Linear prediction and single-channel recording.
Carter, A A; Oswald, R E
1995-08-01
The measurement of individual single-channel events arising from the gating of ion channels provides a detailed data set from which the kinetic mechanism of a channel can be deduced. In many cases, the pattern of dwells in the open and closed states is very complex, and the kinetic mechanism and parameters are not easily determined. Assuming a Markov model for channel kinetics, the probability density function for open and closed time dwells should consist of a sum of decaying exponentials. One method of approaching the kinetic analysis of such a system is to determine the number of exponentials and the corresponding parameters which comprise the open and closed dwell time distributions. These can then be compared to the relaxations predicted from the kinetic model to determine, where possible, the kinetic constants. We report here the use of a linear technique, linear prediction/singular value decomposition, to determine the number of exponentials and the exponential parameters. Using simulated distributions and comparing with standard maximum-likelihood analysis, the singular value decomposition techniques provide advantages in some situations and are a useful adjunct to other single-channel analysis techniques.
Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao
2017-05-01
Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For investigation of the kinetics of radioligands, such kinetic characteristics should be considered.
Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data
2013-01-01
Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763
Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li
2018-01-01
Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.
Determining Kinetic Parameters for Isothermal Crystallization of Glasses
NASA Technical Reports Server (NTRS)
Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.
2006-01-01
Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.
Zeckey, C; Wendt, K; Mommsen, P; Winkelmann, M; Frömke, C; Weidemann, J; Stübig, T; Krettek, C; Hildebrand, F
2015-01-01
Chest trauma is a relevant risk factor for mortality after multiple trauma. Kinetic therapy (KT) represents a potential treatment option in order to restore pulmonary function. Decision criteria for performing kinetic therapy are not fully elucidated. The purpose of this study was to investigate the decision making process to initiate kinetic therapy in a well defined multiple trauma cohort. A retrospective analysis (2000-2009) of polytrauma patients (age > 16 years, ISS ⩾ 16) with severe chest trauma (AIS(Chest) ⩾ 3) was performed. Patients with AIS(Head) ⩾ 3 were excluded. Patients receiving either kinetic (KT+) or lung protective ventilation strategy (KT-) were compared. Chest trauma was classified according to the AIS(Chest), Pulmonary Contusion Score (PCS), Wagner Jamieson Score and Thoracic Trauma Severity Score (TTS). There were multiple outcome parameters investigated included mortality, posttraumatic complications and clinical data. A multivariate regression analysis was performed. Two hundred and eighty-three patients were included (KT+: n=160; KT-: n=123). AIS(Chest), age and gender were comparable in both groups. There were significant higher values of the ISS, PCS, Wagner Jamieson Score and TTS in group KT+. The incidence of posttraumatic complications and mortality was increased compared to group KT- (p< 0.05). Despite that, kinetic therapy failed to be an independent risk factor for mortality in multivariate logistic regression analysis. Kinetic therapy is an option in severely injured patients with severe chest trauma. Decision making is not only based on anatomical aspects such as the AIS(Chest), but on overall injury severity, pulmonary contusions and physiological deterioration. It could be assumed that the increased mortality in patients receiving KT is primarily caused by these factors and does not reflect an independent adverse effect of KT. Furthermore, KT was not shown to be an independent risk factor for mortality.
ERIC Educational Resources Information Center
Guerra, Nelson Pérez
2017-01-01
A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…
Yorgason, Jordan T.; España, Rodrigo A.; Jones, Sara R.
2011-01-01
The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Acquisition and Analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T20, T80, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. PMID:21392532
Singh, Pali P.; Hawthorne, Jenci L.; Davis, Christie A.; Quintero, Omar A.
2016-01-01
Understanding kinetic information is fundamental in understanding biological function. Advanced imaging technologies have fostered the development of kinetic analyses in cells. We have developed Permeabilization Activated Reduction in Fluorescence (PARF) analysis for determination of apparent t1/2 and immobile fraction, describing the dissociation of a protein of interest from intracellular structures. To create conditions where dissociation events are observable, cells expressing a fluorescently-tagged protein are permeabilized with digitonin, diluting the unbound protein into the extracellular media. As the media volume is much larger than the cytosolic volume, the concentration of the unbound pool decreases drastically, shifting the system out of equilibrium--favoring dissociation events. Loss of bound protein is observed as loss of fluorescence from intracellular structures and can be fit to an exponential decay. We compared PARF dissociation kinetics with previously published equilibrium kinetics as determined by FRAP. PARF dissociation rates agreed with the equilibrium-based FRAP analysis predictions of the magnitude of those rates. When used to investigate binding kinetics of a panel of cytoskeletal proteins, PARF analysis revealed that filament stabilization resulted in slower fluorescence loss. Additionally, commonly used “general” F-actin labels display differences in kinetic properties, suggesting that not all fluorescently-tagged actin labels interact with the actin network in the same way. We also observed differential dissociation kinetics for GFP-VASP depending on which cellular structure was being labeled. These results demonstrate that PARF analysis of non-equilibrium systems reveals kinetic information without the infrastructure investment required for other quantitative approaches such as FRAP, photoactivation, or in vitro reconstitution assays. PMID:27126922
Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy.
van der Krogt, Marjolein M; Sloot, Lizeth H; Buizer, Annemieke I; Harlaar, Jaap
2015-10-15
Kinetic outcomes are an essential part of clinical gait analysis, and can be collected for many consecutive strides using instrumented treadmills. However, the validity of treadmill kinetic outcomes has not been demonstrated for children with cerebral palsy (CP). In this study we compared ground reaction forces (GRF), center of pressure, and hip, knee and ankle moments, powers and work, between overground (OG) and self-paced treadmill (TM) walking for 11 typically developing (TD) children and 9 children with spastic CP. Considerable differences were found in several outcome parameters. In TM, subjects demonstrated lower ankle power generation and more absorption, and increased hip moments and work. This shift from ankle to hip strategy was likely due to a more backward positioning of the hip and a slightly more forward trunk lean. In mediolateral direction, GRF and hip and knee joint moments were increased in TM due to wider step width. These findings indicate that kinetic data collected on a TM cannot be readily compared with OG data in TD children and children with CP, and that treadmill-specific normative data sets should be used when performing kinetic gait analysis on a treadmill. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Stephen S.; White, Josh; Hosemann, Peter
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
Parker, Stephen S.; White, Josh; Hosemann, Peter; ...
2017-11-03
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
NASA Astrophysics Data System (ADS)
Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew
2018-02-01
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Dehydration of detomidine hydrochloride monohydrate.
Veldre, K; Actiņš, A; Jaunbergs, J
2011-10-09
The thermodynamic stability of detomidine hydrochloride monohydrate has been evaluated on the basis of phase transition kinetics in solid state. A method free of empirical models was used for the treatment of kinetic data, and compared to several known solid state kinetic data processing methods. Phase transitions were monitored by powder X-ray diffraction (PXRD) and thermal analysis. Full PXRD profiles were used for determining the phase content instead of single reflex intensity measurements, in order to minimize the influence of particle texture. We compared the applicability of isothermal and nonisothermal methods to our investigation of detomidine hydrochlorine monohydrate dehydration. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of joint findings with gait analysis in children with hemophilia.
Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat
2014-01-01
Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.
Gu, Xiao-Jun; Emerson, David R
2014-06-01
Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.
Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F
2001-01-01
Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.
Sinclair, Jonathan; Taylor, Paul J
2014-10-01
Musculoskeletal injuries in the lower extremities are common in military recruits. Army boots have frequently been cited as a potential mechanism behind these high injury rates. In response to this, the British Army introduced new footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), which are issued to each new recruit in an attempt to reduce the incidence of these injuries. The aim of the current investigation was to examine the kinetics and kinematic of the PT-03 and PT1000 footwear in relation to conventional army boots. Thirteen participants ran at 4.0 m·s in each footwear condition. Three-dimensional kinematics from the hip, knee, and ankle were measured using an 8-camera motion analysis system. In addition, simultaneous ground reaction forces were obtained. Kinetic parameters were obtained alongside joint kinematics and compared using repeated-measures analyses of variance. The kinetic analysis revealed that impact parameters were significantly greater when running in the army boot compared with the PT-03 and PT1000. The kinematic analysis indicated that, in comparison with the PT-03 and PT1000, running in army boots was associated with significantly greater eversion and tibial internal rotation. It was also found that when running in the PT-03 footwear, participants exhibited significantly greater hip adduction and knee abduction compared with the army boots and PT1000. The results of this study suggest that the army boots and PT-03 footwear are associated with kinetic and kinematic parameters that have been linked to the etiology of injury; thus, it is recommended that the PT1000 footwear be adopted for running exercises.
Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C
2018-02-01
The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
Tian, Lu; Wei, Wan-Zhi; Mao, You-An
2004-04-01
The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.
Comparison of Forecast and Observed Energetics
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1985-01-01
An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; and (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum Eddy conversion 12 h earlier is noted.
Martin, C; Bideau, B; Ropars, M; Delamarche, P; Kulpa, R
2014-08-01
The aim of this work was to compare the joint kinetics and stroke production efficiency for the shoulder, elbow, and wrist during the serve between professionals and advanced tennis players and to discuss their potential relationship with given overuse injuries. Eleven professional and seven advanced tennis players were studied with an optoelectronic motion analysis system while performing serves. Normalized peak kinetic values of the shoulder, elbow, and wrist joints were calculated using inverse dynamics. To measure serve efficiency, all normalized peak kinetic values were divided by ball velocity. t-tests were used to determine significant differences between the resultant joint kinetics and efficiency values in both groups (advanced vs professional). Shoulder inferior force, shoulder anterior force, shoulder horizontal abduction torque, and elbow medial force were significantly higher in advanced players. Professional players were more efficient than advanced players, as they maximize ball velocity with lower joint kinetics. Since advanced players are subjected to higher joint kinetics, the results suggest that they appeared more susceptible to high risk of shoulder and elbow injuries than professionals, especially during the cocking and deceleration phases of the serve. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
"Batch" kinetics in flow: online IR analysis and continuous control.
Moore, Jason S; Jensen, Klavs F
2014-01-07
Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C
2016-10-01
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jun; Hwang, Kiwook; Braas, Daniel; Dooraghi, Alex; Nathanson, David; Campbell, Dean O.; Gu, Yuchao; Sandberg, Troy; Mischel, Paul; Radu, Caius; Chatziioannou, Arion F.; Phelps, Michael E.; Christofk, Heather; Heath, James R.
2014-01-01
We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. Methods A portable in vitro molecular imaging system, comprised of a microchip and a beta-particle imaging camera, permits routine cell-based radioassays on small number of either suspension or adherent cells. We investigate the response kinetics of model lymphoma and glioblastoma cancer cell lines to [18F]fluorodeoxyglucose ([18F]FDG) uptake following drug exposure. Those responses are correlated with kinetic changes in the cell cycle, or with changes in receptor-tyrosine kinase signaling. Results The platform enables radioassays directly on multiple cell types, and yields results comparable to conventional approaches, but uses smaller sample sizes, permits a higher level of quantitation, and doesn’t require cell lysis. Conclusion The kinetic analysis enabled by the platform provides a rapid (~1 hour) drug screening assay. PMID:23978446
Comparison of Forecast and Observed Energetics
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1984-01-01
An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast fields of the GLAS fourth order model for the 13 to 15 January 1979 cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum ddy conversion 12 h earlier is noted.
Measurement techniques for analysis of fission fragment excited gases
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Carroll, E. E.; Davis, J. F.; Davie, R. N.; Maguire, T. C.; Shipman, R. G.
1976-01-01
Spectroscopic analysis of fission fragment excited He, Ar, Xe, N2, Ne, Ar-N2, and Ne-N2 have been conducted. Boltzmann plot analysis of He, Ar and Xe have indicated a nonequilibrium, recombining plasma, and population inversions have been found in these gases. The observed radiating species in helium have been adequately described by a simple kinetic model. A more extensive model for argon, nitrogen and Ar-N2 mixtures was developed which adequately describes the energy flow in the system and compares favorably with experimental measurements. The kinetic processes involved in these systems are discussed.
Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U
2016-12-01
This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.
Jung, Hyung Hoon; Floreancig, Paul E.
2009-01-01
A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173
Childers, W Lee; Kogler, Géza F
2014-01-01
People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p = 0.05. The CRANK condition reduced hip and knee ROM in the amputated limb compared with the control condition. There were no differences in joint kinematics between the contralateral and amputated limbs during the CRANK condition. Pedaling asymmetries did not differ and were 23.0% +/= 9.8% and 23.2% +/= 12% for the control and CRANK conditions, respectively. Our results suggest that minimizing kinematic asymmetries does not relate to kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.
Tsipa, Argyro; Koutinas, Michalis; Usaku, Chonlatep; Mantalaris, Athanasios
2018-05-02
Currently, design and optimisation of biotechnological bioprocesses is performed either through exhaustive experimentation and/or with the use of empirical, unstructured growth kinetics models. Whereas, elaborate systems biology approaches have been recently explored, mixed-substrate utilisation is predominantly ignored despite its significance in enhancing bioprocess performance. Herein, bioprocess optimisation for an industrially-relevant bioremediation process involving a mixture of highly toxic substrates, m-xylene and toluene, was achieved through application of a novel experimental-modelling gene regulatory network - growth kinetic (GRN-GK) hybrid framework. The GRN model described the TOL and ortho-cleavage pathways in Pseudomonas putida mt-2 and captured the transcriptional kinetics expression patterns of the promoters. The GRN model informed the formulation of the growth kinetics model replacing the empirical and unstructured Monod kinetics. The GRN-GK framework's predictive capability and potential as a systematic optimal bioprocess design tool, was demonstrated by effectively predicting bioprocess performance, which was in agreement with experimental values, when compared to four commonly used models that deviated significantly from the experimental values. Significantly, a fed-batch biodegradation process was designed and optimised through the model-based control of TOL Pr promoter expression resulting in 61% and 60% enhanced pollutant removal and biomass formation, respectively, compared to the batch process. This provides strong evidence of model-based bioprocess optimisation at the gene level, rendering the GRN-GK framework as a novel and applicable approach to optimal bioprocess design. Finally, model analysis using global sensitivity analysis (GSA) suggests an alternative, systematic approach for model-driven strain modification for synthetic biology and metabolic engineering applications. Copyright © 2018. Published by Elsevier Inc.
