Science.gov

Sample records for comparative genomics based

  1. Neisseria Base: a comparative genomics database for Neisseria meningitidis.

    PubMed

    Katz, Lee S; Humphrey, Jay C; Conley, Andrew B; Nelakuditi, Viswateja; Kislyuk, Andrey O; Agrawal, Sonia; Jayaraman, Pushkala; Harcourt, Brian H; Olsen-Rasmussen, Melissa A; Frace, Michael; Sharma, Nitya V; Mayer, Leonard W; Jordan, I King

    2011-01-01

    Neisseria meningitidis is an important pathogen, causing life-threatening diseases including meningitis, septicemia and in some cases pneumonia. Genomic studies hold great promise for N. meningitidis research, but substantial database resources are needed to deal with the wealth of information that comes with completely sequenced and annotated genomes. To address this need, we developed Neisseria Base (NBase), a comparative genomics database and genome browser that houses and displays publicly available N. meningitidis genomes. In addition to existing N. meningitidis genome sequences, we sequenced and annotated 19 new genomes using 454 pyrosequencing and the CG-Pipeline genome analysis tool. In total, NBase hosts 27 complete N. meningitidis genome sequences along with their associated annotations. The NBase platform is designed to be scalable, via the underlying database schema and modular code architecture, such that it can readily incorporate new genomes and their associated annotations. The front page of NBase provides user access to these genomes through searching, browsing and downloading. NBase search utility includes BLAST-based sequence similarity searches along with a variety of semantic search options. All genomes can be browsed using a modified version of the GBrowse platform, and a plethora of information on each gene can be viewed using a customized details page. NBase also has a whole-genome comparison tool that yields single-nucleotide polymorphism differences between two user-defined groups of genomes. Using the virulent ST-11 lineage as an example, we demonstrate how this comparative genomics utility can be used to identify novel genomic markers for molecular profiling of N. meningitidis. PMID:21930505

  2. GenColors-based comparative genome databases for small eukaryotic genomes.

    PubMed

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  3. GenColors-based comparative genome databases for small eukaryotic genomes

    PubMed Central

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources. PMID:23193285

  4. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this

  5. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this

  6. CFGP: a web-based, comparative fungal genomics platform.

    PubMed

    Park, Jongsun; Park, Bongsoo; Jung, Kyongyong; Jang, Suwang; Yu, Kwangyul; Choi, Jaeyoung; Kong, Sunghyung; Park, Jaejin; Kim, Seryun; Kim, Hyojeong; Kim, Soonok; Kim, Jihyun F; Blair, Jaime E; Lee, Kwangwon; Kang, Seogchan; Lee, Yong-Hwan

    2008-01-01

    Since the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr), a web-based multifunctional informatics workbench, was developed. The CFGP comprises three layers, including the basal layer, middleware and the user interface. The data warehouse in the basal layer contains standardized genome sequences of 65 fungal species. The middleware processes queries via six analysis tools, including BLAST, ClustalW, InterProScan, SignalP 3.0, PSORT II and a newly developed tool named BLASTMatrix. The BLASTMatrix permits the identification and visualization of genes homologous to a query across multiple species. The Data-driven User Interface (DUI) of the CFGP was built on a new concept of pre-collecting data and post-executing analysis instead of the 'fill-in-the-form-and-press-SUBMIT' user interfaces utilized by most bioinformatics sites. A tool termed Favorite, which supports the management of encapsulated sequence data and provides a personalized data repository to users, is another novel feature in the DUI.

  7. WormBase: methods for data mining and comparative genomics.

    PubMed

    Harris, Todd W; Stein, Lincoln D

    2006-01-01

    WormBase is a comprehensive repository for information on Caenorhabditis elegans and related nematodes. Although the primary web-based interface of WormBase (http:// www.wormbase.org/) is familiar to most C. elegans researchers, WormBase also offers powerful data-mining features for addressing questions of comparative genomics, genome structure, and evolution. In this chapter, we focus on data mining at WormBase through the use of flexible web interfaces, custom queries, and scripts. The intended audience includes users wishing to query the database beyond the confines of the web interface or fetch data en masse. No knowledge of programming is necessary or assumed, although users with intermediate skills in the Perl scripting language will be able to utilize additional data-mining approaches.

  8. The Korea brassica genome project: a glimpse of the brassica genome based on comparative genome analysis with Arabidopsis.

    PubMed

    Yang, Tae-Jin; Kim, Jung-Sun; Lim, Ki-Byung; Kwon, Soo-Jin; Kim, Jin-A; Jin, Mina; Park, Jee Young; Lim, Myung-Ho; Kim, Ho-Il; Kim, Seog Hyung; Lim, Yong Pyo; Park, Beom-Seok

    2005-01-01

    A complete genome sequence provides unlimited information in the sequenced organism as well as in related taxa. According to the guidance of the Multinational Brassica Genome Project (MBGP), the Korea Brassica Genome Project (KBGP) is sequencing chromosome 1 (cytogenetically oriented chromosome #1) of Brassica rapa. We have selected 48 seed BACs on chromosome 1 using EST genetic markers and FISH analyses. Among them, 30 BAC clones have been sequenced and 18 are on the way. Comparative genome analyses of the EST sequences and sequenced BAC clones from Brassica chromosome 1 revealed their homeologous partner regions on the Arabidopsis genome and a syntenic comparative map between Brassica chromosome 1 and Arabidopsis chromosomes. In silico chromosome walking and clone validation have been successfully applied to extending sequence contigs based on the comparative map and BAC end sequences. In addition, we have defined the (peri)centromeric heterochromatin blocks with centromeric tandem repeats, rDNA and centromeric retrotransposons. In-depth sequence analyses of five homeologous BAC clones and an Arabidopsis chromosomal region reveal overall co-linearity, with 82% sequence similarity. The data indicate that the Brassica genome has undergone triplication and subsequent gene losses after the divergence of Arabidopsis and Brassica. Based on in-depth comparative genome analyses, we propose a comparative genomics approach for conquering the Brassica genome. In 2005 we intend to construct an integrated physical map, including sequence information from 500 BAC clones and integration of fingerprinting data and end sequence data of more than 100,000 BAC clones.

  9. Comparative genomics - a perspective.

    PubMed

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-03-27

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology.

  10. Comparative genomics - A perspective

    PubMed Central

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-01-01

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology. PMID:17597925

  11. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  12. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.

  13. CrusView: a Java-based visualization platform for comparative genomics analyses in Brassicaceae species.

    PubMed

    Chen, Hao; Wang, Xiangfeng

    2013-09-01

    In plants and animals, chromosomal breakage and fusion events based on conserved syntenic genomic blocks lead to conserved patterns of karyotype evolution among species of the same family. However, karyotype information has not been well utilized in genomic comparison studies. We present CrusView, a Java-based bioinformatic application utilizing Standard Widget Toolkit/Swing graphics libraries and a SQLite database for performing visualized analyses of comparative genomics data in Brassicaceae (crucifer) plants. Compared with similar software and databases, one of the unique features of CrusView is its integration of karyotype information when comparing two genomes. This feature allows users to perform karyotype-based genome assembly and karyotype-assisted genome synteny analyses with preset karyotype patterns of the Brassicaceae genomes. Additionally, CrusView is a local program, which gives its users high flexibility when analyzing unpublished genomes and allows users to upload self-defined genomic information so that they can visually study the associations between genome structural variations and genetic elements, including chromosomal rearrangements, genomic macrosynteny, gene families, high-frequency recombination sites, and tandem and segmental duplications between related species. This tool will greatly facilitate karyotype, chromosome, and genome evolution studies using visualized comparative genomics approaches in Brassicaceae species. CrusView is freely available at http://www.cmbb.arizona.edu/CrusView/.

  14. Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli

    PubMed Central

    Richards, Vincent P.; Lefébure, Tristan; Pavinski Bitar, Paulina D.; Dogan, Belgin; Simpson, Kenneth W.; Schukken, Ynte H.; Stanhope, Michael J.

    2015-01-01

    Escherichia coli is an important cause of bovine mastitis and can cause both severe inflammation with a short-term transient infection, as well as less severe, but more chronic inflammation and infection persistence. E. coli is a highly diverse organism that has been classified into a number of different pathotypes or pathovars, and mammary pathogenic E. coli (MPEC) has been proposed as a new such pathotype. The purpose of this study was to use genome sequence data derived from both transient and persistent MPEC isolates (two isolates of each phenotype) to construct a genome-based phylogeny that places MPEC in its phylogenetic context with other E. coli pathovars. A subsidiary goal was to conduct comparative genomic analyses of these MPEC isolates with other E. coli pathovars to provide a preliminary perspective on loci that might be correlated with the MPEC phenotype. Both concatenated and consensus tree phylogenies did not support MPEC monophyly or the monophyly of either transient or persistent phenotypes. Three of the MPEC isolates (ECA-727, ECC-Z, and ECA-O157) originated from within the predominately commensal clade of E. coli, referred to as phylogroup A. The fourth MPEC isolate, of the persistent phenotype (ECC-1470), was sister group to an isolate of ETEC, falling within the E. coli B1 clade. This suggests that the MPEC phenotype has arisen on numerous independent occasions and that this has often, although not invariably, occurred from commensal ancestry. Examination of the genes present in the MPEC strains relative to the commensal strains identified a consistent presence of the type VI secretion system (T6SS) in the MPEC strains, with only occasional representation in commensal strains, suggesting that T6SS may be associated with MPEC pathogenesis and/or as an inter-bacterial competitive attribute and therefore could represent a useful target to explore for the development of MPEC specific inhibitors. PMID:25807497

  15. Ebolavirus comparative genomics

    DOE PAGES

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  16. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  17. Building the Evidence Base for Decision-making in Cancer Genomic Medicine Using Comparative Effectiveness Research

    PubMed Central

    Goddard, Katrina A.B.; Knaus, William A.; Whitlock, Evelyn; Lyman, Gary H.; Feigelson, Heather Spencer; Schully, Sheri D.; Ramsey, Scott; Tunis, Sean; Freedman, Andrew N.; Khoury, Muin J.; Veenstra, David L.

    2013-01-01

    Background The clinical utility is uncertain for many cancer genomic applications. Comparative effectiveness research (CER) can provide evidence to clarify this uncertainty. Objectives To identify approaches to help stakeholders make evidence-based decisions, and to describe potential challenges and opportunities using CER to produce evidence-based guidance. Methods We identified general CER approaches for genomic applications through literature review, the authors’ experiences, and lessons learned from a recent, seven-site CER initiative in cancer genomic medicine. Case studies illustrate the use of CER approaches. Results Evidence generation and synthesis approaches include comparative observational and randomized trials, patient reported outcomes, decision modeling, and economic analysis. We identified significant challenges to conducting CER in cancer genomics: the rapid pace of innovation, the lack of regulation, the limited evidence for clinical utility, and the beliefs that genomic tests could have personal utility without having clinical utility. Opportunities to capitalize on CER methods in cancer genomics include improvements in the conduct of evidence synthesis, stakeholder engagement, increasing the number of comparative studies, and developing approaches to inform clinical guidelines and research prioritization. Conclusions CER offers a variety of methodological approaches to address stakeholders’ needs. Innovative approaches are needed to ensure an effective translation of genomic discoveries. PMID:22516979

  18. Genome-Based Comparative Analyses of Antarctic and Temperate Species of Paenibacillus

    PubMed Central

    Dsouza, Melissa; Taylor, Michael W.; Turner, Susan J.; Aislabie, Jackie

    2014-01-01

    Antarctic soils represent a unique environment characterised by extremes of temperature, salinity, elevated UV radiation, low nutrient and low water content. Despite the harshness of this environment, members of 15 bacterial phyla have been identified in soils of the Ross Sea Region (RSR). However, the survival mechanisms and ecological roles of these phyla are largely unknown. The aim of this study was to investigate whether strains of Paenibacillus darwinianus owe their resilience to substantial genomic changes. For this, genome-based comparative analyses were performed on three P. darwinianus strains, isolated from gamma-irradiated RSR soils, together with nine temperate, soil-dwelling Paenibacillus spp. The genome of each strain was sequenced to over 1,000-fold coverage, then assembled into contigs totalling approximately 3 Mbp per genome. Based on the occurrence of essential, single-copy genes, genome completeness was estimated at approximately 88%. Genome analysis revealed between 3,043–3,091 protein-coding sequences (CDSs), primarily associated with two-component systems, sigma factors, transporters, sporulation and genes induced by cold-shock, oxidative and osmotic stresses. These comparative analyses provide an insight into the metabolic potential of P. darwinianus, revealing potential adaptive mechanisms for survival in Antarctic soils. However, a large proportion of these mechanisms were also identified in temperate Paenibacillus spp., suggesting that these mechanisms are beneficial for growth and survival in a range of soil environments. These analyses have also revealed that the P. darwinianus genomes contain significantly fewer CDSs and have a lower paralogous content. Notwithstanding the incompleteness of the assemblies, the large differences in genome sizes, determined by the number of genes in paralogous clusters and the CDS content, are indicative of genome content scaling. Finally, these sequences are a resource for further investigations into

  19. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  20. An HMM-based comparative genomic framework for detecting introgression in eukaryotes.

    PubMed

    Liu, Kevin J; Dai, Jingxuan; Truong, Kathy; Song, Ying; Kohn, Michael H; Nakhleh, Luay

    2014-06-01

    One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM-a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs) to simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism. PMID:24922281

  1. An HMM-Based Comparative Genomic Framework for Detecting Introgression in Eukaryotes

    PubMed Central

    Liu, Kevin J.; Dai, Jingxuan; Truong, Kathy; Song, Ying; Kohn, Michael H.; Nakhleh, Luay

    2014-01-01

    One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM—a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs) to simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism. PMID:24922281

  2. coliBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics.

    PubMed

    Chaudhuri, Roy R; Khan, Arshad M; Pallen, Mark J

    2004-01-01

    We have constructed coliBASE, a database for Escherichia coli, Shigella and Salmonella comparative genomics available online at http://colibase. bham.ac.uk. Unlike other E.coli databases, which focus on the laboratory model strain K12, coliBASE is intended to reflect the full diversity of E.coli and its relatives. The database contains comparative data including whole genome alignments and lists of putative orthologous genes, together with numerous analytical tools and links to existing online resources. The data are stored in a relational database, accessible by a number of user-friendly search methods and graphical browsers. The database schema is generic and can easily be applied to other bacterial genomes. Two such databases, CampyDB (for the analysis of Campylobacter spp.) and ClostriDB (for Clostridium spp.) are also available at http://campy.bham.ac.uk and http://clostri. bham.ac.uk, respectively. An example of the power of E.coli comparative analyses such as those available through coliBASE is presented. PMID:14681417

  3. Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study.

    PubMed

    Gast, Andreas; Scherer, Dominique; Chen, Bowang; Bloethner, Sandra; Melchert, Stephanie; Sucker, Antje; Hemminki, Kari; Schadendorf, Dirk; Kumar, Rajiv

    2010-08-01

    We performed DNA microarray-based comparative genomic hybridization to identify somatic alterations specific to melanoma genome in 60 human cell lines from metastasized melanoma and from 44 corresponding peripheral blood mononuclear cells. Our data showed gross but nonrandom somatic changes specific to the tumor genome. Although the CDKN2A (78%) and PTEN (70%) loci were the major targets of mono-allelic and bi-allelic deletions, amplifications affected loci with BRAF (53%) and NRAS (12%) as well as EGFR (52%), MITF (40%), NOTCH2 (35%), CCND1 (18%), MDM2 (18%), CCNE1 (10%), and CDK4 (8%). The amplified loci carried additional genes, many of which could potentially play a role in melanoma. Distinct patterns of copy number changes showed that alterations in CDKN2A tended to be more clustered in cell lines with mutations in the BRAF and NRAS genes; the PTEN locus was targeted mainly in conjunction with BRAF mutations. Amplification of CCND1, CDK4, and other loci was significantly increased in cell lines without BRAF-NRAS mutations and so was the loss of chromosome arms 13q and 16q. Our data suggest involvement of distinct genetic pathways that are driven either through oncogenic BRAF and NRAS mutations complemented by aberrations in the CDKN2A and PTEN genes or involve amplification of oncogenic genomic loci and loss of 13q and 16q. It also emerges that each tumor besides being affected by major and most common somatic genetic alterations also acquires additional genetic alterations that could be crucial in determining response to small molecular inhibitors that are being currently pursued. PMID:20544847

  4. UniPrimer: A Web-Based Primer Design Tool for Comparative Analyses of Primate Genomes

    PubMed Central

    Batnyam, Nomin; Lee, Jimin; Lee, Jungnam; Hong, Seung Bok; Oh, Sejong; Han, Kyudong

    2012-01-01

    Whole genome sequences of various primates have been released due to advanced DNA-sequencing technology. A combination of computational data mining and the polymerase chain reaction (PCR) assay to validate the data is an excellent method for conducting comparative genomics. Thus, designing primers for PCR is an essential procedure for a comparative analysis of primate genomes. Here, we developed and introduced UniPrimer for use in those studies. UniPrimer is a web-based tool that designs PCR- and DNA-sequencing primers. It compares the sequences from six different primates (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) and designs primers on the conserved region across species. UniPrimer is linked to RepeatMasker, Primer3Plus, and OligoCalc softwares to produce primers with high accuracy and UCSC In-Silico PCR to confirm whether the designed primers work. To test the performance of UniPrimer, we designed primers on sample sequences using UniPrimer and manually designed primers for the same sequences. The comparison of the two processes showed that UniPrimer was more effective than manual work in terms of saving time and reducing errors. PMID:22693428

  5. Comparative genome mapping in Brassica.

    PubMed

    Lagercrantz, U; Lydiate, D J

    1996-12-01

    A Brassica nigra genetic linkage map was developed from a highly polymorphic cross analyzed with a set of low copy number Brassica RFLP probes. The Brassica genome is extensively duplicated with eight distinct sets of chromosomal segments, each present in three copies, covering virtually the whole genome. Thus, B. nigra could be descended from a hexaploid ancestor. A comparative analysis of B. nigra, B. oleracea and B. rapa genomes, based on maps developed using a common set of RFLP probes, was also performed. The three genomes have distinct chromosomal structures differentiated by a large number of rearrangements, but collinear regions involving virtually the whole of each the three genomes were identified. The genic contents of B. nigra, B. oleracea and B. rapa were basically equivalent and differences in chromosome number (8, 9 and 10, respectively) are probably the result of chromosome fusions and/ or fissions. The strong conservation of overall genic content across the three Brassica genomes mirrors the conservation of genic content observed over a much longer evolutionary span in cereals. However, the rate of chromosomal rearrangement in crucifers is much higher than that observed in cereal genomes.

  6. Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    PubMed Central

    Hamilton, Joshua J.; Reed, Jennifer L.

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  7. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  8. Enhancer Identification through Comparative Genomics

    SciTech Connect

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2006-10-01

    With the availability of genomic sequence from numerousvertebrates, a paradigm shift has occurred in the identification ofdistant-acting gene regulatory elements. In contrast to traditionalgene-centric studies in which investigators randomly scanned genomicfragments that flank genes of interest in functional assays, the modernapproach begins electronically with publicly available comparativesequence datasets that provide investigators with prioritized lists ofputative functional sequences based on their evolutionary conservation.However, although a large number of tools and resources are nowavailable, application of comparative genomic approaches remains far fromtrivial. In particular, it requires users to dynamically consider thespecies and methods for comparison depending on the specific biologicalquestion under investigation. While there is currently no single generalrule to this end, it is clear that when applied appropriately,comparative genomic approaches exponentially increase our power ingenerating biological hypotheses for subsequent experimentaltesting.

  9. Genome Mapping in Plant Comparative Genomics.

    PubMed

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  10. Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis.

    PubMed

    Choi, Y-W; Bae, S M; Kim, Y-W; Lee, H N; Kim, Y W; Park, T C; Ro, D Y; Shin, J C; Shin, S J; Seo, J-S; Ahn, W S

    2007-01-01

    Our aim was to identify novel genomic regions of interest and provide highly dynamic range information on correlation between squamous cell cervical carcinoma and its related gene expression patterns by a genome-wide array-based comparative genomic hybridization (array-CGH). We analyzed 15 cases of cervical cancer from KangNam St Mary's Hospital of the Catholic University of Korea. Microdissection assay was performed to obtain DNA samples from paraffin-embedded cervical tissues of cancer as well as of the adjacent normal tissues. The bacterial artificial chromosome (BAC) array used in this study consisted of 1440 human BACs and the space among the clones was 2.08 Mb. All the 15 cases of cervical cancer showed the differential changes of the cervical cancer-associated genetic alterations. The analysis limit of average gains and losses was 53%. A significant positive correlation was found in 8q24.3, 1p36.32, 3q27.1, 7p21.1, 11q13.1, and 3p14.2 changes through the cervical carcinogenesis. The regions of high level of gain were 1p36.33-1p36.32, 8q24.3, 16p13.3, 1p36.33, 3q27.1, and 7p21.1. And the regions of homozygous loss were 2q12.1, 22q11.21, 3p14.2, 6q24.3, 7p15.2, and 11q25. In the high level of gain regions, GSDMDC1, RECQL4, TP73, ABCF3, ALG3, HDAC9, ESRRA, and RPS6KA4 were significantly correlated with cervical cancer. The genes encoded by frequently lost clones were PTPRG, GRM7, ZDHHC3, EXOSC7, LRP1B, and NR3C2. Therefore, array-CGH analyses showed that specific genomic alterations were maintained in cervical cancer that were critical to the malignant phenotype and may give a chance to find out possible target genes present in the gained or lost clones.

  11. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  12. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  13. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    PubMed Central

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  14. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria

    PubMed Central

    Jorda, Julien; Lopez, David; Wheatley, Nicole M; Yeates, Todd O

    2013-01-01

    Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date, different microcompartments carrying out three distinct types of metabolic processes have been characterized experimentally in various bacteria. In the present work, we use comparative genomics to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of metabolic pathways. A clustering approach was used to group together enzymes that show a strong tendency to be encoded in chromosomal proximity to each other while also being near genes for microcompartment shell proteins. The results uncover new types of putative microcompartments, including one that appears to encapsulate B12-independent, glycyl radical-based degradation of 1,2-propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria. Preliminary experiments show that an unusual shell protein encoded within the glycyl radical-based microcompartment binds an iron-sulfur cluster, hinting at complex mechanisms in this uncharacterized system. In addition, an examination of the computed microcompartment clusters suggests the existence of specific functional variations within certain types of MCPs, including the alpha carboxysome and the glycyl radical-based microcompartment. The findings lead to a deeper understanding of bacterial microcompartments and the pathways they sequester. PMID:23188745

  15. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes.

    PubMed

    Choi, Jaeyoung; Cheong, Kyeongchae; Jung, Kyongyong; Jeon, Jongbum; Lee, Gir-Won; Kang, Seogchan; Kim, Sangsoo; Lee, Yin-Won; Lee, Yong-Hwan

    2013-01-01

    In 2007, Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr/) was publicly open with 65 genomes corresponding to 58 fungal and Oomycete species. The CFGP provided six bioinformatics tools, including a novel tool entitled BLASTMatrix that enables search homologous genes to queries in multiple species simultaneously. CFGP also introduced Favorite, a personalized virtual space for data storage and analysis with these six tools. Since 2007, CFGP has grown to archive 283 genomes corresponding to 152 fungal and Oomycete species as well as 201 genomes that correspond to seven bacteria, 39 plants and 105 animals. In addition, the number of tools in Favorite increased to 27. The Taxonomy Browser of CFGP 2.0 allows users to interactively navigate through a large number of genomes according to their taxonomic positions. The user interface of BLASTMatrix was also improved to facilitate subsequent analyses of retrieved data. A newly developed genome browser, Seoul National University Genome Browser (SNUGB), was integrated into CFGP 2.0 to support graphical presentation of diverse genomic contexts. Based on the standardized genome warehouse of CFGP 2.0, several systematic platforms designed to support studies on selected gene families have been developed. Most of them are connected through Favorite to allow of sharing data across the platforms.

  16. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  17. Cytogenetic analysis of myxoid liposarcoma and myxofibrosarcoma by array‐based comparative genomic hybridisation

    PubMed Central

    Ohguri, T; Hisaoka, M; Kawauchi, S; Sasaki, K; Aoki, T; Kanemitsu, S; Matsuyama, A; Korogi, Y; Hashimoto, H

    2006-01-01

    Aim To investigate overall chromosomal alterations using array‐based comparative genomic hybridisation (CGH) of myxoid liposarcomas (MLSs) and myxofibrosarcomas (MFSs). Materials and methods Genomic DNA extracted from fresh‐frozen tumour tissues was labelled with fluorochromes and then hybridised on to an array consisting of 1440 bacterial artificial chromosome clones representing regions throughout the entire human genome important in cytogenetics and oncology. Results DNA copy number aberrations (CNAs) were found in all the 8 MFSs, but no alterations were found in 7 (70%) of 10 MLSs. In MFSs, the most frequent CNAs were gains at 7p21.1–p22.1 and 12q15–q21.1 and a loss at 13q14.3–q34. The second most frequent CNAs were gains at 7q33–q35, 9q22.31–q22.33, 12p13.32–pter, 17q22–q23, Xp11.2 and Xq12 and losses at 10p13–p14, 10q25, 11p11–p14, 11q23.3–q25, 20p11–p12 and 21q22.13–q22.2, which were detected in 38% of the MFSs examined. In MLSs, only a few CNAs were found in two sarcomas with gains at 8p21.2–p23.3, 8q11.22–q12.2 and 8q23.1–q24.3, and in one with gains at 5p13.2–p14.3 and 5q11.2–5q35.2 and a loss at 21q22.2–qter. Conclusions MFS has more frequent and diverse CNAs than MLS, which reinforces the hypothesis that MFS is genetically different from MLS. Out‐array CGH analysis may also provide several entry points for the identification of candidate genes associated with oncogenesis and progression in MFS. PMID:16751306

  18. Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH)

    PubMed Central

    Schoumans, J; Ruivenkamp, C; Holmberg, E; Kyllerman, M; Anderlid, B; Nordenskjold, M

    2005-01-01

    Chromosomal aberrations are a common cause of multiple anomaly syndromes that include growth and developmental delay and dysmorphism. Novel high resolution, whole genome technologies, such as array based comparative genomic hybridisation (array-CGH), improve the detection rate of submicroscopic chromosomal abnormalities allowing re-investigation of cases where conventional cytogenetic techniques, Spectral karyotyping (SKY), and FISH failed to detect abnormalities. We performed a high resolution genome-wide screening for submicroscopic chromosomal rearrangements using array-CGH on 41 children with idiopathic mental retardation (MR) and dysmorphic features. The commercially available microarray from Spectral Genomics contained 2600 BAC clones spaced at approximately 1 Mb intervals across the genome. Standard chromosome analysis (>450 bands per haploid genome) revealed no chromosomal rearrangements. In addition, multi-subtelomeric FISH screening in 30 cases and SKY in 11 patients did not detect any abnormality. Using array-CGH we detected chromosomal imbalances in four patients (9.8%) ranging in size from 2 to 14 Mb. Large scale copy number variations were frequently observed. Array-CGH has become an important tool for the detection of chromosome aberrations and has the potential to identify genes involved in developmental delay and dysmorphism. Moreover, the detection of genomic imbalances of clinical significance will increase knowledge of the human genome by performing genotype-phenotype correlation. PMID:16141005

  19. xBASE, a collection of online databases for bacterial comparative genomics.

    PubMed

    Chaudhuri, Roy R; Pallen, Mark J

    2006-01-01

    The schema of the previously described Escherischia coli database coliBASE has been applied to a number of other bacterial taxa, under the collective name xBASE. The new databases include CampyDB for Campylobacter, Helicobacter and Wolinella; PseudoDB for pseudomonads; ClostriDB for clostridia; RhizoDB for Rhizobium and Sinorhizobium; and MycoDB, for Mycobacterium, Streptomyces and related organisms. The databases provide user friendly access to annotation and genome comparisons through a web-based graphical interface. Newly developed features include whole genome displays, 'painting' of genes according to properties such as GC content, a pattern search system to identify conserved motifs and batch BLAST searching of every protein encoded by a region. Examples of how the databases have been, and continue to be, used to generate hypotheses for subsequent laboratory investigation are presented. xBASE is available online at http://xbase.bham.ac.uk. PMID:16381881

  20. Cloud computing for comparative genomics

    PubMed Central

    2010-01-01

    Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786

  1. Identification of genetic bases of vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis.

    PubMed

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang; Zhu, Jun; Kan, Biao

    2014-03-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen.

  2. Pyrosequencing-Based Comparative Genome Analysis of Vibrio vulnificus Environmental Isolates

    PubMed Central

    Morrison, Shatavia S.; Williams, Tiffany; Cain, Aurora; Froelich, Brett; Taylor, Casey; Baker-Austin, Craig; Verner-Jeffreys, David; Hartnell, Rachel; Oliver, James D.; Gibas, Cynthia J.

    2012-01-01

    Between 1996 and 2006, the US Centers for Disease Control reported that the only category of food-borne infections increasing in frequency were those caused by members of the genus Vibrio. The Gram-negative bacterium Vibrio vulnificus is a ubiquitous inhabitant of estuarine waters, and is the number one cause of seafood-related deaths in the US. Many V. vulnificus isolates have been studied, and it has been shown that two genetically distinct subtypes, distinguished by 16S rDNA and other gene polymorphisms, are associated predominantly with either environmental or clinical isolation. While local genetic differences between the subtypes have been probed, only the genomes of clinical isolates have so far been completely sequenced. In order to better understand V. vulnificus as an agent of disease and to identify the molecular components of its virulence mechanisms, we have completed whole genome shotgun sequencing of three diverse environmental genotypes using a pyrosequencing approach. V. vulnificus strain JY1305 was sequenced to a depth of 33×, and strains E64MW and JY1701 were sequenced to lesser depth, covering approximately 99.9% of each genome. We have performed a comparative analysis of these sequences against the previously published sequences of three V. vulnificus clinical isolates. We find that the genome of V. vulnificus is dynamic, with 1.27% of genes in the C-genotype genomes not found in the E- genotype genomes. We identified key genes that differentiate between the genomes of the clinical and environmental genotypes. 167 genes were found to be specifically associated with environmental genotypes and 278 genes with clinical genotypes. Genes specific to the clinical strains include components of sialic acid catabolism, mannitol fermentation, and a component of a Type IV secretory pathway VirB4, as well as several other genes with potential significance for human virulence. Genes specific to environmental strains included several that may have

  3. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis

    PubMed Central

    Zhao, Qiu-jiong; Bai, Shao-cong; Cheng, Cheng; Tao, Ben-zhang; Wang, Le-kai; Liang, Shuang; Yin, Ling; Hang, Xing-yi; Shang, Ai-jia

    2016-01-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

  4. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis

    PubMed Central

    Zhao, Qiu-jiong; Bai, Shao-cong; Cheng, Cheng; Tao, Ben-zhang; Wang, Le-kai; Liang, Shuang; Yin, Ling; Hang, Xing-yi; Shang, Ai-jia

    2016-01-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease. PMID:27651783

  5. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis.

    PubMed

    Zhao, Qiu-Jiong; Bai, Shao-Cong; Cheng, Cheng; Tao, Ben-Zhang; Wang, Le-Kai; Liang, Shuang; Yin, Ling; Hang, Xing-Yi; Shang, Ai-Jia

    2016-08-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease. PMID:27651783

  6. [Study on an inquiry-based teaching case in genomics curriculum: identifying virulence factors of Escherichia coli by using comparative genomics].

    PubMed

    Jidong, Zhou; Yudong, Li

    2015-02-01

    Genomics is the core subject of various "omics" and it also becomes a topic of increasing interest in undergraduate curricula of biological sciences. However, the study on teaching methodology of genomics courses was very limited so far. Here we report an application of inquiry-based teaching in genomics courses by using virulence factors of Escherichia coli as an example of comparative genomics study. Specially, students first built a multiple-genome alignment of different E. coli strains to investigate the gene conservation using the Mauve tool; then putative virulence factor genes were identified by using BLAST tool to obtain gene annotations. The teaching process was divided into five modules: situation, resources, task, process and evaluation. Learning-assessment results revealed that students had acquired the knowledge and skills of genomics, and their learning interest and ability of self-study were also motivated. Moreover, the special teaching case can be applied to other related courses, such as microbiology, bioinformatics, molecular biology and food safety detection technology.

  7. Comparative genomics of Listeria species.

    PubMed

    Glaser, P; Frangeul, L; Buchrieser, C; Rusniok, C; Amend, A; Baquero, F; Berche, P; Bloecker, H; Brandt, P; Chakraborty, T; Charbit, A; Chetouani, F; Couvé, E; de Daruvar, A; Dehoux, P; Domann, E; Domínguez-Bernal, G; Duchaud, E; Durant, L; Dussurget, O; Entian, K D; Fsihi, H; García-del Portillo, F; Garrido, P; Gautier, L; Goebel, W; Gómez-López, N; Hain, T; Hauf, J; Jackson, D; Jones, L M; Kaerst, U; Kreft, J; Kuhn, M; Kunst, F; Kurapkat, G; Madueno, E; Maitournam, A; Vicente, J M; Ng, E; Nedjari, H; Nordsiek, G; Novella, S; de Pablos, B; Pérez-Diaz, J C; Purcell, R; Remmel, B; Rose, M; Schlueter, T; Simoes, N; Tierrez, A; Vázquez-Boland, J A; Voss, H; Wehland, J; Cossart, P

    2001-10-26

    Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.

  8. Map-based comparative genomic analysis of virulent haemophilus parasuis serovars 4 and 5.

    PubMed

    Lawrence, Paulraj; Bey, Russell

    2015-01-01

    Haemophilus parasuis is a commensal bacterium of the upper respiratory tract of healthy pigs. However, in conjunction with viral infections in immunocompromised animals H. parasuis can transform into a pathogen that is responsible for causing Glasser's disease which is typically characterized by fibrinous polyserositis, polyarthritis, meningitis and sometimes acute pneumonia and septicemia in pigs. Haemophilus parasuis serovar 5 is highly virulent and more frequently isolated from respiratory and systemic infection in pigs. Recently a highly virulent H. parasuis serovar 4 was isolated from the tissues of diseased pigs. To understand the differences in virulence and virulence-associated genes between H. parasuis serovar 5 and highly virulent H. parasuis serovar 4 strains, a genomic library was generated by TruSeq preparation and sequenced on Illumina HiSeq 2000 obtaining 50 bp PE reads. A three-way comparative genomic analysis was conducted between two highly virulent H. parasuis serovar 4 strains and H. parasuis serovar 5. Haemophilus parasuis serovar 5 GenBank isolate SH0165 (GenBank accession number CP001321.1) was used as reference strain for assembly. Results of these analysis revealed the highly virulent H. parasuis serovar 4 lacks genes encoding for, glycosyl transferases, polysaccharide biosynthesis protein capD, spore coat polysaccharide biosynthesis protein C, polysaccharide export protein and sialyltransferase which can modify the lipopolysaccharide forming a short-chain LPS lacking O-specific polysaccharide chains often referred to as lipooligosaccharide (LOS). In addition, it can modify the outer membrane protein (OMP) structure. The lack of sialyltransferase significantly reduced the amount of sialic acid incorporated into LOS, a major and essential component of the cell wall and an important virulence determinant. These molecules may be involved in various stages of pathogenesis through molecular mimicry and by causing host cell cytotoxicity, reduced

  9. Map-Based Comparative Genomic Analysis of Virulent Haemophilus Parasuis Serovars 4 and 5

    PubMed Central

    Lawrence, Paulraj; Bey, Russell

    2015-01-01

    Haemophilus parasuis is a commensal bacterium of the upper respiratory tract of healthy pigs. However, in conjunction with viral infections in immunocompromised animals H. parasuis can transform into a pathogen that is responsible for causing Glasser's disease which is typically characterized by fibrinous polyserositis, polyarthritis, meningitis and sometimes acute pneumonia and septicemia in pigs. Haemophilus parasuis serovar 5 is highly virulent and more frequently isolated from respiratory and systemic infection in pigs. Recently a highly virulent H. parasuis serovar 4 was isolated from the tissues of diseased pigs. To understand the differences in virulence and virulence-associated genes between H. parasuis serovar 5 and highly virulent H. parasuis serovar 4 strains, a genomic library was generated by TruSeq preparation and sequenced on Illumina HiSeq 2000 obtaining 50 bp PE reads. A three-way comparative genomic analysis was conducted between two highly virulent H. parasuis serovar 4 strains and H. parasuis serovar 5. Haemophilus parasuis serovar 5 GenBank isolate SH0165 (GenBank accession number CP001321.1) was used as reference strain for assembly. Results of these analysis revealed the highly virulent H. parasuis serovar 4 lacks genes encoding for, glycosyl transferases, polysaccharide biosynthesis protein capD, spore coat polysaccharide biosynthesis protein C, polysaccharide export protein and sialyltransferase which can modify the lipopolysaccharide forming a short-chain LPS lacking O-specific polysaccharide chains often referred to as lipooligosaccharide (LOS). In addition, it can modify the outer membrane protein (OMP) structure. The lack of sialyltransferase significantly reduced the amount of sialic acid incorporated into LOS, a major and essential component of the cell wall and an important virulence determinant. These molecules may be involved in various stages of pathogenesis through molecular mimicry and by causing host cell cytotoxicity, reduced

  10. dbCRY: a Web-based comparative and evolutionary genomics platform for blue-light receptors.

