by addition of CaCl(2) showed blood platelets that are noticeably more activated compared with PRP; however, with thrombin, a sharp ultrastructure was seen. We conclude that PRP mixed with thrombin, and freeze substituted, is the most suitable method for the study of extensive fibrin fibers as well as platelets. Copyright © 2011 Wiley Periodicals, Inc.
Gainett, Guilherme; Michalik, Peter; Müller, Carsten H G; Giribet, Gonzalo; Talarico, Giovanni; Willemart, Rodrigo H
2017-03-01
Harvestmen (Arachnida, Opiliones) are especially dependent on chemical cues and are often regarded as animals that rely mainly on contact chemoreception. Information on harvestman sensilla is scarce when compared to other arachnid orders, especially concerning internal morphology. Using scanning (SEM) and transmission (TEM) electron microscopy, we investigated tarsal sensilla on the distal tarsomeres (DT) of all leg pairs in Heteromitobates discolor (Laniatores, Gonyleptidae). Furthermore, we explored the typological diversity of sensilla present on the DT I and II in members of the suborder Laniatores, which include two thirds of the formally described opilionid fauna, using species from 17 families representing all main laniatorian lineages. Our data revealed that DT I and II of H. discolor are equipped with wall-pored falciform hairs (two types), wall-pored sensilla chaetica (two types) and tip-pored sensilla chaetica, while DT III and IV are mainly covered with trichomes (non-sensory) and tip-pored sensilla chaetica. The ultrastructural characteristics support an olfactory function for all wall-pored sensilla and a dual gustatory/mechanoreceptive function for tip-pored sensilla chaetica. Based on our comparative SEM survey, we show that wall-pored sensilla occur in all investigated Laniatores, demonstrating their widespread occurrence in the suborder and highlighting the importance of both legs I and II as the sensory appendages of laniatorean harvestmen. Our results provide the first morphological evidence for olfactory receptors in Laniatores and suggest that olfaction is more important for harvestmen than previously thought. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schaeffer, Scott M.; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie
2017-01-01
Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids—chromoplasts—are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant ‘Granny Smith’, carotenoid-predominant ‘Golden Delicious’, and anthocyanin-predominant ‘Top Red Delicious’. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems. PMID:28698906
NASA Astrophysics Data System (ADS)
Fatimah; Sarsito, A. S.; Wimardhani, Y. S.
2017-08-01
Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.
Miquel, Jordi; Khallaayoune, Khalid; Azzouz-Maache, Samira; Pétavy, Anne-Françoise
2015-01-01
The present study attempts to establish the sperm ultrastructure baseline for Taenia hydatigena, which is essential for the future research on the location of specific proteins involved in spermatogenesis in this species. Thus, the ultrastructural organisation of the mature spermatozoon is described by means of transmission electron microscopy. Live tapeworms were obtained from an experimentally infected dog in the Department of Pathology and Public Health of the Agronomic and Veterinary Institute Hassan II of Rabat (Morocco). The spermatozoon of T. hydatigena is a filiform cell, which is tapered at both extremities and lacks mitochondria. It exhibits all the characteristics of type VII spermatozoon of tapeworms, namely a single axoneme, a crested body, spiralled cortical microtubules and nucleus, a periaxonemal sheath and intracytoplasmic walls. Other interesting characteristics are the presence of a 2000 nm long apical cone in its anterior extremity and only the axoneme in its posterior extremity. The ultrastructural characters of the spermatozoon of T. hydatigena are compared with those of other cestodes studied to date, with particular emphasis on representatives of the genus Taenia.
SKELETAL MUSCLE ULTRASTRUCTURE AND FUNCTION IN STATIN-TOLERANT INDIVIDUALS
Rengo, Jason L.; Callahan, Damien M.; Savage, Patrick D.; Ades, Philip A.; Toth, Michael J.
2015-01-01
Skeletal Muscle Ultrastructure and Function in Statin-Tolerant Individuals: Introduction Statins have well-known benefits on cardiovascular mortality, though up to 15% of patients experience side effects. With guidelines from the American Heart Association, American College of Cardiology, and American Diabetics Association expected to double the number of statin users, the overall incidence of myalgia and myopathy will increase. Methods We evaluated skeletal muscle structure and contractile function at the molecular, cellular, and whole tissue levels in 12 statin tolerant and 12 control subjects. Results Myosin isoform expression, fiber type distributions, single fiber maximal Ca2+-activated tension, and whole muscle contractile force were similar between groups. No differences were observed in myosin-actin cross-bridge kinetics in myosin heavy chain (MHC) I or IIA fibers. Discussion We found no evidence for statin-induced changes in muscle morphology at the molecular, cellular, or whole tissue levels. Collectively, our data show that chronic statin therapy in healthy asymptomatic individuals does not promote deleterious myofilament structural or functional adaptations. PMID:26059690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Pranay; Yadav, Rajesh S.; Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003
Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenicmore » exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected by curcumin • Functional and structural changes in mitochondria by arsenic protected by curcumin.« less
Del Canto, Felipe; Sierralta, Walter; Kohen, Paulina; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi
2007-11-01
The natural process of luteolysis and luteal regression is induced by withdrawal of gonadotropin support. The objectives of this study were: 1) to compare the functional changes and apoptotic features of natural human luteal regression and induced luteal regression; 2) to define the ultrastructural characteristics of the corpus luteum at the time of natural luteal regression and induced luteal regression; and 3) to examine the effect of human chorionic gonadotropin (hCG) on the steroidogenic response and apoptotic markers within the regressing corpus luteum. Twenty-three women with normal menstrual cycles undergoing tubal ligation donated corpus luteum at specific stages in the luteal phase. Some women received a GnRH antagonist prior to collection of corpus luteum, others received an injection of hCG with or without prior treatment with a GnRH antagonist. Main outcome measures were plasma hormone levels and analysis of excised luteal tissue for markers of apoptosis, histology, and ultrastructure. The progesterone and estradiol levels, corpus luteum DNA, and protein contents in induced luteal regression resembled those of natural luteal regression. hCG treatment raised progesterone and estradiol in both natural luteal regression and induced luteal regression. The increase in apoptosis detected in induced luteal regression by cytochrome c in the cytosol, activated caspase-3, and nuclear DNA fragmentation, was similar to that observed in natural luteal regression. The antiapoptotic protein Bcl-2 was significantly lower during natural luteal regression. The proapoptotic proteins Bax and Bak were at a constant level. Apoptotic and nonapoptotic death of luteal cells was observed in natural luteal regression and induced luteal regression at the ultrastructural level. hCG prevented apoptotic cell death, but not autophagy. The low number of apoptotic cells disclosed and the frequent autophagocytic suggest that multiple mechanisms are involved in cell death at luteal regression. hCG restores steroidogenic function and restrains the apoptotic process, but not autophagy.
Nisolle, M; Casanas-Roux, F; Qu, J; Motta, P; Donnez, J
2000-07-01
To compare histologic and ultrastructural characteristics of fresh and frozen-thawed human ovarian cortical tissue grafted into nude mice. Experimental prospective study. An academic research environment. Ovarian biopsy specimens were obtained from 13 women undergoing laparoscopy for tubal ligation or infertility. Forty nude mice. A minilaparotomy was performed to place fresh and frozen-thawed ovarian grafts subcutaneously (sc) or intraperitoneally (ip). Removal of the ovarian grafts was performed at 24 days. [1] the follicular population, [2] fibrosis, [3] vascularization of the grafted tissue, and [4] ultrastructural evaluation. A greater fibrosis relative surface area was noted in frozen-thawed transplanted tissue than in fresh transplants. Regardless of this fibrosis, a similar follicular density was observed in fresh and frozen-thawed ovarian tissue 24 days after transplantation. Active angiogenesis was proved by both immunohistochemical study of the vascular endothelial growth factor and morphometric study of the vascular network. Normal ultrastructural characteristics were noted in frozen-thawed ovarian biopsies. Angiogenesis allows implantation of the graft even if it has been cryopreserved and thawed similarly to implantation of fresh tissue. The greater fibrosis observed in grafts after cryopreservation and implantation does not seem to affect the primordial and primary ovocyte population and their ultrastructural characteristics, but further studies must be conducted to prove that after cryopreservation and transplantation, ovocytes may achieve full maturation and fertilization.
[Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].
Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin
2018-02-01
To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.
Random field assessment of nanoscopic inhomogeneity of bone.
Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu
2010-12-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.
Wang, Yang; Melkani, Girish C; Suggs, Jennifer A; Melkani, Anju; Kronert, William A; Cammarato, Anthony; Bernstein, Sanford I
2012-06-01
Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.
The effect of urothelial damage on ureteric motility. An ultrastructural and functional study.
Ugaily-Thulesius, L; Thulesius, O; Sabha, M
1988-07-01
Evidence of a leaky urothelial barrier in bilharzial uropathy is presented. The ultrastructural basis of this concept is demonstrated together with its functional consequences. The study was conducted on 4 ureters obtained at surgery from patients with non-functioning kidneys due to chronic bilharzial infections. Six normal ureters from kidney donors served as controls. Light and electron microscopic studies showed a reduced thickness of the transitional epithelium together with localised disruption of intercellular junctions and infiltration of red blood cells. The functional studies involved in vitro demonstration of stable phasic peristaltic contractions which were fundamentally altered by the addition of urine. The changes in motility included increase in contractile frequency and elevation of basal tone, inducing a state of hypermotility which could be equated with ureteric spasm. These changes were partly reversible upon administration of the histamine l-blocker, mepyramine. Evidence is presented to show that these changes might be induced in vivo by histamine released from mast cells triggered by urine leaking through a damaged urothelial barrier. The functional consequences (pain, spasm) are discussed.
Wen, Kejia; Liang, Chanjuan; Wang, Lihong; Hu, Gang; Zhou, Qing
2011-07-01
Rare earth elements (REEs) have been accumulated in the agricultural environment. Acid rain is a serious environmental issue. In the present work, the effects of lanthanum ion (La(3+)) and acid rain on the growth, photosynthesis and chloroplast ultrastructure in soybean seedlings were investigated using the gas exchange measurements system, chlorophyll fluorometer, transmission electron microscopy and some biochemical techniques. It was found that although the growth and photosynthesis of soybean seedlings treated with the low concentration of La(3+) was improved, the growth and photosynthesis of soybean seedlings were obviously inhibited in the combined treatment with the low concentration of La(3+) and acid rain. At the same time, the chloroplast ultrastructure in the cell of soybean seedlings was destroyed. Under the combined treatment with the high concentration of La(3+) and acid rain, the chloroplast ultrastructure in the cell of soybean seedlings was seriously destroyed, and the growth and of photosynthesis were greatly decreased compared with those of the control, the single treatment with the high concentration of La(3+) and the single treatment with acid rain, respectively. The degree of decrease and destruction on chloroplast ultrastructure depended on the increases in the concentration of La(3+) and acid rain (H(+)). In conclusion, the combined pollution of La(3+) and acid rain obviously destroyed the chloroplast ultrastructure of cell and aggravated the harmful effect of the single La(3+) and acid rain on soybean seedlings. As a new combined pollutant, the harmful effect of REEs ions and acid rain on plant should be paid attention to. Copyright © 2011 Elsevier Ltd. All rights reserved.
Three-dimensional ultrastructure of the surface of the tongue of the rat snake, Elaphe climacophora.
Iwasaki, S; Yoshizawa, H; Kawahara, I
1996-05-01
Many studies have been performed to clarify the relationship between behavioral performance of the tongue and Jacobson's organ. The purpose of the present study was to examine the ultrastructural features of the surface of the tongue of the rat snake, Elaphe climacophora, and to delineate the functional relationship between the tongue and Jacobson's organ from a morphological perspective. The three-dimensional ultrastructure of the surface of the tongue of the rat snake Elaphe climacophora was investigated by scanning electron microscopy. Most of the surface of the bifurcated apex of the tongue was relatively smooth. Dome-shaped, hemispherical bulges or microfacets were compactly arranged on the epithelial cell surface over this entire region. Intercellular borders were clearly recognizable as striations. These features were almost the same as those of the dorsal surface of the transitional area between the bifurcated lingual apex and the anterior part of the lingual body. In the posterior half of the lingual body, no microfacets were seen at all. Both microridges and microvilli were compactly distributed on cell surfaces. No evidence was obtained from our ultrastructural analysis for an important role of the lingual apex in the vomeronasal system. By contrast, the epithelial surface of the body of the tongue appeared suitable for retaining stimulating compounds.
Ultrastructure of meristem and root cap of pea seedlings under spaceflight conditions
NASA Technical Reports Server (NTRS)
Sytnyk, K. M.; Kordyum, E. L.; Bilyavska, N. O.; Tarasenko, V. O.
1983-01-01
Data of electron microscopic analysis of meristem and root cap of pea seedlings grown aboard the Salyut-6 orbital research station in the Oazis apparatus and in the laboratory are presented. The main morphological and anatomical characteristics of the test and control plants are shown to be similar. At the same time, some differences are found in the structural and functional organization of the experimental cells as compared to the controls. They concern first of all the plastic apparatus, mitochondria and Golgi apparatus. It is assumed that cell function for certain periods of weightlessness on the whole ensures execution of the cytodifferentiation programs genetically determined on the Earth. Biochemical and physiological processes vary rather markedly due to lack of initially rigorous determination.
de Paiva, Paula Pereira; Delcorso, Mariana Cruz; Matheus, Valquíria Aparecida; de Queiroz, Sonia Claudia do Nascimento; Collares-Buzato, Carla Beatriz; Arana, Sarah
2017-01-01
Aim: The aim of this work was to evaluate the sensitivity of Pacu fingerlings (Piaractus mesopotamicus) by measuring the effects of median lethal concentration (LC50) of atrazine (ATZ - 28.58 mg/L) after acute exposure (up to 96 h). Materials and Methods: The fish were exposed to the LC50 of ATZ for 96 h (28.58 mg/L) in a static system. During the experiment, the fingerlings were randomly distributed in four glass tanks (50 L) containing dechlorinated water. Four glass tanks were for the control group, and four were for the ATZ-exposed group (n=4 per glass tank), given a total number of 16 animals tested per group. The genotoxicity was evaluated by micronucleus (MN) test in erythrocytes from peripheral blood. Qualitative and semi-quantitative histopathological analyses, and also ultrastructural study, were applied in liver and kidney samples. Finally, the content of heat shock protein (Hsp70) in the liver was evaluated by the western blotting method. Results: The morphological alterations in the liver, which was associated with increased expression of Hsp70, included nuclear and cytoplasmic vacuolization, cytoplasmic hyaline inclusions, and necrosis. The kidney presented edema and tubular cell degeneration with cytoplasmic hyaline inclusion. The semi-quantitative histopathological analyses indicated that the liver was more sensitive than kidney to ATZ-induced damage. Ultrastructural analysis showed that ATZ caused membrane alterations in several organelles and increased the number of lysosomes in hepatocytes and kidney proximal tubular cells. Nevertheless, no significant difference was observed in MN frequency in erythrocytes comparing treated and control groups., Conclusion: These results indicated that ATZ-induced damage to the kidney and liver function, ATZ at the concentration tested did not induce a significant difference in MN frequency in Pacu erythrocytes comparing treated and control groups, and also that Pacu fingerlings may be a good bioindicator for testing freshwater contamination. PMID:29062187
Rajesh, Kumar; Xiangying, Kong
2015-01-01
Objective To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain. PMID:26279808
Cangiotti, Angela Maria; Lorenzi, Teresa; Zingaretti, Maria Cristina; Fabri, Mara; Morroni, Manrico
2018-05-01
The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Pinto, Alipio; Cangelosi, Adriana; Geoghegan, Patricia A.; Tironi-Farinati, Carla; Brener, Gabriela J.; Goldstein, Jorge
2016-01-01
Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic–uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however, the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood–brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test), and ultrastructural analysis (transmission electron microscope). Intravenous administration of vehicle (control group), sub-lethal dose of 0.5 and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n = 6). Blood–brain barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1 ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance. PMID:26904009
THE CELLULAR STRUCTURE OF LYMPHOMYELOID TISSUES IN CHIMAERA MONSTROSA (PISCES, HOLOCEPHALI).
Mattisson, Artur; Fänge, Ragnar
1986-12-01
The ultrastructure of the main lymphomyeloid organs of the holocephalan fish, Chimaera monstrosa, is presented. The thymus is well developed even in adults. It is densely packed with small and large lymphocytes, the former predominating. The ultrastructure of C. monstrosa's lymphocytes is similar to that of mammalian ones. The lymphocytes show intimate connections with large epithelial reticulocytes, which infiltrate the cytoplasm of the lymphocytes with long processes. The lymphomyeloid tissues around the orbit are mainly granulocytopoietic. Two types of granulocytes occur: eosinophilic and heterophilic. The latter is found in excess. The granulocytes are ultrastructurally similar to those of elasmobranchs such as Etmopterus spinax and have similar characteristic granules. In addition to granulocytes in various stages, lymphocytes, plasma cells, blast cells, and solitary macrophages are scattered throughout the tissue. The suprapalatal region also has a similar supply and variety of cells, but most heterophilic granulocytes have modified granules. In the spleen, erythrocytes in different developmental stages are common. This confirms earlier studies which suggested that the spleen functions primarily as an erythrocytopoietic organ.
Gabhane, Jagdish; William, S P M Prince; Vaidya, Atul N; Das, Sera; Wate, Satish R
2015-06-01
A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrastructure of antennal sensilla of the peach aphid Myzus persicae Sulzer, 1776.
Ban, Li-Ping; Sun, Yin-Peng; Wang, Ying; Tu, Xiong-Bing; Zhang, Shan-Gan; Zhang, Yun-Ting; Wu, Yun-Sheng; Zhang, Ze-Hua
2015-02-01
The antennal sensilla of alate Myzus persicae were mapped using transmission electron microscopy and the ultrastructure of sensilla trichoidea, coeloconica, and placoidea are described. Trichoid sensilla, located on the tip of the antennae, are innervated by 2-4 neurons, with some outer dendrites reaching the distal end of the hair. Coeloconic sensilla in primary rhinaria are of two morphological types, both equipped with two dendrites. Dendrites of Type II coeloconic sensilla are enveloped in the dendrite sheath, containing the sensillum lymph. In sensilla coeloconica of Type I, instead, dendrites are enclosed by an electron opaque solid cuticle, with no space left for the sensillum lymph. The ultrastructure of big placoid sensillum reveals the presence of three groups of neurons, with 2-3 dendrites in each neuron group, while both small placoid sensilla are equipped with a single group of neurons, consisting of three dendrites. Both large and small placoid sensilla bear multiple pores on the outer cuticle. The function of these sensilla is also discussed. © 2014 Wiley Periodicals, Inc.
Studies on the cellular and subcellular reactions in epidermis at irritant and allergic dermatitis.
Lindberg, M
1982-01-01
To determine the cellular and subcellular reactions of keratinocytes at contact dermatitis, transmission electron microscopy was used in combination with energy dispersive X-ray microanalysis. Stereology and optical diffraction were used as complements to electron microscopy for studies of the effects of variations in the preparation technique on the ultrastructure of epidermis. The morphological effects of an increased hydration of epidermis were assessed by the use of occlusive patch tests. It was found that the relative volume of the epidermal intercellular space and the ultrastructure of the epidermal cells (keratinocytes and Langerhans' cells) were directly dependent on the osmolality of the fixative vehicle if glutaraldehyde was used as fixative. Cellular volume and morphology did also depend on the fixative used. Variations in the volume of the intercellular space were also detected when the water transport through epidermis was impaired by occlusive treatment. In normal epidermis prolonged fixation times (4 weeks) did not affect the morphology of the keratinocytes. However, if the structure and function of the keratinocytes were affected by the application of a irritant substance (DNCB), a loss of electron dense material from the cells was detected within 3 weeks. The ultrastructural changes in the keratinocytes at the irritant chromate and DNCB reactions were of a non-specific nature and are in accordance with the changes described for other irritant agents in the literature. A few cells with the features of apoptosis were recorded. The allergic chromate reaction was found to be a combination of the irritant reaction and a marked inflammatory response. To correlate the ultrastructural alterations in the keratinocytes with the functional state of the cells, X-ray microanalysis was used to determine the elemental redistribution occurring at the irritant DNCB reaction. The results of the X-ray microanalysis showed a good correlation between dose and time dependent effects and with the ultrastructural changes. Cell injury in the keratinocytes lead to decreases in the cellular content of phosphorous, potassium and magnesium and an increase of cellular calcium. Sodium, chloride, and sulphur were only moderately changed. A stimulation of the basal keratinocytes was detectable when a weak DNCB dose was applied to the skin.
Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function
Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi
2000-01-01
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle. PMID:10995435
Uranova, N A; Kolomeets, N S; Vikhreva, O V; Zimina, I S; Rakhmanova, V I; Orlovskaya, D D
Previously the authors have reported the ultrastructural pathology of myelinated fibers (MF) in the brain in schizophrenia. The aim of the present study was to compare the effect of disease course on ultrastructural changes of MF. Postmortem electron microscopic morphometric study of MF was performed in the prefrontal cortex, caudate nucleus and hippocampus in 19 cases of paranoid schizophrenia. Fourteen cases of continuous schizophrenia, 5 cases of attack-like schizophrenia and 25 normal matched control cases were studied. The proportion (percentage) of pathological MF was estimated in the prefrontal cortex, layer 5, CA3 area of hippocampus, pyramidal layer, and in the head of the caudate nucleus. The percentage of MF having axonal atrophy and swelling of periaxonal oligodendrocyte process was significantly higher in both continuous and attack-like schizophrenia in all brain structures studied as compared to the control group. In the hippocampus and caudate nucleus, this parameter was increased significantly in attack-like schizophrenia as compared to continuous schizophrenia. In the prefrontal cortex. The percentage of the pathological MF having signs of deformation and destruction of myelin sheaths increased significantly only in continuous schizophrenia as compared to the control group. MF pathology is similar in attack-like and continuous paranoid schizophrenia but differ by the degree of severity of pathological MF. Abnormalities in MF contribute to the disconnectivity between the prefrontal cortex, caudate nucleus and hippocampus.
Skeletal muscle pathology in endurance athletes with acquired training intolerance
Grobler, L; Collins, M; Lambert, M; Sinclair-Smith, C; Derman, W; St, C; Noakes, T
2004-01-01
Background: It is well established that prolonged, exhaustive endurance exercise is capable of inducing skeletal muscle damage and temporary impairment of muscle function. Although skeletal muscle has a remarkable capacity for repair and adaptation, this may be limited, ultimately resulting in an accumulation of chronic skeletal muscle pathology. Case studies have alluded to an association between long term, high volume endurance training and racing, acquired training intolerance, and chronic skeletal muscle pathology. Objective: To systematically compare the skeletal muscle structural and ultrastructural status of endurance athletes with acquired training intolerance (ATI group) with asymptomatic endurance athletes matched for age and years of endurance training (CON group). Methods: Histological and electron microscopic analyses were carried out on a biopsy sample of the vastus lateralis from 18 ATI and 17 CON endurance athletes. The presence of structural and ultrastructural disruptions was compared between the two groups of athletes. Results: Significantly more athletes in the ATI group than in the CON group presented with fibre size variation (15 v 6; p = 0.006), internal nuclei (9 v 2; p = 0.03), and z disc streaming (6 v 0; p = 0.02). Conclusions: There is an association between increased skeletal muscle disruptions and acquired training intolerance in endurance athletes. Further studies are required to determine the nature of this association and the possible mechanisms involved. PMID:15562162
Collardeau-Frachon, Sophie; Vasiljevic, Alexandre; Jouvet, Anne; Bouvier, Raymonde; Senée, Valérie; Nicolino, Marc
2015-11-01
Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disorder characterized by the association of permanent neonatal or early-infancy insulin-dependent diabetes, multiple bone dysplasia, hepatic dysfunction, and growth retardation. All clinical manifestations result from gene mutations encoding pancreatic endoplasmic reticulum eIF2 α kinase (PERK), an endoplasmic reticulum transmembrane protein that plays a role in the unfolded protein response. Histological and ultrastructural lesions of bone and pancreas have been described in animal models and WRS patients. However, histological and ultrastructural findings of other organs, especially of the liver, are lacking. Autopsy specimens from two pediatric patients with WRS were analyzed. An immunohistochemical study was performed on the pancreas. An ultrastructural study was realized from samples of liver, pancreas, kidney, and myocardium. Our findings were compared with those of the literature and correlated with the molecular data. Hepatocytes and pancreatic exocrine cells exhibited very peculiar features of necrosis suggestive of secondary changes because of endoplasmic reticulum overload. Steatosis occurred in renal tubular cells, hepatocytes, and myocardial fibers. Abnormal mitochondria were noted in renal and myocardial fibers. Pancreas islets were characterized by a marked reduction in the number of insulin-secreting β cells. The histological and ultrastructural features that occur in WRS are directly or indirectly linked to endoplasmic reticulum (ER) dysfunction and can explain the peculiar phenotype of this syndrome. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ultrastructure of the human preovulatory oocyte.
Szöllösi, D; Mandelbaum, J; Plachot, M; Salat-Baroux, J; Cohen, J
1986-08-01
The ultrastructure of preovulatory human oocyte-cumulus complexes was described after inducing maturation by clomiphene, human menopausal gonadotropin (hMG), human chorionic gonadotropin (hCG) treatment. The majority of the oocytes was at metaphase II of meiosis, with a radially orientated spindle. The oocyte surface was covered by a multitude of microvilli. Cortical granules were nonuniformly distributed along the cortex. A cytoplasmic polarization was observed. The cytoplasmic organelles were in general uniformly dispersed, with the exception of a narrow segment within which cytoplasmic membranes and mitochondria formed clusters. The spindle was usually found at the borderline between the two regions of the cytoplasm. The functional significance of this polarization is not yet known.
The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.
Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T
2006-02-01
The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.
Ultrastructure of oogenesis in imposex females of Babylonia areolata (Caenogastropoda: Buccinidae)
NASA Astrophysics Data System (ADS)
Muenpo, C.; Suwanjarat, J.; Klepal, W.
2011-09-01
During a tributyltin (TBT)-exposure experiment, the ultrastructural features of oogenesis have been examined in TBT-induced imposex females of Babylonia areolata and compared with those of the normal female. The results obtained from such experiment demonstrates that B. areolata exhibits a low to moderate intensity of imposex because all VDSI values are never higher than 3. Ultrastructures of germ cell development including oogonia, pre-vitellogenic, early vitellogenic, late vitellogenic and mature oocytes show that oogenesis in imposex female is similar to that of normal females except for the presence of numerous lipid droplets in the cytoplasm of the oocytes and the follicle cells in imposex females, indicating the degeneration of their oocytes. Vitellogenesis in B. areolata involves both auto- and heterosynthetic processes that resemble those of the basal gastropods and the pulmonates. In addition, the presence of cortical granules and microvilli are unique structures of this species.
Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.
Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca
2017-12-01
Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.
Guizar-Sicairos, Manuel; Gschwend, Oliver; Hangartner, Peter; Bunk, Oliver; Müller, Ralph; Schneider, Philipp
2016-01-01
Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the microarchitecture, being oriented mostly parallel to bone surface, and (v) local surface curvature seems to have an effect on the ultrastructure organization. Further studies that investigate bone ultrastructure orientation and arrangement are needed in order to understand its organization and consequently its relation to bone biology and mechanics. PMID:27547973
Ultrastructural findings in noncompaction prevail with neuromuscular disorders.
Finsterer, Josef; Stöllberger, Claudia
2013-01-01
Little is known about the ultrastructural abnormalities of left ventricular hypertrabeculation/noncompaction (LVHT). This literature review aimed to summarize and discuss ultrastructural abnormalities described in LVHT so far. The literature search was conducted via MEDLINE using the search terms 'non-compaction', 'noncompaction', 'left ventricular hypertrabeculation', 'spongy myocardium' in combination with the terms 'ultra-structural', or 'electron microscopy'. Altogether, 11 studies reporting ultrastructural investigations of LVHT were retrieved. In these 11 studies, data on 13 patients with LVHT were presented. Ultrastructural abnormalities found in these study patients were generally nonspecific and included an increase in the number of mitochondria (n = 3), abnormally shaped mitochondria (n = 2), distorted cristae (n = 3), sarcomeric derangement (n = 3), immature cardiomyocytes (n = 1), lipid-like inclusions (n = 1), enlarged interstitial spaces (n = 1), increased interstitial collagen (n = 1), or increased glycogen (n = 1). The morphological abnormalities were most prominent in patients with a neuromuscular disorder like Barth syndrome or mitochondrial myopathy. Only in few patients with LVHT, ultrastructural investigations have been performed so far. Ultrastructural abnormalities in LVHT are nonspecific and most prominent in patients with a neuromuscular disorder. There is a strong need to carry out thorough ultrastructural investigations of LVHT to contribute to the understanding of this still unexplained myocardial abnormality.
Padilha, Gisele de A; Horta, Lucas F B; Moraes, Lillian; Braga, Cassia L; Oliveira, Milena V; Santos, Cíntia L; Ramos, Isalira P; Morales, Marcelo M; Capelozzi, Vera Luiza; Goldenberg, Regina C S; de Abreu, Marcelo Gama; Pelosi, Paolo; Silva, Pedro L; Rocco, Patricia R M
2016-12-01
In patients with emphysema, invasive mechanical ventilation settings should be adjusted to minimize hyperinflation while reducing respiratory effort and providing adequate gas exchange. We evaluated the impact of pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) on pulmonary and diaphragmatic damage, as well as cardiac function, in experimental emphysema. Emphysema was induced by intratracheal instillation of porcine pancreatic elastase in Wistar rats, once weekly for 4 weeks. Control animals received saline under the same protocol. Eight weeks after first instillation, control and emphysema rats were randomly assigned to PCV (n = 6/each) or PSV (n = 6/each) under protective tidal volume (6 ml/kg) for 4 h. Non-ventilated control and emphysema animals (n = 6/group) were used to characterize the model and for molecular biology analysis. Cardiorespiratory function, lung histology, diaphragm ultrastructure alterations, extracellular matrix organization, diaphragmatic proteolysis, and biological markers associated with pulmonary inflammation, alveolar stretch, and epithelial and endothelial cell damage were assessed. Emphysema animals exhibited cardiorespiratory changes that resemble human emphysema, such as increased areas of lung hyperinflation, pulmonary amphiregulin expression, and diaphragmatic injury. In emphysema animals, PSV compared to PCV yielded: no changes in gas exchange; decreased mean transpulmonary pressure (Pmean,L), ratio between inspiratory and total time (Ti/Ttot), lung hyperinflation, and amphiregulin expression in lung; increased ratio of pulmonary artery acceleration time to pulmonary artery ejection time, suggesting reduced right ventricular afterload; and increased ultrastructural damage to the diaphragm. Amphiregulin correlated with Pmean,L (r = 0.99, p < 0.0001) and hyperinflation (r = 0.70, p = 0.043), whereas Ti/Ttot correlated with hyperinflation (r = 0.81, p = 0.002) and Pmean,L (r = 0.60, p = 0.04). In the model of elastase-induced emphysema used herein, PSV reduced lung damage and improved cardiac function when compared to PCV, but worsened diaphragmatic injury.
Vieira, Graziela Cleuza; da Silva, Patrícia Mirella; Barracco, Margherita Anna; Hering, Augusto Ferrari; Albuquerque, Marcos Caivano Pedroso de; Coelho, Jaqueline da Rosa; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Rosa, Rafael Diego; Perazzolo, Luciane Maria
2017-11-01
Hemocyte populations of the pearl oyster Pteria hirundo were characterized at morphological, ultrastructural and functional levels. Three main hemocyte populations were identified: hyalinocytes, granulocytes and blast-like cells. Hyalinocytes were the most abundant population (88.2%) characterized by the presence of few or no granules in the cytoplasm and composed by two subpopulations, large and small hyalinocytes. Comparatively, granulocytes represented 2.2% of the hemocyte population and were characterized by the presence of numerous large electron-lucid granules in the cytoplasm. Finally, the blast-like cells (9.5%) were the smallest hemocytes, showing spherical shape and a high nucleus/cytoplasm ratio. Hemocytes exhibited a significant phagocytic capacity for inert particles (38.5%) and showed to be able to produce microbicidal molecules, such as reactive oxygen species (ROS) (ex vivo assays). The immune role of hemocytes was further investigated in the P. hirundo defense against the Gram-negative Vibrio alginolyticus. A significant decrease in the total number of hemocytes was observed at 24 h following injection of V. alginolyticus or sterile seawater (injury control) when compared to naïve (unchallenged) animals, indicating the migration of circulating hemocytes to the sites of infection and tissue damage. Bacterial agglutination was only observed against Gram-negative bacteria (Vibrio) but not against to marine Gram-positive-bacteria. Besides, an increase in the agglutination titer was observed against V. alginolyticus only in animals previously infected with this same bacterial strain. These results suggest that agglutinins or lectin-like molecules may have been produced in response to this particular microorganism promoting a specific recognition. The ultrastructural and functional characterization of P. hirundo hemocytes constitutes a new important piece of the molluscan immunity puzzle that can also contribute for the improvement of bivalve production sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Structure and ultrastructure of the ovary of Cichlasoma urophthalmus (Osteichthyes: Cichlidae)].
Viedma, Rubí; Franco, Jonathan; Bedia, Carlos; Guedea Fernández, Guadalupe; Villa Zevallos, Héctor Barrera; Barrera Escorcia, Héctor
2011-06-01
The study of the normal development, differentiation, structure and function of various components of developing follicles in the ovaries of numerous fish species have been a consistent focus of comparative reproduction. The structural and ultrastructural features of gonads from Cichlasoma urophthalmus have received scarce attention. In this work, we realized a descriptive study of female gonads of Cichlasoma urophthalmus. A total of 40 samples were collected in the Veracruz Alvarado Lagoon, Mexico in 2007-2008 period including the windy, dry and rainy seasons. Female gonads were extracted and a portion was fixed in 4% formaldehyde for treatment for routine histology hematoxylin and eosin (HE) and another part was processed for transmission electron microscopy (TEM). The gonads were fixed in 3% glutaraldehyde and 2% osmium tetroxide, followed by dehydrated in ethanol 50%, 70%, 80%, 95% and 100% for inclusion in Epon, thin sections were then prepared and were contrasted with lead citrate and uranyl acetate. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis and maturation). In this work, we found that the primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth starts with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage, the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs. In conclusion, further studies should elucidate structure and ultrastructural changes in the ovarian follicular components, in C. urophthalmus during different stages of oocyte growth.
Ultrastructural properties of laser-irradiated and heat-treated dentin.
Rohanizadeh, R; LeGeros, R Z; Fan, D; Jean, A; Daculsi, G
1999-12-01
Previous studies using scanning electron microscopy and infrared absorption spectroscopy reported that laser irradiation causes compositional changes in enamel. The purpose of this study was to evaluate the ultrastructural and compositional changes in dentin caused by irradiation with a short-pulse laser (Q-switched Nd:YAG). The irradiated and non-irradiated areas of the lased dentin samples were investigated by scanning (SEM) and transmission electron microscopy (TEM), micro-micro electron diffraction, and electron microprobe analysis of dispersive energy (EDX). Heat-treated dentin was similarly investigated. This study demonstrated that laser irradiation resulted in the recrystallization of dentin apatite and in the formation of additional calcium phosphate phases consisting of magnesium-substituted beta-tricalcium phosphate, beta-TCMP, beta-(Ca,Mg)3(PO4)2, and tetracalcium phosphate, TetCP, Ca4(PO4)O. TEM analyses of the modified and unmodified zones of the irradiated areas showed two types of crystal populations: much larger crystals from the modified zone and crystals with size and morphology similar to those of dentin apatite in the unmodified zone. The morphology of crystals in the modified zones in the irradiated dentin resembled those of dentin sintered at 800 or 950 degrees C. In the irradiated areas (modified and unmodified zones), the Ca/P ratio was lower compared with that in the non-irradiated dentin. The Mg/Ca ratio in the modified zones was higher than that in the unmodified zones and in the non-irradiated dentin. In sintered dentin, the Mg/Ca ratio increased as a function of sintering temperature. The ultrastructural and compositional changes observed in laser-irradiated dentin may be attributed to high temperature and high pressure induced by microplasma during laser irradiation. These changes may alter the solubility of the irradiated dentin, making it less susceptible to acid dissolution or to the caries process.
Chen, Wenrong; Yang, Xiaoe; He, Zhenli; Feng, Ying; Hu, Fenghong
2008-01-01
The relationship of zinc (Zn) efficiency in rice to differential tolerance of photosynthetic capacity and chloroplast function to low Zn stress was studied using Zn-efficient (IR8192) and Zn-inefficient (Erjiufeng) rice genotypes (Oryza sativa L.). Zinc deficiency caused extensive declines in leaf chlorophyll (Chl) content, ratios of chl a:b, Pn, Fv/Fm and Fv/Fo, indicating that the intrinsic quantum efficiency of the photosystem II (PSII) units was damaged. A greater decline was observed in the inefficient genotype (Erjiufeng) than the efficient genotype (IR8192). The 77 K chl fluorescence emission spectrum revealed that Zn deficiency blocked energy spillover from PSII to PSI and more excitation energy was distributed to PSII in IR8192 than Erjiufeng. The spectrum of Zn-deficient Erjiufeng was completely disordered, implying that the photosynthetic centers were seriously damaged. Electron microscopy showed that Zn deficiency caused a severe damage to the fine structure of chloroplasts, but IR8192 had a better preserved chloroplast ultrastructure as compared with Erjiufeng. These differences may result from the higher levels of the antioxidant enzyme activities and lower oxidant stress level in IR8192. These results indicate that Zn deficiency decreases leaf photosynthetic capacity primarily by reducing the number of PSII units per unit leaf area, and also reducing the photochemical capacity of the remaining PSII units. Therefore, the maintenance of more efficient photochemical capacity under low Zn stress is a key factor for the high Zn efficiency in rice, which may result from less antioxidant damage caused by low Zn to the chloroplast ultrastructure.
Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states
NASA Astrophysics Data System (ADS)
Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; Diantonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.
2014-08-01
The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.
Hui, Rong; Li, Xinrong; Chen, Cuiyun; Zhao, Xin; Jia, Rongliang; Liu, Lichao; Wei, Yongping
2013-04-01
Our understanding of plant responses to enhanced ultraviolet-B (UV-B) radiation has improved over recent decades. However, research on cryptogams is scarce and it remains controversial whether UV-B radiation causes changes in physiology related to photosynthesis. To investigate the effects of supplementary UV-B radiation on photosynthesis and chloroplast ultrastructure in Bryum argenteum Hedw., specimens were cultured for 10 days under four UV-B treatments (2.75, 3.08, 3.25 and 3.41 W m(-2) ), simulating depletion of 0% (control), 6%, 9% and 12% of stratospheric ozone at the latitude of Shapotou, a temperate desert area of northwest China. Analyses showed malondialdehyde content significantly increased, whereas chlorophyll (Chl) fluorescence parameters and Chl contents decreased with increased UV-B intensity. These results corresponded with changes in thylakoid protein complexes and chloroplast ultrastructure. Overall, enhanced UV-B radiation leads to significant decreases in photosynthetic function and serious destruction of the chloroplast ultrastructure of B. argenteum. The degree of negative influences increased with the intensity of UV-B radiation. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crust, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under future ozone depletion. Copyright © Physiologia Plantarum 2012.
Machado, Camila Maria Longo; Zorzeto, Tatiane Queiroz; Bianco, Juares E Romero; Rosa, Renata Giardini; Genari, Selma Candelaria; Joazeiro, Paulo Pinto; Verinaud, Liana
2009-04-01
On the basis of transmission electron microscopy observations in tumor cell lines, oncologists have made innumerous diagnostic and therapeutical progresses. Following this path, the UNICAMP immunopathologies laboratory established the NG97 cell line derived from a human astrocytoma grade III, which when injected to the athymic nude mouse flank developed a grade IV astrocytoma. In this study, we focused on ultrastructural characterization of the NG97 cells after being recovered from xenotransplant (NG97ht). These cells in culture were assayed by two different electron microscopy procedures to characterize ultrastructures related to grade IV astrocytomas and to observe their structures through cell subcultivation. Additionally, comparative morphological descriptions of different cell passages in these technical procedures could be a useful tool for improving electron microscopy cell lineage protocols. Results from many cell passage observations showed ultrastructural similarities, which suggest malignant and glioblastoma phenotypes. In the first procedure, NG97ht cells were harvested and then incorporated into agarose before subjecting them to electron microscopy protocols, whereas in the second one, monolayer cells grew first on cover slides. Comparison among protocols revealed that organelles, cytoplasmatic extensions, spatial conformation of filopodia, and cell attachment to substrate were more preserved in the second procedure. Furthermore, in this latter procedure, a unique ellipsoidal structure was observed, which was already described when dealing with gliosarcoma cell line elsewhere. Therefore, these analyses demonstrated a morphological characterization of a new NG97ht cell line using electron transmission microscopy. Moreover, it has been shown that the second procedure provides more detailed information compared with the first.
Ma, Yi; Gui, Yan; Wang, Youhu; Xi, Kehu; Chen, Xiaowan; Zhang, Fuhong; Ma, Chunxia; Hong, Hao; Liu, Xiangyi; Jiang, Ying; Dong, Ming; Yang, Guijun; Zhang, Xiaobing
2014-10-01
To observe 18β-glycyrrhetinic acid (GA) impact on ultrastructure of tight junctions (TJs) of nasal mucosa epithelial cells in rats models of allergic rhinitis (AR). Ninety-six Wistar rats were randomly divided into control group, model group, loratadine group, and 18β-glycyrrhetinic acid group, and each group had 24 rats. Ovalbumin was used to establish a rat AR model. The behavioral changes and the tight junctions of nasal epithelial were observed and compared in different groups after 2,4,6 and 10 weeks intervention. The length of TJs in allergic rhinitis model became shorter, electron-high-density plasma membrane became thicker, number of the integration loci reduced and gap of TJs widened or even ruptured. With the consistent effect of allergens,the changes of TJs in the model group aggravated gradually,and the changes of ultrastructure of TJs in 18β-glycyrrhetinic acid group was relieved apparently compared to model group and even were close to the control model with time. 18β-glycyrrhetinic acid can recover the ultrastructure of the tight junctions of AR rat nasal epithelial cells.
INCOMPLETE REPAIR OF RETINAL STRUCTURE AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING.
Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Nakatake, Shunji; Fujiwara, Kohta; Murakami, Yusuke; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro
2017-08-01
To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used a cynomolgus monkey model and focused on surgical damages of ILM peeling for long observational period of 3 years. Vitrectomy was performed followed by ILM peeling similar to clinical settings in humans. Ultrastructural changes of the retina were investigated by light, transmission, and scanning electron microscopy at 3 months and 3 years after ILM peeling. Ultrastructural study showed that the ILM peeled area was still clearly recognized after 3 years. The Müller cell processes covered most of the retina; however, the nerve fiber layer was partly uncovered and exposed to the vitreous space. The arcuate linear nerve fiber bundles were observed as comparable with dissociated optic nerve fiber layer appearance. Small round retinal surface defects were also observed around macula, resembling the dimple sign. Forceps-related retinal thinning was also found on the edge of ILM peeling, where we started peeling with fine forceps. The ultrastructural studies showed that most of ILM peeling area was covered with glial cells during wound healing processes. Retinal changes were found comparable with dissociated optic nerve fiber layer appearance or dimple sign, which were clinically observed with optical coherence tomography.
Wang, Yue; Li, Dan; Liu, Yang; Li, Xue-Jiao; Cheng, Wei-Ning; Zhu-Salzman, Keyan
2016-01-01
To better understand the olfactory receptive mechanisms involved in host selection and courtship behavior of Sitodiplosis mosellana (Diptera: Cecidomyiidae), one of the most important pests of wheat, scanning and transmission electron microscopy were used to examine the external morphology and ultrastructure of the antennal sensilla. The moniliform antennae exhibit obvious sexual dimorphism: antennae of the males are markedly longer than those of the females. Furthermore, each male flagellomere consists of two globular nodes, whereas each female flagellomere is cylindrical. Seven types of sensilla were identified in both sexes. Two types of s. chaetica have a lumen without dendrites and thick walls, suggesting that they are mechanoreceptors. S. trichodea and s. circumfila are typical chemoreceptors, possessing thin multiporous walls encircling a lumen with multiple dendrites. There are significantly more s. trichodea in female than in male, which may be related to host plant localization. In contrast, male s. circumfila are highly elongated compared to those of females, perhaps for pheromone detection. Peg-shaped s. coeloconica are innervated with unbranched dendrites extending from the base to the distal tip. Type 1 s. coeloconica, which have deep longitudinal grooves and finger-like projections on the surface, may serve as olfactory or humidity receptors, whereas type 2 s. coeloconica, smooth with a terminal pore, may be contact chemoreceptors. Also, this is the first report of Böhm’ bristles at proximal scape on antennae of Cecidomyiid species potentially functioning as mechanoreceptors. PMID:27623751
Wang, Chunyan; Peng, Yanli; Pan, Shuling; Li, Li
2014-01-13
To explore the effect of insulin-like growth factor-1 (IGF-1) on corneal surface ultrastructure and nerve regeneration in rabbit models after laser in situ keratomileusis (LASIK). Forty-two healthy New Zealand white rabbits were divided into two groups, the IGF-1 group and the control group, and LASIK surgery was performed. The corneal surface ultrastructure was observed by transmission electron microscopy, and the nerve regeneration was evaluated by counting the newly regenerated nerves at 1 d, 1 w, 2 w, 1 m, 3 m and 6 m after surgery. Dry eye parameters, including the Schirmer I test and tear break-up time, were examined at all time points. The examination of corneal ultrastructure showed that the number of corneal epithelial microvilli in the IGF-1 group was significantly higher than that in the normal saline (NS) group except in the second postoperative week (p<0.05). The observation of corneal nerve regeneration showed that the number of regenerated nerve fibers in the IGF-1 group was higher than the control group at all time points (p<0.05). The parameters of dry eye were significantly higher in the IGF-1 group compared to the control group at all time points except at 1d and 6m after LASIK. IGF-1 can effectively accelerate the early repair of corneal surface ultrastructure and nerve regeneration after LASIK and relieve dry eye symptoms in rabbit eyes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Alvarez, Blanca Beatriz; Delfino, Giovanni; Nosi, Daniele; Terreni, Alessandro
2005-02-01
Serous (poison) cutaneous glands of the leptodactylid species Physalaemus albonotatus and Leptodactylus chaquensis were compared using light and transmission electron microscopy. Glands in the two species share structural traits common in anurans, including the peripheral contractile sheath (myoepithelium) and the syncytial secretory unit that produces, stores, and modifies the poison. At the ultrastructural level, early steps of poison production are also similar and fit the usual path of proteosynthesis, involving rough endoplasmic reticulum (RER) and Golgi stacks (dictyosomes) in the peripheral syncytial cytoplasm. However, several differences are obvious during the maturational processes that lead post-Golgian products to their ultimate ultrastructural traits. In P. albonotatus, the dense product released from the dictyosomes acquires a thick repeating substructure, which, however, becomes looser in the inner portion of the syncytium. In L. chaquensis, serous maturation involves gradual condensation, and opaque, somewhat "vacuolized" granules are formed. These different maturational paths expressed during poison manufacturing in the two species agree with the polyphyletic origin of the family Leptodactylidae. On the other hand, data collected for P. albonotatus fit previous findings from P. biligonigerus and stress the view that poisons produced by congeneric species share similar (or identical) ultrastructural features. Copyright 2004 Wiley-Liss, Inc.