2015-01-01
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) that typically harbor multiple intramolecular thioether linkages. For class II lanthipeptides, these cross-links are installed in a multistep reaction pathway by a single enzyme (LanM). The multifunctional nature of LanMs and the manipulability of their genetically encoded peptide substrates (LanAs) make LanM/LanA systems promising targets for the engineering of new antibacterial compounds. Here, we report the development of a semiquantitative mass spectrometry-based assay for kinetic characterization of LanM-catalyzed reactions. The assay was used to conduct a comparative kinetic analysis of two LanM enzymes (HalM2 and ProcM) that exhibit drastically different substrate selectivity. Numerical simulation of the kinetic data was used to develop models for the multistep HalM2- and ProcM-catalyzed reactions. These models illustrate that HalM2 and ProcM have markedly different catalytic efficiencies for the various reactions they catalyze. HalM2, which is responsible for the biosynthesis of a single compound (the Halβ subunit of the lantibiotic haloduracin), catalyzes reactions with higher catalytic efficiency than ProcM, which modifies 29 different ProcA precursor peptides during prochlorosin biosynthesis. In particular, the rates of thioether ring formation are drastically reduced in ProcM, likely because this enzyme is charged with installing a variety of lanthipeptide ring architectures in its prochlorosin products. Thus, ProcM appears to pay a kinetic price for its relaxed substrate specificity. In addition, our kinetic models suggest that conformational sampling of the LanM/LanA Michaelis complex could play an important role in the kinetics of LanA maturation. PMID:25409537
Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Khakoo, M. A.; Srivastava, S. K.
1985-01-01
The kinetic energy spectra of protons resulting from the dissociative ionization of H2 by electron impact have been measured for electron impact energies from threshold (approximately 17 eV) to 160 eV at 90 deg and 30 deg detection angles, using a crossed-beam experimental arrangement. To check reliability, two separate proton energy analysis methods have been employed, i.e., a time-of-flight proton energy analysis and an electrostatic hemispherical energy analyzer. The present results are compared with previous measurements.
Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan
2016-01-01
Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.
Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan
2016-01-01
Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911
Schilaty, Nathan D.; Bates, Nathaniel A.; Nagelli, Christopher; Krych, Aaron J.; Hewett, Timothy E.
2018-01-01
Background: Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. Purpose/Hypothesis: The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Study Design: Controlled laboratory study. Methods: Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Results: Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males (F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance (F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of “maximum ACL strain” demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Conclusion: Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. Clinical Relevance: KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes. PMID:29568787
Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher; Krych, Aaron J; Hewett, Timothy E
2018-03-01
Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Controlled laboratory study. Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males ( F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance ( F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of "maximum ACL strain" demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes.
Huddleston, Jamison P.; Schroeder, Gottfried K.; Johnson, Kenneth A.; Whitman, Christian P.
2012-01-01
The bacterial degradation of the nematicide 1,3-dichloropropene, an isomeric mixture, requires the action of trans- and cis-3-chloracrylic acid dehalogenase (CaaD and cis-CaaD, respectively). Both enzymes are tautomerase superfamily members and share a core catalytic mechanism for the hydrolytic dehalogenation of the respective isomer of 3-haloacrylate. The observation that cis-CaaD requires two additional residues raises the question of how CaaD carries out a comparable reaction with fewer catalytic residues. As part of an effort to determine the basis for the apparently simpler CaaD-catalyzed reaction, the kinetic mechanism was determined by stopped-flow and chemical quench techniques using a fluorescent mutant form of the enzyme, αY60W-CaaD, and trans-3-bromoacrylate as the substrate. The data from these experiments as well as bromide inhibition studies are best accommodated by a six-step model that provides individual rate constants for substrate binding, chemistry, and a proposed conformational change occurring after chemistry followed by release of malonate semialdehyde and bromide. The conformational change and product release rates are comparable and together they limit the rate of turnover. The kinetic analysis and modeling studies validate the αY60W-CaaD mutant as an accurate reporter of active site events during the course of the enzyme-catalyzed reaction. The kinetic mechanism for the αY60W-CaaD-catalyzed reaction is comparable to that obtained for the cis-CaaD-catalyzed reaction. The kinetic model and the validated αY60W-CaaD mutant set the stage for an analysis of active site mutants to explore the contributions of individual catalytic residues and the basis for the simplicity of the reaction. PMID:23110338
Rosnow, Josh J.; Evans, Marc A.; Kapralov, Maxim V.; Cousins, Asaph B.; Edwards, Gerald E.; Roalson, Eric H.
2015-01-01
The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol–1 Rubisco active sites s–1), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed. PMID:26417023
Rosnow, Josh J; Evans, Marc A; Kapralov, Maxim V; Cousins, Asaph B; Edwards, Gerald E; Roalson, Eric H
2015-12-01
The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol(-1) Rubisco active sites s(-1)), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Kahsay, Getu; Broeckhoven, Ken; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2014-05-01
After the great commercial success of sub-3 µm superficially porous particles, vendors are now also starting to commercialize 5 µm superficially porous particles, as an alternative to their fully porous counterparts which are routinely used in pharmaceutical analysis. In this study, the performance of 5 µm superficially porous particles was compared to that of fully porous 5 µm particles in terms of efficiency, separation performance and loadability on a conventional HPLC instrument. Van Deemter and kinetic plots were first used to evaluate the efficiency and performance of both particle types using alkylphenones as a test mixture. The van Deemter and kinetic plots showed that the superficially porous particles provide a superior kinetic performance compared to the fully porous particles over the entire relevant range of separation conditions, when both support types were evaluated at the same operating pressure. The same observations were made both for isocratic and gradient analysis. The superior performance was further demonstrated for the separation of a pharmaceutical compound (griseofulvin) and its impurities, where a gain in analysis time of around 2 could be obtained using the superficially porous particles. Finally, both particle types were evaluated in terms of loadability by plotting the resolution of the active pharmaceutical ingredient and its closest impurity as a function of the signal-to-noise ratio obtained for the smallest impurity. It was demonstrated that the superficially porous particles show better separation performance for griseofulvin and its impurities without significantly compromising sensitivity due to loadability issues in comparison with their fully porous counterparts. Moreover these columns can be used on conventional equipment without modifications to obtain a significant improvement in analysis time. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics.
Wang, Wenfeng; Wang, Jun
2018-02-01
Concerns regarding microplastics pollution and their potential to concentrate and transport organic contaminants in aquatic environments are growing in recent years. Sorption of organic chemicals by microplastics may affect the distribution and bioavailability of the chemicals. Here sorption process of pyrene (Pyr), a frequently encountered polycyclic aromatic hydrocarbon in aquatic environments, on three types of mass-produced plastic particles (high-density polyethylene (PE), polystyrene (PS) and polyvinylchloride (PVC)), was investigated by comparative analysis of different sorption kinetic and isotherm models. Optimum kinetic and isotherm models were predicted by the linear least-squares regression method. The pseudo-second-order kinetic model was more appropriate in describing the entire sorption process (R 2 > 0.99). Sorption rates of Pyr onto microplastics were mainly controlled by intraparticle diffusion. PE exhibited the highest affinity for Pyr, followed by PS and PVC. The sorption equilibrium data were best fitted to the Langmuir isotherm (R 2 > 0.99), indicating monolayer coverage of Pyr onto the microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S
2016-11-01
The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.
Kinetic release of hydrogen peroxide from different whitening products.
da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte
2012-01-01
The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations.
Komnik, Igor; David, Sina; Weiss, Stefan; Potthast, Wolfgang
2016-01-01
After knee arthroplasty (KA) surgery, patients experience abnormal kinematics and kinetics during numerous activities of daily living. Biomechanical investigations have focused primarily on level walking, whereas walking on sloped surfaces, which is stated to affect knee kinematics and kinetics considerably, has been neglected to this day. This study aimed to analyze over-ground walking on level and sloped surfaces with a special focus on transverse and frontal plane knee kinematics and kinetics in patients with KA. A three-dimensional (3D) motion analysis was performed by means of optoelectronic stereophogrammetry 1.8 ± 0.4 years following total knee arthroplasty (TKA) and unicompartmental arthroplasty surgery (UKA). AnyBody™ Modeling System was used to conduct inverse dynamics. The TKA group negotiated the decline walking task with reduced peak knee internal rotation angles compared with a healthy control group (CG). First-peak knee adduction moments were diminished by 27% (TKA group) and 22% (UKA group) compared with the CG during decline walking. No significant differences were detected between the TKA and UKA groups, regardless of the locomotion task. Decline walking exposed apparently more abnormal knee frontal and transverse plane adjustments in KA patients than level walking compared with the CG. Hence, walking on sloped surfaces should be included in further motion analysis studies investigating KA patients in order to detect potential deficits that might be not obvious during level walking. PMID:28002437
Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U
2017-06-01
The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite
NASA Technical Reports Server (NTRS)
Cebe, Peggy
1988-01-01
The nonisothermal crystallization kinetics of PEEK APC-2 and of 450G neat resin PEEK material were compared using a differential scanning calorimeter to monitor heat flow during crystallization; the effects of cooling rate on the crystallization temperature, the degree of crystallinity, and the conversion rate were investigated. A modified Avrami (1940) analysis was used to describe nonisothermal crystallization kinetics. It was found that, compared with the 450G neat resin PEEK, the nonisothermal crystallization of the PEEK APC-2 composite is characterized by higher initiation temperature, higher heat flow maximum temperature, and greater relative conversion by primary processes.
2013-01-01
Background PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. Results Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. Conclusions Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences. PMID:23916145
Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Opila, Elizabeth J.; Nguyen, QuynhGiao; Humphrey, Donald L.; Lewton, Susan M.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Three silicon nitride materials were exposed to dry oxygen flowing at 0.44 cm/s at temperatures between 1200 and 1400 C. Reaction kinetics were measured with a continuously recording microbalance. Parabolic kinetics were observed. When the same materials were exposed to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s, all three types exhibited paralinear kinetics. The material is oxidized by water vapor to form solid silica. The protective silica is in turn volatilized by water vapor to form primarily gaseous Si(OH)4. Nonlinear least squares analysis and a paralinear kinetic model were used to determine both parabolic and linear rate constants from the kinetic data. Volatilization of the protective silica scale can result in accelerated consumption of Si3N4. Recession rates under conditions more representative of actual combustors are compared to the furnace data.
Amiryousefi, Mohammad Reza; Mohebbi, Mohebbat; Khodaiyan, Faramarz
2014-01-01
The objectives of this study were to use image analysis and artificial neural network (ANN) to predict mass transfer kinetics as well as color changes and shrinkage of deep-fat fried ostrich meat cubes. Two generalized feedforward networks were separately developed by using the operation conditions as inputs. Results based on the highest numerical quantities of the correlation coefficients between the experimental versus predicted values, showed proper fitting. Sensitivity analysis results of selected ANNs showed that among the input variables, frying temperature was the most sensitive to moisture content (MC) and fat content (FC) compared to other variables. Sensitivity analysis results of selected ANNs showed that MC and FC were the most sensitive to frying temperature compared to other input variables. Similarly, for the second ANN architecture, microwave power density was the most impressive variable having the maximum influence on both shrinkage percentage and color changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.
2010-01-01
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840
Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A
2018-06-14
The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast lesions among all the parameters. Copyright © 2018. Published by Elsevier Masson SAS.
qPIPSA: Relating enzymatic kinetic parameters and interaction fields
Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C
2007-01-01
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319
Da Porto, Carla; Natolino, Andrea
2018-08-30
Analysis of the extraction kinetic modelling for natural compounds is essential for industrial application. The second order rate model was applied to estimate the extraction kinetics of conventional solid-liquid extraction (CSLE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of total polyphenols (TPC) from saffron floral bio-residues at different solid-to-liquid ratios (R S/L )(1:10, 1:20, 1:30, 1:50 g ml -1 ), ethanol 59% as solvent and 66 °C temperature. The optimum solid-to-liquid ratios for TPC kinetics were 1:20 for CLSE, 1:30 for UAE and 1:50 for MAE. The kinetics of total anthocyanins (TA) and antioxidant activity (AA) were investigated for the optimum R S/L for each method. The results showed a good prediction of the model for extraction kinetics in all experiments (R 2 > 0.99; NRMS 0.65-3.35%). The kinetic parameters were calculated and discussed. UAE, compared with the other methods, had the greater efficiency for TPC, TA and AA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fully kinetic simulations of dense plasma focus Z-pinch devices.
Schmidt, A; Tang, V; Welch, D
2012-11-16
Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.
Bullich, Santiago; Barthel, Henryk; Koglin, Norman; Becker, Georg A; De Santi, Susan; Jovalekic, Aleksandar; Stephens, Andrew W; Sabri, Osama
2017-11-24
Accurate amyloid PET quantification is necessary for monitoring amyloid-beta accumulation and response to therapy. Currently, most of the studies are analyzed using the static standardized uptake value ratio (SUVR) approach because of its simplicity. However, this approach may be influenced by changes in cerebral blood flow (CBF) or radiotracer clearance. Full tracer kinetic models require arterial blood sampling and dynamic image acquisition. The objectives of this work were: (1) to validate a non-invasive kinetic modeling approach for 18 F-florbetaben PET using an acquisition protocol with the best compromise between quantification accuracy and simplicity and (2) to assess the impact of CBF changes and radiotracer clearance on SUVRs and non-invasive kinetic modeling data in 18 F-florbetaben PET. Methods: Data from twenty subjects (10 patients with probable Alzheimer's dementia/ 10 healthy volunteers) were used to compare the binding potential (BP ND ) obtained from the full kinetic analysis to the SUVR and to non-invasive tracer kinetic methods (simplified reference tissue model (SRTM), and multilinear reference tissue model 2 (MRTM2)). Different approaches using shortened or interrupted acquisitions were compared to the results of the full acquisition (0-140 min). Simulations were carried out to assess the effect of CBF and radiotracer clearance changes on SUVRs and non-invasive kinetic modeling outputs. Results: A 0-30 and 120-140 min dual time-window acquisition protocol using appropriate interpolation of the missing time points provided the best compromise between patient comfort and quantification accuracy. Excellent agreement was found between BP ND obtained using full and dual time-window (2TW) acquisition protocols (BP ND,2TW =0.01+ 1.00 BP ND,FULL , R2=0.97 (MRTM2); BP ND,2TW = 0.05+ 0.92·BP ND,FULL , R2=0.93 (SRTM)). Simulations showed a limited impact of CBF and radiotracer clearance changes on MRTM parameters and SUVRs. Conclusion: This study demonstrates accurate non-invasive kinetic modeling of 18 F-florbetaben PET data using a dual time-window acquisition protocol, thus providing a good compromise between quantification accuracy, scan duration and patient burden. The influence of CBF and radiotracer clearance changes on amyloid-beta load estimates was small. For most clinical research applications, the SUVR approach is appropriate. However, for longitudinal studies in which a maximum quantification accuracy is desired, this non-invasive dual time-window acquisition protocol and kinetic analysis is recommended. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Quantitative gait analysis in parkin disease: Possible role of dystonia.