    PubMed

    Kim, Yong-Min; Choi, Jaeyoung; Lee, Hye-Young; Lee, Gir-Won; Lee, Yong-Hwan; Choi, Doil

    2014-01-01

    Cryptochromes are flavoproteins that play a central role in the circadian oscillations of all living organisms except archaea. Cryptochromes are clustered into three subfamilies: plant-type cryptochromes, animal-type cryptochromes and cryptochrome-DASH proteins. These subfamilies are composed of photolyase/cryptochrome superfamily with 6-4 photolyase and cyclobutane pyrimidine dimer photolyase. Cryptochromes have conserved domain architectures with two distinct domains, an N-terminal photolyase-related domain and a C-terminal domain. Although the molecular function and domain architecture of cryptochromes are conserved, their molecular mechanisms differ between plants and animals. Thus, cryptochromes are one of the best candidates for comparative and evolutionary studies. Here, we have developed a Web-based platform for comparative and evolutionary studies of cryptochromes, dbCRY (http://www.dbcryptochrome.org/). A pipeline built upon the consensus domain profile was applied to 1438 genomes and identified 1309 genes. To support comparative and evolutionary genomics studies, the Web interface provides diverse functions such as (i) browsing by species, (ii) protein domain analysis, (iii) multiple sequence alignment, (iv) homology search and (v) extended analysis opportunities through the implementation of 'Favorite Browser' powered by the Comparative Fungal Genomics Platform 2.0 (CFGP 2.0; http://cfgp.snu.ac.kr/). dbCRY would serve as a standardized and systematic solution for cryptochrome genomics studies. Database URL: http://www.dbcryptochrome.org/

  11. Comparative genomics for biodiversity conservation.

    PubMed

    Grueber, Catherine E

    2015-01-01

    Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem.

  12. Comparative genomics for biodiversity conservation

    PubMed Central

    Grueber, Catherine E.

    2015-01-01

    Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem. PMID:26106461

  13. Comparative genomics-based identification and analysis of cis-regulatory elements.

    PubMed

    Ogino, Hajime; Ochi, Haruki; Uchiyama, Chihiro; Louie, Sarah; Grainger, Robert M

    2012-01-01

    Identification of cis-regulatory elements, such as enhancers and promoters, is very important not only for analysis of gene regulatory networks but also as a tool for targeted gene expression experiments. In this chapter, we introduce an easy but reliable approach to predict enhancers of a gene of interest by comparing mammalian and Xenopus genome sequences, and to examine their activity using a co-transgenesis technique in Xenopus embryos. Since the bioinformatics analysis utilizes publically available web tools, bench biologists can easily perform it without any need for special computing capability. The co-transgenesis assay, which directly uses polymerase chain reaction products, quickly screens for the activity of the candidate elements in a cloning-free manner.

  14. Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis.

    PubMed

    Alland, David; Whittam, Thomas S; Murray, Megan B; Cave, M Donald; Hazbon, Manzour H; Dix, Kim; Kokoris, Mark; Duesterhoeft, Andreas; Eisen, Jonathan A; Fraser, Claire M; Fleischmann, Robert D

    2003-06-01

    The comparative-genomic sequencing of two Mycobacterium tuberculosis strains enabled us to identify single nucleotide polymorphism (SNP) markers for studies of evolution, pathogenesis, and epidemiology in clinical M. tuberculosis. Phylogenetic analysis using these "comparative-genome markers" (CGMs) produced a highly unusual phylogeny with a complete absence of secondary branches. To investigate CGM-based phylogenies, we devised computer models to simulate sequence evolution and calculate new phylogenies based on an SNP format. We found that CGMs represent a distinct class of phylogenetic markers that depend critically on the genetic distances between compared "reference strains." Properly distanced reference strains generate CGMs that accurately depict evolutionary relationships, distorted only by branch collapse. Improperly distanced reference strains generate CGMs that distort and reroot outgroups. Applying this understanding to the CGM-based phylogeny of M. tuberculosis, we found evidence to suggest that this species is highly clonal without detectable lateral gene exchange. We noted indications of evolutionary bottlenecks, including one at the level of the PHRI "C" strain previously associated with particular virulence characteristics. Our evidence also suggests that loss of IS6110 to fewer than seven elements per genome is uncommon. Finally, we present population-based evidence that KasA, an important component of mycolic acid biosynthesis, develops G312S polymorphisms under selective pressure. PMID:12754238

  15. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy.

    PubMed

    Piccirillo, Alessandra; Lavezzo, Enrico; Niero, Giulia; Moreno, Ana; Massi, Paola; Franchin, Elisa; Toppo, Stefano; Salata, Cristiano; Palù, Giorgio

    2016-01-01

    Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains. PMID:26890525

  16. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy

    PubMed Central

    Niero, Giulia; Moreno, Ana; Massi, Paola; Franchin, Elisa; Toppo, Stefano; Salata, Cristiano; Palù, Giorgio

    2016-01-01

    Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains. PMID:26890525

  17. Comparative genomic analyses in Asparagus.

    PubMed

    Kuhl, Joseph C; Havey, Michael J; Martin, William J; Cheung, Foo; Yuan, Qiaoping; Landherr, Lena; Hu, Yi; Leebens-Mack, James; Town, Christopher D; Sink, Kenneth C

    2005-12-01

    Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales. PMID:16391674

  18. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi

    PubMed Central

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  19. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi.

    PubMed

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  20. Comparative Analysis of Human B Cell Epitopes Based on BCG Genomes.

    PubMed

    Li, Machao; Liu, Haican; Zhao, Xiuqin; Wan, Kanglin

    2016-01-01

    Background. Tuberculosis is a huge global health problem. BCG is the only vaccine used for about 100 years against TB, but the reasons for protection variability in populations remain unclear. To improve BCG efficacy and develop a strategy for new vaccines, the underlying genetic differences among BCG subtypes should be understood urgently. Methods and Findings. Human B cell epitope data were collected from the Immune Epitope Database. Epitope sequences were mapped with those of 15 genomes, including 13 BCGs, M. bovis AF2122/97, and M. tuberculosis H37Rv, to identify epitopes distribution. Among 398 experimentally verified B cell epitopes, 321 (80.7%) were conserved, while the remaining 77 (19.3%) were lost to varying degrees in BCGs. The variable protective efficacy of BCGs may result from the degree of B cell epitopes deficiency. Conclusions. Here we firstly analyzed the genetic characteristics of BCGs based on B cell epitopes and found that B cell epitopes distribution may contribute to vaccine efficacy. Restoration of important antigens or effective B cell epitopes in BCG could be a useful strategy for vaccine development. PMID:27382565

  1. Comparative Analysis of Human B Cell Epitopes Based on BCG Genomes

    PubMed Central

    Liu, Haican; Zhao, Xiuqin; Wan, Kanglin

    2016-01-01

    Background. Tuberculosis is a huge global health problem. BCG is the only vaccine used for about 100 years against TB, but the reasons for protection variability in populations remain unclear. To improve BCG efficacy and develop a strategy for new vaccines, the underlying genetic differences among BCG subtypes should be understood urgently. Methods and Findings. Human B cell epitope data were collected from the Immune Epitope Database. Epitope sequences were mapped with those of 15 genomes, including 13 BCGs, M. bovis AF2122/97, and M. tuberculosis H37Rv, to identify epitopes distribution. Among 398 experimentally verified B cell epitopes, 321 (80.7%) were conserved, while the remaining 77 (19.3%) were lost to varying degrees in BCGs. The variable protective efficacy of BCGs may result from the degree of B cell epitopes deficiency. Conclusions. Here we firstly analyzed the genetic characteristics of BCGs based on B cell epitopes and found that B cell epitopes distribution may contribute to vaccine efficacy. Restoration of important antigens or effective B cell epitopes in BCG could be a useful strategy for vaccine development. PMID:27382565

  2. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    PubMed Central

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic bounderies. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness.

  3. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    PubMed Central

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic bounderies. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness. PMID:27703668

  4. A White Paper on Nematode Comparative Genomics

    PubMed Central

    Bird, David McK.; Blaxter, Mark L.; McCarter, James P.; Mitreva, Makedonka; Sternberg, Paul W.; Thomas, W. Kelley

    2005-01-01

    In response to the new opportunities for genome sequencing and comparative genomics, the Society of Nematology (SON) formed a committee to develop a white paper in support of the broad scientific needs associated with this phylum and interests of SON members. Although genome sequencing is expensive, the data generated are unique in biological systems in that genomes have the potential to be complete (every base of the genome can be accounted for), accurate (the data are digital and not subject to stochastic variation), and permanent (once obtained, the genome of a species does not need to be experimentally re-sampled). The availability of complete, accurate, and permanent genome sequences from diverse nematode species will underpin future studies into the biology and evolution of this phylum and the ecological associations (particularly parasitic) nematodes have with other organisms. We anticipate that upwards of 100 nematode genomes will be solved to varying levels of completion in the coming decade and suggest biological and practical considerations to guide the selection of the most informative taxa for sequencing. PMID:19262884

  5. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.

    PubMed

    Lu, Bingxin; Zeng, Zhenbing; Shi, Tieliu

    2013-02-01

    Transcriptome reconstruction is an important application of RNA-Seq, providing critical information for further analysis of transcriptome. Although RNA-Seq offers the potential to identify the whole picture of transcriptome, it still presents special challenges. To handle these difficulties and reconstruct transcriptome as completely as possible, current computational approaches mainly employ two strategies: de novo assembly and genome-guided assembly. In order to find the similarities and differences between them, we firstly chose five representative assemblers belonging to the two classes respectively, and then investigated and compared their algorithm features in theory and real performances in practice. We found that all the methods can be reduced to graph reduction problems, yet they have different conceptual and practical implementations, thus each assembly method has its specific advantages and disadvantages, performing worse than others in certain aspects while outperforming others in anther aspects at the same time. Finally we merged assemblies of the five assemblers and obtained a much better assembly. Additionally we evaluated an assembler using genome-guided de novo assembly approach, and achieved good performance. Based on these results, we suggest that to obtain a comprehensive set of recovered transcripts, it is better to use a combination of de novo assembly and genome-guided assembly. PMID:23393030

  6. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  7. Comparative genomics of mycobacterial proteases.

    PubMed

    Ribeiro-Guimarães, Michelle Lopes; Pessolani, Maria Cristina Vidal

    2007-01-01

    Although proteases are recognized as important virulent factors in pathogenic microorganisms, little information is available so far regarding the potential role of these enzymes in diseases caused by mycobacteria. Here we use bioinformatic tools to compare the protease-coding genes present in the genome of Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium avium paratuberculosis. This analysis allowed a review of the nomenclature of the protease family present in mycobacteria. A special attention was devoted to the 'decaying genome' of M. leprae where a relatively high level of conservation of protease-coding genes was observed when compared to other genes families. A total of 39 genes out of the 49 found in M. bovis were identified in M. leprae. Of relevance, a core of well-conserved 38 protease genes shared by the four species was defined. This set of proteases is probably essential for survival in the host and disease outcome and may constitute novel targets for drug development leading to a more effective control of mycobacterial diseases.

  8. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.

  9. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  10. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  11. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    PubMed Central

    Gouré, Julien; Findlay, Wendy A; Deslandes, Vincent; Bouevitch, Anne; Foote, Simon J; MacInnes, Janet I; Coulton, James W; Nash, John HE; Jacques, Mario

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology. PMID:19239696

  12. Ebolavirus comparative genomics

    SciTech Connect

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Ussery, David W.

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.

  13. Comparative genomics of Shiga toxin encoding bacteriophages

    PubMed Central

    2012-01-01

    Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential. PMID:22799768

  14. Comparative genome-scale analysis of niche-based stress-responsive genes in Lactobacillus helveticus strains.

    PubMed

    Senan, Suja; Prajapati, Jashbhai B; Joshi, Chaitanya G

    2014-04-01

    Next generation sequencing technologies with advanced bioinformatic tools present a unique opportunity to compare genomes from diverse niches. The identification of niche-specific stress-responsive genes can help in characterizing robust strains for multiple applications. In this study, we attempted to compare the stress-responsive genes of a potential probiotic strain, Lactobacillus helveticus MTCC 5463, and a cheese starter strain, Lactobacillus helveticus DPC 4571, from a gut and dairy niche, respectively. Sequencing of MTCC 5463 was done using 454 GS FLX, and contigs were assembled using GS Assembler software. Genome analysis was done using BLAST hits and the prokaryotic annotation server RAST. The MTCC 5463 genome carried multiple orthologs of genes governing stress responses, whereas the DPC 4571 genome lacked in the number of major stress-response proteins. The absence of the bile salt hydrolase gene in DPC 4571 and its presence in MTCC 5463 clearly indicated niche adaptation. Further, MTCC 5463 carried higher copy numbers of genes contributing towards heat, cold, osmotic, and oxidative stress resistance as compared with DPC 4571. Through comparative genomics, we could thus identify stress-responsive gene sets required to adapt to gut and dairy niches.

  15. Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett's adenocarcinoma.

    PubMed

    Albrecht, Bettina; Hausmann, Michael; Zitzelsberger, Horst; Stein, Hubert; Siewert, Jörg Rüdiger; Hopt, Ulrich; Langer, Rupert; Höfler, Heinz; Werner, Martin; Walch, Axel

    2004-07-01

    Array-based comparative genomic hybridization (aCGH) allows the identification of DNA sequence copy number changes at high resolution by co-hybridizing differentially labelled test and control DNAs to a micro-array of genomic clones. The present study has analysed a series of 23 formalin-fixed, paraffin wax-embedded tissue samples of Barrett's adenocarcinoma (BCA, n = 18) and non-neoplastic squamous oesophageal (n = 2) and gastric cardia mucosa (n = 3) by aCGH. The micro-arrays used contained 287 genomic targets covering oncogenes, tumour suppressor genes, and DNA sequences localized within chromosomal regions previously reported to be altered in BCA. DNA sequence copy number changes for a panel of approximately 50 genes were identified, most of which have not been previously described in BCA. DNA sequence copy number gains (mean 41 +/- 25/BCA) were more frequent than DNA sequence copy number losses (mean 20 +/- 15/BCA). The highest frequencies for DNA sequence copy number gains were detected for SNRPN (61%); GNLY (44%); NME1 (44%); DDX15, ABCB1 (MDR), ATM, LAMA3, MYBL2, ZNF217, and TNFRSF6B (39% each); and MSH2, TERC, SERPINE1, AFM137XA11, IGF1R, and PTPN1 (33% each). DNA sequence copy number losses were identified for PDGFB (44%); D17S125 (39%); AKT3 (28%); and RASSFI, FHIT, CDKN2A (p16), and SAS (CDK4) (28% each). In all non-neoplastic tissue samples of squamous oesophageal and gastric cardia mucosa, the measured mean ratios were 1.00 (squamous oesophageal mucosa) or 1.01 (gastric mucosa), indicating that no DNA sequence copy number chances were present. For validation, the DNA sequence copy number changes of selected clones (SNRPN, CMYC, HER2, ZNF217) detected by aCGH were confirmed by fluorescence in situ hybridization (FISH). These data show the sensitivity of aCGH for the identification of DNA sequence copy number changes at high resolution in BCA. The newly identified genes may include so far unknown biomarkers in BCA and are therefore a starting point for

  16. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies

    PubMed Central

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-01-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6% P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS. PMID:25351780

  17. Comparative genome analysis of Basidiomycete fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  18. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    PubMed Central

    2012-01-01

    Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. Conclusions Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life. PMID:22900609

  19. 3D genome tuner: compare multiple circular genomes in a 3D context.

    PubMed

    Wang, Qi; Liang, Qun; Zhang, Xiuqing

    2009-09-01

    Circular genomes, being the largest proportion of sequenced genomes, play an important role in genome analysis. However, traditional 2D circular map only provides an overview and annotations of genome but does not offer feature-based comparison. For remedying these shortcomings, we developed 3D Genome Tuner, a hybrid of circular map and comparative map tools. Its capability of viewing comparisons between multiple circular maps in a 3D space offers great benefits to the study of comparative genomics. The program is freely available (under an LGPL licence) at http://sourceforge.net/projects/dgenometuner.

  20. The relationship between typical and atypical B-cell chronic lymphocytic leukemia. A comparative genomic hybridization-based study.

    PubMed

    O'Connor, S J; Su'ut, L; Morgan, G J; Jack, A S

    2000-09-01

    B-cell chronic lymphocytic leukemia (CLL) can be classified as typical or atypical based on morphologic and immunophenotypic features. The relationship between these 2 groups is uncertain, and there is some evidence they may be different entities. We used comparative genomic hybridization (CGH) to explore the cytogenetic relationship between typical and atypical B-cell CLL. Results showed a similar pattern of chromosome gains and losses detected in typical and atypical B-cell CLL, suggesting they are related disorders. Gain on chromosome 12 material occurred in cases that were apparently normal by interphase fluorescence in situ hybridization (FISH). The common region mapped to chromosome 12q21. Gains on chromosome 4 were present in 74% (32) of cases analyzed and were confirmed by interphase FISH in 30% (13) of cases. We previously have shown the strong association between trisomy 12 as detected by FISH and CD11a expression in atypical B-cell CLL. In the present study, CGH demonstrated additional gains on 12p and 12q outside the common amplified region of 12q21 in these patients. PMID:10989646

  1. Comparative Analysis of Genome Sequences with VISTA

    DOE Data Explorer

    Dubchak, Inna

    VISTA is a comprehensive suite of programs and databases developed by and hosted at the Genomics Division of Lawrence Berkeley National Laboratory. They provide information and tools designed to facilitate comparative analysis of genomic sequences. Users have two ways to interact with the suite of applications at the VISTA portal. They can submit their own sequences and alignments for analysis (VISTA servers) or examine pre-computed whole-genome alignments of different species. A key menu option is the Enhancer Browser and Database at http://enhancer.lbl.gov/. The VISTA Enhancer Browser is a central resource for experimentally validated human noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation with other vertebrates. The results of this enhancer screen are provided through this publicly available website. The browser also features relevant results by external contributors and a large collection of additional genome-wide conserved noncoding elements which are candidate enhancer sequences. The LBL developers invite external groups to submit computational predictions of developmental enhancers. As of 10/19/2009 the database contains information on 1109 in vivo tested elements - 508 elements with enhancer activity.

  2. Comparative DNA Sequence Analysis of Wheat and Rice Genomes

    PubMed Central

    Sorrells, Mark E.; La Rota, Mauricio; Bermudez-Kandianis, Catherine E.; Greene, Robert A.; Kantety, Ramesh; Munkvold, Jesse D.; Miftahudin; Mahmoud, Ahmed; Ma, Xuefeng; Gustafson, Perry J.; Qi, Lili L.; Echalier, Benjamin; Gill, Bikram S.; Matthews, David E.; Lazo, Gerard R.; Chao, Shiaoman; Anderson, Olin D.; Edwards, Hugh; Linkiewicz, Anna M.; Dubcovsky, Jorge; Akhunov, Eduard D.; Dvorak, Jan; Zhang, Deshui; Nguyen, Henry T.; Peng, Junhua; Lapitan, Nora L.V.; Gonzalez-Hernandez, Jose L.; Anderson, James A.; Hossain, Khwaja; Kalavacharla, Venu; Kianian, Shahryar F.; Choi, Dong-Woog; Close, Timothy J.; Dilbirligi, Muharrem; Gill, Kulvinder S.; Steber, Camille; Walker-Simmons, Mary K.; McGuire, Patrick E.; Qualset, Calvin O.

    2003-01-01

    The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to crop species has revolutionized molecular genetics and crop improvement strategies. This study compared 4485 expressed sequence tags (ESTs) that were physically mapped in wheat chromosome bins, to the public rice genome sequence data from 2251 ordered BAC/PAC clones using BLAST. A rice genome view of homologous wheat genome locations based on comparative sequence analysis revealed numerous chromosomal rearrangements that will significantly complicate the use of rice as a model for cross-species transfer of information in nonconserved regions. PMID:12902377

  3. In silico synteny based comparative genomics approach for identification and characterization of novel therapeutic targets in Chlamydophila pneumoniae.

    PubMed

    Ravindranath, Bilachi S; Krishnamurthy, Venkatappa; Krishna, Venkatarangaiah; C, Sunil Kumar

    2013-01-01

    Chlamydophila pneumoniae is one of the most important and well studied gram negative bacterial strain with respect to community acquired pneumonia and other respiratory diseases like Chronic obstructive pulmonary disease (COPD), Chronic asthma, Alzheimer's disease, Atherosclerosis and Multisclerosis which have a great potential to infect humans and many other mammals. According to WHO prediction, COPD is to become the third leading cause of death by 2030. Unfortunately, the molecular mechanisms leading to chronic infections are poorly understood and the difficulty in culturing C pneumoniae in experimental conditions and lack of entirely satisfactory serological methods for diagnosis is also a hurdle for drug discovery and development. We have performed an insilico synteny based comparative genomics analysis of C pneumoniae and other eight Chlamydial organisms to know the potential of C pneumoniae which cause COPD but other Chlamydial organisms lack in potential to cause COPD though some are involved in human pathogenesis. We have identified total 354 protein sequences as non-orthologous to other Chlamydial organisms, except hypothetical proteins 70 were found functional out of which 60 are non homologous to Homo sapiens proteome and among them 18 protein sequences are found to be essential for survival of the C pneumoniae based on BLASTP search against DEG database of essential genes. CELLO analysis results showed that about 80% proteins are found to be cytoplasmic, Among which 5 were found as bacterial exotoxins and 2 as bacterial endotoxins, remaining 11 proteins were found to be involved in DNA binding, RNA binding, catalytic activity, ATP binding, oxidoreductase activity, hydrolase activity and proteolysis activity. It is expected that our data will facilitate selection of C pneumoniae proteins for successful entry into drug design pipelines. PMID:23861566

  4. In silico synteny based comparative genomics approach for identification and characterization of novel therapeutic targets in Chlamydophila pneumoniae.

    PubMed

    Ravindranath, Bilachi S; Krishnamurthy, Venkatappa; Krishna, Venkatarangaiah; C, Sunil Kumar

    2013-01-01

    Chlamydophila pneumoniae is one of the most important and well studied gram negative bacterial strain with respect to community acquired pneumonia and other respiratory diseases like Chronic obstructive pulmonary disease (COPD), Chronic asthma, Alzheimer's disease, Atherosclerosis and Multisclerosis which have a great potential to infect humans and many other mammals. According to WHO prediction, COPD is to become the third leading cause of death by 2030. Unfortunately, the molecular mechanisms leading to chronic infections are poorly understood and the difficulty in culturing C pneumoniae in experimental conditions and lack of entirely satisfactory serological methods for diagnosis is also a hurdle for drug discovery and development. We have performed an insilico synteny based comparative genomics analysis of C pneumoniae and other eight Chlamydial organisms to know the potential of C pneumoniae which cause COPD but other Chlamydial organisms lack in potential to cause COPD though some are involved in human pathogenesis. We have identified total 354 protein sequences as non-orthologous to other Chlamydial organisms, except hypothetical proteins 70 were found functional out of which 60 are non homologous to Homo sapiens proteome and among them 18 protein sequences are found to be essential for survival of the C pneumoniae based on BLASTP search against DEG database of essential genes. CELLO analysis results showed that about 80% proteins are found to be cytoplasmic, Among which 5 were found as bacterial exotoxins and 2 as bacterial endotoxins, remaining 11 proteins were found to be involved in DNA binding, RNA binding, catalytic activity, ATP binding, oxidoreductase activity, hydrolase activity and proteolysis activity. It is expected that our data will facilitate selection of C pneumoniae proteins for successful entry into drug design pipelines.

  5. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance.

    PubMed

    Suwabe, Keita; Tsukazaki, Hikaru; Iketani, Hiroyuki; Hatakeyama, Katsunori; Kondo, Masatoshi; Fujimura, Miyuki; Nunome, Tsukasa; Fukuoka, Hiroyuki; Hirai, Masashi; Matsumoto, Satoru

    2006-05-01

    An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.

  6. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    SciTech Connect

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  7. Comparative Reannotation of 21 Aspergillus Genomes

    SciTech Connect

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  8. Increased Genomic Integrity of an Improved Protein-Based Mouse Induced Pluripotent Stem Cell Method Compared With Current Viral-Induced Strategies

    PubMed Central

    Park, Hansoo; Kim, Dohoon; Kim, Chun-Hyung; Mills, Ryan E.; Chang, Mi-Yoon; Iskow, Rebecca Cheryl; Ko, Sanghyeok; Moon, Jung-Il; Choi, Hyun Woo; Man Yoo, Paulo Sng; Do, Jeong Tae; Han, Min-Joon; Lee, Eun Gyo; Jung, Joon Ki; Zhang, Chengsheng; Lanza, Robert

    2014-01-01

    It has recently been shown that genomic integrity (with respect to copy number variants [CNVs]) is compromised in human induced pluripotent stem cells (iPSCs) generated by viral-based ectopic expression of specific transcription factors (e.g., Oct4, Sox2, Klf4, and c-Myc). However, it is unclear how different methods for iPSC generation compare with one another with respect to CNV formation. Because array-based methods remain the gold standard for detecting unbalanced structural variants (i.e., CNVs), we have used this approach to comprehensively identify CNVs in iPSC as a proxy for determining whether our modified protein-based method minimizes genomic instability compared with retro- and lentiviral methods. In this study, we established an improved method for protein reprogramming by using partially purified reprogramming proteins, resulting in more efficient generation of iPSCs from C57/BL6J mouse hepatocytes than using protein extracts. We also developed a robust and unbiased 1 M custom array CGH platform to identify novel CNVs and previously described hot spots for CNV formation, allowing us to detect CNVs down to the size of 1.9 kb. The genomic integrity of these protein-based mouse iPSCs (p-miPSCs) was compared with miPSCs developed from viral-based strategies (i.e., retroviral: retro-miPSCs or lentiviral: lenti-miPSCs). We identified an increased CNV content in lenti-miPSCs and retro-miPSCs (29∼53 CNVs) compared with p-miPSCs (9∼10 CNVs), indicating that our improved protein-based reprogramming method maintains genomic integrity better than current viral reprogramming methods. Thus, our study, for the first time to our knowledge, demonstrates that reprogramming methods significantly influence the genomic integrity of resulting iPSCs. PMID:24763686

  9. Gramene: a growing plant comparative genomics resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (www.gramene.org) is a curated genetic, genomic and comparative genome analysis resource for the major crop species, such as rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project, with all data and software freely downloadable through the ftp site ...

  10. Gramene 2013: Comparative plant genomics resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework fo...

  11. Comparative genomics of BCG vaccines.

    PubMed

    Behr, M A

    2001-01-01

    Bacille Calmette-Guérin (BCG) vaccines have been given to more people than any other vaccine. They have also probably resulted in as much controversy as any other vaccine. In clinical trials, the efficacy of BCG vaccination against pulmonary TB has been widely variable. At the same time, a number of investigators have observed phenotypic differences between BCG daughter strains, raising the possibility that differences between BCG products may in some way translate into different outcomes. With recent genomic analysis of BCG strains, it has become possible to piece together the molecular events that have resulted in current BCG vaccines. Between the derivation of BCG in 1921 and the lyophilization of BCG Pasteur 1173 in 1961, there have been at least seven genetic events, including deletions, duplications and a single nucleotide polymorphism. The phenotypic relevance of these changes in BCG vaccines remains to be explored.

  12. Comparative genomics of BCG vaccines.

    PubMed

    Behr, M A

    2001-01-01

    Bacille Calmette-Guérin (BCG) vaccines have been given to more people than any other vaccine. They have also probably resulted in as much controversy as any other vaccine. In clinical trials, the efficacy of BCG vaccination against pulmonary TB has been widely variable. At the same time, a number of investigators have observed phenotypic differences between BCG daughter strains, raising the possibility that differences between BCG products may in some way translate into different outcomes. With recent genomic analysis of BCG strains, it has become possible to piece together the molecular events that have resulted in current BCG vaccines. Between the derivation of BCG in 1921 and the lyophilization of BCG Pasteur 1173 in 1961, there have been at least seven genetic events, including deletions, duplications and a single nucleotide polymorphism. The phenotypic relevance of these changes in BCG vaccines remains to be explored. PMID:11463238

  13. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  14. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  15. Genomicus: five genome browsers for comparative genomics in eukaryota.

    PubMed

    Louis, Alexandra; Muffato, Matthieu; Roest Crollius, Hugues

    2013-01-01

    Genomicus (http://www.dyogen.ens.fr/genomicus/) is a database and an online tool that allows easy comparative genomic visualization in >150 eukaryote genomes. It provides a way to explore spatial information related to gene organization within and between genomes and temporal relationships related to gene and genome evolution. For the specific vertebrate phylum, it also provides access to ancestral gene order reconstructions and conserved non-coding elements information. We extended the Genomicus database originally dedicated to vertebrate to four new clades, including plants, non-vertebrate metazoa, protists and fungi. This visualization tool allows evolutionary phylogenomics analysis and exploration. Here, we describe the graphical modules of Genomicus and show how it is capable of revealing differential gene loss and gain, segmental or genome duplications and study the evolution of a locus through homology relationships.

  16. Comparative analysis of the Acyrthosiphon pisum genome and expressed sequence tag-based gene sets from other aphid species.

    PubMed

    Ollivier, M; Legeai, F; Rispe, C

    2010-03-01

    To study gene repertoires and their evolution within aphids, we compared the complete genome sequence of Acyrthosiphon pisum (reference gene set) and expressed sequence tag (EST) data from three other species: Myzus persicae, Aphis gossypii and Toxoptera citricida. We assembled ESTs, predicted coding sequences, and identified potential pairs of orthologues (reciprocical best hits) with A. pisum. Pairwise comparisons show that a fraction of the genes evolve fast (high ratio of non-synonymous to synonymous rates), including many genes shared by aphids but with no hit in Uniprot. A detailed phylogenetic study for four fast-evolving genes (C002, JHAMT, Apo and GH) shows that rate accelerations are often associated with duplication events. We also compare compositional patterns between the two tribes of aphids, Aphidini and Macrosiphini.

  17. Linking the genomes of nonmodel teleosts through comparative genomics.

    PubMed

    Sarropoulou, E; Nousdili, D; Magoulas, A; Kotoulas, G

    2008-01-01

    Recently the genomes of two more teleost species have been released: the medaka (Oryzias latipes), and the three-spined stickleback (Gasterosteus aculateus). The rapid developments in genomics of fish species paved the way to new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of nonmodel, but economically important species, is now feasible. Furthermore, comparison of low coverage gene maps of aquacultured fish species against fully sequenced fish species will enhance the efficiency of candidate genes identification projected for quantitative trait loci (QTL) scans for traits of commercial interest. This study shows the syntenic relationship between the genomes of six different teleost species, including three fully sequenced model species: Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculateus, and three marine species of commercial and evolutionary interest: Sparus aurata, Dicentrarchus labrax, Oreochromis spp. All three commercial fish species belong to the order Perciformes, which is the richest in number of species (approximately 10,000) but poor in terms of available genomic information and tools. Syntenic relationships were established by using 800 EST and microsatellites sequences successfully mapped on the RH map of seabream. Comparison to the stickleback genome produced most positive BLAT hits (58%) followed by medaka (32%) and Tetraodon (30%). Thus, stickleback was used as the major stepping stone to compare seabass and tilapia to seabream. In addition to the significance for the aquaculture industry, this approach can encompass important ecological and evolutionary implications. PMID:18297360

  18. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type.

    PubMed

    Nakashima, Yasuhiro; Tagawa, Hiroyuki; Suzuki, Ritsuro; Karnan, Sivasundaram; Karube, Kennosuke; Ohshima, Koichi; Muta, Koichiro; Nawata, Hajime; Morishima, Yasuo; Nakamura, Shigeo; Seto, Masao

    2005-11-01

    Natural killer (NK) cell lymphomas/leukemias are highly aggressive lymphoid malignancies, but little is known about their genomic alterations, and thus there is an urgent need for identification and analysis of NK cell lymphomas/leukemias. Recently, we developed our own array-based comparative genomic hybridization (array CGH) with an average resolution of 1.3 Mb. We performed an array CGH analysis for 27 NK-cell lymphoma/leukemia cases that were classified into two disease groups based on the World Health Organization Classification (10 aggressive NK-cell leukemia cases and 17 extranodal NK/T-cell [NK/T] lymphomas, nasal type). We identified the differences in the genomic alteration patterns of the two groups. The recurrent regions characteristic of the aggressive NK-cell leukemia group compared with those of the extranodal NK/T lymphoma, nasal-type group, were gain of 1q and loss of 7p15.1-p22.3 and 17p13.1. In particular, gain of 1q23.1-24.2 (P = 0.041) and 1q31.3-q44 (P = 0.003-0.047), and loss of 7p15.1-p22.3 (P = 0.012-0.041) and 17p13.1 (P = 0.012) occurred significantly more frequently in the former than in the latter group. Recurrent regions characteristic of the extranodal NK/T lymphoma, nasal-type group, compared with those of the other group were gain of 2q, and loss of 6q16.1-q27, 11q22.3-q23.3, 5p14.1-p14.3, 5q34-q35.3, 1p36.23-p36.33, 2p16.1-p16.3, 4q12, and 4q31.3-q32.1. Our results can be expected to provide further insights into the genetic basis of lymphomagenesis and the clinicopathologic features of NK-cell lymphomas/leukemias.

  19. Cyberinfrastructure for (Comparative) Plant Genome Research Through PlantGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and comprehensive gene structure annotation in emerging and assembled genomes is fundamental to comparative, functional, and translational genomics. We plan to build the cyberinfrastructure necessary for defining and accessing the plant gene space. Our Plant Genetic Data Base (PlantGDB) r...

  20. Gene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis.

    PubMed

    Lees, Jonathan; Yeats, Corin; Perkins, James; Sillitoe, Ian; Rentzsch, Robert; Dessailly, Benoit H; Orengo, Christine

    2012-01-01

    Gene3D http://gene3d.biochem.ucl.ac.uk is a comprehensive database of protein domain assignments for sequences from the major sequence databases. Domains are directly mapped from structures in the CATH database or predicted using a library of representative profile HMMs derived from CATH superfamilies. As previously described, Gene3D integrates many other protein family and function databases. These facilitate complex associations of molecular function, structure and evolution. Gene3D now includes a domain functional family (FunFam) level below the homologous superfamily level assignments. Additions have also been made to the interaction data. More significantly, to help with the visualization and interpretation of multi-genome scale data sets, we have developed a new, revamped website. Searching has been simplified with more sophisticated filtering of results, along with new tools based on Cytoscape Web, for visualizing protein-protein interaction networks, differences in domain composition between genomes and the taxonomic distribution of individual superfamilies.

  1. Comparative Genomic Analyses of Attenuated Strains of Mycoplasma gallisepticum▿ †

    PubMed Central

    Szczepanek, S. M.; Tulman, E. R.; Gorton, T. S.; Liao, X.; Lu, Z.; Zinski, J.; Aziz, F.; Frasca, S.; Kutish, G. F.; Geary, S. J.