Ebrahimi, Bita; Valojerdi, Mojtaba Rezazadeh; Eftekhari-Yazdi, Poopak; Baharvand, Hossein
2012-05-01
To determine the ultrastructural changes of sheep cumulus-oocyte complexes (COCs) following different methods of vitrification, good quality isolated COCs (GV stage) were randomly divided into the non-vitrified control, conventional straw, cryotop and solid surface vitrification groups. In both conventional and cryotop methods, vitrified COCs were respectively loaded by conventional straws and cryotops, and then plunged directly into liquid nitrogen (LN2); whereas in the solid surface group, vitrified COCs were first loaded by cryotops and then cooled before plunging into LN2. Post-warming survivability and ultrastructural changes of healthy COCs in the cryotop group especially in comparison with the conventional group revealed better viability rate and good preservation of the ooplasm organization. However in all vitrification groups except the cryotop group, mitochondria were clumped. Solely in the conventional straw group, the mitochondria showed different densities and were extremely distended. Moreover in the latter group, plenty of large irregular connected vesicles in the ooplasm were observed and in some parts their membrane ruptured. Also, in the conventional and solid surface vitrification groups, cumulus cells projections became retracted from the zona pellucida in some parts. In conclusion, the cryotop vitrification method as compared with other methods seems to have a good post-warming survivability and shows less deleterious effects on the ultrastructure of healthy vitrified-warmed sheep COCs.
Ultrastructure, biology, and phylogenetic relationships of kinorhyncha.
Neuhaus, Birger; Higgins, Robert P
2002-07-01
The article summarizes current knowledge mainly about the (functional) morphology and ultrastructure, but also about the biology, development, and evolution of the Kinorhyncha. The Kinorhyncha are microscopic, bilaterally symmetrical, exclusively free-living, benthic, marine animals and ecologically part of the meiofauna. They occur throughout the world from the intertidal to the deep sea, generally in sediments but sometimes associated with plants or other animals. From adult stages 141 species are known, but 38 species have been described from juvenile stages. The trunk is arranged into 11 segments as evidenced by cuticular plates, sensory spots, setae or spines, nervous system, musculature, and subcuticular glands. The ultrastructure of several organ systems and the postembryonic development are known for very few species. Almost no data are available about the embryology and only a single gene has been sequenced for a single species. The phylogenetic relationships within Kinorhyncha are unresolved. Priapulida, Loricifera, and Kinorhyncha are grouped together as Scalidophora, but arguments are found for every possible sistergroup relationship within this taxon. The recently published Ecdysozoa hypothesis suggests a closer relationship of the Scalidophora, Nematoda, Nematomorpha, Tardigrada, Onychophora, and Arthropoda.
Inclusion dynamics in PC12 is comparable between amphetamines and MPTP.
Gesi, Marco; Lazzeri, Gloria; Ferrucci, Michela; Pellegrini, Antonio; Lenzi, Paola; Ruggieri, Stefano; Fornai, Francesco; Paparelli, Antonio
2006-08-01
In previous studies it was demonstrated that amphetamine derivatives and 1-methyl article-4-phenylpyridinium produce neuronal cell bodies. In the present work, we compared the fine ultrastructure of the intracellular inclusions induced by these different neurotoxic treatments. In particular, we compared the dynamical changes occurring when a mild toxic stimulus acts for different time intervals. For this purpose, we exposed catecholamine-synthesizing PC12 cells to different amphetamine derivatives (methamphetamine and 3,4-methylenedioxymethamphetamine), or 1-methyl-4-phenylpyridinium ion, which represents the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,3,4,6-tetrahydropyridine. Despite inclusions that are elicited by different mechanisms depending on the specific neurotoxin, their ultrastructural features are similar and there is a high parallelism in their temporal evolution. This suggests that formation of inclusions is a multi-step process that might be elicited by different stimuli and, once triggered, leads to the same final effect.
Ultrastructural Examination of Diffuse and Specific Tectopulvinar Projections in the Tree Shrew
CHOMSUNG, RANIDA D.; PETRY, HEYWOOD M.; BICKFORD, MARTHA E.
2008-01-01
Two pathways from the superior colliculus (SC) to the tree shrew pulvinar nucleus have been described, one in which the axons terminate in dense (or specific) patches and one in which the axon arbors are more diffusely organized (Luppino et al. [1988] J. Comp. Neurol. 273:67– 86). As predicted by Lyon et al. ([2003] J. Comp. Neurol. 467:593– 606), we found that anterograde labeling of the diffuse tectopulvinar pathway terminated in the acetylcholinesterase (AChE)-rich dorsal pulvinar (Pd), whereas the specific pathway terminated in the AChE-poor central pulvinar (Pc). Injections of retrograde tracers in Pd labeled non-γ-aminobutyric acid (GABA)-ergic wide-field vertical cells located in the lower stratum griseum superficiale and stratum opticum of the medial SC, whereas injections in Pc labeled similar cells in more lateral regions. At the ultrastructural level, we found that tectopulvinar terminals in both Pd and Pc contact primarily non-GABAergic dendrites. When present, however, synaptic contacts on GABAergic profiles were observed more frequently in Pc (31% of all contacts) compared with Pd (16%). Terminals stained for the type 2 vesicular glutamate transporter, a potential marker of tectopulvinar terminals, also contacted more GABAergic profiles in Pc (19%) compared with Pd (4%). These results provide strong evidence for the division of the tree shrew pulvinar into two distinct tectorecipient zones. The potential functions of these pathways are discussed. J. Comp. Neurol. 510:24 – 46, 2008. PMID:18615501
Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata.
Borovicková, Barbara; Hypsa, Václav
2005-01-01
Hemocytes of two tick species, Ixodes ricinus and Ornithodoros moubata, were investigated with the aim to determine their ultrastructural characteristics and developmental relationships. Only a limited number of ultrastructural features was shown to be unequivocally homological across all hemocyte types. The two species, representing distant groups of ticks, differ in the composition of their circular cell populations. In I. ricinus, three groups of distinct morphological types of hemocytes could be determined according to well-defined ultrastructural features: a typical non-phagocytic granular cell with electron-dense granula and homogeneous cytoplasm (Gr II), and two different types of phagocytic hemocytes, namely plasmatocytes with a low number of granula and phagocytic granolocytes, designated as Gr I. In contrast, an additional cell type resembling insect spherulocytes was determined in O. moubata. This cell type does not seem to be homologous to any I. ricinus hemocyte and may represent a cell type typical of soft ticks only. Possible ontogenetic lineages of the hemocytes of both tick-species were inferred.
Colorimeter and scanning electron microscopy analysis of teeth submitted to internal bleaching.
Martin-Biedma, Benjamin; Gonzalez-Gonzalez, Teresa; Lopes, Manuela; Lopes, Luis; Vilar, Rui; Bahillo, José; Varela-Patiño, Purificación
2010-02-01
This in vitro study compared the tooth color and the ultrastructure of internal dental tissues before and after internal bleaching. Sodium perborate was placed in the pulp chamber of endodontically treated molars and sealed with intermediate restorative material. The test samples were stored in a physiologic solution, and the bleaching agent was replaced every 7 days. A control group was used. After 1 month, the colors of the test and control samples were measured with a colorimeter, and the internal surfaces were observed under field emission scanning electron microscopy (FESEM). Statistically significant differences were found between the test and control sample colors. The FESEM ultrastructure analysis of the internal enamel and dentin surfaces did not show any changes after the internal bleaching. The results of the present study show that sodium perborate is effective in bleaching nonvital teeth and does not produce ultrastructural changes in the dental tissues. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Evolutionary origins of the blood vascular system and endothelium
Monahan-Earley, Rita; Dvorak, Ann M.; Aird, William C.
2017-01-01
Every biological trait requires both a proximate and evolutionary explanation. The field of vascular biology is focused primarily on proximate mechanisms in health and disease. Comparatively little attention has been given to the evolutionary basis of the cardiovascular system. Here, we employ a comparative approach to review the phylogenetic history of the blood vascular system and endothelium. In addition to drawing on the published literature, we provide primary ultrastructural data related to the lobster, earthworm, amphioxus and hagfish. Existing evidence suggests that the blood vascular system first appeared in an ancestor of the triploblasts over 600 million years ago, as a means to overcome the time-distance constraints of diffusion. The endothelium evolved in an ancestral vertebrate some 540–510 million years ago to optimize flow dynamics and barrier function, and/or to localize immune and coagulation functions. Finally, we emphasize that endothelial heterogeneity evolved as a core feature of the endothelium from the outset, reflecting its role in meeting the diverse needs of body tissues. PMID:23809110
Swiderski, Z; Euzet, L; Schönenberger, N
1975-01-01
Electron microscopic study of nephridial systems in three cyclophyllidean cestodes indicates a resemblance in their ultrastructure. The walls of longitudinal, transverse and collecting ducts show a very similar pattern of organization. The surface of the anucleate epithelium lining the ducts is developed into microvilli. A relatively thick layer of fibrillar tissue underlies the basal membrane of the microvillar epithelium. The nucleated portions or "pericaryons", situated between the parenchymal cells, are directly connected with epithelium by cytoplasmic prolongations. The canalicular lumen extends through a single series of cells curved into a ring. The epithelial surface of the canalicular wall is developed into short, densly staining microvilli and the immediately underlying fibrillar tissue appears very compact. The cilia were never observed in any of the above ducts. The ultrastructure of protonephridia proper is comparable with those already described in other cestodes. There is a close association between the flame-cell and the cancalicular ending, enlarged into a nephridial funnel. A single row of nephridial rods of the flame-cell is surrounded by a row of digitiform prolongations of the nephridial funnel border. The prolongations alternate with the rods and their interlocking pattern appears clearly in cross-sections. A series of minute pores or "nephrostomes" providing a direct contact between the nephridial chamber and intercellular space of the paranchyma was shown. The problem of classification and definition between the "closed" protonephridia and open metanephridia is discussed. The structural unity of protonephridia in different groupes of Platyhelminthes is reviewed. The different number of flagella within the "flames" of different cestodes is compared and analyzed. The ultrastructural characteristics of duct-wall epithelium provides some confirmation of its high metabolic activity.
He, Qi; Luo, Yanmin; Lv, Fulin; Xiao, Qian; Chao, Fenglei; Qiu, Xuan; Zhang, Lei; Gao, Yuan; Xiu, Yun; Huang, Chunxia; Tang, Yong
2018-04-01
The effects of estrogen replacement therapy (ORT) on white matter and the myelin sheath ultrastructure in the white matter of middle-aged ovariectomized (OVX) rats were investigated in this study. Middle-aged rats were ovariectomized and divided into a placebo replacement (OVX + O) group and an estrogen replacement (OVX + E) group. Then, the Morris water maze, electron microscope techniques, and stereological methods were used to investigate the effects of ORT on spatial learning capacity, white matter volume and the myelin sheath ultrastructure in the white matter. We found that the spatial learning capacity of the OVX + E rats was significantly improved compared with that of the OVX + O rats. When compared with that of OVX + O rats, the total volume of the myelin sheaths in the white matter of the OVX + E rats was significantly increased by 27%, and the difference between the outer perimeter and inner perimeter of the myelin sheaths of the white matter in the OVX + E rats increased significantly by 12.6%. The myelinated fibers with mean diameters of 1.2-1.4 μm were significantly longer (46.1%) in the OVX + E rats; the difference between the mean diameter of myelinated fibers and the mean diameter of axons (0-0.4 μm) was significantly increased by 21.6% in the OVX + E rats. These results suggested that ORT had positive protective effects on the spatial learning ability and on the myelin sheath ultrastructure in the white matter of middle-aged OVX rats. © 2017 Wiley Periodicals, Inc.
Ertürküner, Salime Pelin; Yaprak Saraç, Elif; Göçmez, Semil Selcen; Ekmekçi, Hakan; Öztürk, Zeynep Banu; Seçkin, İsmail; Sever, Özkan; Keskinbora, Kadircan
2016-01-01
Experimental animal models of acute uveitis, an inflammatory eye disease, can be established via endotoxin-induced inflammation. Propolis, a natural substance collected by honeybees from buds and tree exudates, has antioxidant, antibacterial, antiviral, and anti-inflammatory effects. We investigated the effects of propolis, obtained from the Sakarya province of Turkey, on endotoxin-induced uveitis using immunohistochemical, ultrastructural, and biochemical approaches. Male Wistar albino rats (n = 6/group) received intraperitoneal (ip) lipopolysaccharide (LPS) endotoxin (150 μg/kg) followed by aqueous extract of propolis (50 mg/kg ip) or vehicle; two additional groups received either saline (control) or propolis only. After 24 h, aqueous humor (AH) was collected from both eyes of each animal for analysis of tumor necrosis factor-α (TNF-α) and hypoxia-inducible factor-1α (HIF-1α). Right eyeballs were paraffin-embedded for immunohistochemical staining of nuclear factor κB (NF-κB)/p65 and left eyeballs were araldite-embedded for ultrastructural analysis. Treatment of LPS-induced uveitis with propolis significantly reduced ciliary body NF-κB/p65 immunoreactivity and AH levels of HIF-1α and TNF-α. Ultrastructural analysis showed fewer vacuoles and reduced mitochondrial degeneration in the retinal pigment epithelium, as compared to the uveitis group. The intercellular spaces of the inner nuclear layer and outer limiting membrane were comparable with those of the control group; no polymorphonuclear cells or stasis was observed in intravascular or extravascular spaces. This is the first report demonstrating an anti-inflammatory effect of Turkish propolis in a rat model of LPS-induced acute uveitis, suggesting a therapeutic potential of propolis for the treatment of inflammatory ophthalmic diseases.
Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang
2016-08-01
A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK.
Diwu, Yong-chang; Tian, Jin-zhou; Shi, Jing
2011-02-01
To study the effects of Chinese herbal medicine Yinsiwei compound (YSW) on spatial learning and memory ability in rats with sporadic Alzheimer disease (SAD) and the ultrastructural basis of the hippocampal neurons. A rat model of SAD was established by intracerebroventricular injection of streptozotocin. The rats were divided into six groups: sham-operation group, model group, donepezil control group, and YSW low, medium and high dose groups. Drug interventions were started on the 21st day after modeling and each treatment group was given the corresponding drugs by gavage for two months. Meanwhile, the model group and the sham-operation group were given the same volume of distilled water by gavage once a day for two months. The Morris water maze was adopted to test spatial learning and memory ability of the rats. The place navigation test and the spatial probe test were conducted. The escape latency, total swimming distance and swimming time in the target quadrant of the rats were recorded. Also, the hippocampus tissues of rats were taken out and the ultrastructure of hippocampus neurons were observed by an electron microscope. In the place navigation test, compared with the model group, the mean escape latency and the total swimming distance of the donepezil group and the YSW low, medium and high dose groups were significantly shortened (P<0.05 or P<0.01). In the space probe test, the swimming time of each treatment group in the target quadrant was significantly longer than that of the model group (P<0.05 or P<0.01). For most of the test period, the donepezil group had no significant change compared with the YSW low, medium and high dose groups, respectively. The ultrastructure of the hippocampus neurons under the electron microscope also confirmed the efficacy of the drug treatment. Chinese herbal medicine YSW compound can improve spatial learning and memory impairment of rats with SAD. The ultrastructural basis may be that it can protect the microtubule structures of hippocampal neurons and prevent nerve axons from being damaged.
Melanosome metabolism in the retinal pigmented epithelium of the opossum.
Herman, K G; Steinberg, R H
1982-01-01
Melanosomal metabolism, including both formation and degradation of melanosomes, was studied in the retinal pigmented epithelium (RPE) of the adult opossum. The majority of the observations were made on a transitional zone between the tapetal and non-tapetal RPE, the region where melanosome metabolism was at its highest level. Formation of melanosomes, demonstrated ultrastructurally by the presence of stage-II and -III premelanosomes, was also examined autoradiographically following the incorporation of the melanin precursor, dihydroxyphenylalanine. The autoradiographic evidence indicated that many newly formed melanosomes were rapidly incorporated into complexes. Ultrastructural observations suggested that melanosome complexes were formed by at least two methods, via the fusion of melanosomes with phagosomes derived from outer segments of photoreceptors, or by the sequestration of melanosomes by cisternae. A central finding of this study, supported by both ultrastructural and histochemical data, is that there are specialized cellular regions that vary in melanosomal formation and lysosomal activity. Stage-II premelanosomes were observed only in the basal parts of the RPE cells, whereas stage-III and -IV melanosomes were found primarily in the apical RPE. Both ultrastructural and cytochemical observations indicated that degradation of melanosomes occurs only in the basal RPE. These findings are interpreted in terms of the expression of both tapetal and nontapetal characteristics in transitional cells. Finally, this study illustrates the role of lysosomal enzymes in shaping the pattern of pigmentation, and shows that the association of lysosomal activity with melanosomes depends on the functional state of the melanosome.
Ultrastructural liver changes in the experimental thyrotoxicosis.
Pasyechko, Nadiya Vasylivna; Kuleshko, Iryna Ihorivna; Kulchinska, Veronika Mykolaiivna; Naumova, Liudmyla Valeriivna; Smachylo, Iryna Volodymyrivna; Bob, Anzhela Olehivna; Radetska, Liudmyla Volodymyrivna; Havryliuk, Mykhailo Yevhenovych; Sopel, Olha Mykolaiivna; Mazur, Liudmyla Petrivna
Aim of the study is to evaluate ultrastructural changes of rat liver in experimental thyrotoxicosis. For the study, 36 male rats have been utilized, weighing approximately 150-190 g, which were divided into three groups: the first, control group (12 animals) was composed of healthy rats that received intragastric sodium chloride 0.9% solution, the second group (12 animals) - animals with experimental thyrotoxicosis, which received intragastric solution of L-thyroxine at the rate of 200 μg/kg for 2 weeks, and the third group (12 animals) - rats with experimental thyrotoxicosis, which received intragastric solution of L-thyroxine at the rate of 200 μg/kg for 4 weeks. For electron-microscopic studies small pieces of liver tissue were taken at the end of the 2nd and 4th weeks of the experiment. The material was studied and documented in electron micrographs by using a TEM-125K electron microscope. In experiment in white male rats the electron-microscopic state of the liver in thyrotoxicosis has been studied. It has been established that thyrotoxicosis is accompanied by the significant changes of the hepatocytes ultrastructure, blood and bile capillaries. Experimental thyrotoxicosis causes significant damage of the liver plasma membranes and intracellular structural components of hepatocytes and endothelial cells. In experimental thyrotoxicosis, on the background of microcirculatory disorders, significant damage of plasmatic and intracellular organoid membranes of hepatocytes in the liver develops, which has an adverse effect on the functionality of the organ. The found ultrastructural changes are aggravated depending on the duration of thyrotoxicosis.
Sonakowska, Lidia; Włodarczyk, Agnieszka; Poprawa, Izabela; Binkowski, Marcin; Śróbka, Joanna; Kamińska, Karolina; Kszuk-Jendrysik, Michalina; Chajec, Łukasz; Zajusz, Bartłomiej; Rost-Roszkowska, Magdalena Maria
2015-01-01
The freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca, Decapoda) originates from Asia and is one of the species that is widely available all over the world because it is the most popular shrimp that is bred in aquaria. The structure and the ultrastructure of the midgut have been described using X-ray microtomography, transmission electron microscopy, light and fluorescence microscopes. The endodermal region of the alimentary system in N. heteropoda consists of an intestine and a hepatopancreas. No differences were observed in the structure and ultrastructure of males and females of the shrimp that were examined. The intestine is a tube-shaped organ and the hepatopancreas is composed of two large diverticles that are divided into the blind-end tubules. Hepatopancreatic tubules have three distinct zones – proximal, medial and distal. Among the epithelial cells of the intestine, two types of cells were distinguished – D and E-cells, while three types of cells were observed in the epithelium of the hepatopancreas – F, B and E-cells. Our studies showed that the regionalization in the activity of cells occurs along the length of the hepatopancreatic tubules. The role and ultrastructure of all types of epithelial cells are discussed, with the special emphasis on the function of the E-cells, which are the midgut regenerative cells. Additionally, we present the first report on the existence of an intercellular junction that is connected with the E-cells of Crustacea. PMID:25996951
Nematodes ultrastructure: complex systems and processes.
Basyoni, Maha M A; Rizk, Enas M A
2016-12-01
Nematode worms are among the most ubiquitous organisms on earth. They include free-living forms as well as parasites of plants, insects, humans and other animals. Recently, there has been an explosion of interest in nematode biology, including the area of nematode ultrastructure. Nematodes are round with a body cavity. They have one way guts with a mouth at one end and an anus at the other. They have a pseudocoelom that is lined on one side with mesoderm and on the other side with endoderm. It appears that the cuticle is a very complex and evolutionarily plastic feature with important functions involving protection, body movement and maintaining shape. They only have longitudinal muscles so; they seem to thrash back and forth. While nematodes have digestive, reproductive, nervous and excretory systems, they do not have discrete circulatory or respiratory systems. Nematodes use chemosensory and mechanosensory neurons embedded in the cuticle to orient and respond to a wide range of environmental stimuli. Adults are made up of roughly 1000 somatic cells and hundreds of those cells are typically associated with the reproductive systems. Nematodes ultrastructure seeks to provide studies which enable their use as models for diverse biological processes including; human diseases, immunity, host-parasitic interactions and the expression of phylogenomics. The latter has, however, not been brought into a single inclusive entity. Consequently, in the current review we tried to provide a comprehensive approach to the current knowledge available for nematodes ultrastructures.
Oeverhaus, Michael; Meyer Zu Westrup, Verena; Dietzel, Martha; Hense, Hans-Werner; Pauleikhoff, Daniel
2017-01-01
While the importance of risk polymorphisms for the pathogenesis of age-related macular degeneration (AMD) is well established, their impact on morphological and functional phenotypes is largely unclear. We aimed to characterize individual phenotypes in patients who were either homozygous for a risk allele in the CFH gene, ARMS2 gene, or both as compared to non-carriers. Patients with early AMD (n = 85) were assessed during a follow-up examination of a prospective study (MARS) with multimodal diagnostics including SD-OCT and microperimetry. Compared to non-carriers, OCT scans revealed lower retinal thickness in patients homozygous for CFH or ARMS2, which was caused by a significantly reduced photoreceptor layer. The number and ultrastructure of drusen were also significantly different. These findings indicate that patients with risk alleles demonstrate distinct phenotypic differences of morphology and function as compared to non-carriers. In particular in the CFH group, a loss of photoreceptors occurred concomitantly with reduced retinal sensitivity. Further studies might help to better understand the pathophysiology. © 2017 S. Karger AG, Basel.
Scientific Evidence for Hydrostatic Shock
2010-01-01
Z, Jiang J, Bian, X, Savic J, Ultrastructural and Functional Characteristics of Blast Injury-Induced Neurotrauma, The Journal of Trauma, 50:695...706, 2001. 21. Cernak I, Wang, Z, Jiang J, Bian, X, Savic J, Cognitive deficits following blast injury- induced neurotrauma, Brain Injury, 15(7
Clinical Features of Childhood Primary Ciliary Dyskinesia by Genotype and Ultrastructural Phenotype
Ferkol, Thomas W.; Rosenfeld, Margaret; Lee, Hye-Seung; Dell, Sharon D.; Sagel, Scott D.; Milla, Carlos; Zariwala, Maimoona A.; Pittman, Jessica E.; Shapiro, Adam J.; Carson, Johnny L.; Krischer, Jeffrey P.; Hazucha, Milan J.; Cooper, Matthew L.; Knowles, Michael R.; Leigh, Margaret W.
2015-01-01
Rationale: The relationship between clinical phenotype of childhood primary ciliary dyskinesia (PCD) and ultrastructural defects and genotype is poorly defined. Objectives: To delineate clinical features of childhood PCD and their associations with ultrastructural defects and genotype. Methods: A total of 118 participants younger than 19 years old with PCD were evaluated prospectively at six centers in North America using standardized procedures for diagnostic testing, spirometry, chest computed tomography, respiratory cultures, and clinical phenotyping. Measurements and Main Results: Clinical features included neonatal respiratory distress (82%), chronic cough (99%), and chronic nasal congestion (97%). There were no differences in clinical features or respiratory pathogens in subjects with outer dynein arm (ODA) defects (ODA alone; n = 54) and ODA plus inner dynein arm (IDA) defects (ODA + IDA; n = 18) versus subjects with IDA and central apparatus defects with microtubular disorganization (IDA/CA/MTD; n = 40). Median FEV1 was worse in the IDA/CA/MTD group (72% predicted) versus the combined ODA groups (92% predicted; P = 0.003). Median body mass index was lower in the IDA/CA/MTD group (46th percentile) versus the ODA groups (70th percentile; P = 0.003). For all 118 subjects, median number of lobes with bronchiectasis was three and alveolar consolidation was two. However, the 5- to 11-year-old IDA/CA/MTD group had more lobes of bronchiectasis (median, 5; P = 0.0008) and consolidation (median, 3; P = 0.0001) compared with the ODA groups (median, 3 and 2, respectively). Similar findings were observed when limited to participants with biallelic mutations. Conclusions: Lung disease was heterogeneous across all ultrastructural and genotype groups, but worse in those with IDA/CA/MTD ultrastructural defects, most of whom had biallelic mutations in CCDC39 or CCDC40. PMID:25493340
Opal, Shireen; Garg, Shalini; Sharma, Deepak; Dhindsa, Abhishek; Jatana, Isha
2017-01-15
The purpose of this study was to evaluate macroscopically and ultrastructurally the effect of calcium hydroxide cement (CH) and resin-modified glass ionomer cement (RMGIC) compared with gutta percha (control) as a lining material on carious dentin after partial caries removal and sealing. Twenty-seven permanent molars with deep carious lesions underwent partial caries removal with the application of CH, RMGIC, or gutta percha (control) and were then sealed for three months. After a partial caries removal and sealing period, the dentin was macroscopically assessed (for color, consistency, and humidity) and further analyzed by scanning electron microscope to assess the ultrastructural changes in dentin (lumen size, mineralization of tubules, occlusion of tubules by cements, and bacterial ingress). The effect of treatment in each group was statistically analyzed. Dentin darkening and hardening were observed after the sealing period in all groups. However, there was no difference in the color after treatment among the three groups. It was observed that RMGIC showed a significant reduction in the size of the lumen compared to CH and the control. Partial caries removal and sealing resulted in dentin hardening, darkening, and dentin remineralization, irrespective of the dentin protection used.
Bâlici, Ştefana; Wankeu-Nya, Modeste; Rusu, Dan; Nicula, Gheorghe Z; Rusu, Mariana; Florea, Adrian; Matei, Horea
2015-10-01
Two polyoxometalates (POMs), synthesized through a self-assembling method, were used in the treatment of streptozotocin (STZ)-induced diabetic rats. One of these nanocompounds [tris(vanadyl)-substituted tungsto-antimonate(III)-anions—POM1] was previously described in the literature, whereas the second [tris-butyltin-21-tungsto-9-antimonate(III)-anions—POM2], was prepared by us based on our original formula. In rats with STZ-induced diabetes treated with POMs (up to a cumulative dose of 4 mg/kg bodyweight at the end of the treatments), statistically significant reduced levels of blood glucose were measured after 3 weeks, as compared with the diabetic control groups (DCGs). Ultrastructural analysis of pancreatic β-cells (including the mean diameter of secretory vesicles and of their insulin granules) in the treated diabetic rats proved the POMs contribute to limitation of cellular degeneration triggered by STZ, as well as to the presence of increased amounts of insulin-containing vesicles as compared with the DCG. The two POMs also showed hepatoprotective properties when ultrastructural aspects of hepatocytes in the experimental groups of rats were studied. Based on our in vivo studies, we concluded that the two POMs tested achieved hypoglycemiant effects by preventing STZ-triggered apoptosis of pancreatic β-cells and stimulation of insulin synthesis.
Li, Ming; Cheng, Hongbo; Guo, Ping; Zhang, Chun; Tang, Song; Wang, Shusheng
2016-04-26
Iris plays important roles in ocular physiology and disease pathogenesis. Currently it is technically challenging to noninvasively examine the human iris ultrastructure in vivo. The purpose of the current study is to reveal human iris ultrastructure in patients with synechiae by using noninvasive in vivo laser scanning confocal microscopy (LSCM). The ultrastructure of iris in thirty one patients, each with synechiae but transparent cornea, was examined by in vivo LSCM. Five characteristic iris ultrastructures was revealed in patients with synechiae by in vivo LSCM, which include: 1. tree trunk-like structure; 2. tree branch/bush-like structure; 3. Fruit-like structure; 4. Epithelioid-like structure; 5. deep structure. Pigment granules can be observed as a loose structure on the top of the arborization structure. In iris-associated diseases with Tyndall's Phenomenon and keratic precipitates, the pigment particles are more likely to fall off from the arborization structure. The ultrastructure of iris in patients with synechiae has been visualized using in vivo LSCM. Five iris ultrastructures can be clearly observed, with some of the structures maybe disease-associated. The fall-off of the pigment particles may cause the Tyndall's Phenomenon positive. In vivo LSCM provides a non-invasive approach to observe the human iris ultrastructure under certain eye disease conditions, which sets up a foundation to visualize certain iris-associated diseases in the future.
[Ultrastructural characteristics of mast cells and eosinophils in nasal inverted papilloma].
Yokoshima, K; Ohnishi, M; Okuda, M; Okubo, K
1994-12-01
We previously found that an increased number of mast cells and eosinophils accumulated in nasal inverted papilloma and in the nasal mucosa of allergic subjects. Two subtypes of mast cells, i.e., mucosal mast cells and connective tissue mast cells are known to be present in the allergic nasal mucosa. Eosinophils in the allergic nasal mucosa are also heterogeneous. In addition, we demonstrated accumulation of formalin-sensitive mast cells at the tumor site of nasal inverted papilloma. The morphological characteristics and function of mast cells and eosinophils, however, have not yet been identified. The purpose of this study was to determine the ultrastructural characteristics of mast cells and eosinophils in relation to their function in tumor tissue. The results revealed two subtypes of mast cells in nasal inverted papilloma, one distributed mainly in the tumor site, the other mainly in the stromal site. These two subtypes of mast cells had different ultrastructural characteristics. In contrast to stromal mast cells, mast cells in the tumor site were characterized by a smaller cell diameter, fewer specific granules and a higher rate of degranulation. This suggested that they may have played some role in the pathogenesis of the tumor, however, their precise function is still unknown. In comparison with the mast cells in the allergic nasal mucosa, previously reported by Okuda et al, the mast cells in the tumor site were similar to those in the epithelial layer of the allergic nasal mucosa (MMCs), while mast cells in the stromal site resembled those in the lamina propria (CTMCs). There were no marked morphological differences between eosinophils in the tumor site and the stromal site.(ABSTRACT TRUNCATED AT 250 WORDS)
Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-07-16
The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakim, Samer George, E-mail: samer.hakim@mkg-chir.mu-luebeck.de; Benedek, Geza Attila; Su Yuxiong
2012-03-15
Purpose: Radiation-induced xerostomia still represents a common side effect after radiotherapy for head-and-neck malignancies. The aim of the present study was to examine the radioprotective effect of lidocaine hydrochloride during fractionated radiation in an experimental animal model. Methods and Materials: To evaluate the influence of different radiation doses on salivary gland function and the radioprotective effect of lidocaine, rabbits were irradiated with 15, 25, 30, and 35 Gy (equivalent doses in 2-Gy fractions equivalent to 24, 40, 48, and 56 Gy, respectively). Lidocaine hydrochloride (10 and 12 mg/kg) was administered before every radiation fraction in the treatment groups. Salivary glandmore » function was assessed by flow sialometry and sialoscintigraphy, and the morphologic changes were evaluated using transmission electron microscopy. Results: Functional impairment was first observed after 35 Gy and pretreatment with lidocaine improved radiation tolerance of both parotid and submandibular glands. The use of 12 mg/kg lidocaine was superior and displayed significant radioprotection with regard to flow sialometry and sialoscintigraphy. The ultrastructure was largely preserved after pretreatment with both lidocaine doses. Conclusions: Lidocaine represents an effective radioprotective agent and a promising approach for clinical application to avoid radiation-induced functional impairment of salivary glands.« less
Ultrastructural changes of goat corpus luteum during the estrous cycle.
Jiang, Yi-Fan; Hsu, Meng-Chieh; Cheng, Chiung-Hsiang; Tsui, Kuan-Hao; Chiu, Chih-Hsien
2016-07-01
The present study was designed to study the ultrastructure of goat corpora lutea (CL, n=10) and structural changes as related to steroidogenic functions during the estrous cycle. The reproduction status of goats was estimated by analyzing serum progesterone concentrations. The CL at various stages was surgically collected. To characterize ultrastructural features associated with steroidogenesis, tissue and cellular structures were studied. Blood supplies were examined based on features of the endothelial cells and capillary structures in the CL. Activated endothelial cells and developing vessels were observed in the early stage, whereas mature endothelial cells, accumulating extracellular matrix fibers, and stabilized vessels were observed in the middle and late stages of assessment. In the late stage of assessment, shrunken goat luteal cells scattered around the capillaries were detected and formed circular regression areas. Features of autophagy and luteal cell apoptosis were noted. In large luteal cells, steroidogenic organelles were present, including microvillar channels, endoplasmic reticulum, and mitochondria. Conformational changes in the endoplasmic reticulum and increased mitochondria with tubular cristae were observed in the early-middle CL transitions. In contrast, mitochondria swelled and the cristae transformed to the lamellar type in the late stage, suggesting that organelle plasticity could contribute to steroidogenesis in goat CL. In conclusion, results suggest angiogenesis occurs in early developing CL and programmed cell death occurred in the late stage of CL assessment in the present study. Structures and quantiles of steroidogenic organelles are correlated with the steroidogenic functions in goats. Copyright © 2016 Elsevier B.V. All rights reserved.
Skuja, Sandra; Zieda, Anete; Ravina, Kristine; Chapenko, Svetlana; Roga, Silvija; Teteris, Ojars; Groma, Valerija; Murovska, Modra
2017-01-01
Structural and ultrastructural alterations in human olfactory pathways and putative associations with human herpesvirus 6 (HHV-6) infection were studied. The olfactory bulb/tract samples from 20 subjects with an unspecified encephalopathy determined by pathomorphological examination of the brain autopsy, 17 healthy age-matched and 16 younger controls were used. HHV-6 DNA was detected in 60, 29, and 19% of cases in these groups, respectively. In the whole encephalopathy group, significantly more HHV-6 positive neurons and oligodendrocytes were found in the gray matter, whereas, significantly more HHV-6 positive astrocytes, oligodendrocytes, microglia/macrophages and endothelial cells were found in the white matter. Additionally, significantly more HHV-6 positive astrocytes and, in particular, oligodendrocytes were found in the white matter when compared to the gray matter. Furthermore, when only HHV-6 PCR+ encephalopathy cases were studied, we observed similar but stronger associations between HHV-6 positive oligodendrocytes and CD68 positive cells in the white matter. Cellular alterations were additionally evidenced by anti-S100 immunostaining, demonstrating a significantly higher number of S100 positive cells in the gray matter of the whole encephalopathy group when compared to the young controls, and in the white matter when compared to both control groups. In spite the decreased S100 expression in the PCR+ encephalopathy group when compared to PCR- cases and controls, groups demonstrated significantly higher number of S100 positive cells in the white compared to the gray matter. Ultrastructural changes confirming the damage of myelin included irregularity of membranes and ballooning of paranodal loops. This study shows that among the cellular targets of the nervous system, HHV-6 most severely affects oligodendrocytes and the myelin made by them. PMID:28072884
Kinden, D A; Brown, M F
1975-12-01
Scanning- and transmission-electron microscopy were used to examine developing and mature functional arbuscules in mycorrhizal roots of yellow poplar. Arbuscules developed from intracellular hyphae which branched repeatedly upon penetration into the host cells. Intermediate and late stages of developemnt were characterized by the production of numerous, short, bifurcate hyphae throughout the arbuscule. Mature arbuscules exhibited a coralloid morphology which resulted in a considerable increase in the surface area of the endophyte exposed within the host cells. Distinctive ultrastructural features of arbuscular hyphae included osmiophilic walls, nuclei, abundant cytoplasm, glycogen, and numerous small vacuoles. All arbuscular components were enclosed by host wall material and cytoplasm during development and at maturity. In infected cells, host nuclei were enlarged and the cytoplasm associated with the arbuscular branches typically contained abundant mitochondria, endoplasmic reticulum, and proplastids. Ultrastructural observations suggested that nutrient transfer may be predominantly directed toward the fungal endophyte during arbuscular development and while mature arbuscules remain functional.
ElZarrad, M. Khair; Mukhopadhyay, Partha; Mohan, Nishant; Hao, Enkui; Dokmanovic, Milos; Hirsch, Dianne S.; Shen, Yi; Pacher, Pal; Wu, Wen Jin
2013-01-01
Treatment with trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of Human Epidermal Growth Factor Receptor 2 (HER2), very successfully improves outcomes for women with HER2-positive breast cancer. However, trastuzumab treatment was recently linked to potentially irreversible serious cardiotoxicity, the mechanisms of which are largely elusive. This study reports that trastuzumab significantly alters the expression of myocardial genes essential for DNA repair, cardiac and mitochondrial functions, which is associated with impaired left ventricular performance in mice coupled with significant ultrastructural alterations in cardiomyocytes revealed by electron microscopy. Furthermore, trastuzumab treatment also promotes oxidative stress and apoptosis in myocardium of mice, and elevates serum levels of cardiac troponin-I (cTnI) and cardiac myosin light chain-1 (cMLC1). The elevated serum levels of cMLC1 in mice treated with trastuzumab highlights the potential that cMLC1 could be a useful biomarker for trastuzumab-induced cardiotoxicity. PMID:24255707
ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)
NASA Astrophysics Data System (ADS)
Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim
2016-03-01
The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.
Cuenca, Nicolás; Fernández-Sánchez, Laura; McGill, Trevor J; Lu, Bin; Wang, Shaomei; Lund, Raymond; Huhn, Stephen; Capela, Alexandra
2013-10-15
Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor-bipolar-horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.
Chelidze, P V; Dzidziguri, D V; Zarandiia, M A; Georgobiani, N M; Tumanishvili, G D
1993-01-01
By means of stereological and morphometrical analysis, the ultrastructure of nucleoli in epitheliocytes of mouse kidney cortex proximal tubuli has been studied. In accordance to the nucleolar composition, three main groups of nephrocytes with different levels of rRNA and protein synthesis were defined. Functional heterogeneity of proximal tubuli epithelium was established by correlation between different variants of ultrastructural organization of nucleoli and the total RNA synthesis activity, determined by 3H-uridine incorporation intensity. It has been shown that a greater part of cells (about 52%) in the nephron proximal section, which is characterized by slow RNA synthesis, causing a low functional activity of these cells, presumably represents a reparative cellular reserve. Such cells, defined as the 1st group cells, have resting, ring-shaped nucleoli with one fibrillar centre, and nucleoli similar to the ring-shaped ones but containing 2-3 fibrillar centres. Nucleoli of the 2nd group of nephrocytes (about 37%), most actively incorporating labeled precursor, contain 4-6 fibrillar centres. Their structural organization is closer to the reticular type of nucleoli. The 3rd most actively labeled group of nephrocytes includes cells with typical reticulated nucleoli. The number of fibrillar centres in the reticulated nucleoli is much higher (18-22) than in the 1st and 2nd groups of nephrocytes. Structural and functional polymorphism of nephrocytes was revealed not only in the proximal part of one nephron. During the increase in functional activity of nephrocytes, caused by unilateral nephrectomy, the quantitative correlation between cells related to these different groups was seen to change. The number of cells of the 1st group decreased by 24%, whereas that in the 2nd and 3rd groups increased by 9 and 15%, respectively. Nucleoli with 2-3 fibrillar centres are considered as transitional forms between the inactive ring-shaped nucleoli and the active reticulated nucleoli. Differences in the ultrastructure of nucleoli may be considered as an evidence of functional heterogeneity of nephrocytes within the proximal segment of nephron.
Sreelekha, Kanapadinchareveetil; Chandrasekhar, Leena; Kartha, Harikumar S; Ravindran, Reghu; Juliet, Sanis; Ajithkumar, Karapparambu G; Nair, Suresh N; Ghosh, Srikanta
2017-11-30
The present study utilizes the ultrastructural analysis of the fully engorged female Rhipicephalus (Boophilus) annulatus ticks, as a tool to evaluate the cytotoxic potential of deltamethrin and amitraz on the germinative cells. The ultrastructural analysis of the ovary of the normal (untreated) R (B.) annulatus revealed, oocytes in different stages of development, attached to the ovary wall by pedicel cells. The attachment site of oocyte to the pedicel cell was characterized by indentations of the plasma membrane. The oocyte was bound by three cell membranes viz., plasma membrane, chorion and basal lamina. The stages of oocytes were differentiated ultrastructurally based on the features of their outer membrane and the number and size of lipid and yolk droplets. Detailed day wise analysis of ultrastructural changes in the ovary during the post-engorgement period revealed the occurrence of the degenerative changes from day five onwards. These appeared first in the oocytes followed by the germinal epithelium. The ovary of ticks treated with methanol (control), revealed similar topographies as that of a normal ovary except for the presence of very few oocytes with ring shaped nucleoli. Ultrastructurally, treatment with deltamethrin produced more prominent and extensive morphological alterations when compared to amitraz. In the case of ticks treated with amitraz, the oocytes of stage IV and V showed wavy and disrupted outer boundaries along with the loss of integrity of the yolk droplets. Uneven nuclear membranes of stage II oocytes and cristolysis of mitochondria of mature oocytes were the other changes noticed. Ticks treated with deltamethrin revealed prominent modifications such as, detachment of the basal lamina, wrinkled boundary, inconsistent nuclear membrane, ring shaped nucleoli and chromatin clumping in the case of the early stage oocytes (I and II), whereas swelling and cristolysis of mitochondria were seen in mature oocytes. The study further indicated that, in addition to the previous proven neurotoxic effects, these compounds act directly on the ovary of tick. Copyright © 2017 Elsevier B.V. All rights reserved.
Water pollution causes ultrastructural and functional damages in Pellia neesiana (Gottsche) Limpr.
Basile, Adriana; Sorbo, Sergio; Lentini, Marco; Conte, Barbara; Esposito, Sergio
2017-09-01
The aim of this work is to evaluate the effects of freshwater pollution in the heavily contaminated Sarno River (Campania, South Italy), using Pellia neesiana (Pelliaceae Metzgeriales) in order to propose this liverwort as a potential bioindicator, able to record the effects of water pollution, particularly the one related to metal (loid) contamination. Samples of P. neesiana in nylon bags were disposed floating for one week on the waters of Sarno River in three sites characterised by an increasing pollution. As control, some specimens were cultured in vitro in Cd- and Pb-added media, at the same pollutants' levels as measured in the most polluted site. P. neesiana cell ultrastructure was modified and severe alterations were observed in chloroplasts from samples exposed in the most polluted site, and Cd- and Pb-cultured samples. Concurrently, a strong increase in the occurrence of Heat shock proteins 70 (HSP70) was detected in gametophytes following the pollution gradient. In conclusion, ultrastructural damages can be directly related to HSP 70 occurrence in liverwort tissues, and proportional to the degree of pollution present in the river; thus our study suggests P. neesiana as an affordable bioindicator of freshwaters pollution. Copyright © 2016 Elsevier GmbH. All rights reserved.
[Effects of infrasound on ultrastructure of testis cell in mice].
Wei, Ya-Ning; Liu, Jing; Shu, Qing; Huang, Xiao-Feng; Chen, Jing-Zao
2002-01-01
To investigate the effects of infrasound on ultrastructure of testis in mouse. Twelve male BALB/C mice were randomly divided into three groups according to exposed duration on 1, 7 and 14 day. The mice were separately exposed to infrasound environment under 8 Hz/90 dB, 8 Hz/130 dB, 16 Hz/90 dB, 16 Hz/130 dB 2 hours per day. There was another control group which had three mice were separated into module with no infrasound. All the mice were killed on schedule. Then all the sections of testis were observed under electronic microscope. The alterations of structure and the chromatin were observed. Some acute alteration in one day group was found in testis cell, such as cellular denaturation and necrosis, intercellular edema, mitochondria swelling, liposome hyperplasia. When the infrasound was up to 8 Hz/130 dB, the damage showed seriously. In 7 and 14 day group, the acute alteration was gradually decreased. A plenty of abnormal sperm were found. And other alteration was chromatin condense. The effect of variational frequency was important in ultrastructure. The infrasound markedly effected to testicular cell morphology and secreting function. Infrasound will lead to the alteration of procreation in mouse.
USDA-ARS?s Scientific Manuscript database
An antiserum against Eimeria tenella sporozoites was used to localize and isolate Ag-binding cells in intestinal cecal tonsils of parasite-infected chickens. Based on their tissue localization, ultrastructural features, and expression of surface markers, two subpopulations of cells were isolated, C...
Correlation of two-photon in vivo imaging and FIB/SEM microscopy
Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J
2015-01-01
Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool to study the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing synapses that are the connections between neurons, and for this purpose, the electron microscopy is necessary. FIB/SEM microscopy is a novel tool for three-dimensional (3D) high resolution reconstructions since it acquires automated serial images at ultrastructural level. This correlative technique will open up new horizons and opportunities for unravelling the complexity of the nervous system. PMID:25786682
Turkmenoglu, F Pinar; Kasirga, U Baran; Celik, H Hamdi
2015-08-01
Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder involving progressive damage to the central and peripheral nervous systems and cardiomyopathy. FRDA is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. Skin disorders including hair abnormalities have previously been reported in patients with mitochondrial disorders. However, to our knowledge, ultra-structural hair alterations in FRDA were not demonstrated. The purpose of this study was to determine ultra-structural alterations in the hairs of FRDA patients as well as carriers. Hair specimen from four patients, who are in different stages of the disease, and two carriers were examined by scanning electron microscope. Thin and weak hair follicles with absence of homogeneities on the cuticular surface, local damages of the cuticular layer, cuticular fractures were detected in both carriers and patients, but these alterations were much more prominent in the hair follicles of patients. In addition, erosions on the surface of the cuticle and local deep cavities just under the cuticular level were observed only in patients. Indistinct cuticular pattern, pores on the cuticular surface, and presence of concavities on the hair follicle were also detected in patients in later stages of the disease. According to our results, progression of the disease increased the alterations on hair structure. We suggest that ultra-structural alterations observed in hair samples might be due to oxidative stress caused by deficient frataxin expression in mitochondria. © 2015 Wiley Periodicals, Inc.
Cytological and ultrastructural studies on root tissues
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Gaynor, J. J.; Galston, A. W.
1984-01-01
The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.
Revathi, Peranandam; Iyapparaj, Palanisamy; Vasanthi, Lourduraj Arockia; Munuswamy, Natesan; Krishnan, Muthukalingan
2014-10-01
The present investigation documents the impact of tributyltin (TBT) on the ultrastructural variation of spermatogenesis in freshwater prawn Macrobrachium rosenbergii. The environmentally realistic concentration of TBT can cause damages to the endocrine and reproductive physiology of crustaceans. In this context, three concentrations viz. 10, 100, and 1000 ng/L were selected and exposed to prawns for 90 days. The TBT exposed prawn exhibited decrease the reproductive activity as evidenced by sperm count and sperm length compared to control. Histopathological results revealed the retarded testicular development, abnormal structure of seminiferous tubule, decrease in the concentration of spermatozoa, diminution of seminiferous tubule membrane, abundance of spermatocytes and vacuolation in testis of treated prawns. Ultrastructural study also confirmed the impairment of spermatogenesis in treated prawns. Furthermore, radioimmunoassay (RIA) clearly documented the reduction of testosterone level in TBT exposed groups. Thus, TBT substantially reduced the level of male sex hormone as well as biochemical constituents which ultimately led to impairment of spermatogenesis in the freshwater male prawn M. rosenbergii. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.