Castagna, Anna; Frittoli, Serena; Ferrarin, Maurizio; Del Sorbo, Francesca; Romito, Luigi M; Elia, Antonio E; Albanese, Alberto
2016-11-01
Parkin disease (PARK2, OMIM 602544) is an autosomal-recessive early-onset parkinsonism characterized by an early occurrence of lower limb dystonia. The aim of this study was to analyze spatiotemporal, kinematic, and kinetic gait parameters in patients with parkin disease in the OFF and ON conditions compared to healthy age-matched controls. Fifteen patients with parkin disease and 15 healthy age-matched controls were studied in a gait analysis laboratory with an integrated optoelectronic system. Spatiotemporal, kinematic, and kinetic gait parameters at a self-selected speed were recorded in the OFF and ON conditions. A jerk index was computed to quantify the possible reduction of smoothness of joint movements. Compared to controls, parkin patients had, either in the OFF or in the ON conditions, significant reduction of walking velocity, increased step width, and decreased percentage of double support. Kinematic analysis in both conditions showed: increased ankle dorsiflexion and knee flexion at the initial contact; maximal flexion and increased range of motion in mid stance; increased hip flexion and max extension in stance at pelvis; and increased mean tilt antiversion. Kinetics showed increased hip and knee power generation in stance in either condition. The jerk index was increased at all joints both in OFF and ON. There were no correlations between individual gait parameters and clinical ratings. Parkin patients have an abnormal gait pattern that does not vary between the OFF and the ON conditions. Variations recorded with instrumented analysis are more evident for kinematic than kinetic parameters at lower limbs. Severity of dystonia does not correlate with any individual kinematic parameter. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.
Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya
2014-05-21
Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.
Janković, Bojan
2011-10-01
The non-isothermal pyrolysis kinetics of Acetocell (the organosolv) and Lignoboost® (kraft) lignins, in an inert atmosphere, have been studied by thermogravimetric analysis. Using isoconversional analysis, it was concluded that the apparent activation energy for all lignins strongly depends on conversion, showing that the pyrolysis of lignins is not a single chemical process. It was identified that the pyrolysis process of Acetocell and Lignoboost® lignin takes place over three reaction steps, which was confirmed by appearance of the corresponding isokinetic relationships (IKR). It was found that major pyrolysis stage of both lignins is characterized by stilbene pyrolysis reactions, which were subsequently followed by decomposition reactions of products derived from the stilbene pyrolytic process. It was concluded that non-isothermal pyrolysis of Acetocell and Lignoboost® lignins can be best described by n-th (n>1) reaction order kinetics, using the Weibull mixture model (as distributed reactivity model) with alternating shape parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Impact of Harness Attachment Point on Kinetics and Kinematics During Sled Towing.
Bentley, Ian; Atkins, Steve J; Edmundson, Christopher J; Metcalfe, John; Sinclair, Jonathan K
2016-03-01
Resisted sprint training is performed in a horizontal direction and involves similar muscles, velocities, and ranges of motion (ROM) to those of normal sprinting. Generally, sleds are attached to the athletes through a lead (3 m) and harness; the most common attachment points are the shoulder or waist. At present, it is not known how the different harness point's impact on the kinematics and kinetics associated with sled towing (ST). The aim of the current investigation was to examine the kinetics and kinematics of shoulder and waist harness attachment points in relation to the acceleration phase of ST. Fourteen trained men completed normal and ST trials, loaded at 10% reduction of sprint velocity. Sagittal plane kinematics from the trunk, hip, knee, and ankle were measured, together with stance phase kinetics (third footstrike). Kinetic and kinematic parameters were compared between harness attachments using one-way repeated-measures analysis of variance. The results indicated that various kinetic differences were present between the normal and ST conditions. Significantly greater net horizontal mean force, net horizontal impulses, propulsive mean force, and propulsive impulses were measured (p < 0.05). Interestingly, the waist harness also led to greater net horizontal impulse when compared with the shoulder attachment (p < 0.001). In kinematic terms, ST conditions significantly increased peak flexion in hip, knee, and ankle joints compared with the normal trials (p < 0.05). Results highlighted that the shoulder harness had a greater impact on trunk and knee joint kinematics when compared with the waist harness (p < 0.05). In summary, waist harnesses seem to be the most suitable attachment point for the acceleration phase of sprinting. Sled towing with these attachments resulted in fewer kinematic alterations and greater net horizontal impulse when compared with the shoulder harness. Future research is necessary in order to explore the long-term adaptations of these acute changes.
Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.
Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad
2012-07-01
The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.
Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi
2017-11-01
Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Idris, M. A.; Jami, M. S.; Hammed, A. M.
2017-05-01
This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.
Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
1994-01-01
The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.
De Luca, Michele; Ioele, Giuseppina; Mas, Sílvia; Tauler, Romà; Ragno, Gaetano
2012-11-21
Amiloride photostability at different pH values was studied in depth by applying Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to the UV spectrophotometric data from drug solutions exposed to stressing irradiation. Resolution of all degradation photoproducts was possible by simultaneous spectrophotometric analysis of kinetic photodegradation and acid-base titration experiments. Amiloride photodegradation showed to be strongly dependent on pH. Two hard modelling constraints were sequentially used in MCR-ALS for the unambiguous resolution of all the species involved in the photodegradation process. An amiloride acid-base system was defined by using the equilibrium constraint, and the photodegradation pathway was modelled taking into account the kinetic constraint. The simultaneous analysis of photodegradation and titration experiments revealed the presence of eight different species, which were differently distributed according to pH and time. Concentration profiles of all the species as well as their pure spectra were resolved and kinetic rate constants were estimated. The values of rate constants changed with pH and under alkaline conditions the degradation pathway and photoproducts also changed. These results were compared to those obtained by LC-MS analysis from drug photodegradation experiments. MS analysis allowed the identification of up to five species and showed the simultaneous presence of more than one acid-base equilibrium.
Deng, Nan-jie; Dai, Wei
2013-01-01
Understanding how kinetics in the unfolded state affects protein folding is a fundamentally important yet less well-understood issue. Here we employ three different models to analyze the unfolded landscape and folding kinetics of the miniprotein Trp-cage. The first is a 208 μs explicit solvent molecular dynamics (MD) simulation from D. E. Shaw Research containing tens of folding events. The second is a Markov state model (MSM-MD) constructed from the same ultra-long MD simulation; MSM-MD can be used to generate thousands of folding events. The third is a Markov state model built from temperature replica exchange MD simulations in implicit solvent (MSM-REMD). All the models exhibit multiple folding pathways, and there is a good correspondence between the folding pathways from direct MD and those computed from the MSMs. The unfolded populations interconvert rapidly between extended and collapsed conformations on time scales ≤ 40 ns, compared with the folding time of ≈ 5 μs. The folding rates are independent of where the folding is initiated from within the unfolded ensemble. About 90 % of the unfolded states are sampled within the first 40 μs of the ultra-long MD trajectory, which on average explores ~27 % of the unfolded state ensemble between consecutive folding events. We clustered the folding pathways according to structural similarity into “tubes”, and kinetically partitioned the unfolded state into populations that fold along different tubes. From our analysis of the simulations and a simple kinetic model, we find that when the mixing within the unfolded state is comparable to or faster than folding, the folding waiting times for all the folding tubes are similar and the folding kinetics is essentially single exponential despite the presence of heterogeneous folding paths with non-uniform barriers. When the mixing is much slower than folding, different unfolded populations fold independently leading to non-exponential kinetics. A kinetic partition of the Trp-cage unfolded state is constructed which reveals that different unfolded populations have almost the same probability to fold along any of the multiple folding paths. We are investigating whether the results for the kinetics in the unfolded state of the twenty-residue Trp-cage is representative of larger single domain proteins. PMID:23705683
First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.
Shanableh, A; Imteaz, M
2008-09-01
This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical (< 374 degrees C) and supercritical (> 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.
Novel anode catalyst for direct methanol fuel cells.
Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H
2014-01-01
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
Novel Anode Catalyst for Direct Methanol Fuel Cells
Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.
2014-01-01
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406
A comparison of zero-order, first-order, and monod biotransformation models
Bekins, B.A.; Warren, E.; Godsy, E.M.
1998-01-01
Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(s), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(s)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(s), it may better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of KS for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.A formal error analysis is presented showing that the relative error in the first-order approximation is S/KS and in the zero-order approximation the error is KS/S where S is the substrate concentration and KS is the half-saturation constant. The problems that arise when the first-order approximation is used outside the range for which it is valid are examined. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than KS, it may be better to model degradation using a zero-order rate expression.
Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes
Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K
2014-01-01
The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A
2012-07-20
The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. Copyright © 2012. Published by Elsevier Ltd.
Modeling of kinetic, ionospheric and auroral contributions to the 557.7-nm nightglow
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2010-11-01
Emission of 557.7-nm radiation from the Earth's upper atmosphere is produced by kinetic, ionospheric and auroral excitation of oxygen atoms. The mechanisms and hence the relative contributions of these three sources are not fully understood. A ground-based mid-latitude recording of the 557.7-nm emissions over the previous solar cycle facilitates a comparison of measurements with theoretical predictions. In this paper the predicted kinetic and ionospheric contributions are simulated and compared with the observations. Semi-quantitative agreement is found between the kinetic contribution and the observations, particularly in the presence of annual, semi-annual and solar cycle variations. An observed enhancement in the emissions in the years following solar maximum is not predicted by the kinetic model. However, correlation analysis reveals a component in the observed values that is related to the auroral hemispheric power. When this extra component is included, a better fit to the pre-midnight observations over the full solar cycle is found.
Simithy, Johayra; Gill, Gobind; Wang, Yu; Goodwin, Douglas C; Calderón, Angela I
2015-02-17
A simple and reliable liquid chromatography-mass spectrometry (LC-MS) assay has been developed and validated for the kinetic characterization and evaluation of inhibitors of shikimate kinase from Mycobacterium tuberculosis (MtSK), a potential target for the development of novel antitubercular drugs. This assay is based on the direct determination of the reaction product shikimate-3-phosphate (S3P) using electrospray ionization (ESI) and a quadrupole time-of-flight (Q-TOF) detector. A comparative analysis of the kinetic parameters of MtSK obtained by the LC-MS assay with those obtained by a conventional UV-assay was performed. Kinetic parameters determined by LC-MS were in excellent agreement with those obtained from the UV assay, demonstrating the accuracy, and reliability of this method. The validated assay was successfully applied to the kinetic characterization of a known inhibitor of shikimate kinase; inhibition constants and mode of inhibition were accurately delineated with LC-MS.
Kumar, K Vasanth
2007-04-02
Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Fontaine, M; Bradshaw, T; Kubicek, L
2014-06-15
Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial})more » on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.« less
A Century of Enzyme Kinetic Analysis, 1913 to 2013
Johnson, Kenneth A.
2013-01-01
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik
2018-05-30
The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018 Institute of Physics and Engineering in Medicine.
Gait kinematics and kinetics are affected more by peripheral arterial disease than age
Myers, Sara A.; Applequist, Bryon C.; Huisinga, Jessie M.; Pipinos, Iraklis I.; Johanning, Jason M.
2016-01-01
Peripheral arterial disease (PAD) produces abnormal gait and disproportionately affects older individuals. The current study investigated PAD gait biomechanics in young and older subjects. Sixty-one (31 < 65 years, age: 57.4 ± 5.3 years and 30 ≥ 65 years; age: 72.2 ± 5.4 years) patients with PAD and 52 healthy age matched controls were included. Patients with PAD were tested during pain free walking and compared to matched healthy controls. Joint kinematics and kinetics (torques) were compared using a 2 × 2 ANOVA (Groups: PAD vs. Control, Age: Younger vs. Older). Patients with PAD had significantly increased ankle and decreased hip range of motion during the stance phase as well as decreased ankle dorsiflexor torque compared to controls. Gait changes in older individuals are largely constrained to time-distance parameters. Joint kinematics and kinetics are significantly altered in patients with PAD during pain free ambulation. Symptomatic PAD produces a consistent ambulatory deficit across ages definable by advanced biomechanical analysis. The most important finding of the current study is that gait, in the absence of PAD and other ambulatory comorbidities, does not decline significantly with age based on advanced biomechanical analysis. Therefore, previous studies must be examined in the context of potential PAD patients being present in the population and future ambulatory studies must include PAD as a confounding factor when assessing the gait function of elderly individuals. PMID:27149635
Kinetic analysis of concurrent activation potentiation during back squats and jump squats.
Ebben, William P; Kaufmann, Clare E; Fauth, McKenzie L; Petushek, Erich J
2010-06-01
Concurrent activation potentiation enhances muscular force during open kinetic chain isometric and isokinetic exercises via remote voluntary contractions (RVCs). The purpose of this study was to evaluate the effect of RVCs on the performance of closed kinetic chain ground-based exercises. Subjects included 13 men (21.4+/-1.5 years) who performed the back squat and jump squat in 2 test conditions. The RVC condition included performing the test exercises while clenching the jaw on a mouth guard, forcefully gripping and pulling the barbell down into the trapezius, and performing a Valsalva maneuver. The normal condition (NO-RVC) included performing the test exercises without RVCs. Exercises were assessed with a force platform. Peak ground reaction force (GRF), rate of force development (RFD) during the first 100 milliseconds (RFD-100), RFD to peak GRF (RFD-P), and jump squat height (JH) were calculated from the force-time records. Data were analyzed using an analysis of variance. Results reveal that GRF and RFD-100 were higher in the RVC compared with the NO-RVC condition for both the back squat and jump squat (p
Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N
2017-01-25
This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.
Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro
2012-03-15
We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account. Copyright © 2011 Elsevier B.V. All rights reserved.
Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers.
Shroyer, Justin F; Weimar, Wendi H
2010-01-01
Flip-flops are becoming a common footwear option. Casual observation has indicated that individuals wear flip-flops beyond their structural limit and have a different gait while wearing flip-flops versus shoes. This alteration in gait may cause the anecdotal foot and lower-limb discomfort associated with wearing flip-flops. To investigate the effect of sneakers versus thong-style flip-flops on gait kinematics and kinetics, 56 individuals (37 women and 19 men) were randomly assigned to a footwear order (flip-flops or sneakers first) and were asked to wear the assigned footwear on the day before and the day of testing. On each testing day, participants were videotaped as they walked at a self-selected pace across a force platform. A 2 (sex) x 2 (footwear) repeated-measures analysis of variance (P = .05) was used for statistical analysis. Significant interaction effects of footwear and sex were found for maximal anterior force, attack angle, and ankle angle during the swing phase. Footwear significantly affected stride length, ankle angle at the beginning of double support and during the swing phase, maximal braking impulse, and stance time. Flip-flops resulted in a shorter stride, a larger ankle angle at the beginning of double support and during the swing phase, a smaller braking impulse, and a shorter stance time compared with sneakers. The effects of footwear on gait kinetics and kinematics is extensive, but there is limited research on the effect of thong-style flip-flops on gait. These results suggest that flip-flops have an effect on several kinetic and kinematic variables compared with sneakers.