    2010-01-01

    Mycoplasma gallisepticum is a significant respiratory and reproductive pathogen of domestic poultry. While the complete genomic sequence of the virulent, low-passage M. gallisepticum strain R (Rlow) has been reported, genomic determinants responsible for differences in virulence and host range remain to be completely identified. Here, we utilize genome sequencing and microarray-based comparative genomic data to identify these genomic determinants of virulence and to elucidate genomic variability among strains of M. gallisepticum. Analysis of the high-passage, attenuated derivative of Rlow, Rhigh, indicated that relatively few total genomic changes (64 loci) occurred, yet they are potentially responsible for the observed attenuation of this strain. In addition to previously characterized mutations in cytadherence-related proteins, changes included those in coding sequences of genes involved in sugar metabolism. Analyses of the genome of the M. gallisepticum vaccine strain F revealed numerous differences relative to strain R, including a highly divergent complement of vlhA surface lipoprotein genes, and at least 16 genes absent or significantly fragmented relative to strain R. Notably, an Rlow isogenic mutant in one of these genes (MGA_1107) caused significantly fewer severe tracheal lesions in the natural host compared to virulent M. gallisepticum Rlow. Comparative genomic hybridizations indicated few genetic loci commonly affected in F and vaccine strains ts-11 and 6/85, which would correlate with proteins affecting strain R virulence. Together, these data provide novel insights into inter- and intrastrain M. gallisepticum genomic variability and the genetic basis of M. gallisepticum virulence. PMID:20123709

  2. Comparative Chloroplast Genomes of Camellia Species

    PubMed Central

    Li, Hong-Tao; Yang, Jing; Li, De-Zhu

    2013-01-01

    Background Camellia, comprising more than 200 species, is a valuable economic commodity due to its enormously popular commercial products: tea leaves, flowers, and high-quality edible oils. It is the largest and most important genus in the family Theaceae. However, phylogenetic resolution of the species has proven to be difficult. Consequently, the interspecies relationships of the genus Camellia are still hotly debated. Phylogenomics is an attractive avenue that can be used to reconstruct the tree of life, especially at low taxonomic levels. Methodology/Principal Findings Seven complete chloroplast (cp) genomes were sequenced from six species representing different subdivisions of the genus Camellia using Illumina sequencing technology. Four junctions between the single-copy segments and the inverted repeats were confirmed and genome assemblies were validated by PCR-based product sequencing using 123 pairs of primers covering preliminary cp genome assemblies. The length of the Camellia cp genome was found to be about 157kb, which contained 123 unique genes and 23 were duplicated in the IR regions. We determined that the complete Camellia cp genome was relatively well conserved, but contained enough genetic differences to provide useful phylogenetic information. Phylogenetic relationships were analyzed using seven complete cp genomes of six Camellia species. We also identified rapidly evolving regions of the cp genome that have the potential to be used for further species identification and phylogenetic resolution. Conclusions/Significance In this study, we wanted to determine if analyzing completely sequenced cp genomes could help settle these controversies of interspecies relationships in Camellia. The results demonstrate that cp genome data are beneficial in resolving species definition because they indicate that organelle-based “barcodes”, can be established for a species and then used to unmask interspecies phylogenetic relationships. It reveals that

  3. Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus

    PubMed Central

    Sharma, Gaurav; Narwani, Tarun; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversity. The variation in number of unique proteins observed across different species is suggestive of diversity at the genus level while the overrepresentation of several Pfam families indicates the extent and mode of genome expansion as compared to non-Myxococcales δ-proteobacteria. PMID:26900859

  4. Comparative Genome Analysis of Enterobacter cloacae

    PubMed Central

    Liu, Wing-Yee; Wong, Chi-Fat; Chung, Karl Ming-Kar; Jiang, Jing-Wei; Leung, Frederick Chi-Ching

    2013-01-01

    The Enterobacter cloacae species includes an extremely diverse group of bacteria that are associated with plants, soil and humans. Publication of the complete genome sequence of the plant growth-promoting endophytic E. cloacae subsp. cloacae ENHKU01 provided an opportunity to perform the first comparative genome analysis between strains of this dynamic species. Examination of the pan-genome of E. cloacae showed that the conserved core genome retains the general physiological and survival genes of the species, while genomic factors in plasmids and variable regions determine the virulence of the human pathogenic E. cloacae strain; additionally, the diversity of fimbriae contributes to variation in colonization and host determination of different E. cloacae strains. Comparative genome analysis further illustrated that E. cloacae strains possess multiple mechanisms for antagonistic action against other microorganisms, which involve the production of siderophores and various antimicrobial compounds, such as bacteriocins, chitinases and antibiotic resistance proteins. The presence of Type VI secretion systems is expected to provide further fitness advantages for E. cloacae in microbial competition, thus allowing it to survive in different environments. Competition assays were performed to support our observations in genomic analysis, where E. cloacae subsp. cloacae ENHKU01 demonstrated antagonistic activities against a wide range of plant pathogenic fungal and bacterial species. PMID:24069314

  5. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    PubMed

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-01

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. PMID:26578582

  6. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database

    PubMed Central

    Winsor, Geoffrey L.; Griffiths, Emma J.; Lo, Raymond; Dhillon, Bhavjinder K.; Shay, Julie A.; Brinkman, Fiona S. L.

    2016-01-01

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. PMID:26578582

  7. Using Comparative Genomics for Inquiry-Based Learning to Dissect Virulence of "Escherichia coli" O157:H7 and "Yersinia pestis"

    ERIC Educational Resources Information Center

    Baumler, David J.; Banta, Lois M.; Hung, Kai F.; Schwarz, Jodi A.; Cabot, Eric L.; Glasner, Jeremy D.; Perna, Nicole T.

    2012-01-01

    Genomics and bioinformatics are topics of increasing interest in undergraduate biological science curricula. Many existing exercises focus on gene annotation and analysis of a single genome. In this paper, we present two educational modules designed to enable students to learn and apply fundamental concepts in comparative genomics using examples…

  8. GenoSets: Visual Analytic Methods for Comparative Genomics

    PubMed Central

    Cain, Aurora A.; Kosara, Robert; Gibas, Cynthia J.

    2012-01-01

    Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest. PMID:23056299

  9. GenoSets: visual analytic methods for comparative genomics.

    PubMed

    Cain, Aurora A; Kosara, Robert; Gibas, Cynthia J

    2012-01-01

    Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.

  10. Phytozome System for Comparative Plant Genomics

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome providesmore » access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.« less

  11. Phytozome System for Comparative Plant Genomics

    SciTech Connect

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome provides access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.

  12. Homology-Independent Metrics for Comparative Genomics

    PubMed Central

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference. PMID:26029354

  13. Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum.

    PubMed

    Wang, Linhai; Yu, Jingyin; Li, Donghua; Zhang, Xiurong

    2015-01-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop grown widely in tropical and subtropical areas. It belongs to the gigantic order Lamiales, which includes many well-known or economically important species, such as olive (Olea europaea), leonurus (Leonurus japonicus) and lavender (Lavandula spica), many of which have important pharmacological properties. Despite their importance, genetic and genomic analyses on these species have been insufficient due to a lack of reference genome information. The now available S. indicum genome will provide an unprecedented opportunity for studying both S. indicum genetic traits and comparative genomics. To deliver S. indicum genomic information to the worldwide research community, we designed Sinbase, a web-based database with comprehensive sesame genomic, genetic and comparative genomic information. Sinbase includes sequences of assembled sesame pseudomolecular chromosomes, protein-coding genes (27,148), transposable elements (372,167) and non-coding RNAs (1,748). In particular, Sinbase provides unique and valuable information on colinear regions with various plant genomes, including Arabidopsis thaliana, Glycine max, Vitis vinifera and Solanum lycopersicum. Sinbase also provides a useful search function and data mining tools, including a keyword search and local BLAST service. Sinbase will be updated regularly with new features, improvements to genome annotation and new genomic sequences, and is freely accessible at http://ocri-genomics.org/Sinbase/. PMID:25480115

  14. Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum.

    PubMed

    Wang, Linhai; Yu, Jingyin; Li, Donghua; Zhang, Xiurong

    2015-01-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop grown widely in tropical and subtropical areas. It belongs to the gigantic order Lamiales, which includes many well-known or economically important species, such as olive (Olea europaea), leonurus (Leonurus japonicus) and lavender (Lavandula spica), many of which have important pharmacological properties. Despite their importance, genetic and genomic analyses on these species have been insufficient due to a lack of reference genome information. The now available S. indicum genome will provide an unprecedented opportunity for studying both S. indicum genetic traits and comparative genomics. To deliver S. indicum genomic information to the worldwide research community, we designed Sinbase, a web-based database with comprehensive sesame genomic, genetic and comparative genomic information. Sinbase includes sequences of assembled sesame pseudomolecular chromosomes, protein-coding genes (27,148), transposable elements (372,167) and non-coding RNAs (1,748). In particular, Sinbase provides unique and valuable information on colinear regions with various plant genomes, including Arabidopsis thaliana, Glycine max, Vitis vinifera and Solanum lycopersicum. Sinbase also provides a useful search function and data mining tools, including a keyword search and local BLAST service. Sinbase will be updated regularly with new features, improvements to genome annotation and new genomic sequences, and is freely accessible at http://ocri-genomics.org/Sinbase/.

  15. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome

    PubMed Central

    Dalrymple, Brian P; Kirkness, Ewen F; Nefedov, Mikhail; McWilliam, Sean; Ratnakumar, Abhirami; Barris, Wes; Zhao, Shaying; Shetty, Jyoti; Maddox, Jillian F; O'Grady, Margaret; Nicholas, Frank; Crawford, Allan M; Smith, Tim; de Jong, Pieter J; McEwan, John; Oddy, V Hutton; Cockett, Noelle E

    2007-01-01

    Background Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? Results A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. Conclusion We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited. PMID:17663790

  16. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  17. VISTA - computational tools for comparative genomics

    SciTech Connect

    Frazer, Kelly A.; Pachter, Lior; Poliakov, Alexander; Rubin,Edward M.; Dubchak, Inna

    2004-01-01

    Comparison of DNA sequences from different species is a fundamental method for identifying functional elements in genomes. Here we describe the VISTA family of tools created to assist biologists in carrying out this task. Our first VISTA server at http://www-gsd.lbl.gov/VISTA/ was launched in the summer of 2000 and was designed to align long genomic sequences and visualize these alignments with associated functional annotations. Currently the VISTA site includes multiple comparative genomics tools and provides users with rich capabilities to browse pre-computed whole-genome alignments of large vertebrate genomes and other groups of organisms with VISTA Browser, submit their own sequences of interest to several VISTA servers for various types of comparative analysis, and obtain detailed comparative analysis results for a set of cardiovascular genes. We illustrate capabilities of the VISTA site by the analysis of a 180 kilobase (kb) interval on human chromosome 5 that encodes for the kinesin family member3A (KIF3A) protein.

  18. VISTA: computational tools for comparative genomics.

    PubMed

    Frazer, Kelly A; Pachter, Lior; Poliakov, Alexander; Rubin, Edward M; Dubchak, Inna

    2004-07-01

    Comparison of DNA sequences from different species is a fundamental method for identifying functional elements in genomes. Here, we describe the VISTA family of tools created to assist biologists in carrying out this task. Our first VISTA server at http://www-gsd.lbl.gov/vista/ was launched in the summer of 2000 and was designed to align long genomic sequences and visualize these alignments with associated functional annotations. Currently the VISTA site includes multiple comparative genomics tools and provides users with rich capabilities to browse pre-computed whole-genome alignments of large vertebrate genomes and other groups of organisms with VISTA Browser, to submit their own sequences of interest to several VISTA servers for various types of comparative analysis and to obtain detailed comparative analysis results for a set of cardiovascular genes. We illustrate capabilities of the VISTA site by the analysis of a 180 kb interval on human chromosome 5 that encodes for the kinesin family member 3A (KIF3A) protein.

  19. Comparative analysis of the Borrelia garinii genome.

    PubMed

    Glöckner, G; Lehmann, R; Romualdi, A; Pradella, S; Schulte-Spechtel, U; Schilhabel, M; Wilske, B; Sühnel, J; Platzer, M

    2004-01-01

    Three members of the genus Borrelia (B.burgdorferi, B.garinii, B.afzelii) cause tick-borne borreliosis. Depending on the Borrelia species involved, the borreliosis differs in its clinical symptoms. Comparative genomics opens up a way to elucidate the underlying differences in Borrelia species. We analysed a low redundancy whole-genome shotgun (WGS) assembly of a B.garinii strain isolated from a patient with neuroborreliosis in comparison to the B.burgdorferi genome. This analysis reveals that most of the chromosome is conserved (92.7% identity on DNA as well as on amino acid level) in the two species, and no chromosomal rearrangement or larger insertions/deletions could be observed. Furthermore, two collinear plasmids (lp54 and cp26) seem to belong to the basic genome inventory of Borrelia species. These three collinear parts of the Borrelia genome encode 861 genes, which are orthologous in the two species examined. The majority of the genetic information of the other plasmids of B.burgdorferii is also present in B.garinii although orthology is not easy to define due to a high redundancy of the plasmid fraction. Yet, we did not find counterparts of the B.burgdorferi plasmids lp36 and lp38 or their respective gene repertoire in the B.garinii genome. Thus, phenotypic differences between the two species could be attributable to the presence or absence of these two plasmids as well as to the potentially positively selected genes. PMID:15547252

  20. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea.

    PubMed

    Bajaj, Deepak; Upadhyaya, Hari D; Khan, Yusuf; Das, Shouvik; Badoni, Saurabh; Shree, Tanima; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L L; Singh, Sube; Sharma, Shivali; Tyagi, Akhilesh K; Chattopdhyay, Debasis; Parida, Swarup K

    2015-01-01

    High experimental validation/genotyping success rate (94-96%) and intra-specific polymorphic potential (82-96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8-25.8% with LOD: 7.0-13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1-171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea.

  1. Comparative Genomics of the Campylobacter lari Group

    PubMed Central

    Miller, William G.; Yee, Emma; Chapman, Mary H.; Smith, Timothy P.L.; Bono, James L.; Huynh, Steven; Parker, Craig T.; Vandamme, Peter; Luong, Khai; Korlach, Jonas

    2014-01-01

    The Campylobacter lari group is a phylogenetic clade within the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter spp., a division within the genus that includes the human pathogen Campylobacter jejuni. The C. lari group is currently composed of five species (C. lari, Campylobacter insulaenigrae, Campylobacter volucris, Campylobacter subantarcticus, and Campylobacter peloridis), as well as a group of strains termed the urease-positive thermophilic Campylobacter (UPTC) and other C. lari-like strains. Here we present the complete genome sequences of 11 C. lari group strains, including the five C. lari group species, four UPTC strains, and a lari-like strain isolated in this study. The genome of C. lari subsp. lari strain RM2100 was described previously. Analysis of the C. lari group genomes indicates that this group is highly related at the genome level. Furthermore, these genomes are strongly syntenic with minor rearrangements occurring only in 4 of the 12 genomes studied. The C. lari group can be bifurcated, based on the flagella and flagellar modification genes. Genomic analysis of the UPTC strains indicated that these organisms are variable but highly similar, closely related to but distinct from C. lari. Additionally, the C. lari group contains multiple genes encoding hemagglutination domain proteins, which are either contingency genes or linked to conserved contingency genes. Many of the features identified in strain RM2100, such as major deficiencies in amino acid biosynthesis and energy metabolism, are conserved across all 12 genomes, suggesting that these common features may play a role in the association of the C. lari group with coastal environments and watersheds. PMID:25381664

  2. Comparative genomics of biotechnologically important yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  3. [Comparative genomic classification of human hepatocellular carcinoma].

    PubMed

    Kaposi-Novák, Pál

    2009-03-01

    , increased microvessel density, and shortened survival. A prediction model based on 111 cross-species conserved c-Met signature genes was able to diversify HCC patients into good and bad prognostic groups with 83-95% accuracy. Our results therefore demonstrate that careful experimental design and state-of-the-art laboratory methods could open the way for global expression profiling of archived and limited availability pathologic samples. Comparative functional genomics based analysis of the cancer transcriptome could lead to novel molecular classification systems which are essential for the introduction of individualized cancer therapeutics. PMID:19318328

  4. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  5. Comparative genomics in the Amoebozoa clade.

    PubMed

    Glöckner, Gernot; Noegel, Angelika A

    2013-02-01

    Amoeboid life forms can be found throughout the evolutionary tree. The greatest proportion of these life forms is found in the Amoebozoa clade, one of the six major eukaryote evolutionary branches. Despite its common origin this clade exhibits a wide diversity of lifestyles including free-living and parasitic species and species with multicellular and multinucleate life stages. In this group, development, cooperation, and social behaviour can be studied in addition to traits common to unicellular organisms. To date, only a few Amoebozoa genomes have been sequenced completely, however a number of expressed sequence tags (ESTs) and complete and draft genomes have become available recently for several species that represent some of the major evolutionary lineages in this clade. This resource allows us to compare and analyse the evolutionary history and fate of branch-specific genes if properly exploited. Despite the large evolutionary time scale since the emergence of the major groups the genomic organization in Amoebozoa has retained common features. The number of Amoebozoa-specific genetic inventions seems to be rather small. The emergence of subgroups is accompanied by gene and domain losses and acquisitions of bacterial gene material. The sophisticated developmental cycles of Myxogastria and Dictyosteliida likely have a common origin and are deeply rooted in amoebozoan evolution. In this review we describe initial approaches to comparative genomics in Amoebozoa, summarize recent findings, and identify goals for further studies.

  6. A Comparative Map of the Zebrafish Genome

    PubMed Central

    Woods, Ian G.; Kelly, Peter D.; Chu, Felicia; Ngo-Hazelett, Phuong; Yan, Yi-Lin; Huang, Hui; Postlethwait, John H.; Talbot, William S.

    2000-01-01

    Zebrafish mutations define the functions of hundreds of essential genes in the vertebrate genome. To accelerate the molecular analysis of zebrafish mutations and to facilitate comparisons among the genomes of zebrafish and other vertebrates, we used a homozygous diploid meiotic mapping panel to localize polymorphisms in 691 previously unmapped genes and expressed sequence tags (ESTs). Together with earlier efforts, this work raises the total number of markers scored in the mapping panel to 2119, including 1503 genes and ESTs and 616 previously characterized simple-sequence length polymorphisms. Sequence analysis of zebrafish genes mapped in this study and in prior work identified putative human orthologs for 804 zebrafish genes and ESTs. Map comparisons revealed 139 new conserved syntenies, in which two or more genes are on the same chromosome in zebrafish and human. Although some conserved syntenies are quite large, there were changes in gene order within conserved groups, apparently reflecting the relatively frequent occurrence of inversions and other intrachromosomal rearrangements since the divergence of teleost and tetrapod ancestors. Comparative mapping also shows that there is not a one-to-one correspondence between zebrafish and human chromosomes. Mapping of duplicate gene pairs identified segments of 20 linkage groups that may have arisen during a genome duplication that occurred early in the evolution of teleosts after the divergence of teleost and mammalian ancestors. This comparative map will accelerate the molecular analysis of zebrafish mutations and enhance the understanding of the evolution of the vertebrate genome. PMID:11116086

  7. Comparative genomics tools applied to bioterrorism defence.

    PubMed

    Slezak, Tom; Kuczmarski, Tom; Ott, Linda; Torres, Clinton; Medeiros, Dan; Smith, Jason; Truitt, Brian; Mulakken, Nisha; Lam, Marisa; Vitalis, Elizabeth; Zemla, Adam; Zhou, Carol Ecale; Gardner, Shea

    2003-06-01

    Rapid advances in the genomic sequencing of bacteria and viruses over the past few years have made it possible to consider sequencing the genomes of all pathogens that affect humans and the crops and livestock upon which our lives depend. Recent events make it imperative that full genome sequencing be accomplished as soon as possible for pathogens that could be used as weapons of mass destruction or disruption. This sequence information must be exploited to provide rapid and accurate diagnostics to identify pathogens and distinguish them from harmless near-neighbours and hoaxes. The Chem-Bio Non-Proliferation (CBNP) programme of the US Department of Energy (DOE) began a large-scale effort of pathogen detection in early 2000 when it was announced that the DOE would be providing bio-security at the 2002 Winter Olympic Games in Salt Lake City, Utah. Our team at the Lawrence Livermore National Lab (LLNL) was given the task of developing reliable and validated assays for a number of the most likely bioterrorist agents. The short timeline led us to devise a novel system that utilised whole-genome comparison methods to rapidly focus on parts of the pathogen genomes that had a high probability of being unique. Assays developed with this approach have been validated by the Centers for Disease Control (CDC). They were used at the 2002 Winter Olympics, have entered the public health system, and have been in continual use for non-publicised aspects of homeland defence since autumn 2001. Assays have been developed for all major threat list agents for which adequate genomic sequence is available, as well as for other pathogens requested by various government agencies. Collaborations with comparative genomics algorithm developers have enabled our LLNL team to make major advances in pathogen detection, since many of the existing tools simply did not scale well enough to be of practical use for this application. It is hoped that a discussion of a real-life practical application of

  8. Mycobacterial species as case-study of comparative genome analysis.

    PubMed

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  9. An orthology-based analysis of pathogenic protozoa impacting global health: an improved comparative genomics approach with prokaryotes and model eukaryote orthologs.

    PubMed

    Cuadrat, Rafael R C; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M; Mattoso, Marta; Dávila, Alberto M R

    2014-08-01

    A key focus in 21(st) century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools. PMID:24960463

  10. Genome-Based Microsatellite Development in the Culex pipiens Complex and Comparative Microsatellite Frequency with Aedes aegypti and Anopheles gambiae

    PubMed Central

    Hickner, Paul V.; deBruyn, Becky; Lovin, Diane D.; Mori, Akio; Behura, Susanta K.; Pinger, Robert; Severson, David W.

    2010-01-01

    Background Mosquitoes in the Culex pipiens complex are among the most medically important vectors for human disease worldwide and include major vectors for lymphatic filariasis and West Nile virus transmission. However, detailed genetic studies in the complex are limited by the number of genetic markers available. Here, we describe methods for the rapid and efficient identification and development of single locus, highly polymorphic microsatellite markers for Cx. pipiens complex mosquitoes via in silico screening of the Cx. quinquefasciatus genome sequence. Methodology/Principal Findings Six lab colonies representing four Cx. pipiens and two Cx. quinquefasciatus populations were utilized for preliminary assessment of 38 putative loci identified within 16 Cx. quinquefasciatus supercontig assemblies (CpipJ1) containing previously mapped genetic marker sequences. We identified and validated 12 new microsatellite markers distributed across all three linkage groups that amplify consistently among strains representing the complex. We also developed four groups of 3–5 microsatellite loci each for multiplex-ready PCR. Field collections from three cities in Indiana were used to assess the multiplex groups for their application to natural populations. All were highly polymorphic (Mean  = 13.0 alleles) per locus and reflected high polymorphism information content (PIC) (Mean  = 0.701). Pairwise FST indicated population structuring between Terre Haute and Fort Wayne and between Terre Haute and Indianapolis, but not between Fort Wayne and Indianapolis. In addition, we performed whole genome comparisons of microsatellite motifs and abundance between Cx. quinquefasciatus and the primary vectors for dengue virus and malaria parasites, Aedes aegypti and Anopheles gambiae, respectively. Conclusions/Significance We demonstrate a systematic approach for isolation and validation of microsatellites for the Cx. pipiens complex by direct screen of the Cx. quinquefasciatus genome

  11. PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants[W

    PubMed Central

    Proost, Sebastian; Van Bel, Michiel; Sterck, Lieven; Billiau, Kenny; Van Parys, Thomas; Van de Peer, Yves; Vandepoele, Klaas

    2009-01-01

    The number of sequenced genomes of representatives within the green lineage is rapidly increasing. Consequently, comparative sequence analysis has significantly altered our view on the complexity of genome organization, gene function, and regulatory pathways. To explore all this genome information, a centralized infrastructure is required where all data generated by different sequencing initiatives is integrated and combined with advanced methods for data mining. Here, we describe PLAZA, an online platform for plant comparative genomics (http://bioinformatics.psb.ugent.be/plaza/). This resource integrates structural and functional annotation of published plant genomes together with a large set of interactive tools to study gene function and gene and genome evolution. Precomputed data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, intraspecies whole-genome dot plots, and genomic colinearity between species. Through the integration of high confidence Gene Ontology annotations and tree-based orthology between related species, thousands of genes lacking any functional description are functionally annotated. Advanced query systems, as well as multiple interactive visualization tools, are available through a user-friendly and intuitive Web interface. In addition, detailed documentation and tutorials introduce the different tools, while the workbench provides an efficient means to analyze user-defined gene sets through PLAZA's interface. In conclusion, PLAZA provides a comprehensible and up-to-date research environment to aid researchers in the exploration of genome information within the green plant lineage. PMID:20040540

  12. PLAZA: a comparative genomics resource to study gene and genome evolution in plants.

    PubMed

    Proost, Sebastian; Van Bel, Michiel; Sterck, Lieven; Billiau, Kenny; Van Parys, Thomas; Van de Peer, Yves; Vandepoele, Klaas

    2009-12-01

    The number of sequenced genomes of representatives within the green lineage is rapidly increasing. Consequently, comparative sequence analysis has significantly altered our view on the complexity of genome organization, gene function, and regulatory pathways. To explore all this genome information, a centralized infrastructure is required where all data generated by different sequencing initiatives is integrated and combined with advanced methods for data mining. Here, we describe PLAZA, an online platform for plant comparative genomics (http://bioinformatics.psb.ugent.be/plaza/). This resource integrates structural and functional annotation of published plant genomes together with a large set of interactive tools to study gene function and gene and genome evolution. Precomputed data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, intraspecies whole-genome dot plots, and genomic colinearity between species. Through the integration of high confidence Gene Ontology annotations and tree-based orthology between related species, thousands of genes lacking any functional description are functionally annotated. Advanced query systems, as well as multiple interactive visualization tools, are available through a user-friendly and intuitive Web interface. In addition, detailed documentation and tutorials introduce the different tools, while the workbench provides an efficient means to analyze user-defined gene sets through PLAZA's interface. In conclusion, PLAZA provides a comprehensible and up-to-date research environment to aid researchers in the exploration of genome information within the green plant lineage.

  13. Phytome: a platform for plant comparative genomics.

    PubMed

    Hartmann, Stefanie; Lu, Dihui; Phillips, Jason; Vision, Todd J

    2006-01-01

    Phytome is an online comparative genomics resource that can be applied to functional plant genomics, molecular breeding and evolutionary studies. It contains predicted protein sequences, protein family assignments, multiple sequence alignments, phylogenies and functional annotations for proteins from a large, phylogenetically diverse set of plant taxa. Phytome serves as a glue between disparate plant gene databases both by identifying the evolutionary relationships among orthologous and paralogous protein sequences from different species and by enabling cross-references between different versions of the same gene curated independently by different database groups. The web interface enables sophisticated queries on lineage-specific patterns of gene/protein family proliferation and loss. This rich dataset is serving as a platform for the unification of sequence-anchored comparative maps across taxonomic families of plants. The Phytome web interface can be accessed at the following URL: http://www.phytome.org. Batch homology searches and bulk downloads are available upon free registration.

  14. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes.

    PubMed

    Schranz, M Eric; Lysak, Martin A; Mitchell-Olds, Thomas

    2006-11-01

    In this review we summarize recent advances in our understanding of phylogenetics, polyploidization and comparative genomics in the family Brassicaceae. These findings pave the way for a unified comparative genomic framework. We integrate several of these findings into a simple system of 24 conserved chromosomal blocks (labeled A-X). The naming, order, orientation and color-coding of these blocks are based on their positions in a proposed ancestral karyotype (n=8), rather than by their position in the reduced genome of Arabidopsis thaliana (n=5). We show how these crucifer building blocks can be rearranged to model the genome structures of A. thaliana, Arabidopsis lyrata, Capsella rubella and Brassica rapa. A framework for comparison between species is timely because several crucifer genome-sequencing projects are underway.

  15. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  16. Comparative genomics of biotechnologically important yeasts.

    PubMed

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.

  17. Comparative genomics of biotechnologically important yeasts.

    PubMed

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  18. Using Comparative Genomics for Inquiry-Based Learning to Dissect Virulence of Escherichia coli O157:H7 and Yersinia pestis

    PubMed Central

    Baumler, David J.; Banta, Lois M.; Hung, Kai F.; Schwarz, Jodi A.; Cabot, Eric L.; Glasner, Jeremy D.; Perna, Nicole T.

    2012-01-01

    Genomics and bioinformatics are topics of increasing interest in undergraduate biological science curricula. Many existing exercises focus on gene annotation and analysis of a single genome. In this paper, we present two educational modules designed to enable students to learn and apply fundamental concepts in comparative genomics using examples related to bacterial pathogenesis. Students first examine alignments of genomes of Escherichia coli O157:H7 strains isolated from three food-poisoning outbreaks using the multiple-genome alignment tool Mauve. Students investigate conservation of virulence factors using the Mauve viewer and by browsing annotations available at the A Systematic Annotation Package for Community Analysis of Genomes database. In the second module, students use an alignment of five Yersinia pestis genomes to analyze single-nucleotide polymorphisms of three genes to classify strains into biovar groups. Students are then given sequences of bacterial DNA amplified from the teeth of corpses from the first and second pandemics of the bubonic plague and asked to classify these new samples. Learning-assessment results reveal student improvement in self-efficacy and content knowledge, as well as students' ability to use BLAST to identify genomic islands and conduct analyses of virulence factors from E. coli O157:H7 or Y. pestis. Each of these educational modules offers educators new ready-to-implement resources for integrating comparative genomic topics into their curricula. PMID:22383620

  19. The MicrobesOnline Web site for comparative genomics

    SciTech Connect

    Alm, Eric J.; Huang, Katherine H.; Price, Morgan N.; Koche,Richard P.; Keller, Keith; Dubchak, Inna L.; Arkin, Adam P.

    2004-11-05

    At present, hundreds of microbial genomes have been sequenced, and hundreds more are currently in the pipeline. The Virtual Institute for Microbial Stress and Survival has developed a publicly available suite of Web-based comparative genomic tools (http://www.microbesonline.org) designed to facilitate multispecies comparison among prokaryotes. Highlights of the Microbes Online Web site include operon and regulon predictions, a multispecies genome browser, a multispecies Gene Ontology browser, a comparative KEGG metabolic pathway viewer, a Bioinformatics Workbench for in-depth sequence analysis, and Gene Carts that allow users to save genes of interest for further study while they browse. In addition, we provide an interface for genome annotation, which like all of the tools reported here, is freely available to the scientific community.

  20. The MicrobesOnline Web site for comparative genomics

    PubMed Central

    Alm, Eric J.; Huang, Katherine H.; Price, Morgan N.; Koche, Richard P.; Keller, Keith; Dubchak, Inna L.; Arkin, Adam P.

    2005-01-01

    At present, hundreds of microbial genomes have been sequenced, and hundreds more are currently in the pipeline. The Virtual Institute for Microbial Stress and Survival has developed a publicly available suite of Web-based comparative genomic tools (http://www.microbesonline.org) designed to facilitate multispecies comparison among prokaryotes. Highlights of the MicrobesOnline Web site include operon and regulon predictions, a multispecies genome browser, a multispecies Gene Ontology browser, a comparative KEGG metabolic pathway viewer, a Bioinformatics Workbench for in-depth sequence analysis, and Gene Carts that allow users to save genes of interest for further study while they browse. In addition, we provide an interface for genome annotation, which like all of the tools reported here, is freely available to the scientific community. PMID:15998914

  1. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  2. Evolutionary and comparative analyses of the soybean genome

    PubMed Central

    Cannon, Steven B.; Shoemaker, Randy C.

    2012-01-01

    The soybean genome assembly has been available since the end of 2008. Significant features of the genome include large, gene-poor, repeat-dense pericentromeric regions, spanning roughly 57% of the genome sequence; a relatively large genome size of ~1.15 billion bases; remnants of a genome duplication that occurred ~13 million years ago (Mya); and fainter remnants of older polyploidies that occurred ~58 Mya and >130 Mya. The genome sequence has been used to identify the genetic basis for numerous traits, including disease resistance, nutritional characteristics, and developmental features. The genome sequence has provided a scaffold for placement of many genomic feature elements, both from within soybean and from related species. These may be accessed at several websites, including http://www.phytozome.net, http://soybase.org, http://comparative-legumes.org, and http://www.legumebase.brc.miyazaki-u.ac.jp. The taxonomic position of soybean in the Phaseoleae tribe of the legumes means that there are approximately two dozen other beans and relatives that have undergone independent domestication, and which may have traits that will be useful for transfer to soybean. Methods of translating information between species in the Phaseoleae range from design of markers for marker assisted selection, to transformation with Agrobacterium or with other experimental transformation methods. PMID:23136483

  3. Evolutionary and comparative analyses of the soybean genome.

    PubMed

    Cannon, Steven B; Shoemaker, Randy C

    2012-01-01

    The soybean genome assembly has been available since the end of 2008. Significant features of the genome include large, gene-poor, repeat-dense pericentromeric regions, spanning roughly 57% of the genome sequence; a relatively large genome size of ~1.15 billion bases; remnants of a genome duplication that occurred ~13 million years ago (Mya); and fainter remnants of older polyploidies that occurred ~58 Mya and >130 Mya. The genome sequence has been used to identify the genetic basis for numerous traits, including disease resistance, nutritional characteristics, and developmental features. The genome sequence has provided a scaffold for placement of many genomic feature elements, both from within soybean and from related species. These may be accessed at several websites, including http://www.phytozome.net, http://soybase.org, http://comparative-legumes.org, and http://www.legumebase.brc.miyazaki-u.ac.jp. The taxonomic position of soybean in the Phaseoleae tribe of the legumes means that there are approximately two dozen other beans and relatives that have undergone independent domestication, and which may have traits that will be useful for transfer to soybean. Methods of translating information between species in the Phaseoleae range from design of markers for marker assisted selection, to transformation with Agrobacterium or with other experimental transformation methods. PMID:23136483

  4. Gramene 2016: comparative plant genomics and pathway resources.

    PubMed

    Tello-Ruiz, Marcela K; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A; Huerta, Laura; Keays, Maria; Tang, Y Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials.

  5. Gramene 2016: comparative plant genomics and pathway resources

    PubMed Central

    Tello-Ruiz, Marcela K.; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M.; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A.; Huerta, Laura; Keays, Maria; Tang, Y. Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J.; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803

  6. Gramene 2016: comparative plant genomics and pathway resources.

    PubMed

    Tello-Ruiz, Marcela K; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A; Huerta, Laura; Keays, Maria; Tang, Y Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803

  7. Genomic and comparative genomic analyses of Rickettsia heilongjiangensis provide insight into its evolution and pathogenesis.

    PubMed

    Duan, Changsong; Xiong, Xiaolu; Qi, Yong; Gong, Wenping; Jiao, Jun; Wen, Bohai

    2014-08-01

    Rickettsia heilongjiangensis, the causative agent of far eastern spotted fever, is an obligate intracellular gram-negative bacterium that belongs to the spotted fever group rickettsiae. To understand the evolution and pathogenesis of R. heilongjiangensis, we analyzed its genome and compared it with other rickettsial genomes available in GenBank. The R. heilongjiangensis chromosome contains 1333 genes, including 1297 protein coding genes and 36 RNA coding genes. The genome also contains 121 pseudogenes, 54 insertion sequences, and 39 tandem repeats. Sixteen genes encoding the major components of the type IV secretion systems were identified in the R. heilongjiangensis genome. In total, 37 β-barrel outer membrane proteins were predicted in the genome, eight of which have been previously confirmed to be outer membrane proteins. In addition, 266 potential virulence factor genes, seven partially deleted antibiotic resistance genes, and a genomic island were identified in the genome. The codon usage in the genome is compatible with its low GC content, and the amino acid usage shows apparent bias. A comparative genomic analysis showed that R. heilongjiangensis and R. japonica share one unique fragment that may be a target sequence for a diagnostic assay. The orthologs of 37 genes of R. heilongjiangensis were found in pathogenic R. rickettsii str. Sheila Smith but not in non-pathogenic R. rickettsii str. Iowa, which may explain why R. heilongjiangensis is pathogenic. Pan-genome analysis showed that R. heilongjiangensis and 42 other rickettsiae strains share 693 core genes with a pan-genome size of 4837 genes. The pan-genome-based phylogeny showed that R. heilongjiangensis was closely related to R. japonica.

  8. Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses.

    PubMed

    Huang, Sijun; Zhang, Si; Jiao, Nianzhi; Chen, Feng

    2015-01-01

    Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.

  9. Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses.

    PubMed

    Huang, Sijun; Zhang, Si; Jiao, Nianzhi; Chen, Feng

    2015-01-01

    Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation. PMID:26569403

  10. Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies.