Basile, Adriana; Loppi, Stefano; Piscopo, Marina; Paoli, Luca; Vannini, Andrea; Monaci, Fabrizio; Sorbo, Sergio; Lentini, Marco; Esposito, Sergio
2017-12-01
The liverwort Lunularia cruciata, known for being a species tolerant to pollution able to colonize urban areas, was collected in the town of Acerra (South Italy) to investigate the biological effects of air pollution in one of the three vertices of the so-called Italian Triangle of Death. The ultrastructural damages observed by transmission electron microscopy in specimens collected in Acerra were compared with samples collected in the city center of Naples and in a small rural site far from sources of air pollution (Riccia, Molise, Southern Italy). The biological response chain to air pollution was investigated considering vitality, photosynthetic efficiency, heat shock protein 70 (Hsp70) induction and gene expression levels, and chlorophyll degradation and related ultrastructural alterations. Particularly, a significant increment in Hsp70 expression and occurrence, and modifications in the chloroplasts' ultrastructure can be strictly related to the environmental pollution conditions in the three sites. The results could be interpreted in relation to the use of these parameters as biomarkers for environmental pollution.
Ultrastructural basis for the efficiency of an ileal orthotopic neobladder 27 years after surgery.
Orlandini, G; Guizzardi, S; Ferretti, S; Simonazzi, M; Bucci, G; Gatti, R
2002-01-01
The morphological and functional basis of the excellent clinical outcome of ileal orthotopic neobladders are largely unknown. Only long-term follow-up studies will provide an adequate answer to this unsettled question. We have studied a patient who underwent this type of surgery over 27 years ago. Besides an important secretive adaptation we have found, at the ultrastructural level, that the monolayered epithelium does not show signs of true metaplasia and that changes had occurred in the intercellular junctions, namely that desmosomes are significantly increased. Although limited to a single case, these features, if confirmed by further observations, suggest a working hypothesis for the understanding of the definitive phenotypic adaptation of the ileal epithelium to the new aggressive environment. Copyright 2002 S. Karger AG, Basel
Toxic effects of inhaled manganese on the olfactory bulb: an ultrastructural approach in mice.
Colin-Barenque, L; Souza-Gallardo, L M; Fortoul, T I
2011-01-01
Olfactory dysfunction is a common symptom reported by patients with neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Despite the knowledge gathered about the pathology of these diseases, little information has been generated regarding the ultrastructure modifications of the granule cells that regulate the information for odor identification. Swollen organelles and nuclear invaginations identified the exposed mice. Necrosis was evidenced at 4th week of exposure, whereas apoptosis arose at 8th week of exposure. A ruffled electron-dense membrane changes were also found. The changes observed could be explained by the reactive oxygen species generated by manganese and its effects on the membrane's structure and on the cytoskeleton's function. This study contributes to correlate metal air pollution and neurodegenerative changes with olfactory affection.
Porosity and test ultrastructure of costate and non-costate Bulimina species
NASA Astrophysics Data System (ADS)
Grunert, Patrick; Piller, Werner E.
2017-04-01
SEM-based investigations of porosity and test wall ultrastructure of Recent costate and non-costate Bulimina species reveal significant differences in pore diameter, pore density and ultrastructural architecture between these two groups. Costate tests of B. inflata and B. mexicana display low pore density, a large pore diameter, and test walls built by a single type of columnar ultrastructural elements. In contrast, non-costate tests of B. aculeata and B. marginata are characterized by significantly higher pore density, smaller pore diameter, and an additional type of ultrastructural elements formed by oblique, tabular crystallite units which encase the pore channels. We interpret the observed combination of traits in B. aculeata and B. marginata as a set of adaptations to poorly oxygenated, intermediate to deep infaunal microhabitats which they typically occupy today. The evolutionary trend towards increased pore density in this group seemingly involved a major modification of the biomineralisation process resulting in the lining of pore channels with a specific type of ultrastructural element to ensure stability of the densely perforated test.
Accuracy of Immunofluorescence in the Diagnosis of Primary Ciliary Dyskinesia
Frost, Emily; Dixon, Mellisa; Ollosson, Sarah; Kilpin, Kate; Patel, Mitali; Scully, Juliet; Rogers, Andrew V.; Mitchison, Hannah M.; Bush, Andrew; Hogg, Claire
2017-01-01
Rationale: The standard approach to diagnosis of primary ciliary dyskinesia (PCD) in the United Kingdom consists of assessing ciliary function by high-speed microscopy and ultrastructure by election microscopy, but equipment and expertise is not widely available internationally. The identification of biallelic disease-causing mutations is also diagnostic, but many disease-causing genes are unknown, and testing is not widely available outside the United States. Fluorescent antibodies to ciliary proteins are used to validate research genetic studies, but diagnostic utility in this disease has not been systematically evaluated. Objectives: To determine utility of a panel of six fluorescent labeled antibodies as a diagnostic tool for PCD. Methods: The study used immunofluorescent labeling of nasal brushings from a discovery cohort of 35 patients diagnosed with PCD by ciliary ultrastructure, and a diagnostic accuracy cohort of 386 patients referred with symptoms suggestive of disease. The results were compared with diagnostic outcome. Measurements and Main Results: Immunofluorescence correctly identified mislocalized or absent staining in 100% of the discovery cohort. In the diagnostic cohort immunofluorescence successfully identified 22 of 25 patients with PCD and normal staining in all 252 in whom PCD was considered highly unlikely. In addition, immunofluorescence provided a result in 55% (39) of cases that were previously inconclusive. Immunofluorescence results were available within 14 days, costing $187 per sample compared with electron microscopy (27 days; cost $1,452). Conclusions: Immunofluorescence is a highly specific diagnostic test for PCD, and it improves the speed and availability of diagnostic testing. However, sensitivity is limited and immunofluorescence is not suitable as a stand-alone test. PMID:28199173
Garcés, M; Ulloa, M; Miranda, A; Bravo, L A
2018-03-01
The filmy fern Hymenophyllum caudiculatum can lose 60% of its relative water content, remain dry for some time and recover 88% of photochemical efficiency after 30 min of rehydration. Little is known about the protective strategies and regulation of the cellular rehydration process in this filmy fern species. The aim of this study was to characterise the filmy fern ultrastructure during a desiccation-rehydration cycle, and measure the physiological effects of transcription/translation inhibitors and ABA during desiccation recovery. Confocal and transmission electron microscopy were used to compare changes in structure during fast or slow desiccation. Transcription (actinomycin D) and translation (cycloheximide) inhibitors and ABA were used to compare photochemical efficiency during desiccation recovery. Cell structure was conserved during slow desiccation and rehydration, constitutive properties of the cell wall, allowing invagination and folding of the membranes and an important change in chloroplast size. The use of a translational inhibitor impeded recovery of photochemical efficiency during the first 80 min of rehydration, but the transcriptional inhibitor had no effect. Exogenous ABA delayed photochemical inactivation, and endogenous ABA levels decreased during desiccation and rehydration. Frond curling and chloroplast movements are possible strategies to avoid photodamage. Constitutive membrane plasticity and rapid cellular repair can be adaptations evolved to tolerate a rapid recovery during rehydration. Further research is required to explore the importance of existing mRNAs during the first minutes of recovery, and ABA function during desiccation of H. caudiculatum. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Morphofunctional changes underlying intestinal dysmotility in diabetic RIP-I/hIFNβ transgenic mice
Domènech, Anna; Pasquinelli, Gianandrea; De Giorgio, Roberto; Gori, Alessandra; Bosch, Fàtima; Pumarola, Martí; Jiménez, Marcel
2011-01-01
The pathogenetic mechanisms underlying gastrointestinal dysmotility in diabetic patients remain poorly understood, although enteric neuropathy, damage to interstitial cells of Cajal (ICC) and smooth muscle cell injury are believed to play a role. The aim of this study was to investigate the morphological and functional changes underlying intestinal dysmotility in RIP-I/hIFNβ transgenic mice treated with multiple very low doses of streptozotocin (20 mg/kg, i.p., 5 days). Compared with vehicle-treated mice, streptozotocin-treated animals developed type 1 diabetes mellitus, with sustained hyperglycaemia for 3.5 months, polyphagia, polydipsia and increased faecal output without changes in faecal water content (metabolic cages). Diabetic mice had a longer intestine, longer ileal villi and wider colonic crypts (conventional microscopy) and displayed faster gastric emptying and intestinal transit. Contractility studies showed selective impaired neurotransmission in the ileum and mid-colon of diabetic mice. Compared with controls, the ileal and colonic myenteric plexus of diabetic mice revealed ultrastructural features of neuronal degeneration and HuD immunohistochemistry on whole-mount preparations showed 15% reduction in neuronal numbers. However, no immunohistochemical changes in apoptosis-related markers were noted. Lower absolute numbers of neuronal nitric oxide synthase- and choline acetyltransferase-immunopositive neurons and enhanced vasoactive intestinal polypeptide and substance P immunopositivity were observed. Ultrastructural and immunohistochemical analyses did not reveal changes in the enteric glial or ICC networks. In conclusion, this model of diabetic enteropathy shows enhanced intestinal transit associated with intestinal remodelling, including neuroplastic changes, and overt myenteric neuropathy. Such abnormalities are likely to reflect neuroadaptive and neuropathological changes occurring in this diabetic model. PMID:22050417
Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A
2017-04-01
To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.
USDA-ARS?s Scientific Manuscript database
The paired palatine tonsils are located at the junction of the nasopharynx and oropharynx; ideally positioned to sample antigens entering through either the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular and functional composi...
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...
Effects of Repeated Traumatic Brain Injuries in a Combat Setting
2011-12-01
Metabolism, 30(2), 255-266. Cernak, I., Savic , J., Malicevic, Z., Zunic, G., Radosevic, P., Ivanovic, I., et al. (1996). Involvement of the central...Bian, X., & Savic , J. (2001). Ultrastructural and functional characteristics of blast injury-induced neurotrauma. The Journal of trauma, 50(4), 695-706
Neural network detected in a presumed vestigial trait: ultrastructure of the salmonid adipose fin
Buckland-Nicks, J. A.; Gillis, M.; Reimchen, T. E.
2012-01-01
A wide variety of rudimentary and apparently non-functional traits have persisted over extended evolutionary time. Recent evidence has shown that some of these traits may be maintained as a result of developmental constraints or neutral energetic cost, but for others their true function was not recognized. The adipose fin is small, fleshy, non-rayed and located between the dorsal and caudal fins on eight orders of basal teleosts and has traditionally been regarded as vestigial without clear function. We describe here the ultrastructure of the adipose fin and for the first time, to our knowledge, present evidence of extensive nervous tissue, as well as an unusual subdermal complex of interconnected astrocyte-like cells equipped with primary cilia. The fin contains neither adipose tissue nor fin rays. Many fusiform actinotrichia, comprising dense striated macrofibrils, support the free edge and connect with collagen cables that link the two sides. These results are consistent with a recent hypothesis that the adipose fin may act as a precaudal flow sensor, where its removal can be detrimental to swimming efficiency in turbulent water. Our findings provide insight to the broader themes of function versus constraints in evolutionary biology and may have significance for fisheries science, as the adipose fin is routinely removed from millions of salmonids each year. PMID:21733904
Ultrastructural evaluation of explanted opacified Hydroview (H60M) intraocular lenses
Cartwright, Nathaniel E Knox; Mayer, Eric J; McDonald, Brendan M; Skinner, Andrew; Salter, Chris J; Tole, Derek M; Sparrow, John M; Dick, Andrew D; Group, The Bristol IOL Study; Ferguson, David J P
2007-01-01
Aim To describe the ultrastructural appearance of explanted opacified Hydroview H60M intraocular lenses. Methods 14 explanted lenses were examined by scanning electron microscopy, and their appearance compared with a non‐implanted H60M lens from the same time period. Wavelength‐dispersive x ray spectroscopy (WDX) was performed on two opacified lenses. Results Subsurface deposits were seen in all explanted opacified lenses. These deposits broke only onto the surface of more densely opacified lenses. WDX confirmed that the deposits contained both calcium and phosphorous, consistent with their being calcium apatite. Conclusion These findings challenge the widely accepted opinion that H60M intraocular lens opacification begins on the surface of the optic. PMID:16987894
The ultrastructure of cerebral blood capillaries in the ratfish, Chimaera monstrosa.
Bundgaard, M
1982-01-01
Sharks and skates (Chondrichthyes: Elasmobranchii) have a glial blood-brain barrier, while all other vertebrates examined so far have an endothelial barrier. For comparative reasons it is desirable to examine the blood-brain barrier in species from the other subclass of cartilaginous fish, the holocephalans. The ultrastructure of cerebral capillaries in the chimaera (Chondrichthyes: Holocephali) is described in the present study. The endothelial cells are remarkably thick. Fenestrae and transendothelial channels were not observed. The endothelial cells are joined by elaborate tight junctions. The perivascular glial processes are separated by wide spaces (15-60 nm) without obliterating junctional complexes. These findings indicate that the chimaera has an endothelial blood-brain barrier.
Comparative ultrastructure of the cuticle of trichostrongyle nematodes.
Beveridge, I; Durette-Desset, M C
1994-09-01
The ultrastructure of the cuticle was examined in Austrostrongylus victoriensis, Patricialina birdi and Woolleya monodelphis (Herpetostrongylidae) from marsupials, Paraustrostrongylus ratti (Herpetostrongylidae) from rodents, Nippostrongylus magnus and Odilia bainae (Heligmonellidae) from rodents, Cooperia oncophora and Camelostrongylus mentulatus (Trichostrongylidae) from ruminants, and Nematodirus spathiger (Molineidae) from ruminants. The principal cuticular layers described previously were present in all species investigated. Major differences in the shape and composition of cuticular struts were observed as well as differences in components of the median zone of the cuticle, including the fluid-filled regions present in several species. Several different types of strut were observed. Although strut structure within the Heligmonellidae appeared to be constant, there were variations within both the Herpetostrongylidae and Trichostrongylidae. In Nem. spathiger the cuticular ridges lacked struts. The diversity of structures found in the species examined suggests that more extensive comparative studies of the trichostrongyle cuticle are warranted.
Wharton's Jelly Derived Mesenchymal Stem Cells: Comparing Human and Horse.
Merlo, Barbara; Teti, Gabriella; Mazzotti, Eleonora; Ingrà, Laura; Salvatore, Viviana; Buzzi, Marina; Cerqueni, Giorgia; Dicarlo, Manuela; Lanci, Aliai; Castagnetti, Carolina; Iacono, Eleonora
2018-08-01
Wharton's jelly (WJ) is an important source of mesenchymal stem cells (MSCs) both in human and other animals. The aim of this study was to compare human and equine WJMSCs. Human and equine WJMSCs were isolated and cultured using the same protocols and culture media. Cells were characterized by analysing morphology, growth rate, migration and adhesion capability, immunophenotype, differentiation potential and ultrastructure. Results showed that human and equine WJMSCs have similar ultrastructural details connected with intense synthetic and metabolic activity, but differ in growth, migration, adhesion capability and differentiation potential. In fact, at the scratch assay and transwell migration assay, the migration ability of human WJMSCs was higher (P < 0.05) than that of equine cells, while the volume of spheroids obtained after 48 h of culture in hanging drop was larger than the volume of equine ones (P < 0.05), demonstrating a lower cell adhesion ability. This can also revealed in the lower doubling time of equine cells (3.5 ± 2.4 days) as compared to human (6.5 ± 4.3 days) (P < 0.05), and subsequently in the higher number of cell doubling after 44 days of culture observed for the equine (20.3 ± 1.7) as compared to human cells (8.7 ± 2.4) (P < 0.05), and to the higher (P < 0.05) ability to form fibroblast colonies at P3. Even if in both species tri-lineage differentiation was achieved, equine cells showed an higher chondrogenic and osteogenic differentiation ability (P < 0.05). Our findings indicate that, although the ultrastructure demonstrated a staminal phenotype in human and equine WJMSCs, they showed different properties reflecting the different sources of MSCs.
Successful slush nitrogen vitrification of human ovarian tissue.
Talevi, Riccardo; Barbato, Vincenza; Fiorentino, Ilaria; Braun, Sabrina; De Stefano, Cristofaro; Ferraro, Raffaele; Sudhakaran, Sam; Gualtieri, Roberto
2016-06-01
To study whether slush nitrogen vitrification improves the preservation of human ovarian tissue. Control vs. treatment study. University research laboratory. Ovarian biopsies collected from nine women (aged 14-35 years) during laparoscopic surgery for benign gynecologic conditions. None. Ovarian cortical strips of 2 × 5 × 1 mm were vitrified with liquid or slush nitrogen. Fresh and vitrified cortical strips were analyzed for cryodamage and viability under light, confocal, and transmission electron microscopy. Compared with liquid nitrogen, vitrification with slush nitrogen preserves [1] follicle quality (grade 1 follicles: fresh control, 50%; liquid nitrogen, 27%; slush nitrogen, 48%); [2] granulosa cell ultrastructure (intact cells: fresh control, 92%; liquid nitrogen, 45%; slush nitrogen, 73%), stromal cell ultrastructure (intact cells: fresh control, 59.8%; liquid nitrogen, 24%; slush nitrogen, 48.7%), and DNA integrity (TUNEL-positive cells: fresh control, 0.5%; liquid nitrogen, 2.3%; slush nitrogen, 0.4%); and [3] oocyte, granulosa, and stromal cell viability (oocyte: fresh control, 90%; liquid nitrogen, 63%; slush nitrogen, 87%; granulosa cells: fresh control, 93%; liquid nitrogen, 53%; slush nitrogen, 81%; stromal cells: fresh control, 63%; liquid nitrogen, 30%; slush nitrogen, 52%). The histology, ultrastructure, and viability of follicles and stromal cells are better preserved after vitrification with slush nitrogen compared with liquid nitrogen. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Fluoride-associated ultrastructural changes and apoptosis in human renal tubule: a pilot study.
Quadri, J A; Sarwar, S; Sinha, A; Kalaivani, M; Dinda, A K; Bagga, A; Roy, T S; Das, T K; Shariff, A
2018-01-01
The susceptibility of the kidneys to fluoride toxicity can largely be attributed to its anatomy and function. As the filtrate moves along the complex tubular structure of each nephron, it is concentrated in the proximal and distal tubules and collecting duct. It has been frequently observed that the children suffering from renal impairments also have some symptoms of dental and skeletal fluorosis. The findings suggest that fluoride somehow interferes with renal anatomy and physiology, which may lead to renal pathogenesis. The aim of this study was to evaluate the fluoride-associated nephrotoxicity. A total of 156 patients with childhood nephrotic syndrome were screened and it was observed that 32 of them had significantly high levels ( p ≤ 0.05) of fluoride in urine (4.01 ± 1.83 ppm) and serum (0.1 ± 0.013 ppm). On the basis of urinary fluoride concentration, patients were divided into two groups, namely group 1 (G-1) ( n = 32) containing normal urine fluoride (0.61 ± 0.17 ppm) and group 2 (G-2) ( n = 32) having high urine fluoride concentration (4.01 ± 1.83 ppm). Age-matched healthy subjects ( n = 33) having normal levels of urinary fluoride (0.56 ± 0.15 ppm) were included in the study as control (group 0 (G-0)). Kidney biopsies were taken from G-1 and G-2 only, who were subjected to ultrastructural (transmission electron microscopy) and apoptotic (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling) analysis. Various subcellular ultrastructural changes including nuclear disintegration, chromosome condensation, cytoplasmic ground substance lysis, and endoplasmic reticulum blebbing were observed. Increased levels of apoptosis were observed in high fluoride group (G-2) compared to normal fluoride group (G-1). Various degrees of fluoride-associated damages to the architecture of tubular epithelia, such as cell swelling and lysis, cytoplasmic vacuolation, nuclear condensation, apoptosis, and necrosis, were observed.
Ultrastructural researches on rabbit myxomatosis. Lymphnodal lesions.
Marcato, P S; Simoni, P
1977-07-01
Ultrastructural examination of head and neck lymph nodes in rabbits with spontaneous subacute myxomatosis showed fusion of immature reticuloendothelial cells which lead to the formation of polykarocytes. There was no ultrastructural evidence of viral infection of these polykaryocytes. Histiosyncytial lymphadenitis can be considered a specific lesion of myxomatosis.
Shahid, Muhammad; Wang, Jianfang; Gu, Xiaolong; Chen, Wei; Ali, Tariq; Gao, Jian; Han, Dandan; Yang, Rui; Fanning, Séamus; Han, Bo
2017-01-01
Prototheca zopfii infections are becoming global concerns in humans and animals. Bovine protothecal mastitis is characterized by deteriorating milk quality and quantity, thus imparting huge economic losses to dairy industry. Previous published studies mostly focused on the prevalence and characterization of P. zopfii from mastitis. However, the ultrastructural pathomorphological changes associated with apoptosis in bovine mammary epithelial cells (bMECs) are not studied yet. Therefore, in this study we aimed to evaluate the in vitro comparative apoptotic potential of P. zopfii genotype-I and -II on bMECs using flow cytometry, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed fast growth rate and higher adhesion capability of genotype-II in bMECs as compared with genotype-I. The viability of bMECs infected with P. zopfii genotype-II was significantly decreased after 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control cells. Contrary, genotype-I couldn't show any significant effects on cell viability. Moreover, after infection of bMECs with genotype-II, the apoptosis increased significantly at 12 h (p < 0.05) and 24 h (p < 0.01) as compared with control group. Genotype-I couldn't display any significant effects on cell apoptosis. The host specificity of P. zopfii was also tested in mouse osteoblast cells, and the results suggest that genotype-I and -II could not cause any significant apoptosis in these cell lines. SEM interpreted the pathomorphological alterations in bMECs after infection. Adhesion of P. zopfii with cells and further disruption of cytomembrane validated the apoptosis caused by genotype-II under SEM. While genotype-1 couldn't cause any significant apoptosis in bMECs. Furthermore, genotype-II induced apoptotic manifested specific ultrastructure features, like cytoplasmic cavitation, swollen mitochondria, pyknosis, cytomembrane disruption, and appearance of apoptotic bodies under TEM. The findings of the current study revealed that genotype-II has the capability to invade and survive within the bMECs, thus imparting significant damages to the mammary cells which result in apoptosis. This study represents the first insights into the pathomorphological and ultrastructure features of apoptosis in bMECs induced by P. zopfii genotype-II. PMID:28752077
[Cellphone electromagnetic radiation damages the testicular ultrastructure of male rats].
Gao, Xiao-Hui; Hu, Hui-Rong; Ma, Xue-Lian; Chen, Jie; Zhang, Guo-Hong
2016-06-01
To investigate the influence of cellphone electromagnetic radiation (CER) on the testicular ultrastructure and the apoptosis of spermatogenic cells in male rats.atability, feasibility, applicability, and controllability in the construction of experimental animal models, we compared the major anatomic features of the penis of 20 adult beagle dogs with those of 10 adult men. Using microsurgical techniques, we performed cross-transplantation of the penis in the 20 (10 pairs) beagle dogs and observed the survival rate of the transplanted penises by FK506+MMF+MP immune induction. We compared the relevant indexes with those of the 10 cases of microsurgical replantation of the amputated penis. Thirty adult male SD rats were equally randomized into a 2 h CER, a 4 h CER, and a normal control group, the former two groups exposed to 30 days of 900 MHz CER for 2 and 4 hours a day, respectively, while the latter left untreated. Then the changes in the ultrastructure of the testis tissue were observed under the transmission electron microscope and the apoptosis of the spermatogenic cells was determined by TUNEL. Compared with the normal controls, the rats of the 2 h CER group showed swollen basement membrane of seminiferous tubules, separated tight junction of Sertoli cells, increased cell intervals, apparent vacuoles and medullization in some mitochondria, and increased apoptosis of spermatogenic cells, mainly the apoptosis of primary spermatocytes (P<0.05 ). In comparison with the 2 h CER group, the animals of the 4 h CER group exhibited swollen basement membrane of seminiferous tubules, more separated tight junction of Sertoli cells, wider cell intervals, incomplete membrane of spermatogonial cells, fragments of cytoplasm, nuclear pyknosis and notch, slight dilation of perinuclear space, abnormalities of intracellular mitochondria with vacuoles, fuzzy structure, and fusion or disappearance of some cristae, and increased damage of mitochondria and apoptosis of spermatogenic cells, including the apoptosis of spermatogonial cells, primary spermatocytes, and secondary spermatocytes (P<0.05 ). CER can damage the testicular ultrastructure and increase the apoptosis of spermatogenic cells of the male rat in a time-dependent manner, and the apoptosis of spermatogenic cells may be associated with the damage to mitochondria.
MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.
Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y
2016-01-01
Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.
Yi, Bin; Wu, Cong; Shi, Runjie; Han, Kun; Sheng, Haibin; Li, Bei; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao
2018-01-01
Hypothesis: We investigated whether salicylate induces tinnitus through alteration of the expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, tyrosine kinase receptor B (TrkB), cAMP-responsive element-binding protein (CREB), and phosphorylated CREB (p-CREB) in the auditory cortex (AC). Background: Salicylate medication is frequently used for long-term treatment in clinical settings, but it may cause reversible tinnitus. Salicylate-induced tinnitus is associated with changes related to central auditory neuroplasticity. Our previous studies revealed enhanced neural activity and ultrastructural synaptic changes in the central auditory system after long-term salicylate administration. However, the underlying mechanisms remained unclear. Methods: Salicylate-induced tinnitus-like behavior in rats was confirmed using gap prepulse inhibition of acoustic startle and prepulse inhibition testing, followed by comparison of the expression levels of BDNF, proBDNF, TrkB, CREB, and p-CREB. Synaptic ultrastructure was observed under a transmission electron microscope. Results: BDNF and p-CREB were upregulated along with ultrastructural changes at the synapses in the AC of rats treated chronically with salicylate (p < 0.05, compared with control group). These changes returned to normal after 14 days of recovery (p > 0.05). Conclusion: Long-term administration of salicylate increased BDNF expression and CREB activation, upregulated synaptic efficacy, and changed synaptic ultrastructure in the AC. There may be a relationship between these factors and the mechanism of tinnitus. PMID:29342042
Chen, Juan; Duan, Baoli; Xu, Gang; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang
2016-11-01
Although increasing attention has been paid to plant adaptation to soil heavy metal contamination, competition and neighbor effects have been largely overlooked, especially in dioecious plants. In this study, we investigated growth as well as biochemical and ultrastructural responses of Populus cathayana Rehder females and males to cadmium (Cd) stress under different sexual competition patterns. The results showed that competition significantly affects biomass partitioning, photosynthetic capacity, leaf and root ultrastructure, Cd accumulation, the contents of polyphenols, and structural and nonstructural carbohydrates. Compared with single-sex cultivation, plants of opposite sexes exposed to sexual competition accumulated more Cd in tissues and their growth was more strongly inhibited, indicating enhanced Cd toxicity under sexual competition. Under intrasexual competition, females showed greater Cd accumulation, more serious damage at the ultrastructural level and greater reduction in physiological activity than under intersexual competition, while males performed better under intrasexual competition than under intersexual competition. Males improved the female microenvironment by greater Cd uptake and lower resource consumption under intersexual competition. These results demonstrate that the sex of neighbor plants and competition affect sexual differences in growth and in key physiological processes under Cd stress. The asymmetry of sexual competition highlighted here might regulate population structure, and spatial segregation and phytoremediation potential of both sexes in P. cathayana growing in heavy metal-contaminated soils. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Blue nevi of the Müllerian tract: case series and review of the literature.
Craddock, Kenneth J; Bandarchi, Bizhan; Khalifa, Mahmoud A
2007-10-01
Blue nevi are rare in the cervix and vagina. Melanocytes are not normally found in these sites and have been hypothesized to arise either from the Schwann cells of stromal nerves or from melanocytic precursors which have aberrantly migrated from the neural crest to rest in the Müllerian stroma. Because of their rarity (3 previous cases in the literature), vaginal blue nevi have not previously been studied with immunohistochemical and ultrastructural analysis. We describe 3 cases of blue nevus occurring in the Müllerian tract, 1 in the vagina and 2 in the endocervix. The vaginal lesion was seen during routine examination of a 40-year-old woman. The endocervical blue nevi were incidental findings in hysterectomies performed for leiomyomata and endometrial serous carcinoma in women aged 44 and 57 years, respectively. All 3 cases showed loose aggregates of cytologically benign, pigmented, dendritic spindle cells in the superficial stroma. They were immunoreactive for S100 and melan-A, but not HMB45. Ultrastructural analysis revealed numerous melanosomes, with no Schwannian features identified. Compared with the endocervical lesions, the vaginal nevus cells were more heavily pigmented, and on electron microscopy, a greater proportion of stage IV melanosomes were seen. We provide the first immunohistochemical and ultrastructural findings in a vaginal blue nevus, which confirm that it is of a similar nature to the endocervical blue nevi. Ultrastructurally, our results support a melanocytic rather than Schwannian origin for Müllerian blue nevi.
Camargo, Tavani Rocha; Rossi, Natalia; Castilho, Antonio L; Costa, Rogério C; Mantelatto, Fernando L; Zara, Fernando José
2017-07-01
We describe the sperm ultrastructure of six penaeid species, including at least one member of each tribe (Penaeini, Parapenaeini and Trachypenaeini). Fragments of the vas deferens of the Penaeidae Farfantepenaeus brasiliensis, Farfantepenaeus paulensis, Litopenaeus schmitti, Parapenaeus americanus, Rimapenaeus constrictus and Xiphopenaeus kroyeri were fixed and processed according to the routine for transmission electron microscopy. The morphological results were contextualized in an evolutionary perspective using molecular markers for the phylogenetic reconstruction of this group. A phylogram was proposed by Bayesian inference based on 1007 bp of 33 sequences of the combined genes (16S rDNA and COI mtDNA) from 27 dendrobranchiate specimens. Our findings show that morphological differences in the sperm ultrastructures of members among the tribes of Penaeidae can be used as a baseline to understand their evolutionary relationships. Individuals from the Penaeini tribe show plesiomorphic characteristics in the sperm ultrastructure compared to the Trachypenaeini tribe from which they were derived, such as shrimp from family Sicyoniidae. The morphological complexity of the sperm of the different penaeid members corroborated with the genetic phylogeny, which showed different clades for each tribe and the close relationship with Sicyoniidae. The sperm features of the selected species studied here reflected their evolutionary history. These features confirm the previous phylogenetic hypothesis and question the monophyly of Penaeidae, which should be verified in the future with a more complete set of representative members of each tribe. Copyright © 2017 Elsevier Ltd. All rights reserved.
CADASIL: Ultrastructural insights into the morphology of granular osmiophilic material.
Lorenzi, Teresa; Ragno, Michele; Paolinelli, Francesca; Castellucci, Clara; Scarpelli, Marina; Morroni, Manrico
2017-03-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary systemic vascular disorder. Granular osmiophilic material (GOM) is its ultrastructural marker. We reviewed tissue biopsies from CADASIL patients to establish whether ultrastructural observations help clarify the pathogenic mechanism of CADASIL. Given the resemblance of the GOM deposits to the immunoglobulin deposits seen in glomerulonephritis and focal segmental glomerulosclerosis (FSGS), their morphologies were investigated and compared. Skin, skeletal muscle, kidney, and pericardium tissue biopsies from 13 patients with a clinical and molecular diagnosis of CADASIL, and kidney biopsies from five patients with IgA nephropathy and five patients with primary FSGS were subjected to ultrastructural examination. In CADASIL patients, several GOM deposits from all sites were partially or totally surrounded by an electron-lucent halo. The deposits frequently had a more electron-dense portion with a regular outline on the inner side and a less osmiophilic, looser outer side displaying a less regular profile. The uniformly dense deposits tended to be more osmiophilic if located close to the cell membrane and less osmiophilic if laid farther away from it. The immunoglobulin deposits from the glomerulonephritis and FSGS patients lacked both the granular pattern and the halo. This study demonstrates that GOM deposits may have a nonuniform morphology and describes in detail an electron-lucent halo surrounding several of them. It is conceivable that the halo is the morphological evidence and possibly the cause of an aberrant NOTCH3 processing, already suspected to be involved in CADASIL.
Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer
2014-04-01
The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.
Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan
2015-11-01
Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heterogeneity of acute myeloblastic leukemia without maturation: an ultrastructural study.
Hamamoto, K; Date, M; Taniguchi, H; Nagano, T; Kishimoto, Y; Kimura, T; Fukuhara, S
1995-01-01
We demonstrated by ultrastructural examination that the leukemic blasts of 13 patients with acute myeloblastic leukemia (AML) without maturation (M1 in the French-American-British classification) showed heterogeneous features. In 7 patients, the leukemic blasts had a high level of light microscopic myeloperoxidase positivity (> 50%). Ultrastructurally, the cells were myeloblast-promyelocytes with 100% myeloperoxidase positivity, and these 7 patients appeared to have typical AML. In contrast, the remaining 6 patients had leukemic blasts with a low myeloperoxidase positivity (< 50%) and heterogeneous features. Three had ultrastructural features of myelomonocytic or monocytic lineage, 1 had myelomonocytic cells associated with megakaryoblasts, and 1 had undifferentiated blasts. The former group had a better prognosis than the latter, indicating that ultrastructural analysis of M1 leukemia may help predict the response to therapy.
Zhang, Delu; Liu, Siyi; Zhang, Jing; Zhang, Jian Kong; Hu, Chunxiang; Liu, Yongding
2016-08-01
Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na(+)-K(+)-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish gills. The observed abnormalities in zebrafish gills occurred in a time- and dose-dependent manner. These findings demonstrate that aphantoxins or PSPs may inhibit ion transport and gas exchange, increase LDH activity, and result in ultrastructural damage to the gills through elevations in oxidative stress and reduced antioxidant capacity. These effects of aphantoxins in the gills of zebrafish suggest an induction of respiratory toxicity. The parameters investigated in this study may be also considered as biomarkers for studying aphantoxin/PSP exposure and cyanobacterial blooms in nature. Copyright © 2016 Elsevier B.V. All rights reserved.
Peruquetti, Rita Luiza; Taboga, Sebastião Roberto; Santos, Lia Raquel de Souza; Oliveira, Classius de; Azeredo-Oliveira, Maria Tercília Vilela de
2011-01-01
The goals of this study were to monitor the nucleolar material distribution during Dendropsophus minutus spermatogenesis using cytological and cytochemical techniques and ultrastructural analysis, as well as to compare the nucleolar material distribution to the formation of the chromatoid body (CB) in the germ epithelium of this amphibian species. Nucleolar fragmentation occurred during the pachytene of prophase I and nucleolus reorganization occurred in the early spermatid nucleus. The area of the spermatogonia nucleolus was significantly larger than that of the earlier spermatid nucleolus. Ultrastructural analysis showed an accumulation of nuages in the spermatogonia cytoplasm, which form the CB before nucleolar fragmentation. The CB was observed in association with mitochondrial clusters in the cytoplasm of primary spermatocytes, as well as in those of earlier spermatids. In conclusion, the nucleolus seems to be related to CB formation during spermatogenesis of D. minutus, because, at the moment of nucleolus fragmentation in the primary spermatocytes, the CB area reaches a considerable size and is able to execute its important functions during spermatogenesis. The reorganized nucleolus of the earlier spermatids has a smaller area due to several factors, among them the probable migration of nucleolar fragments from the nucleus to the cytoplasm, and plays a part in the CB chemical composition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhang, Y C; Baldwin, J G
2000-01-01
The ultrastructure of the post-corpus of Zeldia punctata (Cephalobina) was compared with previous observations of Caenorhabditis elegans (Rhabditina) and Diplenteron sp. (Diplogastrina) with the goal of interpreting the morphological evolution of the feeding structures in the Secernentea. The post-corpus of Z. punctata consists of six marginal, 13 muscle, five gland and seven nerve cells. The most anterior of four layers of muscle cells consists of six mononucleate cells in Z. punctata. The homologous layer in C. elegans and Diplenteron consists of three binucleate cells, suggesting a unique derived character (synapomorphy) shared between the Rhabditina and Diplogastrina. Contrary to Diplenteron sp. where we observed three oesophageal glands, Z. punctata and C. elegans have five oesophageal glands. We question this shared character as reflecting a common evolution between the Cephalobina and Rhabditina, because there are strong arguments for functional (adaptive) convergence of the five glands in these bacterial feeders. Convergence is further suggested by the mosaic distribution of three versus five glands throughout the Nemata; this distribution creates difficulties in establishing character polarity. Although morphological data are often laborious to recover and interpret, we nevertheless view 'reciprocal illumination' between molecular and morphological characters as the most promising and robust process for reconstructing the evolution of the Secernentea and its feeding structures. PMID:10902689
Komitopoulou, Katia; Gans, Madeleine; Margaritis, Lukas H.; Kafatos, Fotis C.; Masson, Michele
1983-01-01
To study genes that function mainly or exclusively during oogenesis, we have isolated and analyzed female-sterile mutations, with special emphasis on those that affect eggshell formation. Following treatment that induced 61 to 66% lethals, 8.1% of the 1071 X chromosomes tested carried recessive female sterility mutations (87 isolates), and 8.0% carried partial female-sterile mutations (86 isolates), respectively. In addition, three dominant female steriles were recovered. Some of the mutants had very low fecundity, and others laid morphologically normal eggs that failed to develop. A third category included 29 mutants that laid eggs with morphological abnormalities: 26 were female steriles, two were partial female steriles and one was fertile. Mutants of this third category were characterized in some detail and compared with 40 previously isolated mutants that laid similarly abnormal eggs. Approximately 28–31 complementation groups with morphological abnormalities were detected, some of which were large allelic series (11, 9, 7, 6 and 5 alleles). Twenty-four groups were mapped genetically or cytogenetically, and 21 were partially characterized by ultrastructural and biochemical procedures. Of the latter, one group showed clear deficiency of yolk proteins, and nine showed prominent ultrastructural defects in the chorion (at least eight accompanied by deficiencies in characterized chorion proteins). At least six groups with clear-cut effects were found at loci not previously identified with known chorion structural genes. PMID:17246182
Tian, Jiyuan; Yu, Juan
2009-12-02
Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina.
SOME ULTRASTRUCTURAL EFFECTS OF INSULIN, HYDROCORTISONE, AND PROLACTIN ON MAMMARY GLAND EXPLANTS
Mills, Elinor S.; Topper, Yale J.
1970-01-01
The effects of insulin, hydrocortisone, and prolactin on the morphology of explants from midpregnant mouse mammary glands were studied. Insulin promotes the formation of daughter cells within the alveolar epithelium which are ultrastructurally indistinguishable from the parent cells. The addition of hydrocortisone to the medium containing insulin brings the daughter cells to a new, intermediate level of ultrastructural development by effecting an extensive increase of the rough endoplasmic reticulum (RER) throughout the cytoplasm and an increase in the lateral paranuclear Golgi apparatus. When prolactin is added to the insulin-hydrocortisone medium, the daughter cells complete their ultrastructural differentiation. There is a translocation of the RER, Golgi apparatus, and nucleus and the appearance of secretory protein granules within the cytoplasm. There is excellent correlation between the ultrastructural appearance of the alveoli and their capacity to synthesize casein. PMID:5460752
Wu, Jianjiang; Yu, Jin; Xie, Peng; Maimaitili, Yiliyaer; Wang, Jiang; Yang, Long; Ma, Haiping; Zhang, Xing; Yang, Yining
2017-01-01
Background Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2–STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2–STAT3 signal pathway. Methods An adult male Sprague–Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. Results Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). Conclusion This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2–STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size. PMID:28392989
Kamińska, K; Włodarczyk, A; Sonakowska, L; Ostróżka, A; Marchewka, A; Rost-Roszkowska, M
2016-11-01
The salivary glands (mandibular epidermal glands) of adult males and females of Lithobius forficatus (Myriapoda, Chilopoda) were isolated during spring, summer and autumn. In addition, the organs were isolated at different times of the day - at about 12:00 (noon) and about 00:00 (midnight). The ultrastructure of these organs depending on seasonal and circadian rhythms was analyzed using transmission and scanning electron microscopy and histochemical methods. The paired salivary glands of L. forficatus are situated in the vicinity of the foregut and they are formed by numerous acini that are surrounded by the fat body, hemocytes and tracheolae. The salivary glands are composed of a terminal acinar component and a system of tubular ducts that are lined with a cuticle. The glandular part is composed of secretory epithelial cells that are at various stages of their secretory activity. The saliva that is produced by the secretory cells of the acini is secreted into the salivary ducts, which are lined with a simple epithelium that is based on the non-cellular basal lamina. The ultrastructural variations suggest that salivary glands function differently depending on seasonal rhythms and prepare the animal for overwintering. Therefore, the salivary glands of the centipedes that were analyzed participate in the accumulation of proteins, lipids and polysaccharides during the spring, summer and autumn. Subtle differences in the ultrastructure of the secretory cells of the salivary glands during the circadian cycle must be related to the physiological reactions of the organism. The salivary ducts showed no differences in the specimens that were analyzed during the day/night cycle or during the seasonal cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shami, Gerald J.; Morsch, Marco; Chung, Roger S.; Braet, Filip
2016-01-01
Research in the field of gastroenterology is increasingly focused on the use of alternative nonrodent model organisms to provide new experimental tools to study chronic diseases. The zebrafish is a particularly valuable experimental platform to explore organ and cell structure-function relationships under relevant biological and pathobiological settings. This is due to its optical transparency and its close-to-human genetic makeup. To-date, the structure-function properties of the GIS of the zebrafish are relatively unexplored and limited to histology and fluorescent microscopy. Occasionally those studies include EM of a given subcellular process but lack the required full histological picture. In this work, we employed a novel combined biomolecular imaging approach in order to cross-correlate 3D ultrastructure over different length scales (optical-, X-ray micro-CT, and high-resolution EM). Our correlated imaging studies and subsequent data modelling provide to our knowledge the first detailed 3D picture of the zebrafish larvae GIS. Our results provide unequivocally a limit of confidence for studying various digestive disorders and drug delivery pathways in the zebrafish. PMID:27340669
Takahashi, H; Sato, I
2001-12-01
We quantitatively examined the distribution of these differences in extracellular matrices (collagen types I, III, and fibronectin) and elastic fibers under confocal laser scanning microscopy and electron scanning microscopy in terms of their contribution to the mechanics of the TMJ during development and in adults. Elastic fibers were found in the anterior and posterior bands in adults aged 40 years, and a few elastic fibers in the anterior band of the disk in adults aged 80 to 90 years. The extracellular matrix contents of the TMJ disk are shown in various detected levels in the anterior, intermediate, posterior bands of TMJ disk. During development, collagen fibers are arranged in a complex fashion from 28 weeks' gestation. These ultrastructures of the embryonic TMJ are resembled to that of adults aged the 40s, however the difference in extracellular matrix distribution found in embryonic stages and adults. They might reflect the differences in function between mastication and sucking or the changes in shape and form as results of functional disorders of the TMJ.
Cheng, Delfine; Shami, Gerald J; Morsch, Marco; Chung, Roger S; Braet, Filip
2016-01-01
Research in the field of gastroenterology is increasingly focused on the use of alternative nonrodent model organisms to provide new experimental tools to study chronic diseases. The zebrafish is a particularly valuable experimental platform to explore organ and cell structure-function relationships under relevant biological and pathobiological settings. This is due to its optical transparency and its close-to-human genetic makeup. To-date, the structure-function properties of the GIS of the zebrafish are relatively unexplored and limited to histology and fluorescent microscopy. Occasionally those studies include EM of a given subcellular process but lack the required full histological picture. In this work, we employed a novel combined biomolecular imaging approach in order to cross-correlate 3D ultrastructure over different length scales (optical-, X-ray micro-CT, and high-resolution EM). Our correlated imaging studies and subsequent data modelling provide to our knowledge the first detailed 3D picture of the zebrafish larvae GIS. Our results provide unequivocally a limit of confidence for studying various digestive disorders and drug delivery pathways in the zebrafish.
Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.
Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi
2004-01-01
Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.
Baĭbekov, I M; Vorozheĭkin, V M; Artykov, Sh N
1992-04-01
With the aid of light, electron transmission and scanning electron microscopy and radioautography and stereometry, the influence of low-intensive laser irradiation (LILI) (infrared) was studied in normal rat liver and in experimental cirrhosis and hepatitis. It was revealed that arsenide-gallium laser irradiation causes the change of intracellular structure. These changes show the intensification on their specific function manifest in an increase of relative volume of intracellular structures. The changes of microvessels show the activation of microcirculation. The elevation of the index of the labelled nuclei testify to increased proliferation. The similar influences of LILI on the liver ultrastructure and proliferation in hepatitis and cirrhosis are accompanied by the reduction of the pathological changes of the liver--the hepatocytes oedema, granular, vacuolar and fatty dystrophy.
Aymone, A C B; Valente, V L S; de Araújo, A M
2013-09-01
Usually the literature on Heliconius show three types of scales, classified based on the correlation between color and ultrastructure: type I - white and yellow, type II - black, and type III - orange and red. The ultrastructure of the scales located at the silvery/brownish surfaces of males/females is for the first time described in this paper. Besides, we describe the ontogeny of pigmentation, the scale morphogenesis and the maturation timing of scales fated to different colors in Heliconius erato phyllis. The silvery/brownish surfaces showed ultrastructurally similar scales to the type I, II and III. The ontogeny of pigmentation follows the sequence red, black, silvery/brownish and yellow. The maturation of yellow-fated scales, however, occurred simultaneously with the red-fated scales, before the pigmentation becomes visible. In spite of the scales at the silvery/brownish surfaces being ultrastructurally similar to the yellow, red and black scales, they mature after them; this suggests that the maturation timing does not show a relationship with the scale ultrastructure, with the deposition timing of the yellow pigment. The analysis of H. erato phyllis scale morphogenesis, as well as the scales ultrastructure and maturation timing, provided new findings into the developmental architecture of color pattern in Heliconius. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boppart, Stephen
2006-02-01
Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.
Tütüncü Konyar, Sevil
2017-03-01
Pollen ontogeny in Pancratium maritimum L. was studied from the sporogenous cell to mature pollen grain stages using transmission electron, scanning electron, and light microscopy to determine whether the pollen development in P. maritimum follows the basic scheme in angiosperms or not. In the course of microsporogenesis and microgametogenesis, special attention was given to the considerable ultrastructural changes that are observed in the cytoplasm of microsporocytes, microspores, and mature pollen grains throughout the successive stages of pollen development. Microsporocyte differentiation concerning number and ultrastructure of organelles facilitates the transition of microsporocytes from the sporophytic phase to the gametophytic phase. However, cytoplasmic differentiation of generative and vegetative cells supports their functional distinctness and pollen maturation. Although microsporogenesis and microgametogenesis in P. maritimum generally follow the usual angiosperm pattern, abnormalities such as formation of unreduced gametes were observed. During normal microsporogenesis, meiocytes undergo meiosis and successive cytokinesis, resulting in the formation of isobilateral, decussate, and linear tetrads. Subsequent to the development of free and vacuolated microspores, the first mitotic division occurs and bicellular monosulcate pollen grains are produced. Pollen grains are shed from the anther at binucleate stage. During pollen ontogeny, three periods of vacuolization were observed: in meiocytes, in mononucleate free microspores, and in the generative cell.
Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny
2017-09-15
The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.
Lessa, Thais Borges; de Abreu, Dilayla Kelly; Rodrigues, Márcio Nogueira; Brólio, Marina Pandolphi; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo
2014-11-01
Duchenne muscular dystrophy (DMD) is a genetic disease, characterized by atrophy and muscle weakness. The respiratory failure is a common cause of early death in patients with DMD. Golden retriever muscular dystrophy (GRMD) is a canine model which has been extensively used for many advances in therapeutics applications. As the patients with DMD, the GRMD frequently died from cardiac and respiratory failure. Observing the respiratory failure in DMD is one of the major causes of mortality we aimed to describe the morphological and ultrastructural data of trachea, lungs (conductive and respiratory portion of the system), and diaphragm muscle using histological and ultrastructural analysis. The diaphragm muscle showed discontinuous fibers architecture, with different diameter; a robust perimysium inflammatory infiltrate and some muscle cells displayed central nuclei. GRMD trachea and lungs presented collagen fibers and in addition, the GRMD lungs showed higher of levels collagen fibers that could limit the alveolar ducts and alveoli distension. Therefore, the most features observed were the collagen areas and fibrosis. We suggested in this study that the collagen remodeling in the trachea, lungs, and diaphragm muscle may increase fibrosis and affect the trachea, lungs, and diaphragm muscle function that can be a major cause of respiratory failure that occur in patients with DMD. © 2014 Wiley Periodicals, Inc.
Pulliam, L; Herndier, B G; Tang, N M; McGrath, M S
1991-01-01
We wanted to establish an in vitro human model for AIDS-associated dementia and pursue the hypothesis that this disease process may be a result of soluble factors produced by HIV-infected macrophages. Human brain aggregates were prepared from nine different brain specimens, and were treated with supernatants from in vitro HIV-infected macrophages (SI), uninfected macrophages (SU), infected T cells, or macrophage-conditioned media from four AIDS patients. Seven of nine treated brains exposed to SI showed peripheral rarefaction after 1 wk of incubation that by ultrastructural analysis showed cytoplasmic vacuolation. Aggregates from two of three brain cultures treated with SI for 3 wk became smaller, an approximately 50% decrease in size. The degree of apparent toxicity in brains exposed to patient-derived macrophage supernatants paralleled the proportion of macrophages found to be expressing HIV p24. Ultrastructural abnormalities were not observed in brains treated with supernatants from HIV-infected T cells, uninfected macrophages, or LPS-activated macrophages. Levels of five neurotransmitter amino acids were decreased in comparison to the structural amino acid leucine. These findings suggest that HIV-infected macrophages, infected both in vitro as well as derived from AIDS patients' peripheral blood, produce factors that cause reproducible histochemical, ultrastructural, and functional abnormalities in human brain aggregates. Images PMID:1671392
Rost-Roszkowska, M M; Vilimova, J; Włodarczyk, A; Sonakowska, L; Kamińska, K; Kaszuba, F; Marchewka, A; Sadílek, D
2017-02-01
Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.
Clinicopathologic correlations in Alibert-type mycosis fungoides.
Eng, A M; Blekys, I; Worobec, S M
1981-06-01
Five cases of mycosis fungoides of the Alibert type were studied by taking multiple biopsy specimens at different stages of the disease. Large hyperchromatic, slightly irregular mononuclear cells are the most frequent cells. Ultrastructurally, the cells were only slightly convoluted, had prominent heterochromatin banding at the nuclear membrane, and unremarkable cytoplasmic organelles. Highly convoluted cerebriform nucleated cells were few. Large regular vesicular histiocytes were prominent in the early stages. Ultrastructurally, the cells showed evenly distributed euchromatin. Epidermotrophism was equally as important as Pautrier's abscess as a hallmark of the disease. Stereologic techniques comparing the infiltrate with regard to size and convolution of cells in all stages of mycosis fungoides with infiltrates seen in a variety of benign dermatoses showed no statistically significant differences.
Ultrastructure of the spermatozoa from a Florida manatee (Trichechus manatus latirostris).
Miller, D L; Dougherty, M M; Decker, S J; Bossart, G D
2001-08-01
Semen was opportunistically collected from a free-ranging, 10-year-old, 275 cm (total length) Florida manatee (Trichechus manatus latirostris) during rehabilitation treatments. Ultrastructure of the spermatozoa was examined by scanning and transmission electron microscopy and differed slightly from that described for other mammals. Comparisons to the manatee's closest phylogenetic relatives, the elephant and hyrax, were made. The manatee spermatozoa had a similar acrosome but a distinct annulus and lacked the dense bodies observed in the neck of the elephant spermatozoa. Additionally, manatee spermatozoa lacked the lateral vacuoles observed in the nuclear chromatin from of the hyrax spermatozoa. These data add to our understanding of manatees and allow for comparative studies with other species that may be useful in phylogenetic and reproductive studies.
Micromorphology of trichomes of Thymus malyi (Lamiaceae).
Marin, M; Koko, V; Duletić-Lausević, S; Marin, P D
2008-12-01
Micromorphological, ultrastructural and morphometric investigations of the trichomes of Thymus malyi were carried out using a light microscope, a scanning electron microscope and a transmission electron microscope. Unbranched non-glandular trichomes, peltate and capitate glandular trichomes were described. The leaves of Thymus malyi bear non-glandular and glandular trichomes on both sides. Estimates of the volume density (i.e. their volume fraction per unit volume) of non-glandular trichomes were higher as compared to volume density of peltate and capitate glandular trichomes. Estimates of the number of these trichomes per area on sections showed that the capitate trichomes were the most abundant. Ultrastructural analyses of cell inner structure have shown numerous mitochondria, big nuclei and plastids with lipid globules and starch grains.
Shapiro, Adam J; Leigh, Margaret W
2017-01-01
Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.
Lin, Ruhui; Yu, Kunqiang; Li, Xiaojie; Tao, Jing; Lin, Yukun; Zhao, Congkuai; Li, Chunyan; Chen, Li-Dian
2016-07-01
The aim of the present study was to investigate the potential neuroprotective effects of electroacupuncture (EA) in the treatment of cerebral ischemia/reperfusion (I/R) injury, and to elucidate the association between this neuroprotective effect and brain ultrastructure and expression of matrix metalloproteinase (MMP)‑2 and 9. Rats underwent focal cerebral I/R injury by arterial ligation and received in vivo therapeutic EA at the Baihui (DU20) and Shenting (DU24) acupoints. The therapeutic efficacy was then evaluated following the surgery. The results of the current study demonstrated that EA treatment significantly ameliorated neurological deficits and reduced cerebral infarct volume compared with I/R injured rats. Furthermore, EA improved the learning and memory ability of rats following I/R injury, inhibited blood brain barrier breakdown and reduced neuronal damage in the ischemic penumbra. Furthermore, EA attenuated ultrastructural changes in the brain tissue following ischemia and inhibited MMP‑2/MMP‑9 expression in cerebral I/R injured rats. The results suggest that EA ameliorates anatomical deterioration, and learning and memory deficits in rats with cerebral I/R injury.
Yi, Bin; Hu, Shousen; Zuo, Chuantao; Jiao, Fangyang; Lv, Jingrong; Chen, Dongye; Ma, Yufei; Chen, Jianyong; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao
2016-01-01
Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perception, and only rats in the chronic salicylate-treatment (14 days) group showed evidence of experiencing tinnitus. After small animal positron emission tomography scans were performed, we found that the metabolic activity of the inferior colliculus (IC), the auditory cortex (AC), and the hippocampus (HP) were significantly higher in the chronic treatment group compared with saline group (treated for 14 days), which was further supported by ultrastructural changes at the synapses. The alterations all returned to baseline 14 days after the cessation of salicylate-treatment (wash-out group), indicating that these changes were reversible. These findings indicate that long-term salicylate administration induces tinnitus, enhanced neural activity and synaptic ultrastructural changes in the IC, AC, and HP of rats due to neuroplasticity. Thus, an increased metabolic rate and synaptic transmission in specific areas of the CNS may contribute to the development of tinnitus. PMID:27068004
Ultrastructural Morphology of Sperm from Human Globozoospermia
Ricci, Giuseppe; Andolfi, Laura; Luppi, Stefania; Boscolo, Rita; Zweyer, Marina; Trevisan, Elisa
2015-01-01
Globozoospermia is a rare disorder characterized by the presence of sperm with round head, lacking acrosome. Coiling tail around the nucleus has been reported since early human studies, but no specific significance has conferred it. By contrast, studies on animal models suggest that coiling tail around the nucleus could represent a crucial step of defective spermatogenesis, resulting in round-headed sperm. No observations, so far, support the transfer of this hypothesis to human globozoospermia. The purpose of this work was to compare ultrastructural morphology of human and mouse model globozoospermic sperm. Sperm have been investigated by using scanning and transmission electron microscopy. The images that we obtained show significant similarities to those described in GOPC knockout mice, an animal model of globozoospermia. By using this model as reference, we were able to identify the probable steps of the tail coiling process in human globozoospermia. Although we have no evidence that there is the same pathophysiology in man and knocked-out mouse, the similarities between these ultrastructural observations in human and those in the experimental model are very suggestive. This is the first demonstration of the existence of relevant morphological homologies between the tail coiling in animal model and human globozoospermia. PMID:26436098
Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven
2008-11-01
Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.
Osman, Wafaa; Shonouda, Mourad
2017-06-01
X-ray analysis was applied to estimate the percentages of heavy metals in ovarian tissues of the tenebrionid beetle, Blaps polycresta. Calcium, phosphorus, sulfur, cadmium, copper, and zinc were the most common detected metals in ovaries of insects collected from reference and polluted sites. Only cadmium showed significantly higher percentages in the polluted ovaries compared with the reference ones. Ultrastructure investigation revealed severe alterations in polluted ovaries both in the tropharium and in the vitellarium. Contraction of nuclear membrane of trophocytes was observed; therefore, cavities and spaces appeared in the cytoplasm followed by nuclear pyknosis. In the vitellarium, fragmentation of chromatin materials in nuclei of the follicular cells was detected. The cytoplasm was poor in the rough endoplasmic reticulum and mitochondria. Damage of yolk bodies occurred in addition to break off in the layer of microvilli. Accumulation of electron-dense vesicles and multivesicular bodies were observed in both reference and polluted ovaries. These alterations in ovarian ultrastructure of B. polycresta show the severe impact of cadmium pollution on cell organelles of insects and could be used as an interesting tool for monitoring heavy metals inside the body organs due to soil pollution.
Scoazec, J. Y.; Marche, C.; Girard, P. M.; Houtmann, J.; Durand-Schneider, A. M.; Saimot, A. G.; Benhamou, J. P.; Feldmann, G.
1988-01-01
The description of hepatic sinusoidal lesions in a significant number of acquired immunodeficiency syndrome (AIDS) patients prompted the authors to undertake an ultrastructural study of the sinusoidal barrier abnormalities during human immunodeficiency virus (HIV) infection, in order to compare these lesions with those described in other conditions and to discuss their possible origin. In a series of 29 patients with serologic evidence of HIV infection and liver abnormalities, 8 (28%) had sinusoidal lesions. Peliosis hepatis was present in 2 cases, and sinusoidal dilatation in 6. These patients were classified as follows: 3 AIDS, 4 AIDS-related complex, 1 unclassifiable. Ultrastructural lesions of the sinusoidal barrier were observed in all the cases. They closely mimicked the changes previously reported in peliotic and peliotic-like changes of various origins. A striking particularity was, however, the presence of numerous and hyperplastic sinusoidal macrophages. This work suggests that an injury of the endothelial cells, directly or indirectly related to the presence of HIV, may be incriminated in the pathogenesis of sinusoidal lesions during HIV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:3354642
Ultrastructural evaluation of gingival connective tissue in hereditary gingival fibromatosis.
Pêgo, Sabina Pena B; de Faria, Paulo Rogério; Santos, Luis Antônio N; Coletta, Ricardo D; de Aquino, Sibele Nascimento; Martelli-Júnior, Hercílio
2016-07-01
To describe the ultrastructural features of hereditary gingival fibromatosis (HGF) in affected family members and compare microscopic findings with normal gingival (NG) tissue. Gingival tissue samples from nine patients with HGF from five unrelated families were evaluated by transmission electron microscopy. Nine NG tissue samples were used for comparison. Areas containing collagen fibrils forming loops and folds were observed in both groups, whereas oxytalan fibers were frequently identified in the HGF group. The diameter of collagen fibrils and the interfibrillar space among them were more uniform in the NG group than in the HGF group. Fibroblasts were the most common cells found in both the HGF and NG groups and exhibited enlarged, rough endoplasmic reticulum, mitochondria with well-preserved crests, conspicuous nucleoli, and euchromatic chromatin. Other cells, such as mast cells, plasma cells, and macrophages, were also observed. HGF tissues had ultrastructural characteristics that were very similar to those of NG tissues. Oxytalan fibers were observed more frequently in the HGF samples than in the NG samples. Other studies of HGF in patients from different families should be performed to better understand the pathogenesis of this hereditary condition. Copyright © 2016 Elsevier Inc. All rights reserved.
Cali, Ann; Takvorian, Peter M
2003-01-01
This report provides a detailed ultrastructural study of the life cycle, including proliferative and sporogonic developmental stages, of the first Pleistophora species (microsporidium) obtained from an immune-incompetent patient. In 1985, the organism obtained from a muscle biopsy was initially identified as belonging to the genus Pleistophora, based on spore morphology and its location in a sporophorous vesicle. Since that initial report, at least two new microsporidial genera, Trachipleistophora and Brachiola, have been reported to infect the muscle tissue of immunologically compromised patients. Because Trachipleistophora development is similar to Pleistophora, and as Pleistophora was only known to occur in cold-blooded hosts, the question of the proper classification of this microsporidium arose. The information acquired in this study makes it possible to compare Pleistophora sp. (Ledford et al. 1985) to the known human infections and properly determine its correct taxonomic position. Our ultrastructural data have revealed the formation of multinucleate sporogonial plasmodia, a developmental characteristic of the genus Pleistophora and not Trachipleistophora. A comparison with other species of the genus supports the establishment of a new species. This parasite is given the name Pleistophora ronneafiei n. sp.
Ndiaye, Papa Ibnou; Quilichini, Yann; Sène, Aminata; Tkach, Vasyl V.; Bâ, Cheikh Tidiane; Marchand, Bernard
2014-01-01
This study provides the first ultrastructural data of spermatozoa in the genus Lecithochirium. The spermatozoa of L. microstomum (from Trichiurus lepturus in Senegal) and L. musculus (from Anguilla anguilla in Corsica) exhibit the general pattern described in the great majority of the Digenea, namely two axonemes with the 9 + “1” pattern typical of the Trepaxonemata, one mitochondrion, a nucleus, parallel cortical microtubules and external ornamentation of the plasma membrane. Spermatozoa of L. microstomum and L. musculus have some specific features such as the presence of a reduced number of cortical microtubules arranged on only one side of the spermatozoon, the lack of spine-like bodies and expansion of the plasma membrane. The external ornamentation of the plasma membrane entirely covers the anterior extremity of the spermatozoa. The ultrastructure of the posterior extremity of the spermatozoa corresponds to the pattern previously described in the Hemiuridae, characterized by only singlets of the second axoneme. A particularity of these spermatozoa is the organization of the microtubule doublets of the second axoneme around the nucleus in the posterior part of the spermatozoon. PMID:25275216
Ali, Mohammad Javed; Baig, Farhana; Lakshman, Mekala; Naik, Milind N
2015-01-01
To evaluate the ultrastructural effects of topical and circumostial injection of mitomycin C (COS-MMC) on nasal mucosa and compare them with the controls. The study also aimed at classifying the subcellular effects in detail. The nasal mucosa of 6 patients were subjected to 0.02% of mitomycin C for 3 minutes (3 patients) and 0.02% COS-MMC (3 patients) as per standard protocol, during endoscopic dacryocystorhinostomy. Normal nasal mucosa from untreated areas (2 each from topical and COS-MMC groups) were taken as controls after harvesting the treated areas. Full thickness tissues (5 mm × 5 mm) were collected for transmission electron microscopy, and ultrastructural effects were evaluated. Both topical and COS-MMC showed significant and distinct ultrastructural changes involving the epithelial, glandular, vascular, and fibrocollagenous tissues compared with the controls. There were profound changes within fibroblasts with intracellular edema, pleomorphic and vesicular mitochondria, dilated smooth and rough endoplasmic reticulum, and chromatin condensation. In addition, COS-MMC samples showed subepithelial hypocellularity with limited disorganization of structure. The changes in both the MMC groups were restricted to treated areas only. Both topical and COS-MMC show profound changes in nasal mucosa with more marked changes in COS-MMC group. These changes being limited in nature may help in enhancing the success of dacryocystorhinostomy by preventing cicatricial changes of the ostium, especially in high-risk cases such as revision and post-traumatic dacryocystorhinostomy.
Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar
2014-11-01
Lead (Pb) causes severe damage to crops, ecosystems, and humans, and alters the physiology and biochemistry of various plant species. It is hypothesized that Pb-induced metabolic alterations could manifest as structural variations in the roots of plants. In light of this, the morphological, anatomical, and ultrastructural variations (through scanning electron microscopy, SEM) were studied in 4-day-old seedlings of Triticum aestivum grown under Pb stress (0, 8, 16, 40, and 80 mg Pb(2+) l(-1); mild to highly toxic). The toxic effect was more pronounced in radicle growth than on the plumule growth. The SEM of the root of T. aestivum depicted morphological alterations and surface ultrastructural changes. Compared to intact and uniform surface cells in the control roots, cells were irregular and desiccated in Pb(2+)-treated roots. In Pb(2+)-treated roots, the number of root hairs increased manifold, showing dense growth, and these were apparently longer. Apart from the deformity in surface morphology and anatomy of the roots in response to Pb(2+) toxicity, considerable anatomical alterations were also observed. Pb(2+)-treated root exhibited signs of injury in the form of cell distortion, particularly in the cortical cells. The endodermis and pericycle region showed loss of uniformity post Pb(2+) exposure (at 80 mg l(-1) Pb(2+)). The cells appeared to be squeezed with greater depositions observed all over the tissue. The study concludes that Pb(2+) treatment caused structural anomalies and induced anatomical and surface ultrastructural changes in T. aestivum.
Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat.
Naveena, B M; Kiran, M; Reddy, K Sudhakar; Ramakrishna, C; Vaithiyanathan, S; Devatkal, Suresh K
2011-08-01
This study was conducted with an objective to improve the tenderness of tough buffalo meat using ammonium hydroxide. Buffalo meat chunks from Biceps femoris muscle were marinated with distilled water (control), 0.1%, 0.5% and 1.0% solution of ammonium hydroxide for 48 h at 4±1 °C and subjected to various physico-chemical analysis and ultrastructural studies. Ammonium hydroxide increased (P<0.05) the pH, water holding capacity (WHC), collagen solubility, total and salt soluble protein extractability and cooking yield. Reduction (P<0.05) in Warner-Bratzler shear force values were observed in all ammonium hydroxide treated samples compared to non-treated control. Electrophoretic pattern of muscle proteins exhibited reduction in the intensity and number of certain protein bands for 0.1% and 0.5% ammonium hydroxide treated samples compared to control. Scanning and transmission electron microscopy also revealed breakdown of endothelium layers surrounding muscle fibers and weakening of Z-discs respectively, in treated samples compared to controls. These results suggest that ammonium hydroxide might be used to tenderize tough buffalo meat. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Lau, Pak-Ming
2018-01-01
As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered “discus-shaped” ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions. PMID:29311144
Hassan, Md. Quamrul; Akhtar, Md. Sayeed; Akhtar, Mohd.; Ali, Javed; Haque, Syed Ehtaishamul; Najmi, Abul Kalam
2016-01-01
Objectives: In the present study, we investigated whether combination therapy of low-dose benidipine with the potent free radical scavenger edaravone has a cardioprotective effect against isoproterenol (ISO)-induced myocardial infarction (MI) in Wistar rats. Methods: Rats were pretreated with concurrent doses of benidipine and edaravone (1 μg/kg/day + 1 mg/kg/day and 3 μg/kg/day + 3 mg/kg/day) by intravenous (i.v.) and intraperitoneal (i.p.) routes respectively for 28 days, followed by MI induction using ISO (85 mg/kg) by subcutaneous route for two days at 24 h intervals. After the treatment period, blood was withdrawn and the heart was preserved for biochemical estimations. Results: The activities of the cardiac biomarkers (lactate dehydrogenase and creatine kinase-MB), and the level of malondialdehyde (MDA) significantly increased, while antioxidant markers (reduced glutathione, catalase, superoxidase dismutase, glutathione peroxidase, glutathione reductase) were significantly decreased in the ISO intoxicated group compared with the control group. Moreover, the level of C-reactive protein (CRP) and Caspase-3 activity significantly increased in ISO-intoxicated group. An ultrastructure study was also carried out. Pretreatment with a combination of benidipine and edaravone significantly attenuated the activities of the cardiac biomarkers and the level of MDA, and significantly increased the antioxidant markers compared with the ISO-intoxicated group. Furthermore, pretreatment with the combination of benidipine and edaravone significantly decreased the level of CRP and Caspase-3 activity as compared to the ISO-treated group. The ultrastructure study of myocardium revealed that pretreated groups preserved the mitochondrial shape, the membrane and its internal structures. Conclusion: Taken together these results suggest that the combination of benidipine and edaravone showed significant protective effect in ISO-induced MI. PMID:26868288
Hassan, Md Quamrul; Akhtar, Md Sayeed; Akhtar, Mohd; Ali, Javed; Haque, Syed Ehtaishamul; Najmi, Abul Kalam
2016-08-01
In the present study, we investigated whether combination therapy of low-dose benidipine with the potent free radical scavenger edaravone has a cardioprotective effect against isoproterenol (ISO)-induced myocardial infarction (MI) in Wistar rats. Rats were pretreated with concurrent doses of benidipine and edaravone (1 μg/kg/day + 1 mg/kg/day and 3 μg/kg/day + 3 mg/kg/day) by intravenous (i.v.) and intraperitoneal (i.p.) routes respectively for 28 days, followed by MI induction using ISO (85 mg/kg) by subcutaneous route for two days at 24 h intervals. After the treatment period, blood was withdrawn and the heart was preserved for biochemical estimations. The activities of the cardiac biomarkers (lactate dehydrogenase and creatine kinase-MB), and the level of malondialdehyde (MDA) significantly increased, while antioxidant markers (reduced glutathione, catalase, superoxidase dismutase, glutathione peroxidase, glutathione reductase) were significantly decreased in the ISO intoxicated group compared with the control group. Moreover, the level of C-reactive protein (CRP) and Caspase-3 activity significantly increased in ISO-intoxicated group. An ultrastructure study was also carried out. Pretreatment with a combination of benidipine and edaravone significantly attenuated the activities of the cardiac biomarkers and the level of MDA, and significantly increased the antioxidant markers compared with the ISO-intoxicated group. Furthermore, pretreatment with the combination of benidipine and edaravone significantly decreased the level of CRP and Caspase-3 activity as compared to the ISO-treated group. The ultrastructure study of myocardium revealed that pretreated groups preserved the mitochondrial shape, the membrane and its internal structures. Taken together these results suggest that the combination of benidipine and edaravone showed significant protective effect in ISO-induced MI. © The Author(s), 2016.
McBride, E L; Rao, A; Zhang, G; Hoyne, J D; Calco, G N; Kuo, B C; He, Q; Prince, A A; Pokrovskaya, I D; Storrie, B; Sousa, A A; Aronova, M A; Leapman, R D
2018-06-01
Microscopies based on focused electron probes allow the cell biologist to image the 3D ultrastructure of eukaryotic cells and tissues extending over large volumes, thus providing new insight into the relationship between cellular architecture and function of organelles. Here we compare two such techniques: electron tomography in conjunction with axial bright-field scanning transmission electron microscopy (BF-STEM), and serial block face scanning electron microscopy (SBF-SEM). The advantages and limitations of each technique are illustrated by their application to determining the 3D ultrastructure of human blood platelets, by considering specimen geometry, specimen preparation, beam damage and image processing methods. Many features of the complex membranes composing the platelet organelles can be determined from both approaches, although STEM tomography offers a higher ∼3 nm isotropic pixel size, compared with ∼5 nm for SBF-SEM in the plane of the block face and ∼30 nm in the perpendicular direction. In this regard, we demonstrate that STEM tomography is advantageous for visualizing the platelet canalicular system, which consists of an interconnected network of narrow (∼50-100 nm) membranous cisternae. In contrast, SBF-SEM enables visualization of complete platelets, each of which extends ∼2 µm in minimum dimension, whereas BF-STEM tomography can typically only visualize approximately half of the platelet volume due to a rapid non-linear loss of signal in specimens of thickness greater than ∼1.5 µm. We also show that the limitations of each approach can be ameliorated by combining 3D and 2D measurements using a stereological approach. Copyright © 2018. Published by Elsevier Inc.
White, Tomas L.; Lewis, Philip; Hayes, Sally; Fergusson, James; Bell, James; Farinha, Luis; White, Nick S.; Pereira, Lygia V.; Meek, Keith M.
2017-01-01
Purpose The presence of fibrillin-rich elastic fibers in the cornea has been overlooked in recent years. The aim of the current study was to elucidate their functional role using a mouse model for Marfan syndrome, defective in fibrillin-1, the major structural component of the microfibril bundles that constitute most of the elastic fibers. Methods Mouse corneas were obtained from animals with a heterozygous fibrillin-1 mutation (Fbn1+/−) and compared to wild type controls. Corneal thickness and radius of curvature were calculated using optical coherence tomography microscopy. Elastic microfibril bundles were quantified and visualized in three-dimensions using serial block face scanning electron microscopy. Transmission electron microscopy was used to analyze stromal ultrastructure and proteoglycan distribution. Center-to-center average interfibrillar spacing was determined using x-ray scattering. Results Fbn1+/− corneas were significantly thinner than wild types and displayed a higher radius of curvature. In the Fbn1+/− corneas, elastic microfibril bundles were significantly reduced in density and disorganized compared to wild-type controls, in addition to containing a higher average center-to-center collagen interfibrillar spacing in the center of the cornea. No other differences were detected in stromal ultrastructure or proteoglycan distribution between the two groups. Proteoglycan side chains appeared to colocalize with the microfibril bundles. Conclusions Elastic fibers have an important, multifunctional role in the cornea as highlighted by the differences observed between Fbn1+/− and wild type animals. We contend that the presence of normal quantities of structurally organized elastic fibers are required to maintain the correct geometry of the cornea, which is disrupted in Marfan syndrome. PMID:28395026
Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura
2015-01-01
The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749
Bogdanov, Yuri F; Dadashev, Sergei Y; Grishaeva, Tatiana M
2003-01-01
Evolutionarily distant organisms have not only orthologs, but also nonhomologous proteins that build functionally similar subcellular structures. For instance, this is true with protein components of the synaptonemal complex (SC), a universal ultrastructure that ensures the successful pairing and recombination of homologous chromosomes during meiosis. We aimed at developing a method to search databases for genes that code for such nonhomologous but functionally analogous proteins. Advantage was taken of the ultrastructural parameters of SC and the conformation of SC proteins responsible for these. Proteins involved in SC central space are known to be similar in secondary structure. Using published data, we found a highly significant correlation between the width of the SC central space and the length of rod-shaped central domain of mammalian and yeast intermediate proteins forming transversal filaments in the SC central space. Basing on this, we suggested a method for searching genome databases of distant organisms for genes whose virtual proteins meet the above correlation requirement. Our recent finding of the Drosophila melanogaster CG17604 gene coding for synaptonemal complex transversal filament protein received experimental support from another lab. With the same strategy, we showed that the Arabidopsis thaliana and Caenorhabditis elegans genomes contain unique genes coding for such proteins.
2012-04-25
Jiang J, Bian X, Savic J. Cognitive deficits following blast injury- induced neurotrauma: possible involvement of nitric oxide. Brain Inj 2001;15: 593...612. [8] Cernak I, Wang Z, Jiang J, Bian X, Savic J. Ultrastructural and functional character- istics of blast injury-induced neurotrauma. J Trauma
Pathogenesis of Acute and Delayed Corneal Lesions After Ocular Exposure to Sulfur Mustard Vapor
2012-03-01
using a vapor cup delivery system. The transition from acute to delayed injury was characterized by clinical, histological, and ultrastructural metrics...These data demonstrate a system-based approach combining ultrastructural analysis , histochemistry, and molecular evaluation that links architectural...predictive of the 11% of corneas that underwent asymptomatic recovery. Ultrastructural comparison of asymptomatic and MGK corneas at 8 weeks indicates that MGK
Ultrastructural diversity between centrioles of eukaryotes.
Gupta, Akshari; Kitagawa, Daiju
2018-02-16
Several decades of centriole research have revealed the beautiful symmetry present in these microtubule-based organelles, which are required to form centrosomes, cilia, and flagella in many eukaryotes. Centriole architecture is largely conserved across most organisms, however, individual centriolar features such as the central cartwheel or microtubule walls exhibit considerable variability when examined with finer resolution. Here, we review the ultrastructural characteristics of centrioles in commonly studied organisms, highlighting the subtle and not-so-subtle differences between specific structural components of these centrioles. Additionally, we survey some non-canonical centriole structures that have been discovered in various species, from the coaxial bicentrioles of protists and lower land plants to the giant irregular centrioles of the fungus gnat Sciara. Finally, we speculate on the functional significance of these differences between centrioles, and the contribution of individual structural elements such as the cartwheel or microtubules towards the stability of centrioles.Centriole structure, cartwheel, triplet microtubules, SAS-6, centrosome.
Evolution of complexity in the zebrafish synapse proteome
Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.
2017-01-01
The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024
Digestion and digestive-transport surfaces in cestodes and their fish hosts.
Izvekova, G I; Kuperman, B I; Kuz'mina, V V
1997-12-01
The structural and functional organization of digestive-transport surfaces in some lower cestodes and their fish hosts was studied. It has been shown that the ultrastructure of cestode microtriches and fish enterocyte microvilli being the basis of membrane-linked digestion is quite similar. These organelles increase the digestive-transport surfaces both in helminths and fishes. However, the hydrolytic enzyme activity in helminths is usually 2-4 times lower than that of the fishes. Desorption (adsorption) characteristics of various hydrolases in helminths and fishes are also different. In helminths the easily desorbed fraction of each enzyme is always more abundant than in fishes. In contrast, the intensity of transport processes in helminths is higher when compared with fishes. The adaptation of digestive-transport surfaces and enzyme systems to feeding conditions is discussed.
Intra- and interspecific diversity of ultrastructural markers in Scedosporium.
Stepanova, Amaliya A; de Hoog, G Sybren; Vasilyeva, Nataliya V
2016-02-01
Ultrastructural features of conidia, lateral walls of aerial and submerged hyphal cells, and of septal pore apparatus of Scedosporium apiospermum, S. boydii, Pseudallescheria angusta and Scedosporium aurantiacum were studied. Submerged hyphal cells possessed a thick extracellular matrix. Crystalline satellites accessory to the septal pore apparatus were revealed. Fundamental ultrastructural features appeared to be heterogeneous at low taxonomic levels. The closely interrelated members of the S. apiospermum complex showed quantitative ultrastructural variability, but the unambiguously different species S. aurantiacum deviated qualitatively by markers of conidial wall structure, Woronin bodies morphology and presence/absence of crystalline satellites of the septal pore apparatus. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
NASA Technical Reports Server (NTRS)
Moore, R.
1990-01-01
Columella cells of seedlings of Zea mays L. cv. Bear Hybrid grown in the microgravity of orbital flight allocate significantly larger relative-volumes to hyaloplasm and lipid bodies, and significantly smaller relative-volumes to dictyosomes, plastids, and starch than do columella cells of seedlings grown at 1 g. The ultrastructure of columella cells of seedlings grown at 1 g and on a rotating clinostat is not significantly different. However, the ultrastructure of cells exposed to these treatments differs significantly from that of seedlings grown in microgravity. These results indicate that the actions of a rotating clinostat do not mimic the ultrastructural effects of microgravity in columella cells of Z. mays.
Pilar, Guillermo; Tuttle, Jeremy; Vaca, Ken
1981-01-01
1. The transformation of easily fatigued embryonic neuromuscular junctions into highly reliable mature terminals was examined by studying functional and morphological changes during development of the avian iris. The mature ability to follow repetitive electrical nerve stimulation was correlated with the rate of acetylcholine (ACh) synthesis and choline uptake, and with the fine structure of the nerve terminals and the post-synaptic elements. 2. The terminals of the ciliary nerve of the chick initially form functional synaptic contacts with the iris muscle at embryonic St. 34-40. At the onset of this period, no Na+-dependent high affinity choline uptake can be demonstrated, and the low level of ACh synthesis present is sensitive to Na+ removal. At St. 36 [3H]ACh synthesis begins to increase, the increment being Na+-dependent. 3. ACh synthesis in the embryonic iris was insensitive to a conditioning [K+]o depolarization even as late as St. 43. Just before hatching, depolarization elicits some augmentation in synthesis, but by 2 days ex ovo this release-induced response has increased by an order of magnitude. 4. Concurrently with the acquisition of the ability to respond to depolarization with accelerated synthesis, neuromuscular transmission in the iris becomes reliable and secure during stimulation at 20 Hz. Embryonic junctions rapidly block during such stimulation, and the failure is shown to be presynaptic in origin, resulting most probably from failure to sustain adequate levels of transmitter release. 5. Ultrastructural examination of the developing ciliary terminals revealed few synaptic vesicles at early stages, and a dearth of other specializations. The sequence of development from these small structurally undistinguished endings to large en plaque junctions completely filled with vesicles was reconstructed and compared to other neuromuscular junctions. Morphological maturation appears progressive with little evidence of discontinuity signalling functional status, but it is only after the terminals enlarge and become closely packed with vesicles that mature synaptic reliability is found. 6. The temporal correlation between responsiveness of transmitter synthesis to depolarization and reliable neuromuscular transmission suggests that modulation of neurotransmitter metabolism in response to demand signals the achievement of junctional maturity. ImagesABPlate 2Plate 3Plate 4 PMID:6279822
NASA Astrophysics Data System (ADS)
Zhvania, Mzia G.; Japaridze, Nadezhda J.; Ksovreli, Mariam G.
The effect of chronic restraint stress and chronic hypokinesia "without stress" on the ultrastructure of central and lateral nuclei of amygdala, CA1 and CA3 area of the hippocampus, cingular cortex, nucleus caudatus and motor cortex of adult male rats were elucidated. In some neurons and synapses of abovementioned regions pathological modifications were revealed. More significant alterations provokes chronic restraint stress. Alterations are mostly concentrated: first—in the nuclei of amygdala, then in the CA1 and CA3 areas. Moderate alterations were observed in cingular cortex and nucleus caudatus. In comparing with it, hypokinesia "without stress" provokes only moderate modifications: predominantly in the nucleus caudatus, in lesser degree—in the hippocampus and amygdalae.
Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens.
Kelavkar, U; Rao, K S; Ghhatpar, H S
1993-06-01
Halotolerant fungus, A. repens, showed a considerable difference in its growth rate, morphology, ultrastructural and molecular composition under NaCl stress as compared to control i.e. non-stressed condition. Light microscopic observations revealed significant differences in their mycelial thickness, their branching and septa. Transmission electron microscopic observations of both the conditions depicted significant differences in the qualitative and quantitative changes in mitochondria. Frequent pinocytotic vesiculation (vacuoles) of plasma membrane was observed in fungus under stress but no such vesiculation in control. The multivesiculate structures observed under stress with their origin from the cell membranes and subsequent release into vacuoles have not been reported in fungi under normal physiological conditions. The observations on pinocytosis are discussed in relation to ion compartmentation and salt tolerance in A. repens.
Primary cilia in gastric Gastrointestinal Stromal Tumours (GISTs): an ultrastructural study
Castiella, Tomás; Muñoz, Guillermo; Luesma, María José; Santander, Sonia; Soriano, Mario; Junquera, Concepción
2013-01-01
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal (non-epithelial) neoplasms of the human gastrointestinal (GI) tract. They are thought to derive from interstitial cells of Cajal (ICCs) or an ICC progenitor based on immunophenotypical and ultrastructural similarities. Because ICCs show primary cilium, our hypothesis is based on the possibility that some of these neoplastic cells could also present it. To determine this, an exhaustive ultrastructural study has been developed on four gastric GISTs. Previous studies had demonstrated considerable variability in tumour cells with two dominating phenotypes, spindly and epithelioid. In addition to these two types, we have found another cell type reminiscent of adult ICCs with a voluminous nucleus surrounded by narrow perinuclear cytoplasm with long slender cytoplasmic processes. We have also noted the presence of small undifferentiated cells. In this study, we report for the first time the presence of primary cilia (PCs) in spindle and epithelioid tumour cells, an ultrastructural feature we consider of special interest that has hitherto been ignored in the literature dealing with the ultrastructure of GISTs. We also point out the frequent occurrence of multivesicular bodies (MVBs). The ultrastructural findings described in gastric GISTs in this study appear to be relevant considering the critical roles played by PCs and MVBs recently demonstrated in tumourigenic processes. PMID:23672577
Change of optical properties of the breast tissues under the influence of pharmacological agents
NASA Astrophysics Data System (ADS)
Naumov, Sergey A.; Vovk, Sergey M.; Pushkarev, Sergey V.; Volovodenko, Vitaly A.
2001-05-01
The influence of vasoactive pharmacological agents (VPhA) on the spectral characteristics of the breast tissues in vivo has been studied. The effect of adrenaline and its antagonist dibazole on the character of diffuse reflection spectra of the breast registered during puncture biopsy were investigated. Adrenaline and dibazole were injected both locally, i.e. to the examined breast tissue and subcutaneously to the shoulder. The choice of this or that VPhA was caused by the functional condition of an examinee. It has been shown that the main functional units of the stroma of parenchymatous organs and their tumors responsible for the state of spectral characteristics in vivo are considered to be the vessels. The cancerous tissue has a lesser pronounced response compared to the normal one that is indicative of the functional inferiority of the tumor vessels and it is confirmed by the results of morphological examinations including the ultrastructural level. Thus, using VPhA it is possible to have an influence on characteristics of diffuse reflection spectra of the examined tissues in vivo and make diagnostics more effectively.
Carranza-Rosales, Pilar; Said-Fernández, Salvador; Sepúlveda-Saavedra, Julio; Cruz-Vega, Delia E; Gandolfi, A Jay
2005-06-01
Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl2. At concentrations of 1 and 10 microM of HgCl2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 microM HgCl2, both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 microM HgCl2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 microM HgCl2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9h with 15 microM HgCl2. This effect was not observed at short times (1 and 3h) with this same concentration, neither with 1 and 10 microM HgCl2 in all the studied times. Taken together, these findings indicate that low concentrations of HgCl2 induce apoptosis by inhibiting mitochondrial function, and the OK cell line may be considered a useful tool for the study of programmed cell death involving mercurial species and other heavy metals.
Ultrastructural analysis of different-made staplers' staples.
Gentilli, S; Portigliotti, L; Aronici, M; Ferrante, D; Surico, D; Milanesio, M; Gianotti, V; Gatti, G; Addante, A; Garavoglia, M
2012-10-01
Recently, Chinese-made mechanical staplers with lower price respect to American-made ones have been introduced in clinical practice. In literature, small case series compare the clinical outcomes of different staplers concluding that the new stapler devices perform as well as the American ones. The aim of this study is to compare with an ultrastructural analysis the staples of different staplers in order to verify the existence of differences that might explain significant price disparity and condition clinical outcomes. Each stapler was subjected to morphological analysis, energy dispersive X-Ray spectroscopy, metal release assessment followed by inductively coupled plasma mass spectroscopy. P-values were considered statistically significant when <0.05. Autosuture staples have square section whereas the other American one and Chinese made staples have round sections. Roughness index and chips presence before and after ageing tests were comparable for all samples except for Ethicon Endo-Surgery stapler. Energy dispersive X-Ray spectroscopy showed that all staplers are made of pure Titanium but Ethicon Endo-Surgery staples are made with an alloy. Metal release analysis release statistically significant differences between samples in simulated body fluid 20 days solution (P=0.002) and in Aquaregia at 14 days solution. Discussion. Stapling devices have became routinely used in gastrointestinal surgery mainly because of operative time reduction. Recently, new Chinese-made mechanical staplers, with significantly lower prices, have been introduced in clinical practice. In literature, there are some studies that compare clinical outcomes of American-made and Chinese-made staplers on small groups of patients but doesn't exist any work which consider structural differences between traditional and new devices. In our study, for the first time, we propose a comparison between two American-made staplers and three Chinese-made staplers which evaluate morphology, metal composition and chemical staples release. Our study suggest that there are some ultrastructural differences between commercially available staplers with no correlation to price disparity. More studies are needed to confirm our results and to verify if our findings could condition clinical outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajabeen, Padamsee; Kumas, T. K. Arun; Riley, Robert
Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared withmore » other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identied 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebito colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is conrmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were idented although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic« less
Tähkä, K M
1988-08-01
Juvenile bank voles (18-22 days of age) born and reared in a stimulatory long photoperiod (18L:6D, lights on 0600-2400 hr) were subjected either to a long photoperiod (18L:6D, Group L) or to a short photoperiod (6L:18D, lights on 0800-1400 hr, Group S) for 6 to 8 weeks whereafter the animals were killed by decapitation. Possible photoperiod-induced changes in Leydig cell ultrastructure were studied by conventional transmission electron microscopy and stereological methods. Striking differences in Leydig cell ultrastructure between the experimental groups were encountered. Light deprivation induced a marked decrease in the cytoplasmic and nuclear volume as well as in the amounts of smooth endoplasmic reticulum (SER), rough endoplasmic reticulum, mitochondria, and lipid inclusions in the Leydig cells. The number of myelin bodies and dense bodies seemed to be somewhat higher in the regressive Group S Leydig cells. These results are in good agreement with our previous histological and biochemical studies on the effects of photoperiod on Leydig cell function and suggest that in the bank vole the volume of mitochondria and SER in particular correlates positively with the steroidogenic capacity (the activity of C20 alpha 22-C27 desmolase, 17 alpha-hydroxylase, and C17-20 lyase in particular) in the Leydig cell.
High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.
Austin, Jotham R
2014-01-01
The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.
The effect of PDIA3 gene knockout on the mucosal immune function in IBS rats.
Zhuang, Zhao-Meng; Wang, Xiao-Teng; Zhang, Lu; Tao, Li-Yuan; Lv, Bin
2015-01-01
To observe the changes of intestinal inflammation on PDIA3 gene knockout IBS rats and its effect on immune function. 36 SD rats were randomly divided into four groups: the control group (n = 8); IBS- empty virus group (IBS-GFP, which); IBS-PDIA3 knockout group (n = 12); IBS- the control group (n = 12). After modeling, colon and ileocecal tissue pathology in each group were observed separately. Changes of immune and inflammatory markers were measured. At the same time, ultrastructural changes in each group were observed by electron microscopy. Compared with the IBS control group, inflammation was reduced significantly in IBS-PDIA3 knockout group. IgE, IL-4 and IL-9 and the level of intestinal trypsin type were decreased significantly. Furthermore, mast cell degranulation and PAR 2 receptor reduced significantly. PDIA3 may play an important role in the development of IBS by mediating through immune responses of mucosal abnormalities. However, the mechanism needs to be confirmed in further study.
Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang
2016-03-01
Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.
Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766)
Ciena, Adriano Polican; Bolina, Cristina de Sousa; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei
2013-01-01
The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae. PMID:23701183
2010-01-01
Background Cryopreservation of oocytes, which is an interesting procedure to conserve female gametes, is an essential part of reproductive biotechnology. The objective of the present study was to investigate the effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Methods Immature oocytes (germinal vesicles) isolated from ovaries of normal bitches (> 6 months of age) were either vitrified in open pulled straw (OPS) using 20% ethylene glycol (EG) and 20% dimethyl sulfoxide (DMSO) as vitrification solution or exposed to vitrification solution without subjected to liquid nitrogen. After warming, oocytes were investigated for nuclear maturation following in vitro maturation (IVM), ultrastructural changes using transmission electron microscopy (TEM) and gene expression using RT-PCR. Fresh immature oocytes were used as the control group. Results The rate of resumption of meiosis in vitrified-warmed oocytes (53.4%) was significantly (P < 0.05) lower than those of control (93.8%) and exposure (91.4%) groups. However, there were no statistically significant differences among groups in the rates of GV oocytes reaching the maturation stage (metaphase II, MII). The ultrastructural alterations revealed by TEM showed that cortical granules, mitochondria, lipid droplets and smooth endoplasmic reticulum (SER) were affected by vitrification procedures. RT-PCR analysis for gene expression revealed no differences in HSP70, Dnmt1, SOD1 and BAX genes among groups, whereas Bcl2 was strongly expressed in vitrified-warmed group when compared to the control. Conclusion Immature canine oocytes were successfully cryopreserved, resumed meiosis and developed to the MII stage. The information obtained in this study is crucial for the development of an effective method to cryopreserve canine oocytes for establishment of genetic banks of endangered canid species. PMID:20565987
Extending unbiased stereology of brain ultrastructure to three-dimensional volumes
NASA Technical Reports Server (NTRS)
Fiala, J. C.; Harris, K. M.; Koslow, S. H. (Principal Investigator)
2001-01-01
OBJECTIVE: Analysis of brain ultrastructure is needed to reveal how neurons communicate with one another via synapses and how disease processes alter this communication. In the past, such analyses have usually been based on single or paired sections obtained by electron microscopy. Reconstruction from multiple serial sections provides a much needed, richer representation of the three-dimensional organization of the brain. This paper introduces a new reconstruction system and new methods for analyzing in three dimensions the location and ultrastructure of neuronal components, such as synapses, which are distributed non-randomly throughout the brain. DESIGN AND MEASUREMENTS: Volumes are reconstructed by defining transformations that align the entire area of adjacent sections. Whole-field alignment requires rotation, translation, skew, scaling, and second-order nonlinear deformations. Such transformations are implemented by a linear combination of bivariate polynomials. Computer software for generating transformations based on user input is described. Stereological techniques for assessing structural distributions in reconstructed volumes are the unbiased bricking, disector, unbiased ratio, and per-length counting techniques. A new general method, the fractional counter, is also described. This unbiased technique relies on the counting of fractions of objects contained in a test volume. A volume of brain tissue from stratum radiatum of hippocampal area CA1 is reconstructed and analyzed for synaptic density to demonstrate and compare the techniques. RESULTS AND CONCLUSIONS: Reconstruction makes practicable volume-oriented analysis of ultrastructure using such techniques as the unbiased bricking and fractional counter methods. These analysis methods are less sensitive to the section-to-section variations in counts and section thickness, factors that contribute to the inaccuracy of other stereological methods. In addition, volume reconstruction facilitates visualization and modeling of structures and analysis of three-dimensional relationships such as synaptic connectivity.