A comparison of observed and forecast energetics over North America
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1985-01-01
The observed kinetic energy balance is calculated over North America and compared with that computed from forecast fields for the 13-15 January 1979 cyclone. The FGGE upper-air rawinsonde network serves as the observational database while the forecast energetics are derived from a numerical integration with the GLAS fourth-order general circulation model initialized at 00 GMT 13 January. Maps of the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. Both the forecast and observations exhibit the lower and upper tropospheric maxima in vertical profiles of kinetic energy generation and dissipation typically found in cyclonic disturbances. An interesting time lag is noted in the observational analysis with the maximum observed kinetic energy occurring 12 h later than the maximum eddy conversion over the same region.
Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi
2016-05-18
In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.
Detection of kinetic change points in piece-wise linear single molecule motion
NASA Astrophysics Data System (ADS)
Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.
2018-03-01
Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.
NASA Technical Reports Server (NTRS)
Garland, J. L.; Mills, A. L.; Young, J. S.
2001-01-01
The relative effectiveness of average-well-color-development-normalized single-point absorbance readings (AWCD) vs the kinetic parameters mu(m), lambda, A, and integral (AREA) of the modified Gompertz equation fit to the color development curve resulting from reduction of a redox sensitive dye from microbial respiration of 95 separate sole carbon sources in microplate wells was compared for a dilution series of rhizosphere samples from hydroponically grown wheat and potato ranging in inoculum densities of 1 x 10(4)-4 x 10(6) cells ml-1. Patterns generated with each parameter were analyzed using principal component analysis (PCA) and discriminant function analysis (DFA) to test relative resolving power. Samples of equivalent cell density (undiluted samples) were correctly classified by rhizosphere type for all parameters based on DFA analysis of the first five PC scores. Analysis of undiluted and 1:4 diluted samples resulted in misclassification of at least two of the wheat samples for all parameters except the AWCD normalized (0.50 abs. units) data, and analysis of undiluted, 1:4, and 1:16 diluted samples resulted in misclassification for all parameter types. Ordination of samples along the first principal component (PC) was correlated to inoculum density in analyses performed on all of the kinetic parameters, but no such influence was seen for AWCD-derived results. The carbon sources responsible for classification differed among the variable types with the exception of AREA and A, which were strongly correlated. These results indicate that the use of kinetic parameters for pattern analysis in CLPP may provide some additional information, but only if the influence of inoculum density is carefully considered. c2001 Elsevier Science Ltd. All rights reserved.
Modeling the Kinetics of Root Gravireaction
NASA Astrophysics Data System (ADS)
Kondrachuk, Alexander V.; Starkov, Vyacheslav N.
2011-02-01
The known "sun-flower equation" (SFE), which was originally proposed to model root circumnutating, was used to describe the simplest tip root graviresponse. Two forms of the SFE (integro-differential and differential-delayed) were solved, analyzed and compared with each other. The numerical solutions of these equations were found to be matching with arbitrary accuracy. The analysis of the solutions focused on time-lag effects on the kinetics of tip root bending. The results of the modeling are in good correlation with an experiment at the initial stages of root tips graviresponse. Further development of the model calls for its systematic comparison with some specially designed experiments, which would include measuring the kinetics of root tip bending before gravistimulation over the period of time longer than the time lag.
Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation
NASA Technical Reports Server (NTRS)
Frost, W.; Harper, W. L.; Fichtl, G. H.
1975-01-01
Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.
Association Between Contact Lens Discomfort and Pre-lens Tear Film Kinetics.
Guillon, Michel; Dumbleton, Kathryn A; Theodoratos, Panagiotis; Wong, Stephanie; Patel, Kishan; Banks, Gaidig; Patel, Trisha
2016-08-01
The relationship between contact lens wettability and comfort has been extensively evaluated; however, a direct correlation between the characteristics of the pre-lens tear film and the symptoms associated with contact lens discomfort has yet to be established. In addition, there is relatively limited knowledge relating to the entire tear film kinetics during the inter-blink period in contact lens wearers. The purpose of this analysis was to identify the characteristics of the pre-lens tear film kinetics that may be associated with the symptoms of contact lens discomfort. The study population comprised 202 soft (hydrogel and silicone hydrogel) contact lens wearers attending pre-screening visits at the OTG-i research clinic. All participants completed the Ocular Surface Disease Index (OSDI) questionnaire and the tear film was quantified via post hoc, masked analysis of high definition digital Tearscope videos recorded at the visit. The tear film kinetics of the least symptomatic wearers (OSDI lowest quintile scores, n = 45) were compared to the tear film kinetics of the most symptomatic wearers (OSDI highest quintile scores, n = 43). The hypothesis tested was that the tear film kinetics of asymptomatic wearers were better than tear film kinetics of symptomatic wearers. The distribution of lens types worn was as follows: Daily Disposable 46.5%, 1-Month Replacement 39.6%, and 2-Week Replacement 13.6%. 48.2% of lenses were silicone hydrogel and 51.8% hydrogel. Symptomatic wearers had a shorter break-up time (4.7 s vs. 6.0 s; p = 0.003), lesser surface coverage by the tear film during the interblink period (95.1% vs. 98.5%; p < 0.001) and greater surface exposure at the time of the blink (9.4% vs. 3.9%; p = 0.001). The current study demonstrated that the tear film kinetics of asymptomatic and symptomatic contact lens wearers were different, the findings supporting the hypothesis of poorer tear film kinetics for symptomatic than asymptomatic wearers in a general contact lens wearing population.
Kuhman, Daniel; Melcher, Daniel; Paquette, Max R
2016-01-01
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.
NASA Astrophysics Data System (ADS)
Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke
2013-12-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.
Pekař, Miloslav
2018-01-01
Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.
Dikshit, Pritam Kumar; Moholkar, Vijayanand S
2016-09-01
The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wave energetics of the southern hemisphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2018-07-01
An assessment of the energetics of transient waves in the southern hemisphere of Mars is presented using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. The dataset is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for three Mars years. Spring eddies are the most intense, with eddies during the fall being less intense due to a marginally more stable mean-temperature profile and reduced recirculation of ageostrophic geopotential fluxes compared to the spring. Eddy kinetic energy during winter is reduced in intensity as a result of the winter solstitial pause in wave activity, and eddy kinetic energy during the summer is limited. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter as a result of a stabilized vertical temperature profile. Barotropic energy conversion acts as both a source and a sink of eddy kinetic energy, being most positive during the solstitial pause. Eddies take a northwest to southeast track across the southern highlands in the fall but have a more zonal track in the spring due to stronger eddy kinetic energy advection. Wave energetics is less intense in the southern compared to the northern hemisphere as a result of a shallower baroclinically unstable vertical profile.
A century of enzyme kinetic analysis, 1913 to 2013.
Johnson, Kenneth A
2013-09-02
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Simulation of Decomposition Kinetics of Supercooled Austenite in Powder Steel
NASA Astrophysics Data System (ADS)
Tsyganova, M. S.; Ivashko, A. G.; Polyshuk, I. N.; Nabatov, R. I.; Tsyganova, A. I.
2017-10-01
To approve heat treatment of steel modes, quantitative data on austenite decomposition are required. Gaining these data experimentally appears to be extremely complicated. In present work, few approaches to simulate the phase transformation process are proposed considering structure characteristics of powder steels. Results of comparative analysis of these approaches are also given. Predicting the transformation kinetics by simulation is verified for PK40N2M (0.38% C, 2.10% Ni, 0.40% Mo) steel with 3% porosity and PK80 (0.80% C) steel with different porosity using published experimental data.
Brasil, Edikarlos M; Canavieira, Luciana M; Cardoso, Érica T C; Silva, Edilene O; Lameira, Jerônimo; Nascimento, José L M; Eifler-Lima, Vera L; Macchi, Barbarella M; Sriram, Dharmarajan; Bernhardt, Paul V; Silva, José Rogério Araújo; Williams, Craig M; Alves, Cláudio N
2017-11-01
Inhibition of mushroom tyrosinase was observed with synthetic dihydropyrano[3,2-b]chromenediones. Among them, DHPC04 displayed the most potent tyrosinase inhibitory activity with a K i value of 4 μm, comparable to the reference standard inhibitor kojic acid. A kinetic study suggested that these synthetic heterocyclic compounds behave as competitive inhibitors for the L-DOPA binding site of the enzyme. Furthermore, molecular modeling provided important insight into the mechanism of binding interactions with the tyrosinase copper active site. © 2017 John Wiley & Sons A/S.
Wilk, Małgorzata; Magdziarz, Aneta; Gajek, Marcin; Zajemska, Monika; Jayaraman, Kandasamy; Gokalp, Iskender
2017-11-01
A novel approach, linking both experiments and modelling, was applied to obtain a better understanding of combustion characteristics of torrefied biomass. Therefore, Pine, Acacia and Miscanthus giganteus have been investigated under 260°C, 1h residence time and argon atmosphere. A higher heating value and carbon content corresponding to a higher fixed carbon, lower volatile matter, moisture content, and ratio O/C were obtained for all torrefied biomass. TGA analysis was used in order to proceed with the kinetics study and Chemkin calculations. The kinetics analysis demonstrated that the torrefaction process led to a decrease in Ea compared to raw biomass. The average Ea of pine using the KAS method changed from 169.42 to 122.88kJ/mol. The changes in gaseous products of combustion were calculated by Chemkin, which corresponded with the TGA results. The general conclusion based on these investigations is that torrefaction improves the physical and chemical properties of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Póvoa, Pedro; Martin-Loeches, Ignacio; Ramirez, Paula; Bos, Lieuwe D; Esperatti, Mariano; Silvestre, Joana; Gili, Gisela; Goma, Gemma; Berlanga, Eugenio; Espasa, Mateu; Gonçalves, Elsa; Torres, Antoni; Artigas, Antonio
2017-10-01
Our aim was to evaluate the role of biomarker kinetics in the assessment of ventilator-associated pneumonia (VAP) response to antibiotics. We performed a prospective, multicenter, observational study to evaluate in 37 microbiologically documented VAP, the kinetics of C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM). The kinetics of each variable, from day 1 to 6 of therapy, was assessed with a time dependent analysis comparing survivors and non-survivors. During the study period kinetics of CRP as well as its relative changes, CRP-ratio, was significantly different between survivors and non-survivors (p=0.026 and p=0.005, respectively). On day 4 of antibiotic therapy, CRP of survivors was 47% of the initial value while it was 96% in non-survivors. The kinetics of other studied variables did not distinguish between survivors and non-survivors. In survivors the bacterial load also decreased markedly. Adequate initial antibiotic therapy was associated with lower mortality (p=0.025) and faster CRP decrease (p=0.029). C-reactive protein kinetics can be used to identify VAP patients with poor outcome as soon as four days after the initiation of treatment. (Trial registration - NCT02078999; registered 3 August 2012). Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Claire; Bloomer, Breaunnah E.; Provis, John L.
2012-05-16
With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, includingmore » the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.« less
Shcherbinin, Sergey; Schwarz, Adam J; Joshi, Abhinay; Navitsky, Michael; Flitter, Matthew; Shankle, William R; Devous, Michael D; Mintun, Mark A
2016-10-01
We report kinetic modeling results of dynamic acquisition data from 0 to 100 min after injection with the tau PET tracer 18 F-AV-1451 in 19 subjects. Subjects were clinically diagnosed as 4 young cognitively normal, 5 old cognitively normal, 5 mild cognitive impairment, and 5 Alzheimer disease (AD). Kinetic modeling was performed using Logan graphical analysis with the cerebellum crus as a reference region. Voxelwise binding potential ([Formula: see text]) and SUV ratio ([Formula: see text]) images were compared. In AD subjects, slower and spatially nonuniform clearance from cortical regions was observed as compared with the controls, which led to focal uptake and elevated retention in the imaging data from 80 to 100 min after injection. BP from the dynamic data from 0 to 100 min correlated strongly (R 2 > 0.86) with corresponding regional [Formula: see text] values. In the putamen, the observed kinetics (positive [Formula: see text] at the tracer delivery stage and plateauing time-SUVR curves for all diagnostic categories) may suggest either additional off-target binding or a second binding site with different kinetics. The kinetics of the 18 F-AV-1451 tracer in cortical areas, as examined in this small group of subjects, differed by diagnostic stage. A delayed 80- to 100-min scan provided a reasonable substitute for a dynamic 0- to 100-min acquisition for cortical regions although other windows (e.g., 75-105 min) may be useful to evaluate. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Peigney, B. E.; Larroche, O.; Tikhonchuk, V.
2014-12-01
In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.
[Analysis of hydrodynamics parameters of runoff erosion and sediment-yielding on unpaved road].
Huang, Peng-Fei; Wang, Wen-Long; Luo, Ting; Wang, Zhen; Wang, Zheng-Li; Li, Ren
2013-02-01
By the method of field runoff washout experiment, a simulation study was conducted on the relationships between the soil detachment rate and the hydrodynamic parameters on unpaved road, and the related quantitative formulas were established. Under the conditions of different flow discharges and road gradients, the averaged soil detachment rate increased with increasing flow discharge and road gradient, and the relationships between them could be described by a power function. As compared with road gradient, flow discharge had greater effects on the soil detachment rate. The soil detachment rate had a power relation with water flow velocity and runoff kinetic energy, and the runoff kinetic energy was of importance to the soil detachment rate. The soil detachment rate was linearly correlated with the unit runoff kinetic energy. The averaged soil erodibility was 0.120 g m-1.J-F-1, and the averaged critical unit runoff kinetic energy was 2.875 g.m-1.J-1. Flow discharge, road gradient, and unit runoff kinetic energy could be used to accurately describe the soil erosion process and calculate the soil erosion rate on unpaved road.
Catalytic Effect of Pd Clusters in the Poly( N-vinyl-2-pyrrolidone) Combustion
NASA Astrophysics Data System (ADS)
Schiavo, L.; De Nicola, S.; Carotenuto, G.
2018-01-01
Pd(0) is able to catalyze oxygen-involving reactions because of its capability to convert molecular oxygen to the very reactive atomic form. Consequently, the embedding of a little amount of Pd(0) clusters in polymeric phases can be technologically exploited to enhance the incineration kinetic of these polymers. The effect of nanostructuration on the Pd(0) catalytic activity in the polymer incineration reaction has been studied using poly( N-vinyl-2-pyrrolidone) ( \\overline{Mw} = 10,000 gmol-1) as polymeric model system. A change in the PVP incineration kinetic mechanism with significant increase in the reaction rate was experimentally found. The kinetic of the Pd(0)-catalyzed combustion has been studied by isothermal thermogravimetric analysis. After a short induction time, the combustion in presence of Pd(0) clusters shifted to a zero-order kinetic from a second-order kinetic control, which is operative in pure PVP combustion reaction. In addition, the activation energy resulted much lowered compared to the pure PVP incineration case (from 300 to 260 kJ/mol).