    PubMed

    Jia, Nan; Ding, Ming-Zhu; Du, Jin; Pan, Cai-Hui; Tian, Geng; Lang, Ji-Dong; Fang, Jian-Huo; Gao, Feng; Yuan, Ying-Jin

    2016-01-01

    Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation. PMID:26979567

  11. Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies

    PubMed Central

    Jia, Nan; Ding, Ming-Zhu; Du, Jin; Pan, Cai-Hui; Tian, Geng; Lang, Ji-Dong; Fang, Jian-Huo; Gao, Feng; Yuan, Ying-Jin

    2016-01-01

    Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation. PMID:26979567

  12. Image analysis in comparative genomic hybridization

    SciTech Connect

    Lundsteen, C.; Maahr, J.; Christensen, B.

    1995-01-01

    Comparative genomic hybridization (CGH) is a new technique by which genomic imbalances can be detected by combining in situ suppression hybridization of whole genomic DNA and image analysis. We have developed software for rapid, quantitative CGH image analysis by a modification and extension of the standard software used for routine karyotyping of G-banded metaphase spreads in the Magiscan chromosome analysis system. The DAPI-counterstained metaphase spread is karyotyped interactively. Corrections for image shifts between the DAPI, FITC, and TRITC images are done manually by moving the three images relative to each other. The fluorescence background is subtracted. A mean filter is applied to smooth the FITC and TRITC images before the fluorescence ratio between the individual FITC and TRITC-stained chromosomes is computed pixel by pixel inside the area of the chromosomes determined by the DAPI boundaries. Fluorescence intensity ratio profiles are generated, and peaks and valleys indicating possible gains and losses of test DNA are marked if they exceed ratios below 0.75 and above 1.25. By combining the analysis of several metaphase spreads, consistent findings of gains and losses in all or almost all spreads indicate chromosomal imbalance. Chromosomal imbalances are detected either by visual inspection of fluorescence ratio (FR) profiles or by a statistical approach that compares FR measurements of the individual case with measurements of normal chromosomes. The complete analysis of one metaphase can be carried out in approximately 10 minutes. 8 refs., 7 figs., 1 tab.

  13. SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny.

    PubMed

    Wilson, Derek; Pethica, Ralph; Zhou, Yiduo; Talbot, Charles; Vogel, Christine; Madera, Martin; Chothia, Cyrus; Gough, Julian

    2009-01-01

    SUPERFAMILY provides structural, functional and evolutionary information for proteins from all completely sequenced genomes, and large sequence collections such as UniProt. Protein domain assignments for over 900 genomes are included in the database, which can be accessed at http://supfam.org/. Hidden Markov models based on Structural Classification of Proteins (SCOP) domain definitions at the superfamily level are used to provide structural annotation. We recently produced a new model library based on SCOP 1.73. Family level assignments are also available. From the web site users can submit sequences for SCOP domain classification; search for keywords such as superfamilies, families, organism names, models and sequence identifiers; find over- and underrepresented families or superfamilies within a genome relative to other genomes or groups of genomes; compare domain architectures across selections of genomes and finally build multiple sequence alignments between Protein Data Bank (PDB), genomic and custom sequences. Recent extensions to the database include InterPro abstracts and Gene Ontology terms for superfamiles, taxonomic visualization of the distribution of families across the tree of life, searches for functionally similar domain architectures and phylogenetic trees. The database, models and associated scripts are available for download from the ftp site.

  14. Comparative genome map of human and cattle

    SciTech Connect

    Solinas-Toldo, S.; Fries, R.; Lengauer, C.

    1995-06-10

    Chromosomal homologies between individual human chromosomes and the bovine karyotype have been established by using a new approach termed Zoo-FISH. Labeled DNA libraries from flow-sorted human chromosomes were used as probes for fluorescence in situ hybridization on cattle chromosomes. All human DNA libraries, except the Y chromosome library, hybridized to one or more cattle chromosomes, identifying and delineating 50 segments of homology, most of them corresponding to the regions of homology as identified by the previous mapping of individual conserved loci. However, Zoo-FISH refines the comparative maps constructed by molecular gene mapping of individual loci by providing information on the boundaries of conserved regions in the absence of obvious cytogenetic homologies of human and bovine chromosomes. It allows study of karyotypic evolution and opens new avenues for genomic analysis by facilitating the extrapolation of results from the human genome initiative. 50 refs., 3 figs., 1 tab.

  15. Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics

    PubMed Central

    Wendland, Jürgen; Walther, Andrea

    2011-01-01

    We used comparative genomics to elucidate the genome evolution within the pre–whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy–type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  16. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  17. Comparative bacterial genomics: defining the minimal core genome.

    PubMed

    Huang, C H; Hsiang, T; Trevors, J T

    2013-02-01

    A comparative genomics analysis revealed 702 genes present in the bacterial Gram-negative core gene set (92 species analyzed) and 959 genes in the Gram-positive core gene set (93 species analyzed). Mycoplasma genitalium, which has the smallest known genome (517 genes) of a non-symbiont, was used in a three-way reciprocal analysis with the Gram-negative core genes and the Gram-positive core genes, and 151 common bacterial core genes were found. Of these 151 core genes, 39 were putative genes encoding the 30S and 50S ribosomal subunits, whilst among recognized cell division genes, only one gene, the major ftsZ, was present. In addition, 86 reciprocal matches were identified between the 151 common bacterial genes and a previously determined 2,723 common eukaryotic core gene set. An analysis was also done to optimize the threshold bit score used to declare that genes were homologous, and a bit score cutoff of 40 was selected.

  18. Comparative genomics of ten solanaceous plastomes.

    PubMed

    Kaur, Harpreet; Singh, Bhupinder Pal; Singh, Harpreet; Nagpal, Avinash Kaur

    2014-01-01

    Availability of complete plastid genomes of ten solanaceous species, Atropa belladonna, Capsicum annuum, Datura stramonium, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana tomentosiformis, Nicotiana undulata, Solanum bulbocastanum, Solanum lycopersicum, and Solanum tuberosum provided us with an opportunity to conduct their in silico comparative analysis in depth. The size of complete chloroplast genomes and LSC and SSC regions of three species of Solanum is comparatively smaller than that of any other species studied till date (exception: SSC region of A. belladonna). AT content of coding regions was found to be less than noncoding regions. A duplicate copy of trnH gene in C. annuum and two alternative tRNA genes for proline in D. stramonium were observed for the first time in this analysis. Further, homology search revealed the presence of rps19 pseudogene and infA genes in A. belladonna and D. stramonium, a region identical to rps19 pseudogene in C. annum and orthologues of sprA gene in another six species. Among the eighteen intron-containing genes, 3 genes have two introns and 15 genes have one intron. The longest insertion was found in accD gene in C. annuum. Phylogenetic analysis using concatenated protein coding sequences gave two clades, one for Nicotiana species and another for Solanum, Capsicum, Atropa, and Datura.

  19. Comparative genomics of ten solanaceous plastomes.

    PubMed

    Kaur, Harpreet; Singh, Bhupinder Pal; Singh, Harpreet; Nagpal, Avinash Kaur

    2014-01-01

    Availability of complete plastid genomes of ten solanaceous species, Atropa belladonna, Capsicum annuum, Datura stramonium, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana tomentosiformis, Nicotiana undulata, Solanum bulbocastanum, Solanum lycopersicum, and Solanum tuberosum provided us with an opportunity to conduct their in silico comparative analysis in depth. The size of complete chloroplast genomes and LSC and SSC regions of three species of Solanum is comparatively smaller than that of any other species studied till date (exception: SSC region of A. belladonna). AT content of coding regions was found to be less than noncoding regions. A duplicate copy of trnH gene in C. annuum and two alternative tRNA genes for proline in D. stramonium were observed for the first time in this analysis. Further, homology search revealed the presence of rps19 pseudogene and infA genes in A. belladonna and D. stramonium, a region identical to rps19 pseudogene in C. annum and orthologues of sprA gene in another six species. Among the eighteen intron-containing genes, 3 genes have two introns and 15 genes have one intron. The longest insertion was found in accD gene in C. annuum. Phylogenetic analysis using concatenated protein coding sequences gave two clades, one for Nicotiana species and another for Solanum, Capsicum, Atropa, and Datura. PMID:25477958

  20. The comparative genomics of viral emergence

    PubMed Central

    Holmes, Edward C.

    2010-01-01

    RNA viruses are the main agents of emerging and re-emerging diseases. It is therefore important to reveal the evolutionary processes that underpin their ability to jump species boundaries and establish themselves in new hosts. Here, I discuss how comparative genomics can contribute to this endeavor. Arguably the most important evolutionary process in RNA virus evolution, abundant mutation, may even open up avenues for their control through “lethal mutagenesis.” Despite this remarkable mutational power, adaptation to diverse host species remains a major adaptive challenge, such that the most common outcome of host jumps are short-term “spillover” infections. A powerful case study of the utility of genomic approaches to studies of viral evolution and emergence is provided by influenza virus and brought into sharp focus by the ongoing epidemic of swine-origin H1N1 influenza A virus (A/H1N1pdm). Research here reveals a marked lack of surveillance of influenza viruses in pigs, coupled with the possibility of cryptic transmission before the first reported human cases, such that the exact genesis of A/H1N1pdm (where, when, how) is uncertain. PMID:19858482

  1. Comparative Genome Analysis in the Integrated Microbial Genomes(IMG) System

    SciTech Connect

    Kyrpides, Nikos C.; Markowitz, Victor M.

    2006-03-01

    Comparative genome analysis is critical for the effectiveexploration of a rapidly growing number of complete and draft sequencesfor microbial genomes. The Integrated Microbial Genomes (IMG) system(img.jgi.doe.gov) has been developed as a community resource thatprovides support for comparative analysis of microbial genomes in anintegrated context. IMG allows users to navigate the multidimensionalmicrobial genome data space and focus their analysis on a subset ofgenes, genomes, and functions of interest. IMG provides graphicalviewers, summaries and occurrence profile tools for comparing genes,pathways and functions (terms) across specific genomes. Genes can befurther examined using gene neighborhoods and compared with sequencealignment tools.

  2. Comparative genomics and proteomics of 13 Porphyromonas gingivalis strains.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2015-01-01

    At the current time, genome sequences of a total of 13 Porphyromonas gingivalis strains are available, including five completed genomes (strains ATCC 33277, HG66, TDC60, JCVISC001, and W83) and eight high-coverage draft sequences (F0185, F0566, F0568, F0569, F0570, SJD2, W4087, and W50) that are assembled into fewer than 300 contigs. This study compared these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. There are four copies of 16S rRNA gene sequences in each of the strains of ATCC 33277, HG66, TDC60, and W83 and one copy in the other nine genomes. These 25 16S rRNA sequences represent only 13 unique sequences. The five copies in W83 and W50 are identical and the three copies in HG66 are identical to the four copies in ATCC 33277, suggesting close evolutionary lineage between W83 and W50, as well as HG66 and ATCC 33277. Genome-wide comparison based on "Rapid Annotation using Subsystem Technology" (RAST) also showed that for the overall biological functions of the genomes, W83 is closer to W50, and HG66 to ATCC33277, than to other genomes. The comparison of the RAST subsystems identified biological functions that are unique to individual, shared by some, or by all genomes. Functions unique to individual genomes include: a tetracycline resistance protein TetQ, DNA metabolism gene YcfH, and DNA repair gene exonuclease SbcC (only in SJD2); very-short-patch mismatch repair endonuclease and a phage packaging terminase similar to Bacteroides phage B124-14 (in W4087); an internalin similar to a Listeria surface virulence protein (W83); a Type I restriction-modification system (F0569); an iron acquisition/heme transport protein (F0566); colicin I receptor and carbamoylputrescine amidase (W50); L-serine dehydratase (TDC60); and spermidine synthase and ribokinase (JCVISC001). The results also identified biological functions that are missing in individual or several genomes. For example, JCVISC001

  3. MicroScope: a platform for microbial genome annotation and comparative genomics.

    PubMed

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  4. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    SciTech Connect

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  5. A web server for mining Comparative Genomic Hybridization (CGH) data

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Ranka, Sanjay; Kahveci, Tamer

    2007-11-01

    Advances in cytogenetics and molecular biology has established that chromosomal alterations are critical in the pathogenesis of human cancer. Recurrent chromosomal alterations provide cytological and molecular markers for the diagnosis and prognosis of disease. They also facilitate the identification of genes that are important in carcinogenesis, which in the future may help in the development of targeted therapy. A large amount of publicly available cancer genetic data is now available and it is growing. There is a need for public domain tools that allow users to analyze their data and visualize the results. This chapter describes a web based software tool that will allow researchers to analyze and visualize Comparative Genomic Hybridization (CGH) datasets. It employs novel data mining methodologies for clustering and classification of CGH datasets as well as algorithms for identifying important markers (small set of genomic intervals with aberrations) that are potentially cancer signatures. The developed software will help in understanding the relationships between genomic aberrations and cancer types.

  6. The bonobo genome compared with the chimpanzee and human genomes.

    PubMed

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  7. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  8. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

  9. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  10. Comparative genomic hybridization in clinical cytogenetics

    SciTech Connect

    Bryndorf, T.; Kirchhoff, M.; Rose, H.

    1995-11-01

    We report the results of applying comparative genomic hybridization (CGH) in a cytogenetic service laboratory for (1) determination of the origin of extra and missing chromosomal material in intricate cases of unbalanced aberrations and (2) detection of common prenatal numerical chromosome aberrations. A total of 11 fetal samples were analyzed. Seven cases of complex unbalanced aberrations that could not be identified reliably by conventional cytogenetics were successfully resolved by CGH analysis. CGH results were validated by using FISH with chromosome-specific probes. Four cases representing common prenatal numerical aberrations (trisomy 21, 18, and 13 and monosomy X) were also successfully diagnosed by CGH. We conclude that CGH is a powerful adjunct to traditional cytogenetic techniques that makes it possible to solve clinical cases of intricate unbalanced aberrations in a single hybridization. CGH may also be a useful adjunct to screen for euchromatic involvement in marker chromosomes. Further technical development may render CGH applicable for routine aberration screening. 16 refs., 4 figs., 2 tabs.

  11. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes

    PubMed Central

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M.

    2016-01-01

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea. PMID:27756915

  12. The Whole Genome Assembly and Comparative Genomic Research of Thellungiella parvula (Extremophile Crucifer) Mitochondrion.

    PubMed

    Wang, Xuelin; Bi, Changwei; Xu, Yiqing; Wei, Suyun; Dai, Xiaogang; Yin, Tongming; Ye, Ning

    2016-01-01

    The complete nucleotide sequences of the mitochondrial (mt) genome of an extremophile species Thellungiella parvula (T. parvula) have been determined with the lengths of 255,773 bp. T. parvula mt genome is a circular sequence and contains 32 protein-coding genes, 19 tRNA genes, and three ribosomal RNA genes with a 11.5% coding sequence. The base composition of 27.5% A, 27.5% T, 22.7% C, and 22.3% G in descending order shows a slight bias of 55% AT. Fifty-three repeats were identified in the mitochondrial genome of T. parvula, including 24 direct repeats, 28 tandem repeats (TRs), and one palindromic repeat. Furthermore, a total of 199 perfect microsatellites have been mined with a high A/T content (83.1%) through simple sequence repeat (SSR) analysis and they were distributed unevenly within this mitochondrial genome. We also analyzed other plant mitochondrial genomes' evolution in general, providing clues for the understanding of the evolution of organelles genomes in plants. Comparing with other Brassicaceae species, T. parvula is related to Arabidopsis thaliana whose characters of low temperature resistance have been well documented. This study will provide important genetic tools for other Brassicaceae species research and improve yields of economically important plants. PMID:27148547

  13. The Whole Genome Assembly and Comparative Genomic Research of Thellungiella parvula (Extremophile Crucifer) Mitochondrion

    PubMed Central

    Wang, Xuelin; Bi, Changwei; Xu, Yiqing; Wei, Suyun; Dai, Xiaogang; Yin, Tongming; Ye, Ning

    2016-01-01

    The complete nucleotide sequences of the mitochondrial (mt) genome of an extremophile species Thellungiella parvula (T. parvula) have been determined with the lengths of 255,773 bp. T. parvula mt genome is a circular sequence and contains 32 protein-coding genes, 19 tRNA genes, and three ribosomal RNA genes with a 11.5% coding sequence. The base composition of 27.5% A, 27.5% T, 22.7% C, and 22.3% G in descending order shows a slight bias of 55% AT. Fifty-three repeats were identified in the mitochondrial genome of T. parvula, including 24 direct repeats, 28 tandem repeats (TRs), and one palindromic repeat. Furthermore, a total of 199 perfect microsatellites have been mined with a high A/T content (83.1%) through simple sequence repeat (SSR) analysis and they were distributed unevenly within this mitochondrial genome. We also analyzed other plant mitochondrial genomes' evolution in general, providing clues for the understanding of the evolution of organelles genomes in plants. Comparing with other Brassicaceae species, T. parvula is related to Arabidopsis thaliana whose characters of low temperature resistance have been well documented. This study will provide important genetic tools for other Brassicaceae species research and improve yields of economically important plants. PMID:27148547

  14. Lactobacillus paracasei Comparative Genomics: Towards Species Pan-Genome Definition and Exploitation of Diversity

    PubMed Central

    Smokvina, Tamara; Wels, Michiel; Polka, Justyna; Chervaux, Christian; Brisse, Sylvain; Boekhorst, Jos; Vlieg, Johan E. T. van Hylckama; Siezen, Roland J.

    2013-01-01

    Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its “pan-genome”. We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800–3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25–53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to

  15. Comparative genomics of toxigenic and non-toxigenic Staphylococcus hyicus.

    PubMed

    Leekitcharoenphon, Pimlapas; Pamp, Sünje Johanna; Andresen, Lars Ole; Aarestrup, Frank M

    2016-03-15

    The most common causative agent of exudative epidermitis (EE) in pigs is Staphylococcus hyicus. S. hyicus can be grouped into toxigenic and non-toxigenic strains based on their ability to cause EE in pigs and specific virulence genes have been identified. A genome wide comparison between non-toxigenic and toxigenic strains has never been performed. In this study, we sequenced eleven toxigenic and six non-toxigenic S. hyicus strains and performed comparative genomic and phylogenetic analysis. Our analyses revealed two genomic regions encoding genes that were predominantly found in toxigenic strains and are predicted to encode for virulence determinants for EE. All toxigenic strains encoded for one of the exfoliative toxins ExhA, ExhB, ExhC, or ExhD. In addition, one of these regions encoded for an ADP-ribosyltransferase (EDIN, epidermal cell differentiation inhibitor) and a novel putative RNase toxin (polymorphic toxin) and was associated with the gene encoding ExhA. A clear differentiation between toxigenic and non-toxigenic strains based on genomic and phylogenetic analyses was not apparent. The results of this study support the observation that exfoliative toxins of S. hyicus and S. aureus are located on genetic elements such as pathogenicity islands, phages, prophages and plasmids. PMID:26931389

  16. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    SciTech Connect

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; Hauser, Loren John; Wanchai, Visanu; Land, Miriam L.; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher Warren; Doktycz, Mitchel John; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The species P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but this

  17. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE PAGES

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; Hauser, Loren John; Wanchai, Visanu; Land, Miriam L.; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher Warren; Doktycz, Mitchel John; et al

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  18. Evolution of mammalian genome organization inferred from comparative gene mapping

    PubMed Central

    Murphy, William J; Stanyon, Roscoe; O'Brien, Stephen J

    2001-01-01

    Comparative genome analyses, including chromosome painting in over 40 diverse mammalian species, ordered gene maps from several representatives of different mammalian and vertebrate orders, and large-scale sequencing of the human and mouse genomes are beginning to provide insight into the rates and patterns of chromosomal evolution on a whole-genome scale, as well as into the forces that have sculpted the genomes of extant mammalian species. PMID:11423011

  19. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution.

    PubMed

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F; Broadbent, Jeff R; Steele, James L

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  20. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    PubMed Central

    2011-01-01

    Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes

  1. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  2. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  3. MGcV: the microbial genomic context viewer for comparative genome analysis

    PubMed Central

    2013-01-01

    Background Conserved gene context is used in many types of comparative genome analyses. It is used to provide leads on gene function, to guide the discovery of regulatory sequences, but also to aid in the reconstruction of metabolic networks. We present the Microbial Genomic context Viewer (MGcV), an interactive, web-based application tailored to strengthen the practice of manual comparative genome context analysis for bacteria. Results MGcV is a versatile, easy-to-use tool that renders a visualization of the genomic context of any set of selected genes, genes within a phylogenetic tree, genomic segments, or regulatory elements. It is tailored to facilitate laborious tasks such as the interactive annotation of gene function, the discovery of regulatory elements, or the sequence-based reconstruction of gene regulatory networks. We illustrate that MGcV can be used in gene function annotation by visually integrating information on prokaryotic genes, like their annotation as available from NCBI with other annotation data such as Pfam domains, sub-cellular location predictions and gene-sequence characteristics such as GC content. We also illustrate the usefulness of the interactive features that allow the graphical selection of genes to facilitate data gathering (e.g. upstream regions, ID’s or annotation), in the analysis and reconstruction of transcription regulation. Moreover, putative regulatory elements and their corresponding scores or data from RNA-seq and microarray experiments can be uploaded, visualized and interpreted in (ranked-) comparative context maps. The ranked maps allow the interpretation of predicted regulatory elements and experimental data in light of each other. Conclusion MGcV advances the manual comparative analysis of genes and regulatory elements by providing fast and flexible integration of gene related data combined with straightforward data retrieval. MGcV is available at http://mgcv.cmbi.ru.nl. PMID:23547764

  4. Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

    SciTech Connect

    Rutledge, Alexandra C.; Jones, Marcus B.; Chauhan, Sadhana; Purvine, Samuel O.; Sanford, James; Monroe, Matthew E.; Brewer, Heather M.; Payne, Samuel H.; Ansong, Charles; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott; Motin, Vladimir L.; Adkins, Joshua N.

    2012-03-27

    Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. To date, the perceived value of manual curation for genome annotations is not offset by the real cost and time associated with the process. In order to balance the large number of sequences generated, the annotation process is now performed almost exclusively in an automated fashion for most genome sequencing projects. One possible way to reduce errors inherent to automated computational annotations is to apply data from 'omics' measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. This approach does require additional experimental and bioinformatics methods to include omics technologies; however, the approach is readily automatable and can benefit from rapid developments occurring in those research domains as well. The annotation process can be improved by experimental validation of transcription and translation and aid in the discovery of annotation errors. Here the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species, as is becoming common in sequencing efforts. Transcriptomic and proteomic data derived from three highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 previously incorrect protein-coding sequences (e.g., observed frameshifts, extended start sites, and translated pseudogenes) within the three current Yersinia genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus

  5. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  6. Comparative Genomics of Cluster O Mycobacteriophages

    PubMed Central

    Cresawn, Steven G.; Pope, Welkin H.; Jacobs-Sera, Deborah; Bowman, Charles A.; Russell, Daniel A.; Dedrick, Rebekah M.; Adair, Tamarah; Anders, Kirk R.; Ball, Sarah; Bollivar, David; Breitenberger, Caroline; Burnett, Sandra H.; Butela, Kristen; Byrnes, Deanna; Carzo, Sarah; Cornely, Kathleen A.; Cross, Trevor; Daniels, Richard L.; Dunbar, David; Findley, Ann M.; Gissendanner, Chris R.; Golebiewska, Urszula P.; Hartzog, Grant A.; Hatherill, J. Robert; Hughes, Lee E.; Jalloh, Chernoh S.; De Los Santos, Carla; Ekanem, Kevin; Khambule, Sphindile L.; King, Rodney A.; King-Smith, Christina; Klyczek, Karen; Krukonis, Greg P.; Laing, Christian; Lapin, Jonathan S.; Lopez, A. Javier; Mkhwanazi, Sipho M.; Molloy, Sally D.; Moran, Deborah; Munsamy, Vanisha; Pacey, Eddie; Plymale, Ruth; Poxleitner, Marianne; Reyna, Nathan; Schildbach, Joel F.; Stukey, Joseph; Taylor, Sarah E.; Ware, Vassie C.; Wellmann, Amanda L.; Westholm, Daniel; Wodarski, Donna; Zajko, Michelle; Zikalala, Thabiso S.; Hendrix, Roger W.; Hatfull, Graham F.

    2015-01-01

    Mycobacteriophages – viruses of mycobacterial hosts – are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages – Corndog, Catdawg, Dylan, Firecracker, and YungJamal – designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8–9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange. PMID:25742016

  7. Comparative genomics of Cluster O mycobacteriophages.

    PubMed

    Cresawn, Steven G; Pope, Welkin H; Jacobs-Sera, Deborah; Bowman, Charles A; Russell, Daniel A; Dedrick, Rebekah M; Adair, Tamarah; Anders, Kirk R; Ball, Sarah; Bollivar, David; Breitenberger, Caroline; Burnett, Sandra H; Butela, Kristen; Byrnes, Deanna; Carzo, Sarah; Cornely, Kathleen A; Cross, Trevor; Daniels, Richard L; Dunbar, David; Findley, Ann M; Gissendanner, Chris R; Golebiewska, Urszula P; Hartzog, Grant A; Hatherill, J Robert; Hughes, Lee E; Jalloh, Chernoh S; De Los Santos, Carla; Ekanem, Kevin; Khambule, Sphindile L; King, Rodney A; King-Smith, Christina; Klyczek, Karen; Krukonis, Greg P; Laing, Christian; Lapin, Jonathan S; Lopez, A Javier; Mkhwanazi, Sipho M; Molloy, Sally D; Moran, Deborah; Munsamy, Vanisha; Pacey, Eddie; Plymale, Ruth; Poxleitner, Marianne; Reyna, Nathan; Schildbach, Joel F; Stukey, Joseph; Taylor, Sarah E; Ware, Vassie C; Wellmann, Amanda L; Westholm, Daniel; Wodarski, Donna; Zajko, Michelle; Zikalala, Thabiso S; Hendrix, Roger W; Hatfull, Graham F

    2015-01-01

    Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange. PMID:25742016

  8. Comparative genomics of 9 novel Paenibacillus larvae bacteriophages

    PubMed Central

    Stamereilers, Casey; LeBlanc, Lucy; Yost, Diane; Amy, Penny S.; Tsourkas, Philippos K.

    2016-01-01

    ABSTRACT American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 3′ overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area. PMID:27738559

  9. Comparative analysis of Acinetobacters: three genomes for three lifestyles.

    PubMed

    Vallenet, David; Nordmann, Patrice; Barbe, Valérie; Poirel, Laurent; Mangenot, Sophie; Bataille, Elodie; Dossat, Carole; Gas, Shahinaz; Kreimeyer, Annett; Lenoble, Patricia; Oztas, Sophie; Poulain, Julie; Segurens, Béatrice; Robert, Catherine; Abergel, Chantal; Claverie, Jean-Michel; Raoult, Didier; Médigue, Claudine; Weissenbach, Jean; Cruveiller, Stéphane

    2008-03-19

    Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil.

  10. Floral gene resources from basal angiosperms for comparative genomics research

    PubMed Central

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and

  11. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.

    PubMed

    Stein, Lincoln D; Bao, Zhirong; Blasiar, Darin; Blumenthal, Thomas; Brent, Michael R; Chen, Nansheng; Chinwalla, Asif; Clarke, Laura; Clee, Chris; Coghlan, Avril; Coulson, Alan; D'Eustachio, Peter; Fitch, David H A; Fulton, Lucinda A; Fulton, Robert E; Griffiths-Jones, Sam; Harris, Todd W; Hillier, LaDeana W; Kamath, Ravi; Kuwabara, Patricia E; Mardis, Elaine R; Marra, Marco A; Miner, Tracie L; Minx, Patrick; Mullikin, James C; Plumb, Robert W; Rogers, Jane; Schein, Jacqueline E; Sohrmann, Marc; Spieth, John; Stajich, Jason E; Wei, C; Willey, David; Wilson, Richard K; Durbin, Richard; Waterston, Robert H

    2003-11-01

    The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found

  12. The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community.

    PubMed

    Arnaud, Martha B; Chibucos, Marcus C; Costanzo, Maria C; Crabtree, Jonathan; Inglis, Diane O; Lotia, Adil; Orvis, Joshua; Shah, Prachi; Skrzypek, Marek S; Binkley, Gail; Miyasato, Stuart R; Wortman, Jennifer R; Sherlock, Gavin

    2010-01-01

    The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.

  13. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  14. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants.

    PubMed

    Mitter, Birgit; Petric, Alexandra; Shin, Maria W; Chain, Patrick S G; Hauberg-Lotte, Lena; Reinhold-Hurek, Barbara; Nowak, Jerzy; Sessitsch, Angela

    2013-01-01

    Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well-equipped with genes for the degradation of complex organic compounds and detoxification, e.g., 24 glutathione-S-transferase (GST) genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions. PMID:23641251

  15. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle.

    PubMed

    Sommer, Ralf J; Streit, Adrian

    2011-01-01

    Nematodes are found in virtually all habitats on earth. Many of them are parasites of plants and animals, including humans. The free-living nematode, Caenorhabditis elegans, is one of the genetically best-studied model organisms and was the first metazoan whose genome was fully sequenced. In recent years, the draft genome sequences of another six nematodes representing four of the five major clades of nematodes were published. Compared to mammalian genomes, all these genomes are very small. Nevertheless, they contain almost the same number of genes as the human genome. Nematodes are therefore a very attractive system for comparative genetic and genomic studies, with C. elegans as an excellent baseline. Here, we review the efforts that were made to extend genetic analysis to nematodes other than C. elegans, and we compare the seven available nematode genomes. One of the most striking findings is the unexpectedly high incidence of gene acquisition through horizontal gene transfer (HGT). PMID:21721943

  16. Comparative genomics of Serratia spp.: two paths towards endosymbiotic life.

    PubMed

    Manzano-Marín, Alejandro; Lamelas, Araceli; Moya, Andrés; Latorre, Amparo

    2012-01-01

    Symbiosis is a widespread phenomenon in nature, in which insects show a great number of these associations. Buchnera aphidicola, the obligate endosymbiont of aphids, coexists in some species with another intracellular bacterium, Serratia symbiotica. Of particular interest is the case of the cedar aphid Cinara cedri, where B. aphidicola BCc and S. symbiotica SCc need each other to fulfil their symbiotic role with the insect. Moreover, various features seem to indicate that S. symbiotica SCc is closer to an obligate endosymbiont than to other facultative S. symbiotica, such as the one described for the aphid Acirthosyphon pisum (S. symbiotica SAp). This work is based on the comparative genomics of five strains of Serratia, three free-living and two endosymbiotic ones (one facultative and one obligate) which should allow us to dissect the genome reduction taking place in the adaptive process to an intracellular life-style. Using a pan-genome approach, we have identified shared and strain-specific genes from both endosymbiotic strains and gained insight into the different genetic reduction both S. symbiotica have undergone. We have identified both retained and reduced functional categories in S. symbiotica compared to the Free-Living Serratia (FLS) that seem to be related with its endosymbiotic role in their specific host-symbiont systems. By means of a phylogenomic reconstruction we have solved the position of both endosymbionts with confidence, established the probable insect-pathogen origin of the symbiotic clade as well as the high amino-acid substitution rate in S. symbiotica SCc. Finally, we were able to quantify the minimal number of rearrangements suffered in the endosymbiotic lineages and reconstruct a minimal rearrangement phylogeny. All these findings provide important evidence for the existence of at least two distinctive S. symbiotica lineages that are characterized by different rearrangements, gene content, genome size and branch lengths.

  17. Computational Methods for the Analysis of Array Comparative Genomic Hybridization

    PubMed Central

    Chari, Raj; Lockwood, William W.; Lam, Wan L.

    2006-01-01

    Array comparative genomic hybridization (array CGH) is a technique for assaying the copy number status of cancer genomes. The widespread use of this technology has lead to a rapid accumulation of high throughput data, which in turn has prompted the development of computational strategies for the analysis of array CGH data. Here we explain the principles behind array image processing, data visualization and genomic profile analysis, review currently available software packages, and raise considerations for future software development. PMID:17992253

  18. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.

    PubMed

    Bengelsdorf, Frank R; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood-Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (P thlA ) from C. acetobutylicum or native pta-ack promoter (P pta-ack ) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  19. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

    PubMed Central

    Bengelsdorf, Frank R.; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  20. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.

    PubMed

    Bengelsdorf, Frank R; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood-Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (P thlA ) from C. acetobutylicum or native pta-ack promoter (P pta-ack ) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  1. Comparative Genomics of an Emerging Amphibian Virus.

    PubMed

    Epstein, Brendan; Storfer, Andrew

    2015-11-03

    Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination.

  2. Comparative Genomics of an Emerging Amphibian Virus

    PubMed Central

    Epstein, Brendan; Storfer, Andrew

    2015-01-01

    Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination. PMID:26530419

  3. Comparative Genomics of an Emerging Amphibian Virus.

    PubMed

    Epstein, Brendan; Storfer, Andrew

    2016-01-01

    Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination. PMID:26530419

  4. GPAC-genome presence/absence compiler: a web application to comparatively visualize multiple genome-level changes.

    PubMed

    Noll, Angela; Grundmann, Norbert; Churakov, Gennady; Brosius, Jürgen; Makałowski, Wojciech; Schmitz, Jürgen

    2015-01-01

    Our understanding of genome-wide and comparative sequence information has been broadened considerably by the databases available from the University of California Santa Cruz (UCSC) Genome Bioinformatics Department. In particular, the identification and visualization of genomic sequences, present in some species but absent in others, led to fundamental insights into gene and genome evolution. However, the UCSC tools currently enable one to visualize orthologous genomic loci for a range of species in only a single locus. For large-scale comparative analyses of such presence/absence patterns a multilocus view would be more desirable. Such a tool would enable us to compare thousands of relevant loci simultaneously and to resolve many different questions about, for example, phylogeny, specific aspects of genome and gene evolution, such as the gain or loss of exons and introns, the emergence of novel transposed elements, nonprotein-coding RNAs, and viral genomic particles. Here, we present the first tool to facilitate the parallel analysis of thousands of genomic loci for cross-species presence/absence patterns based on multiway genome alignments. This genome presence/absence compiler uses annotated or other compilations of coordinates of genomic locations and compiles all presence/absence patterns in a flexible, color-coded table linked to the individual UCSC Genome Browser alignments. We provide examples of the versatile information content of such a screening system especially for 7SL-derived transposed elements, nuclear mitochondrial DNA, DNA transposons, and miRNAs in primates (http://www.bioinformatics.uni-muenster.de/tools/gpac, last accessed October 1, 2014).

  5. Systematic prediction of cis-regulatory elements in the Chlamydomonas reinhardtii genome using comparative genomics.

    PubMed

    Ding, Jun; Li, Xiaoman; Hu, Haiyan

    2012-10-01

    Chlamydomonas reinhardtii is one of the most important microalgae model organisms and has been widely studied toward the understanding of chloroplast functions and various cellular processes. Further exploitation of C. reinhardtii as a model system to elucidate various molecular mechanisms and pathways requires systematic study of gene regulation. However, there is a general lack of genome-scale gene regulation study, such as global cis-regulatory element (CRE) identification, in C. reinhardtii. Recently, large-scale genomic data in microalgae species have become available, which enable the development of efficient computational methods to systematically identify CREs and characterize their roles in microalgae gene regulation. Here, we performed in silico CRE identification at the whole genome level in C. reinhardtii using a comparative genomics-based method. We predicted a large number of CREs in C. reinhardtii that are consistent with experimentally verified CREs. We also discovered that a large percentage of these CREs form combinations and have the potential to work together for coordinated gene regulation in C. reinhardtii. Multiple lines of evidence from literature, gene transcriptional profiles, and gene annotation resources support our prediction. The predicted CREs will serve, to our knowledge, as the first large-scale collection of CREs in C. reinhardtii to facilitate further experimental study of microalgae gene regulation. The accompanying software tool and the predictions in C. reinhardtii are also made available through a Web-accessible database (http://hulab.ucf.edu/research/projects/Microalgae/sdcre/motifcomb.html).