Cohen, MW; Weldon, PR
1980-01-01
In cultures of xenopus myotomal muscle cells and spinal cord (SC) some of the nerve-muscle contacts exhibit a high density of acetylcholine receptors (AchRs [Anderson et al., 1977, J. Physiol. (Lond.). 268:731- 756,757-773]) and synaptic ultrastructure (Weldon and Cohen, 1979, J. Neurocytol. 8:239-259). We have examined whether similarly specialized contacts are established when the muscle cells are cultured with explants of xenopus dorsal root ganglia (DRG) or sympathetic ganglia (SG). The outgrowth from the ganglionic explants contained neuronal and non- neuronal cell processes. Although both types of processes approached within 100 A of muscle cells, synaptic ultrastructure was rarely observed at these contacts. Because patches of postsynaptic ultrastructure also develop on noncontacted muscle cells, the very few examples of contacts with such specializations probably occurred by chance. AChRs were stained with fluroscent α-bungarotoxin. More than 70 percent of the SC-contacted muscle cells exhibited a high receptor density along the path of contact. The corresponding values for DRG- and SG- contacted muscle cells were 10 and 6 percent. Similar values were obtained when the ganlionic and SC explants were cultured together in the same chamber. The few examples of high receptor density at ganglionic-muscle contacts resembled the characteristic receptor patches of noncontacted muscle cells rather than the narrow bands of high receptor density seen at SC-muscle contacts. In addition, more than 90 percent of these ganglionic- contacted muscle cells had receptor patches elsewhere, compared to less than 40 percent for the SC-contacted muscle cells. These findings indicate that the SC neurites possess a specific property which is important for the establishment of synaptically specialized contacts with muscle and that this property is lacking in the DRG and SG neurites. PMID:7400212
Emerging ciliopathies: are respiratory cilia compromised in Usher syndrome?
Piatti, G; De Santi, M M; Brogi, M; Castorina, P; Ambrosetti, U
2014-01-01
Usher syndrome is a ciliopathy involving photoreceptors and cochlear hair cells (sensory cilia): since sensory and motor ciliopathies can overlap, we analysed the respiratory cilia (motile) in 17 patients affected by Usher syndrome and 18 healthy control subject. We studied the mucociliary transport time with the saccharine test, ciliary motility and ultrastructure of respiratory cilia obtained by nasal brushing; we also recorded the classical respiratory function values by spirometry. All enrolled subjects showed normal respiratory function values. The mean mucociliary transport time with saccharine was 22.33 ± 17.96 min, which is in the range of normal values. The mean ciliary beat frequency of all subjects was 8.81 ± 2.18 Hz, which is a value approaching the lower physiological limit. None of the classical ciliary alterations characterizing the "ciliary primary dyskinesia" was detected, although two patients showed alterations in number and arrangement of peripheral microtubules and one patient had abnormal ciliary roots. Respiratory cilia in Usher patients don't seem to have evident ultrastructural alterations, as expected, but the fact that the ciliary motility appeared slightly reduced could emphasize that a rigid distinction between sensory and motor ciliopathies may not reflect what really occurs. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of gamma irradiation on the midgut ultrastructure of Glossina palpalis subspecies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, J.K.; Molyneux, D.H.; Wallbanks, K.R.
1989-05-01
In the sterile insect technique, insects are sterilized prior to release in areas where they are pests. The sterile males compete for and with fertile wild individuals for mates, thus reducing the population's reproductive rate. Tsetse fly (Glossina spp.) populations have been eradicated after release of laboratory-bred flies sterilized by gamma irradiation. However, no studies exist on radiation-induced damage to the midgut morphology and function of the radiation-sterilized insects. After G. palpalis palpalis and G. p. gambiensis were subjected to 130 Gy gamma radiation, their midgut damage and recovery were monitored by electron microscopy. The first sign of damage wasmore » atrophy and loss of the microvillous border from epithelial cells. The rate of cell degeneration increased, with young as well as old cells being affected and cellular debris filling the ectoperitrophic space. Muscle cells were destroyed, patches of basal lamina were left bare, intracellular virus- and rickettsia-like organisms became more frequent, and many replacement cells became unusually large. Partial recovery occurred from the 10th day postirradiation. Such changes in midgut ultrastructure and the corresponding inhibition of functions may increase the susceptibility of the fly to trypanosome infection.« less
DNA damage in lead-exposed hepatocytes: coexistence of apoptosis and necrosis?
Narayana, Kilarkaje; Raghupathy, Raj
2012-04-01
The aim of the present study was to investigate the coexistence of oxidative DNA damage and apoptosis- and necrosis-related DNA damage, and to correlate with ultrastructural changes in hepatocyte nuclei in the lead-nitrate-exposed liver. Adult male Wistar rats were exposed to 0, 0.5, and 1% lead nitrate for 60 days, and the livers were sampled the next day. Ultrastructurally, hepatocyte nuclei showed no apoptosis-related morphological changes, but showed necrotic changes. Competitive enzyme-linked immunosorbent assay showed no change in 8-oxo-dG activity (P > 0.05), but immunohistochemistry showed its localization in hepatocytes, Kupffer cells, endothelium, and bile ductule epithelium. TUNEL-labeled DNA breaks presenting 3'-OH ends increased in hepatocytes in all functional zones of the portal acini and bile ductule epithelium (zones I>III>II). In situ oligo ligation revealed the existence of DNA breaks bearing duplex 3' overhangs and 5' P-blunt ends in hepatocytes of all functional zones and bile ductule epithelium. In conclusion, both apoptosis- and necrosis-related DNA damage coexist without significant oxidative DNA damage. Hepatocytes display changes related to necrosis, but not those related to apoptosis.
[Nicorandil improves cognitive dysfunction in mice with streptozotocin-induced diabetes].
Yan, Wen-Hui; Zhang, Chun-Xi; Xing, Tong; Gong, Xue; Yang, Yu-Xuan; Li, Yi-Nuo; Liu, Xuan; Ayijiang, Jiamaliding; Yu, Ye; Zhang, Meng; Chen, Li-Na
2018-04-20
To observe the protective effects of potassium channel opener nicorandil against cognitive dysfunction in mice with streptozotocin (STZ)-induced diabetes. C57BL/6J mouse models of type 1 diabetes mellitus (T1DM) were established by intraperitoneal injection of STZ and received daily treatment with intragastric administration of nicorandil or saline (model group) for 4 consecutive weeks, with normal C57BL/6J mice serving as control. Fasting blood glucose level was recorded every week and Morris water maze was used to evaluate the cognitive behavior of the mice in the 4th week. At the end of the experiment, the mice were sacrificed to observe the ultrastructural changes in the hippocampus and pancreas under transmission electron microscopy; the contents of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the hippocampus and SOD activity and MDA level in the brain tissue were determined. Compared with the control group, the model group showed significantly increased fasting blood glucose (P<0.001), significantly prolonged escape latency (P<0.05) and increased swimming distance (P<0.01) with ultrastructural damage of pancreatic β cells and in the hippocampus; GIP and GLP-1 contents in the hippocampus (P<0.01) and SOD activity in the brain were significantly decreased (P<0.05) and MDA content was significantly increased in the model group (P<0.05). Compared with the model group, nicorandil treatment did not cause significant changes in fasting blood glucose, but significantly reduced the swimming distance (P<0.05); nicorandil did not improve the ultrastructural changes in pancreatic β cells but obviously improved the ultrastructures of hippocampal neurons and synapses. Nicorandil also significantly increased the contents of GIP and GLP-1 in the hippocampus (P<0.05), enhanced SOD activity (P<0.05) and decreased MDA level (P<0.01) in the brain tissue. Nicorandil improves cognitive dysfunction in mice with STZ-induced diabetes by increasing GIP and GLP-1 contents in the hippocampus and promoting antioxidation to relieve hippocampal injury.
ULTRASTRUCTURAL STUDY OF LESIONS IN GILLS OF A MARINE SHRIMP EXPOSED TO CADMIUM
Pathologic black gills of pink shrimp, Penaeus duorarum, exposed to 763 micrograms/l of cadmium chloride for 15 days were studied with transmission electron microscopy and were compared with normal gills of control pink shrimp. Local as well as extensive areas of cell death and n...
Communication Breakdown: The Impact of Ageing on Synapse Structure
Petralia, Ronald S.; Mattson, Mark P.; Yao, Pamela J.
2014-01-01
Impaired synaptic plasticity is implicated in the functional decline of the nervous system associated with ageing. Understanding the structure of ageing synapses is essential to understanding the functions of these synapses and their role in the ageing nervous system. In this review, we summarize studies on ageing synapses in vertebrates and invertebrates, focusing on changes in morphology and ultrastructure. We cover different parts of the nervous system, including the brain, the retina, the cochlea, and the neuromuscular junction. The morphological characteristics of aged synapses could shed light on the underlying molecular changes and their functional consequences. PMID:24495392
Bisphenol A-induced ultrastructural changes in the testes of common marmoset.
Vijaykumar, Tushara; Singh, Dipty; Vanage, Geeta R; Dhumal, Rohit V; Dighe, Vikas D
2017-07-01
Bisphenol A (BPA) is an endocrine disruptor that is widely used in the manufacture of polycarbonate plastics, epoxy resins and dental sealants. It is known to have adverse effects on spermatogenesis in rodents. This study was aimed to evaluate the effects of BPA in adult common marmoset owing to its similarities with human spermatogenesis. Sixteen marmosets were divided into four groups (n=4 per group) and given oral doses of BPA (2.5, 12.5 and 25 μg/kg BW/day) for 70 days to cover two spermatogenic cycles, and the control group received only vehicle (honey). Testes were processed for histological and transmission electron microscopy studies. Histology of the testis showed sloughing of germ cells into the lumen, increase in interstitial space and vacuolation of Sertoli cell cytoplasm. Ultrastructural analysis of the testis revealed several degenerative effects on the basement membrane, Sertoli cells, Leydig cells and other developing germ cells in the 12.5 and 25 μg/kg BW/day groups as compared to control. The observed ultrastructural changes caused by BPA in testicular morphology might be indicative of a perturbed sperm production. Considering the genetic and spermatogenic similarities of common marmoset (Callithrix jacchus) and humans, the study findings are of significance. Further studies are, however, needed to elucidate the mechanism of action.
Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Samkoe, Kimberley S.; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.
2010-01-01
Highly localized reflectance measurements can be used to directly quantify scatter changes in tissues. This study presents a microsampling approach that is used to raster scan tumors to extract parameters believed to be related to the tissue ultra-structure. A confocal reflectance imager was developed to examine scatter changes across pathologically distinct regions within tumor tissues. Tissue sections from two murine tumors, AsPC-1 pancreas tumor and the Mat-LyLu Dunning prostate tumor, were imaged. After imaging, histopathology-guided region-of-interest studies of the images allowed analysis of the variations in scattering resulting from differences in tissue ultra-structure. On average, the median scatter power of tumor cells with high proliferation index was about 26% less compared to tumor cells with low proliferation index (LPI). Necrosis exhibited the lowest scatter power signature across all the tissue types considered, with about 55% lower median scatter power than LPI tumor cells. Additionally, the level and maturity of the tumor's fibroplastic response was found to influence the scatter signal. This approach to scatter visualization of tissue ultra-structure in situ could provide a unique tool for guiding surgical resection, but this kind of interpretation into what the signal means relative to the pathology is required before proceeding to clinical studies. PMID:19256692
Del-Pozo, J; Mishra, N; Kabuusu, R; Cheetham, S; Eldar, A; Bacharach, E; Lipkin, W I; Ferguson, H W
2017-01-01
Using transmission electron microscopy (TEM), the presented work expands on the ultrastructural findings of an earlier report on "syncytial hepatitis," a novel disease of tilapia (SHT). Briefly, TEM confirmed the presence of an orthomyxovirus-like virus within the diseased hepatocytes but not within the endothelium. This was supported by observing extracellular and intracellular (mostly intraendosomal), 60-100 nm round virions with a trilaminar capsid containing up to 7 electron-dense aggregates. Other patterns noted included enveloped or filamentous virions and virion-containing cytoplasmic membrane folds, suggestive of endocytosis. Patterns atypical for orthymyxovirus included the formation of syncytia and the presence of virions within the perinuclear cisternae (suspected to be the Golgi apparatus). The ultrastructural morphology of SHT-associated virions is similar to that previously reported for tilapia lake virus (TiLV). A genetic homology was investigated using the available reverse transcriptase polymerase chain reaction (RT-PCR) probes for TiLV and comparing clinically sick with clinically normal fish and negative controls. By RT-PCR analysis, viral nucleic acid was detected only in diseased fish. Taken together, these findings strongly suggest that a virus is causally associated with SHT, that this virus shares ultrastructural features with orthomyxoviruses, and it presents with partial genetic homology with TiLV (190 nucleotides).
Sanchez-Moreno, M; Fernandez-Becerra, C; Mascaro, C; Rosales, M J; Dollet, M; Osuna, A
1995-01-01
Plants of Lycopersicon esculentum (grown in greenhouses) and Anona cherimolia cultivated in southeastern Spain were examined for the presence of trypanosomatid flagellates. Kinetoplastid protozoa were found in the fruits but not in the phloem or other plant tissues. Parasites were detected from the onset of fruiting. Isolates were detected from the onset of fruiting. Isolates were adapted to in vitro culturing in monophase media. The form and the structural organization was studied by scanning and transmission electron microscopy. The parasites showed an ultrastructural pattern similar to that of other species of the genus Phytomonas. In tomatoes experimentally inoculated with flagellates cultivated in vitro, we observed that the parasites did not lose their infectious capacity. Three strains of trypanosomatids of the genus Phytomonas, isolated from different species of Euphorbia (E. characias and E. hyssopifolia) and from Cocos nucifera, were compared with our isolates by lectin-agglutination tests. Our isolates were different from the two strains isolated from Euphorbia, but with this technique we could not differentiate our isolates from those of the coconut, nor could we differentiate between the isolates, their ultrastructural similarity together with their similar behavior in the lectin-agglutination test suggesting that these isolates have a common origin.
Ning, Wei; Wu, Jie; Zhao, Ting; Zhao, Xin; Li, Tianlai
2012-05-01
The paper adopted the JEM-100CX II transmission electron microscope to observe chloroplast ultrastructure of five kinds of dandelion (Taraxacum) leaves in northeast, and the LI-6400 portable photosynthesis system was used to compare the chlorophyll fluorescence and the photosynthesis characteristics of five kinds of dandelions in Northeast China. Chloroplast ultrastructure showed: in the five kinds of dandelion, larger chloroplast, grana with more layers, regular thylakoid, without starch grains and so on, these chloroplasts characteristics decided to bigger photosynthetic rate. The five kinds of dandelion P(n) exhibited a "double peak" diurnal curve: stomatal limitation is the main adjustment factors for the midday depression phenomenon. The P(n),G(s),C(i) content of T. mongolicum are the highest, and T. asiaticum are the lowest among them. The relation between P(n) and G(s),C(i) is direct ratio, P(n) and T(r) is in an inverse proportion among the five kinds of dandelion. In addition, P(n) is positively correlated with Chla, Chlb, and the relationship with Chlb is bigger. The paper demonstrates the Mongolian dandelion photosynthetic efficiency is the highest, it is an higher photosynthetic efficiency dandelion,it provide theoretical basis for assessment and use of the resource of dandelion.
1988-12-01
Page No. 1. Light Microscopy of Human Skin Grafted onto Congenitally Athymic Nude Mice .................. 4 2. Ultrastructural Changes Produced by HD...laboratory published a report on the ultrastructure of the pathogenesis of blister formation following exposure to sulfur mustard of human- skin grafted to...candidate prophylactic compounds such as niacirnamide. By way of review, hD-induced pathology of human skin grafted onto congenitally athymic nude mice was
Microstructure and Ultrastructure Alterations in the Pallium of Immature Mice Exposed to Cadmium.
Yang, X F; Han, Q G; Liu, D Y; Zhang, H T; Fan, G Y; Ma, J Y; Wang, Z L
2016-11-01
The aim of this study was to investigate microstructure and ultrastructure alterations in the pallium of immature mice exposed to cadmium. Forty immature mice were randomly divided into control, 1/100 LD 50 (1.87 mg/kg, low), 1/50 LD 50 (3.74 mg/kg, medium), and 1/25 LD 50 (7.48 mg/kg, high) dose groups. After oral cadmium exposure for 40 days, the pallium of mice was obtained for microstructure and ultrastructure studies. The results showed that both microstructure and ultrastructure alterations of the pallium were observed in all treated mice and the most obvious alterations were in the high dose group. Microstructural analysis showed seriously congested capillary in the pia mater of the pallium in the high cadmium group. Meanwhile, vacuolar degenerate or karyopyknosis presented in some neurocytes, capillary quantity, and the number of apoptotic cells increased, some neurocytes became hypertrophy, the pia mater separated from the cortex, and local hemorrhage and accompanied inflammatory cell infiltration were also observed. Ultrastructural analysis showed that rough endoplasmic reticulum was expanded, heterochromatin marginalized, perinuclear space distinctly broadened, swelling and vacuolization mitochondria appeared, synapse was swelling, presynaptic and postsynaptic membranes presented fusion, and most of mitochondrial cristae were ambiguous. The results indicated that cadmium exposure for 40 days induced dose-dependent microstructure and ultrastructure alterations in pallium of immature mice.
NASA Astrophysics Data System (ADS)
Josephsen, Gary D.; Josephsen, Kelly A.; Beilman, Greg J.; Taylor, Jodie H.; Muiler, Kristine E.
2005-12-01
This is a report of the adaptation of microwave processing in the preparation of liver biopsies for transmission electron microscopy (TEM) to examine ultrastructural damage of mitochondria in the setting of metabolic stress. Hemorrhagic shock was induced in pigs via 35% total blood volume bleed and a 90-min period of shock followed by resuscitation. Hepatic biopsies were collected before shock and after resuscitation. Following collection, biopsies were processed for TEM by a rapid method involving microwave irradiation (Giberson, 2001). Samples pre- and postshock of each of two animals were viewed and scored using the mitochondrial ultrastructure scoring system (Crouser et al., 2002), a system used to quantify the severity of ultrastructural damage during shock. Results showed evidence of increased ultrastructural damage in the postshock samples, which scored 4.00 and 3.42, versus their preshock controls, which scored 1.18 and 1.27. The results of this analysis were similar to those obtained in another model of shock (Crouser et al., 2002). However, the amount of time used to process the samples was significantly shortened with methods involving microwave irradiation.
Mechanical properties and ultrastructural characteristics of a glass fiber-reinforced composite.
García Barbero, Alvaro Enrique; Vera González, Vicente; García Barbero, Ernesto; Aliaga Vera, Ignacio
2015-06-01
To examine the ultrastructural characteristics of a fiber-reinforced composite (FRC) and its behavior in vitro as a framework for fixed partial dentures (FPDs). A total of 40 specimens were prepared using extracted teeth fixed in methacrylate blocks as supports for the FPD, then the specimens were divided into four groups depending on whether a retaining box was used to fix the FPD to the support teeth, and on whether a composite pontic was assembled on top of the fibers. Fracture testing was performed in a universal testing machine (1 mm/minute). Fracture strength values and failure types were statistically compared for each group. Using retaining boxes did not improve the mechanical behavior of the restorative system. The weakest element of the system was the composite tooth constructed on top of the FRC.
Assessment of nerve ultrastructure by fibre-optic confocal microscopy.
Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R
1996-01-01
Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.
Eid, Refaat A; Zaki, Mohamed Samir Ahmed; Al-Shraim, Mubarak; Eleawa, Samy M; El-Kott, Attalla Farag; Al-Hashem, Fahaid H; Eldeen, Muhammad Alaa; Ibrahim, Hoja; Aldera, Hussain; Alkhateeb, Mahmoud A
2018-05-01
This study investigated the effect of ghrelin on cardiomyocytes function, apoptosis and ultra-structural alterations of remote myocardium of the left ventricle (LV) of rats, 21 days post myocardial infarction (MI). Rats were divided into 4 groups as a control, a sham-operated rats, a sham-operated+ghrelin, an MI + vehicle and an MI + ghrelin-treated rats. MI was induced by LAD ligation and then rats were recievd a concomitant doe of either normal saline as a vehicle or treated with ghrelin (100 μg/kg S.C., 2x/day) for 21 consecutive days. Ghrelin enhanced myocardial contractility in control rats and reversed the decreases in myocardial contractility and the increases in the serum levels of CK-MB and LDH in MI-induced rats. Additionally, it inhibited the increases in levels of Bax and cleaved caspase 3 and increased those for Bcl-2 in the remote myocardium of rat's LV, post-MI. At ultra-structural level, while ghrelin has no adverse effects on LV myocardium obtained from control or sham-treated rats, ghrelin post-administration to MI-induced rats reduced vascular formation, restored normal microfilaments appearance and organization, preserved mitochondria structure, and prevented mitochondrial swelling, collagen deposition and number of ghost bodies in the remote areas of their LV. Concomitantly, in remote myocardium of MI-induced rats, ghrelin enhanced endoplasmic reticulum intracellular organelles count, decreased number of atrophied nuclei and phagocytes, diminished the irregularity in the nuclear membranes and inhibited chromatin condensation. In conclusion, in addition to the physiological, biochemical and molecular evidence provided, this is the first study that confirms the anti-apoptotic effect of ghrelin in the remote myocardium of the LV during late MI at the level of ultra-structural changes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Werner, Michael; Simmons, Leigh W.
2011-03-01
Sperm competition is thought to be an important selective pressure shaping sperm form and function. However, few studies have moved beyond gross examinations of sperm morphology. Sperm length is subject to sexual selection via sperm competition in the scarab beetle Onthophagus taurus. Here, the structure and ultrastructure of spermatozoa in this species were investigated using light and electron microscopy. Spermatozoa were found to be filiform, measuring about 1,200 mm in length. The sperm head consists of a three-layered acrosome and a nuclear region bearing the anterior extension of the centriole adjunct. Acrosome and nuclear regions are bilaterally symmetric, with their axes of symmetry being orthogonal to each other. Head and flagellar structures are connected by a well-developed centriole adjunct. The sperm heads are asymmetrically surrounded by accessory material and embedded into the cytoplasm of the spermatocyst cell. The accessory material is produced inside the spermatids and then transferred to the outside due to a new membrane formed around the sperm's organelles. The old spermatid membrane separates the accessory material from the cyst cell. The flagellum contains a 9+9+2 axoneme, two accessory bodies, and two mitochondrial derivatives of unequal size. The major mitochondrial derivative is significantly larger than the minor one. The axoneme is arranged in a sinusoidal manner parallel along the major mitochondrial derivative. The spermatozoa show no progressive motility when released in buffer solution which is likely to be the result of the flagellar arrangement and the structure of the major mitochondrial derivative. The cross-sectional area of the minor and the major mitochondrial derivatives show different patterns of genetic variation. The data provide the first estimates of genetic variation in sperm ultrastructure for any species, and give evidence for the persistence of genetic variation in ultrastructure required for the rapid and divergent evolution that characterizes spermatozoa generally.
Isimbaldi, G; Sironi, M; Taccagni, G; Declich, P; Dell'Antonio, A; Galli, C
1993-06-01
We report a case of primary cutaneous neuroendocrine carcinoma (PCNEC) with squamous, glandular, and melanocytic differentiation and associated Bowen disease. The paranuclear globular positivity of low-molecular-weight cytokeratins agrees with the ultrastructural observations of paranuclear fibrous bodies in the small neuroendocrine cells, while the diffuse cytoplasmic positivity corresponds to the sparse intermediate filaments in large cells with squamous differentiation. "Transitional forms" are characterized by both diffuse and globular cytoplasmic positivity for cytokeratins and by the ultrastructural evidence of neuroendocrine and squamous features. Therefore the ultrastructural demonstration of intracytoplasmic tonofibrils and tonofilaments, intercellular glandular lumina, lined by well-formed microvilli, and immature premelanosomes in the neurosecretory cells supports the proposed tripartite differentiation of neuroendocrine cells of this case of PCNEC.
Guseinov, R G; Popov, S V; Gorshkov, A N; Sivak, K V; Martov, A G
2017-12-01
To investigate experimentally ultrastructural and biochemical signs of acute injury to the renal parenchyma after warm renal ischemia of various duration and subsequent reperfusion. The experiments were performed on 44 healthy conventional female rabbits of the "Chinchilla" breed weighted 2.6-2.7 kg, which were divided into four groups. In the first, control, group included pseudo-operated animals. In the remaining three groups, an experimental model of warm ischemia of renal tissue was created, followed by a 60-minute reperfusion. The renal warm ischemia time was 30, 60 and 90 minutes in the 2nd, 3rd and 4th groups, respectively. Electron microscopy was used to study ultrastructural disturbances of the renal parenchyma. Biochemical signs of acute kidney damage were detected by measuring the following blood serum and/or urine analytes: NGAL, cystatin C, KIM-1, L-FABP, interleukin-18. The glomerular filtration was evaluated by creatinine clearance, which was determined on days 1, 5, 7, 14, 21 and 35 of follow-up. A 30-minute renal warm ischemia followed by a 60-minute reperfusion induced swelling and edema of the brush membrane, vacuolation of the cytoplasm of the endothelial cells of the proximal tubules, and microvilli restructuring. The observed disorders were reversible, and the epithelial cells retained their viability. After 60 minutes of ischemia and 60 minutes of reperfusion, the observed changes in the ultrastructure of the epithelial cells were much more pronounced, some of the epithelial cells were in a state of apoptosis. 90 min of ischemia and 60 min of reperfusion resulted in electron-microscopic signs of the mass cellular death of the tubular epithelium. Concentration in serum and/or biochemical urine markers of acute renal damage increased sharply after ischemic-reperfusion injury. Restoration of indicators was observed only in cases when the renal warm ischemia time did not exceed 60 minutes. The decrease in creatinine clearance occurred in the first 24 hours after the intervention, lasting not less than two weeks after a 30-minute warm ischemia, at least 3 weeks after a 60-minute warm ischemia and continued more than a month after a 90-minute renal artery occlusion. Intraoperative warm ischemia and subsequent reperfusion are the actual reasons for the alteration of the ultrastructure of the renal tissue and the impairment of the filtration function. The severity of the disorders depends on the duration of the damaging factors. After a 30-60-minute ischemia, the structural and functional changes in the renal tissue are reversible. The mass death of nephrocytes-effectors is possible only after warm renal ischemia longer than 60 min.
Hematology, cytochemistry and ultrastructure of blood cells in fishing cat (Felis viverrina).
Prihirunkit, Kreangsak; Salakij, Chaleow; Apibal, Suntaree; Narkkong, Nual Anong
2007-06-01
Hematological, cytochemical and ultrastructural features of blood cells in fishing cat (Felis viverrina) were evaluated using complete blood cell counts with routine and cytochemical blood stains, and scanning and transmission electron microscopy. No statistically significant difference was found in different genders of this animal. Unique features of blood cells in this animal were identified in hematological, cytochemical and ultrastructural studies. This study contributes to broaden hematological resources in wildlife animals and provides a guideline for identification of blood cells in the fishing cat.
Seminoma and parathyroid adenoma in a snow leopard (Panthera unica).
Doster, A R; Armstrong, D L; Bargar, T W
1989-05-01
A seminoma and parathyroid adenoma were diagnosed in an aged snow leopard. The ultrastructural appearance of the seminoma was similar to that described in the dog and in man. The lack of significant amounts of rough endoplasmic reticulum, Golgi complexes and free ribosomes in the parathyroid adenoma suggested that it was non-functional. Parathyroid adenoma has not been previously described in a large wild feline.
Hansson, Bill S.; Hilker, Monika; Reinecke, Andreas
2012-01-01
Introduction Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures. Results Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds. Conclusions Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function. PMID:22848471
Hussain, Tajamul; Al-Attas, Omar S; Alrokayan, Salman A; Ahmed, Mukhtar; Al-Daghri, Nasser M; Al-Ameri, Salman; Pervez, Shamsh; Dewangan, Shippi; Mohammed, Arif; Gambhir, Dikshit; Sumague, Terrance S
2016-07-01
Previous studies, including ours, have shown adverse effects of incense smoke on human health. However, the effect of incense smoke on kidney function and structure remains unknown. To evaluate possible adverse effects of incense smoke on kidney function and architecture in albino rats after chronic exposure to Arabian incense. Emission characteristics including particle size distribution, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) were determined by gravimetric and GCMS analyses. Kidney functional markers, oxidative stress and inflammatory markers were measured by standard or ELISA based procedures. Ultrastructural changes in kidney were examined by transmission electron microscope (TEM) and the gene expression of xenobiotic metabolizing enzymes including cytochrome P-450-1A1 (CYP1A1) and CYP1A2 were studied by real time PCR. Rats exposed to incense smoke demonstrated a significant increase in serum creatinine, uric acid, blood urea nitrogen (BUN), tissue malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and interleukin-4 (IL-4) levels and a significant decline in tissue reduced glutathione (GSH) and catalase activity. Incense smoke exposed rats also displayed marked ultrastructural changes in kidney tissue. Further, a significant increase in tissue gene expression of both CYP1A1 and CYP1A2 was noted in exposed rats. Changes to kidney functional markers and architecture appear to be mediated through augmented oxidative stress and inflammation. Long-term exposure to incense smoke may have deleterious effects on kidney function and architecture. Though, inhalation is the rout of exposure, findings of this study underscore that incense smoke may also have an effect on non-pulmonary tissues.
New Insights into the Effects of Chronic Kidney Failure and Dialysate Exposure on the Peritoneum.
Vlahu, Carmen A; Aten, Jan; de Graaff, Marijke; van Veen, Henk; Everts, Vincent; de Waart, Dirk R; Struijk, Dirk G; Krediet, Raymond T
♦ INTRODUCTION: Chronic uremia and the exposure to dialysis solutions during peritoneal dialysis (PD) induce peritoneal alterations. Using a long-term peritoneal exposure model, we compared the effects of chronic kidney failure (CKD) itself and exposure to either a 'conventional' or a 'biocompatible' dialysis solution on peritoneal morphology and function. ♦ METHODS: Wistar rats (Harlan, Zeist, the Netherlands) were grouped into: normal kidney function (NKF), CKD induced by 70% nephrectomy, CKD receiving daily peritoneal infusions with 3.86% glucose Dianeal (CKDD), or Physioneal (both solutions from Baxter Healthcare, Castlebar, Ireland) (CKDP). At 16 weeks, a peritoneal function test was performed, and histology, ultrastructure, and hydroxyproline content of peritoneal tissue were assessed. ♦ RESULTS: Comparing CKD with NKF, peritoneal transport rates were higher, mesothelial cells (MC) displayed increased number of microvilli, blood and lymph vasculature expanded, vascular basal lamina appeared thicker, with limited areas of duplication, and fibrosis had developed. All alterations, except lymphangiogenesis, were enhanced by exposure to both dialysis fluids. Distinct MC alterations were observed in CKDD and CKDP, the latter displaying prominent basolateral protrusions. In addition, CKDP was associated with a trend towards less fibrosis compared to CKDD. ♦ CONCLUSIONS: Chronic kidney failure itself induced peritoneal alterations, which were in part augmented by exposure to glucose-based dialysis solutions. Overall, the conventional and biocompatible solutions had similar long-term effects on the peritoneum. Importantly, the latter may attenuate the development of fibrosis. Copyright © 2016 International Society for Peritoneal Dialysis.
Zagorul'ko, A K; Fat, L F; Safronova, L G; Kobozev, G V; Gorelik, N I
1989-06-01
The lungs of 19 guinea pigs, born from 8 females in which acute and chronic pneumonia had been modelled by transtracheal introduction of sterile fishing-line were investigated. It was established, that in guinea pigs, born in females with acute and chronic pneumonia, the functional immaturity of pneumocytes of the 2-nd type took place. The functional immaturity of pneumocytes of the 2-nd type results in suppression of the surface active characteristics of surfactant.
Yu, H G; Hiatt, E N; Dawe, R K
2000-12-01
Kinetochores are large protein complexes that bind to centromeres. By interacting with microtubules and their associated motor proteins, kinetochores both generate and regulate chromosome movement. Kinetochores also function in the spindle checkpoint; a surveillance mechanism that ensures that metaphase is complete before anaphase begins. Although the ultrastructure of plant kinetochores has been known for many years, only recently have specific kinetochore proteins been identified. The recent data indicate that plant kinetochores contain homologs of many of the proteins implicated in animal and fungal kinetochore function, and that the plant kinetochore is a redundant structure with distinct biochemical subdomains.
Brunelli, Elvira; Talarico, Erminia; Corapi, Barbara; Perrotta, Ida; Tripepi, Sandro
2008-10-01
We analysed the morphology and ultrastructure of the gill apparatus of the ornate wrasse, Thalassoma pavo, under normal conditions and after exposure to a sublethal concentration of sodium lauryl sulphate (3.5 mg/l, which is one-third of the 96LC99 value). To identify the biochemical mechanisms affected by this pollutant, we evaluated and compared the localisation of Na(+)/K(+) ATPase in normal and experimental conditions. Immunocytochemical analysis revealed that this enzyme was active in the chloride cells (CCs), which were distributed in clusters in the interlamellar region of the filament. Ultrastructural analysis revealed conspicuous alterations on the epithelium after 96 and 192 h of exposure to sodium lauryl sulphate: structural features of the surface cells were lost, the appearance of intercellular lacunae changed, and cellular degeneration occurred. Statistical analysis comparing the number and dimensions of CCs in normal conditions and after 96 h of exposure showed that the CC area decreased after exposure to the detergent.
Saito, Masaya; Matsuura, Tomokazu; Nagatsuma, Keisuke; Tanaka, Ken; Maehashi, Haruka; Shimizu, Keiko; Hataba, Yoshiaki; Kato, Fumitaka; Kashimori, Isao; Tajiri, Hisao; Braet, Filip
2007-06-01
Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.
Tao, Chang-Lu; Liu, Yun-Tao; Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Zhang, Peijun; Lau, Pak-Ming; Zhou, Z Hong; Bi, Guo-Qiang
2018-02-07
As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25-60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABA A receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered "discus-shaped" ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions. Copyright © 2018 Tao, Liu et al.
Son, Pal Won; Chung, Jae Seung; Kim, Jin Hee; Kim, Sung Han; Chung, Ee-Yung
2014-01-01
Characteristics of the developmental stages of spermatids during spermiogenesis and phylogenetic classicfication of the species using sperm ultrastructures in male Crassostrea ariakensis were investigated by transmission electron microscope observations. The morphology of the spermatozoon of this species has a primitive type and is similar to those of Ostreidae. Ultrastructures of mature sperms are composed of broad, modified cap-shaped acrosomal vesicle and an axial rod in subacrosomal materials on an oval nucleus, four spherical mitochondria in the sperm midpiece, and satellite fibres which appear near the distal centriole. The axoneme of the sperm tail shows a 9+2 structure. Accordingly, the ultrastructural characteristics of mature sperm of C. ariakensis resemble to those of other investigated ostreids in Ostreidae in the subclass Pteriomorphia. In this study, particularly, two transverse bands (stripes) appear at the anterior region of the acrosomal vesicle of this species, unlike two or three transverse bands (stripes) in C. gigas. It is assumed that differences in this acrosomal substructure are associated with the inability of fertilization between the genus Crassostrea and other genus species in Ostreidae. Therefore, we can use sperm ultrastructures and morphologies in the resolution of taxonomic relationships within the Ostreidae in the subclass Pteriomorphia. These spermatozoa, which contain several ultrastructures such as acrosomal vesicle, an axial rod in the sperm head part and four mitochondria and satellite fibres in the sperm midpiece, belong to the family Ostreidae in the subclass Pteriomorphia. PMID:25949188
Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena
2017-01-01
The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations. PMID:28282457
Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena
2017-01-01
The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations.
Time-resolved Ultrastructural Detection of Phosphatidylinositol 3-phosphate
Stuffers, Susanne; Malerød, Lene; Schink, Kay Oliver; Corvera, Silvia; Stenmark, Harald; Brech, Andreas
2010-01-01
Phosphatidylinositol 3-phosphate [PtdIns(3)P] plays an important role in recruitment of various effector proteins in the endocytic and autophagic pathways. In an attempt to follow the distribution of PtdIns(3)P at the ultrastructural level, we are using the Fab1, YOTB, Vac1, and EEA1 (FYVE) domain, which is a zinc finger motif specifically binding to PtdIns(3)P. To follow PtdIns(3)P trafficking during a defined time window, here we have used a monomeric dimerizable FYVE probe, which binds with high avidity to PtdIns(3)P only after rapalog-induced dimerization. The probe localized to early and late endocytic compartments according to the time period of dimerization, which indicates that PtdIns(3)P is turned over via the endocytic machinery. In the functional context of epidermal growth factor (EGF) stimulation, we observed that dimerization of the probe led to clustering of mainly early endocytic structures, leaving most of the probe localized to the limiting membrane of endosomes. Interestingly, these clustered endosomes contained coats positive for the PtdIns(3)P-binding protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs), indicating that the probe did not displace Hrs binding. We conclude that the dimerizer-inducible probe is useful for the time-resolved detection of PtdIns(3)P at the ultrastructural level, but its effects on endosome morphology after EGF stimulation need to be taken into account. (J Histochem Cytochem 58:1025–1032, 2010) PMID:20713985
Bakeeva, Lora E.; Eldarov, Chupalav M.; Vangely, Irina M.; Kolosova, Nataliya G.; Vays, Valeriya B.
2016-01-01
Dry eye syndrome is an eye disorder affecting many people at an old age. Because dry eye syndrome is accelerated by aging, a useful approach to the prevention of this syndrome may be an intervention into the aging process. Previously, we showed that the mitochondria-targeted antioxidant SkQ1 delays manifestations of aging and inhibits the development of age-related diseases including dry eye syndrome. Nevertheless, the link between SkQ1's effects and its suppression of age-related changes in the lacrimal gland remains unclear. Here we demonstrated that dietary supplementation with SkQ1 (250 nmol/[kg body weight] daily) starting at age 1.5 months significantly alleviated the pathological changes in lacrimal glands of Wistar rats by age 24 months. By this age, lacrimal glands underwent dramatic deterioration of the ultrastructure that was indicative of irreversible disturbances in these glands' functioning. In contrast, in SkQ1-treated rats, the ultrastructure of the lacrimal gland was similar to that in much younger rats. Morphometric analysis of electron-microscopic specimens of lacrimal glands revealed the presence of numerous secretory granules in acinar cells and a significant increase in the number of operating intercalary ducts. Our results confirm that dietary supplementation with SkQ1 is a promising approach to healthy ageing and to prevention of aberrations in the lacrimal gland that underlie dry eye syndrome. PMID:27852065
Herde, Katja; Hartmann, Sonja; Brehm, Ralph; Kilian, Olaf; Heiss, Christian; Hild, Anne; Alt, Volker; Bergmann, Martin; Schnettler, Reinhard; Wenisch, Sabine
2007-11-01
In bone a role of connexin 43 has been implicated with the fusion of mononuclear precursors of the monocyte/macrophage lineage into multinucleated cells. In order to investigate the putative role of connexin 43 in formation of bone osteoclast-like foreign body giant cells which are formed in response to implantation of biomaterials, nanoparticulate hydroxyapatite had been implanted into defects of minipig femura. After 20 days the defect areas were harvested and connexin 43 expression and synthesis were investigated by using immunohistochemistry, Western Blot, and in situ hybridization within macrophages and osteoclast-like foreign body giant cells. Morphological analysis of gap junctions is performed ultrastructurally. As shown on protein and mRNA level numerous connexin 43 positive macrophages and foreign body giant cells (FBGC) were localized within the granulation tissue and along the surfaces of the implanted hydroxyapatite (HA). Besides, the formation of FBGC by fusion of macrophages could be shown ultrastructurally. Connexin 43 labeling observed on the protein and mRNA level could be attributed to gap junctions identified ultrastructurally between macrophages, between FBGC, and between FBGC and macrophages. Annular gap junctions in the cytoplasm of FBGC pointed to degradation of the channels, and the ubiquination that had occurred in the course of degradation was confirmed by Western blot analysis. All in all, the presently observed pattern of connexin 43 labeling refers to an functional role of gap junctional communication in the formation of osteoclast-like foreign body giant cells formed in response to implantation of the nanoparticulate HA.
Fahrner, A; Haszprunar, G
2000-04-01
The microanatomy and ultrastructure of the excretory system of Pneumoderma sp. (Gymnosomata) and Creseis virgula Rang, 1828 (Thecosomata) have been investigated by means of semithin serial sections, reconstructions and transmission electron microscopy. The studies revealed a functional metanephridial system consisting of a heart with a single ventricle and auricle in a pericardial cavity and a single kidney in both species. Podocytes in the atrial wall of the pericardial epithelium are the site of ultrafiltration, whereas the flat epithelium of the kidney with numerous basal infoldings and a dense microvillous border on the luminal surface suggests modification of the ultrafiltrate. In Pneumoderma sp., additional loci of ultrafiltration with identical fine structure (meandering slits with diaphragms covered by extracellular matrix) occur in the solitary rhogocytes (pore cells). The presence of podocytes situated on the atrial wall in representatives of two higher opisthobranch taxa contradicts former ideas on the loss of the primary site of ultrafiltration in the ancestors of the Opisthobranchia.
Vitamin E modifies the ultrastructure of testis and epididymis in mice exposed to lead intoxication.
Fahim, Mohamed A; Tariq, Saeed; Adeghate, Ernest
2013-05-01
Lead (Pb) is known to cause abnormal function of several systems including the male reproductive system, where it has been shown to reduce sperm count. In order to examine the morphological basis of the reduction in sperm count and a possible effect of vitamin E, lead acetate (1 mg/kg body weight) was given to control and vitamin E-treated mice daily, intraperitoneally for 3 weeks. The testis and body of epididymis of the mice were subjected to electron microscopy study. Pb caused degenerative changes in spermatids inducing vacuolization and a reduction in the number of cytoplasmic organelles in Leydig cells. Pb also destroyed the stereocilia of epididymal epithelium. The addition of vitamin E ameliorated the severity of these morphological changes. In conclusion, Pb-induced reduction in sperm count may be due to changes in the ultrastructure of spermatids, epididymal epithelia and Leydig cells. These changes can be reduced by vitamin E. Copyright © 2012 Elsevier GmbH. All rights reserved.
Delfino, Giovanni; Giachi, Filippo; Malentacchi, Cecilia; Nosi, Daniele
2015-09-01
Three types of serous products were detected in the syncytial cutaneous glands of the leptodactylid tungara frog, Engystomops pustulosus: type Ia, granules with wide halos and variable density cores; type Ib, high density granules without halos; and type II, vesicles containing a finely dispersed product. Ultrastructural evidence revealed that these products were manufactured by different serous gland types and excluded that they represented different steps in the secretory cycle of a single gland type. Indeed, secretory maturation affecting the products released by the Golgi apparatus proceeded through different mechanisms: confluence (vesicles), interactions between syncytium and secretory product (type Ib granules), and a combination of both processes (type Ia granules). In conclusion, this investigation of secretory maturation was shown to be a suitable approach for the identification of serous gland polymorphism and demonstrated that the tungara frog belongs to the minority of anuran species characterized by this peculiar morpho-functional trait. © 2015 Wiley Periodicals, Inc.
[Ultrastructural observation of tendonization of artificial tendon 109HH in rabbit].
Liu, L; Cao, Q; Xiao, H
1995-09-01
Ten New Zealand rabbits were divided into 5 groups at random. Calcaneal tendons were cut bilaterally, then atificial tendon 109HH was used to connect the two ends of the cut tendon. Ultrastructural changes of control group and experimental groups at 2, 6, 12, 28 weeks after section were observed. The results showed that fibroblast proliferated and a lot of ribosome and RER appeared in plasm during 2 approximately 6 weeks, indicating artificial tendon caused fibroblast proliferation. During this period, fibroblast over synthesized collagenous protein and the synthesis of collagenous fibers peaked. During 12-28 weeks, the number of fibroblasts and the synthesis of collagenous protein decreased. Finally, fibroblasts became inactive tendon cells. With the formation of new tendons, the artificial tendens were degradated and absorbed, and disappeared after 12 weeks. The new tendon fibers became thicker and had the correct direction through reconstruction. The structure and function of new tendons could be restored to be consistent with normal values.
[Ultrastructure of the intima of human pial arteries in arterial hypertension].
Chertok, V M; Kotsiuba, A E; Babich, E V
2009-01-01
Ultrastructure of the intima of human pial arteries obtained from 5 male cadavers of practically healthy individuals and from 8 cadavers of the patients with the intravitally diagnosed grade I arterial hypertension (AH) was studied by scanning and transmission electron microscopy. AH was found to be associated with the remodeling of the intimal structural elements in the pial arteries. In most arteries, the changes were detected in the microrelief of the luminal surface and in the permeability of the vascular endothelial lining and of the subendothelial layer. During this remodeling, some endothelial cells were found in the state of structural and functional adaptation to the elevated arterial pressure, while the others were undergoing the dystrophic changes. The latter include the cells containing lipid inclusions, as well as the endothelial cells presumably in the state of apoptosis. The destruction of the intercellular junctions, the disturbances in the endothelium permeability contributed to the development of subendothelial layer edema, resulting in its significant thickening. This layer became looser and contained abundant collagen fibrils.
Dmitrieva, E V; Moshkov, D A; Gakhova, E N
2006-01-01
Investigation of a possibility of long-term storage of frozen (-196 degrees C) viable neurons and nervous tissue is one of the central present day problems. In this study ultrastructural changes in neurons of frozen-thawed snail brain were examined as a function of time. We studied the influence of cryopreservation, cryoprotectant (Me2SO), cooling to 4-6 degrees C, and a prolonged incubation in physiological solution at 4-6 degrees C on dictyosomes of Golgi apparatus, endoplasmic reticulum (ER) cisternae and mitochondria. It has been found that responses of these intracellular structures of cryopreserved neurons to the above influences are similar: dissociation of Golgi dictyosomes, swelling of endoplasmic reticulum cisternae and mitochondrial cristae. Both freezing-thawing and cryoprotectant were seen to cause an increase in the number of lysosomes, liposomes, myelin-like structures, and to form large vacuoles. The structural changes in molluscan neurons caused by cryopreservation with Me2SO (2 M) were reversible.
NASA Astrophysics Data System (ADS)
Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W. W.; Buhl, D.; Hall-Spencer, J. M.; Baggini, C.; Fehr, K. T.; Immenhauser, A.
2012-05-01
Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Chee, Oliver; Black, Samuel; Cutler, Lynn
1991-01-01
Cupric ion-ferricyanide labeling methods and related ferrocyanide-stained tissues were used to locate the characterize, at the ultrastructural level, presumptive impulse initiation zones in the three types of vestibular macular nerve fibers. Large-diameter, M-type vestibular nerve fibers terminate in a calyx at the heminode, and labeling is coextensive with the base of the calyx. Intermediate, M/U-type nerve fibers have short, unmyelinated preterminal segments that sometimes bifurcate intamacularly, and small-diameter, U-type nerve fibers have long, unmyelinated preterminal axons and up to three branches. Preterminals of these nerve fibers display ultrastructural heterogeneity that is correlated with labeling patterns for sodium channels and/or associated polyanionic sites. They have a nodelike ultrastructure and label heavily from near the heminode to the base of the macula. Their intramacular branches, less organized ultrastructurally, label only slightly. Results indicate that vestibular nerve fibers have one impulse initiation zone, located near the heminode, that varies in length according to nerve fiber type. Structural heterogeneity may favor impulse conduction in the central direction, and length of the impulse initiation zone could influence nerve discharge patterns.