Bērziņš, Agris; Actiņš, Andris
2014-06-01
The dehydration kinetics of mildronate dihydrate [3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propionate dihydrate] was analyzed in isothermal and nonisothermal modes. The particle size, sample preparation and storage, sample weight, nitrogen flow rate, relative humidity, and sample history were varied in order to evaluate the effect of these factors and to more accurately interpret the data obtained from such analysis. It was determined that comparable kinetic parameters can be obtained in both isothermal and nonisothermal mode. However, dehydration activation energy values obtained in nonisothermal mode showed variation with conversion degree because of different rate-limiting step energy at higher temperature. Moreover, carrying out experiments in this mode required consideration of additional experimental complications. Our study of the different sample and experimental factor effect revealed information about changes of the dehydration rate-limiting step energy, variable contribution from different rate limiting steps, as well as clarified the dehydration mechanism. Procedures for convenient and fast determination of dehydration kinetic parameters were offered. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peigney, B. E.; Larroche, O.; Tikhonchuk, V.
2014-12-15
In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effectsmore » on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.« less
A study of the extended-range forecasting problem blocking
NASA Technical Reports Server (NTRS)
Chen, T. C.; Marshall, H. G.; Shukla, J.
1981-01-01
Wavenumber frequency spectral analysis of a 90 day winter (Jan. 15 - April 14) wind field simulated by a climate experiment of the GLAS atmospheric circulation model is made using the space time Fourier analysis which is modified with Tukey's numerical spectral analysis. Computations are also made to examine how the model wave disturbances in the wavenumber frequency domain are maintained by nonlinear interactions. Results are compared with observation. It is found that equatorial easterlies do not show up in this climate experiment at 200 mb. The zonal kinetic energy and momentum transport of stationary waves are too small in the model's Northern Hemisphere. The wavenumber and frequency spectra of the model are generally in good agreement with observation. However, some distinct features of the model's spectra are revealed. The wavenumber spectra of kinetic energy show that the eastward moving waves of low wavenumbers have stronger zonal motion while the eastward moving waves of intermediate wavenumbers have larger meridional motion compared with observation. Furthermore, the eastward moving waves show a band of large spectral value in the medium frequency regime.
Buonaccorsi, Giovanni A; Roberts, Caleb; Cheung, Sue; Watson, Yvonne; O'Connor, James P B; Davies, Karen; Jackson, Alan; Jayson, Gordon C; Parker, Geoff J M
2006-09-01
The quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data is subject to model fitting errors caused by motion during the time-series data acquisition. However, the time-varying features that occur as a result of contrast enhancement can confound motion correction techniques based on conventional registration similarity measures. We have therefore developed a heuristic, locally controlled tracer kinetic model-driven registration procedure, in which the model accounts for contrast enhancement, and applied it to the registration of abdominal DCE-MRI data at high temporal resolution. Using severely motion-corrupted data sets that had been excluded from analysis in a clinical trial of an antiangiogenic agent, we compared the results obtained when using different models to drive the tracer kinetic model-driven registration with those obtained when using a conventional registration against the time series mean image volume. Using tracer kinetic model-driven registration, it was possible to improve model fitting by reducing the sum of squared errors but the improvement was only realized when using a model that adequately described the features of the time series data. The registration against the time series mean significantly distorted the time series data, as did tracer kinetic model-driven registration using a simpler model of contrast enhancement. When an appropriate model is used, tracer kinetic model-driven registration influences motion-corrupted model fit parameter estimates and provides significant improvements in localization in three-dimensional parameter maps. This has positive implications for the use of quantitative DCE-MRI for example in clinical trials of antiangiogenic or antivascular agents.
Matosevic, S; Lye, G J; Baganz, F
2010-01-01
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.
Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard
2014-11-01
Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).
Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin
2014-12-01
The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Lee, Jung Yeol; Verboncoeur, John P.; Lee, Hae June
2018-04-01
The transition of electron energy probability functions (EEPFs) through the change of heating mode is an important issue in plasma science. A well-known example is that the increase of gas pressure, which was analyzed in terms of the ratio of the energy relaxation mean free path to the electrode gap distance, changes the EEPF from bi-Maxwellian to Maxwellian or Druyvesteyn. In this study, a new aspect of the temporal decay of kinetic energy during the energy relaxation time is theoretically analyzed and compared with a particle-in-cell Monte Carlo collision simulation of capacitively coupled plasmas. A fully kinetic description of electron transport and collisions shows drastic changes of EEPFs with the variation of the driving frequency due to the heating mode transition.
Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A
2017-11-01
Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki
2014-01-01
An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…
Determination of kinetic parameters for 123-I thyroid uptake in healthy Japanese
NASA Astrophysics Data System (ADS)
Kusuhara, Hiroyuki; Maeda, Kazuya
2017-09-01
The purpose of this study was to compare the kinetic parameters for iodide thyroid accumulation in Japanese today with previously reported values. We determined the thyroid uptake of 123-I at 24 hours after the oral administration in healthy male Japanese without any diet restriction. The mean value was 16.1±5.4%, which was similar or rather lower than those previously reported in Japan (1958-1972). Kinetic model analysis was conducted to obtain the clearance for thyroid uptake from the blood circulation. The thyroid uptake clearance of 123-I was 0.540±0.073 ml/min, which was almost similar to those reported previously. There is no obvious difference in the thyroid uptake for 24 hours, and kinetic parameters in healthy Japanese for these 50 years. The fraction of distributed to the thyroid gland is lower than the ICRP reference man, and such difference must be taken into consideration to estimate the radiation exposure upon Fukushima accident in Japan.
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blais, AR; Dekaban, M; Lee, T-Y
2014-08-15
Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less
Dynamic analysis of apoptosis using cyanine SYTO probes: From classical to microfluidic cytometry
Wlodkowic, Donald; Skommer, Joanna; Faley, Shannon; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.
2013-01-01
Cell death is a stochastic process, often initiated and/or executed in a multi-pathway/multi-organelle fashion. Therefore, high-throughput single-cell analysis platforms are required to provide detailed characterization of kinetics and mechanisms of cell death in heterogeneous cell populations. However, there is still a largely unmet need for inert fluorescent probes, suitable for prolonged kinetic studies. Here, we compare the use of innovative adaptation of unsymmetrical SYTO dyes for dynamic real-time analysis of apoptosis in conventional as well as microfluidic chip-based systems. We show that cyanine SYTO probes allow non-invasive tracking of intracellular events over extended time. Easy handling and “stain–no wash” protocols open up new opportunities for high-throughput analysis and live-cell sorting. Furthermore, SYTO probes are easily adaptable for detection of cell death using automated microfluidic chip-based cytometry. Overall, the combined use of SYTO probes and state-of-the-art Lab-on-a-Chip platform emerges as a cost effective solution for automated drug screening compared to conventional Annexin V or TUNEL assays. In particular, it should allow for dynamic analysis of samples where low cell number has so far been an obstacle, e.g. primary cancer stems cells or circulating minimal residual tumors. PMID:19298813
Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models
NASA Astrophysics Data System (ADS)
Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba
2017-06-01
G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.
Nobrega, R Paul; Brown, Michael; Williams, Cody; Sumner, Chris; Estep, Patricia; Caffry, Isabelle; Yu, Yao; Lynaugh, Heather; Burnina, Irina; Lilov, Asparouh; Desroches, Jordan; Bukowski, John; Sun, Tingwan; Belk, Jonathan P; Johnson, Kirt; Xu, Yingda
2017-10-01
The state-of-the-art industrial drug discovery approach is the empirical interrogation of a library of drug candidates against a target molecule. The advantage of high-throughput kinetic measurements over equilibrium assessments is the ability to measure each of the kinetic components of binding affinity. Although high-throughput capabilities have improved with advances in instrument hardware, three bottlenecks in data processing remain: (1) intrinsic molecular properties that lead to poor biophysical quality in vitro are not accounted for in commercially available analysis models, (2) processing data through a user interface is time-consuming and not amenable to parallelized data collection, and (3) a commercial solution that includes historical kinetic data in the analysis of kinetic competition data does not exist. Herein, we describe a generally applicable method for the automated analysis, storage, and retrieval of kinetic binding data. This analysis can deconvolve poor quality data on-the-fly and store and organize historical data in a queryable format for use in future analyses. Such database-centric strategies afford greater insight into the molecular mechanisms of kinetic competition, allowing for the rapid identification of allosteric effectors and the presentation of kinetic competition data in absolute terms of percent bound to antigen on the biosensor.
Howe, A; Campbell, A; Ng, L; Hall, T; Hopper, D
2015-08-01
The purpose of this study was to compare the effects of Mulligan's tape (MT) and kinesio tape (KT) with no tape (NT) on hip and knee kinematics and kinetics during running. Twenty-nine female recreational runners performed a series of 'run-throughs' along a 10-m runway under the three taping conditions. Two force plates and a 14-camera Vicon motion analysis system (Oxford Metrics, Inc., Oxford, UK) captured kinematic and kinetic data for each dependent variable from ground contact to toe off. Comparisons of each dependent variable under three taping conditions were assessed through Statistical Package for the Social Sciences (SPSS; SPSS, Inc., Chicago, Illinois, USA; P-value < 0.01) using repeated measure analyses of variance. For each dependent variable with a P-value < 0.01, repeated measures with pairwise comparisons and Bonferroni adjustment were conducted to compare the three taping conditions. MT induced a significant reduction in anterior and posterior hip forces, knee flexion angular velocity, knee extensor moments, and hip flexion and extension moments compared with NT and KT (P = 0.001). There was no difference in hip or knee, kinematics or kinetics, between KT and NT (P = 1.000). MT appears to influence hip and knee biomechanics during running in an asymptomatic sample, whereas KT appeared to be biomechanically not different from NT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C
2009-04-01
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners.
Mündermann, Anne; Nigg, Benno M; Humble, R Neil; Stefanyshyn, Darren J
2003-10-01
The purpose of this study was to determine the relationship between differences in comfort and changes in lower extremity kinematic and kinetic variables and muscle activity in response to foot orthoses. Twenty-one recreational runners volunteered for this study. Three orthotic conditions (posting, custom-molding, and posting and custom-molding) were compared with a control (flat) insert. Lower extremity kinematic, kinetic, and EMG data were collected for 108 trials per subject and condition in nine sessions per subject for overground running at 4 m.s-1. Comfort for all orthotic conditions was assessed in each session using a visual analog scale. The statistical tests used included repeated measures ANOVA, linear regression analysis, and discriminant analysis (alpha = 0.05). Comfort ratings were significantly different between orthotic conditions and the control condition ([lower, upper] confidence limits; posting: [-3.1, -0.8]; molding: [0.4, 3.4]; and posting and molding: [-1.1, 1.9]); 34.9% of differences in comfort were explained by changes in 15 kinematic, kinetic, and EMG variables. The 15 kinematic, kinetic, and EMG variables that partially explained differences in comfort classified 75.0% of cases correctly to the corresponding orthotic condition. In general, comfort is an important and relevant feature of foot orthoses. Evaluations of foot orthoses using comfort do not only reflect subjective perceptions but also differences in functional biomechanical variables. Future research should focus on defining the relationship between comfort and biomechanical variables for material modifications of footwear, different modes of locomotion, and the general population.
Liang, Yuan; Wang, Jing; Fei, Fuhuan; Sun, Huanmei; Liu, Ting; Li, Qian; Zhao, Xinfeng; Zheng, Xiaohui
2018-02-23
Investigations of drug-protein interactions have advanced our knowledge of ways to design more rational drugs. In addition to extensive thermodynamic studies, ongoing works are needed to enhance the exploration of drug-protein binding kinetics. In this work, the beta2-adrenoceptor (β 2 -AR) was immobilized on N, N'-carbonyldiimidazole activated amino polystyrene microspheres to prepare an affinity column (4.6 mm × 5.0 cm, 8 μm). The β 2 -AR column was utilized to determine the binding kinetics of five drugs to the receptor. Introducing peak profiling method into this receptor chromatographic analysis, we determined the dissociation rate constants (k d ) of salbutamol, terbutaline, methoxyphenamine, isoprenaline hydrochloride and ephedrine hydrochloride to β 2 -AR to be 15 (±1), 22 (±1), 3.3 (±0.2), 2.3 (±0.2) and 2.1 (±0.1) s -1 , respectively. The employment of nonlinear chromatography (NLC) in this case exhibited the same rank order of k d values for the five drugs bound to β 2 -AR. We confirmed that both the peak profiling method and NLC were capable of routine measurement of receptor-drug binding kinetics. Compared with the peak profiling method, NLC was advantageous in the simultaneous assessment of the kinetic and apparent thermodynamic parameters. It will become a powerful method for high throughput drug-receptor interaction analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of mutation, truncation and temperature on the folding kinetics of a WW domain
Maisuradze, Gia G.; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A.