  6. Comparative population genomics: power and principles for the inference of functionality.

    PubMed

    Lawrie, David S; Petrov, Dmitri A

    2014-04-01

    The availability of sequenced genomes from multiple related organisms allows the detection and localization of functional genomic elements based on the idea that such elements evolve more slowly than neutral sequences. Although such comparative genomics methods have proven useful in discovering functional elements and ascertaining levels of functional constraint in the genome as a whole, here we outline limitations intrinsic to this approach that cannot be overcome by sequencing more species. We argue that it is essential to supplement comparative genomics with ultra-deep sampling of populations from closely related species to enable substantially more powerful genomic scans for functional elements. The convergence of sequencing technology and population genetics theory has made such projects feasible and has exciting implications for functional genomics.

  7. Gramene 2016: comparative plant genomics and pathway resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the data...

  8. Microbial NAD metabolism: lessons from comparative genomics.

    PubMed

    Gazzaniga, Francesca; Stebbins, Rebecca; Chang, Sheila Z; McPeek, Mark A; Brenner, Charles

    2009-09-01

    NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life via horizontal gene transfer. Biochemical, genetic, and genomic analyses have advanced to the point at which the precursors and pathways utilized by a microorganism can be predicted. Challenges remain in dissecting regulation of pathways. PMID:19721089

  9. Computational tools for Brassica-Arabidopsis comparative genomics.

    PubMed

    Beckett, Paul; Bancroft, Ian; Trick, Martin

    2005-01-01

    Recent advances, such as the availability of extensive genome survey sequence (GSS) data and draft physical maps, are radically transforming the means by which we can dissect Brassica genome structure and systematically relate it to the Arabidopsis model. Hitherto, our view of the co-linearities between these closely related genomes had been largely inferred from comparative RFLP data, necessitating substantial interpolation and expert interpretation. Sequencing of the Brassica rapa genome by the Multinational Brassica Genome Project will, however, enable an entirely computational approach to this problem. Meanwhile we have been developing databases and bioinformatics tools to support our work in Brassica comparative genomics, including a recently completed draft physical map of B. rapa integrated with anchor probes derived from the Arabidopsis genome sequence. We are also exploring new ways to display the emerging Brassica-Arabidopsis sequence homology data. We have mapped all publicly available Brassica sequences in silico to the Arabidopsis TIGR v5 genome sequence and published this in the ATIDB database that uses Generic Genome Browser (GBrowse). This in silico approach potentially identifies all paralogous sequences and so we colour-code the significance of the mappings and offer an integrated, real-time multiple alignment tool to partition them into paralogous groups. The MySQL database driving GBrowse can also be directly interrogated, using the powerful API offered by the Perl BioColon, two colonsDBColon, two colonsGFF methods, facilitating a wide range of data-mining possibilities.

  10. Phytozome: a comparative platform for green plant genomics.

    PubMed

    Goodstein, David M; Shu, Shengqiang; Howson, Russell; Neupane, Rochak; Hayes, Richard D; Fazo, Joni; Mitros, Therese; Dirks, William; Hellsten, Uffe; Putnam, Nicholas; Rokhsar, Daniel S

    2012-01-01

    The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance. PMID:22110026

  11. High frequency of submicroscopic chromosomal imbalances in patients with syndromic craniosynostosis detected by a combined approach of microsatellite segregation analysis, multiplex ligation-dependent probe amplification and array-based comparative genome hybridisation.

    PubMed

    Jehee, F S; Krepischi-Santos, A C V; Rocha, K M; Cavalcanti, D P; Kim, C A; Bertola, D R; Alonso, L G; D'Angelo, C S; Mazzeu, J F; Froyen, G; Lugtenberg, D; Vianna-Morgante, A M; Rosenberg, C; Passos-Bueno, M R

    2008-07-01

    We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric multiplex ligation-dependent probe amplification) and whole-genome array-based comparative genome hybridisation. Causative abnormalities were present in 42.2% (19/45) of the samples, and 27.8% (10/36) of the patients with normal conventional karyotype carried submicroscopic imbalances. Our results include a wide variety of imbalances and point to novel chromosomal regions associated with craniosynostosis. The high incidence of pure duplications or trisomies suggests that these are important mechanisms in craniosynostosis, particularly in cases involving the metopic suture.

  12. GenColors: annotation and comparative genomics of prokaryotes made easy.

    PubMed

    Romualdi, Alessandro; Felder, Marius; Rose, Dominic; Gausmann, Ulrike; Schilhabel, Markus; Glöckner, Gernot; Platzer, Matthias; Sühnel, Jürgen

    2007-01-01

    GenColors (gencolors.fli-leibniz.de) is a new web-based software/database system aimed at an improved and accelerated annotation of prokaryotic genomes considering information on related genomes and making extensive use of genome comparison. It offers a seamless integration of data from ongoing sequencing projects and annotated genomic sequences obtained from GenBank. A variety of export/import filters manages an effective data flow from sequence assembly and manipulation programs (e.g., GAP4) to GenColors and back as well as to standard GenBank file(s). The genome comparison tools include best bidirectional hits, gene conservation, syntenies, and gene core sets. Precomputed UniProt matches allow annotation and analysis in an effective manner. In addition to these analysis options, base-specific quality data (coverage and confidence) can also be handled if available. The GenColors system can be used both for annotation purposes in ongoing genome projects and as an analysis tool for finished genomes. GenColors comes in two types, as dedicated genome browsers and as the Jena Prokaryotic Genome Viewer (JPGV). Dedicated genome browsers contain genomic information on a set of related genomes and offer a large number of options for genome comparison. The system has been efficiently used in the genomic sequencing of Borrelia garinii and is currently applied to various ongoing genome projects on Borrelia, Legionella, Escherichia, and Pseudomonas genomes. One of these dedicated browsers, the Spirochetes Genome Browser (sgb.fli-leibniz.de) with Borrelia, Leptospira, and Treponema genomes, is freely accessible. The others will be released after finalization of the corresponding genome projects. JPGV (jpgv.fli-leibniz.de) offers information on almost all finished bacterial genomes, as compared to the dedicated browsers with reduced genome comparison functionality, however. As of January 2006, this viewer includes 632 genomic elements (e.g., chromosomes and plasmids) of 293

  13. Genomic-associated Markers and comparative Genome Maps of Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola.

    PubMed

    Feng, Wenjie; Wang, Yi; Huang, Lisha; Feng, Chuanshun; Chu, Zhaohui; Ding, Xinhua; Yang, Long

    2015-09-01

    Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) cause two major seed quarantine diseases in rice, bacterial blight and bacterial leaf streak, respectively. Xoo and Xoc share high similarity in genomic sequence, which results in hard differentiation of the two pathogens. Genomic-associated Markers and comparative Genome Maps database (GMGM) is an integrated database providing comprehensive information including compared genome maps and full genomic-coverage molecular makers of Xoo and Xoc. This database was established based on bioinformatic analysis of complete sequenced genomes of several X. oryzae pathovars of which the similarity of the genomes was up to 91.39 %. The program was designed with a series of specific PCR primers, including 286 pairs of Xoo dominant markers, 288 pairs of Xoc dominant markers, and 288 pairs of Xoo and Xoc co-dominant markers, which were predicted to distinguish two pathovars. Test on a total of 40 donor pathogen strains using randomly selected 120 pairs of primers demonstrated that over 52.5 % of the primers were efficacious. The GMGM web portal ( http://biodb.sdau.edu.cn/gmgm/ ) will be a powerful tool that can present highly specific diagnostic markers, and it also provides information about comparative genome maps of the two pathogens for future evolution study.

  14. Comparative Genomics and Extensive Recombinations in Phage Communities

    NASA Astrophysics Data System (ADS)

    Poisson, Guylaine; Belcaid, Mahdi; Bergeron, Anne

    Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities.

  15. Reference-Free Comparative Genomics of 174 Chloroplasts

    PubMed Central

    Kua, Chai-Shian; Ruan, Jue; Harting, John; Ye, Cheng-Xi; Helmus, Matthew R.; Yu, Jun; Cannon, Charles H.

    2012-01-01

    Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ∼18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied

  16. Reference-free comparative genomics of 174 chloroplasts.

    PubMed

    Kua, Chai-Shian; Ruan, Jue; Harting, John; Ye, Cheng-Xi; Helmus, Matthew R; Yu, Jun; Cannon, Charles H

    2012-01-01

    Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ~18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied genomes and

  17. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  18. Faustoviruses: Comparative Genomics of New Megavirales Family Members

    PubMed Central

    Benamar, Samia; Reteno, Dorine G. I.; Bandaly, Victor; Labas, Noémie; Raoult, Didier; La Scola, Bernard

    2016-01-01

    An emerging interest for the giant virus discovery process, genome sequencing and analysis has allowed an expansion of the number of known Megavirales members. Using the protist Vermamoeba sp. as cell support, a new giant virus named Faustovirus has been isolated. In this study, we describe the genome sequences of nine Faustoviruses and build a genomic comparison in order to have a comprehensive overview of genomic composition and diversity among this new virus family. The average sequence length of these viruses is 467,592.44 bp (ranging from 455,803 to 491,024 bp), making them the fourth largest Megavirales genome after Mimiviruses, Pandoraviruses, and Pithovirus sibericum. Faustovirus genomes displayed an average G+C content of 37.14 % (ranging from 36.22 to 39.59%) which is close to the G+C content range of the Asfarviridae genomes (38%). The proportion of best matches and the phylogenetic analysis suggest a shared origin with Asfarviridae without belonging to the same family. The core-gene-based phylogeny of Faustoviruses study has identified four lineages. These results were confirmed by the analysis of amino acids and COGs category distribution. The diversity of the gene composition of these lineages is mainly explained by gene deletion or acquisition and some exceptions for gene duplications. The high proportion of best matches from Bacteria and Phycodnaviridae on the pan-genome and unique genes may be explained by an interaction occurring after the separation of the lineages. The Faustovirus core-genome appears to consolidate the surrounding of 207 genes whereas the pan-genome is described as an open pan-genome, its enrichment via the discovery of new Faustoviruses is required to better seize all the genomic diversity of this family. PMID:26903952

  19. Two-component signal transduction in Agaricus bisporus: a comparative genomic analysis with other basidiomycetes through the web-based tool BASID2CS.

    PubMed

    Lavín, José L; García-Yoldi, Alberto; Ramírez, Lucía; Pisabarro, Antonio G; Oguiza, José A

    2013-06-01

    Two-component systems (TCSs) are signal transduction mechanisms present in many eukaryotes, including fungi that play essential roles in the regulation of several cellular functions and responses. In this study, we carry out a genomic analysis of the TCS proteins in two varieties of the white button mushroom Agaricus bisporus. The genomes of both A. bisporus varieties contain eight genes coding for TCS proteins, which include four hybrid Histidine Kinases (HKs), a single histidine-containing phosphotransfer (HPt) protein and three Response Regulators (RRs). Comparison of the TCS proteins among A. bisporus and the sequenced basidiomycetes showed a conserved core complement of five TCS proteins including the Tco1/Nik1 hybrid HK, HPt protein and Ssk1, Skn7 and Rim15-like RRs. In addition, Dual-HKs, unusual hybrid HKs with 2 HK and 2 RR domains, are absent in A. bisporus and are limited to various species of basidiomycetes. Differential expression analysis showed no significant up- or down-regulation of the Agaricus TCS genes in the conditions/tissue analyzed with the exception of the Skn7-like RR gene (Agabi_varbisH97_2|198669) that is significantly up-regulated on compost compared to cultured mycelia. Furthermore, the pipeline web server BASID2CS (http://bioinformatics.unavarra.es:1000/B2CS/BASID2CS.htm) has been specifically designed for the identification, classification and functional annotation of putative TCS proteins from any predicted proteome of basidiomycetes using a combination of several bioinformatic approaches.

  20. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.

    PubMed

    El Baidouri, Moaine; Panaud, Olivier

    2013-01-01

    Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.

  1. IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes

    PubMed Central

    Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan

    2009-01-01

    Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385

  2. Comparative rates of evolution in endosymbiotic nuclear genomes

    PubMed Central

    Patron, Nicola J; Rogers, Matthew B; Keeling, Patrick J

    2006-01-01

    Background The nucleomorphs associated with secondary plastids of cryptomonads and chlorarachniophytes are the sole examples of organelles with eukaryotic nuclear genomes. Although not as widespread as their prokaryotic equivalents in mitochondria and plastids, nucleomorph genomes share similarities in terms of reduction and compaction. They also differ in several aspects, not least in that they encode proteins that target to the plastid, and so function in a different compartment from that in which they are encoded. Results Here, we test whether the phylogenetically distinct nucleomorph genomes of the cryptomonad, Guillardia theta, and the chlorarachniophyte, Bigelowiella natans, have experienced similar evolutionary pressures during their transformation to reduced organelles. We compared the evolutionary rates of genes from nuclear, nucleomorph, and plastid genomes, all of which encode proteins that function in the same cellular compartment, the plastid, and are thus subject to similar selection pressures. Furthermore, we investigated the divergence of nucleomorphs within cryptomonads by comparing G. theta and Rhodomonas salina. Conclusion Chlorarachniophyte nucleomorph genes have accumulated errors at a faster rate than other genomes within the same cell, regardless of the compartment where the gene product functions. In contrast, most nucleomorph genes in cryptomonads have evolved faster than genes in other genomes on average, but genes for plastid-targeted proteins are not overly divergent, and it appears that cryptomonad nucleomorphs are not presently evolving rapidly and have therefore stabilized. Overall, these analyses suggest that the forces at work in the two lineages are different, despite the similarities between the structures of their genomes. PMID:16772046

  3. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont

    PubMed Central

    Lindsey, Amelia R. I.; Werren, John H.; Richards, Stephen; Stouthamer, Richard

    2016-01-01

    Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain. PMID:27194801

  4. Sputnik: a database platform for comparative plant genomics.

    PubMed

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.

  5. Sputnik: a database platform for comparative plant genomics.

    PubMed

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics. PMID:12519965

  6. Comparative genomics for the investigation of autoimmune diseases.

    PubMed

    Möller, Steffen; Zettl, Uwe K; Serrano-Fernández, Pablo; Goertsches, Robert

    2006-01-01

    The complete DNA sequence of the human genome and of several related mammals are now available, due to the investments of enormous resources and advances in sequencing technology. Novel technologies have been developed to compare multiple genomes with each other, thus specifying regions of sequence similarity among mammals and with their pathogens. Larger blocks of sequence similarity (syntenic regions) have been determined and made publicly available. In many ways, novel insights can be gained by such data when combining external genetic or clinical information for these syntenic loci. These novel tools have proven to be successful in inferring functional equivalence between loci of multiple genomes. This review reports on the role of comparative genomics in research on autoimmune diseases, a field with strong dependencies on animal models of human diseases and the problem of an adequate information transfer between multiple organisms and research areas. PMID:17073670

  7. Sputnik: a database platform for comparative plant genomics

    PubMed Central

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F.X.

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics. PMID:12519965

  8. Comparative Genomics via Wavelet Analysis for Closely Related Bacteria

    NASA Astrophysics Data System (ADS)

    Song, Jiuzhou; Ware, Tony; Liu, Shu-Lin; Surette, M.

    2004-12-01

    Comparative genomics has been a valuable method for extracting and extrapolating genome information among closely related bacteria. The efficiency of the traditional methods is extremely influenced by the software method used. To overcome the problem here, we propose using wavelet analysis to perform comparative genomics. First, global comparison using wavelet analysis gives the difference at a quantitative level. Then local comparison using keto-excess or purine-excess plots shows precise positions of inversions, translocations, and horizontally transferred DNA fragments. We firstly found that the level of energy spectra difference is related to the similarity of bacteria strains; it could be a quantitative index to describe the similarities of genomes. The strategy is described in detail by comparisons of closely related strains: S.typhi CT18, S.typhi Ty2, S.typhimurium LT2, H.pylori 26695, and H.pylori J99.

  9. Comparative Genome Analysis of Basidiomycete Fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  10. Comparative Genomics of Host-Specific Virulence in Pseudomonas syringae

    PubMed Central

    Sarkar, Sara F.; Gordon, Jeffrey S.; Martin, Gregory B.; Guttman, David S.

    2006-01-01

    While much study has gone into characterizing virulence factors that play a general role in disease, less work has been directed at identifying pathogen factors that act in a host-specific manner. Understanding these factors will help reveal the variety of mechanisms used by pathogens to suppress or avoid host defenses. We identified candidate Pseudomonas syringae host-specific virulence genes by searching for genes whose distribution among natural P. syringae isolates was statistically associated with hosts of isolation. We analyzed 91 strains isolated from 39 plant hosts by DNA microarray-based comparative genomic hybridization against an array containing 353 virulence-associated (VA) genes, including 53 type III secretion system effectors (T3SEs). We identified individual genes and gene profiles that were significantly associated with strains isolated from cauliflower, Chinese cabbage, soybean, rice, and tomato. We also identified specific horizontal gene acquisition events associated with host shifts by mapping the array data onto the core genome phylogeny of the species. This study provides the largest suite of candidate host-specificity factors from any pathogen, suggests that there are multiple ways in which P. syringae isolates can adapt to the same host, and provides insight into the evolutionary mechanisms underlying host adaptation. PMID:16951068

  11. Establishing a framework for comparative analysis of genome sequences

    SciTech Connect

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  12. BLAT-based comparative analysis for transposable elements: BLATCAT.

    PubMed

    Lee, Sangbum; Oh, Sumin; Kang, Keunsoo; Han, Kyudong

    2014-01-01

    The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs) is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT) based comparative analysis for transposable elements (BLATCAT) program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes.

  13. Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7.

    PubMed

    Rey, Andrés; Silva-Quintero, Laura; Dussán, Jenny

    2016-09-01

    Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41. PMID:27419068

  14. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources.

    PubMed

    Arnaud, Martha B; Cerqueira, Gustavo C; Inglis, Diane O; Skrzypek, Marek S; Binkley, Jonathan; Chibucos, Marcus C; Crabtree, Jonathan; Howarth, Clinton; Orvis, Joshua; Shah, Prachi; Wymore, Farrell; Binkley, Gail; Miyasato, Stuart R; Simison, Matt; Sherlock, Gavin; Wortman, Jennifer R

    2012-01-01

    The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.

  15. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics.

    PubMed

    Salse, Jerome; Abrouk, Michael; Murat, Florent; Quraishi, Umar Masood; Feuillet, Catherine

    2009-11-01

    In the past decade, a number of bioinformatics tools have been developed to perform comparative genomics studies in plants and animals. However, most of the publicly available and user friendly tools lack common standards for the identification of robust orthologous relationships between genomes leading non-specialists to often over interpret the results of large scale comparative sequence analyses. Recently, we have established a number of improved parameters and tools to define significant relationships between genomes as a basis to develop paleogenomics studies in grasses. Here, we describe our approaches and propose the development of community-based standards that can be used in comparative genomic studies to (i) identify robust sets of orthologous gene pairs, (ii) derive complete sets of chromosome to chromosome relationships within and between genomes and (iii) model common paleo-ancestor genome structures. The rice and sorghum genome sequences are used to exemplify step-by-step a methodology that should allow users to perform accurate comparative genome analyses in their favourite species. Finally, we describe two applications for accurate gene annotation and synteny-based cloning of agronomically important traits.

  16. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes

    SciTech Connect

    Gupta, Nitin; Benhamida, Jamal; Bhargava, Vipul; Goodman, Daniel; Kain , Elisabeth; Kerman, Ian; Nguyen , Ngan; Ollikainen, Noah; Rodriguez, Jesse; Wang, J.; Lipton, Mary S.; Romine, Margaret F.; Bafna, Vineet; Smith, Richard D.; Pevzner, Pavel A.

    2008-07-30

    While bacterial genome annotations have significantly improved in recent years, techniques for bacterial proteome annotation (including post-translational chemical modifications, signal peptides, proteolytic events, etc.) are still in their infancy. At the same time, the number of sequenced bacterial genomes is rising sharply, far outpacing our ability to validate the predicted genes, let alone annotate bacterial proteomes. In this study, we use tandem mass spectrometry (MS/MS) to annotate the proteome of Shewanella oneidensis MR-1, an important microbe for bioremediation. In particular, we provide the first comprehensive map of post-translational modifications in a bacterial genome, including a large number of chemical modifications, signal peptide cleavages and cleavage of N-terminal methionine residues. We also detect multiple genes that were missed or assigned incorrect start positions by gene prediction programs and suggest corrections to improve the gene annotation. This study demonstrates that complementing every genome sequencing project by an MS/MS project would significantly improve both genome and proteome annotations for a reasonable cost.

  17. RNA-seq-Based Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens in the Genus Zymoseptoria Identify Novel Orphan Genes and Species-Specific Invasions of Transposable Elements.

    PubMed

    Grandaubert, Jonathan; Bhattacharyya, Amitava; Stukenbrock, Eva H

    2015-04-27

    The fungal pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola) is a prominent pathogen of wheat. The reference genome of the isolate IPO323 is one of the best-assembled eukaryotic genomes and encodes more than 10,000 predicted genes. However, a large proportion of the previously annotated gene models are incomplete, with either no start or no stop codons. The availability of RNA-seq data allows better predictions of gene structure. We here used two different RNA-seq datasets, de novo transcriptome assemblies, homology-based comparisons, and trained ab initio gene callers to generate a new gene annotation of Z. tritici IPO323. The annotation pipeline was also applied to re-sequenced genomes of three closely related species of Z. tritici: Z. pseudotritici, Z. ardabiliae, and Z. brevis. Comparative analyses of the predicted gene models using the four Zymoseptoria species revealed sets of species-specific orphan genes enriched with putative pathogenicity-related genes encoding small secreted proteins that may play essential roles in virulence and host specificity. De novo repeat identification allowed us to show that few families of transposable elements are shared between Zymoseptoria species while we observe many species-specific invasions and expansions. The annotation data presented here provide a high-quality resource for future studies of Z. tritici and its sister species and provide detailed insight into gene and genome evolution of fungal plant pathogens.

  18. BACFinder: genomic localisation of large insert genomic clones based on restriction fingerprinting

    PubMed Central

    Crowe, Mark L.; Rana, Debashis; Fraser, Fiona; Bancroft, Ian; Trick, Martin

    2002-01-01

    We have developed software that allows the prediction of the genomic location of a bacterial artificial chromosome (BAC) clone, or other large genomic clone, based on a simple restriction digest of the BAC. The mapping is performed by comparing the experimentally derived restriction digest of the BAC DNA with a virtual restriction digest of the whole genome sequence. Our trials indicate that this program identified the genomic regions represented by BAC clones with a degree of accuracy comparable to that of end-sequencing, but at considerably less cost. Although the program has been developed principally for use with Arabidopsis BACs, it should align large insert genomic clones to any fully sequenced genome. PMID:12409477

  19. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    PubMed

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P < 0.05) and relative abundance (R (2) = 0.6, P < 0.05) of cSSRs. In summary, our comparative studies of chloroplast genomes illustrate the variable distribution of microsatellites and revealed that chloroplast genome of smaller plants possesses relatively more genomic diversity compared to higher plants.

  20. Comparative analysis of RNAi screening technologies at genome-scale reveals an inherent processing inefficiency of the plasmid-based shRNA hairpin

    PubMed Central

    Bhinder, Bhavneet; Shum, David; Djaballah, Hakim

    2014-01-01

    RNAi screening in combination with the genome-sequencing projects would constitute the Holy Grail of modern genetics; enabling discovery and validation towards a better understanding of fundamental biology leading to novel targets to combat disease. Hit discordance at inter-screen level together with the lack of reproducibility is emerging as the technology's main pitfalls. To examine some of the underlining factors leading to such discrepancies, we reasoned that perhaps there is an inherent difference in knockdown efficiency of the various RNAi technologies. For this purpose, we utilized the two most popular ones, chemically synthesized siRNA duplex and plasmid-based shRNA hairpin, in order to perform a head to head comparison. Using a previously developed gain-of-function assay probing modulators of the miRNA biogenesis pathway, we first executed on a siRNA screen against the Silencer Select V4.0 library (AMB) nominating 1,273, followed by an shRNA screen against the TRC1 library (TRC1) nominating 497 gene candidates. We observed a poor overlap of only 29 hits given that there are 15,068 overlapping genes between the two libraries; with DROSHA as the only common hit out of the seven known core miRNA biogenesis genes. Distinct genes interacting with the same biogenesis regulators were observed in both screens, with a dismal cross-network overlap of only 3 genes (DROSHA, TGFBR1, and DIS3). Taken together, our study demonstrates differential knockdown activities between the two technologies, possibly due to the inefficient intracellular processing and potential cell-type specificity determinants in generating intended targeting sequences for the plasmid-based shRNA hairpins; and suggests this observed inefficiency as potential culprit in addressing the lack of reproducibility. PMID:24433414

  1. DCODE.ORG Anthology of Comparative Genomic Tools

    SciTech Connect

    Loots, G G; Ovcharenko, I

    2005-01-11

    Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.

  2. Cytogenetic analysis from DNA by comparative genomic hybridization.

    PubMed

    Tachdjian, G; Aboura, A; Lapierre, J M; Viguié, F

    2000-01-01

    Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.

  3. Phytozome: a Tool for Green Plant Comparative Genomics

    DOE Data Explorer

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release v4.0, Phytozome provides access to nine sequenced and annotated green plant genomes, eight of which have been clustered into gene families at six evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable. [Copied from the Overview at http://www.phytozome.net/Phytozome_info.php

  4. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    PubMed Central

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  5. PlantGDB: a resource for comparative plant genomics

    PubMed Central

    Duvick, Jon; Fu, Ann; Muppirala, Usha; Sabharwal, Mukul; Wilkerson, Matthew D.; Lawrence, Carolyn J.; Lushbough, Carol; Brendel, Volker

    2008-01-01

    PlantGDB (http://www.plantgdb.org/) is a genomics database encompassing sequence data for green plants (Viridiplantae). PlantGDB provides annotated transcript assemblies for >100 plant species, with transcripts mapped to their cognate genomic context where available, integrated with a variety of sequence analysis tools and web services. For 14 plant species with emerging or complete genome sequence, PlantGDB's genome browsers (xGDB) serve as a graphical interface for viewing, evaluating and annotating transcript and protein alignments to chromosome or bacterial artificial chromosome (BAC)-based genome assemblies. Annotation is facilitated by the integrated yrGATE module for community curation of gene models. Novel web services at PlantGDB include Tracembler, an iterative alignment tool that generates contigs from GenBank trace file data and BioExtract Server, a web-based server for executing custom sequence analysis workflows. PlantGDB also hosts a plant genomics research outreach portal (PGROP) that facilitates access to a large number of resources for research and training. PMID:18063570

  6. Kiwifruit Information Resource (KIR): a comparative platform for kiwifruit genomics.

    PubMed

    Yue, Junyang; Liu, Jian; Ban, Rongjun; Tang, Wei; Deng, Lin; Fei, Zhangjun; Liu, Yongsheng

    2015-01-01

    The Kiwifruit Information Resource (KIR) is dedicated to maintain and integrate comprehensive datasets on genomics, functional genomics and transcriptomics of kiwifruit (Actinidiaceae). KIR serves as a central access point for existing/new genomic and genetic data. KIR also provides researchers with a variety of visualization and analysis tools. Current developments include the updated genome structure of Actinidia chinensis cv. Hongyang and its newest genome annotation, putative transcripts, gene expression, physical markers of genetic traits as well as relevant publications based on the latest genome assembly. Nine thousand five hundred and forty-seven new transcripts are detected and 21 132 old transcripts are changed. At the present release, the next-generation transcriptome sequencing data has been incorporated into gene models and splice variants. Protein-protein interactions are also identified based on experimentally determined orthologous interactions. Furthermore, the experimental results reported in peer-reviewed literature are manually extracted and integrated within a well-developed query page. In total, 122 identifications are currently associated, including commonly used gene names and symbols. All KIR datasets are helpful to facilitate a broad range of kiwifruit research topics and freely available to the research community. Database URL: http://bdg.hfut.edu.cn/kir/index.html. PMID:26656885

  7. Kiwifruit Information Resource (KIR): a comparative platform for kiwifruit genomics.

    PubMed

    Yue, Junyang; Liu, Jian; Ban, Rongjun; Tang, Wei; Deng, Lin; Fei, Zhangjun; Liu, Yongsheng

    2015-01-01

    The Kiwifruit Information Resource (KIR) is dedicated to maintain and integrate comprehensive datasets on genomics, functional genomics and transcriptomics of kiwifruit (Actinidiaceae). KIR serves as a central access point for existing/new genomic and genetic data. KIR also provides researchers with a variety of visualization and analysis tools. Current developments include the updated genome structure of Actinidia chinensis cv. Hongyang and its newest genome annotation, putative transcripts, gene expression, physical markers of genetic traits as well as relevant publications based on the latest genome assembly. Nine thousand five hundred and forty-seven new transcripts are detected and 21 132 old transcripts are changed. At the present release, the next-generation transcriptome sequencing data has been incorporated into gene models and splice variants. Protein-protein interactions are also identified based on experimentally determined orthologous interactions. Furthermore, the experimental results reported in peer-reviewed literature are manually extracted and integrated within a well-developed query page. In total, 122 identifications are currently associated, including commonly used gene names and symbols. All KIR datasets are helpful to facilitate a broad range of kiwifruit research topics and freely available to the research community. Database URL: http://bdg.hfut.edu.cn/kir/index.html.

  8. Initial sequence and comparative analysis of the cat genome

    PubMed Central

    Pontius, Joan U.; Mullikin, James C.; Smith, Douglas R.; Lindblad-Toh, Kerstin; Gnerre, Sante; Clamp, Michele; Chang, Jean; Stephens, Robert; Neelam, Beena; Volfovsky, Natalia; Schäffer, Alejandro A.; Agarwala, Richa; Narfström, Kristina; Murphy, William J.; Giger, Urs; Roca, Alfred L.; Antunes, Agostinho; Menotti-Raymond, Marilyn; Yuhki, Naoya; Pecon-Slattery, Jill; Johnson, Warren E.; Bourque, Guillaume; Tesler, Glenn; O’Brien, Stephen J.

    2007-01-01

    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence. PMID:17975172

  9. The tiger genome and comparative analysis with lion and snow leopard genomes.

    PubMed

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.

  10. The tiger genome and comparative analysis with lion and snow leopard genomes

    PubMed Central

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  11. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    PubMed

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta.

  12. The tiger genome and comparative analysis with lion and snow leopard genomes.

    PubMed

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  13. Sequencing and comparative analyses of the genomes of zoysiagrasses

    PubMed Central

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-01-01

    Zoysia is a warm-season turfgrass, which comprises 11 allotetraploid species (2n = 4x = 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession ‘Nagirizaki’ (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella ‘Wakaba’ and Z. pacifica ‘Zanpa’ were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica ‘Kyoto’, Z. japonica ‘Miyagi’ and Z. matrella ‘Chiba Fair Green’, were accumulated, and aligned against the reference genome of ‘Nagirizaki’ along with those from ‘Wakaba’ and ‘Zanpa’. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the ‘Zoysia Genome Database’ at http://zoysia.kazusa.or.jp. PMID:26975196

  14. Sequencing and comparative analyses of the genomes of zoysiagrasses.

    PubMed

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-04-01

    Zoysiais a warm-season turfgrass, which comprises 11 allotetraploid species (2n= 4x= 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession 'Nagirizaki' (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella 'Wakaba' and Z. pacifica 'Zanpa' were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica'Kyoto', Z. japonica'Miyagi' and Z. matrella'Chiba Fair Green', were accumulated, and aligned against the reference genome of 'Nagirizaki' along with those from 'Wakaba' and 'Zanpa'. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the 'Zoysia Genome Database' at http://zoysia.kazusa.or.jp.

  15. Comparative genomics reveals conserved positioning of essential genomic clusters in highly rearranged Thermococcales chromosomes

    PubMed Central

    Cossu, Matteo; Da Cunha, Violette; Toffano-Nioche, Claire; Forterre, Patrick; Oberto, Jacques

    2015-01-01

    The genomes of the 21 completely sequenced Thermococcales display a characteristic high level of rearrangements. As a result, the prediction of their origin and termination of replication on the sole basis of chromosomal DNA composition or skew is inoperative. Using a different approach based on biologically relevant sequences, we were able to determine oriC position in all 21 genomes. The position of dif, the site where chromosome dimers are resolved before DNA segregation could be predicted in 19 genomes. Computation of the core genome uncovered a number of essential gene clusters with a remarkably stable chromosomal position across species, in sharp contrast with the scrambled nature of their genomes. The active chromosomal reorganization of numerous genes acquired by horizontal transfer, mainly from mobile elements, could explain this phenomenon. PMID:26166067

  16. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    PubMed Central

    2011-01-01

    Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae. PMID:21226921

  17. Barcode server: a visualization-based genome analysis system.

    PubMed

    Mao, Fenglou; Olman, Victor; Wang, Yan; Xu, Ying

    2013-01-01

    We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a) identification of horizontally transferred genes, (b) identification of genomic islands with special properties and (c) binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a) calculation of the k-mer based barcode image for a provided DNA sequence; (b) detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c) clustering of provided DNA sequences into groups having similar barcodes; and (d) homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode. PMID:23457606

  18. Using comparative genomics to drive new discoveries in microbiology.

    PubMed

    Haft, Daniel H

    2015-02-01

    Bioinformatics looks to many microbiologists like a service industry. In this view, annotation starts with what is known from experiments in the lab, makes reasonable inferences of which genes match other genes in function, builds databases to make all that we know accessible, but creates nothing truly new. Experiments lead, then biocuration and computational biology follow. But the astounding success of genome sequencing is changing the annotation paradigm. Every genome sequenced is an intercepted coded message from the microbial world, and as all cryptographers know, it is easier to decode a thousand messages than a single message. Some biology is best discovered not by phenomenology, but by decoding genome content, forming hypotheses, and doing the first few rounds of validation computationally. Through such reasoning, a role and function may be assigned to a protein with no sequence similarity to any protein yet studied. Experimentation can follow after the discovery to cement and to extend the findings. Unfortunately, this approach remains so unfamiliar to most bench scientists that lab work and comparative genomics typically segregate to different teams working on unconnected projects. This review will discuss several themes in comparative genomics as a discovery method, including highly derived data, use of patterns of design to reason by analogy, and in silico testing of computationally generated hypotheses.

  19. Dcode.org anthology of comparative genomic tools.

    PubMed

    Loots, Gabriela G; Ovcharenko, Ivan

    2005-07-01

    Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.

  20. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  1. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    PubMed

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources. PMID:27446038

  2. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    PubMed

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.

  3. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  4. CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics

    PubMed Central

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Background Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. Results The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. Conclusion This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training. PMID:23577086

  5. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity

    PubMed Central

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-01-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141

  6. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity.

    PubMed

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-08-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141

  7. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity.

    PubMed

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-08-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies.