Schmidt, Eder Carlos; Scariot, Lidiane Angela; Rover, Ticiane; Bouzon, Zenilda Laurita
2009-12-01
Ultraviolet radiation (UVR) affects macroalgae in many important ways, including reduced growth rate, reduction of primary productivity and changes in cell biology and ultrastructure. Among red macroalgae, Kappaphycus alvarezii is of economic interest by its production of kappa carrageenan. Only a few reports have examined the changes in macroalgae ultrastructure and cell biology resulting from UVB radiation exposure. Therefore, we examined two strains of K. alvarezii (green and red) exposed to UVB for 3 h per day during 28 days and then processed them for histochemical and electron microscopy analysis. Reaction with Toluidine Blue showed an increase in the thickness of the cell wall and Periodic Acid-Schiff stain showed a decrease in the number of starch grains. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included increased thickness of the cell wall and number of free ribosomes and plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast internal organization. Based on these lines of evidence, it was evident by the ultrastructural changes observed that UVBR negatively affects intertidal macroalgae and, by extension, their economic viability.
Georgiadis, Marios; Müller, Ralph; Schneider, Philipp
2016-01-01
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222
Mahmoud, Yomna I
2015-09-01
Testicular atrophy has been commonly reported in patients with chronic liver diseases. Ursodeoxycholic acid is the most widely used drug for the treatment of many liver diseases. However, its effect on testicular ultrastructure associated with chronic cholestasis has never been studied. Thus, this study aimed to assess how chronic obstructive jaundice affects the testicular ultrastructure and whether it affects the androgen receptor or the proliferating cell nuclear antigen. The role of ursodeoxycholic acid was also investigated. Cholestasis was induced by bile duct ligation. Samples were collected 4weeks postoperative. Testicular changes were assessed using immunohistochemistry and transmission electron microscopy. Chronic cholestasis resulted in testicular atrophy evidenced by shrinkage and deformation of seminiferous tubules, thickening of peritubular boundaries, vacuolation, disorganization of germ cells, and maturation arrest. This was accompanied by decreased immunoreactivity of androgen receptors and proliferating cell nuclear antigen. Administration of ursodeoxycholic acid improved the testicular morphology and reversed cholestasis-induced immunohistochemical and ultrastructural changes. Ursodeoxycholic acid can improve the testicular ultrastructure and restore the spermatogenic process in rats with chronic cholestasis. These findings support the clinical application of ursodeoxycholic acid in cholestatic patients especially those with hypogonadism. Copyright © 2015. Published by Elsevier Inc.
Biserova, Natalia M; Gordeev, Ilya I; Korneva, Janetta V
2016-01-01
The sensory organs in tegument of two trypanorhynchean species--Nybelinia surmenicola (plerocercoid) and adult Parachristianella sp. (Cestoda, Trypanorhyncha)--were studied with the aim of ultrastructural description and a comparative analysis. The Nybelinia surmenicola plerocercoid lacks papillae with sensory cilia on the bothria adhesive surface. We found an unciliated sensory organ within the median bothria fold. This unciliated free nerve ending contains the central electron-dense disc, three dense supporting rings, and broad root. The nerve ending locates in the basal matrix under the tegument. The tegument of N. surmenicola has a number of ultrastructural features which make it significantly different from other Trypanorhyncha: (i) the tegumental cytoplasm has a plicated constitution in a form of high apical and deep basal folds, (ii) numerous layers of the basal matrix are presented in the subtegument, and (iii) the squamiform and bristlelike microtriches N. surmenicola lack the base and the basal plate. In contrast, numerous ciliated and unciliated receptors were found in Parachristianella sp.: six types on the bothria and one type in the strobila tegument. Ultrastructural constitution of sensory organs in the form of ciliated free nerve endings as well as unciliated basal nerve endings of Parachristianella sp. has many common features inside Eucestoda. In comparison with other Trypanorhyncha, all Nybelinia species studied have less quantity of the bothrial sensory organs. This fact may reflect behavioral patterns of Nybelinia as well as phylogenetic position into Trypanorhyncha. Our observations of living animals conventionally demonstrate the ability of N. surmenicola plerocercoids to locomote in forward direction on the Petri dish surface. The participation of the bothrial microtriches in a parasite movement has been discussed.
Jiang, Shuai; Jia, Zhihao; Xin, Lusheng; Sun, Ying; Zhang, Ran; Wang, Weilin; Wang, Lingling; Song, Linsheng
2016-08-01
Phagocytes have been proved to play vital roles in the innate immune response. However, the cellular characteristics of phagocytes in invertebrates, especially in molluscs, remain largely unknown. In the present study, fluorescence activated cell sorting (FACS) was employed to sort the phagocytes from the non-phagocytic haemocytes of the Pacific oyster Crassostrea gigas. The cytochemical staining analysis revealed that phagocytes were positive staining for α-naphthyl acetate esterase and myeloperoxidase, while negative staining for toluidine blue and periodic acid-Schiff. The non-phagocytic haemocytes exhibited positive staining for periodic acid-Schiff, weak positive staining for toluidine blue, but negative staining for α-naphthyl acetate esterase and myeloperoxidase. In addition, phagocytes exhibited ultrastructural cellular features similar to those of macrophages, with large cell diameter, rough cell membrane and extended pseudopodia revealed by the scanning electron microscopy, while the non-phagocytic haemocytes exhibited small cell diameter, smooth cell surface and round spherical shape. Transmission electron microscopy further demonstrated that phagocytes were abundant of cytoplasmic bodies and mitochondria, while non-phagocytic haemocytes were characterized as the comparatively large cell nucleus with contorted and condensed heterochromatin adherent to the nuclear envelope. Moreover, compared with non-phagocytic haemocytes, phagocytes exhibited significantly higher levels of intracellular cytokines, including tumor necrosis factor, interferon-like protein and interleukin-17, and significantly higher abundance of lysosome and reactive oxygen species, which were of great importance to the activation of immune response and pathogen clearance. Taken together, these findings revealed the different cytochemical and ultrastructural features between phagocytes and non-phagocytic haemocytes in C. gigas, which would provide an important clue to investigate the mechanism of phagocytosis underlying the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.
The basic science of human knee menisci: structure, composition, and function.
Fox, Alice J S; Bedi, Asheesh; Rodeo, Scott A
2012-07-01
Information regarding the structure, composition, and function of the knee menisci has been scattered across multiple sources and fields. This review contains a concise, detailed description of the knee menisci-including anatomy, etymology, phylogeny, ultrastructure and biochemistry, vascular anatomy and neuroanatomy, biomechanical function, maturation and aging, and imaging modalities. A literature search was performed by a review of PubMed and OVID articles published from 1858 to 2011. This study highlights the structural, compositional, and functional characteristics of the menisci, which may be relevant to clinical presentations, diagnosis, and surgical repairs. An understanding of the normal anatomy and biomechanics of the menisci is a necessary prerequisite to understanding the pathogenesis of disorders involving the knee.
Effects of chronic copper exposure during early life in rhesus monkeys.
Araya, Magdalena; Kelleher, Shannon L; Arredondo, Miguel A; Sierralta, Walter; Vial, María Teresa; Uauy, Ricardo; Lönnerdal, Bo
2005-05-01
Whether infants regulate copper absorption and the potential effects of excess copper in early life remain poorly defined. The objective of the study was to assess copper retention, liver copper content, and liver function in infant rhesus monkeys fed infant formula containing 6.6 mg Cu/L. From birth to 5 mo of age, infant rhesus monkeys were fed formula that was supplemented with copper (0.6 mg Cu/L; n = 5) or not supplemented (n = 4). In all animals, weight and crown-rump length (by anthropometry), hemoglobin, hematocrit, plasma ceruloplasmin activity, and zinc and copper concentrations were measured monthly (birth to 6 mo) and at 8 and 12 mo. When the animals were 1, 5, and 8 mo old, liver copper and metallothionein concentrations, liver histology (by light and electron microscopy), and the number of Kupffer cells were assessed, and 67Cu retention was measured. Liver function was assessed by measurement of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase activities and protein, albumin, bilirubin, and blood urea nitrogen concentrations. 67Cu retention was 19.2% and 10.9% after 1 and 5 mo of copper treatment, respectively, compared with approximately 75% in controls at age 2 mo. At age 8 mo, 67Cu retention was 22.9% in copper-treated animals and 31.5% in controls. Liver histology remained normal by light microscopy, with mild ultrastructural signs of cell damage at 5 mo. Liver copper concentration was 4711, 1139, and 498 microg/g dry tissue at 1, 5, and 8 mo, respectively, in copper-treated animals and 250 microg/g at 2 mo in controls. Measurements could not be completed in all animals. No clinical evidence of copper toxicity was observed. Copper absorption was down-regulated; increases in liver copper content at ages 1 and 5 mo did not result in histologic damage. Ultrastructural changes at age 5 mo could signal early cellular damage.
Bogenpohl, James W.; Ritter, Stefanie L.; Hall, Randy A.; Smith, Yoland
2012-01-01
The adenosine A2A receptor (A2AR) is a potential drug target for the treatment of Parkinson’s disease and other neurological disorders. In rodents, the therapeutic efficacy of A2AR modulation is improved by concomitant modulation of the metabotropic glutamate receptor 5 (mGluR5). To elucidate the anatomical substrate(s) through which these therapeutic benefits could be mediated, pre-embedding electron microscopy immunohistochemistry was used to conduct a detailed, quantitative ultrastructural analysis of A2AR localization in the primate basal ganglia and to assess the degree of A2AR/mGluR5 colocalization in the striatum. A2AR immunoreactivity was found at the highest levels in the striatum and external globus pallidus (GPe). However, the monkey, but not the rat, substantia nigra pars reticulata (SNr) also harbored a significant level of neuropil A2AR immunoreactivity. At the electron microscopic level, striatal A2AR labeling was most commonly localized in postsynaptic elements (58% ± 3% of labeled elements), whereas, in the GPe and SNr, the labeling was mainly presynaptic (71% ± 5%) or glial (27% ± 6%). In both striatal and pallidal structures, putative inhibitory and excitatory terminals displayed A2AR immunoreactivity. Striatal A2AR/mGluR5 colocalization was commonly found; 60–70% of A2AR-immunoreactive dendrites or spines in the monkey striatum coexpress mGluR5. These findings provide the first detailed account of the ultrastructural localization of A2AR in the primate basal ganglia and demonstrate that A2AR and mGluR5 are located to interact functionally in dendrites and spines of striatal neurons. Together, these data foster a deeper understanding of the substrates through which A2AR could regulate primate basal ganglia function and potentially mediate its therapeutic effects in parkinsonism. PMID:21858817
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.
Hematology, cytochemistry and ultrastructure of blood cells in fishing cat (Felis viverrina)
Salakij, Chaleow; Apibal, Suntaree; Narkkong, Nual-Anong
2007-01-01
Hematological, cytochemical and ultrastructural features of blood cells in fishing cat (Felis viverrina) were evaluated using complete blood cell counts with routine and cytochemical blood stains, and scanning and transmission electron microscopy. No statistically significant difference was found in different genders of this animal. Unique features of blood cells in this animal were identified in hematological, cytochemical and ultrastructural studies. This study contributes to broaden hematological resources in wildlife animals and provides a guideline for identification of blood cells in the fishing cat. PMID:17519570
Ultrastructural studies on the boundary tissue of the seminiferous tubules of different mammals.
Cieciura, L; Jaszczuk-Jarosz, B; Pietrzkowska, K
1988-01-01
The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.
The ultrastructure of rat palatal mucosa maintained in organ culture.
Hill, M W
1978-01-01
Palatal mucosa from neonatal rats was examined by electron microscopy after maintenance in a chemically defined medium in organ culture for periods up to 24 days. Throughout the culture period there was little overall change in the explants. Apart from limited disturbances of the basal lamina complex early in the culture period, and the presence of occasional degenerating keratinocytes after 18 days in vitro, the epithelium displayed an ultrastructure comparable with that at the time of explantation. The connective tissue showed greater changes, but despite considerable cell death a viable cell population apparently capable of both phagocytosis and synthesis of extracellular material was maintained. It is concluded that this organ culture system is a valid model for experimental investigations into the behaviour of oral mucosa. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:744746
Maeda, T; Clark, M E; Etches, R J
1998-06-01
The effects of injection and/or gamma-irradiation prior to injection on mortality, size of the gonads, and ultrastructure of primordial germ cell (PGC) were examined after 5 d of incubation. The mortality of embryos injected with donor cells was significantly higher than that of control and irradiated embryos. All irradiated embryos were alive, although their development was delayed compared to those not exposed to irradiation. The size of the gonads of embryos injected with donor cells were similar to those of control embryos, however, the size of the gonads in irradiated embryos was significantly smaller than those of control embryos. The number of PGC in the gonads was significantly decreased by irradiation. There was no notable effect of irradiation or injection on the nuclei and cytoplasmic organelles in PGC.
Ultrastructural observations reveal the presence of channels between cork cells.
Teixeira, Rita Teresa; Pereira, Helena
2009-12-01
The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.
Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution
NASA Astrophysics Data System (ADS)
Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.
2013-12-01
Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.
Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.
Joens, Matthew S; Huynh, Chuong; Kasuboski, James M; Ferranti, David; Sigal, Yury J; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J; Curran, Kevin P; Chalasani, Sreekanth H; Stern, Lewis A; Goetze, Bernhard; Fitzpatrick, James A J
2013-12-17
Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.
Gratacap, B; Charachon, R; Stoebner, P
1985-01-01
Ultrastructural study of ototoxicity is well documented with two points of interest: organ of Corti for aminoglycosides and stria vascularis for loop diuretics. As a previous study suggested initial lesions of stria vascularis, an attempt of comparison and of chronological study was made between the organ of Corti and stria vascularis lesions by kanamycin intoxication. The method was devised by J. M. ARAN, with electrophysiological control. We failed to find in the stria vascularis a radial or longitudinal pattern of lesions. We could not discern a chronological injury between the organ of Corti and stria vascularis because both were damaged even in the less deafened animals. Nevertheless, two facts were clarified: hair cell lesions are lysosomial as for the kidney lesions, while stria vascularis lesions are mitochondrial, melanine granulations play a part in drug metabolism (increased number, secretory aspect) and deserve further study.
Ultrastructure of the membrana limitans interna after dye-assisted membrane peeling.
Brockmann, Tobias; Steger, Claudia; Westermann, Martin; Nietzsche, Sandor; Koenigsdoerffer, Ekkehart; Strobel, Juergen; Dawczynski, Jens
2011-01-01
The purpose of this study was to investigate the ultrastructure of the membrana limitans interna (internal limiting membrane, ILM) and to evaluate alterations to the retinal cell layers after membrane peeling with vital dyes. Twenty-five patients (25 eyes) who underwent macular hole surgery were included, whereby 12 indocyanine green (ICG)- and 13 brilliant blue G (BBG)-stained ILM were analyzed using light, transmission electron and scanning electron microscopy. Retinal cell fragments on the ILM were identified in both groups using immunohistochemistry. Comparing ICG- and BBG-stained membranes, larger cellular fragments were observed at a higher frequency in the BBG group. Thereby, the findings indicate that ICG permits an enhanced separation of the ILM from the underlying retina with less mechanical destruction. A possible explanation might be seen in the known photosensitivity of ICG, which induces a stiffening and shrinkage of the ILM but also generates retinal toxic metabolites. Copyright © 2011 S. Karger AG, Basel.
Defective enamel ultrastructure in diabetic rodents.
Atar, M; Atar-Zwillenberg, D R; Verry, P; Spornitz, U M
2004-07-01
We investigated six different types of diabetic rodents. Four expressed a genetic obesity resulting in diabetes. One developed diabetes induced by a diet-dependent obesity, and one with genetic diabetes received anti-diabetic medication. The tooth samples were examined under a scanning electron microscope and with an energy dispersive microanalysis (EDX). The electron micrographs showed severe, varying degrees of damage within the six different diabetic animal types, such as irregular crystallite deposition and prism perforations in genetically obese animals compared to less-disordered prism structures in diet-dependent obesity. Anti-diabetic medication resulted in normal enamel ultrastructure. The EDX analysis revealed a reduction in the amount of calcium and phosphorus in all regions affected by diabetes. Based on these animal studies, we suggest that both juvenile diabetes type I (in infants) and adult diabetes type II (in pregnant mothers, affecting the developing foetus) may affect the normal development of teeth in humans.
Torricelli, Andre A. M.; Singh, Vivek; Agrawal, Vandana; Santhiago, Marcony R.; Wilson, Steven E.
2013-01-01
Purpose. To assess the ultrastructure of the epithelial basement membrane using transmission electron microscopy (TEM) in rabbit corneas with and without subepithelial stroma opacity (haze). Methods. Two groups of eight rabbits each were included in this study. Photorefractive keratectomy (PRK) was performed using an excimer laser. The first group had −4.5-diopter (−4.5D) PRK and the second group had −9.0D PRK. Contralateral eyes were unwounded controls. Rabbits were sacrificed at 4 weeks after surgery. Immunohistochemical analysis was performed to detect the myofibroblast marker α-smooth muscle actin (SMA). TEM was performed to analyze the ultrastructure of the epithelial basement membrane and stroma. Results. At 4 weeks after PRK, α-SMA+ myofibroblasts were present at high density in the subepithelial stroma of rabbit eyes that had −9.0D PRK, along with prominent disorganized extracellular matrix, whereas few myofibroblasts and little disorganized extracellular matrix were noted in eyes that had −4.5D PRK. The epithelial basement membrane was irregular and discontinuous and lacking typical morphology in all corneas at 1 month after −9D PRK compared to corneas at 1 month in the −4.5D PRK group. Conclusions. The epithelial basement membrane acts as a critical modulator of corneal wound healing. Structural and functional defects in the epithelial basement membrane correlate to both stromal myofibroblast development from precursor cells and continued myofibroblast viability, likely through the modulation of epithelial–stromal interactions mediated by cytokines. Prolonged stromal haze in the cornea is associated with abnormal regeneration of the epithelial basement membrane. PMID:23696606
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice. PMID:26727725
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Tamada, Hiromi; Kiyama, Hiroshi
2015-01-01
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.
Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon
2011-03-01
Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.
Guerrero-Jiménez, Gerardo; Zavala-Padilla, Guadalupe; Silva-Briano, Marcelo; Rico-Martínez, Roberto
2013-12-01
The study of sexual reproductive behavior supported by ultrastructural evidence is important in rotifers to describe differences among potential cryptic species. In this research, the morphology of the rotifer Brachionus bidentatus is described at the ultrastructural level, using electronic microscopy, together with a brief description and discussion of its sexual reproductive behavior. The characteristics of the (a) male, (b) the female, (c) the sexual egg or cyst, (d) the partenogenic egg, (e) the no-fecundated sexual egg (male egg), and (f) the trophi, were described. Another part of this research is dedicated to the ultrastructure of the sex cells of the male rotifer B. bidentatus. Samples were obtained from La Punta pond in Cosio, Aguascalientes, Mexico (22 degrees 08' N - 102 degrees 24' W), and a culture was maintained in the laboratory. Fifty organisms, from different stages of the rotifer Brachionus bidentatus, were fixed in Formol at 4% and then prepared; besides, for the trophi, 25 female rotifer Brachionus bidentatus were prepared for observation in a JEOL 5900 LV scanning electronic microscope. In addition, for the observation of male sex cells, 500 males of Brachionus bidentatus were isolated, fixed and observed in a JEOL 1010 transmission microscope. Females of B. bidentatus in laboratory cultures had a lifespan of five days (mean+one SD = 4.69 +/- 0.48; N=13), and produced 4.5 +/- 3.67 (N=6) parthenogenetic eggs during such lifespan. In the case of non-fertilized sexual eggs, they produced up to 18 eggs (mean+one SD = 13 +/- 4.93; N=7). Sexual females produced a single cyst on average (mean +/- one SD = I +/- 0; N=20). For the sexual cycle, the time of copulation between male and female ranged from 10 to 40 seconds (mean +/- one SD = 17.33 +/- 10.55, N=7). The spermatozoa are composed of a celular body and a flagellum, the size of the body is of 300 nm while the flagellum measures 1 700nm. The rods have a double membrane. Their mean length is almost 2.45 microm +/- 0.74, N=6; and their mean wide is 0.773 microm +/- 0.241, N=11. The evidence on the specific ultrastructural characteristics of the rotifer B. bidentatus is notorious, even more in the male and in the cyst cell. Regarding the ultrastructure of the spermatozoa and the rods, compared to other species they only differ in size, despite their structural resemblance. Our study of the ultraestructure of this species adds useful information that along with molecular data will help clarify the taxonomy of brachionid rotifers.
The chorion ultrastructure of ova of Lophius spp.
Colmenero, A I; Tuset, V M; Fortuño, J-M; Sánchez, P
2015-06-01
The chorion surface ultrastructure of unfertilized eggs of black anglerfish Lophius budegassa and white anglerfish Lophius piscatorius was examined by scanning electron microscopy. Species-specific differences were observed. © 2015 The Fisheries Society of the British Isles.
Bisphenol A-induced ultrastructural changes in the testes of common marmoset
Vijaykumar, Tushara; Singh, Dipty; Vanage, Geeta R.; Dhumal, Rohit V.; Dighe, Vikas D.
2017-01-01
Background & objectives: Bisphenol A (BPA) is an endocrine disruptor that is widely used in the manufacture of polycarbonate plastics, epoxy resins and dental sealants. It is known to have adverse effects on spermatogenesis in rodents. This study was aimed to evaluate the effects of BPA in adult common marmoset owing to its similarities with human spermatogenesis. Methods: Sixteen marmosets were divided into four groups (n=4 per group) and given oral doses of BPA (2.5, 12.5 and 25 μg/kg BW/day) for 70 days to cover two spermatogenic cycles, and the control group received only vehicle (honey). Testes were processed for histological and transmission electron microscopy studies. Results: Histology of the testis showed sloughing of germ cells into the lumen, increase in interstitial space and vacuolation of Sertoli cell cytoplasm. Ultrastructural analysis of the testis revealed several degenerative effects on the basement membrane, Sertoli cells, Leydig cells and other developing germ cells in the 12.5 and 25 μg/kg BW/day groups as compared to control. Interpretation & conclusions: The observed ultrastructural changes caused by BPA in testicular morphology might be indicative of a perturbed sperm production. Considering the genetic and spermatogenic similarities of common marmoset (Callithrix jacchus) and humans, the study findings are of significance. Further studies are, however, needed to elucidate the mechanism of action. PMID:29168469
Uranova, N A; Vikhreva, O V; Rakhmanova, V I; Orlovskaya, D D
Previously the authors have reported the ultrastructural pathology and deficit of oligodendrocytes in gray and white matter of the prefrontal cortex in schizophrenia. The aim of the study was to determine of the effects of microglia on the ultrastructure of oligodendrocytes in the white matter underlying the prefrontal cortex in continuous schizophrenia. Postmortem morphometric electron microscopic study of oligodendrocytes in close apposition to microglia was performed in white matter underlying the prefrontal cortex (BA10). Eleven cases of chronic continuous schizophrenia and 11 normal controls were studied. Areas of oligodendrocytes, of their nuclei and cytoplasm, volume density (Vv) and the number of mitochondria, vacuoles of endoplasmic reticulum and lipofuscin granules were estimated. Group comparison was performed using ANCOVA. The schizophrenia group differed from the control group by paucity of ribosomes in the cytoplasm of oligodendrocytes, a significant decrease in Vv and the number of mitochondria and increase in the number of lipofuscin granules. Significant correlations between the parameters of lipofuscin granules, mitochondria and vacuoles were found only in the schizophrenia group. The number of lipofuscin granules were correlated positively with the illness duration. Dystrophic alterations of oligodendrocytes attached to microglial cells were found in the white matter of the prefrontal cortex in chronic paranoid schizophrenia as compared to controls. The data obtained suggest that microglia might contribute to abnormalities of energy, lipid and protein metabolism of oligodendrocytes in schizophrenia.
Bani, Daniele; Quattrini Li, Alessandro; Freschi, Giancarlo; Russo, Giulia Lo
2013-09-01
In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat. This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.
Alibardi, Lorenzo
2013-08-01
The ability of lizards to withstand infections after wounding or amputation of the tail or limbs has suggested the presence of antimicrobial peptides in their tissues. Previous studies on the lizard Anolis carolinensis have identified several beta-defensin-like peptides that may potentially be involved in protection from infections. The present ultrastructural immunocytochemical study has analyzed tissues in different reptilian species in order to localize the cellular source of one of the more expressed beta-defensins previously sequenced in lizard indicated as AcBD15. Beta-defensin-like immunoreactivity is present in some of the larger, nonspecific granules of granulocytes in two lizard species, a snake, the tuatara, and a turtle. The ultrastructural study indicates that only heterophilic and basophilic granulocytes contain this defensin while other cell types from the epidermis, mesenchyme, and dermis, muscles, nerves, cartilage or bone are immunonegative. The study further indicates that not all granules in reptilian granulocytes contain the beta-defensin peptide, suggesting the presence of granules with different content as previously indicated for mammalian neutrophilic leucocytes. No immunolabeling was instead observed in granulocytes of the alligator and chick using this antibody. The present immunocytochemical observations suggest a broad cross-reactivity and conservation of beta-defensin-like sequence or steric motif across lepidosaurians and likely in turtles while archosaurian granulocytes may contain different beta-defensin-like or other peptides. Copyright © 2013 Wiley Periodicals, Inc.
de Mello-Sampayo, Cristina; Agripino, Alaíde Alves; Stilwell, Duarte; Vidal, Bruno; Fernando, Ana Luisa; Silva-Lima, Beatriz; Vaz, Maria Fátima; Canhão, Helena
2017-01-01
There is controversy concerning the diabetes impact on bone quality, notorious in type 2 diabetic postmenopausal women. One pointed cause might be uncontrolled glycemia. In this study, the effect of chronic hyperglycemia in bone turnover, morphology, and biomechanics was evaluated in female Wistar rats in the presence/absence of estrogens (ovariectomy). Animals (n = 28) were divided into sham, ovariectomized (OVX), hyperglycemic (streptozotocin 40 mg/kg, single-dose i.p.-STZ), and hyperglycemic-ovariectomized (STZ + OVX) animals. Blood biomarkers were estimated 60 days postovariectomy. Body weight, vertebral microarchitecture (L4-histomorphometry), femur biomechanical properties (bending tests), tibia ultrastructure (scanning electron microscopy), and femur and urinary calcium (atomic absorption) were also evaluated. The increased PINP/CTX ratio of hyperglycemic animals and the similar ratio between STZ + OVX and healthy animals contrasting with the lower ratio of OVX (in line with its histomorphometric data) suggest a tendency for improved bone formation in hyperglycemic-ovariectomized animals. The increased tibia medullar canal, which contrasts with the unaffected cortical thickness of both hyperglycemic groups while that of OVX decreased, was associated to the increased stiffness and strength of STZ + OVX bones compared to those of OVX, in line with the observed ultrastructure. Concluding, chronic hyperglycemia in ovariectomized female rats causes bone morphological changes that translate positively in the ultrastructure and mechanical properties of cortical bones. PMID:29081798
Alroy, J; Roganovic, D; Banner, B F; Jacobs, J B; Merk, F B; Ucci, A A; Kwan, P W; Coon, J S; Miller, A W
1981-01-01
Neoplastic and non-neoplastic tissue specimens from ten patients with primary adenocarcinoma of the urinary bladder were examined. Most of these tumors were associated with either foci of transitional cell carcinoma and/or with glandular metaplasia of the bladder epithelium. The mucin produced by the neoplastic cells was PAS, alcian blue, mucicarmine, PB/KOH/PAS, and RPB/KOH/PAS-positive. ABH isoantigens of these tumors were not always deleted. Ultrastructurally, the neoplastic cells resembled goblet cells. Their plasma membrane had numerous microvilli with prominent glycocalyx. Proliferation and attenuation of tight junctions were noted. The gap junctions were few and small. Two types of desmosomes were found. The ultrastructural features of the neoplastic cells were attributed in part to the malignant transformation and in part to the direction of their differentiation. We have not observed any distinctive morphologic, histochemical, immunologic or ultrastructural features that might be diagnostic for these adenocarcinomas.
Heuser, John E
2014-11-01
This brief essay talks up the advantages of metal replicas for electron microscopy and explains why they are still the best way to image frozen cells in the electron microscope. Then it explains our approach to freezing, namely the Van Harreveld trick of "slamming" living cells onto a supercold block of metal sprayed with liquid helium at -269ºC, and further talks up this slamming over the alternative of high-pressure freezing, which is much trickier but enjoys greater favor at the moment. This leads me to bemoan the fact that there are not more young investigators today who want to get their hands on electron microscopes and use our approach to get the most "true to life" views of cells out of them with a minimum of hassle. Finally, it ends with a few perspectives on my own career and concludes that, personally, I'm permanently stuck with the view of the "founding fathers" that cell ultrastructure will ultimately display and explain all of cell function, or as Palade said in his Nobel lecture,electron micrographs are "irresistible and half transparent … their meaning buried under only a few years of work," and "reasonable working hypotheses are already suggested by the ultrastructural organization itself." © 2014 Heuser.
Marinho, Polyana C; Vieira, Aline B; Pereira, Priscila G; Rabelo, Kíssila; Ciambarella, Bianca T; Nascimento, Ana L R; Cortez, Erika; Moura, Aníbal S; Guimarães, Fernanda V; Martins, Marco A; Barquero, Gonzalo; Ferreira, Rodrigo N; de Carvalho, Jorge J
2018-01-01
Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.
Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S
2014-06-15
Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.
Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu
2017-01-28
Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.
The structure and function of cutaneous sensory receptors.
Munger, B L; Ide, C
1988-03-01
The present review of cutaneous sensory receptors begins with a consideration of free nerve endings (FNEs) that can be considered as sensory terminals evidencing the least structural specialization of the axon and associated cells. Using the criteria established by Kruger et al (1981), FNEs of both A delta and C fibers can be identified on the basis of ultrastructural characteristics that include an intimate relationship between axons and the associated epithelium, the lack of a complete Schwann cell investment, the accumulation of numerous vesicles and other cytoplasmic organelles, and for A delta terminals a 1:1 relationship between axon and investing Schwann cell. Using these criteria, the so-called genital end bulbs of the human glans penis are merely a skein of FNEs based on the ultrastructural study of Halata and Munger (1986). Hair follicles of most species studied to date (the exception being the rabbit and to some extent the guinea pig) are multiply innervated with lanceolate, Ruffini and FNEs. The lanceolate terminals are the rapidly adapting terminals that are numerous in guard hairs. Ruffini terminals of hairs resemble those of the periodontal ligament or joint capsules and both are remarkably similar to Golgi tendon organs in terms of ultrastructural characteristics. The key ultrastructural characteristic is the encircling of collagen bundles by axons and associated Schwann and connective tissue cells. Axons frequently enter the epidermis either to terminate as FNEs or become associated with Merkel cells in glabrous skin at the base of the papillary ridges or in clusters of Merkel cells in hairy skin in touch domes or Haarscheiben. Merkel cells have clusters of apparent secretory granules polarized toward the axon and the axon is typically a slowly adapting mechanoreceptor. The function of the granules is not known. Pacinian corpuscles are the largest of the corpuscular receptors of the dermis and are characterized by an elaborate inner core of stacks of numerous thin lamellae arranged in a bilaterally symmetrical manner. Based on the fact that the lamellae are coupled with gap junctions and the outer core lamellae isolated by numerous tight junctions, the authors have proposed that the unique ionic environment may be in part responsible for the remarkable sensitivity of Pacinian corpuscles (Munger and Ide, 1987). Meissner corpuscles are a typical corpuscular receptor of murine (Ide, 1976, 1977), marsupial and primate glabrous skin (Munger, 1971). The axons typically weave back and forth between stacks of lamellae.(ABSTRACT TRUNCATED AT 400 WORDS)
Wang, Li; Ding, Xiaoyu; Bi, Mingjun; Wang, Jinglin; Zou, Yong; Tang, Jiyou; Li, Qin
2018-05-01
To explore the effects of N-butylphthalide on the expressions of ZO-1 and claudin-5 in blood-brain barrier (BBB) in rats with acute carbon monoxide (CO) poisoning. A total of 144 adult healthy male Sprague-Dawley (SD) rats were randomly divided into normal control group, CO poisoning group, and NBP treatment group, with 48 rats in each group. The acute CO poisoning model was reproduced in hyperbaric oxygen chamber, and all model rats were given hyperbaric oxygen therapy once daily. The rats in the normal control group were free to breathe fresh air. The rats in NBP treatment group were administered orally NBP 60 mg/kg twice a day at 2 hours after poisoning until death. The rats in normal control group and CO poisoning group were treated with equal amount of pure olive oil. Four rats were sacrificed from each group at 1, 3, 7, 14 days after model reproducing, respectively. The changes in ultrastructure of BBB were observed under transmission electron microscope. The expressions of ZO-1 and claudin-5 proteins were determined by immunofluorescence staining and Western Blot. The localization of the two target proteins was observed by immunofluorescence double staining. The correlation between the two proteins was analyzed by linear regression. The ultrastructure of BBB was normal in normal control group, some ZO-1 and a large number of claudin-5 positive cells were observed. The ultrastructure of BBB was seriously injured, ZO-1 and claudin-5 positive cells in brain tissue were significantly decreased, and the expressions of ZO-1 and claudin-5 proteins in brain tissue at 1 day after poisoning in CO poisoning group were significantly lower than those of normal control group (ZO-1 protein: 3.38±0.30 vs. 24.50±5.62, claudin-5 protein: 11.38±0.93 vs. 46.35±6.88, both P < 0.05), and although gradually restored, they were maintained at relatively lower levels until 14 days as compared with those in normal control group (ZO-1 protein: 10.35±0.80 vs. 24.63±3.57, claudin-5 protein: 32.35±3.11 vs. 46.43±7.20, both P < 0.05). NBP treatment could significantly alleviate the ultrastructure injury of BBB induced by acute CO poisoning, the amount of ZO-1 and claudin-5 positive cells in brain tissue were significantly increased, as well as the expressions of ZO-1 and claudin-5 proteins were significantly increased, which were significantly higher than those of CO poisoning group from 1 day and 3 days on, respectively (1-day ZO-1 protein: 7.57±0.69 vs. 3.38±0.30, 3-day claudin-5 protein: 20.46±1.42 vs. 11.43±0.86, both P < 0.05), and which showed an increase tendency with time prolongation. The results of immunofluorescence double staining showed that ZO-1 and claudin-5 proteins could not only coexist in the same cell, but also could be expressed separately in different cells. Linear regression analysis showed the positive correlation between the expressions of ZO-1 and claudin-5 proteins in brain tissue of rats with acute CO poisoning (R 2 = 0.917, P = 0.022). NBP could markedly improve the ultrastructure and functional integrity of BBB through up-regulating the expressions of ZO-1 and claudin-5 proteins, and then reduce brain damage caused by CO poisoning.
Ultrastructural Changes in Human Striated Muscle Using Three Methods of Training
ERIC Educational Resources Information Center
Penman, Kenneth A.
1969-01-01
There have been many attempts to describe what happens when a muscle gets stronger. However, little has been done to examine possible structural changes at the ultrastructural level when a muscle becomes stronger or hypertrophied. (CK)
Han, Yun; Zheng, Yan-Li; Wu, Ai-Min; Liu, Hong-Bin; Su, Jian-Bin; Lu, Xiao-Yan; Han, Yu-Wen; Ji, Jin-Long; Ji, Ju-Hua; Shi, Yue
2016-12-01
A great quantity of gestational diabetes mellitus with normal prepregnancy body mass index have emerged with the new criteria of gestational diabetes mellitus in China based on the International Diabetes in Pregnancy Consensus group criteria, and understanding placental changes and how they affect outcomes are necessary in order to develop effective management approach. The aim of this study was to prospectively explore the effect of active management starting from the late second trimester in gestational diabetes mellitus women with normal prepregnancy body mass index on pregnancy outcomes and placental ultrastructures, and to provide scientific evidences for optimizing the management of gestational diabetes mellitus in China. Gestational diabetes mellitus women with normal prepregnancy body mass index in the same period of this prospective cohort study were divided into intervention group (n = 51) and control group (n = 55). The intervention group was managed rigorously, while the control group received conventional prenatal cares. The glucose profile, gestational weight gain and pregnancy outcomes were followed up and placental ultrastructures were observed and recorded by transmission electron microscopy. The blood glucose level and gestational weight gain in intervention group were significantly better controlled than those in control group (P < 0.01). The incidences of fetal distress, cesarean section and large for gestational age were significantly lower in intervention group than in control group (P < 0.05). There was a significant reduction in the incidence of abnormal placental ultrastructure in the intervention group (P < 0.01). After adjustment for confounding factors, the undesirable glycemic control and conventional management were related to abnormal placental ultrastructure (P < 0.05). Meanwhile, the undesirable glycemic control, abnormal placental ultrastructure and conventional management made sense in the incidence of fetal distress (P < 0.05), and the target glycemic control, recommend weight gain and active management were associated with reductions in the prevalence of cesarean delivery and large for gestational age (P < 0.05). The active management of gestational diabetes mellitus women with normal prepregnancy body mass index can improve pregnancy outcomes and placental ultrastructures, and the abnormal placental ultrastructure might be closely associated with the undesirable glycemic control and adverse pregnancy outcomes.
Lenhard, Stephen C; Lev, Mally; Webster, Lindsey O; Peterson, Richard A; Goulbourne, Christopher N; Miller, Richard T; Jucker, Beat M
2016-01-01
To determine if amiodarone induces hepatic phospholipidosis (PLD) sufficient to detect changes in hepatobiliary transporter function as assessed by gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), rats were orally dosed with vehicle (1% methyl cellulose) or amiodarone (300 mg/kg/day) for 7 consecutive days. Gadoxetate DCE-MRI occurred at baseline, day 7, and following a 2-week washout of amiodarone. At day 7, the gadoxetate washout rate was significantly decreased compared to the vehicle group. Blood chemistry analysis revealed no significant changes in liver enzymes (alanine aminotransferase [ALT]/aspartate aminotransferase [AST]/alkaline phosphatase [ALP]), bilirubin, or bile acids between vehicle or amiodarone groups. Hepatic PLD was confirmed in all rats treated with amiodarone at day 7 by transmission electron microscopy. Following the 2-week washout, there was no ultrastructural evidence of hepatic PLD in rats and the gadoxetate washout rate returned to baseline levels. This is the first study to show the application of gadoxetate DCE-MRI to detect hepatobiliary functional changes associated with PLD and offer a potential new technique with clinical utility in patients suspected of having PLD. These results also suggest PLD itself has functional consequences on hepatobiliary function in the absence of biomarkers of toxicity, given the cause/effect relationship between PLD and function has not been fully established. © The Author(s) 2015.
Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian
2006-02-01
The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes and at lesser depths with single pass higher fluence settings. Findings suggest that similar collagen fibril alteration can occur with multiple pass low-energy treatments and single pulse high-energy treatments. The lower fluence multiple pass approach is associated with less patient discomfort, less side effects, and more consistent clinical results. Copyright 2005 Wiley-Liss, Inc.
Said, Samar M; Fidler, Mary E; Valeri, Anthony M; McCann, Brooke; Fiedler, Wade; Cornell, Lynn D; Alexander, Mariam Priya; Alkhunaizi, Ahmed M; Sullivan, Anne; Cramer, Carl H; Hogan, Marie C; Nasr, Samih H
2017-01-01
Alport syndrome (AS) is a genetic disorder characterized by progressive hematuric nephropathy with or without sensorineural hearing loss and ocular lesions. Previous studies on AS included mostly children. To determine the prognostic value of loss of staining for collagen type IV alpha 5 (COL4A5) and its relationship with the ultrastructural glomerular basement membrane alterations, we performed direct immunofluorescence using a mixture of fluorescein isothiocyanate-conjugated and Texas-red conjugated antibodies against COL4A5 and COL4A2, respectively, on renal biopsies of 25 males with AS (including 16 who were diagnosed in adulthood). All patients showed normal positive staining of glomerular basement membranes and tubular basement membranes for COL4A2. Of the 25 patients, 10 (40%) patients showed loss of staining for COL4A5 (including 89% of children and 13% of adults) and the remaining 15 (60%) had intact staining for COL4A5. Compared with patients with intact staining for COL4A5, those with loss of staining had more prominent ultrastructural glomerular basement membrane alterations and were younger at the time of biopsy. By Kaplan-Meier survival analysis and Cox regression analysis, loss of staining for COL4A5 predicted earlier progression to overt proteinuria and stage 2 chronic kidney disease or worse. By multivariate Cox regression analysis, loss of staining for COL4A5 was an independent predictor of the development of overt proteinuria and stage 2 chronic kidney disease or worse. Thus, the COL4A5 expression pattern has an important prognostic value and it correlates with the severity of ultrastructural glomerular basement membrane alterations in males with AS. Loss of COL4A5 staining is uncommon in patients with AS diagnosed in their adulthood.
Ostaszewska, Monika; Juszczuk, Izabela M; Kołodziejek, Izabella; Rychter, Anna M
2014-04-15
Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by sulphur deficiency, their metabolic and structural features, which readily reach new homeostasis, make these organelles crucial for adaptation of plants to survive sulphur deficiency. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilts, Bodo; Winter, Benjamin; Klatt, Michael; Butz, Benjamin; Fischer, Michael; Kelly, Stephen; Spieker, Erdmann; Steiner, Ullrich; Schroeder-Turk, Gerd
The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. Previous work hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. In vivo imaging however cannot yet elucidate this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or subsequent processes. Here we show an unusual hierarchical ultrastructure in a Hairstreak butterfly that allows high-resolution 3D microscopy. Rather than the conventional polycrystalline space-filling arrangement, the gyroid occurs in isolated facetted crystallites with a pronounced size-gradient. This arrangement is interpreted as a sequence of time-frozen snapshots of the morphogenesis. This provides insight into the formation mechanisms of the nanoporous gyroid material, especially when compared among other butterflies with different arrangements. Financially supported through DFG, the NCCR Bio-inspired Mateirals and the SNF Ambizione programme.
NASA Technical Reports Server (NTRS)
Nedukha, O. M.; Kordyum, E. L.; Brown, C.; Chapman, D.
2001-01-01
Calcium ions are secondary messenger in numerous cellular processes of plant grown at 1 g. Ca2+ are connected with oxygen atoms, of pectin carboxy groups and/or with H(+)-groups of protein (Roux and Slocum, 1982; Hepler and Wayne, 1985). The influence of altered gravity on the calcium balance in some cells is established. The increased synthesis of ethylene in plant grown in microgravity caused the change of the structural-functional organization of cell (Hensel and Iversen, 1980; Hilaire et al., 1996). Available data put the new question: how do high ethylene level and microgravity influence on the redistribution of Ca2+ in cell of seedling in early stage of growth? Therefore, the goal of our data was the comparable study of the cell ulltrastructure and localization of Ca2+ in hook hypocotyl of soybean seedling under interaction of microgravity and ethylene.
Ultrastructural evidence for synaptic scaling across the wake/sleep cycle.
de Vivo, Luisa; Bellesi, Michele; Marshall, William; Bushong, Eric A; Ellisman, Mark H; Tononi, Giulio; Cirelli, Chiara
2017-02-03
It is assumed that synaptic strengthening and weakening balance throughout learning to avoid runaway potentiation and memory interference. However, energetic and informational considerations suggest that potentiation should occur primarily during wake, when animals learn, and depression should occur during sleep. We measured 6920 synapses in mouse motor and sensory cortices using three-dimensional electron microscopy. The axon-spine interface (ASI) decreased ~18% after sleep compared with wake. This decrease was proportional to ASI size, which is indicative of scaling. Scaling was selective, sparing synapses that were large and lacked recycling endosomes. Similar scaling occurred for spine head volume, suggesting a distinction between weaker, more plastic synapses (~80%) and stronger, more stable synapses. These results support the hypothesis that a core function of sleep is to renormalize overall synaptic strength increased by wake. Copyright © 2017, American Association for the Advancement of Science.
Reiffers, J; Darmendrail, V; Larrue, J; Villenave, I; Bernard, P; Boisseau, M; Broustet, A
1981-08-15
Ultrastructural cytochemical studies revealed peroxidase activity in five of 25 adult patients with apparent null lymphoblastic leukemia (ALL) in whom the peroxidase reaction studied with light microscopy was negative. None of these 5 patients responded to a chemotherapy regimen used for adult ALL. The importance of ultrastructural cytochemistry which allows the recognition of myeloblastic differentiation in undifferentiated blast cells is also demonstrated. The correct classification of such cases may be important for prognosis because they appear to be resistant to the chemotherapy used in treating ALL.
Pancreatic PEComa: a case report with ultrastructural localization of HMB-45 within melanosomes.
Finzi, Giovanna; Micello, Donata; Wizemann, Giorgio; Sessa, Fausto; Capella, Carlo
2012-04-01
PEComas (perivascular epithelioid cell tumors) represent a group of mesenchymal neoplasms showing characteristic morphologic, immunohistochemical, ultrastructural, and genetic features. These neoplasms are usually considered benign, being often well circumscribed by a thin capsule and showing scarce atypia. However, in some cases, they show local invasion and multiple metastases and cause the patient's death. PEComas have been found in many locations, but only 7 cases have been described in the pancreas to date. Here, the authors report an additional case of this rare neoplasm and demonstrate the HMB-45 immunoreactivity of melanosomes or premelanosomes at the ultrastructural level.
Label-free visualization of ultrastructural features of artificial synapses via cryo-EM.
Gopalakrishnan, Gopakumar; Yam, Patricia T; Madwar, Carolin; Bostina, Mihnea; Rouiller, Isabelle; Colman, David R; Lennox, R Bruce
2011-12-21
The ultrastructural details of presynapses formed between artificial substrates of submicrometer silica beads and hippocampal neurons are visualized via cryo-electron microscopy (cryo-EM). The silica beads are derivatized by poly-d-lysine or lipid bilayers. Molecular features known to exist at presynapses are clearly present at these artificial synapses, as visualized by cryo-EM. Key synaptic features such as the membrane contact area at synaptic junctions, the presynaptic bouton containing presynaptic vesicles, as well as microtubular structures can be identified. This is the first report of the direct, label-free observation of ultrastructural details of artificial synapses.
Martines, G; Piva, M; Copponi, V; Cagnetta, G
1979-01-01
Further systematic study of the relation between drugs and the ultrastructure of the liver is reported with regard to the experimental administration of silimarin to pregnant women and others on the pill. Marked signs of ultrastructural alteration of the REL and biliary cell pole were noted, matched, by evidence of throbophilia and changes in protein activity and lipid synthesis, are noted in these situations, but not when suitable doses of silimarine are taken with the pill. It is suggested that silimarin may prevent and correct liver damage during pregnancy and the administration of oestroprogestins.
The effects of high-power microwaves on the ultrastructure of Bacillus subtilis.
Kim, S-Y; Jo, E-K; Kim, H-J; Bai, K; Park, J-K
2008-07-01
To investigate the microbicidal mechanisms of high-power microwave (2.0 kW) irradiation on Bacillus subtilis and to determine the effect of this procedure on the ultrastructure of the cell wall. We performed viability test, examined cells using transmission electron microscopy (TEM), and measured the release of intracellular proteins and nucleic acids. The inactivation rate of B. subtilis by 2.0-kW microwave irradiation was higher than that of a domestic microwave (0.5 kW). Few proteins were released from either microwaved or boiled cells. However, the leakage of nucleic acids from 2.0-kW-microwaved cells was significantly higher than that of 0.5-kW-microwaved or boiled cells. Therefore, we examined ultrastructural alterations of microwaved or boiled cells to analyse the pattern of release of cytoplasmic contents. Although boiled cells did not show any ultrastructural changes on TEM, 2.0-kW-microwaved cells showed disruption of the cell wall. The microbicidal mechanisms of 2.0-kW microwave irradiation include damage to the microbial cell wall, breakage of the genomic DNA, and thermal coagulation of cytoplasmic proteins. TEM images showed that the cytoplasmic protein aggregation and cell envelope damage by microwave irradiation were different from the ultrastructural changes observed after boiling.