2013-01-01
The purpose of this work is to show how mutation, truncation and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis (PCA) of molecular dynamics (MD)-generated folding trajectories of the triple β-strand WW domain from the Formin binding protein 28 (FBP) [PDB: 1E0L] and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement, (MSD), and PCA eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992
Cento, Valeria; Nguyen, Thi Huyen Tram; Di Carlo, Domenico; Biliotti, Elisa; Gianserra, Laura; Lenci, Ilaria; Di Paolo, Daniele; Calvaruso, Vincenza; Teti, Elisabetta; Cerrone, Maddalena; Romagnoli, Dante; Melis, Michela; Danieli, Elena; Menzaghi, Barbara; Polilli, Ennio; Siciliano, Massimo; Nicolini, Laura Ambra; Di Biagio, Antonio; Magni, Carlo Federico; Bolis, Matteo; Antonucci, Francesco Paolo; Di Maio, Velia Chiara; Alfieri, Roberta; Sarmati, Loredana; Casalino, Paolo; Bernardini, Sergio; Micheli, Valeria; Rizzardini, Giuliano; Parruti, Giustino; Quirino, Tiziana; Puoti, Massimo; Babudieri, Sergio; D’Arminio Monforte, Antonella; Andreoni, Massimo; Craxì, Antonio; Angelico, Mario; Pasquazzi, Caterina; Taliani, Gloria; Guedj, Jeremie; Ceccherini-Silberstein, Francesca
2017-01-01
Background Intracellular HCV-RNA reduction is a proposed mechanism of action of direct-acting antivirals (DAAs), alternative to hepatocytes elimination by pegylated-interferon plus ribavirin (PR). We modeled ALT and HCV-RNA kinetics in cirrhotic patients treated with currently-used all-DAA combinations to evaluate their mode of action and cytotoxicity compared with telaprevir (TVR)+PR. Study design Mathematical modeling of ALT and HCV-RNA kinetics was performed in 111 HCV-1 cirrhotic patients, 81 treated with all-DAA regimens and 30 with TVR+PR. Kinetic-models and Cox-analysis were used to assess determinants of ALT-decay and normalization. Results HCV-RNA kinetics was biphasic, reflecting a mean effectiveness in blocking viral production >99.8%. The first-phase of viral-decline was faster in patients receiving NS5A-inhibitors compared to TVR+PR or sofosbuvir+simeprevir (p<0.001), reflecting higher efficacy in blocking assembly/secretion. The second-phase, noted δ and attributed to infected-cell loss, was faster in patients receiving TVR+PR or sofosbuvir+simeprevir compared to NS5A-inhibitors (0.27 vs 0.21 d-1, respectively, p = 0.0012). In contrast the rate of ALT-normalization, noted λ, was slower in patients receiving TVR+PR or sofosbuvir+simeprevir compared to NS5A-inhibitors (0.17 vs 0.27 d-1, respectively, p<0.001). There was no significant association between the second-phase of viral-decline and ALT normalization rate and, for a given level of viral reduction, ALT-normalization was more profound in patients receiving DAA, and NS5A in particular, than TVR+PR. Conclusions Our data support a process of HCV-clearance by all-DAA regimens potentiated by NS5A-inhibitor, and less relying upon hepatocyte death than IFN-containing regimens. This may underline a process of “cell-cure” by DAAs, leading to a fast improvement of liver homeostasis. PMID:28545127
Tkavadze, Levan; Dunker, Roy E; Brey, Richard R; Dudgeon, John
2016-11-01
The determination of uranium concentrations in natural water samples is of great interest due to the environmental consequences of this radionuclide. In this study, 380 groundwater samples from various locations within the state of Idaho were analyzed using two different techniques. The first method was Kinetic Phosphorescence Analysis (KPA), which gives the total uranium concentrations in water samples. The second analysis method was inductively coupled plasma mass spectrometry (ICP- MS). This method determines the total uranium concentration as well as the separate isotope concentrations of uranium. The U/U isotopic ratio was also measured for each sample to confirm that there was no depleted or enriched uranium present. The results were compared and mapped separately from each other. The study also found that in some areas of the state, natural uranium concentrations are relatively high.
Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources
NASA Astrophysics Data System (ADS)
Dai, Fa Foster
Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the electromagnetic radiation. The theoretical results delivered by the proposed model agree quite well with the experimental measurements in many aspects. Therefore, the proposed self-consistent model provides an efficient and reliable means for designing ICP sources in various applications such as VLSI fabrication and electrodeless light sources.
Huang, Lihan
2018-05-01
The objective of this study was to investigate the growth kinetics of Clostridium botulinum LNT01, a non-toxigenic mutant of C. botulinum 62A, in cooked ground beef. The spores of C. botulinum LNT01 were inoculated to ground beef and incubated anaerobically under different temperature conditions to observe growth and develop growth curves. A one-step kinetic analysis method was used to analyze the growth curves simultaneously to minimize the global residual error. The data analysis was performed using the USDA IPMP-Global Fit, with the Huang model as the primary model and the cardinal parameters model as the secondary model. The results of data analysis showed that the minimum, optimum, and maximum growth temperatures of this mutant are 11.5, 36.4, and 44.3 °C, and the estimated optimum specific growth rate is 0.633 ln CFU/g per h, or 0.275 log CFU/g per h. The maximum cell density is 7.84 log CFU/g. The models and kinetic parameters were validated using additional isothermal and dynamic growth curves. The resulting residual errors of validation followed a Laplace distribution, with about 60% of the residual errors within ±0.5 log CFU/g of experimental observations, suggesting that the models could predict the growth of C. botulinum LNT01 in ground beef with reasonable accuracy. Comparing with C. perfringens, C. botulinum LNT01 grows at much slower rates and with much longer lag times. Its growth kinetics is also very similar to C. sporogenes in ground beef. The results of computer simulation using kinetic models showed that, while prolific growth of C. perfringens may occur in ground beef during cooling, no growth of C. botulinum LNT01 or C. sporogenes would occur under the same cooling conditions. The models developed in this study may be used for prediction of the growth and risk assessments of proteolytic C. botulinum in cooked meats. Published by Elsevier Ltd.
Martín, Carmen
2014-01-01
Summary Zn(salen) complexes have been employed as active catalysts for the formation of cyclic carbonates from epoxides and CO2. A series of kinetic experiments was carried out to obtain information about the mechanism for this process catalyzed by these complexes and in particular about the order-dependence in catalyst. A comparative analysis was done between the binary catalyst system Zn(salphen)/NBu4I and a bifunctional system Zn(salpyr)·MeI with a built-in nucleophile. The latter system demonstrates an apparent second-order dependence on the bifunctional catalyst concentration and thus follows a different, bimetallic mechanism as opposed to the binary catalyst that is connected with a first-order dependence on the catalyst concentration and a monometallic mechanism. PMID:25161742
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties
NASA Astrophysics Data System (ADS)
Schmid, Sonja; Hugel, Thorsten
2018-03-01
Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.
Contin, Manuela; Lopane, Giovanna; Passini, Andrea; Poli, Ferruccio; Iannello, Carmelina; Guarino, Maria
2015-01-01
We compared levodopa (LD) kinetic-dynamic profile of a dose of LD/aromatic amino acid decarboxylase peripheral inhibitors versus a nominally equivalent dose of a commercial Mucuna pruriens (Mucuna) seeds extract in 2 patients with Parkinson disease chronically taking LD standard combined with self-prescribed Mucuna. Patients were challenged with a fasting morning dose of 100 mg LD/25 mg carbidopa (patient 1) or benserazide (patient 2) versus 100 mg LD from Mucuna capsules in 2 different sessions, after a 12-hour standard LD formulations' washout. They underwent kinetic-dynamic LD monitoring based on LD dose intake and simultaneous serial assessments of plasma drug concentrations and motor test performances. Quantitative analysis of LD in Mucuna capsules was also performed. Levodopa bioavailability was markedly lower after Mucuna administration compared with LD standard formulations: in patient 1, peak plasma LD concentration (Cmax) decreased from 2.0 to 1.0 mg/L and the area under the plasma concentration time curve from 137 to 33.6 mg/L per minute; in patient 2, Cmax was 0.7 mg/L after LD/benserazide and nearly undetectable after Mucuna. In patient 1, impaired LD bioavailability from Mucuna resulted in reduced duration and overall extent of drug response compared with LD/carbidopa. In patient 2, no significant subacute LD motor response was observed in either condition. Quantitative analysis of Mucuna formulation confirmed the 100 mg LD content for the utilized capsules. Our results show an impaired LD bioavailability from Mucuna preparation, as expected by the lacking aromatic amino acid decarboxylase inhibitors coadministration, which might explain the suggested lower dyskinetic potential of Mucuna compared with standard LD formulations.
Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
NASA Astrophysics Data System (ADS)
Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.
2017-10-01
Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.
Kinetic studies of divertor heat fluxes in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Chang, C. S.; Brunner, D.; Hughes, J. W.; Labombard, B.; Terry, J.
2010-11-01
The kinetic XGC0 code [C.S. Chang et al, Phys. Plasmas 11 (2004) 2649] is used to model the H- mode pedestal and SOL regions in Alcator C-Mod discharges. The self-consistent simulations in this study include kinetic neoclassical physics and anomalous transport models along with the ExB flow shear effects. The heat fluxes on the divertor plates are computed and the fluxes to the outer plate are compared with experimental observations. The dynamics of the radial electric field near the separatrix and in the SOL region are computed with the XGC0 code, and the effect of the anomalous transport on the heat fluxes in the SOL region is investigated. In particular, the particle and thermal diffusivities obtained in the analysis mode are compared with predictions from the theory-based anomalous transport models such as MMM95 [G. Bateman et al, Phys. Plasmas 5 (1998) 1793] and DRIBM [T. Rafiq et al, to appear in Phys. Plasmas (2010)]. It is found that there is a notable pinch effect in the inner separatrix region. Possible physical mechanisms for the particle and thermal pinches are discussed.
Schermerhorn, Kelly M.; Gardner, Andrew F.
2015-01-01
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179
Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis.
He, Yuyuan; Chang, Chun; Li, Pan; Han, Xiuli; Li, Hongliang; Fang, Shuqi; Chen, Junying; Ma, Xiaojian
2018-07-01
The thermal behavior and kinetics of Yiluo coal (YC) and the residues of fermented cornstalk (FC) were investigated in this study. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used for the kinetic analysis of the pyrolysis process. The results showed that the activation energy (E α ) was increased with the increase of the thermal conversion rate (α), and the average values of E α of YC, FC and the blend (m YC /m FC = 6/4) were 304.26, 224.94 and 233.46 kJ/mol, respectively. The order reaction model function for the blend was also developed by the master-plots method. By comparing the E a and the enthalpy, it was found that the blend was favored to format activated complex due to the lower potential energy barrier. Meanwhile, the average value of Gibbs free energy of the blend was 169.83 kJ/mol, and the changes of entropies indicated that the pyrolysis process was evolved from ordered-state to disordered-state. Copyright © 2018 Elsevier Ltd. All rights reserved.
Single-cell analysis of transcription kinetics across the cell cycle
Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido
2016-01-01
Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388
Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing.
Yu, B; Kienbacher, T; Growney, E S; Johnson, M E; An, K N
1997-05-01
The purpose of this study was to examine the intrasubject reproducibility of the kinematic and kinetic measures of the lower extremity during normal stair-climbing. Three-dimensional video and force-plate data were collected for three trials per subject during each of three conditions: ascending, descending, and level walking. Three-dimensional angles and moments of the ankle, knee, and hip joints were calculated. The coefficient of multiple correlation was used to determine the intrasubject reproducibility of joint angles and resultant moments. Analysis of variance with repeated measures was conducted to compare the magnitudes of the coefficients between different steps, different joints, and different joint functions. The results showed that (a) generally, the kinematic and kinetic measures of normal subjects climbing stairs were reproducible; (b) the kinetic measures during the transition steps from level walking to ascending and from descending to level walking were significantly less reproducible than those during the other steps; (c) the data from the sagittal plane were more reproducible than those from the other two planes; and (d) the kinetic measures were more reproducible than the kinematic measures, especially for abduction-adduction and internal-external rotation.
NASA Astrophysics Data System (ADS)
Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong
2007-10-01
The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring blood flow and vascular volume with the commercially available reference standard of the deconvolution-based approach. The lack of substantial agreement between the measurements of vascular transit time and permeability-surface area product may be attributed to the different tracer kinetic principles employed by both models and the detailed capillary tissue exchange physiological modeling of the DP technique.
Methods for Kinetic and Thermodynamic Analysis of Aminoacyl-tRNA Synthetases
Francklyn, Christopher S.; First, Eric A.; Perona, John J.; Hou, Ya-Ming
2008-01-01
The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion. PMID:18241792
Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?
Kiernan, D; Hosking, J; O'Brien, T
2016-03-01
Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.
Smith, Rebecca L.; da Costa, Ronaldo C.
2018-01-01
Background The efficacy of treatment of dogs with cervical spondylomyelopathy (CSM) is commonly based on the owner's and clinician's perception of the gait, which is highly subjective and suffers from observer bias. Hypothesis/Objectives To compare selected kinetic and kinematic parameters before and after treatments and to correlate the findings of gait analysis to clinical outcome. Animals Eight Doberman Pinschers with CSM confirmed by magnetic resonsance imaging. Methods Patients were prospectively studied and treated with either medical management (n = 5) or surgery (n = 3). Force plate analysis and 3‐D kinematic motion capture were performed at initial presentation and approximately 8 weeks later. Force plate parameters evaluated included peak vertical force (PVF). Kinematic parameters measured included number of pelvic limb strides, stifle flexion and extension, maximum and minimum thoracic limb distance, truncal sway, and thoracic limb stride duration. Results Kinematic analysis showed that deviation of the spine to the right (truncal sway) was significantly smaller (P < .001) and the degree of right stifle flexion was significantly larger (P = .029) after treatment. Force plate analysis indicated that PVF was significantly different after treatment (P = .049) and the difference of the PVF also was significantly larger (P = .027). However, no correlation was found with either method of gait analysis and clinical recovery. Conclusions and Clinical Importance Kinetic and kinematic gait analysis were able to detect differences in dogs with CSM before and after treatment. A correlation of gait analysis to clinical improvement could not be determined. PMID:29572944
Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation
2012-01-01
Background Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB’s). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. Conclusions We present two complementary methods for quantitative analysis of FLIP experiments in living cells. They provide spatial maps of exchange dynamics and absolute binding parameters of fluorescent molecules to moving intracellular entities, respectively. Our methods should be of great value for quantitative studies of intracellular transport. PMID:23148417
Combustor kinetic energy efficiency analysis of the hypersonic research engine data
NASA Astrophysics Data System (ADS)
Hoose, K. V.
1993-11-01
A one-dimensional method for measuring combustor performance is needed to facilitate design and development scramjet engines. A one-dimensional kinetic energy efficiency method is used for measuring inlet and nozzle performance. The objective of this investigation was to assess the use of kinetic energy efficiency as an indicator for scramjet combustor performance. A combustor kinetic energy efficiency analysis was performed on the Hypersonic Research Engine (HRE) data. The HRE data was chosen for this analysis due to its thorough documentation and availability. The combustor, inlet, and nozzle kinetic energy efficiency values were utilized to determine an overall engine kinetic energy efficiency. Finally, a kinetic energy effectiveness method was developed to eliminate thermochemical losses from the combustion of fuel and air. All calculated values exhibit consistency over the flight speed range. Effects from fuel injection, altitude, angle of attack, subsonic-supersonic combustion transition, and inlet spike position are shown and discussed. The results of analyzing the HRE data indicate that the kinetic energy efficiency method is effective as a measure of scramjet combustor performance.
Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics
NASA Astrophysics Data System (ADS)
Hoffmann, U.; Moore, A.; Drescher, U.
2013-02-01
During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.
Weight-bearing asymmetries during Sit-To-Stand in patients with mild-to-moderate hip osteoarthritis.
Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars; Snyder-Mackler, Lynn; Risberg, May Arna
2014-02-01
The Sit-To-Stand (STS) transition is a mechanically demanding task that may pose particular challenges for individuals with lower limb osteoarthritis (OA). Biomechanical features of STS have been investigated in patients with OA, but not in patients with early stage hip OA. The purpose of this study was to explore inter-limb weight-bearing asymmetries (WBA) and selected kinematic and kinetic variables during STS in patients with mild-to-moderate hip OA compared with healthy controls. Twenty-one hip OA patients and 23 controls were included in the study. Sagittal and frontal plane kinematic and kinetic data were collected using an eight-camera motion analysis system synchronized with two force plates embedded in the floor. There were no distinctive biomechanical alterations in sagittal or frontal plane kinematics or kinetics, movement time, or time to reach peak ground reaction force (GRF) in hip OA patients compared with controls. However, the hip OA patients revealed a distinct pattern of WBA compared with the controls, in unloading their involved limb by 18.4% at peak GRF. These findings indicate that patients with early stage hip OA are not yet forced into a stereotypical movement strategy for STS; however, the observed pattern of WBA requires clinical attention. Copyright © 2013 Elsevier B.V. All rights reserved.