  8. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics

    PubMed Central

    Sun, Jibin; Lu, Xin; Rinas, Ursula; Zeng, An Ping

    2007-01-01

    Background Aspergillus niger is an important industrial microorganism for the production of both metabolites, such as citric acid, and proteins, such as fungal enzymes or heterologous proteins. Despite its extensive industrial applications, the genetic inventory of this fungus is only partially understood. The recently released genome sequence opens a new horizon for both scientific studies and biotechnological applications. Results Here, we present the first genome-scale metabolic network for A. niger and an in-depth genomic comparison of this species to seven other fungi to disclose its metabolic peculiarities. The raw genomic sequences of A. niger ATCC 9029 were first annotated. The reconstructed metabolic network is based on the annotation of two A. niger genomes, CBS 513.88 and ATCC 9029, including enzymes with 988 unique EC numbers, 2,443 reactions and 2,349 metabolites. More than 1,100 enzyme-coding genes are unique to A. niger in comparison to the other seven fungi. For example, we identified additional copies of genes such as those encoding alternative mitochondrial oxidoreductase and citrate synthase in A. niger, which might contribute to the high citric acid production efficiency of this species. Moreover, nine genes were identified as encoding enzymes with EC numbers exclusively found in A. niger, mostly involved in the biosynthesis of complex secondary metabolites and degradation of aromatic compounds. Conclusion The genome-level reconstruction of the metabolic network and genome-based metabolic comparison disclose peculiarities of A. niger highly relevant to its biotechnological applications and should contribute to future rational metabolic design and systems biology studies of this black mold and related species. PMID:17784953

  9. SynTView — an interactive multi-view genome browser for next-generation comparative microorganism genomics

    PubMed Central

    2013-01-01

    Background Dynamic visualisation interfaces are required to explore the multiple microbial genome data now available, especially those obtained by high-throughput sequencing — a.k.a. “Next-Generation Sequencing” (NGS) — technologies; they would also be useful for “standard” annotated genomes whose chromosome organizations may be compared. Although various software systems are available, few offer an optimal combination of feature-rich capabilities, non-static user interfaces and multi-genome data handling. Results We developed SynTView, a comparative and interactive viewer for microbial genomes, designed to run as either a web-based tool (Flash technology) or a desktop application (AIR environment). The basis of the program is a generic genome browser with sub-maps holding information about genomic objects (annotations). The software is characterised by the presentation of syntenic organisations of microbial genomes and the visualisation of polymorphism data (typically Single Nucleotide Polymorphisms — SNPs) along these genomes; these features are accessible to the user in an integrated way. A variety of specialised views are available and are all dynamically inter-connected (including linear and circular multi-genome representations, dot plots, phylogenetic profiles, SNP density maps, and more). SynTView is not linked to any particular database, allowing the user to plug his own data into the system seamlessly, and use external web services for added functionalities. SynTView has now been used in several genome sequencing projects to help biologists make sense out of huge data sets. Conclusions The most important assets of SynTView are: (i) the interactivity due to the Flash technology; (ii) the capabilities for dynamic interaction between many specialised views; and (iii) the flexibility allowing various user data sets to be integrated. It can thus be used to investigate massive amounts of information efficiently at the chromosome level. This

  10. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    PubMed Central

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  11. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    PubMed

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  12. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  13. Comparative mitochondrial genomics within and among species of killifish

    PubMed Central

    Whitehead, Andrew

    2009-01-01

    Background This study was motivated by the observation of unusual mitochondrial haplotype distributions and associated physiological differences between populations of the killifish Fundulus heteroclitus distributed along the Atlantic coast of North America. A distinct "northern" haplotype is fixed in all populations north of New Jersey, and does not appear south of New Jersey except in extreme upper-estuary fresh water habitats, and northern individuals are known to be more tolerant of hyposmotic conditions than southern individuals. Complete mitochondrial genomes were sequenced from individuals from northern coastal, southern coastal, and fresh water populations (and from out-groups). Comparative genomics approaches were used to test multiple evolutionary hypotheses proposed to explain among-population genome variation including directional selection and hybridization. Results Structure and organization of the Fundulus mitochondrial genome is typical of animals, yet subtle differences in substitution patterns exist among populations. No signals of directional selection or hybridization were detected. Mitochondrial genes evolve at variable rates, but all genes exhibit very low dN/dS ratios across all lineages, and the southern population harbors more synonymous polymorphism than other populations. Conclusion Evolution of mitochondrial genomes within Fundulus is primarily governed by interaction between strong purifying selection and demographic influences, including larger historical population size in the south. Though directional selection and hybridization hypotheses were not supported, adaptive processes may indirectly contribute to partitioning of variation between populations. PMID:19144111

  14. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.

  15. The Chlamydia psittaci Genome: A Comparative Analysis of Intracellular Pathogens

    PubMed Central

    Saluz, Hans Peter

    2012-01-01

    Background Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis. Results A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins. Conclusions This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions. PMID:22506068

  16. Comparative Analysis of Genome Sequences Covering the Seven Cronobacter Species

    PubMed Central

    Cummings, Craig A.; Shih, Rita; Degoricija, Lovorka; Rico, Alain; Brzoska, Pius; Hamby, Stephen E.; Masood, Naqash; Hariri, Sumyya; Sonbol, Hana; Chuzhanova, Nadia; McClelland, Michael; Furtado, Manohar R.; Forsythe, Stephen J.

    2012-01-01

    Background Species of Cronobacter are widespread in the environment and are occasional food-borne pathogens associated with serious neonatal diseases, including bacteraemia, meningitis, and necrotising enterocolitis. The genus is composed of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. dublinensis, C. muytjensii, C. universalis, and C. condimenti. Clinical cases are associated with three species, C. malonaticus, C. turicensis and, in particular, with C. sakazakii multilocus sequence type 4. Thus, it is plausible that virulence determinants have evolved in certain lineages. Methodology/Principal Findings We generated high quality sequence drafts for eleven Cronobacter genomes representing the seven Cronobacter species, including an ST4 strain of C. sakazakii. Comparative analysis of these genomes together with the two publicly available genomes revealed Cronobacter has over 6,000 genes in one or more strains and over 2,000 genes shared by all Cronobacter. Considerable variation in the presence of traits such as type six secretion systems, metal resistance (tellurite, copper and silver), and adhesins were found. C. sakazakii is unique in the Cronobacter genus in encoding genes enabling the utilization of exogenous sialic acid which may have clinical significance. The C. sakazakii ST4 strain 701 contained additional genes as compared to other C. sakazakii but none of them were known specific virulence-related genes. Conclusions/Significance Genome comparison revealed that pair-wise DNA sequence identity varies between 89 and 97% in the seven Cronobacter species, and also suggested various degrees of divergence. Sets of universal core genes and accessory genes unique to each strain were identified. These gene sequences can be used for designing genus/species specific detection assays. Genes encoding adhesins, T6SS, and metal resistance genes as well as prophages are found in only subsets of genomes and have contributed considerably to the variation of

  17. Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish

    PubMed Central

    2012-01-01

    Background The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. Results The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. Conclusions Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes. PMID:22958299

  18. Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence

    PubMed Central

    Teng, Yu-Ting; Wu, Hui-Lun; Liu, Yen-Ming; Wu, Keh-Ming; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2011-01-01

    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops. PMID:21633709

  19. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus

    PubMed Central

    Coutinho, Felipe; Tschoeke, Diogo Antonio; Thompson, Cristiane

    2016-01-01

    Synechococcus is among the most important contributors to global primary productivity. The genomes of several strains of this taxon have been previously sequenced in an effort to understand the physiology and ecology of these highly diverse microorganisms. Here we present a comparative study of Synechococcus genomes. For that end, we developed GenTaxo, a program written in Perl to perform genomic taxonomy based on average nucleotide identity, average amino acid identity and dinucleotide signatures, which revealed that the analyzed strains are drastically distinct regarding their genomic content. Phylogenomic reconstruction indicated a division of Synechococcus in two clades (i.e. Synechococcus and the new genus Parasynechococcus), corroborating evidences that this is in fact a polyphyletic group. By clustering protein encoding genes into homologue groups we were able to trace the Pangenome and core genome of both marine and freshwater Synechococcus and determine the genotypic traits that differentiate these lineages. PMID:26839740

  20. Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria.

    PubMed

    Leyn, Semen A; Suvorova, Inna A; Kholina, Tatiana D; Sherstneva, Sofia S; Novichkov, Pavel S; Gelfand, Mikhail S; Rodionov, Dmitry A

    2014-01-01

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ∼ 200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria. PMID:25411846

  1. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    DOE PAGES

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.; Kuipers, Oscar P.

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific andmore » genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.« less

  2. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    SciTech Connect

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.; Kuipers, Oscar P.

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.

  3. Comparative genomics and transcriptomics of trait-gene association

    PubMed Central

    2012-01-01

    Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs). We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis. PMID:23181781

  4. Sequence and comparative genomic analysis of actin-related proteins.

    PubMed

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.

  5. Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH).

    PubMed

    Wnuk, Maciej; Panek, Anita; Golec, Ewelina; Magda, Michal; Deregowska, Anna; Adamczyk, Jagoda; Lewinska, Anna

    2015-09-20

    The genetic differences and changes in genomic stability may affect fermentation processes involving baker's, brewer's and wine yeast strains. Thus, it seems worthwhile to monitor the changes in genomic DNA copy number of industrial strains. In the present study, we developed an in situ comparative genomic hybridization (CGH) to investigate the ploidy and genetic differences between selected industrial yeast strains. The CGH-based system was validated using the laboratory Saccharomyces cerevisiae yeast strains (haploid BY4741 and diploid BY4743). DNA isolated from BY4743 cells was considered a reference DNA. The ploidy and DNA gains and losses of baker's, brewer's and wine strains were revealed. Taken together, the in situ CGH was shown a helpful molecular tool to identify genomic differences between yeast industrial strains. Moreover, the in situ CGH-based system may be used at the single-cell level of analysis to supplement array-based techniques and high-throughput analyses at the population scale. PMID:26116136

  6. Mitome: dynamic and interactive database for comparative mitochondrial genomics in metazoan animals.

    PubMed

    Lee, Yong Seok; Oh, Jeongsu; Kim, Young Uk; Kim, Namchul; Yang, Sungjin; Hwang, Ui Wook

    2008-01-01

    Mitome is a specialized mitochondrial genome database designed for easy comparative analysis of various features of metazoan mitochondrial genomes such as base frequency, A+T skew, codon usage and gene arrangement pattern. A particular function of the database is the automatic reconstruction of phylogenetic relationships among metazoans selected by a user from a taxonomic tree menu based on nucleotide sequences, amino acid sequences or gene arrangement patterns. Mitome also enables us (i) to easily find the taxonomic positions of organisms of which complete mitochondrial genome sequences are publicly available; (ii) to acquire various metazoan mitochondrial genome characteristics through a graphical genome browser; (iii) to search for homology patterns in mitochondrial gene arrangements; (iv) to download nucleotide or amino acid sequences not only of an entire mitochondrial genome but also of each component; and (v) to find interesting references easily through links with PubMed. In order to provide users with a dynamic, responsive, interactive and faster web database, Mitome is constructed using two recently highlighted techniques, Ajax (Asynchronous JavaScript and XML) and Web Services. Mitome has the potential to become very useful in the fields of molecular phylogenetics and evolution and comparative organelle genomics. The database is available at: http://www.mitome.info.

  7. Parallel WGA and WTA for Comparative Genome and Transcriptome NGS Analysis Using Tiny Cell Numbers.

    PubMed

    Korfhage, Christian; Fricke, Evelyn; Meier, Andreas

    2015-07-01

    Genomic DNA determines how and when the transcriptome is changed by a trigger or environmental change and how cellular metabolism is influenced. Comparative genome and transcriptome analysis of the same cell sample links a defined genome with all changes in the bases, structure, or numbers of the transcriptome. However, comparative genome and transcriptome analysis using next-generation sequencing (NGS) or real-time PCR is often limited by the small amount of sample available. In mammals, the amount of DNA and RNA in a single cell is ∼10 picograms, but deep analysis of the genome and transcriptome currently requires several hundred nanograms of nucleic acids for library preparation for NGS sequencing. Consequently, accurate whole-genome amplification (WGA) and whole-transcriptome amplification (WTA) is required for such quantitative analysis. This unit describes how the genome and the transcriptome of a tiny number of cells can be amplified in a highly parallel and comparable process. Protocols for quality control of amplified DNA and application of amplified DNA for NGS are included.

  8. Comparative genomics of unintrogressed Campylobacter coli clades 2 and 3

    PubMed Central

    2014-01-01

    Background Campylobacter jejuni and C. coli share a multitude of risk factors associated with human gastrointestinal disease, yet their phylogeny differs significantly. C. jejuni is scattered into several lineages, with no apparent linkage, whereas C. coli clusters into three distinct phylogenetic groups (clades) of which clade 1 has shown extensive genome-wide introgression with C. jejuni, yet the other two clades (2 and 3) have less than 2% of C. jejuni ancestry. We characterized a C. coli strain (76339) with four novel multilocus sequence type alleles (ST-5088) and having the capability to express gamma-glutamyltranspeptidase (GGT); an accessory feature in C. jejuni. Our aim was to further characterize unintrogressed C. coli clades 2 and 3, using comparative genomics and with additional genome sequences available, to investigate the impact of horizontal gene transfer in shaping the accessory and core gene pools in unintrogressed C. coli. Results Here, we present the first fully closed C. coli clade 3 genome (76339). The phylogenomic analysis of strain 76339, revealed that it belonged to clade 3 of unintrogressed C. coli. A more extensive respiratory metabolism among unintrogressed C. coli strains was found compared to introgressed C. coli (clade 1). We also identified other genes, such as serine proteases and an active sialyltransferase in the lipooligosaccharide locus, not present in C. coli clade 1 and we further propose a unique scenario for the evolution of Campylobacter ggt. Conclusions We propose new insights into the evolution of the accessory genome of C. coli clade 3 and C. jejuni. Also, in silico analysis of the gene content revealed that C. coli clades 2 and 3 have genes associated with infection, suggesting they are a potent human pathogen, and may currently be underreported in human infections due to niche separation. PMID:24524824

  9. Exploring the early origins of the synapse by comparative genomics

    PubMed Central

    Kosik, Kenneth S.

    2008-01-01

    One set of evolutionary features that has received less attention than the evolution of genes or species is the evolution of cellular machines, the self-contained structures in cells with dedicated functions. Here I suggest that domain expansion through shuffling, duplication, and changes in protein expression level are critical drivers in the evolution of cellular machines. Once established, evolutionary change in these cellular machines tends to occur by paralogy or expansion and modification of the existing core genes. A comparative genomics approach to one cellular machine—the post-synaptic complex—provided preliminary validation of these views. A comparative genomics approach to the entire cellulome may reveal the diversity of cellular machines and their inter-relationships. PMID:19049956

  10. Decoding the molecular evolution of human cognition using comparative genomics.

    PubMed

    Usui, Noriyoshi; Co, Marissa; Konopka, Genevieve

    2014-01-01

    Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia and Alzheimer's disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene coexpression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance of and methods for functional studies of the individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition. PMID:25247723

  11. Mosaic supernumerary ring chromosome 19 identified by comparative genomic hybridisation.

    PubMed Central

    Ghaffari, S R; Boyd, E; Connor, J M; Jones, A M; Tolmie, J L

    1998-01-01

    We report the use of comparative genomic hybridisation (CGH) to define the origin of a supernumerary ring chromosome which conventional cytogenetic banding and fluorescence in situ hybridisation (FISH) methods had failed to identify. Targeted FISH using whole chromosome 19 library arm and site specific probes then confirmed the CGH results. This study shows the feasibility of using CGH for the identification of supernumerary marker chromosomes, even in fewer than 50% of cells, where no clinical or cytogenetic clues are present. Images PMID:9783708

  12. Comparative genomic analysis of seven Mycoplasma hyosynoviae strains

    PubMed Central

    Bumgardner, Eric A; Kittichotirat, Weerayuth; Bumgarner, Roger E; Lawrence, Paulraj K

    2015-01-01

    Infection with Mycoplasma hyosynoviae can result in debilitating arthritis in pigs, particularly those aged 10 weeks or older. Strategies for controlling this pathogen are becoming increasingly important due to the rise in the number of cases of arthritis that have been attributed to infection in recent years. In order to begin to develop interventions to prevent arthritis caused by M. hyosynoviae, more information regarding the specific proteins and potential virulence factors that its genome encodes was needed. However, the genome of this emerging swine pathogen had not been sequenced previously. In this report, we present a comparative analysis of the genomes of seven strains of M. hyosynoviae isolated from different locations in North America during the years 2010 to 2013. We identified several putative virulence factors that may contribute to the ability of this pathogen to adhere to host cells. Additionally, we discovered several prophage genes present within the genomes of three strains that show significant similarity to MAV1, a phage isolated from the related species, M. arthritidis. We also identified CRISPR-Cas and type III restriction and modification systems present in two strains that may contribute to their ability to defend against phage infection. PMID:25693846

  13. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge

    PubMed Central

    Gusev, Oleg; Suetsugu, Yoshitaka; Cornette, Richard; Kawashima, Takeshi; Logacheva, Maria D.; Kondrashov, Alexey S.; Penin, Aleksey A.; Hatanaka, Rie; Kikuta, Shingo; Shimura, Sachiko; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Shagimardanova, Elena; Alexeev, Dmitry; Govorun, Vadim; Wisecaver, Jennifer; Mikheyev, Alexander; Koyanagi, Ryo; Fujie, Manabu; Nishiyama, Tomoaki; Shigenobu, Shuji; Shibata, Tomoko F.; Golygina, Veronika; Hasebe, Mitsuyasu; Okuda, Takashi; Satoh, Nori; Kikawada, Takahiro

    2014-01-01

    Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki. PMID:25216354

  14. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  15. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes

    PubMed Central

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M.; Murphy, Robert W.; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-01-01

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies. PMID:25733869

  16. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies. PMID:25733869

  17. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation.

    PubMed

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains.

  18. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation.

    PubMed

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains. PMID:27548157

  19. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation

    PubMed Central

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains. PMID:27548157

  20. Comparative genomics of two 'Candidatus Accumulibacter' clades performing biological phosphorus removal.

    PubMed

    Flowers, Jason J; He, Shaomei; Malfatti, Stephanie; del Rio, Tijana Glavina; Tringe, Susannah G; Hugenholtz, Philip; McMahon, Katherine D

    2013-12-01

    Members of the genus Candidatus Accumulibacter are important in many wastewater treatment systems performing enhanced biological phosphorus removal (EBPR). The Accumulibacter lineage can be subdivided phylogenetically into multiple clades, and previous work showed that these clades are ecologically distinct. The complete genome of Candidatus Accumulibacter phosphatis strain UW-1, a member of Clade IIA, was previously sequenced. Here, we report a draft genome sequence of Candidatus Accumulibacter spp. strain UW-2, a member of Clade IA, assembled following shotgun metagenomic sequencing of laboratory-scale bioreactor sludge. We estimate the genome to be 80-90% complete. Although the two clades share 16S rRNA sequence identity of >98.0%, we observed a remarkable lack of synteny between the two genomes. We identified 2317 genes shared between the two genomes, with an average nucleotide identity (ANI) of 78.3%, and accounting for 49% of genes in the UW-1 genome. Unlike UW-1, the UW-2 genome seemed to lack genes for nitrogen fixation and carbon fixation. Despite these differences, metabolic genes essential for denitrification and EBPR, including carbon storage polymer and polyphosphate metabolism, were conserved in both genomes. The ANI from genes associated with EBPR was statistically higher than that from genes not associated with EBPR, indicating a high selective pressure in EBPR systems. Further, we identified genomic islands of foreign origins including a near-complete lysogenic phage in the Clade IA genome. Interestingly, Clade IA appeared to be more phage susceptible based on it containing only a single Clustered Regularly Interspaced Short Palindromic Repeats locus as compared with the two found in Clade IIA. Overall, the comparative analysis provided a genetic basis to understand physiological differences and ecological niches of Accumulibacter populations, and highlights the importance of diversity in maintaining system functional resilience.

  1. Microarray Comparative Genomic Hybridisation Analysis Incorporating Genomic Organisation, and Application to Enterobacterial Plant Pathogens

    PubMed Central

    Pritchard, Leighton; Liu, Hui; Booth, Clare; Douglas, Emma; François, Patrice; Schrenzel, Jacques; Hedley, Peter E.; Birch, Paul R. J.; Toth, Ian K.

    2009-01-01

    Microarray comparative genomic hybridisation (aCGH) provides an estimate of the relative abundance of genomic DNA (gDNA) taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent sequences from the reference organism. The experimental method is used in a number of biological applications, including the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but optimisation of the analysis is desirable in each problem domain. We present a method for analysis of bacterial aCGH data that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level: Pectobacterium atrosepticum SCRI1043 (Pba1043) and Dickeya dadantii 3937 (Dda3937); and Lactococcus lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially important plant pathogenic soft-rotting enterobacteria (SRE) Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and Dda3937. Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level. Our results in the SRE further provide evidence for a dynamic, plastic ‘accessory’ genome, revealing major genomic islands encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and nitrogen fixation. PMID:19696881

  2. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition

    PubMed Central

    Lipnerová, Ivana; Bureš, Petr; Horová, Lucie; Šmarda, Petr

    2013-01-01

    Background and Aims The genus Carex exhibits karyological peculiarities related to holocentrism, specifically extremely broad and almost continual variation in chromosome number. However, the effect of these peculiarities on the evolution of the genome (genome size, base composition) remains unknown. While in monocentrics, determining the arithmetic relationship between the chromosome numbers of related species is usually sufficient for the detection of particular modes of karyotype evolution (i.e. polyploidy and dysploidy), in holocentrics where chromosomal fission and fusion occur such detection requires knowledge of the DNA content. Methods The genome size and GC content were estimated in 157 taxa using flow cytometry. The exact chromosome numbers were known for 96 measured samples and were taken from the available literature for other taxa. All relationships were tested in a phylogenetic framework using the ITS tree of 105 species. Key Results The 1C genome size varied between 0·24 and 1·64 pg in Carex secalina and C. cuspidata, respectively. The genomic GC content varied from 34·8 % to 40·6 % from C. secalina to C. firma. Both genomic parameters were positively correlated. Seven polyploid and two potentially polyploid taxa were detected in the core Carex clade. A strong negative correlation between genome size and chromosome number was documented in non-polyploid taxa. Non-polyploid taxa of the core Carex clade exhibited a higher rate of genome-size evolution compared with the Vignea clade. Three dioecious taxa exhibited larger genomes, larger chromosomes, and a higher GC content than their hermaphrodite relatives. Conclusions Genomes of Carex are relatively small and very GC-poor compared with other angiosperms. We conclude that the evolution of genome and karyotype in Carex is promoted by frequent chromosomal fissions/fusions, rare polyploidy and common repetitive DNA proliferation/removal. PMID:23175591

  3. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    PubMed

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  4. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    PubMed Central

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  5. A Comparative Analysis of Mitochondrial Genomes in Eustigmatophyte Algae

    PubMed Central

    Ševčíková, Tereza; Klimeš, Vladimír; Zbránková, Veronika; Strnad, Hynek; Hroudová, Miluše; Vlček, Čestmír; Eliáš, Marek

    2016-01-01

    Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene. PMID:26872774

  6. A Comparative Analysis of Mitochondrial Genomes in Eustigmatophyte Algae.

    PubMed

    Ševčíková, Tereza; Klimeš, Vladimír; Zbránková, Veronika; Strnad, Hynek; Hroudová, Miluše; Vlček, Čestmír; Eliáš, Marek

    2016-03-01

    Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene. PMID:26872774

  7. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities

    PubMed Central

    2014-01-01

    Background Cylindrospermopsis raciborskii is an invasive filamentous freshwater cyanobacterium, some strains of which produce toxins. Sporadic toxicity may be the result of gene deletion events, the horizontal transfer of toxin biosynthesis gene clusters, or other genomic variables, yet the evolutionary drivers for cyanotoxin production remain a mystery. Through examining the genomes of toxic and non-toxic strains of C. raciborskii, we hoped to gain a better understanding of the degree of similarity between these strains of common geographical origin, and what the primary differences between these strains might be. Additionally, we hoped to ascertain why some cyanobacteria possess the cylindrospermopsin biosynthesis (cyr) gene cluster and produce toxin, while others do not. It has been hypothesised that toxicity or lack thereof might confer a selective advantage to cyanobacteria under certain environmental conditions. Results In order to examine the fundamental differences between toxic and non-toxic C. raciborskii strains, we sequenced the genomes of two closely related isolates, CS-506 (CYN+) and CS-509 (CYN-) sourced from different lakes in tropical Queensland, Australia. These genomes were then compared to a third (reference) genome from C. raciborskii CS-505 (CYN+). Genome sizes were similar across all three strains and their G + C contents were almost identical. At least 2,767 genes were shared among all three strains, including the taxonomically important rpoc1, ssuRNA, lsuRNA, cpcA, cpcB, nifB and nifH, which exhibited 99.8-100% nucleotide identity. Strains CS-506 and CS-509 contained at least 176 and 101 strain-specific (or non-homologous) genes, respectively, most of which were associated with DNA repair and modification, nutrient uptake and transport, or adaptive measures such as osmoregulation. However, the only significant genetic difference observed between the two strains was the presence or absence of the cylindrospermopsin biosynthesis gene

  8. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis

    PubMed Central

    Jun, Se-Ran; Wassenaar, Trudy M.; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.; Pelletier, Dale A.

    2015-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. PMID:26519390

  9. Enabling comparative modeling of closely related genomes: Example genus Brucella

    DOE PAGES

    Faria, José P.; Edirisinghe, Janaka N.; Davis, James J.; Disz, Terrence; Hausmann, Anna; Henry, Christopher S.; Olson, Robert; Overbeek, Ross A.; Pusch, Gordon D.; Shukla, Maulik; et al

    2014-03-08

    For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this study, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as wellmore » as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.« less

  10. Genomic profiling of invasive melanoma cell lines by array comparative genomic hybridization.

    PubMed

    Koroknai, Viktória; Ecsedi, Szilvia; Vízkeleti, Laura; Kiss, Tímea; Szász, István; Lukács, Andrea; Papp, Orsolya; Ádány, Róza; Balázs, Margit

    2016-04-01

    Malignant melanoma is one of the most aggressive human cancers. Invasion of cells is the first step in metastasis, resulting in cell migration through tissue compartments. We aimed to evaluate genomic alterations specifically associated with the invasive characteristics of melanoma cells. Matrigel invasion assays were used to determine the invasive properties of cell lines that originated from primary melanomas. Array comparative genomic hybridization analyses were carried out to define the chromosome copy number alterations (CNAs). Several recurrent CNAs were identified by array comparative genomic hybridization that affected melanoma-related genes. Invasive primary cell lines showed high frequencies of CNAs, including the loss of 7q and gain of 12q chromosomal regions targeting PTPN12, ADAM22, FZD1, TFPI2, GNG11, COL1A2, SMURF1, VGF, RELN and GLIPR1 genes. Gain of the GDNF (5p13.1), GPAA1, PLEC and SHARPIN (8q24.3) genes was significantly more frequent in invasive cell lines compared with the noninvasive ones. Importantly, copy number gains of these genes were also found in cell lines that originated from metastases, suggesting their role in melanoma metastasis formation. The present study describes genomic differences between invasive and noninvasive melanoma cell lines that may contribute toward the aggressive phenotype of human melanoma cells. PMID:26656572

  11. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa.

    PubMed

    Jiang, Congcong; Ramchiary, Nirala; Ma, Yongbiao; Jin, Mina; Feng, Ji; Li, Ruiyuan; Wang, Hao; Long, Yan; Choi, Su Ryun; Zhang, Chunyu; Cowling, Wallace A; Park, Beom Seok; Lim, Yong Pyo; Meng, Jinling

    2011-10-01

    Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.

  12. Draft genome sequence of Cellulomonas carbonis T26(T) and comparative analysis of six Cellulomonas genomes.

    PubMed

    Zhuang, Weiping; Zhang, Shengzhe; Xia, Xian; Wang, Gejiao

    2015-01-01

    Most Cellulomonas strains are cellulolytic and this feature may be applied in straw degradation and bioremediation. In this study, Cellulomonas carbonis T26(T), Cellulomonas bogoriensis DSM 16987(T) and Cellulomonas cellasea 20108(T) were sequenced. Here we described the draft genomic information of C. carbonis T26(T) and compared it to the related Cellulomonas genomes. Strain T26(T) has a 3,990,666 bp genome size with a G + C content of 73.4 %, containing 3418 protein-coding genes and 59 RNA genes. The results showed good correlation between the genotypes and the physiological phenotypes. The information are useful for the better application of the Cellulomonas strains.

  13. Genomic analysis by oligonucleotide array Comparative Genomic Hybridization utilizing formalin-fixed, paraffin-embedded tissues.

    PubMed

    Savage, Stephanie J; Hostetter, Galen

    2011-01-01

    Formalin fixation has been used to preserve tissues for more than a hundred years, and there are currently more than 300 million archival samples in the United States alone. The application of genomic protocols such as high-density oligonucleotide array Comparative Genomic Hybridization (aCGH) to formalin-fixed, paraffin-embedded (FFPE) tissues, therefore, opens an untapped resource of available tissues for research and facilitates utilization of existing clinical data in a research sample set. However, formalin fixation results in cross-linking of proteins and DNA, typically leading to such a significant degradation of DNA template that little is available for use in molecular applications. Here, we describe a protocol to circumvent formalin fixation artifact by utilizing enzymatic reactions to obtain quality DNA from a wide range of FFPE tissues for successful genome-wide discovery of gene dosage alterations in archival clinical samples.

  14. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

    PubMed Central

    Gil, Rosario; Silva, Francisco J.; Zientz, Evelyn; Delmotte, François; González-Candelas, Fernando; Latorre, Amparo; Rausell, Carolina; Kamerbeek, Judith; Gadau, Jürgen; Hölldobler, Bert; van Ham, Roeland C. H. J.; Gross, Roy; Moya, Andrés

    2003-01-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life. PMID:12886019

  15. The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes.

    PubMed

    Gil, Rosario; Silva, Francisco J; Zientz, Evelyn; Delmotte, François; González-Candelas, Fernando; Latorre, Amparo; Rausell, Carolina; Kamerbeek, Judith; Gadau, Jürgen; Hölldobler, Bert; van Ham, Roeland C H J; Gross, Roy; Moya, Andrés

    2003-08-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life. PMID:12886019

  16. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    PubMed Central

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  17. Beyond the thale: comparative genomics and genetics of Arabidopsis relatives.

    PubMed

    Koenig, Daniel; Weigel, Detlef

    2015-05-01

    For decades a small number of model species have rightly occupied a privileged position in laboratory experiments, but it is becoming increasingly clear that our knowledge of biology is greatly improved when informed by a broader diversity of species and evolutionary context. Arabidopsis thaliana has been the primary model organism for plants, benefiting from a high-quality reference genome sequence and resources for reverse genetics. However, recent studies have made a group of species also in the Brassicaceae family and closely related to A. thaliana a focal point for comparative molecular, genomic, phenotypic and evolutionary studies. In this Review, we emphasize how such studies complement continued study of the model plant itself, provide an evolutionary perspective and summarize our current understanding of genetic and phenotypic diversity in plants.

  18. A comparative encyclopedia of DNA elements in the mouse genome.

    PubMed

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.

  19. Towards integration of population and comparative genomics in forest trees.

    PubMed

    Ingvarsson, Pär K; Hvidsten, Torgeir R; Street, Nathaniel R

    2016-10-01

    Contents 338 I. 338 II. 339 III. 340 IV. 342 343 References 343 SUMMARY: The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species. PMID:27575589

  20. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    SciTech Connect

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  1. Array comparative genomic hybridization in retinoma and retinoblastoma tissues.

    PubMed

    Sampieri, Katia; Amenduni, Mariangela; Papa, Filomena Tiziana; Katzaki, Eleni; Mencarelli, Maria Antonietta; Marozza, Annabella; Epistolato, Maria Carmela; Toti, Paolo; Lazzi, Stefano; Bruttini, Mirella; De Filippis, Roberta; De Francesco, Sonia; Longo, Ilaria; Meloni, Ilaria; Mari, Francesca; Acquaviva, Antonio; Hadjistilianou, Theodora; Renieri, Alessandra; Ariani, Francesca

    2009-03-01

    In retinoblastoma, two RB1 mutations are necessary for tumor development. Recurrent genomic rearrangements may represent subsequent events required for retinoblastoma progression. Array-comparative genomic hybridization was carried out in 18 eye samples, 10 from bilateral and eight from unilateral retinoblastoma patients. Two unilateral cases also showed areas of retinoma. The most frequent imbalance in retinoblastomas was 6p gain (40%), followed by gains at 1q12-q25.3, 2p24.3-p24.2, 9q22.2, and 9q33.1 and losses at 11q24.3, 13q13.2-q22.3, and 16q12.1-q21. Bilateral cases showed a lower number of imbalances than unilateral cases (P = 0.002). Unilateral cases were divided into low-level (< or = 4) and high-level (> or = 7) chromosomal instability groups. The first group presented with younger age at diagnosis (mean 511 days) compared with the second group (mean 1606 days). In one retinoma case ophthalmoscopically diagnosed as a benign lesion no rearrangements were detected, whereas the adjacent retinoblastoma displayed seven aberrations. The other retinoma case identified by retrospective histopathological examination shared three rearrangements with the adjacent retinoblastoma. Two other gene-free rearrangements were retinoma specific. One rearrangement, dup5p, was retinoblastoma specific and included the SKP2 gene. Genomic profiling indicated that the first retinoma was a pretumoral lesion, whereas the other represents a subclone of cells bearing 'benign' rearrangements overwhelmed by another subclone presenting aberrations with higher 'oncogenic' potential. In summary, the present study shows that bilateral and unilateral retinoblastoma have different chromosomal instability that correlates with the age of tumor onset in unilateral cases. This is the first report of genomic profiling in retinoma tissue, shedding light on the different nature of lesions named 'retinoma'.

  2. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    NASA Astrophysics Data System (ADS)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  3. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis

    PubMed Central

    Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  4. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  5. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  6. Comparative genomics boosts target prediction for bacterial small RNAs.

    PubMed

    Wright, Patrick R; Richter, Andreas S; Papenfort, Kai; Mann, Martin; Vogel, Jörg; Hess, Wolfgang R; Backofen, Rolf; Georg, Jens

    2013-09-10

    Small RNAs (sRNAs) constitute a large and heterogeneous class of bacterial gene expression regulators. Much like eukaryotic microRNAs, these sRNAs typically target multiple mRNAs through short seed pairing, thereby acting as global posttranscriptional regulators. In some bacteria, evidence for hundreds to possibly more than 1,000 different sRNAs has been obtained by transcriptome sequencing. However, the experimental identification of possible targets and, therefore, their confirmation as functional regulators of gene expression has remained laborious. Here, we present a strategy that integrates phylogenetic information to predict sRNA targets at the genomic scale and reconstructs regulatory networks upon functional enrichment and network analysis (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets). Furthermore, CopraRNA precisely predicts the sRNA domains for target recognition and interaction. When applied to several model sRNAs, CopraRNA revealed additional targets and functions for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover, the mRNAs gdhA, lrp, marA, nagZ, ptsI, sdhA, and yobF-cspC were suggested as regulatory hubs targeted by up to seven different sRNAs. The verification of many previously undetected targets by CopraRNA, even for extensively investigated sRNAs, demonstrates its advantages and shows that CopraRNA-based analyses can compete with experimental target prediction approaches. A Web interface allows high-confidence target prediction and efficient classification of bacterial sRNAs.

  7. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    PubMed

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  8. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus. PMID:26513163

  9. Comparative analysis of essential genes in prokaryotic genomic islands.

    PubMed

    Zhang, Xi; Peng, Chong; Zhang, Ge; Gao, Feng

    2015-07-30

    Essential genes are thought to encode proteins that carry out the basic functions to sustain a cellular life, and genomic islands (GIs) usually contain clusters of horizontally transferred genes. It has been assumed that essential genes are not likely to be located in GIs, but systematical analysis of essential genes in GIs has not been explored before. Here, we have analyzed the essential genes in 28 prokaryotes by statistical method and reached a conclusion that essential genes in GIs are significantly fewer than those outside GIs. The function of 362 essential genes found in GIs has been explored further by BLAST against the Virulence Factor Database (VFDB) and the phage/prophage sequence database of PHAge Search Tool (PHAST). Consequently, 64 and 60 eligible essential genes are found to share the sequence similarity with the virulence factors and phage/prophages-related genes, respectively. Meanwhile, we find several toxin-related proteins and repressors encoded by these essential genes in GIs. The comparative analysis of essential genes in genomic islands will not only shed new light on the development of the prediction algorithm of essential genes, but also give a clue to detect the functionality of essential genes in genomic islands.

  10. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    SciTech Connect

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  11. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages.