Guzmán, Paula; Fernández, Victoria; García, María Luisa; Fernández, Agustín; Gil, Luis
2014-01-01
The leaf cuticular ultrastructure of some plant species has been examined by transmission electron microscopy (TEM) in only few studies. Attending to the different cuticle layers and inner structure, plant cuticles have been grouped into six general morphological types. With the aim of critically examining the effect of cuticle isolation and preparation for TEM analysis on cuticular ultrastructure, adaxial leaf cuticles of blue-gum eucalypt, grey poplar, and European pear were assessed, following a membrane science approach. The embedding and staining protocols affected the ultrastructure of the cuticles analysed. The solubility parameter, surface tension, and contact angles with water of pure Spurr's and LR-White resins were within a similar range. Differences were however estimated for resin : solvent mixtures, since Spurr's resin is combined with acetone and LR-White resin is mixed with ethanol. Given the composite hydrophilic and lipophilic nature of plant cuticles, the particular TEM tissue embedding and staining procedures employed may affect sample ultrastructure and the interpretation of the results in physicochemical and biological terms. It is concluded that tissue preparation procedures may be optimised to facilitate the observation of the micro- and nanostructure of cuticular layers and components with different degrees of polarity and hydrophobicity. PMID:24895682
[Effect of bitumen fume on neurotransmitter and ultrastructure in mice brain].
Li, Hai-Ling; Guo, Xiang-Yun; Feng, San-Wei; Liu, Chang-Hai
2006-12-01
To observe the effects of bitumen fume on neurotransmitter and ultrastructure of mice brain and to investigate the toxicity of bitumen fume on nerve system of mice brain. The experimental mice were forced to inhale the bitumen fume at different exposure level and in different time periods. The contents of the three transmitters dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT) in mice brain were measured by the fluorescence meanwhile ultrastructure of mice brain was observed by electronic microscope. The ultrastructure of mice brain was observed under transmission electron microscopy. The contents of DA, NE and 5-HT in all groups decreased with the increasing of dose and prolonging of time (after 8 week, with the increasing of exposure lever, the content of DA, NE, 5-HT was respectively 2.194, 2.190, 2.181, 2.178 microg/g and 1.148, 1.138, 1.135 and 1.407, 1.403, 1.395 microg), but the results did not show significant differences. The structure of the mitochondria changes included the swollen mitochondria, chromatin margination, pyknosis and apoptosis in neuro cells and the processes of swollen astrocyte cells. The bitumen fume could induce changes of the ultrastructure of mice brain and affect the contents of neurotransmitter of mice brain.
Diagnosis of primary ciliary dyskinesia*
Olm, Mary Anne Kowal; Caldini, Elia Garcia; Mauad, Thais
2015-01-01
Primary ciliary dyskinesia (PCD) is a genetic disorder of ciliary structure or function. It results in mucus accumulation and bacterial colonization of the respiratory tract which leads to chronic upper and lower airway infections, organ laterality defects, and fertility problems. We review the respiratory signs and symptoms of PCD, as well as the screening tests for and diagnostic investigation of the disease, together with details related to ciliary function, ciliary ultrastructure, and genetic studies. In addition, we describe the difficulties in diagnosing PCD by means of transmission electron microscopy, as well as describing patient follow-up procedures. PMID:26176524
Ultrastructural characteristics of some bacteria after treatment with Lubrol W.
Cherepova, N; Spasova, D
1994-01-01
Specific ultrastructural changes occurred mainly in the cell wall and cytoplasmic membrane of Listeria monocytogenes, Salmonella typhimurium, Pseudomonas pseudomallei and Pseudomonas aeruginosa bacteria when treated with 0.5% and 1% Lubrol W1 by means of transmission and scanning electron microscopy.
Malignant lymphoma of the cervix uteri: histology and ultrastructure.
Carr, I; Hill, A S; Hancock, B; Neal, F F
1976-01-01
Two cases of primary lymphoma of the cervix uteri are described. Both responded to radiotherapy; both were composed at the ultrastructural level of mature macrophages and immature, apparently neoplastic lymphoreticular cells and are classified as reticulum cell lymphoma. Images PMID:783205
Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.
Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L
1975-01-01
Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups.
2010-01-01
scientific disciplines, who are rapidly pursuing a plethora of exciting and new applications. Concurrently, the implications for potential long-term...focus on the NP toxicity-associated bioeffects that produce acute dose-dependent decreases in viability and alterations in cell function (e.g...t h sufficient contrast and that only high atomic number NPs were readily detectable. More recently, de Jonge et al.25 have unveiled a new STEM
Lu, Haifeng; Chen, Xinhua; Jiang, Jianwen; Liu, Hui; He, Yong; Ding, Songming; Hu, Zhenhua; Wang, Weilin; Zheng, Shusen
2013-01-01
Background Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The “gut-liver axis” closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). Methods The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. Principal Findings Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. Conclusion Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the “gut-liver axis”. PMID:24098410
Ren, Zhigang; Cui, Guangying; Lu, Haifeng; Chen, Xinhua; Jiang, Jianwen; Liu, Hui; He, Yong; Ding, Songming; Hu, Zhenhua; Wang, Weilin; Zheng, Shusen
2013-01-01
Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The "gut-liver axis" closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the "gut-liver axis".
Reijnders, Christianne M.A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.
2015-01-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future. PMID:26135533
Reijnders, Christianne M A; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J; Gibbs, Susan
2015-09-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin-eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Rikihisa, Y; Perry, B D; Cordes, D O
1985-09-01
Potomac horse fever is characterized by fever, anorexia, leukopenia, profuse watery diarrhea, dehydration, and high mortality. An ultrastructural investigation was made to search for any unusual microorganisms in the digestive system, lymphatic organs, and blood cells of ponies that had developed clinical signs after transfusion with whole blood from horses naturally infected with Potomac horse fever. A consistent finding was the presence of rickettsial organisms in the wall of the intestinal tract of these ponies. The organisms were found mostly in the wall of the large colon, but fewer organisms were found in the small colon, jejunum, and cecum. The organisms were also detected in cultured blood monocytes. In the intestinal wall, many microorganisms were intracytoplasmic in deep glandular epithelial cells and mast cells. Microorganisms were also found in macrophages migrating between glandular epithelial cells in the lamina propria and submucosa. The microorganisms were round, very pleomorphic, and surrounded by a host membrane. They contained fine strands of DNA and ribosomes and were surrounded by double bileaflet membranes. Their ultrastructure was very similar to that of the genus Ehrlichia, a member of the family Rickettsiaceae. The high frequency of detection of the organism in the wall of the intestinal tract, especially in the large colon, indicates the presence of organotrophism in this organism. Infected blood monocytes may be the vehicle for transmission between organs and between animals. The characteristic severe diarrhea may be induced by the organism directly by impairing epithelial cell functions or indirectly by perturbing infected macrophages and mast cells in the intestinal wall or by both.
Ultrastructure and elemental analysis of Hypoxis hemerocallidea: a multipurpose medicinal plant.
Afolayan, Anthony J; Otunola, Gloria A
2014-01-01
Herbal medicine is a popular means of medical management in some parts of the world especially in Africa. Hypoxis hemerocallidea Fisch.C.A.Mey. & Avé-Lall, also known as African potato of the Hypoxidaecae family, is one of the medicinal plants that have enjoyed long usage as an herbal medicine in South Africa. In this study, the morphology and elemental constituents of H. hemerocallidea leaf was investigated to correlate the functional role of the ultrastructure in the production of therapeutic compounds. Fresh leaves of H. hemerocallidea were prepared for analysis using standard methods. The ultrastructure and crystal deposits of the plant were assessed using scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). It was observed that the leaves were characterised by multicelullar glandular and non glandular trichomes which are sparsely distributed over the entire surfaces. The glandular trichomes (GTs) in H. hemerocallidea leaf have boulbous heads which are probably filled with secretions, while the non glandular trichomes were long, fibrous and sparse. EDX-SEM of Hypoxis hemerocallidea leaf revealed that carbon, oxygen, nitrogen and silicon are the major components of the deposits, while other elements such as iron, sulphur, sodium, calcium, magnesium, potassium, manganese, iodine, chromium and iodine were present in small but variable amounts. The presence of these elements which are crucial to maintaining good health, in addition to other bioactive constituents might be accountable for the multipurpose therapeutic uses of Hypoxis hemerocallidea in the treatment of cancers, HIV/AIDS related diseases, urinary tract infections, cardiovascular disorders, diabetes and other chronic ailments of humans.
Kuipers, Jeroen; van Ham, Tjakko J; Kalicharan, Ruby D; Veenstra-Algra, Anneke; Sjollema, Klaas A; Dijk, Freark; Schnell, Ulrike; Giepmans, Ben N G
2015-04-01
Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely difficult. Even when combining light microscopy (LM) with EM (correlated LM and EM: CLEM) to find areas of interest, the labeling of molecules is still a challenge. We present a new genetically encoded probe for CLEM, named "FLIPPER", which facilitates quantitative analysis of ultrastructural features in cells. FLIPPER consists of a fluorescent protein (cyan, green, orange, or red) for LM visualization, fused to a peroxidase allowing visualization of targets at the EM level. The use of FLIPPER is straightforward and because the module is completely genetically encoded, cells can be optimally prepared for EM examination. We use FLIPPER to quantify cellular morphology at the EM level in cells expressing a normal and disease-causing point-mutant cell-surface protein called EpCAM (epithelial cell adhesion molecule). The mutant protein is retained in the endoplasmic reticulum (ER) and could therefore alter ER function and morphology. To reveal possible ER alterations, cells were co-transfected with color-coded full-length or mutant EpCAM and a FLIPPER targeted to the ER. CLEM examination of the mixed cell population allowed color-based cell identification, followed by an unbiased quantitative analysis of the ER ultrastructure by EM. Thus, FLIPPER combines bright fluorescent proteins optimized for live imaging with high sensitivity for EM labeling, thereby representing a promising tool for CLEM.
Mendeluk, Gabriela Ruth; Costa, Sergio López; Scigliano, Sergio; Menga, Guillermo; Demiceu, Sergio; Palaoro, Luis Alberto
2013-01-01
The study of nasal ciliary beat frequency (CBF) and ultrastructure may contribute to the understanding of pathognomonic cases of male infertility associated with defects in sperm motility. This study was designed to report a particular case of male infertility, characterized by the association of two respiratory autosomal recessive genetic diseases (alpha-1-antitrypsin deficiency [AAT-D] and primary ciliary dyskinesia [PCD]). A 39-year-old patient with complete sperm immotility, AAT-D, and bronchiectasis was studied in the Laboratory of Male Fertility, the Department of Urology, the Respiratory Center of a Pediatric Hospital, and in the Department of Clinical Medicine of a Rehabilitation Respiratory Hospital. Family history, physical examination, hormonal analysis, microbial assays, semen analysis, nasal ciliary function, and structure study by digital high-speed video photography and transmission electron microscopy are described. A noninvasive nasal biopsy to retrieve ciliated epithelium lining the inferior surface of the inferior nasal turbinates was performed and CBF was determined. Beat pattern was slightly curved and rigid, not wide, and metacronic in all the observed fields analyzed. CBF was 8.2 Hz in average (reference value, 10-15 Hz) Ultrastructural assay revealed absence of the inner dynein arms in 97% of the cilia observed. The final infertility accurate diagnosis was achieved by the study of nasal CBF and ultrastructure contributing to the patient health management and genetic counseling while deciding fatherhood. Beyond this particular case, the present report may open a new field of studies in male infertility, mainly in cases of asthenozoospermia.
Costa, Sergio López; Scigliano, Sergio; Menga, Guillermo; Demiceu, Sergio; Palaoro, Luis Alberto
2013-01-01
The study of nasal ciliary beat frequency (CBF) and ultrastructure may contribute to the understanding of pathognomonic cases of male infertility associated with defects in sperm motility. This study was designed to report a particular case of male infertility, characterized by the association of two respiratory autosomal recessive genetic diseases (alpha-1-antitrypsin deficiency [AAT-D] and primary ciliary dyskinesia [PCD]). A 39-year-old patient with complete sperm immotility, AAT-D, and bronchiectasis was studied in the Laboratory of Male Fertility, the Department of Urology, the Respiratory Center of a Pediatric Hospital, and in the Department of Clinical Medicine of a Rehabilitation Respiratory Hospital. Family history, physical examination, hormonal analysis, microbial assays, semen analysis, nasal ciliary function, and structure study by digital high-speed video photography and transmission electron microscopy are described. A noninvasive nasal biopsy to retrieve ciliated epithelium lining the inferior surface of the inferior nasal turbinates was performed and CBF was determined. Beat pattern was slightly curved and rigid, not wide, and metacronic in all the observed fields analyzed. CBF was 8.2 Hz in average (reference value, 10–15 Hz) Ultrastructural assay revealed absence of the inner dynein arms in 97% of the cilia observed. The final infertility accurate diagnosis was achieved by the study of nasal CBF and ultrastructure contributing to the patient health management and genetic counseling while deciding fatherhood. Beyond this particular case, the present report may open a new field of studies in male infertility, mainly in cases of asthenozoospermia. PMID:23772318
Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B
2014-01-01
Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously observed in cell cultures. This is the first study to demonstrate that defects in cilia expression and function are a true hallmark of GBM tumors and correlate with their unrestrained growth. A review of the current ultrastructural profiles in the literature provides suggestions as to the best possible candidate protein that underlies defects in the early stages of ciliogenesis within GBM tumors.
Redondo, E; Franco, A; Garcia, A; Masot, A J
2010-06-01
To analyse the changes in some histo-physiological parameters of the pineal gland of goat kids in situations of stress due to early weaning, and the effect of exogenous treatment with melatonin. Twenty-four 6-day-old Verata goat kids were used; 12 suckled their dams throughout the study (non-weaned groups), and the other 12 were removed from their dams and fed a milk replacer (weaned groups). Six goat kids in each group were treated with melatonin, and the other six with double-distilled pyrogen-free water (Day 0). On Days 28-29, blood samples were collected at 0600, 1000, 1400, 1800, 2200, 0200 and 0600 hours, to determine concentrations of cortisol and melatonin in plasma. On Days 29 and 30, six animals per group (three at 1400 and three at 0200 hours, respectively) were subject to euthanasia and the weight of their pineal glands determined. The structural immunocytochemistry, morphometric analysis, ultrastructural analysis and immunotransmission electron microscopy of the pineal glands were established. Concentrations of cortisol in plasma were significantly higher in weaned than in non-weaned goat kids (p<0.05), and treatment with melatonin reduced the concentrations in weaned kids (p<0.05). Concentrations of melatonin in plasma showed a similar pattern in the four groups, with peak values at 0200 and troughs at 1400 hours. Mean concentrations of melatonin in plasma in weaned goat kids were significantly lower than those in the other groups (p<0.05). In weaned goat kids not treated with melatonin, the weight and volume of the pineal gland, and number of pinealocytes, were significantly lower when compared with those from non-weaned kids (p<0.05). Quantitative ultrastructural analysis of pinealocytes showed the relative volume of mitochondria, rough endoplasmic reticulum and Golgi complex was significantly lower in weaned than non-weaned goat kids (p<0.05); treatment with melatonin significantly increased these parameters in weaned kids. Taken together, these results indicate that treatment with melatonin in goat kids in situations of stress due to premature weaning could play an important role in the improvement of histo-physiological function of the pineal gland.
Rice, W G; Kinkade, J M; Parmley, R T
1986-08-01
Previous studies on the fractionation of human neutrophil granules have identified two major populations: myeloperoxidase (MPO)-containing azurophil, or primary, granules and MPO-deficient specific, or secondary, granules. Peripheral blood neutrophils from individual donors were lysed in sucrose-free media by either hypotonic shock or nitrogen cavitation. Using a novel two-gradient Percoll density centrifugation system, the granule-rich postnuclear supernatant was rapidly (ten minutes) and reproducibly resolved into 13 granule fractions (L1 through L8 and H1 through H5). Granule flotation and recentrifugation experiments on both continuous, self-generated and multiple-step gradients using individual and mixed isolated fractions demonstrated that the banding patterns were isopycnic and nonartifactual. Isolated granules were intact based on the findings that biochemical latency of several granule enzymes was greater than 95%, and thin-sectioned electron micrographs demonstrated intact granule profiles. Biochemical analyses of the granule marker proteins MPO, beta-glucuronidase, lysozyme, and lactoferrin indicated that a number of the fractions were related to the major azurophil and specific granule populations. Lactoferrin was found in ten of 13 fractions (L1 through L8, H1 to H2), whereas MPO was found in every fraction. Consistent with these biochemical data, all fractions exhibited varying degrees of heterogeneity based on ultrastructural morphology and cytochemistry, including diaminobenzidine (DAB) reactivity for peroxidase and periodate-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining for complex glycoconjugates. A variable but significant percentage (23% to 70%) of the granules in fractions L1 through L8 and H1 and H2 showed DAB reactivity, while about 90% of the granules in fractions H3 through H5 were peroxidase positive. These results demonstrated that DAB-reactive granules spanned the entire range of granule size and density. Ultrastructural PA-TCH-SP staining of isolated granule fractions revealed patterns similar to those of granules in intact neutrophils at different stages of development. Granules from human acute promyelocytic leukemia cells (HL-60) exhibited a surprisingly low density compared with typical azurophil granules from normal, mature neutrophils. The data suggest that both functional and maturational differences contribute to granule heterogeneity, and provide a new practical and conceptual framework for further defining the phenomenon of neutrophil granule heterogeneity.
NASA Astrophysics Data System (ADS)
Hoffmann, Rene; Richter, Detlev K.; Neuser, Rolf D.; Jöns, Niels; Linzmeier, Benjamin J.; Lemanis, Robert E.; Fusseis, Florian; Xiao, Xianghui; Immenhauser, Adrian
2017-04-01
Carbonate skeletons of fossil marine organisms are widely used to reconstruct palaeoenvironments. Specifically, the geochemistry of Jurassic and Cretaceous belemnite rostra is commonly applied to reconstruct palaeoseawater properties. This is due to the assumption that belemnites, as member of the mollusc group, precipitated their rostra in equilibrium with the palaeoenvironment and secondly it was assumed that rostra represent primary dense low Mg calcite structures and relatively stable against diagenetic overprinting. More recently an increasing number of published data, show significant scatter in geochemical data (e.g., d18O, d13C, element/Ca ratio) when comparing belemnite rostra from the same stratigraphic level or within a single belemnite rostrum. This scatter is not explained by differential diagenetic overprint alone but also by vertical and horizontal migration patterns, seasonality, or changes in salinity. In order to test for an ultrastructural-related explanation for the observed scatter we employed a wide range of state-of-the-art analytical tools, e.g., cathodoluminescence, fluorescence- and confocal laser fluorescence microscopy, scanning electron microscopy equipped with a backscatter detector, electron microprobe analysis, electron backscatter diffraction imaging to thin sections and ultra-thin sections of well-preserved specimens. We found petrographic evidence that the primary, i.e. biogenic, ultrastructure of rostra of Megateuthis (Middle Jurassic) and Belemnitella and Gonioteuthis (Late Cretaceous) was not a dense calcite structure, but contained primary porosity. The biogenic ultrastructure consists of a filigree framework of tetrahedrons of variable size with branches forming a honeycomb-like network. Data presented here suggest that these rostra yielded as much as 50 to 90% primary pore space. We propose that the pore space was originally filled with body fluid and/or organic compounds during the life time of these organisms in analogy with modern cephalopods. Intra-rostral porosity was occluded post mortem by earliest diagenetic isopachous calcite cements of a non-biogenic origin. These may have been precipitated due to increased alkalinity related to the decay of organic matter. If this holds true, then the resulting fabric represents a composite biogenic/abiogenic structure precipitated at different times and depths in the water column. We suggest that these findings have significance for those using belemnite rostra as archives of their palaeoenvironment, for the reconstruction of belemnite palaeoecology, and for the functional interpretation of belemnite rostra.
Herrera, Guillermo A; Ojemakinde, Kunle O; Turbat-Herrera, Elba A; Gu, Xin; Zeng, Xu; Iskandar, Samy S
2015-01-01
Immunotactoid glomerulopathy is a rare disorder that has been characterized at the ultrastructural level. Due to its rarity, there are few comprehensive studies relating to this disorder. Electron microscopy essentially characterizes this disease. The glomerular electron dense deposits which are typical of this condition consist of aggregates of highly organized microtubular structures of various diameters, but generally measuring 30-50 nm in width with a propensity to dispose themselves in parallel bundles intersecting in different planes. This study compares a large series of patients with cryoglobulinemic nephropathy with a series of patients with immunotactoid glomerulopathy to address whether there may be similarities that warrant considering these two entities part of a spectrum. This study reviews the clinicopathologic features of both entities and emphasizes ultrastructural findings that characterize them. Significant immunomorphologic overlap was found when these two disorders were compared in this study. There were also striking similarities in clinical presentation/behavior, laboratory findings and prognosis. Proteomic analysis has also demonstrated similar spectra for both entities. We postulate that immunotactoid glomerulopathy and cryoglobulinemic nephropathy are part of the spectrum of renal manifestations in patients with circulating cryoglobulins and renal disease.
In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.
Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E
2012-10-01
Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultrastructural changes in sweet orange with symptoms of huanglongbing
USDA-ARS?s Scientific Manuscript database
Citrus greening (Huanglongbing [HLB]) is one of the most destructive citrus diseases worldwide. To better understand the ultrastructural changes of sweet orange seedlings in response to infection, anatomical analyses of HLB-infected sweet orange were carried out by light and electron microscopy. A...
Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid*
Kang, Guo-zhang; Wang, Zheng-xun; Xia, Kuai-fei; Sun, Gu-chou
2007-01-01
Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 °C) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 °C could be a type of stress. During 3 d of exposure to 7 °C chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion: SA could provide some protection for cell structure of chilling-stressed banana seedling. PMID:17444604
Karpov, S A; Kobseva, A A; Mamkaeva, M A; Mamkaeva, K A; Mikhailov, K V; Mirzaeva, G S; Aleoshin, V V
2014-06-01
During the last decade several new orders were established in the class Chytridiomycetes on the basis of zoospore ultrastructure and molecular phylogeny. Here we present the ultrastructure and molecular phylogeny of strain x-51 CALU - a parasite of the alga Tribonema gayanum, originally described as Rhizophydium sp. based on light microscopy. Detailed investigation revealed that the zoospore ultrastructure of this strain has unique characters not found in any order of Chytridiomycetes: posterior ribosomal core unbounded by the endoplasmic reticulum and detached from the nucleus or microbody-lipid complex, and kinetosome composed of microtubular doublets. An isolated phylogenetic position of x-51 is further confirmed by the analysis of 18S and 28S rRNA sequences, and motivates the description of a new genus and species Gromochytrium mamkaevae. The sister position of G. mamkaevae branch relative to Mesochytrium and a cluster of environmental sequences, as well as the ultrastructural differences between Gromochytrium and Mesochytrium zoospores prompted us to establish two new orders: Gromochytriales and Mesochytriales.
NASA Astrophysics Data System (ADS)
Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.
2011-05-01
The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.
Frankl, Andri; Mari, Muriel; Reggiori, Fulvio
2015-01-01
The yeast Saccharomyces cerevisiae is a key model system for studying of a multitude of cellular processes because of its amenability to genetics, molecular biology and biochemical procedures. Ultrastructural examinations of this organism, though, are traditionally difficult because of the presence of a thick cell wall and the high density of cytoplasmic proteins. A series of recent methodological and technical developments, however, has revived interest in morphological analyses of yeast (e.g. 123). Here we present a review of established and new methods, from sample preparation to imaging, for the ultrastructural analysis of S. cerevisiae. We include information for the use of different fixation methods, embedding procedures, approaches for contrast enhancement, and sample visualization techniques, with references to successful examples. The goal of this review is to guide researchers that want to investigate a particular process at the ultrastructural level in yeast by aiding in the selection of the most appropriate approach to visualize a specific structure or subcellular compartment. PMID:28357267
Castro, L E; Guimarães, C C; Faria, J M R
2017-11-01
During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control), 2, 8, 12 (no germinated seeds), and 18 hours (germinated seeds with 1 mm protruded radicle); then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.
Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.
Ameye, L; Hermann, R; Dubois, P
2000-08-01
The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. Copyright 2000 Academic Press.
Ultra-Structure database design methodology for managing systems biology data and analyses
Maier, Christopher W; Long, Jeffrey G; Hemminger, Bradley M; Giddings, Morgan C
2009-01-01
Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping). Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find Ultra-Structure offers substantial benefits for biological information systems, the largest being the integration of diverse information sources into a common framework. This facilitates systems biology research by integrating data from disparate high-throughput techniques. It also enables us to readily incorporate new data types, sources, and domain knowledge with no change to the database structure or associated computer code. Ultra-Structure may be a significant step towards solving the hard problem of data management and integration in the systems biology era. PMID:19691849
Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.
Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J
1989-01-01
Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.
Sargon, Mustafa F; Denk, C Cem; Celik, H Hamdi; Surucu, H Selcuk; Aldur, M Mustafa
2007-07-01
In this study, the myelinated axons of parts of the corpus callosums of young and old rats were examined under the electron microscope and a grading system was performed for quantitating the ultrastructural pathological changes of these axons. Except the old splenium group, the only ultrastructural pathological change, observed in the myelinated axons was the separation in myelin configuration. In addition to this finding, in the old splenium group, in some of the myelinated axons, an interruption was observed in the myelin configuration. Additionally, these ultrastructural pathological findings were present in the larger sized myelinated axons of the corpus callosum.
The role of molecular genetic analysis in the diagnosis of primary ciliary dyskinesia.
Kim, Raymond H; A Hall, David; Cutz, Ernest; Knowles, Michael R; Nelligan, Kathleen A; Nykamp, Keith; Zariwala, Maimoona A; Dell, Sharon D
2014-03-01
Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder of motile cilia. The diagnosis of PCD has previously relied on ciliary analysis with transmission electron microscopy or video microscopy. However, patients with PCD may have normal ultrastructural appearance, and ciliary analysis has limited accessibility. Alternatively, PCD can be diagnosed by demonstrating biallelic mutations in known PCD genes. Genetic testing is emerging as a diagnostic tool to complement ciliary analysis where interpretation and access may delay diagnosis. To determine the diagnostic yield of genetic testing of patients with a confirmed or suspected diagnosis of PCD in a multiethnic urban center. Twenty-eight individuals with confirmed PCD on transmission electron microscopy of ciliary ultrastructure and 24 individuals with a probable diagnosis of PCD based on a classical PCD phenotype and low nasal nitric oxide had molecular analysis of 12 genes associated with PCD. Of 49 subjects who underwent ciliary biopsy, 28 (57%) were diagnosed with PCD through an ultrastructural defect. Of the 52 individuals who underwent molecular genetic analysis, 22 (42%) individuals had two mutations in known PCD genes. Twenty-four previously unreported mutations in known PCD genes were observed. Combining both diagnostic modalities of biopsy and molecular genetics, the diagnostic yield increased to 69% compared with 57% based on biopsy alone. The diagnosis of PCD is challenging and has traditionally relied on ciliary biopsy, which is unreliable as the sole criterion for a definitive diagnosis. Molecular genetic analysis can be used as a complementary test to increase the diagnostic yield.
Onerheim, R M; Wang, N S; Gilmore, N; Jothy, S
1984-09-01
To determine if vesicular rosettes (VR), tubuloreticular structures (TRS), and "test-tube and ring-shaped forms" (TRF) are characteristic ultrastructural features of the syndromes of acquired immune deficiency (AIDS) or of unexplained persistent lymphadenopathy (PLS), the authors studied lymph nodes from nine patients with PLS, two patients with AIDS, and seven controls by electron microscopy. An average of 122 lymphocytes per case were photographed. VR were present in only 0.37% of lymphocytes in 4 of 11 index cases and were mimicked by grouped vesicles and degenerating multivesicular bodies (MVB). TRS were found in 10 of 11 index cases, compared with only one of seven controls (P less than 0.01). In the index cases, they were more frequent in AIDS (mean 21%) than in PLS lymphocytes (mean 4%) (P less than 0.05). MVB were found in all index cases and five of seven controls and were more frequent in index lymphocytes (mean 19%) than in controls (mean 5%) (P less than 0.01). TRF were found in one Haitian male with AIDS, where they were present in 4% of lymphocytes. VR are infrequent and indistinct. MVB probably reflect the reactivity of the lymphocytes. TRF is not a feature of PLS. The authors conclude that there are no pathognomonic ultrastructural markers of AIDS or PLS but that TRS are characteristic of both syndromes and occur frequently enough to be supportive to the diagnosis of AIDS and PLS.
Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang
2011-08-01
A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.
Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations.
Bouldin, T. W.; Goines, N. D.; Bagnell, R. C.; Krigman, M. R.
1981-01-01
The ultrastructural cytopathologic and cytochemical effects of trimethyltin (TMT) neurotoxicity were delineated in hippocampal and pyriform neurons of acutely intoxicated adult rats. TMT produced neuronal necrosis that preferentially involved hippocampal formation pyriform cortex. The first subcellular alterations were multifocal collection of dense-cored vesicles and tubules and membrane-delimited vacuoles in the cytoplasm of the perikaryon and proximal dendrite. Ultrastructural cytochemical examination revealed that the vesicles and tubules had acid phosphatase activity analagous to Golgi-associated endoplasmic reticulum (GERL). Shortly after the appearance of the GERL-like vesicles and tubules, autophagic vacuoles and polymorphic dense bodies accumulated in the neuronal cytoplasm. Some dense bodies appeared to arise from the dense-cored tubules. Neuronal necrosis was characterized by increased electron density of the cytoplasm and large, electron-dense intranuclear masses. Alterations of mitochondria and other organelles were not observed in the early stages of cell injury. No light- or electron-microscopic alterations were found in liver or kidney. Comparable subcellular alterations were observed in adult and neonatal rats chronically intoxicated with TMT. A series of other trialkyl and tricyclic tins and dimethyltin did not produce similar pathologic findings. The GERL-like accumulations are unique in neuronal cytopathology. These findings suggests that GERL and autophagy play an important role in the pathogenesis of TMT-induced neuronal injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7294153
NASA Astrophysics Data System (ADS)
Pasquesi, James J.; Schlachter, Simon C.; Boppart, Marni D.; Chaney, Eric; Kaufman, Stephen J.; Boppart, Stephen A.
2006-02-01
Birefringence of skeletal muscle has been associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Murine skeletal muscle (gastrocnemius) was imaged with a fiber-based PS-OCT imaging system to determine the level of birefringence present in the tissue under various conditions. In addition to muscle controls from wild-type mice, muscle from abnormal mice included: genetically-modified (mdx) mice which model human muscular dystrophy, transgenic mice exhibiting an overexpression of integrin (α7β1), and transgenic integrin (α7β1)knockout mice. Comparisons were also made between rested and exercised muscles to determine the effects of exercise on muscle birefringence for each of these normal and abnormal conditions. The PS-OCT images revealed that the presence of birefringence was similar in the rested muscle with dystrophy-like features (i.e., lacking the structural protein dystrophin - mdx) and in the integrin (α7β1)knockout muscle when compared to the normal (wild-type) control. However, exercising these abnormal muscle tissues drastically reduced the presence of birefringence detected by the PS-OCT system. The muscle exhibiting an overexpression of integrin (α7β1) remained heavily birefringent before and after exercise, similar to the normal (wild-type) muscle. These results suggest that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.
Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin
2017-02-01
Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.
Parhar, I.S.; Nagahama, Y.; Grau, E.G.; Ross, R.M.
1998-01-01
Protogynous wrasses (Thalassoma duperrey): females (F), primary males (PM) along with a few terminal-phase males (TM) and sex-changed males (SM), were used to characterize the topographical organization of the pituitary. In general, immunocytochemical and ultrastructural features of the adenohypophyseal cell types of the saddleback wrasse pituitary resemble those of other teleosts. In the rostral pars distalis (RPD), corticotropic cells were found bordering the neurohypophysis (NH) and surrounding the centroventrally located prolactin cells. Thyrotropic cells formed a small group in the anteriodorsal part of the rostral and proximal pars distalis (PPD). The somatotropic cells were distributed in large clusters, mostly organized in cell cords around the interdigitations of the NH of the dorsal PPD. Cells containing gonadotropin I?? subunit were localized in the dorsal parts of the PPD, in close association with somatotropic cells and gonadotropin II?? subunit containing cells were seen in the centroventral parts of the PPD and along the periphery of the pars intermedia (PI). The pars intermedia was composed of melanotropic cells and somatolactin cells that lined the neurohypohysis. Distinct ultrastructural differences in corticotropic and somatotropic cells were not observed between the four groups. In all groups, prolactin cells in the ventral-most RPD could be immature cells or actively secreting prolactin. Gonadotropic II cells of PM and F had relatively higher incidence of "nuclear budding" and cell organelles compared to TM and SM. Besides gonadotropic, the active melanotropic and somatolactin cells might be associated with some aspect(s) of reproduction.
Agrawal, Yogeeta O.; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M.; Arya, Dharamvir Singh; Goyal, Sameer N.
2014-01-01
The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPAR-γ receptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and –LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPAR-γ receptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I/R model in rats. PMID:25369053
Shimada, Hiroshi; Ohno, Ryoichi; Shibata, Masaru; Ikegami, Isamu; Onai, Kiyoshi; Ohto, Masa-aki; Takamiya, Ken-ichiro
2005-02-01
Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves. The mutated nuclear gene encoded 1,4-dihydroxy-2-naphtoic acid phytyltransferase, an enzyme of phylloquinone biosynthesis, and high-performance liquid chromatography analysis revealed that the abc4 mutant contained no phylloquinone, and only about 3% plastoquinone. Photooxidation of P700 of PSI in the abc4 mutant was not observed, and reduced-versus-oxidized difference spectroscopy indicated that the abc4 mutant had no P700. The maximum quantum yield of photosystem II (PSII) in the abc4 mutant was much decreased, and the electron transfer from PSII to PSI in the abc4 mutant did not occur. For the pale-green leaves of the abc4 mutant plant, the ultrastructure of the chloroplasts was almost the same as that of the wild-type plant. However, the chloroplasts in the albino leaves of the mutant were smaller and had a lot of grana thylakoids and few stroma thylakoids. The amounts of PSI and PSII core subunits in the abc4 mutant were significantly decreased compared with those in the wild type. These results suggested that a deficiency of phylloquinone in PSI caused the abolishment of PSI and a partial defect of PSII due to a significant decrease of plastoquinone, but did not influence the ultrastructure of the chloroplasts in young leaves.
Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women
Myers, Kristin M.; Vink, Joy Y.; Wapner, Ronald J.; Hendon, Christine P.
2016-01-01
The structural integrity of the cervix in pregnancy is necessary for carrying a pregnancy until term, and the organization of human cervical tissue collagen likely plays an important role in the tissue’s structural function. Collagen fibers in the cervical extracellular matrix exhibit preferential directionality, and this collagen network ultrastructure is hypothesized to reorient and remodel during cervical softening and dilation at time of parturition. Within the cervix, the upper half is substantially loaded during pregnancy and is where the premature funneling starts to happen. To characterize the cervical collagen ultrastructure for the upper half of the human cervix, we imaged whole axial tissue slices from non-pregnant and pregnant women undergoing hysterectomy or cesarean hysterectomy respectively using optical coherence tomography (OCT) and implemented a pixel-wise fiber orientation tracking method to measure the distribution of fiber orientation. The collagen fiber orientation maps show that there are two radial zones and the preferential fiber direction is circumferential in a dominant outer radial zone. The OCT data also reveal that there are two anatomic regions with distinct fiber orientation and dispersion properties. These regions are labeled: Region 1—the posterior and anterior quadrants in the outer radial zone and Region 2—the left and right quadrants in the outer radial zone and all quadrants in the inner radial zone. When comparing samples from nulliparous vs multiparous women, no differences in these fiber properties were noted. Pregnant tissue samples exhibit an overall higher fiber dispersion and more heterogeneous fiber properties within the sample than non-pregnant tissue. Collectively, these OCT data suggest that collagen fiber dispersion and directionality may play a role in cervical remodeling during pregnancy, where distinct remodeling properties exist according to anatomical quadrant. PMID:27898677
Atibalentja, N; Jakstys, B P; Noel, G R
2004-06-01
Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.
Ji, Y Q; Zhang, R; Teng, L; Li, H Y; Guo, Y L
2017-07-18
Objective: Thecurrent study is to explore the neuron-protective mechanism of neuregulin1β (NRG1β) in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) through inhibiting the c-Jun phosphorylation. Methods: After 24 h of MCAO/R (referring to Longa's method), neurobehavioral function was measured by modified neurological severity score (mNSS) test; the cerebral infarction volume was detected by triphenyltetrazolium chloride (TTC) staining; the blood brain barrier (BBB) permeability was measured by Evans Blue (EB); the neuron morphology of brain tissue was observed by Nissl stain; the ultra-structures of the neurons were observed by transmission electron microscopy (TEM); the apoptotic neurons were counted by in situ cell death detection kit colocalized with NeuN; the expressions of phospho-c-Jun was determined by immunofluorescent labeling and Western blot analysis. Results: Compared with the sham-operation rats, the rats receiving MCAO/R showed increased mNSS (9.7±1.2), cerebral infarction volume (41.4±3.0)%, permeability of BBB, deformation of neurons, ischemia-induced apoptosis (0.63±0.04), and enhanced expression of phospho-c-Jun protein (0.90±0.07) (all P <0.05). Our data indicated that NRG1β attenuated neurologic deficits (6.4±0.9), decreased the cerebral infarction volume (10.4±0.5), reduced EB extravasation (1.55±0.13) and the deformation of neurons, protected the ultra-structure of neurons, blocked ischemia-induced apoptosis (0.23±0.02), through down-regulated phospho-c-Jun expression (0.40±0.03) in MCAO/R rats ( P <0.05). Conclusion: NRG1β exerts neuron-protective effects against ischemia reperfusion-induced injury in rats through inhibiting the c-Jun phosphorylation.
Kikuchi, T; Adams, J C; Paul, D L; Kimura, R S
1994-09-01
The distribution of gap junctions within the vestibular labyrinth was investigated using immunohistochemistry and transmission electron microscopy. Connexin26-like immunoreactivity was observed among supporting cells in each vestibular sensory epithelium. Reaction product was also present in the transitional epithelium of each vestibular endorgan and in the planum semilunatum of crista ampullaris. No connexin26-like immunoreactivity was observed among thin wall epithelial cells or among vestibular dark cells. In addition, fibrocytes within vestibular connective tissue were positively immunostained. Reaction product was also detected in the melanocyte area just beneath dark cells. Ultrastructural observations indicated that a gap junction network of vestibular supporting cells extends to the transitional epithelium and planum semilunatum and forms an isolated epithelial cell gap junction system in each vestibular endorgan. In contrast, no gap junctions were found among wall epithelial cells or among dark cells. Fibrocytes and melanocytes were coupled by gap junctions and belong to the connective tissue cell gap junction system, which is continuous throughout the vestibular system and the cochlea. The possible functional significance of these gap junction systems is discussed.
Ultrastructural study of the semicircular canal cells of the frog Rana esculenta.
Oudar, O; Ferrary, E; Feldmann, G
1988-03-01
The ultrastructure of the nonsensory cells (dark cells, transitional cells, and undifferentiated cells) of the frog semicircular canal was studied by using transmission electron microscopy in an attempt to correlate the structure with the functions of these epithelial cells. All the nonsensory cells were linked by tight junctions and desmosomes; this suggested that there is little paracellular ionic transport from perilymph to endolymph. In the dark cell epithelium, the apical intercellular spaces were dilated; in the basal part, numerous basolateral plasma membrane infoldings, containing mitochondria, delimited electron-lucent spaces. The undifferentiated cells and the transitional cells were devoid of any basal membrane infolding. Surrounding the semicircular canal, very flattened and interdigitated mesothelial cells constituted a thin multilayer tissue which limited the perilymphatic space. The morphological aspect of the dark cells suggests that they may play a role in the secretion and/or in the reabsorption of endolymph, which bathes the apical pole of these cells. The undifferentiated and transitional cells can play a role in the maintenance of the endolymphatic ionic composition because of their apical tight junctions and desmosomes.
Ultrastructural changes in lung tissue after acute lead intoxication in the rat.
Kaczynska, Katarzyna; Walski, Michał; Szereda-Przestaszewska, Małgorzata
2011-01-01
Pulmonary toxicity of lead was studied in rats after an intraperitoneal administration of lead acetate at a dose of 25 mg/kg. Three consecutive days of treatment increased lead content in the whole blood to 2.1 µg/dl and in lung homogenate it attained 9.62 µg/g w.w. versus control values of 0.17 µg/dl and 0.78 µg/g w.w., respectively. At the ultrastructural level, the effects of lead toxicity were observed in lung capillaries, interstitium, epithelial cells and alveolar lining layer. Accumulation of aggregated platelets, leucocytic elements and monocytes was found within capillaries. Interstitium comprised a substantial number of collagen, elastin filaments and lipofibroblasts. Lamellar bodies of type II pneumocytes contained phospolipid lamellae, which stratified into an irregular arrangement. Pulmonary alveoli were filled with macrophages. The extracellular lining layer of lung alveoli was partially destroyed. This study provided evidence that acute lead intoxication affects the whole lung parenchyma and by impairing production of the surfactant might disturb the regular respiratory function.
Chromatin Ring Formation at Plant Centromeres.
Schubert, Veit; Ruban, Alevtina; Houben, Andreas
2016-01-01
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.
The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).
Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino
2012-03-01
The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions. Copyright © 2011 Wiley Periodicals, Inc.
Chromatin Ring Formation at Plant Centromeres
Schubert, Veit; Ruban, Alevtina; Houben, Andreas
2016-01-01
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037
Effects and mechanism of acid rain on plant chloroplast ATP synthase.
Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2016-09-01
Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.
3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell
Henderson, Gregory P.; Gan, Lu; Jensen, Grant J.
2007-01-01
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes. PMID:17710148
Leah S. Bauer; Stuart H. Pankratz
1992-01-01
Sequential observations of the ultrastructural effects of Bacillus thuringiensis var. san diego were made on midgut epithelial cells of the cottonwood leaf beetle, Chrysomela scripta F. Larvae imbibed a droplet of B. thuringiensis var. san diego containing endotoxin and live...
A detailed histologic and ultrastructural description of two cases of hepatoblastoma, a primitive liver cell neoplasm, is provided from mummichog, Fundulus heteroclitus(L.), inhabiting a creosote-contaminated site in the Elizabeth River, Virginia, USA. Both neoplasms were multifo...
Karl, Anett; Agte, Silke; Zayas-Santiago, Astrid; Makarov, Felix N; Rivera, Yomarie; Benedikt, Jan; Francke, Mike; Reichenbach, Andreas; Skatchkov, Serguei N; Bringmann, Andreas
2018-05-19
It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Sung Han
2016-01-01
Ultrastructural studies on oocyte development and vitellogenesis in oocytes, and the functions of follicle cells during oogenesis and oocyte degeneration were investigated to clarifyb the reproductive mechanism on vitellogenesis of Scapharca subcrenata using electron microscope observations. In this study, vitellogenesis during oogenesis in the oocytes occured by way of autosynthesis and heterosynthesis. Of two processes of vitellogenesis during oogenesis, the process of endogenous autosynthesis involved the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum. However, the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the oolema of the early vitellogenic oocytes before the formation of the vitelline coat. In this study, follicle cells, which attached to the previtellogenic and vitellogenic oocytes, were easily found. In particular, the follicle cells were involved in the development of previtellogenic oocytes by the supply of nutrients, and vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors. Based on observations of follicle cells attached to degenerating oocytes after spawning, follicles of this species are involved in lysosomal induction of oocyte degeneration for the resorption phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. In this study, the functions of follicle cells can accumulate reserves of lipid granules and glycogen particles for vitellogenesis from degenerating oocytes after spawning. PMID:27796004
Heuser, John E.
2014-01-01
This brief essay talks up the advantages of metal replicas for electron microscopy and explains why they are still the best way to image frozen cells in the electron microscope. Then it explains our approach to freezing, namely the Van Harreveld trick of “slamming” living cells onto a supercold block of metal sprayed with liquid helium at −269ºC, and further talks up this slamming over the alternative of high-pressure freezing, which is much trickier but enjoys greater favor at the moment. This leads me to bemoan the fact that there are not more young investigators today who want to get their hands on electron microscopes and use our approach to get the most “true to life” views of cells out of them with a minimum of hassle. Finally, it ends with a few perspectives on my own career and concludes that, personally, I'm permanently stuck with the view of the “founding fathers” that cell ultrastructure will ultimately display and explain all of cell function, or as Palade said in his Nobel lecture,electron micrographs are “irresistible and half transparent … their meaning buried under only a few years of work,” and “reasonable working hypotheses are already suggested by the ultrastructural organization itself.” PMID:25360049
Novelli, Michela; Beffy, Pascale; Menegazzi, Marta; De Tata, Vincenzo; Martino, Luisa; Sgarbossa, Anna; Porozov, Svetlana; Pippa, Anna; Masini, Matilde; Marchetti, Piero; Masiello, Pellegrino
2014-02-01
The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.
Colello, Raymond J; Tozer, Jordan; Henderson, Scott C
2012-01-01
Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auge, R.M.; Gealy, D.R.; Ogg, A.G.
1987-04-01
Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with /sup 3/H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and thenmore » either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted.« less
The effect of sibutramine on platelet morphology of Spraque-Dawley rats fed a high energy diet.
Oberholzer, Hester Magdalena; Van Der Schoor, Ciska; Pretorius, Etheresia
2013-06-01
The aim of this study was to investigate the effect of Sibutramine on platelet ultrastructure and discuss the morphological observations in relation to known physiological effects of the compound. Six-week-old, female Spraque-Dawley rats were used in this study. The animals were placed on a high energy diet after which sibutramine administration followed. Blood was drawn on the day of termination and platelet rich plasma was obtained to prepare plasma smears for analysis. Scanning electron microscopy was used to investigate the ultrastructure of the platelets. Platelets of the Sibutramine-treated animals showed smooth surface with limited pseudopodia formation when compared with that of the control animals. Higher magnification of the platelet surface showed membrane tears and swelling, typically seen in necrotic cells. It can therefore be concluded from these results that Sibutramine alters the membrane morphology of platelets to that typical of necrotic cells. Copyright © 2013 Wiley Periodicals, Inc.
Ksiezak-Reding, H.; Tracz, E.; Yang, L. S.; Dickson, D. W.; Simon, M.; Wall, J. S.