D'Hondt, Matthias; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Wynendaele, Evelien; De Spiegeleer, Bart
2014-06-01
Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B 1 , caspofungin, daptomycin and gramicidin A 1 ), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D -value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ ( P max / P exp ) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.
Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long
2018-03-05
Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic
2016-12-01
Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.
Almeida, Matheus O; Davis, Irene S; Lopes, Alexandre D
2015-10-01
Systematic review with meta-analysis. To determine the biomechanical differences between foot-strike patterns used when running. Strike patterns during running have received attention in the recent literature due to their potential mechanical differences and associated injury risks. Electronic databases (MEDLINE, Embase, LILACS, SciELO, and SPORTDiscus) were searched through July 2014. Studies (cross-sectional, case-control, prospective, and retrospective) comparing the biomechanical characteristics of foot-strike patterns during running in distance runners at least 18 years of age were included in this review. Two independent reviewers evaluated the risk of bias. A meta-analysis with a random-effects model was used to combine the data from the included studies. Sixteen studies were included in the final analysis. In the meta-analyses of kinematic variables, significant differences between forefoot and rearfoot strikers were found for foot and knee angle at initial contact and knee flexion range of motion. A forefoot-strike pattern resulted in a plantar-flexed ankle position and a more flexed knee position, compared to a dorsiflexed ankle position and a more extended knee position for the rearfoot strikers, at initial contact with the ground. In the comparison of rearfoot and midfoot strikers, midfoot strikers demonstrated greater ankle dorsiflexion range of motion and decreased knee flexion range of motion compared to rearfoot strikers. For kinetic variables, the meta-analysis revealed that rearfoot strikers had higher vertical loading rates compared to forefoot strikers. There are differences in kinematic and kinetic characteristics between foot-strike patterns when running. Clinicians should be aware of these characteristics to help in the management of running injuries and advice on training.
Vavilin, V A; Rytov, S V
2015-09-01
A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ma, Xiao-Kui; Li, Le; Peterson, Eric Charles; Ruan, Tingting; Duan, Xiaoyi
2015-11-01
For the purpose of improving the fungal production of flavonoids, the influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp. P0988 was investigated by developing the corresponding kinetics of flavonoid production in a 7-L bioreactor. Phellinus sp. was confirmed to form flavonoids in pellets and broth when cultivated in basic medium, and the optimum concentration of NAA and coumarin in medium for flavonoid production were determined to be 0.03 and 0.02 g/L, respectively. The developed unstructured mathematical models were in good agreement with the experimental results with respect to flavonoid production kinetic profiles with NAA and coumarin supplementation at optimum levels and revealed significant accuracy in terms of statistical consistency and robustness. Analysis of these kinetic processes indicated that NAA and coumarin supplementations imposed a stronger positive influence on flavonoid production and substrate consumption compared to their effects on cell growth. The separate addition of NAA and coumarin resulted in enhancements in final product accumulation and productivity, achieving final flavonoid concentrations of 3.60 and 2.75 g/L, respectively, and glucose consumption showed a significant decrease compared to the non-supplemented control as well. Also, the separate presence of NAA and coumarin respectively decreased maintenance coefficients (M s) from 2.48 in the control to 1.39 and 0.22, representing decreases of 43.9 and 91.1 %, respectively. The current study is the first known application of mathematical kinetic models to explore the influence of medium components adding on flavonoid production by fungi.
CO 2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heldebrant, David
This report outlines the comprehensive bench-scale testing of the CO 2-binding organic liquids (CO 2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO 2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO 2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.
Ex-situ bioremediation of crude oil in soil, a comparative kinetic analysis.
Mohajeri, Leila; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Zahed, Mohammad Ali; Mohajeri, Soraya
2010-07-01
Weathered crude oil (WCO) removals in shoreline sediment samples were monitored for 60 days in bioremediation experimentation. Experimental modeling was carried out using statistical design of experiments. At optimum conditions maximum of 83.13, 78.06 and 69.92% WCO removals were observed for 2, 16 and 30 g/kg initial oil concentrations, respectively. Significant variations in the crude oil degradation pattern were observed with respect to oil, nutrient and microorganism contents. Crude oil bioremediation were successfully described by a first-order kinetic model. The study indicated that the rate of hydrocarbon biodegradation increased with decrease of crude oil concentrations.
Immersed boundary method for Boltzmann model kinetic equations
NASA Astrophysics Data System (ADS)
Pekardan, Cem; Chigullapalli, Sruti; Sun, Lin; Alexeenko, Alina
2012-11-01
Three different immersed boundary method formulations are presented for Boltzmann model kinetic equations such as Bhatnagar-Gross-Krook (BGK) and Ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model equations. 1D unsteady IBM solution for a moving piston is compared with the DSMC results and 2D quasi-steady microscale gas damping solutions are verified by a conformal finite volume method solver. Transient analysis for a sinusoidally moving beam is also carried out for the different pressure conditions (1 atm, 0.1 atm and 0.01 atm) corresponding to Kn=0.05,0.5 and 5. Interrelaxation method (Method 2) is shown to provide a faster convergence as compared to the traditional interpolation scheme used in continuum IBM formulations. Unsteady damping in rarefied regime is characterized by a significant phase-lag which is not captured by quasi-steady approximations.
Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth
2007-01-01
Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705
Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.
2018-01-01
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033
Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D
2012-01-01
Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084
Edwards, J Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle Nee; French, Alfred D; Condon, Brian D
2018-03-13
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity ( K m ) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased K m observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency ( k cat / K m ), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.
Kinetics of removal of intravenous testosterone pulses in normal men.
Veldhuis, Johannes D; Keenan, Daniel M; Liu, Peter Y; Takahashi, Paul Y
2010-04-01
Testosterone is secreted into the bloodstream episodically, putatively distributing into total, bioavailable (bio) nonsex hormone-binding globulin (nonSHBG-bound), and free testosterone moieties. The kinetics of total, bio, and free testosterone pulses are unknown. Design Adrenal and gonadal steroidogenesis was blocked pharmacologically, glucocorticoid was replaced, and testosterone was infused in pulses in four distinct doses in 14 healthy men under two different paradigms (a total of 220 testosterone pulses). Testosterone kinetics were assessed by deconvolution analysis of total, free, bioavailable, SHBG-bound, and albumin-bound testosterone concentration-time profiles. Independently of testosterone dose or paradigm, rapid-phase half-lives (min) of total, free, bioavailable, SHBG-bound, and albumin-bound testosterone were comparable at 1.4+/-0.22 min (grand mean+/-S.E.M. of geometric means). Slow-phase testosterone half-lives were highest for SHBG-bound testosterone (32 min) and total testosterone (27 min) with the former exceeding that of free testosterone (18 min), bioavailable testosterone (14 min), and albumin-bound testosterone (18 min; P<0.001). Collective outcomes indicate that i) the rapid phase of testosterone disappearance from point sampling in the circulation is not explained by testosterone dose; ii) SHBG-bound testosterone and total testosterone kinetics are prolonged; and iii) the half-lives of bioavailable, albumin-bound, and free testosterone are short. A frequent-sampling strategy comprising an experimental hormone clamp, estimation of hormone concentrations as bound and free moieties, mimicry of physiological pulses, and deconvolution analysis may have utility in estimating the in vivo kinetics of other hormones, substrates, and metabolites.
Gait Analysis of Symptomatic Flatfoot in Children: An Observational Study.
Kim, Ha Yong; Shin, Hyuck Soo; Ko, Jun Hyuck; Cha, Yong Han; Ahn, Jae Hoon; Hwang, Jae Yeon
2017-09-01
Flatfoot deformity is a lever arm disease that incurs kinetic inefficiency during gait. The purpose of this study was to measure the degree of kinetic inefficiency by comparing the gait analysis data of a flatfoot group with a normal control group. The patient group consisted of 26 children (21 males and 5 females) with symptomatic flatfoot. They were examined with gait analysis between May 2005 and February 2014. Exclusion criteria were patients with secondary flatfoot caused by neuromuscular disorders, tarsal coalition, vertical talus, or others. Patients' mean age was 9.5 years (range, 7 to 13 years). The gait analysis data of the study group and the normal control group were compared. The mean vertical ground reaction force (GRF) in the push-off phase was 0.99 for the patient group and 1.15 for the control group ( p < 0.05). The mean ankle moment in the sagittal plane during the push-off phase was 0.89 for the patient group and 1.27 for the control group ( p < 0.05). The mean ankle power in the sagittal plane during the push-off phase was 1.38 for the patient group and 2.52 for the control group ( p < 0.05). The aforementioned results show that patients with pes planovalgus had a reduction of moment, power, and GRF in the push-off phase during gait. Symptomatic flatfeet had a moment inefficiency of 30% and power inefficiency of 45% during gait compared to feet with preserved medial longitudinal arches.
From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.
Wang, Rong-Yao; Wang, Peng; Li, Jing-Liang; Yuan, Bing; Liu, Yu; Li, Li; Liu, Xiang-Yang
2013-03-07
Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.
Sun, Lijun; Gidley, Michael J.
2017-01-01
Scope This study aims to use a combination of biochemical and biophysical methods to derive greater mechanistic understanding of the interactions between tea polyphenols and porcine pancreatic α‐amylase (PPA). Methods and results The interaction mechanism was studied through fluorescence quenching (FQ), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) and compared with inhibition kinetics. The results showed that a higher quenching effect of polyphenols corresponded to a stronger inhibitory activity against PPA. The red‐shift of maximum emission wavelength of PPA bound with some polyphenols indicated a potential structural unfolding of PPA. This was also suggested by the decreased thermostability of PPA with these polyphenols in DSC thermograms. Through thermodynamic binding analysis of ITC and inhibition kinetics, the equilibrium of competitive inhibition was shown to result from the binding of particularly galloylated polyphenols with specific sites on PPA. There were positive linear correlations between the reciprocal of competitive inhibition constant (1/K ic), quenching constant (K FQ) and binding constant (K itc). Conclusion The combination of inhibition kinetics, FQ, DSC and ITC can reasonably characterize the interactions between tea polyphenols and PPA. The galloyl moiety is an important group in catechins and theaflavins in terms of binding with and inhibiting the activity of PPA. PMID:28618113
The myosin converter domain modulates muscle performance.
Swank, Douglas M; Knowles, Aileen F; Suggs, Jennifer A; Sarsoza, Floyd; Lee, Annie; Maughan, David W; Bernstein, Sanford I
2002-04-01
Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.
Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I
2017-09-21
The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.
Kumar, K Vasanth; Sivanesan, S
2006-08-25
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.
Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R
1993-01-01
A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361
Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir
2013-12-15
Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kinetic study of nickel laterite reduction roasting by palm kernel shell charcoal
NASA Astrophysics Data System (ADS)
Sugiarto, E.; Putera, A. D. P.; Petrus, H. T. B. M.
2017-05-01
Demand to process nickel-bearing laterite ore increase as continuous depletion of high-grade nickel-bearing sulfide ore takes place. Due to its common nickel association with iron, processing nickel laterite ore into nickel pig iron (NPI) has been developed by some industries. However, to achieve satisfying nickel recoveries, the process needs massive high-grade metallurgical coke consumption. Concerning on the sustainability of coke supply and positive carbon emission, reduction of nickel laterite ore using biomass-based reductor was being studied.In this study, saprolitic nickel laterite ore was being reduced by palm kernel shell charcoal at several temperatures (800-1000 °C). Variation of biomass-laterite composition was also conducted to study the reduction mechanism. X-ray diffraction and gravimetry analysis were applied to justify the phenomenon and predict kinetic model of the reduction. Results of this study provide information that palm kernel shell charcoal has similar reducing result compared with the conventional method. Reduction, however, was carried out by carbon monoxide rather than solid carbon. Regarding kinetics, Ginstling-Brouhnstein kinetic model provides satisfying results to predict the reduction phenomenon.
Force Plate Gait Analysis in Doberman Pinschers with and without Cervical Spondylomyelopathy
Foss, K.; da Costa, R.C.; Rajala-Shultz, P.J.; Allen, M.J.
2014-01-01
Background The most accepted means of evaluating the response of a patient with cervical spondylomyelopathy (CSM) to treatment is subjective and based on the owner and clinician's perception of the gait. Objective To establish and compare kinetic parameters based on force plate gait analysis between normal and CSM-affected Dobermans. Animals Nineteen Doberman Pinschers: 10 clinically normal and 9 with CSM. Methods Force plate analysis was prospectively performed in all dogs. At least 4 runs of ipsilateral limbs were collected from each dog. Eight force platform parameters were evaluated, including peak vertical force (PVF) and peak vertical impulse (PVI), peak mediolateral force (PMLF) and peak mediolateral impulse, peak braking force and peak braking impulse, and peak propulsive force (PPF) and peak propulsive impulse. In addition, the coefficient of variation (CV) for each limb was calculated for each parameter. Data analysis was performed by a repeated measures approach. Results PMLF (P = .0062), PVI (P = .0225), and PPF (P = .0408) were found to be lower in CSM-affected dogs compared with normal dogs. Analysis by CV as the outcome indicated more variability in PVF in CSM-affected dogs (P = 0.0045). The largest difference in the CV of PVF was seen in the thoracic limbs of affected dogs when compared with the thoracic limbs of normal dogs (P = 0.0019). Conclusions and Clinical Importance The CV of PVF in all 4 limbs, especially the thoracic limbs, distinguished clinically normal Dobermans from those with CSM. Other kinetic parameters less reliably distinguished CSM-affected from clinically normal Dobermans. PMID:23278957
Pulmonary O2 uptake on-kinetics in endurance- and sprint-trained master athletes.