    PubMed

    Romero, Patricia; Croucher, Nicholas J; Hiller, N Luisa; Hu, Fen Z; Ehrlich, Garth D; Bentley, Stephen D; García, Ernesto; Mitchell, Tim J

    2009-08-01

    Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them. PMID:19502408

  12. Comparative Genomics of Flatworms (Platyhelminthes) Reveals Shared Genomic Features of Ecto- and Endoparastic Neodermata

    PubMed Central

    Hahn, Christoph; Fromm, Bastian; Bachmann, Lutz

    2014-01-01

    The ectoparasitic Monogenea comprise a major part of the obligate parasitic flatworm diversity. Although genomic adaptations to parasitism have been studied in the endoparasitic tapeworms (Cestoda) and flukes (Trematoda), no representative of the Monogenea has been investigated yet. We present the high-quality draft genome of Gyrodactylus salaris, an economically important monogenean ectoparasite of wild Atlantic salmon (Salmo salar). A total of 15,488 gene models were identified, of which 7,102 were functionally annotated. The controversial phylogenetic relationships within the obligate parasitic Neodermata were resolved in a phylogenomic analysis using 1,719 gene models (alignment length of >500,000 amino acids) for a set of 16 metazoan taxa. The Monogenea were found basal to the Cestoda and Trematoda, which implies ectoparasitism being plesiomorphic within the Neodermata and strongly supports a common origin of complex life cycles. Comparative analysis of seven parasitic flatworm genomes identified shared genomic features for the ecto- and endoparasitic lineages, such as a substantial reduction of the core bilaterian gene complement, including the homeodomain-containing genes, and a loss of the piwi and vasa genes, which are considered essential for animal development. Furthermore, the shared loss of functional fatty acid biosynthesis pathways and the absence of peroxisomes, the latter organelles presumed ubiquitous in eukaryotes except for parasitic protozoans, were inferred. The draft genome of G. salaris opens for future in-depth analyses of pathogenicity and host specificity of poorly characterized G. salaris strains, and will enhance studies addressing the genomics of host–parasite interactions and speciation in the highly diverse monogenean flatworms. PMID:24732282

  13. Comparative genomics of flatworms (platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata.

    PubMed

    Hahn, Christoph; Fromm, Bastian; Bachmann, Lutz

    2014-05-01

    The ectoparasitic Monogenea comprise a major part of the obligate parasitic flatworm diversity. Although genomic adaptations to parasitism have been studied in the endoparasitic tapeworms (Cestoda) and flukes (Trematoda), no representative of the Monogenea has been investigated yet. We present the high-quality draft genome of Gyrodactylus salaris, an economically important monogenean ectoparasite of wild Atlantic salmon (Salmo salar). A total of 15,488 gene models were identified, of which 7,102 were functionally annotated. The controversial phylogenetic relationships within the obligate parasitic Neodermata were resolved in a phylogenomic analysis using 1,719 gene models (alignment length of >500,000 amino acids) for a set of 16 metazoan taxa. The Monogenea were found basal to the Cestoda and Trematoda, which implies ectoparasitism being plesiomorphic within the Neodermata and strongly supports a common origin of complex life cycles. Comparative analysis of seven parasitic flatworm genomes identified shared genomic features for the ecto- and endoparasitic lineages, such as a substantial reduction of the core bilaterian gene complement, including the homeodomain-containing genes, and a loss of the piwi and vasa genes, which are considered essential for animal development. Furthermore, the shared loss of functional fatty acid biosynthesis pathways and the absence of peroxisomes, the latter organelles presumed ubiquitous in eukaryotes except for parasitic protozoans, were inferred. The draft genome of G. salaris opens for future in-depth analyses of pathogenicity and host specificity of poorly characterized G. salaris strains, and will enhance studies addressing the genomics of host-parasite interactions and speciation in the highly diverse monogenean flatworms.

  14. Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads.

    PubMed

    Moncunill, Valentí; Gonzalez, Santi; Beà, Sílvia; Andrieux, Lise O; Salaverria, Itziar; Royo, Cristina; Martinez, Laura; Puiggròs, Montserrat; Segura-Wang, Maia; Stütz, Adrian M; Navarro, Alba; Royo, Romina; Gelpí, Josep L; Gut, Ivo G; López-Otín, Carlos; Orozco, Modesto; Korbel, Jan O; Campo, Elias; Puente, Xose S; Torrents, David

    2014-11-01

    The development of high-throughput sequencing technologies has advanced our understanding of cancer. However, characterizing somatic structural variants in tumor genomes is still challenging because current strategies depend on the initial alignment of reads to a reference genome. Here, we describe SMUFIN (somatic mutation finder), a single program that directly compares sequence reads from normal and tumor genomes to accurately identify and characterize a range of somatic sequence variation, from single-nucleotide variants (SNV) to large structural variants at base pair resolution. Performance tests on modeled tumor genomes showed average sensitivity of 92% and 74% for SNVs and structural variants, with specificities of 95% and 91%, respectively. Analyses of aggressive forms of solid and hematological tumors revealed that SMUFIN identifies breakpoints associated with chromothripsis and chromoplexy with high specificity. SMUFIN provides an integrated solution for the accurate, fast and comprehensive characterization of somatic sequence variation in cancer. PMID:25344728

  15. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    SciTech Connect

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  16. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and thielavia terrestris

    SciTech Connect

    Berka, Randy; Grigoriev, Igor V.; Otillar, Robert P.; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; john, tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott E.; Magnuson, Jon K.; LaBoissiere, Sylvie; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  17. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris.

    PubMed

    Berka, Randy M; Grigoriev, Igor V; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M; Lombard, Vincent; Natvig, Donald O; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P; Allijn, Iris E; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J; Paulsen, Ian T; Elbourne, Liam D H; Baker, Scott E; Magnuson, Jon; Laboissiere, Sylvie; Clutterbuck, A John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W; Tsang, Adrian

    2011-10-01

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics. PMID:21964414

  18. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris.

    PubMed

    Berka, Randy M; Grigoriev, Igor V; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M; Lombard, Vincent; Natvig, Donald O; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P; Allijn, Iris E; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J; Paulsen, Ian T; Elbourne, Liam D H; Baker, Scott E; Magnuson, Jon; Laboissiere, Sylvie; Clutterbuck, A John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  19. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources.

    PubMed

    Klima, Cassidy L; Cook, Shaun R; Zaheer, Rahat; Laing, Chad; Gannon, Vick P; Xu, Yong; Rasmussen, Jay; Potter, Andrew; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2016-01-01

    Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2-8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the

  20. Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses

    PubMed Central

    Polavarapu, Nalini; Bowen, Nathan J; McDonald, John F

    2006-01-01

    Background Retrotransposons, the most abundant and widespread class of eukaryotic transposable elements, are believed to play a significant role in mutation and disease and to have contributed significantly to the evolution of genome structure and function. The recent sequencing of the chimpanzee genome is providing an unprecedented opportunity to study the functional significance of these elements in two closely related primate species and to better evaluate their role in primate evolution. Results We report here that the chimpanzee genome contains at least 42 separate families of endogenous retroviruses, nine of which were not previously identified. All but two (CERV 1/PTERV1 and CERV 2) of the 42 families of chimpanzee endogenous retroviruses were found to have orthologs in humans. Molecular analysis (PCR and Southern hybridization) of CERV 2 elements demonstrates that this family is present in chimpanzee, bonobo, gorilla and old-world monkeys but absent in human, orangutan and new-world monkeys. A survey of endogenous retroviral positional variation between chimpanzees and humans determined that approximately 7% of all chimpanzee-human INDEL variation is associated with endogenous retroviral sequences. Conclusion Nine families of chimpanzee endogenous retroviruses have been transpositionally active since chimpanzees and humans diverged from a common ancestor. Seven of these transpositionally active families have orthologs in humans, one of which has also been transpositionally active in humans since the human-chimpanzee divergence about six million years ago. Comparative analyses of orthologous regions of the human and chimpanzee genomes have revealed that a significant portion of INDEL variation between chimpanzees and humans is attributable to endogenous retroviruses and may be of evolutionary significance. PMID:16805923

  1. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources

    PubMed Central

    Klima, Cassidy L.; Cook, Shaun R.; Zaheer, Rahat; Laing, Chad; Gannon, Vick P.; Xu, Yong; Rasmussen, Jay; Potter, Andrew; Hendrick, Steve; Alexander, Trevor W.; McAllister, Tim A.

    2016-01-01

    Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the

  2. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting

    PubMed Central

    Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

    2014-01-01

    Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

  3. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.

    PubMed

    Betekhtin, Alexander; Jenkins, Glyn; Hasterok, Robert

    2014-01-01

    Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon. PMID:25493646

  4. Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation.

    PubMed

    Shen, Qi; Chen, Yue; Jin, Danfeng; Lin, Hui; Wang, Qun; Zhao, Yu-Hua

    2016-11-01

    In this work, Trichosporon fermentans CICC 1368, which has been shown to accumulate cellular lipids efficiently using industry-agricultural wastes, was subjected to preliminary genome analysis, yielding a genome size of 31.3 million bases and 12,702 predicted protein-coding genes. Our analysis also showed a high degree of gene duplications and unique genes compared with those observed in other oleaginous yeasts, with 3-4-fold more genes related to fatty acid elongation and degradation compared with those in Rhodosporidium toruloides NP11 and Yarrowia lipolytica CLIB122. Phylogenetic analysis with other oleaginous microbes suggested that the lipogenic capacity of T. fermentans was obtained during evolution after the divergence of genera. Thus, our study provided the first draft genome and comparative analysis of T. fermentans, laying the foundation for its genetic improvement to facilitate cost-effective lipid production. PMID:27664738

  5. Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation.

    PubMed

    Shen, Qi; Chen, Yue; Jin, Danfeng; Lin, Hui; Wang, Qun; Zhao, Yu-Hua

    2016-11-01

    In this work, Trichosporon fermentans CICC 1368, which has been shown to accumulate cellular lipids efficiently using industry-agricultural wastes, was subjected to preliminary genome analysis, yielding a genome size of 31.3 million bases and 12,702 predicted protein-coding genes. Our analysis also showed a high degree of gene duplications and unique genes compared with those observed in other oleaginous yeasts, with 3-4-fold more genes related to fatty acid elongation and degradation compared with those in Rhodosporidium toruloides NP11 and Yarrowia lipolytica CLIB122. Phylogenetic analysis with other oleaginous microbes suggested that the lipogenic capacity of T. fermentans was obtained during evolution after the divergence of genera. Thus, our study provided the first draft genome and comparative analysis of T. fermentans, laying the foundation for its genetic improvement to facilitate cost-effective lipid production.

  6. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  7. Genome Sequencing and Comparative Genomics Analysis Revealed Pathogenic Potential in Penicillium capsulatum as a Novel Fungal Pathogen Belonging to Eurotiales

    PubMed Central

    Yang, Ying; Chen, Min; Li, Zongwei; Al-Hatmi, Abdullah M. S.; de Hoog, Sybren; Pan, Weihua; Ye, Qiang; Bo, Xiaochen; Li, Zhen; Wang, Shengqi; Wang, Junzhi; Chen, Huipeng; Liao, Wanqing

    2016-01-01

    Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptomes of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNPs in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen. PMID:27761131

  8. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda.

    PubMed

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan; Ching, Wei-Mei; Lo, Shyh-Ching

    2016-01-01

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains. PMID:27540052

  9. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda

    PubMed Central

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan

    2016-01-01

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae. This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains. PMID:27540052

  10. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda.

    PubMed

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan; Ching, Wei-Mei; Lo, Shyh-Ching

    2016-08-18

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains.

  11. Comparative analysis of genomic signal processing for microarray data clustering.

    PubMed

    Istepanian, Robert S H; Sungoor, Ala; Nebel, Jean-Christophe

    2011-12-01

    Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods.

  12. Characterization of copy number variation in genomic regions containing STR loci using array comparative genomic hybridization.

    PubMed

    Repnikova, Elena A; Rosenfeld, Jill A; Bailes, Andrea; Weber, Cecilia; Erdman, Linda; McKinney, Aimee; Ramsey, Sarah; Hashimoto, Sayaka; Lamb Thrush, Devon; Astbury, Caroline; Reshmi, Shalini C; Shaffer, Lisa G; Gastier-Foster, Julie M; Pyatt, Robert E

    2013-09-01

    Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.

  13. The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.

    PubMed

    Kim, Namshin; Alekseyenko, Alexander V; Roy, Meenakshi; Lee, Christopher

    2007-01-01

    We have greatly expanded the Alternative Splicing Annotation Project (ASAP) database: (i) its human alternative splicing data are expanded approximately 3-fold over the previous ASAP database, to nearly 90,000 distinct alternative splicing events; (ii) it now provides genome-wide alternative splicing analyses for 15 vertebrate, insect and other animal species; (iii) it provides comprehensive comparative genomics information for comparing alternative splicing and splice site conservation across 17 aligned genomes, based on UCSC multigenome alignments; (iv) it provides an approximately 2- to 3-fold expansion in detection of tissue-specific alternative splicing events, and of cancer versus normal specific alternative splicing events. We have also constructed a novel database linking orthologous exons and orthologous introns between genomes, based on multigenome alignment of 17 animal species. It can be a valuable resource for studies of gene structure evolution. ASAP II provides a new web interface enabling more detailed exploration of the data, and integrating comparative genomics information with alternative splicing data. We provide a set of tools for advanced data-mining of ASAP II with Pygr (the Python Graph Database Framework for Bioinformatics) including powerful features such as graph query, multigenome alignment query, etc. ASAP II is available at http://www.bioinformatics.ucla.edu/ASAP2.

  14. Unraveling the message: insights into comparative genomics of the naked mole-rat.

    PubMed

    Lewis, Kaitlyn N; Soifer, Ilya; Melamud, Eugene; Roy, Margaret; McIsaac, R Scott; Hibbs, Matthew; Buffenstein, Rochelle

    2016-08-01

    Animals have evolved to survive, and even thrive, in different environments. Genetic adaptations may have indirectly created phenotypes that also resulted in a longer lifespan. One example of this phenomenon is the preternaturally long-lived naked mole-rat. This strictly subterranean rodent tolerates hypoxia, hypercapnia, and soil-based toxins. Naked mole-rats also exhibit pronounced resistance to cancer and an attenuated decline of many physiological characteristics that often decline as mammals age. Elucidating mechanisms that give rise to their unique phenotypes will lead to better understanding of subterranean ecophysiology and biology of aging. Comparative genomics could be a useful tool in this regard. Since the publication of a naked mole-rat genome assembly in 2011, analyses of genomic and transcriptomic data have enabled a clearer understanding of mole-rat evolutionary history and suggested molecular pathways (e.g., NRF2-signaling activation and DNA damage repair mechanisms) that may explain the extraordinarily longevity and unique health traits of this species. However, careful scrutiny and re-analysis suggest that some identified features result from incorrect or imprecise annotation and assembly of the naked mole-rat genome: in addition, some of these conclusions (e.g., genes involved in cancer resistance and hairlessness) are rejected when the analysis includes additional, more closely related species. We describe how the combination of better study design, improved genomic sequencing techniques, and new bioinformatic and data analytical tools will improve comparative genomics and ultimately bridge the gap between traditional model and nonmodel organisms.

  15. High resolution comparative genomic hybridisation in clinical cytogenetics

    PubMed Central

    Kirchhoff, M.; Rose, H.; Lundsteen, C.

    2001-01-01

    High resolution comparative genomic hybridisation (HR-CGH) is a diagnostic tool in our clinical cytogenetics laboratory. The present survey reports the results of 253 clinical cases in which 47 abnormalities were detected. Among 144 dysmorphic and mentally retarded subjects with a normal conventional karyotype, 15 (10%) had small deletions or duplications, of which 11 were interstitial. In addition, a case of mosaic trisomy 9 was detected. Among 25 dysmorphic and mentally retarded subjects carrying apparently balanced de novo translocations, four had deletions at translocation breakpoints and two had deletions elsewhere in the genome. Seventeen of 19 complex rearrangements were clarified by HR-CGH. A small supernumerary marker chromosome occurring with low frequency and the breakpoint of a mosaic r(18) case could not be clarified. Three of 19 other abnormalities could not be confirmed by HR-CGH. One was a Williams syndrome deletion and two were DiGeorge syndrome deletions, which were apparently below the resolution of HR-CGH. However, we were able to confirm Angelman and Prader-Willi syndrome deletions, which are about 3-5 Mb. We conclude that HR-CGH should be used for the evaluation of (1) dysmorphic and mentally retarded subjects where normal karyotyping has failed to show abnormalities, (2) dysmorphic and mentally retarded subjects carrying apparently balanced de novo translocations, (3) apparently balanced de novo translocations detected prenatally, and (4) for clarification of complex structural rearrangements.


Keywords: comparative genomic hybridisation; chromosome analysis; chromosome aberrations; dysmorphism PMID:11694545

  16. Canine urothelial carcinoma: genomically aberrant and comparatively relevant

    PubMed Central

    Shapiro, S. G.; Raghunath, S.; Williams, C.; Motsinger-Reif, A. A.; Cullen, J. M.; Liu, T.; Albertson, D.; Ruvolo, M.; Lucas, A. Bergstrom; Jin, J.; Knapp, D. W.; Schiffman, J. D.

    2015-01-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97% and 84% of cases, respectively, and losses on CFA 19 were present in 77% of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes key to

  17. Array-based comparative genomic hybridization facilitates identification of breakpoints of a novel der(1)t(1;18)(p36.3;q23)dn in a child presenting with mental retardation.

    PubMed

    Lennon, P A; Cooper, M L; Curtis, M A; Lim, C; Ou, Z; Patel, A; Cheung, S W; Bacino, C A

    2006-06-01

    Monosomy of distal 1p36 represents the most common terminal deletion in humans and results in one of the most frequently diagnosed mental retardation syndromes. This deletion is considered a contiguous gene deletion syndrome, and has been shown to vary in deletion sizes that contribute to the spectrum of phenotypic anomalies seen in patients with monosomy 1p36. We report on an 8-year-old female with characteristics of the monosomy 1p36 syndrome who demonstrated a novel der(1)t(1;18)(p36.3;q23). Initial G-banded karyotype analysis revealed a deleted chromosome 1, with a breakpoint within 1p36.3. Subsequent FISH and array-based comparative genomic hybridization not only confirmed and partially characterized the deletion of chromosome 1p36.3, but also uncovered distal trisomy for 18q23. In this patient, the duplicated 18q23 is translocated onto the deleted 1p36.3 region, suggesting telomere capture. Molecular characterization of this novel der(1)t(1;18)(p36.3;q23), guided by our clinical array-comparative genomic hybridization, demonstrated a 3.2 Mb terminal deletion of chromosome 1p36.3 and a 200 kb duplication of 18q23 onto the deleted 1p36.3, presumably stabilizing the deleted chromosome 1. DNA sequence analysis around the breakpoints demonstrated no homology, and therefore this telomere capture of distal 18q is apparently the result of a non-homologous recombination. Partial trisomy for 18q23 has not been previously reported. The importance of mapping the breakpoints of all balanced and unbalanced translocations found in the clinical laboratory, when phenotypic abnormalities are found, is discussed.

  18. MicrobesOnline: an integrated portal for comparative and functional genomics

    SciTech Connect

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  19. MicrobesOnline: an integrated portal for comparative and functional genomics

    SciTech Connect

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  20. Applications of comparative genomic hybridisation in constitutional chromosome studies.

    PubMed

    Breen, C J; Barton, L; Carey, A; Dunlop, A; Glancy, M; Hall, K; Hegarty, A M; Khokhar, M T; Power, M; Ryan, K; Green, A J; Stallings, R L

    1999-07-01

    G band cytogenetic analysis often leads to the discovery of unbalanced karyotypes that require further characterisation by molecular cytogenetic studies. In particular, G band analysis usually does not show the chromosomal origin of small marker chromosomes or of a small amount of extra material detected on otherwise normal chromosomes. Comparative genomic hybridisation (CGH) is one of several molecular approaches that can be applied to ascertain the origin of extra chromosomal material. CGH is also capable of detecting loss of material and thus is also applicable to confirming or further characterising subtle deletions. We have used comparative genomic hybridisation to analyse 19 constitutional chromosome abnormalities detected by G band analysis, including seven deletions, five supernumerary marker chromosomes, two interstitial duplications, and five chromosomes presenting with abnormal terminal banding patterns. CGH was successful in elucidating the origin of extra chromosomal material in 10 out of 11 non-mosaic cases, and permitted further characterisation of all of the deletions that could be detected by GTG banding. CGH appears to be a useful adjunct tool for either confirming deletions or defining their breakpoints and for determining the origin of extra chromosomal material, even in cases where abnormalities are judged to be subtle. We discuss internal quality control measures, such as the mismatching of test and reference DNA in order to assess the quality of the competitive hybridisation effect on the X chromosome.

  1. New apolipoprotein A-V: comparative genomics meets metabolism.

    PubMed

    Seda, O; Sedová, L

    2003-01-01

    The availability of the human genome sequence and the recently completed draft sequences of two major mammalian model species, the mouse (Mus musculus) and the rat (Rattus norvegicus), allow researchers to apply novel approaches for gene identification and characterization, using methods of comparative and functional genomics. Recently, a new gene coding for apolipoprotein A-V was identified in the vicinity of APOA-I/C-III/A-IV cluster on human chromosome 11q23 by comparative sequencing method. In a relatively short time, compelling evidence accumulated for the substantial role of APOA-V in lipid metabolism. Studies in knock-out and transgenic mice revealed that its expression pattern correlates negatively with triglyceride levels. This observation was verified in human population studies in variety of ethnic and age groups. Several single nucleotide polymorphisms were described and particular SNP alleles and haplotypes in the APO A-V gene region were shown to be associated with dyslipidemia. The discovery and characterization of the APO A-V demonstrates current possibilities of the integrative approaches in biology, boosted by the available bioinformatic tools.

  2. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics.

    PubMed

    Tanifuji, Goro; Archibald, John M; Hashimoto, Tetsuo

    2016-01-01

    Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts. PMID:26888293

  3. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics.

    PubMed

    Tanifuji, Goro; Archibald, John M; Hashimoto, Tetsuo

    2016-02-18

    Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.

  4. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics

    NASA Astrophysics Data System (ADS)

    Tanifuji, Goro; Archibald, John M.; Hashimoto, Tetsuo

    2016-02-01

    Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.

  5. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics

    PubMed Central

    Tanifuji, Goro; Archibald, John M.; Hashimoto, Tetsuo

    2016-01-01

    Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts. PMID:26888293

  6. Sources for Comparative Studies of Placentation. II. Genomic Resources

    PubMed Central

    Wildman, Derek E.

    2008-01-01

    The genomes of dozens of placental mammal species are now publicly available. These genome sequences have the potential to provide insight into the development and evolution of the placenta. In particular, the variable anatomy of the placenta has likely been affected by natural selection on the genomes of living and extinct mammals. In this note the current availability of mammal genome sequences is reviewed, and strengths and limitations of these data are discussed. Additionally, museums, zoos, and commercial entities are available to provide genomic resources to the placental research community. Recommendations for tissue storage conditions of placentas in genomic research are given. PMID:18155141

  7. Comparative genomics on Vangl1 and Vangl2 genes.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2005-05-01

    WNT signals are transduced to the beta-catenin pathway or the planar cell polarity (PCP) pathway. WNT - beta-catenin pathway is implicated in carcinogenesis, while WNT-PCP pathway is implicated in cell motility and metastasis. Drosophila Van Gogh (Vang), Frizzled (Fz), Starry night (Stan), Prickle (Pk) and Diego (Dgo) are PCP signaling molecules. Vangl1 (Strabismus 2) and Vangl2 (Strabismus 1 or Ltap) are mammalian homologs of Drosophila Vang interacting with PRICKLE1, PRICKLE2, ANKRD6, DVL1, DVL2, DVL3, KAI1 and MAGI3. Here we identified and characterized rat Vangl1 and Vangl2 genes by using bioinformatics. Rat Vangl1 gene, consisting of eight exons, was located within AC098913.7 and AC108524.6 genome sequences. Rat Vangl2 gene, consisting of eight exons, was located within AC118856.3 and AC115243.5 genome sequences. Exon-intron structure of mammalian Vangl1 and Vangl2 orthologs was well conserved. E47 and double ELK1-binding sites were conserved among promoters of mammalian Vangl1 orthologs. PAX4, NFkappaB, HNF4, SOX9, RFX1, and POU2F1 (OCT1)-binding sites were conserved among promoters of mammalian Vangl2 orthologs. Rat Vangl1 (526 aa) and Vangl2 (521 aa) were four-transmembrane proteins with 71.5% total-amino-acid identity. Ser cluster motif (SxxSxxSxxSxxSxxS) in the N-terminal cytoplasmic region and PDZ-binding motif in the C-terminal cytoplasmic tail were evolutionarily conserved among vertebrate Vangl1 and Vangl2 orthologs. This is the first report on rat Vangl1 and Vangl2 genes as well as on comparative genomics for Vangl1 and Vangl2 orthologs.

  8. Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8

    PubMed Central

    Hane, James K.; Anderson, Jonathan P.; Williams, Angela H.; Sperschneider, Jana; Singh, Karam B.

    2014-01-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the

  9. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    PubMed Central

    Lavín, José L; Kiil, Kristoffer; Resano, Ohiana; Ussery, David W; Oguiza, José A

    2007-01-01

    Background Pseudomonas syringae is a widespread bacterial plant pathogen, and strains of P. syringae may be assigned to different pathovars based on host specificity among different plant species. The genomes of P. syringae pv. syringae (Psy) B728a, pv. tomato (Pto) DC3000 and pv. phaseolicola (Pph) 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS), which typically consists of a sensor histidine kinase (HK) and a response regulator (RR). P. syringae requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions. Results Based on the genomic data, pattern searches with Hidden Markov Model (HMM) profiles have been used to identify putative HKs and RRs. The genomes of Psy B728a, Pto DC3000 and Pph 1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed important differences in TCS proteins among the three P. syringae pathovars. Conclusion In this article we present a thorough analysis of the identification and distribution of TCS proteins among the sequenced genomes of P. syringae. We have identified differences in TCS proteins among the three P. syringae pathovars that may contribute to their diverse host ranges and association with plant hosts. The identification and analysis of the repertoire of TCS proteins in the genomes of P. syringae pathovars constitute a basis for future functional genomic studies of the signal transduction pathways in this important bacterial phytopathogen. PMID:17971244

  10. RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach

    SciTech Connect

    Novichkov, Pavel S.; Rodionov, Dmitry A.; Stavrovskaya, Elena D.; Novichkova, Elena S.; Kazakov, Alexey E.; Gelfand, Mikhail S.; Arkin, Adam P.; Mironov, Andrey A.; Dubchak, Inna

    2010-05-26

    RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov.

  11. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae

    PubMed Central

    Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  12. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae.

    PubMed

    Hao, Zhaodong; Cheng, Tielong; Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  13. Genome-wide Comparative Analysis of Annexin Superfamily in Plants

    PubMed Central

    Jami, Sravan Kumar; Clark, Greg B.; Ayele, Belay T.; Ashe, Paula; Kirti, Pulugurtha Bharadwaja

    2012-01-01

    Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage. PMID:23133603

  14. Comparative genomic hybridization: technical development and cytogenetic aspects for routine use in clinical laboratories.

    PubMed

    Lapierre, J M; Cacheux, V; Da Silva, F; Collot, N; Hervy, N; Wiss, J; Tachdjian, G

    1998-01-01

    Comparative genomic hybridization (CGH) offers a new global approach for detection of chromosomal material imbalances of the entire genome in a single experiment without cell culture. In this paper, we discuss the technical development and the cytogenetic aspects of CGH in a clinical laboratory. Based only on the visual inspection of CGH metaphase spreads, the correct identification of numerical and structural anomalies are reported. No commercial image analysis software was required in these experiments. We have demonstrated that this new technology can be set up easily for routine use in a clinical cytogenetics laboratory.

  15. Comparative genomics of Arabidopsis and maize: prospects and limitations

    PubMed Central

    Brendel, Volker; Kurtz, Stefan; Walbot, Virginia

    2002-01-01

    The completed Arabidopsis genome seems to be of limited value as a model for maize genomics. In addition to the expansion of repetitive sequences in maize and the lack of genomic micro-colinearity, maize-specific or highly-diverged proteins contribute to a predicted maize proteome of about 50,000 proteins, twice the size of that of Arabidopsis. PMID:11897028

  16. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics

    PubMed Central

    Das, Sarbashis; Pettersson, B.M. Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A.

    2015-01-01

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus. PMID:26079817

  17. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics.

    PubMed

    Das, Sarbashis; Pettersson, B M Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A

    2015-07-01

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus.

  18. Comparative genomics of pectinacetylesterases: Insight on function and biology

    PubMed Central

    de Souza, Amancio José; Pauly, Markus

    2015-01-01

    Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses. PMID:26237162

  19. Evolutionary insights into scleractinian corals using comparative genomic hybridizations

    PubMed Central

    2012-01-01

    Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust

  20. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    PubMed Central

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb) and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm) genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans. PMID:17623098

  1. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia

    PubMed Central

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  2. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia.

    PubMed

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  3. Comparative analysis of trichomonad genome sizes and karyotypes.

    PubMed

    Zubácová, Zuzana; Cimbůrek, Zdenek; Tachezy, Jan

    2008-09-01

    In parasitic protists, the genome sizes range from 2.9Mb in Encephalitozoon cuniculi to about 160Mb in Trichomonas vaginalis. The suprisingly large genome size of the former human parasite resulted from the expansion of various repetitive elements, specific gene families, and possibly from large-scale genome duplication. The reason for this phenomenon, as well as whether other trichomonad species have undergone a similar genome expansion, is not known. In this work we studied the genomes of nine selected species of the Trichomonadea group. We found that each species has a characteristic karyotype with a stable and haploid number of chromosomes. Relatively large genome sizes were found in all the tested species, although over a rather broad range (86-177Mb). The largest genomes were typically observed in the Trichomonas and Tritrichomonas genera (133-177Mb), while Tetratrichomonas gallinarum contains the smallest genome (86Mb). The genome size correlated with the cell volume, however, no relationship between genome size and the site of infection or trichomonad phagocytic ability was observed. The data presented here provide primary information towards selecting a trichomonad species for future large-scale sequencing to elucidate the evolution of unusual parabasalid genomes. PMID:18606195

  4. Comparative analysis of trichomonad genome sizes and karyotypes.

    PubMed

    Zubácová, Zuzana; Cimbůrek, Zdenek; Tachezy, Jan

    2008-09-01

    In parasitic protists, the genome sizes range from 2.9Mb in Encephalitozoon cuniculi to about 160Mb in Trichomonas vaginalis. The suprisingly large genome size of the former human parasite resulted from the expansion of various repetitive elements, specific gene families, and possibly from large-scale genome duplication. The reason for this phenomenon, as well as whether other trichomonad species have undergone a similar genome expansion, is not known. In this work we studied the genomes of nine selected species of the Trichomonadea group. We found that each species has a characteristic karyotype with a stable and haploid number of chromosomes. Relatively large genome sizes were found in all the tested species, although over a rather broad range (86-177Mb). The largest genomes were typically observed in the Trichomonas and Tritrichomonas genera (133-177Mb), while Tetratrichomonas gallinarum contains the smallest genome (86Mb). The genome size correlated with the cell volume, however, no relationship between genome size and the site of infection or trichomonad phagocytic ability was observed. The data presented here provide primary information towards selecting a trichomonad species for future large-scale sequencing to elucidate the evolution of unusual parabasalid genomes.

  5. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes

    PubMed Central

    2010-01-01

    Background Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis. Results Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. Conclusions We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis. PMID:20863407

  6. The Genome of Nosema sp. Isolate YNPr: A Comparative Analysis of Genome Evolution within the Nosema/Vairimorpha Clade

    PubMed Central

    Ma, Zhenggang; Li, Tian; Zhang, Xiaoyan; Debrunner-Vossbrinck, Bettina A.; Zhou, Zeyang; Vossbrinck, Charles R.

    2016-01-01

    The microsporidian parasite designated here as Nosema sp. Isolate YNPr was isolated from the cabbage butterfly Pieris rapae collected in Honghe Prefecture, Yunnan Province, China. The genome was sequenced by Illumina sequencing and compared to those of two related members of the Nosema/Vairimorpha clade, Nosema ceranae and Nosema apis. Based upon assembly statistics, the Nosema sp. YNPr genome is 3.36 x 106bp with a G+C content of 23.18% and 2,075 protein coding sequences. An “ACCCTT” motif is present approximately 50-bp upstream of the start codon, as reported from other members of the clade and from Encephalitozoon cuniculi, a sister taxon. Comparative small subunit ribosomal DNA (SSU rDNA) analysis as well as genome-wide phylogenetic analysis confirms a closer relationship between N. ceranae and Nosema sp. YNPr than between the two honeybee parasites N. ceranae and N. apis. The more closely related N. ceranae and Nosema sp. YNPr show similarities in a number of structural characteristics such as gene synteny, gene length, gene number, transposon composition and gene reduction. Based on transposable element content of the assemblies, the transposon content of Nosema sp. YNPr is 4.8%, that of N. ceranae is 3.7%, and that of N. apis is 2.5%, with large differences in the types of transposons present among these 3 species. Gene function annotation indicates that the number of genes participating in most metabolic activities is similar in all three species. However, the number of genes in the transcription, general function, and cysteine protease categories is greater in N. apis than in the other two species. Our studies further characterize the evolution of the Nosema/Vairimorpha clade of microsporidia. These organisms maintain variable but very reduced genomes. We are interested in understanding the effects of genetic drift versus natural selection on genome size in the microsporidia and in developing a testable hypothesis for further studies on the genomic

  7. The Genome of Nosema sp. Isolate YNPr: A Comparative Analysis of Genome Evolution within the Nosema/Vairimorpha Clade.

    PubMed

    Xu, Jinshan; He, Qiang; Ma, Zhenggang; Li, Tian; Zhang, Xiaoyan; Debrunner-Vossbrinck, Bettina A; Zhou, Zeyang; Vossbrinck, Charles R

    2016-01-01

    The microsporidian parasite designated here as Nosema sp. Isolate YNPr was isolated from the cabbage butterfly Pieris rapae collected in Honghe Prefecture, Yunnan Province, China. The genome was sequenced by Illumina sequencing and compared to those of two related members of the Nosema/Vairimorpha clade, Nosema ceranae and Nosema apis. Based upon assembly statistics, the Nosema sp. YNPr genome is 3.36 x 106bp with a G+C content of 23.18% and 2,075 protein coding sequences. An "ACCCTT" motif is present approximately 50-bp upstream of the start codon, as reported from other members of the clade and from Encephalitozoon cuniculi, a sister taxon. Comparative small subunit ribosomal DNA (SSU rDNA) analysis as well as genome-wide phylogenetic analysis confirms a closer relationship between N. ceranae and Nosema sp. YNPr than between the two honeybee parasites N. ceranae and N. apis. The more closely related N. ceranae and Nosema sp. YNPr show similarities in a number of structural characteristics such as gene synteny, gene length, gene number, transposon composition and gene reduction. Based on transposable element content of the assemblies, the transposon content of Nosema sp. YNPr is 4.8%, that of N. ceranae is 3.7%, and that of N. apis is 2.5%, with large differences in the types of transposons present among these 3 species. Gene function annotation indicates that the number of genes participating in most metabolic activities is similar in all three species. However, the number of genes in the transcription, general function, and cysteine protease categories is greater in N. apis than in the other two species. Our studies further characterize the evolution of the Nosema/Vairimorpha clade of microsporidia. These organisms maintain variable but very reduced genomes. We are interested in understanding the effects of genetic drift versus natural selection on genome size in the microsporidia and in developing a testable hypothesis for further studies on the genomic ecology

  8. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    SciTech Connect

    Rodionov, Dmitry A.; Novichkov, Pavel; Stavrovskaya, Elena D.; Rodionova, Irina A.; Li, Xiaoqing; Kazanov, Marat D.; Ravcheev, Dmitry A.; Gerasimova, Anna V.; Kazakov, Alexey E.; Kovaleva, Galina Y.; Permina, Elizabeth A.; Laikova, Olga N.; Overbeek, Ross; Romine, Margaret F.; Fredrickson, Jim K.; Arkin, Adam P.; Dubchak, Inna; Osterman, Andrei L.; Gelfand, Mikhail S.

    2011-06-15

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. Despite the growing number of genome-scale gene expression studies, our abilities to convert the results of these studies into accurate regulatory annotations and to project them from model to other organisms are extremely limited. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. However, even orthologous regulators with conserved DNA-binding motifs may control substantially different gene sets, revealing striking differences in regulatory strategies between the Shewanella spp. and E. coli. Multiple examples of regulatory network rewiring include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), and numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. NagR for N-acetylglucosamine catabolism and PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).

  9. Automated comparative auditing of NCIT genomic roles using NCBI.

    PubMed

    Cohen, Barry; Oren, Marc; Min, Hua; Perl, Yehoshua; Halper, Michael

    2008-12-01

    Biomedical research has identified many human genes and various knowledge about them. The National Cancer Institute Thesaurus (NCIT) represents such knowledge as concepts and roles (relationships). Due to the rapid advances in this field, it is to be expected that the NCIT's Gene hierarchy will contain role errors. A comparative methodology to audit the Gene hierarchy with the use of the National Center for Biotechnology Information's (NCBI's) Entrez Gene database is presented. The two knowledge sources are accessed via a pair of Web crawlers to ensure up-to-date data. Our algorithms then compare the knowledge gathered from each, identify discrepancies that represent probable errors, and suggest corrective actions. The primary focus is on two kinds of gene-roles: (1) the chromosomal locations of genes, and (2) the biological processes in which genes play a role. Regarding chromosomal locations, the discrepancies revealed are striking and systematic, suggesting a structurally common origin. In regard to the biological processes, difficulties arise because genes frequently play roles in multiple processes, and processes may have many designations (such as synonymous terms). Our algorithms make use of the roles defined in the NCIT Biological Process hierarchy to uncover many probable gene-role errors in the NCIT. These results show that automated comparative auditing is a promising technique that can identify a large number of probable errors and corrections for them in a terminological genomic knowledge repository, thus facilitating its overall maintenance.