1996-01-01
Paired helical filaments (PHFs) accumulate in the brains of subjects affected with Alzheimer's disease (AD) and certain other neurodegenerative disorders, including corticobasal degeneration (CBD). Electron microscope studies have shown that PHFs from CBD differ from those of AD by being wider and having a longer periodicity of the helical twist. Moreover, PHFs from CBD have been shown to be primarily composed of two rather than three highly phosphorylated polypeptides of tau (PHF-tau), with these polypeptides expressing no exons 3 and 10. To further explore the relationship between the heterogeneity of PHF-tau and the appearance of abnormal filaments, the ultrastructure and physical parameters such as mass per unit length and dimensions were compared in filaments from CBD and AD using high resolution scanning transmission electron microscopy (STEM). Filament-enriched fractions were isolated as Sarcosyl-insoluble pellets and for STEM studies, samples were freeze-dried without prior fixation or staining. Ultrastructurally, PHFs from CBD were shown to be a heterogeneous population as double- and single-stranded filaments could be identified based on their width and physical mass per unit length expressed in kilodaltons (kd) per nanometer (nm). Less abundant, double-stranded filaments had a maximal width of 29 nm and a mass per unit length of 133 kd/nm, whereas three times more abundant single-stranded filaments were 15 nm wide and bad a mass per unit length of 62 kd/nm. Double-stranded filaments also displayed a distinct axial region of less dense mass, which appeared to divide the PHFs into two protofilament-like strands. Furthermore, these filaments were frequently observed to physically separate along the long axis into two single strands or to break longitudinally. In contrast, PHFs from AD were ultrastructurally stable and uniform both in their width (22 nm) and physical mass per unit length (104 kd/nm). The ultrastructural features indicate that filaments of CBD and AD differ both in stability and packing of tau and that CBD filaments, composed of two distinct protofilaments, are more labile under STEM conditions. As fixed and stained filaments from CBD have been shown to be stable and uniform in size by conventional transmission electron microscopy, STEM studies may be particularly suitable for detecting instability of unstained and unfixed filaments. The results also suggest that molecular heterogeneity and/or post-translational modifications of tau may strongly influence the morphology and stability of abnormal filaments. Images Figure 1 Figure 2 Figure 3 PMID:8702002
Dananjaya, S H S; Erandani, W K C U; Kim, Cheol-Hee; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama
2017-12-01
Though the metal nanoparticles (NPs) have been shown favorable results against fungal diseases, erratic environmental toxicity of NPs have raised serious concerns against their applications. Hence, it is vital to modify antifungal compounds into safe substitutes over synthetic chemicals. In this study, antifungal effects of chitosan nanoparticles (CNPs) and chitosan silver nanocomposites (CAgNCs) were compared against Fusarium oxysporum species complex. CNPs and CAgNCs were synthesized, characterized and compared based on the transmission electron microscope, X-ray diffraction, UV-vis absorbance spectra, particle size distribution, zeta potential and thermal stability analysis. Ultra-structural analysis on mycelium membrane of treated F. oxysporum showed that CNPs and CAgNCs could induce a pronounced membrane damage and disruption of the mycelium surface, increase the membrane permeability, and even cell disintegration. CAgNCs showed a significantly higher radial growth inhibition than CNPs in all the tested concentrations. Both CNPs and CAgNCs were not only effective in reducing the fungal growth, but also caused morphological and ultrastructural changes in the pathogen, thereby suggesting its usage as an antifungal dispersion system to control F. oxysporum. Additionally, CNPs and CAgNCs therapy reduced the F. oxysporum infection in zebrafish. Data demonstrates biologically active CNPs and CAgNCs are promising antifungal agents against F. oxysporum. Copyright © 2017 Elsevier B.V. All rights reserved.
Chernyĭ, A P; Iakovleva, N I
1990-01-01
Relationships between squamous and columnar epithelia in the anal canal and cervix uteri of postnatal period and fetus were studied. The transitional stratified epithelial lining, which is called junctional epithelium, is interposed between the mentioned epithelia. The junctional epithelium has variable numbers of layers of epidermoid cells, which differ from cells of atypical squamous epithelium by some ultrastructural features of the cytoskeleton and cell surface and by a low content of glycogen. The hypothesis on the physiological significance of this epithelium is proposed. Ultrastructural features of the cytoskeleton and cell surface suggest that anal basaloid carcinomas and some cervical squamous carcinomas may develop from so-called junctional epithelium.
Antonova, I N; Goncharov, V D; Bobrova, E A
The aim of the study was to evaluate ultrastructural changes of dental enamel after fixation of orthodontic appliances, initial influence of orthodontic forces and removal of braces. Five intact permanent tooth extracted for orthodontic reasons were included in the experimental study. Scanning probe microscopy was conducted in 4 random enamel points in each tooth (20 points overall) in semi-contact mode with standard 10 nm probes. The study showed ultrastructural enamel changes such as nanofractures up to 1 mm along the braces locks. The changes correlated with surface morphological features and teeth anatomy and may play an important role in dental decay and non-carious lesions occurring in the course of orthodontic treatment.
Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure.
Rufo, Lourdes; Franco, Alejandro; de la Fuente, Vicenta
2014-07-01
Silicon concentration, distribution, and ultrastructure of silicon deposits in the Poaceae Imperata cylindrica (L.) P. Beauv. have been studied. This grass, known for its medicinal uses and also for Fe hyperaccumulation and biomineralization capacities, showed a concentration of silicon of 13,705 ± 9,607 mg/kg dry weight. Silicon was found as an important constituent of cell walls of the epidermis of the whole plant. Silica deposits were found in silica bodies, endodermis, and different cells with silicon-collapsed lumen as bulliforms, cortical, and sclerenchyma cells. Transmission electron microscope observations of these deposits revealed an amorphous material of an ultrastructure similar to that previously reported in silica bodies of other Poaceae.
Gastric cryptosporidiosis in freshwater angelfish (Pterophyllum scalare)
Murphy, B.G.; Bradway, D.; Walsh, T.; Sanders, G.E.; Snekvik, K.
2009-01-01
A freshwater angelfish (Pterophyllum scalare) hatchery experienced variable levels of emaciation, poor growth rates, swollen coelomic cavities, anorexia, listlessness, and increased mortality within their fish. Multiple chemotherapeutic trials had been attempted without success. In affected fish, large numbers of protozoa were identified both histologically and ultrastructurally associated with the gastric mucosa. The youngest cohort of parasitized fish was the most severely affected and demonstrated the greatest morbidity and mortality. The protozoa were morphologically most consistent with Cryptosporidium. All of the protozoan life stages were identified ultrastructurally and protozoal genomic DNA was isolated from parasitized tissue viscera and sequenced. Histological, ultrastructural, genetic, and phylogenetic analyses confirmed this protozoal organism to be a novel species of Cryptosporidium.
Fabbri, R; Vicenti, R; Macciocca, M; Martino, N A; Dell'Aquila, M E; Pasquinelli, G; Morselli-Labate, A M; Seracchioli, R; Paradisi, R
2016-08-01
Which is the best method for human ovarian tissue cryopreservation: slow freezing/rapid thawing (SF/RT) or vitrification/warming (V/W)? The conventional SF/RT protocol used in this study seems to better preserve the morpho-functional status of human cryopreserved ovarian tissue than the used open carrier V/W protocol. Cryopreservation of human ovarian tissue is generally performed using the SF/RT method. However, reduction in the follicular pool and stroma damage are often observed. An emerging alternative procedure is represented by V/W which seems to allow the maintenance of the morphological integrity of the stroma. This is a retrospective cohort study including six patients affected by oncological diseases and enrolled from January to December 2014. Ovarian tissue was laparoscopically harvested from the right and left ovaries and was cryopreserved using a routinary SF/RT protocol or a V/W method, involving tissue incubation in two solutions (containing propylene glycol, ethylene glycol and sucrose at different concentrations) and vitrification in an open system. For each patient, three pieces from each ovary were collected at the time of laparoscopy (fresh tissue) and after storage (SF/RT or V/W) and processed for light microscopy (LM) and transmission electron microscopy (TEM), to assess the morphological and ultrastructural features of follicles and stroma, and for laser scanning confocal microscopy (LSCM), to determine the functional energetic/redox stroma status. The preservation status of SF/RT and V/W ovarian tissues was compared with that of fresh ones, as well as between them. By LM and TEM, SF/RT and V/W samples showed cryodamage of small entity. Interstitial oedema and increased stromal cell vacuolization and chromatin clumping were observed in SF/RT samples; in contrast, V/W samples showed oocyte nuclei with slightly thickened chromatin and irregular shapes. The functional imaging analysis by LSCM revealed that the mitochondrial activity and intracellular reactive oxygen species levels were reduced both in SF/RT and in V/W samples compared with fresh samples. The study also showed progressive dysfunction of the mitochondrial activity going from the outer to the inner serial section of the ovarian cortex. The reduction of mitochondrial activity of V/W samples compared with fresh samples was significantly higher in the inner section than in the outer section. The results report the bioenergetic and oxidative status assessment of fresh and cryopreserved human ovarian tissue by LSCM, a technique recently applied to tissue samples. The use of LSCM on human ovarian tissues after SF/RT or V/W is a new application that requires validation. The procedures for mitochondrial staining with functional probes and fixing are not yet standardized. Xenografting of the cryopreserved ovarian tissue in severe combined immunodeficient mice and in vitro culture have not yet been performed. The identification of a cryopreservation method able to maintain the morpho-functional integrity of the ovarian tissue and a number of follicles comparable with those observed in fresh tissue might optimize results in clinical practice, in terms of recovery, duration of ovarian function and increased delivery outcomes after replanting. The SF/RT protocol allowed better morpho-functional tissue integrity than the V/W procedure. Funding was provided by Fondazione del Monte di Bologna e Ravenna, Italy. Dr N.A.M. was granted by the project ONEV MIUR PONa3 00134-n.254/R&C 18 5 2011 and the project GR-2011-02351396 (Ministry of Health, Young Researchers Grant 2011/2012). There are no competing interests. Clinical trial 74/2001/0 (approved:13 2 2002): 'Pilot study on cryopreservation of human ovarian tissue: morphological and immunohistochemical analysis before and after cryopreservation'. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mechanisms of mucus release in exposed canine gastric mucosa.
Zalewsky, C A; Moody, F G
1979-10-01
Mucus release was studied in the exposed gastric mucosa of anesthetized fasted dogs using scanning and transmission microscopy as well as histochemical and autoradiographic techniques. Under unstimulated conditions, the gastric epithelium was composed of both nonsecreting and mucus-secreting epithelial cells, with the former being predominant. Nonsecreting cells were characterized by an intact apical mucus package of granules and a continuous plasma membrane. The secreting mucus cell population was found in the foveolar (pit region) as well as interfoveolar areas. Three mechanisms of mucus release were observed: (a) exocytosis, (b) apical expulsion, and (c) cell exfoliation. Evidence for exocytosis was found in all mucus cells, especially in the sulfated glycoprotein-rich foveolar cells. Exocytosis involved only a few granules at a time; this mode of secretion is likely slow and continuous. In contrast, apical expulsion resulted in an explosive release of the entire apical mucus package followed by in situ degeneration of the cell itself. This occurred in the oldest cells forming mucosal crests in the interfoveolar area, whose mucus predominantly stains for neutral glycoproteins. Cell exfoliation, in which the entire cell was extruded into the lumen, was rarely observed and may provide, in addition to apical expulsion, a second mechanism to rid the mucosa of senescent epithelial cells. Mucus secretion is a complex function of the gastric epithelium. The mechanism of secretion and the histochemically defined type of mucus secreted are variables which are dependent on the age of the cell, its position on the foveolae, and the microenvironment within the gastric lumen. The mucus-containing surface and pit cells of gastric epithelium have been described morphologically and ultrastructurally in a number of studies. These cells are highly differentiated, forming a layer which is dynamic and responsive to conditions present in the gastric lumen. Mucus cells arise from multipotent progenitor cells which differentiate in the course of migration up the gastric pits and are involved in the complex macromolecular synthesis of glycoproteins. Although mucus release occurs throughout cell life, very little attention has been given to the cellular ultrastructural changes that deal with mucus secretion. As a result, the mucus-containing surface and pit cells have been described primarily in terms of their nonsecreting functional state. Exceptions to this are a few transmission and scanning electron microscopy studies which describe loss of intact mucus granules, cell extrusion, and in situ degeneration. These previous ultrastructural studies describe cellular patterns, in both normal and injured mucosa, which we fell are related to mucus release. Because of a paucity of knowledge concerning the normal mechanisms of mucus secretion, it was the purpose of this study to define the ultrastructural changes which result in and accompany the production of mucus in canine gastric epithelium.
Ultrastructural observations of the larva of Tubiluchus corallicola (Priapulida)
NASA Astrophysics Data System (ADS)
Higgins, R. P.; Storch, V.
1989-03-01
Larvae of Tubiluchus corallicola van der Land 1968 were investigated by scanning and transmission electron microscopy. The scalids are sensory organs, each has a bipolar receptor cell with a single apical cilium similar to the scalid in the adult. Muscle cells of the larva are more differentiated than previously reported for other Priapulida; the larval arrangement of circular and longitudinal musculature differs from that of the adult, and a diaphragm is reported for the first time in Priapulida. The diaphragm may function in hydrostatic control of eversion and inversion of the introvert and mouth cone. The functional morphology of these two structures is discussed and contrasted with the Kinorhyncha.
Gongruttananun, N
2018-03-01
This experiment was conducted to investigate the effect of a non-fasting induced molt using cassava meal on the eggshell quality, ultrastructure, and porosity in late-phase (74 wk old) H&N Brown laying hens. Hens were randomly assigned to 3 treatments of 90 birds each: 1) Controls with no induced molt (CONT); 2) molted by full feeding with cassava meal for 3 wk (FP3); and 3) molted by full feeding with cassava meal for 4 wk (FP4). Following the treatments, groups 2 and 3 were fed a pullet developer diet for 3 weeks. During the molt period, the birds were exposed to an 8L:16D photoperiod and had access to drinking water at all times. Thereafter, all hens were fed a layer diet (17% CP) and exposed to a 16L:8D photoperiod until the end of the study. Compared to the CONT treatment, significant reductions (P < 0.05) in shell weight, thickness, and breaking strength were identified on the sixth d of feeding the molt diet. Significant (P < 0.05) improvements in these parameters were observed for the FP3 and FP4 treatments during the post-molt period, with the greater degree in the FP4 treatment. In addition, scanning electron microscopy revealed a smaller size of mammillary knobs accompanied by a higher density of mammillae in eggs taken from the molted treatments. Evidence of type B mammillae was detected in an egg produced by the CONT hens, whereas confluent and cuffing mammillae were observed in an egg taken from the FP4 birds. Reduced pore densities were found in the molted treatments in some periods of the post-molt production as compared to the CONT treatment. It was concluded that feeding the cassava molt diet for 4 wk could be an effective non-fasting molt method for improving eggshell quality, ultrastructure, and porosity in post-molt laying hens.
Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa
2017-03-01
So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.
Shaurub, El-Sayed H; Abd El-Meguid, Afaf; Abd El-Aziz, Nahla M
2014-10-01
The total haemocyte count (THC) and the possible ultrastructural alterations induced in the haemocytes of the fourth larval instars of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), 96 h post-feeding on a semi-synthetic diet, treated with the LC50 of Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and the LC50 of azadirachtin alone, and the LC25 of SpliMNPV combined with the LC25 of azadirachtin were studied and compared to the control. Single treatment with the virus and azadirachtin or combined treatment significantly decreased the THC compared to the control. There are five types of haemocytes in S. littoralis: prohaemocytes, plasmatocytes, granulocytes, spherulocytes and oenocytoids. The most common symptoms in granulocytes and plasmatocytes, the main affected cell types, due to viral infection were the presence of virogenic stroma, peripheral dispersion of the chromatin and disappearance of the nucleoli. However, the most common symptoms in these two types of haemocytes due to treatment with azadirachtin were the presence of rough endoplasmic reticulum filled with fibrous materials, due to probably apoptosis, in their cisternae and disorganization of mitochondria (looped, vacuolated and swollen). In addition, the cytoplasm of granulocytes was vacuolated with the appearance of autophagic lysosomes, while plasmatocytes showed ruptured cell membrane and folded nuclear envelope. Combined treatment with the NPV and azadirachtin induced the same pathological changes which were recorded from individual treatment with the virus or azadirachtin to the same haemocytes. It can be concluded that the change in the THC and ultrastructure of granulocytes and plasmatocytes may affect the cellular-mediated immune response in S. littoralis. Moreover, it seems likely that mitochondria were the target site of azadirachtin, as they were affected in both granulocytes and plasmatocytes treated with azadirachtin alone or in combination with SpliMNPV. Copyright © 2014 Elsevier Ltd. All rights reserved.
First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument.
Lingham-Soliar, Theagarten; Wesley-Smith, James
2008-10-07
The ultrastructure of dermal fibres of a 200Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM-energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, 'protofeathers' in the Chinese dinosaurs.
First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument
Lingham-Soliar, Theagarten; Wesley-Smith, James
2008-01-01
The ultrastructure of dermal fibres of a 200 Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67 nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM–energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, ‘protofeathers’ in the Chinese dinosaurs. PMID:18577504
Ultrastructure of spermatozoa in cobia, Rachycentron canadum (Linnaeus, 1766).
Dhanasekar, Krishnamoorthy; Selvakumar, Narasimman; Munuswamy, Natesan
2018-02-01
Ultrastructure and development of spermatozoa in cobia, Rachycentron canadum are described. Sections through the testis show different developmental stages viz, Spermatocytes, spermatids and sperm. Spermatozoa of R. canadum exhibit the configuration of uniflagellated, anacrosomal Type I aquasperm, typical for externally fertilizing fish. Mature spermatozoon is seen with a prominent head and long cylindrical flagellum. Ultrastructure of sperm shows invaginated 'U' shaped nucleus and other organelles. The mitochondrial matrix is electron-dense with irregular arrangement of the cristae. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The centriolar complex lies inside the nuclear fossa and is composed of a proximal and a distal centriole. The two centrioles are placed perpendicular to each other. The flagellum has a typical eukaryotic organization (microtubule doublets 9 + 2 pattern) and measures around 36.21 ± 0.42 μm in length. This study for the first time provides a comprehensive detail on the ultrastructure and developmental process of sperm in cobia, R. canadum. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Tao; Chang, Shu-Wei; Rodriguez-Florez, Naiara; Buehler, Markus J; Shefelbine, Sandra; Dao, Ming; Zeng, Kaiyang
2016-11-01
Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wong, Rebecca S Y; Radhakrishnan, Ammu K; Ibrahim, Tengku Azmi Tengku; Cheong, Soon-Keng
2012-06-01
Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.
Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R
2004-02-01
This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.
Taib, Izatus Shima; Budin, Siti Balkis; Ghazali, Ahmad Rohi; Jayusman, Putri Ayu; Louis, Santhana Raj; Mohamed, Jamaludin
2013-01-01
OBJECTIVE: Fenitrothion residue is found primarily in soil, water and food products and can lead to a variety of toxic effects on the immune, hepatobiliary and hematological systems. However, the effects of fenitrothion on the male reproductive system remain unclear. This study aimed to evaluate the effects of fenitrothion on the sperm and testes of male Sprague-Dawley rats. METHODS: A 20 mg/kg dose of fenitrothion was administered orally by gavages for 28 consecutive days. Blood sample was obtained by cardiac puncture and dissection of the testes and cauda epididymis was performed to obtain sperm. The effects of fenitrothion on the body and organ weight, biochemical and oxidative stress, sperm characteristics, histology and ultrastructural changes in the testes were evaluated. RESULTS: Fenitrothion significantly decreased the body weight gain and weight of the epididymis compared with the control group. Fenitrothion also decreased plasma cholinesterase activity compared with the control group. Fenitrothion altered the sperm characteristics, such as sperm concentration, sperm viability and normal sperm morphology, compared with the control group. Oxidative stress markers, such as malondialdehyde, protein carbonyl, total glutathione and glutathione S-transferase, were significantly increased and superoxide dismutase activity was significantly decreased in the fenitrothion-treated group compared with the control group. The histopathological and ultrastructural examination of the testes of the fenitrothion-treated group revealed alterations corresponding with the biochemical changes compared with the control group. CONCLUSION: A 20 mg/kg dose of fenitrothion caused deleterious effects on the sperm and testes of Sprague-Dawley rats. PMID:23420164
Development and Evaluation of Heartbeat: A Machine Perfusion Heart Preservation System.
Li, Yongnan; Zeng, Qingdong; Liu, Gang; Du, Junzhe; Gao, Bingren; Wang, Wei; Zheng, Zhe; Hu, Shengshou; Ji, Bingyang
2017-11-01
Static cold storage is accompanied with a partial safe ischemic interval for donor hearts. In this current study, a machine perfusion system was built to provide a better preservation for the donor heart and assessment for myocardial function. Chinese mini-swine (weight 30-35 kg, n = 16) were randomly divided into HTK, Celsior, and Heartbeat groups. All donor hearts were respectively preserved for 8 hours under static cold storage or machine perfusion. The perfusion solution is aimed to maintain its homeostasis based on monitoring the Heartbeat group. The ultrastructure of myocardium suggests better myocardial protection in the Heartbeat group compared with HTK or Celsior-preserved hearts. The myocardial and coronary artery structural and functional integrity was evaluated by immunofluorescence and Western blots in the Heartbeat. In the Heartbeat group, donor hearts maintained a high adenosine triphosphate level. Bcl-2 and Beclin-1 protein demonstrates high expression in the Celsior group. The Heartbeat system can be used to preserve donor hearts, and it could guarantee the myocardial and endothelial function of hearts during machine perfusion. Translating Heartbeat into clinical practice, it is such as to impact on donor heart preservation for cardiac transplantation. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Chan, Vera Bin San; Vinn, Olev; Li, Chaoyi; Lu, Xingwen; Kudryavtsev, Anatoliy B; Schopf, J William; Shih, Kaimin; Zhang, Tong; Thiyagarajan, Vengatesen
2015-03-01
The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control. Copyright © 2015 Elsevier Inc. All rights reserved.
Van Meerbeek, B; Conn, L J; Duke, E S; Schraub, D; Ghafghaichi, F
1995-03-01
focused ion-beam (FIB) etching, commonly used as a cross-sectioning technique for failure analysis of semiconductor devices, has recently been applied to biological tissues to expose their ultrastructure for examination. It was the aim of this investigation to determine the practical utility of FIB to cross-section resin-dentin interfaces in order to morphologically evaluate the completeness of resin penetration into the exposed collagen scaffold at the resin-dentin bond interface. Two representative commercially available dentin adhesive systems were bonded to mid-coronal dentin. After appropriate fixation and dehydration of the resin-bonded dentin samples, a scanned focused ion-beam of a few tens of nano-meters in diameter was used to cross=section the resin-dentin interface. Examination of the interfacial ultrastructure was accomplished using a field-emission SEM. Results indicate possible artifact production at the cross-sectioned interface, hiding its actual ultrastructure, probably due to a heat-effect with possible recrystallization. Further studies of FIB are needed to optimize its usefulness for resin-dentin interface examinations and other biological tissue applications. Complete resin saturation of the demineralized dentin surface-layer has been claimed to be the key factor for a long-lasting resin-dentin bond. A "clean" artifact-free micro-cross-sectioning technique may provide indisputable ultra-structural information about the depth of resin penetration into the demineralized zone. Such a test would be useful in the development of dentin adhesive systems.
Liu, Zheng; Gao, Jia; Gao, Fei; Liu, Peng; Zhao, Bin; Zhang, Jiwang
2018-01-01
Maize (Zea mays L.) is the important crop over the world. Nitrogen (N) as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha-1), N1 (129 kg N ha-1), N2 (185 kg N ha-1), and N3 (300 kg N ha-1) was conducted using hybrid ‘ZhengDan958’ at Dawenkou research field (36°11′N, 117°06′E, 178 m altitude) in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI), chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33–52% (P ≤ 0.05) and 6–32% (P ≤ 0.05), respectively, compared with other treatments. During the growing from silking (R1) to milk (R3) stage, LAI of N0 and N1 were 35–38% (P ≤ 0.05) and 9–23% (P ≤ 0.05) less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13–22% (P ≤ 0.05) and 5–11% (P ≤ 0.05) lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 (P > 0.05). The net photosynthetic rate (Pn), maximal quantum efficiency of PSII (Fv/Fm) and quantum efficiency of PSII (ΦPSII) were higher with the increase of N rate up to N2 (P ≤ 0.05), and those of N3 were significantly less than N2 (P ≤ 0.05). In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment (P ≤ 0.05). Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were shown in N3. Therefore, N2 treatment, 185 kg N ha-1, is the appropriate application rate for grain yield, photosynthesis and chloroplast ultrastructure. PMID:29765387
Liu, Zheng; Gao, Jia; Gao, Fei; Liu, Peng; Zhao, Bin; Zhang, Jiwang
2018-01-01
Maize ( Zea mays L.) is the important crop over the world. Nitrogen (N) as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha -1 ), N1 (129 kg N ha -1 ), N2 (185 kg N ha -1 ), and N3 (300 kg N ha -1 ) was conducted using hybrid 'ZhengDan958' at Dawenkou research field (36°11'N, 117°06'E, 178 m altitude) in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI), chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33-52% ( P ≤ 0.05) and 6-32% ( P ≤ 0.05), respectively, compared with other treatments. During the growing from silking (R1) to milk (R3) stage, LAI of N0 and N1 were 35-38% ( P ≤ 0.05) and 9-23% ( P ≤ 0.05) less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13-22% ( P ≤ 0.05) and 5-11% ( P ≤ 0.05) lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 ( P > 0.05). The net photosynthetic rate ( P n ), maximal quantum efficiency of PSII ( F v / F m ) and quantum efficiency of PSII (Φ PSII ) were higher with the increase of N rate up to N2 ( P ≤ 0.05), and those of N3 were significantly less than N2 ( P ≤ 0.05). In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment ( P ≤ 0.05). Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were shown in N3. Therefore, N2 treatment, 185 kg N ha -1 , is the appropriate application rate for grain yield, photosynthesis and chloroplast ultrastructure.
Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K.; Dyer, John M.; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Jenks, Matthew A.
2017-01-01
We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4’s principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation’s effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. PMID:28069670
Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Pinheiro, Patricia Fernanda Felipe; Santos, Daniela Carvalho Dos
2017-01-01
Cytomorphological changes, by means of ultrastructural analyses, have been used to determine the effects of the biopesticide neem oil on the muscle fibers of the midgut of the predator Ceraeochrysa claveri. Insects, throughout the larval period, were fed eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% or 2%. In the adult stage, the midgut was collected from female insects at two stages of adulthood (newly emerged and at the start of oviposition) and processed for ultrastructural analyses. In the newly emerged insects obtained from neem oil treatments, muscle fibers showed a reduction of myofilaments as well as swollen mitochondria and an accumulation of membranous structures. Muscular fibers responded to those cellular injuries with the initiation of detoxification mechanisms, in which acid phosphatase activity was observed in large vesicles located at the periphery of the muscle fiber. At the start of oviposition in the neem oil treated insects, muscle fibers exhibited signs of degeneration, containing vacant areas in which contractile myofilaments were reduced or completely absent, and an accumulation of myelin structures, a dilatation of cisternae of sarcoplasmic reticulum, and mitochondrial swelling and cristolysis were observed. Enzymatic activity for acid phosphatase was present in large vesicles, indicating that mechanisms of lytic activity during the cell injury were utilized but insufficient for recovery from all the cellular damage. The results indicate that the visceral muscle layer is also the target of action of neem oil, and the cytotoxic effects observed may compromise the function of that organ. Copyright © 2016 Elsevier GmbH. All rights reserved.
Danišovič, Ľ.; Majidi, A.; Varga, I.
2015-01-01
Transmission electron microscopy reveals ultrastructural details of cells, and it is a valuable method for studying cell organelles. That is why we used this method for detailed morphological description of different adult tissue-derived stem cells, focusing on the morphological signs of their functions (proteosynthetic activity, exchange with external environment, etc.) and their comparison. Preparing a specimen from the cell culture suitable for transmission electron microscopy is, however, much more challenging than routine tissue processing for normal histological examination. There are several issues that need to be solved while working with cell pellets instead of solid tissue. Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells from different adult tissues, with applications to stem cell biology and regenerative medicine. Since we are working with population of cells that was obtained after many days of passaging, very efficient and gentle procedures are highly necessary. We demonstrated that our semi-conservative approach regarding to histological techniques and processing of cells for transmission electron microscopy is a well reproducible procedure which results in quality pictures and images of cell populations with minimum distortions and artifacts. We also commented about riskiest steps and histochemical issues (e.g., precise pH, temperature) while preparing the specimen. We bring full and detailed procedures of fixation, post-fixation, infiltration, embedding, polymerization and contrasting of cell obtained from in vitro cell and tissue cultures, with modifications according to our experience. All this steps are essential for us to know more about adult stem cells derived from different sources or about other random cell populations. The knowledge about detailed ultra-structure of adult stem cells cultured in vitro are also essential for their using in regenerative medicine and tissue engineering. PMID:26708176
Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou
2017-02-01
We report n-6 monounsaturated primary alcohols (C 26:1 , C 28:1 , and C 30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. © 2017 American Society of Plant Biologists. All Rights Reserved.
Expression of Hsp27 correlated with rat detrusor contraction after acute urinary retention.
Xiong, Zhiyong; Wang, Yongquan; Gong, Wei; Zhou, Zhansong; Lu, Gensheng
2013-09-01
Heat shock protein 27 (Hsp27) can regulate actin cytoskeleton dynamics and contractile protein activation. This study investigates whether Hsp27 expression is related to bladder contractile dysfunction after acute urinary retention (AUR). Female rats were randomized either to AUR by urethral ligation or to normal control group. Bladder and smooth muscle strip contraction at time points from 0 h to 7 days after AUR were estimated by cystometric and organ bath studies. Hsp27 expression in bladder tissue at each time point was detected with immunofluorescence, Western blots, and real-time PCR. Expression of the three phosphorylated forms of Hsp27 was detected by Western blots. Smooth muscle ultrastructure was observed by transmission electron microscopy. Data suggest that maximum detrusor pressure and both carbachol-induced and spontaneous detrusor strip contraction amplitude decreased gradually for the duration from 0 to 6 h, and then increased gradually to near-normal values at 24 h. Treatment of muscle strips with the p38MAK inhibitor, SB203580, inhibited carbachol-induced contractions. Smooth muscle ultrastructure damage was the highest at 6 h after AUR, and then lessened gradually during next 7 days, and ultrastructure was close to normal. Expressions of Hsp27 mRNA and protein and the proteins of the three phosphorylated forms were higher at 0 h, decreased to lower levels up to 6 h, and then gradually increased. Therefore, we conclude that rat bladder contractile function after AUR worsens during 0-6 h, and then gradually recovers. The findings of the current study suggest that Hsp27 modulates bladder smooth muscle contraction after AUR, and that phosphorylation of Hsp27 may be an important pathway modulating actin cytoskeleton dynamics in bladder smooth muscle contraction and reconstruction after injury.
Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong
2014-02-01
The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.
Building blocks of the GIPU, Italian Group of Ultrastructural Pathology.
Papa, V; Costa, R; Cenacchi, G
2016-06-01
The Italian Group of Ultrastructural Pathology, GIPU, is a scientific organization committed to promote the art and science of Electron Microscopy (EM) in the pathology field in Italy, sharing its professional work with a public audience. The history of the GIPU goes back to 1990s when a founder group set up the Italian Group of Ultrastructural Diagnostic (GIDU) in Milan. The central focus of annual meetings was on EM, transmission and scanning one, about interesting cases in which it was instrumental in diagnosis. In the 1990s, ultrastructure was still the gold standard for cell/tissue morphology, biology, biochemistry, diagnostic pathology, and played an important role in tailored medicine. So, especially transmission EM, could play a critical role in the diagnosis of various diseases as in human as in animals. Best topics of the annual scientific meetings of the group were kidney, muscle, heart, and liver pathology, infertility, neuropathology, respiratory diseases, skin diseases, storage diseases, tumor pathology, infectious diseases, parasitology, veterinary pathology and more. Nowadays, EM is a method whose importance for diagnosis and pathology is well established: it is still essential in several pathologies, helpful in others, and welcome implemented in eclectic research pathology. Omission of EM likely makes the studies suboptimal and wasteful. So, from 2007 the name of the group has been changed to the Italian Group of Ultrastructural Pathology (GIPU) to favor broader applications of EM also to pathology research field. During last decades, GIDU/GIPU has interconnected with international (Society for Ultrastructural Pathology) and european (European Society of Pathology and Joint Meeting with the European Electron Microscopy Working Group) scientific society, according its statute. By 1991, GIPU has had 40 members: membership in this Group is still open and welcome to all pathologists, PhD, electron microscopy technologists, pathology trainees, and researchers interested in pathology and electron microscopy. © Copyright Società Italiana di Anatomia Patologica e Citopatologia Diagnostica, Divisione Italiana della International Academy of Pathology.
Wang, X-J; Xia, L-L; Xu, T-Y; Zhang, X-H; Zhu, Z-W; Zhang, M-G; Liu, Y; Xu, C; Zhong, S; Shen, Z-J
2016-04-01
There is a growing recognition of the association between chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and erectile dysfunction (ED); however, most of the reports are based on questionnaires which cannot distinguish between organic and functional ED. The purpose of this study was to determine the exact relationship between CP/CPPS and ED, and to investigate the changes in erectile organ structure and function in a rat model of CP/CPPS. We established a rat model of experimental autoimmune prostatitis (EAP), which is a valid model for CP/CPPS. Erectile function in EAP and normal rats was comparable after cavernous nerve electrostimulation. The serum testosterone and oestradiol levels, ultrastructure of the corpus cavernosum and expression of endothelial nitric oxide synthase and neuronal nitric oxide synthase in the two groups were similar; however, there was a decrease in smooth muscle-to-collagen ratio and alpha-smooth muscle actin expression and an increase in transforming growth factor-beta 1 expression was observed in EAP rats. Thus, organic ED may not exist in EAP rats. We speculate that ED complained by patients with CP/CPPS may be psychological, which could be caused by impairment in the quality of life; however, further studies are needed to fully understand the potential mechanisms underlying the penile fibrosis in EAP rats. © 2015 Blackwell Verlag GmbH.
Silver, J; Brand, S
1979-07-01
With the use of Golgi, horseradish peroxidase, and electron microscopic techniques, neurons within a broad region of the preoptic hypothalamus of the mouse were shown to have dendrites that projected well into the depths of the optic chiasm. Further experimental and ultrastructural investigation demonstrated synapses between these dendrites and retinal axonal boutons within the chiasm. All synapses located in the chiasm were classified as Gray's type I. The possible function of these dendritic projections is discussed.
1988-01-01
REPORT DOCUMENTATION PAGE 17 RPORT SICIJRITY (LASWIC,.dION 1 b . RESTRiCIivE MARIN~ AGS Unclassif ied IS. SiCuRItv CLAISJICArION AUTMORITY 3...comparison with T cell detella pertussis endotoxin. subsets. Anat. Rec., 217:274. Mol. Inmuncl., 21:389. 25.Kang, Y. H., M. Carl, and L. 20.Herberman, R. B ... b . OFFICE SYMBOL 9. PRO(.UREMENT INSTRUMENT IDENTIfICATION NUMBER ORGANIZATION Naval Medical of appikawble Research and Development Command 64
Fujihara, Masashi; Nagai, Norihiro; Sussan, Thomas E; Biswal, Shyam; Handa, James T
2008-09-01
The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85+/-3.7% of RPE cells counted compared to 9.5+/-3.9% in controls (p<0.00001). Bruch membrane was thicker in mice exposed to smoke (1086+/-332 nm) than those raised in air (543+/-132 nm; p = 0.0069). The two most pronounced ultrastructural changes (severity grading scale from 0-3) seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001). Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001). TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0+/-1.1%) than room air (average 0+/-0%; p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the mechanism of smoke induced changes during early AMD.
Lesage, Véronique S; Merlino, Marielle; Chambon, Christophe; Bouchet, Brigitte; Marion, Didier; Branlard, Gérard
2012-01-01
Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.
The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists
SINA M. ADL; ALASTAIR G. B. SIMPSON; MARK A. FARMER; ROBERT A. ANDERSEN; O. ROGER ANDERSON; JOHN R. BARTA; SAMUEL S. BOWSER; GUY BRUGEROLLE; ROBERT A. FENSOME; SUZANNE FREDERICQ; TIMOTHY Y. JAMES; SERGEI KARPOV; PAUL KUGRENS; JOHN KRUG; CHRISTOPHER E. LANE; LOUISE A. LEWIS; JEAN LODGE; DENIS H. LYNN; DAVID G. MANN; RICHARD M. MCCOURT; LEONEL MENDOZA; ØJVIND MOESTRUP; SHARON E. MOZLEY-STANDRIDGE; THOMAS A. NERAD; CAROL A. SHEARER; ALEXEY V. SMIRNOV; FREDERICK W. SPIEGEL; MAX F.J.R. TAYLOR
2005-01-01
This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic...
Persistent lymphadenopathy in homosexual men: a clinical and ultrastructural study.
Anderson, M G; Dixey, J; Key, P; Ellis, D S; Tovey, G; McCaul, T F; Murray-Lyon, I M; Gazzard, B; Lawrence, A; Evans, B
1984-04-21
Ultrastructural changes (tubuloreticular structures and tube and ring shaped forms) previously described in patients with acquired immunodeficiency syndrome (AIDS) are described for the first time in the lymph nodes and circulating lymphocytes of patients with persistent lymphadenopathy. These observations support the view that the persistent lymphadenopathy syndrome and AIDS are caused by the same transmissible agent(s).
The new higher level classification of eukaryotes with emphasis on the taxonomy of protists
Sina M. Adl; Alastair G.B. Simpson; Mark A. Farmer; Robert A. Andersen; O. Roger Anderson; John R. Barta; Samuel S. Bowser; Guy Brugerolle; Robert A. Fensome; Suzanne Fredericq; Timothy Y. James; Sergei Karpov; Paul Kugrens; John Krug; Christopher E. Lane; Louise A. Lewis; Jean Lodge; Denis H. Lynn; David G. Mann; Richard M. McCourt; Leonel Mendoza; Ojvind Moestrup; Sharon E. Mozley-Standridge; Thomas A. Nerad; Carol A. Shearer; Alexey V. Smirnov; Frederick W. Speigel; Max F.J.R. Taylor
2005-01-01
This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic...
Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause
1990-01-01
Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....
USDA-ARS?s Scientific Manuscript database
The ultrastructure and development of new stylets was studied in pre-molting first instar nymph of Diaphorina citri. Two oval-shaped masses of cuboidal hypodermal cells, located in the cephalic region, had long extensions that ended with developing pairs of mandibular and maxillary stylets, apparent...
1980-03-01
TQuantitative ultrastructural studies were conducted on liver tissue f ran beach Lj mice, Per~ ascus polionotus, exposed to the toxin 2,3, 7f8...weights per se was not attempted since the ages of the beach mice were not known and the animals could only be classified by sex and treatment. The
Vetchinkina, Elena; Kupryashina, Maria; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina
2017-04-01
The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.
Meibomian gland studies: histologic and ultrastructural investigations.
Jester, J V; Nicolaides, N; Smith, R E
1981-04-01
Heightened interest in meibomian gland dysfunction has prompted us to evaluate the normal morphological and ultrastructural characteristics of the meibomian gland. Histologic analysis of human, primate, steer, and rabbit glands revealed evidence of keratinized epithelium extending throughout the meibomian gland duct. Characteristic ultrastructural features of keratinized epithelium identified in primate and rabbit glands included tonofilaments, keratohyaline granules, lamellar bodies, and keratinized squamous cells. Comparison of the meibomian gland duct to the pilosebaceous canal and the sebaceous duct brought out certain dissimilarities such as (1) the lack of a well-developed stratum granulosum and (2) the absence of lipid inclusions within transitional cells from duct to acini. We postulate that abnormalities of the keratinizing process may be responsible for meibomian gland dysfunction states.
Omi, Tokuya; Sato, Shigeru; Numano, Kayoko; Kawana, Seiji
2010-02-01
Chemical peeling of the skin is commonly used as a means to treat photoaging, but the mechanism underlying its efficacy has not yet been fully clarified. We recently conducted chemical peeling of the skin with glycolic acid and lactic acid and observed it at the ultrastructural level. No changes in the horny layer or the upper epidermal layer were observed but there was dissociation and vacuolation between the basal cells and increases in vimentin filaments within fibroblasts and endothelial cells were seen. These findings suggest that chemical peeling of the skin with this type of agent directly induces collagen formation within the dermis and thus directly stimulates remodeling of the dermis.
Kong, Jianping; Crissey, Mary Ann; Funakoshi, Shinsuke; Kreindler, James L.; Lynch, John P.
2011-01-01
Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm2 ±343.5 to 508 Ohm*cm2±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled “Distinctive” cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5′-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE. PMID:21494671
Kong, Jianping; Crissey, Mary Ann; Funakoshi, Shinsuke; Kreindler, James L; Lynch, John P
2011-04-06
Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm(2) ±343.5 to 508 Ohm*cm(2)±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled "Distinctive" cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5'-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE.
Kajimoto, Noriko; Nakai, Norihiro; Ohkouchi, Mizuka; Hashikura, Yuka; Liu-Kimura, Ning-Ning; Isozaki, Koji; Hirota, Seiichi
2015-01-01
Sporadic mast cell neoplasms and gastrointestinal stromal tumors (GISTs) often have various types of somatic gain-of-function mutations of the c-kit gene which encodes a receptor tyrosine kinase, KIT. Several types of germline gain-of-function mutations of the c-kit gene have been detected in families with multiple GISTs. All three types of model mice for the familial GISTs with germline c-kit gene mutations at exon 11, 13 or 17 show development of GIST, while they are different from each other in skin mast cell number. Skin mast cell number in the model mice with exon 17 mutation was unchanged compared to the corresponding wild-type mice. In the present study, we characterized various types of mast cells derived from the model mice with exon 17 mutation (KIT-Asp818Tyr) corresponding to human familial GIST case with human KIT-Asp820Tyr to clarify the role of the c-kit gene mutation in mast cells. Bone marrow-derived cultured mast cells (BMMCs) derived from wild-type mice, heterozygotes and homozygotes were used for the experiments. Immortalized BMMCs, designated as IMC-G4 cells, derived from BMMCs of a homozygote during long-term culture were also used. Ultrastructure, histamine contents, proliferation profiles and phosphorylation of various signaling molecules in those cells were examined. In IMC-G4 cells, presence of additional mutation(s) of the c-kit gene and effect of KIT inhibitors on both KIT autophosphorylation and cell proliferation were also analyzed. We demonstrated that KIT-Asp818Tyr did not affect ultrastructure and proliferation profiles but did histamine contents in BMMCs. IMC-G4 cells had an additional novel c-kit gene mutation of KIT-Tyr421Cys which is considered to induce neoplastic transformation of mouse mast cells and the mutation appeared to be resistant to a KIT inhibitor of imatinib but sensitive to another KIT inhibitor of nilotinib. IMC-G4 cells might be a useful mast cell line to investigate mast cell biology. PMID:26722383
Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions
NASA Technical Reports Server (NTRS)
Cook, Martha E.; Croxdale, Judith G.; Tibbitts, T. W. (Principal Investigator)
2003-01-01
Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.
Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G
2017-03-01
The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/d w ≈85 µm and Capto™ Adhere/d w ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yurchenko, Olga V
2012-02-01
Sperm organization in the oysters Crassostrea gigas, Crassostrea nippona, Crassostrea cf. rivularis and Saccostrea cf. mordax inhabiting Asian Pacific coast was studied. The spermatozoa of all studied species had a number of common morphological characters such as a cup-like acrosome with heterogeneous matrix on its top, an axial rod in the subacrosomal space, a barrel-shaped nucleus, four mitochondria in the midpiece, pericentriolar complexes, and a 9+2-organized flagellum. The spermatozoa of C. cf. rivularis differed from the other species by having cytoplasm processes in the midpiece region. Such structures have never been described in the Ostreidae. Additionally, each species could be identified by the shape and size of sperm compartments (acrosome, nucleus, anterior nuclear fossa). The most significant interspecific difference was found in the size of an anterior nuclear fossa. The smallest anterior nuclear fossa was found in C. cf. rivularis (about 0.24 μm in length reaching about 22% of the nuclear length) while the biggest in C. gigas from the Sea of Japan (about 0.53 μm in length reaching about 46% of the nuclear length). The spermatozoa of C. gigas collected from the Sea of Japan and Taiwan Strait differed significantly in almost all the studied parameters. Since sperm morphology has been successfully used for species differentiation, this suggests the existence of two species rather than two populations. The data obtained indicate the species-specific difference in the sperm ultrastructure within the Ostreidae, which may be identified both ultrastructurally and morphometrically. Copyright © 2011 Elsevier Ltd. All rights reserved.
Taylor, Mackenzie L; Cooper, Ranessa L; Schneider, Edward L; Osborn, Jeffrey M
2015-10-01
A knowledge of pollen characters in early-diverging angiosperm lineages is essential for understanding pollen evolution and the role of pollen in angiosperm diversification. In this paper, we report and synthesize data on mature pollen and pollen ontogeny from all genera of Nymphaeales within a comparative, phylogenetic context and consider pollen evolution in this early-diverging angiosperm lineage. We describe mature pollen characters for Euryale, Barclaya, and Nymphaea ondinea, taxa for which little to no structural data exist. We studied mature pollen for all nymphaealean genera using light, scanning electron, and transmission electron microscopy. We reviewed published reports of nymphaealean pollen to provide a comprehensive discussion of pollen characters in water lilies. Nymphaeales exhibit diversity in key pollen characters, including dispersal unit size, ornamentation, aperture morphology, and tapetum type. All Nymphaeales pollen are tectate-columellate, exhibiting one of two distinct patterns of infratectal ultrastructure-a thick infratectal space with robust columellae or a thin infratectal space with thin columellae. All genera have pollen with a lamellate endexine that becomes compressed in the proximal, but not distal wall. This endexine ultrastructure supports the operculate hypothesis for aperture origin. Nymphaeaceae pollen exhibit a membranous granular layer, which is a synapomorphy of the family. Variation in pollen characters indicates that significant potential for lability in pollen development was present in Nymphaeales at the time of its divergence from the rest of angiosperms. Structural and ontogenetic data are essential for interpreting pollen characters, such as infratectum and endexine ultrastructure in Nymphaeales. © 2015 Botanical Society of America.
Sahoo, Nilamani; Narasimhan, Arunn; Dhar, Purbarun; Das, Sarit K
2018-05-01
Comprehending the mechanism of thermal transport through biological tissues is an important factor for optimal ablation of cancerous tissues and minimising collateral tissue damage. The present study reports detailed mapping of the rise in internal temperature within the tissue mimics due to NIR (1064 nm) laser irradiation, both for bare mimics and with gold nanostructures infused. Gold nanostructures such as mesoflowers and nanospheres have been synthesised and used as photothermal converters to enhance the temperature rise, resulting in achieving the desired degradation of malignant tissue in targeted region. Thermal history was observed experimentally and simulated considering non-Fourier dual phase lag (DPL) model incorporated Pennes bio-heat transfer equation using COMSOL Multiphysics software. The gross deviation in temperature i.e. rise from the classical Fourier model for bio-heat conduction suggests additional effects of temperature rise on the secondary structures and morphological and physico-chemical changes to the collagen ultrastructures building the tissue mass. The observed thermal denaturation in the collagen fibril morphologies have been explained based on the physico-chemical structure of collagen and its response to thermal radiation. The large shift in frequency of amides A and B is pronounced at a depth of maximum temperature rise compared with other positions in tissue phantom. Observations for change in band of amide I, amide II, and amide III are found to be responsible for damage to collagen ultra-structure. Variation in the concentration of gold nanostructures shows the potentiality of localised hyperthermia treatment subjected to NIR radiation through a proposed free radical mechanism.