  10. OMIGA: Optimized Maker-Based Insect Genome Annotation.

    PubMed

    Liu, Jinding; Xiao, Huamei; Huang, Shuiqing; Li, Fei

    2014-08-01

    Insects are one of the largest classes of animals on Earth and constitute more than half of all living species. The i5k initiative has begun sequencing of more than 5,000 insect genomes, which should greatly help in exploring insect resource and pest control. Insect genome annotation remains challenging because many insects have high levels of heterozygosity. To improve the quality of insect genome annotation, we developed a pipeline, named Optimized Maker-Based Insect Genome Annotation (OMIGA), to predict protein-coding genes from insect genomes. We first mapped RNA-Seq reads to genomic scaffolds to determine transcribed regions using Bowtie, and the putative transcripts were assembled using Cufflink. We then selected highly reliable transcripts with intact coding sequences to train de novo gene prediction software, including Augustus. The re-trained software was used to predict genes from insect genomes. Exonerate was used to refine gene structure and to determine near exact exon/intron boundary in the genome. Finally, we used the software Maker to integrate data from RNA-Seq, de novo gene prediction, and protein alignment to produce an official gene set. The OMIGA pipeline was used to annotate the draft genome of an important insect pest, Chilo suppressalis, yielding 12,548 genes. Different strategies were compared, which demonstrated that OMIGA had the best performance. In summary, we present a comprehensive pipeline for identifying genes in insect genomes that can be widely used to improve the annotation quality in insects. OMIGA is provided at http://ento.njau.edu.cn/omiga.html . PMID:24609470

  11. Comparative population genomics of maize domestication and improvement.

    PubMed

    Hufford, Matthew B; Xu, Xun; van Heerwaarden, Joost; Pyhäjärvi, Tanja; Chia, Jer-Ming; Cartwright, Reed A; Elshire, Robert J; Glaubitz, Jeffrey C; Guill, Kate E; Kaeppler, Shawn M; Lai, Jinsheng; Morrell, Peter L; Shannon, Laura M; Song, Chi; Springer, Nathan M; Swanson-Wagner, Ruth A; Tiffin, Peter; Wang, Jun; Zhang, Gengyun; Doebley, John; McMullen, Michael D; Ware, Doreen; Buckler, Edward S; Yang, Shuang; Ross-Ibarra, Jeffrey

    2012-06-03

    Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.

  12. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    PubMed

    Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2016-01-01

    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.

  13. A Comparative Genomic Analysis of Diverse Clonal Types of Enterotoxigenic Escherichia coli Reveals Pathovar-Specific Conservation▿ †

    PubMed Central

    Sahl, Jason W.; Steinsland, Hans; Redman, Julia C.; Angiuoli, Samuel V.; Nataro, James P.; Sommerfelt, Halvor; Rasko, David A.

    2011-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in children less than 5 years of age in low- and middle-income nations, whereas it is an emerging enteric pathogen in industrialized nations. Despite being an important cause of diarrhea, little is known about the genomic composition of ETEC. To address this, we sequenced the genomes of five ETEC isolates obtained from children in Guinea-Bissau with diarrhea. These five isolates represent distinct and globally dominant ETEC clonal groups. Comparative genomic analyses utilizing a gene-independent whole-genome alignment method demonstrated that sequenced ETEC strains share approximately 2.7 million bases of genomic sequence. Phylogenetic analysis of this “core genome” confirmed the diverse history of the ETEC pathovar and provides a finer resolution of the E. coli relationships than multilocus sequence typing. No identified genomic regions were conserved exclusively in all ETEC genomes; however, we identified more genomic content conserved among ETEC genomes than among non-ETEC E. coli genomes, suggesting that ETEC isolates share a genomic core. Comparisons of known virulence and of surface-exposed and colonization factor genes across all sequenced ETEC genomes not only identified variability but also indicated that some antigens are restricted to the ETEC pathovar. Overall, the generation of these five genome sequences, in addition to the two previously generated ETEC genomes, highlights the genomic diversity of ETEC. These studies increase our understanding of ETEC evolution, as well as provide insight into virulence factors and conserved proteins, which may be targets for vaccine development. PMID:21078854

  14. Comparative genomic analysis of hyperthermophilic archaeal fuselloviridae viruses

    SciTech Connect

    B. Wiedenheft; K. Stedman; F. Roberto; D. Willits; A. K. Gleske; L. Zoeller; J. Snyder; T. Douglas; M. Young

    2004-02-01

    The complete genome sequences of two Sulfolobus spindle-shaped viruses (SSVs) from acidic hot springs in Kamchatka (Russia) and Yellowstone National Park (United States) have been determined. These nonlytic temperate viruses were isolated from hyperthermophilic Sulfolobus hosts, and both viruses share the spindleshaped morphology characteristic of the Fuselloviridae family. These two genomes, in combination with the previously determined SSV1 genome from Japan and the SSV2 genome from Iceland, have allowed us to carry out a phylogenetic comparison of these geographically distributed hyperthermal viruses. Each virus contains a circular double-stranded DNA genome of _15 kbp with approximately 34 open reading frames (ORFs). These Fusellovirus ORFs show little or no similarity to genes in the public databases. In contrast, 18 ORFs are common to all four isolates and may represent the minimal gene set defining this viral group. In general, ORFs on one half of the genome are colinear and highly conserved, while ORFs on the other half are not. One shared ORF among all four genomes is an integrase of the tyrosine recombinase family. All four viral genomes integrate into their host tRNA genes. The specific tRNA gene used for integration varies, and one genome integrates into multiple loci. Several unique ORFs are found in the genome of each isolate.

  15. Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species.

    PubMed

    Badaeva, Ekaterina D; Shelukhina, Olga Yu; Diederichsen, Axel; Loskutov, Igor G; Pukhalskiy, Vitaly A

    2010-02-01

    The chromosome set of Avena macrostachya Balansa ex Coss. et Durieu was analyzed using C-banding and fluorescence in situ hybridization with 5S and 18S-5.8S-26S rRNA gene probes, and the results were compared with the C-genome diploid Avena L. species. The location of major nucleolar organizer regions and 5S rDNA sites on different chromosomes confirmed the affiliation of A. macrostachya with the C-genome group. However, the symmetric karyotype, the absence of "diffuse heterochromatin" and the location of large C-band complexes in proximal chromosome regions pointed to an isolated position of A. macrostachya from other Avena species. Based on the distribution of rDNA loci on the C-genome chromosomes of diploid and polyploid Avena species, we propose a model of the chromosome alterations that occurred during the evolution of oat species.

  16. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates

    PubMed Central

    Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.

    2015-01-01

    Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089

  17. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications including surveys of copy number changes in tumorigenesis, species detection and identification, and functional genomics studies among related organisms. Array CGH has also been used to infer phylogenetic r...

  18. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli

    PubMed Central

    2011-01-01

    Background Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source. Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses. Results We have sequenced and annotated the genome of E. coli W. The chromosome is 4,900,968 bp and encodes 4,764 ORFs. Two plasmids, pRK1 (102,536 bp) and pRK2 (5,360 bp), are also present. W has unique features relative to other sequenced laboratory strains (K-12, B and Crooks): it has a larger genome and belongs to phylogroup B1 rather than A. W also grows on a much broader range of carbon sources than does K-12. A genome-scale reconstruction was developed and validated in order to interrogate metabolic properties. Conclusions The genome of W is more similar to commensal and pathogenic B1 strains than phylogroup A strains, and therefore has greater utility for comparative analyses with these strains. W should therefore be the strain of choice, or 'type strain' for group B1 comparative analyses. The genome annotation and tools created here are expected to allow further utilization and development of E. coli W as an industrial organism for sucrose-based bioprocesses. Refinements in our E. coli metabolic reconstruction allow it to more accurately define E. coli metabolism relative to previous models. PMID:21208457

  19. Comparative genomics and evolution of proteins involved in RNA metabolism

    PubMed Central

    Anantharaman, Vivek; Koonin, Eugene V.; Aravind, L.

    2002-01-01

    RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA’s RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals

  20. Complete genome sequence and comparative genome analysis of a new special Yersinia enterocolitica.

    PubMed

    Shi, Guoxiang; Su, Mingming; Liang, Junrong; Duan, Ran; Gu, Wenpeng; Xiao, Yuchun; Zhang, Zhewen; Qiu, Haiyan; Zhang, Zheng; Li, Yi; Zhang, Xiaohe; Ling, Yunchao; Song, Lai; Chen, Meili; Zhao, Yongbing; Wu, Jiayan; Jing, Huaiqi; Xiao, Jingfa; Wang, Xin

    2016-09-01

    Yersinia enterocolitica is the most diverse species among the Yersinia genera and shows more polymorphism, especially for the non-pathogenic strains. Individual non-pathogenic Y. enterocolitica strains are wrongly identified because of atypical phenotypes. In this study, we isolated an unusual Y. enterocolitica strain LC20 from Rattus norvegicus. The strain did not utilize urea and could not be classified as the biotype. API 20E identified Escherichia coli; however, it grew well at 25 °C, but E. coli grew well at 37 °C. We analyzed the genome of LC20 and found the whole chromosome of LC20 was collinear with Y. enterocolitica 8081, and the urease gene did not exist on the genome which is consistent with the result of API 20E. Also, the 16 S and 23 SrRNA gene of LC20 lay on a branch of Y. enterocolitica. Furthermore, the core-based and pan-based phylogenetic trees showed that LC20 was classified into the Y. enterocolitica cluster. Two plasmids (80 and 50 k) from LC20 shared low genetic homology with pYV from the Yersinia genus, one was an ancestral Yersinia plasmid and the other was novel encoding a number of transposases. Some pathogenic and non-pathogenic Y. enterocolitica-specific genes coexisted in LC20. Thus, although it could not be classified into any Y. enterocolitica biotype due to its special biochemical metabolism, we concluded the LC20 was a Y. enterocolitica strain because its genome was similar to other Y. enterocolitica and it might be a strain with many mutations and combinations emerging in the processes of its evolution. PMID:27129539

  1. LAMP detection assays for boxwood blight pathogens: A comparative genomics approach

    DOE PAGES

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; Marra, Robert E.; Crouch, Jo Anne

    2016-05-20

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less

  2. LAMP Detection Assays for Boxwood Blight Pathogens: A Comparative Genomics Approach

    PubMed Central

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; Marra, Robert E.; Crouch, Jo Anne

    2016-01-01

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well as three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. This comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens. PMID:27199028

  3. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    PubMed Central

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  4. OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis.

    PubMed

    Whiteside, Matthew D; Winsor, Geoffrey L; Laird, Matthew R; Brinkman, Fiona S L

    2013-01-01

    Prediction of orthologs (homologous genes that diverged because of speciation) is an integral component of many comparative genomics methods. Although orthologs are more likely to have similar function versus paralogs (genes that diverged because of duplication), recent studies have shown that their degree of functional conservation is variable. Also, there are inherent problems with several large-scale ortholog prediction approaches. To address these issues, we previously developed Ortholuge, which uses phylogenetic distance ratios to provide more precise ortholog assessments for a set of predicted orthologs. However, the original version of Ortholuge required manual intervention and was not easily accessible; therefore, we now report the development of OrtholugeDB, available online at http://www.pathogenomics.sfu.ca/ortholugedb. OrtholugeDB provides ortholog predictions for completely sequenced bacterial and archaeal genomes from NCBI based on reciprocal best Basic Local Alignment Search Tool hits, supplemented with further evaluation by the more precise Ortholuge method. The OrtholugeDB web interface facilitates user-friendly and flexible ortholog analysis, from single genes to genomes, plus flexible data download options. We compare Ortholuge with similar methods, showing how it may more consistently identify orthologs with conserved features across a wide range of taxonomic distances. OrtholugeDB facilitates rapid, and more accurate, bacterial and archaeal comparative genomic analysis and large-scale ortholog predictions.

  5. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    SciTech Connect

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  6. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species

    PubMed Central

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-01-01

    Background The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. Results The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. Conclusion The observed differences in genomic structure between C. japonica and other land plants, including

  7. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    PubMed Central

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2005-01-01

    We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085

  8. GRASSIUS: a platform for comparative regulatory genomics across the grasses.

    PubMed

    Yilmaz, Alper; Nishiyama, Milton Y; Fuentes, Bernardo Garcia; Souza, Glaucia Mendes; Janies, Daniel; Gray, John; Grotewold, Erich

    2009-01-01

    Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can be accessed from www.grassius.org.

  9. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses

    PubMed Central

    Zhaxybayeva, Olga; Gogarten, J Peter

    2002-01-01

    Background Horizontal gene transfer (HGT) played an important role in shaping microbial genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and those involved in information processing, even ribosomal RNA encoding genes. Here we describe tools that provide an assessment and graphic illustration of the mosaic nature of microbial genomes. Results We adapted the Maximum Likelihood (ML) mapping to the analyses of all detected quartets of orthologous genes found in four genomes. We have automated the assembly and analyses of these quartets of orthologs given the selection of four genomes. We compared the ML-mapping approach to more rigorous Bayesian probability and Bootstrap mapping techniques. The latter two approaches appear to be more conservative than the ML-mapping approach, but qualitatively all three approaches give equivalent results. All three tools were tested on mitochondrial genomes, which presumably were inherited as a single linkage group. Conclusions In some instances of interphylum relationships we find nearly equal numbers of quartets strongly supporting the three possible topologies. In contrast, our analyses of genome quartets containing the cyanobacterium Synechocystis sp. indicate that a large part of the cyanobacterial genome is related to that of low GC Gram positives. Other groups that had been suggested as sister groups to the cyanobacteria contain many fewer genes that group with the Synechocystis orthologs. Interdomain comparisons of genome quartets containing the archaeon Halobacterium sp. revealed that Halobacterium sp. shares more genes with Bacteria that live in the same environment than with Bacteria that are more closely related based on rRNA phylogeny . Many of these genes encode proteins involved in substrate transport and metabolism and in information storage and processing. The performed analyses demonstrate that relationships among prokaryotes cannot be accurately depicted by or inferred from

  10. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    PubMed

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites. PMID:26259813

  11. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    PubMed

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites.

  12. Evolution and comparative genomics of Campylobacter jejuni ST-677 clonal complex.

    PubMed

    Kivistö, Rauni I; Kovanen, Sara; Skarp-de Haan, Astrid; Schott, Thomas; Rahkio, Marjatta; Rossi, Mirko; Hänninen, Marja-Liisa

    2014-09-04

    Campylobacter is the most common bacterial cause of gastroenteritis in the European Union with over 200,000 laboratory-confirmed cases reported annually. This is the first study to describe findings related to comparative genomics analyses of the sequence type (ST)-677 clonal complex (CC), a Campylobacter jejuni lineage associated with bacteremia cases in humans. We performed whole-genome sequencing, using Illumina HiSeq sequencing technology, on five related ST-677 CC isolates from two chicken farms to identify microevolution taking place at the farms. Our further aim was to identify novel putative virulence determinants from the ST-677 CC genomes. For this purpose, clinical isolates of the same CC were included in comparative genomic analyses against well-known reference strains of C. jejuni. Overall, the ST-677 CC was recognized as a highly clonal lineage with relatively small differences between the genomes. Among the farm isolates differences were identified mainly in the lengths of the homopolymeric tracts in genes related to the capsule, lipo-oligosaccharide, and flagella. We identified genomic features shared with C. jejuni subsp. doylei, which has also been shown to be associated with bacteremia in humans. These included the degradation of the cytolethal distending toxin operon and similarities between the capsular polysaccharide biosynthesis loci. The phase-variable GDP-mannose 4,6-dehydratase (EC 4.2.1.47) (wcbK, CAMP1649), associated with the capsular polysaccharide biosynthesis locus, may play a central role in ST-677 CC conferring acid and serum resistance during different stages of infection. Homology-based searches revealed several additional novel features and characteristics, including two putative type Vb secretion systems and a novel restriction modification/methyltransferase gene cluster, putatively associated with pathogenesis and niche adaptation.

  13. Unraveling the message: insights into comparative genomics of the naked mole-rat.

    PubMed

    Lewis, Kaitlyn N; Soifer, Ilya; Melamud, Eugene; Roy, Margaret; McIsaac, R Scott; Hibbs, Matthew; Buffenstein, Rochelle

    2016-08-01

    Animals have evolved to survive, and even thrive, in different environments. Genetic adaptations may have indirectly created phenotypes that also resulted in a longer lifespan. One example of this phenomenon is the preternaturally long-lived naked mole-rat. This strictly subterranean rodent tolerates hypoxia, hypercapnia, and soil-based toxins. Naked mole-rats also exhibit pronounced resistance to cancer and an attenuated decline of many physiological characteristics that often decline as mammals age. Elucidating mechanisms that give rise to their unique phenotypes will lead to better understanding of subterranean ecophysiology and biology of aging. Comparative genomics could be a useful tool in this regard. Since the publication of a naked mole-rat genome assembly in 2011, analyses of genomic and transcriptomic data have enabled a clearer understanding of mole-rat evolutionary history and suggested molecular pathways (e.g., NRF2-signaling activation and DNA damage repair mechanisms) that may explain the extraordinarily longevity and unique health traits of this species. However, careful scrutiny and re-analysis suggest that some identified features result from incorrect or imprecise annotation and assembly of the naked mole-rat genome: in addition, some of these conclusions (e.g., genes involved in cancer resistance and hairlessness) are rejected when the analysis includes additional, more closely related species. We describe how the combination of better study design, improved genomic sequencing techniques, and new bioinformatic and data analytical tools will improve comparative genomics and ultimately bridge the gap between traditional model and nonmodel organisms. PMID:27364349

  14. Comparative genomic analysis reveals bilateral breast cancers are genetically independent.

    PubMed

    Song, Fangfang; Li, Xiangchun; Song, Fengju; Zhao, Yanrui; Li, Haixin; Zheng, Hong; Gao, Zhibo; Wang, Jun; Zhang, Wei; Chen, Kexin

    2015-10-13

    Bilateral breast cancer (BBC) poses a major challenge for oncologists because of the cryptic relationship between the two lesions. The purpose of this study was to determine the origin of the contralateral breast cancer (either dependent or independent of the index tumor). Here, we used ultra-deep whole-exome sequencing and array comparative genomic hybridization (aCGH) to study four paired samples of BBCs with different tumor subtypes and time intervals between the developments of each tumor. We used two paired primary breast tumors and corresponding metastatic liver lesions as the control. We tested the origin independent nature of BBC in three ways: mutational concordance, mutational signature clustering, and clonality analysis using copy number profiles. We found that the paired BBC samples had near-zero concordant mutation rates, which were much lower than those of the paired primary/metastasis samples. The results of a mutational signature analysis also suggested that BBCs are independent of one another. A clonality analysis using aCGH data further revealed that paired BBC samples was clonally independent, in contrast to clonal related origin found for paired primary/metastasis samples. Our preliminary findings show that BBCs in Han Chinese women are origin independent and thus should be treated separately. PMID:26378809

  15. Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    PubMed Central

    Mackinnon, Margaret J.; Li, Jinguang; Mok, Sachel; Kortok, Moses M.; Marsh, Kevin; Preiser, Peter R.; Bozdech, Zbynek

    2009-01-01

    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment. PMID:19898609

  16. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study

    PubMed Central

    Six, Christophe; Thomas, Jean-Claude; Garczarek, Laurence; Ostrowski, Martin; Dufresne, Alexis; Blot, Nicolas; Scanlan, David J; Partensky, Frédéric

    2007-01-01

    Background Marine Synechococcus owe their specific vivid color (ranging from blue-green to orange) to their large extrinsic antenna complexes called phycobilisomes, comprising a central allophycocyanin core and rods of variable phycobiliprotein composition. Three major pigment types can be defined depending on the major phycobiliprotein found in the rods (phycocyanin, phycoerythrin I or phycoerythrin II). Among strains containing both phycoerythrins I and II, four subtypes can be distinguished based on the ratio of the two chromophores bound to these phycobiliproteins. Genomes of eleven marine Synechococcus strains recently became available with one to four strains per pigment type or subtype, allowing an unprecedented comparative genomics study of genes involved in phycobilisome metabolism. Results By carefully comparing the Synechococcus genomes, we have retrieved candidate genes potentially required for the synthesis of phycobiliproteins in each pigment type. This includes linker polypeptides, phycobilin lyases and a number of novel genes of uncharacterized function. Interestingly, strains belonging to a given pigment type have similar phycobilisome gene complements and organization, independent of the core genome phylogeny (as assessed using concatenated ribosomal proteins). While phylogenetic trees based on concatenated allophycocyanin protein sequences are congruent with the latter, those based on phycocyanin and phycoerythrin notably differ and match the Synechococcus pigment types. Conclusion We conclude that the phycobilisome core has likely evolved together with the core genome, while rods must have evolved independently, possibly by lateral transfer of phycobilisome rod genes or gene clusters between Synechococcus strains, either via viruses or by natural transformation, allowing rapid adaptation to a variety of light niches. PMID:18062815

  17. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays.

    PubMed

    Ghorbani, Sarieh; Lin, Yao-Cheng; Parizot, Boris; Fernandez, Ana; Njo, Maria Fransiska; Van de Peer, Yves; Beeckman, Tom; Hilson, Pierre

    2015-08-01

    Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes.

  18. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays

    PubMed Central

    Ghorbani, Sarieh; Lin, Yao-Cheng; Parizot, Boris; Fernandez, Ana; Njo, Maria Fransiska; Van de Peer, Yves; Beeckman, Tom; Hilson, Pierre

    2015-01-01

    Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes. PMID:26195730

  19. A genetic linkage map and comparative mapping of the prairie vole (Microtus ochrogaster) genome

    PubMed Central

    2011-01-01

    Background The prairie vole (Microtus ochrogaster) is an emerging rodent model for investigating the genetics, evolution and molecular mechanisms of social behavior. Though a karyotype for the prairie vole has been reported and low-resolution comparative cytogenetic analyses have been done in this species, other basic genetic resources for this species, such as a genetic linkage map, are lacking. Results Here we report the construction of a genome-wide linkage map of the prairie vole. The linkage map consists of 406 markers that are spaced on average every 7 Mb and span an estimated ~90% of the genome. The sex average length of the linkage map is 1707 cM, which, like other Muroid rodent linkage maps, is on the lower end of the length distribution of linkage maps reported to date for placental mammals. Linkage groups were assigned to 19 out of the 26 prairie vole autosomes as well as the X chromosome. Comparative analyses of the prairie vole linkage map based on the location of 387 Type I markers identified 61 large blocks of synteny with the mouse genome. In addition, the results of the comparative analyses revealed a potential elevated rate of inversions in the prairie vole lineage compared to the laboratory mouse and rat. Conclusions A genetic linkage map of the prairie vole has been constructed and represents the fourth genome-wide high-resolution linkage map reported for Muroid rodents and the first for a member of the Arvicolinae sub-family. This resource will advance studies designed to dissect the genetic basis of a variety of social behaviors and other traits in the prairie vole as well as our understanding of genome evolution in the genus Microtus. PMID:21736755

  20. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    PubMed Central

    Tran, Hoa T; Krushkal, Julia; Antommattei, Frances M; Lovley, Derek R; Weis, Robert M

    2008-01-01

    Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III) reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70) homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively). Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP) homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors σ28 and σ54 play a role

  1. Complete genome sequencing and comparative analysis of the linezolid-resistant Enterococcus faecalis strain DENG1.

    PubMed

    Yu, Zhijian; Chen, Zhong; Cheng, Hang; Zheng, Jinxin; Li, Duoyun; Deng, Xiangbin; Pan, Weiguang; Yang, Weizhi; Deng, Qiwen

    2014-07-01

    Genome level analysis of bacterial strains provides information on genetic composition and resistance mechanisms to clinically relevant antibiotics. To date, whole genome characterization of linezolid-resistant Enterococcus faecalis isolated in the clinic is lacking. In this study, we report the entire genome sequence, genomic characteristics and virulence factors of a pathogenic E. faecalis strain, DENG1. Our results showed considerable differences in genomic characteristics and virulence factors compared with other E. faecalis strains (V583 and OG1RF). The genome of this LZD-resistant E. faecalis strain can be used as a reference to study the mechanism of LZD resistance and the phylogenetic relationship of E. faecalis strains worldwide.

  2. Functional and Comparative Genomics of Lignocellulose Degradation by Schizophyllum commune

    SciTech Connect

    Ohm, Robin A.; Lee, Hanbyul; Park, Hongjae; Brewer, Heather M.; Carver, Akiko; Copeland, Alex; Grimwood, Jane; Lindquist, Erika; Lipzen, Anna; Martin, Joel; Purvine, Samuel O.; Schackwitz, Wendy; Tegelaar, Martin; Tritt, Andrew; Baker, Scott; Choi, In-Geol; Lugones, Luis G.; Wosten, Han A. B.; Grigoriev, Igor V.

    2014-03-14

    The Basidiomycete fungus Schizophyllum commune is a wood-decaying fungus and is used as a model system to study lignocellulose degradation. Version 3.0 of the genome assembly filled 269 of 316 sequence gaps and added 680 kb of sequence. This new assembly was reannotated using RNAseq transcriptomics data, and this resulted in 3110 (24percent) more genes. Two additional S. commune strains with different wood-decaying properties were sequenced, from Tattone (France) and Loenen (The Netherlands). Sequence comparison shows remarkably high sequence diversity between the strains. The overall SNP rate of > 100 SNPs/kb is among the highest rates of within-species polymorphisms in Basidiomycetes. Some well-described proteins like hydrophobins and transcription factors have less than 70percent sequence identity among the strains. Some chromosomes are better conserved than others and in some cases large parts of chromosomes are missing from one or more strains. Gene expression on glucose, cellulose and wood was analyzed in two S. commune strains. Overall, gene expression correlated between the two strains, but there were some notable exceptions. Of particular interest are CAZymes (carbohydrate-active enzymes) that are regulated in different ways in the different strains. In both strains the transcription factor Fsp1 was strongly up-regulated during growth on cellulose and wood, when compared to glucose. Over-expression of Fsp1 using a constitutive promoter resulted in higher cellulose and xylose-degrading enzyme activity, which suggests that Fsp1 is involved in regulating CAZyme gene expression. Two CAZyme genes (of family GH61 and GH11) were shown to be strongly up-regulated during growth on cellulose, compared to glucose. Proteomics on the secreted proteins in the growth medium confirmed this. A promoter analysis revealed the shortest active promoters for these two genes, as well as putative transcription factor binding sites.

  3. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations

    PubMed Central

    de Crécy-Lagard, Valérie; El Yacoubi, Basma; de la Garza, Rocío Díaz; Noiriel, Alexandre; Hanson, Andrew D

    2007-01-01

    Background Folate synthesis and salvage pathways are relatively well known from classical biochemistry and genetics but they have not been subjected to comparative genomic analysis. The availability of genome sequences from hundreds of diverse bacteria, and from Arabidopsis thaliana, enabled such an analysis using the SEED database and its tools. This study reports the results of the analysis and integrates them with new and existing experimental data. Results Based on sequence similarity and the clustering, fusion, and phylogenetic distribution of genes, several functional predictions emerged from this analysis. For bacteria, these included the existence of novel GTP cyclohydrolase I and folylpolyglutamate synthase gene families, and of a trifunctional p-aminobenzoate synthesis gene. For plants and bacteria, the predictions comprised the identities of a 'missing' folate synthesis gene (folQ) and of a folate transporter, and the absence from plants of a folate salvage enzyme. Genetic and biochemical tests bore out these predictions. Conclusion For bacteria, these results demonstrate that much can be learnt from comparative genomics, even for well-explored primary metabolic pathways. For plants, the findings particularly illustrate the potential for rapid functional assignment of unknown genes that have prokaryotic homologs, by analyzing which genes are associated with the latter. More generally, our data indicate how combined genomic analysis of both plants and prokaryotes can be more powerful than isolated examination of either group alone. PMID:17645794

  4. GreenPhylDB v2.0: comparative and functional genomics in plants.

    PubMed

    Rouard, Mathieu; Guignon, Valentin; Aluome, Christelle; Laporte, Marie-Angélique; Droc, Gaëtan; Walde, Christian; Zmasek, Christian M; Périn, Christophe; Conte, Matthieu G

    2011-01-01

    GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery.

  5. Comparative ruminant genomics highlights segmental duplication and mobile element insertion diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have expanded upon a previously reported comparative genomics approach using a read-depth (JaRMs) and a hybrid read-pair, split-read (RAPTR-SV) copy number variation (CNV) detection method that uses read alignments to the cattle reference genome in order to identify species-specific genomic rearr...

  6. Genome Informed Trait-Based Models

    NASA Astrophysics Data System (ADS)

    Karaoz, U.; Cheng, Y.; Bouskill, N.; Tang, J.; Beller, H. R.; Brodie, E.; Riley, W. J.

    2013-12-01

    Trait-based approaches are powerful tools for representing microbial communities across both spatial and temporal scales within ecosystem models. Trait-based models (TBMs) represent the diversity of microbial taxa as stochastic assemblages with a distribution of traits constrained by trade-offs between these traits. Such representation with its built-in stochasticity allows the elucidation of the interactions between the microbes and their environment by reducing the complexity of microbial community diversity into a limited number of functional ';guilds' and letting them emerge across spatio-temporal scales. From the biogeochemical/ecosystem modeling perspective, the emergent properties of the microbial community could be directly translated into predictions of biogeochemical reaction rates and microbial biomass. The accuracy of TBMs depends on the identification of key traits of the microbial community members and on the parameterization of these traits. Current approaches to inform TBM parameterization are empirical (i.e., based on literature surveys). Advances in omic technologies (such as genomics, metagenomics, metatranscriptomics, and metaproteomics) pave the way to better-initialize models that can be constrained in a generic or site-specific fashion. Here we describe the coupling of metagenomic data to the development of a TBM representing the dynamics of metabolic guilds from an organic carbon stimulated groundwater microbial community. Illumina paired-end metagenomic data were collected from the community as it transitioned successively through electron-accepting conditions (nitrate-, sulfate-, and Fe(III)-reducing), and used to inform estimates of growth rates and the distribution of metabolic pathways (i.e., aerobic and anaerobic oxidation, fermentation) across a spatially resolved TBM. We use this model to evaluate the emergence of different metabolisms and predict rates of biogeochemical processes over time. We compare our results to observational

  7. Genome-Based Microbial Taxonomy Coming of Age.

    PubMed

    Hugenholtz, Philip; Skarshewski, Adam; Parks, Donovan H

    2016-01-01

    Reconstructing the complete evolutionary history of extant life on our planet will be one of the most fundamental accomplishments of scientific endeavor, akin to the completion of the periodic table, which revolutionized chemistry. The road to this goal is via comparative genomics because genomes are our most comprehensive and objective evolutionary documents. The genomes of plant and animal species have been systematically targeted over the past decade to provide coverage of the tree of life. However, multicellular organisms only emerged in the last 550 million years of more than three billion years of biological evolution and thus comprise a small fraction of total biological diversity. The bulk of biodiversity, both past and present, is microbial. We have only scratched the surface in our understanding of the microbial world, as most microorganisms cannot be readily grown in the laboratory and remain unknown to science. Ground-breaking, culture-independent molecular techniques developed over the past 30 years have opened the door to this so-called microbial dark matter with an accelerating momentum driven by exponential increases in sequencing capacity. We are on the verge of obtaining representative genomes across all life for the first time. However, historical use of morphology, biochemical properties, behavioral traits, and single-marker genes to infer organismal relationships mean that the existing highly incomplete tree is riddled with taxonomic errors. Concerted efforts are now needed to synthesize and integrate the burgeoning genomic data resources into a coherent universal tree of life and genome-based taxonomy. PMID:26988968

  8. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple sequence repeats (SSR) or microsatellite markers are one of the most informative and versatile DNA-based markers. The use of next-generation sequencing technologies allow whole genome sequencing and make it possible to develop large numbers of SSRs through bioinformatic analysis of genome da...

  9. Comparative genomic survey of microbial arylamine N-acetyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Microorganisms are constantly exposed to exogenous chemical influences. Our previous genomic surveys have identified putative NAT genes across a phylogenetic spectrum of prokaryotic and eukaryotic microorganisms. We are currently pursuing two lines of investigation: The first looks int...

  10. A Comparative Analysis of Mitochondrial Genomes in Coleoptera (Arthropoda: Insecta) and Genome Descriptions of Six New Beetles

    PubMed Central

    Song, H.; Cameron, S. L.; Whiting, M. F.

    2008-01-01

    Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis. PMID:18779259

  11. Clinical utility of an array comparative genomic hybridization analysis for Williams syndrome.

    PubMed

    Yagihashi, Tatsuhiko; Torii, Chiharu; Takahashi, Reiko; Omori, Mikimasa; Kosaki, Rika; Yoshihashi, Hiroshi; Ihara, Masahiro; Minagawa-Kawai, Yasuyo; Yamamoto, Junichi; Takahashi, Takao; Kosaki, Kenjiro

    2014-11-01

    To reveal the relation between intellectual disability and the deleted intervals in Williams syndrome, we performed an array comparative genomic hybridization analysis and standardized developmental testing for 11 patients diagnosed as having Williams syndrome based on fluorescent in situ hybridization testing. One patient had a large 4.2-Mb deletion spanning distally beyond the common 1.5-Mb intervals observed in 10/11 patients. We formulated a linear equation describing the developmental age of the 10 patients with the common deletion; the developmental age of the patient with the 4.2-Mb deletion was significantly below the expectation (developmental age = 0.51 × chronological age). The large deletion may account for the severe intellectual disability; therefore, the use of array comparative genomic hybridization may provide practical information regarding individuals with Williams syndrome.

  12. Metagenome Skimming of Insect Specimen Pools: Potential for Comparative Genomics.

    PubMed

    Linard, Benjamin; Crampton-Platt, Alex; Gillett, Conrad P D T; Timmermans, Martijn J T N; Vogler, Alfried P

    2015-06-01

    Metagenomic analyses are challenging in metazoans, but high-copy number and repeat regions can be assembled from low-coverage sequencing by "genome skimming," which is applied here as a new way of characterizing metagenomes obtained in an ecological or taxonomic context. Illumina shotgun sequencing on two pools of Coleoptera (beetles) of approximately 200 species each were assembled into tens of thousands of scaffolds. Repeated low-coverage sequencing recovered similar scaffold sets consistently, although approximately 70% of scaffolds could not be identified against existing genome databases. Identifiable scaffolds included mitochondrial DNA, conserved sequences with hits to expressed sequence tag and protein databases, and known repeat elements of high and low complexity, including numerous copies of rRNA and histone genes. Assemblies of histones captured a diversity of gene order and primary sequence in Coleoptera. Scaffolds with similarity to multiple sites in available coleopteran genome sequences for Dendroctonus and Tribolium revealed high specificity of scaffolds to either of these genomes, in particular for high-copy number repeats. Numerous "clusters" of scaffolds mapped to the same genomic site revealed intra- and/or intergenomic variation within a metagenome pool. In addition to effect of taxonomic composition of the metagenomes, the number of mapped scaffolds also revealed structural differences between the two reference genomes, although the significance of this striking finding remains unclear. Finally, apparently exogenous sequences were recovered, including potential food plants, fungal pathogens, and bacterial symbionts. The "metagenome skimming" approach is useful for capturing the genomic diversity of poorly studied, species-rich lineages and opens new prospects in environmental genomics. PMID:25979752

  13. Metagenome Skimming of Insect Specimen Pools: Potential for Comparative Genomics.

    PubMed

    Linard, Benjamin; Crampton-Platt, Alex; Gillett, Conrad P D T; Timmermans, Martijn J T N; Vogler, Alfried P

    2015-05-14

    Metagenomic analyses are challenging in metazoans, but high-copy number and repeat regions can be assembled from low-coverage sequencing by "genome skimming," which is applied here as a new way of charac