Berger, N J A; Rittweger, J; Kwiet, A; Michaelis, I; Williams, A G; Tolfrey, K; Jones, A M
2006-12-01
The purpose of this study was to characterise the VO2 kinetic response to moderate intensity cycle exercise in endurance-trained (END) and sprint or power-trained (SPR) track and field master athletes ranging in age from 45 to 85 years. We hypothesised that the time constant (tau) describing the Phase II VO2 on-response would be smaller in the END compared to the SPR athletes, and that the tau would become greater with increasing age in both groups. Eighty-four master athletes who were competing at either the British or European Veteran Athletics Championships acted as subjects, and were classified as either END (800 m - marathon; n = 41), or SPR (100 - 400 m and field events; n = 43) specialists. Subjects completed two 6 minute "step" transitions to a work rate of moderate intensity on a cycle ergometer and pulmonary gas exchange was measured breath-by-breath. Analysis of variance revealed that SPR athletes had slower VO2 on-kinetics (i.e., greater tau) compared to END athletes at each of the age groups studied: 46 - 55 yrs (END: 25 +/- 6 vs. SPR: 36 +/- 9 s; p < 0.10), 56 - 65 yrs (END: 25 +/- 5 vs. SPR: 35 +/- 10 s; p < 0.05), 66 - 75 yrs (END: 29 +/- 10 vs. SPR: 40 +/- 13 s; p < 0.05), and 76 - 85 yrs (END: 31 +/- 10 vs. SPR: 51 +/- 18 s; p < 0.05). The VO2 on-kinetics became slower with advancing age in the SPR athletes (p < 0.05 between 56 - 65 and 76 - 85 yrs) but were not significantly changed in the END athletes. The slower VO2 on-kinetics in SPR compared to END master athletes is consistent both with differences in physiology (e.g., muscle fibre type, oxidative/glycolytic capacity) and training between these specialist athletes. Master END athletes have similar tau values to their younger counterparts (approximately 25 s) suggesting that participation in endurance exercise training limits the slowing of VO2 on-kinetics with age in this population.
ERIC Educational Resources Information Center
Brown, M. E.; Phillpotts, C. A. R.
1978-01-01
Discusses the principle of nonisothermal kinetics and some of the factors involved in such reactions, especially when considering the reliability of the kinetic parameters, compared to those of isothermal conditions. (GA)
ERIC Educational Resources Information Center
Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Castori, Marco; Celletti, Claudia; Albertini, Giorgio; Camerota, Filippo
2011-01-01
The aim of this study was to quantify the gait patterns of adults with joint hypermobility syndrome/Ehlers-Danlos syndrome (JHS/EDS-HT) hypermobility type, using Gait Analysis. We quantified the gait strategy in 12 JHS/EDS-HT adults individuals (age: 43.08 + 6.78 years) compared to 20 healthy controls (age: 37.23 plus or minus 8.91 years), in…
Lewan, M.D.; Ruble, T.E.
2002-01-01
This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.
Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State
Martí-Centelles, Vicente; Burguete, M. Isabel; Luis, Santiago V.
2012-01-01
Several kinetic models for the macrocyclization of a C2 pseudopeptide with a dihalide through a SN2 reaction have been developed. These models not only focus on the kinetic analysis of the main macrocyclization reaction, but also consider the competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes. PMID:22666148
Leijendekkers, Ruud A; Marra, Marco A; Kolk, Sjoerd; van Bon, Geert; Schreurs, B Wim; Weerdesteyn, Vivian; Verdonschot, Nico
2018-01-01
Untreated unilateral developmental dysplasia of the hip (DDH) results in asymmetry of gait and hip strength and may lead to early osteoarthritis, which is commonly treated with a total hip arthroplasty (THA). There is limited knowledge about the obtained symmetry of gait and hip strength after the THA. The objectives of this cross-sectional study were to: a) identify asymmetries between the operated and non-operated side in kinematics, kinetics and hip strength, b) analyze if increased walking speed changed the level of asymmetry in patients c) compare these results with those of healthy subjects. Women (18-70 year) with unilateral DDH who had undergone unilateral THA were eligible for inclusion. Vicon gait analysis system was used to collect frontal and sagittal plane kinematic and kinetic parameters of the hip joint, pelvis and trunk during walking at comfortable walking speed and increased walking speed. Furthermore, hip abductor and extensor muscle strength was measured. Six patients and eight healthy subjects were included. In the patients, modest asymmetries in lower limb kinematics and kinetics were present during gait, but trunk lateral flexion asymmetry was evident. Patients' trunk lateral flexion also differed compared to healthy subjects. Walking speed did not significantly influence the level of asymmetry. The hip abduction strength asymmetry of 23% was not statistically significant, but the muscle strength of both sides were significantly weaker than those of healthy subjects. In patients with a DDH treated with an IBG THA modest asymmetries in gait kinematics and kinetics were present, with the exception of a substantial asymmetry of the trunk lateral flexion. Increased walking speed did not result in increased asymmetries in gait kinematics and kinetics. Hip muscle strength was symmetrical in patients, but significantly weaker than in healthy subjects. Trunk kinematics should be included as an outcome measure to assess the biomechanical benefits of the THA surgery after DDH.
Shaik, Abdul Naveed; Grater, Richard; Lulla, Mukesh; Williams, David A; Gan, Lawrence L; Bohnert, Tonika; LeDuc, Barbara W
2016-01-01
Warfarin is an anticoagulant used in the treatment of thrombosis and thromboembolism. It is given as a racemic mixture of R and S enantiomers. These two enantiomers show differences in metabolism by CYPs: S-warfarin undergoes 7 hydroxylation by CYP2C9 and R-warfarin by CYP3A4 to form 10 hydroxy warfarin. In addition, warfarin is acted upon by different CYPs to form the minor metabolites 3'-hydroxy, 4'-hydroxy, 6-hydroxy, and 8-hydroxy warfarin. For analysis, separation of these metabolites is necessary since all have the same m/z ratio and similar fragmentation pattern. Enzyme kinetics for the formation of all of the six hydroxylated metabolites of warfarin from human liver microsomes were determined using an LC-MS/MS QTrap and LC-MS/MS with a differential mobility spectrometry (DMS) (SelexION™) interface to compare the kinetic parameters. These two methods were chosen to compare their selectivity and sensitivity. Substrate curves for 3'-OH, 4'-OH, 6-OH, 7-OH, 8-OH and 10-OH warfarin formation were generated to determine the kinetic parameters (Km and Vmax) in human liver microsomal preparations. The limit of quantitation (LOQ) for all the six hydroxylated metabolites of warfarin were in the range of 1-3nM using an LC-MS/MS QTrap method which had a run time of 22min. In contrast, the LOQ for all the six hydroxylated metabolites using DMS interface technology was 100nM with a run time of 2.8min. We compare these two MS methods and discuss the kinetics of metabolite formation for the metabolites generated from racemic warfarin. In addition, we show inhibition of major metabolic pathways of warfarin by sulfaphenazole and ketoconazole which are known specific inhibitors of CYP2C9 and CYP3A4 respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of Novel Warfarin-Silica Composite for Controlled Drug Release.
Parfenyuk, Elena V; Dolinina, Ekaterina S
2017-04-01
The work is devoted to synthesis and study of warfarin composites with unmodified, methyl and phenyl modified silica in order to develop controlled release formulation of the anticoagulant. The composites were prepared by two routes, adsorption and sol-gel, and characterized with FTIR spectroscopy, dynamic light scattering and DSC methods. The drug release behavior from the composites in media with pH 1.6, 6.8 and 7.4 was analyzed in vitro. The release kinetics of the warfarin - silica composites prepared by the two routes was compared among each other and with analogous silica composites with water soluble drug molsidomine. The comparative analysis showed that in general the kinetic regularities and mechanisms of release for both drugs are similar and determined by nonuniform distribution of the drugs over the silica matrixes and stability of the matrixes in the studied media for the adsorbed composites and uniformly distributed drug and more brittle structure for the sol-gel composites. The sol-gel composite of warfarin - phenyl modified silica is perspective for further development of novel warfarin formulation with controlled release because it releases warfarin according to zero-order kinetic law with approximately equal rate in the media imitating different segments of gastrointestinal tract.
Bai, Ying; Pei, Ziwei; Wu, Feng; Wu, Chuan
2018-03-21
The composites of M(BH 4 ) n -LiNH 2 (1/2 n molar ratio, n = 1 or 2, M = Ca, Mg, Li) were synthesized by liquid ball milling. Samples were characterized by X-ray diffraction, thermogravimetry-differential thermal analysis-mass spectroscopy (TG-DTA-MS), and kinetic models (Achar differential/Coats-Redfern integral method). The higher-electronegativity metal M in M(BH 4 ) n -4LiNH 2 (M = Ca, Mg) samples not only enables [BH 4 ] - group to release easily, so as to facilitate the interaction of [BH 4 ] - and [NH 2 ] - groups, but also restrains the NH 3 release and slightly decreases the onset dehydrogenation temperature concluded by TG-MS. Moreover, in stage 1 (200-350 °C), the kinetics performances of M(BH 4 ) n -4LiNH 2 (M = Ca, Mg) samples are distinctly improved, that is, the activation energies of them are reduced by ca. 30% compared to those of sample LiBH 4 -2LiNH 2 . The outstanding contribution of the replacement of M(BH 4 ) n with high-electronegativity metal ion is to both improve the kinetics performance by changing the kinetics mechanism and decrease the temperature range of the initial dehydrogenation region.
Günther, F; Scherrer, M; Kaiser, S J; DeRosa, A; Mutters, N T
2017-03-01
The aim of our study was to develop a new reproducible method for disinfectant efficacy testing on bacterial biofilms and to evaluate the efficacy of different disinfectants against biofilms. Clinical multidrug-resistant strains were chosen as test isolates to ensure practical relevance. We compared the standard qualitative suspension assay for disinfectant testing, which does not take into account biofilm formation, to the new biofilm viability assay that uses kinetic analysis of metabolic activity in biofilms after disinfectant exposure to evaluate disinfectant efficacy. In addition, the efficacy of four standard disinfectants to clinical isolates was tested using both methods. All tested disinfectants were effective against test isolates when in planktonic state using the standard qualitative suspension assay, while disinfectants were only weakly effective against bacteria in biofilms. Disinfectant efficacy testing on planktonic organisms ignores biofilms and overestimates disinfectant susceptibility of bacteria. However, biofilm forming, e.g. on medical devices or hospital surfaces, is the natural state of bacterial living and needs to be considered in disinfectant testing. Although bacterial biofilms are the predominant manner of bacterial colonization, most standard procedures for antimicrobial susceptibility testing and efficacy testing of disinfectants are adapted for application to planktonic bacteria. To our knowledge, this is the first study to use a newly developed microplate-based biofilm test system that uses kinetic analysis of the metabolic activity in biofilms, after disinfectant exposure, to evaluate disinfectant efficacy. Our study shows that findings obtained from disinfectant efficacy testing on planktonic bacteria cannot be extrapolated to predict disinfectant efficacy on bacterial biofilms of clinically relevant multidrug-resistant organisms. © 2016 The Society for Applied Microbiology.
Gender differences in joint biomechanics during walking: normative study in young adults.
Kerrigan, D C; Todd, M K; Della Croce, U
1998-01-01
The effect of gender on specific joint biomechanics during gait has been largely unexplored. Given the perceived, subjective, and temporal differences in walking between genders, we hypothesized that quantitative analysis would reveal specific gender differences in joint biomechanics as well. Sagittal kinematic (joint motion) and kinetic (joint torque and power) data from the lower limbs during walking were collected and analyzed in 99 young adult subjects (49 females), aged 20 to 40 years, using an optoelectronic motion analysis and force platform system. Kinetic data were normalized for both height and weight. Female and male data were compared graphically and statistically to assess differences in all major peak joint kinematic and kinetic values. Females had significantly greater hip flexion and less knee extension before initial contact, greater knee flexion moment in pre-swing, and greater peak mechanical joint power absorption at the knee in pre-swing (P < 0.0019 for each parameter). Other differences were noted (P < 0.05) that were not statistically significant when accounting for multiple comparisons. These gender differences may provide new insights into walking dynamics and may be important for both clinical and research studies in motivating the development of separate biomechanical reference databases for males and females.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chengshang; Fang, Zhigang Zak; Bowman, Robert C.
2015-10-01
In Part I, the cyclic stabilities of the kinetics of catalyzed MgH2 systems including MgH2–TiH2, MgH2–TiMn2, and MgH2–VTiCr were investigated, showing stable kinetics at 300 °C but deteriorations of the hydrogenation kinetics at temperatures below 150 °C. The present Part II describes the characterization of uncycled and cycled catalyzed MgH2 by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis shows the crystallite sizes of the Mg and MgH2 significantly increased after the cycling. The mean crystallite sizes of the catalysts (TiH2 and VTiCr) increased moderately after the cycling. SEMmore » and TEM imaging were used to compare the microstructures of uncycled (as-milled) and cycled materials, revealing a drastic change of the microstructure after 100 cycles. In particular, results from energy-dispersive spectroscopy (EDS) mapping show that a change of distribution of the catalyst particles in the Mg and MgH2 phase occurred during the cycling.« less
Flammability and oxidation kinetics of hydrophobic silica aerogels.
Li, Zhi; Cheng, Xudong; Shi, Long; He, Song; Gong, Lunlun; Li, Congcong; Zhang, Heping
2016-12-15
Silica aerogels (SAs) present great application prospects especially on thermal insulation, but their flammability is usually ignored. A combined study on the combustion behaviors and oxidation kinetics of hydrophobic silica aerogels prepared by ambient pressure drying (SA-apd) and supercritical drying (SA-sd) was performed by employing cone calorimeter and thermal analysis. The whole combustion process for SAs could be divided into three stages in which a fire propagation phenomenon was observed with the radial propagation velocity of 6.6-8.3cms -1 . Current investigations forcefully demonstrated that hydrophobic SAs were combustible and easy to flashover when exposed to a heat flux higher than 25kWm -2 . Compared between the two SAs, the SA-sd owned a less fire risk with presenting a less fire hazard and a lower smoke toxicity than those of SA-apd. The oxidation kinetics by Ozawa-Flynn-Wall method revealed that SA-sd had larger apparent activation energies than those of SA-apd which conformed to the thermal stability analysis by TG-DSC. Furthermore, a two-step combustion mechanism was proposed to explain the combustion behaviors of SAs. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Qi; Luo, Kun; Li, Xiao-ming; Wang, Dong-bo; Zheng, Wei; Zeng, Guang-ming; Liu, Jing-jin
2010-05-01
In this investigation, the effects of commercial enzyme preparation containing alpha amylase and neutral protease on hydrolysis of excess sludge and the kinetic analysis of hydrolysis process were evaluated. The results indicated that amylase treatment displayed higher hydrolysis efficiency than that of protease. VSS reduction greatly increased to 39.70% for protease and 54.24% for amylase at the enzyme dosage of 6% (w/w), respectively. The hydrolysis rate of sludge improved with temperature increasing from 40 to 50 degrees Celsius, which could be well described by the amended Arrhenius equation. Mixed-enzyme had great impact on sludge solubilisation than single enzyme. The mixture of two enzymes (protease:amylase=1:3) resulted in optimum hydrolysis efficiency, the efficiency of solids hydrolysis increased from 10% (control test) to 68.43% at the temperature of 50 degrees Celsius. Correspondingly, the concentration of reducing sugar and NH(4)(+)-N improved about 377% and 201%, respectively. According to the kinetic analysis of enzymatic hydrolysis process, VSS solubilisation process within prior 4 h followed first-order kinetics. Compared with control test, the hydrolysis rate improved significantly at 50 degrees Celsius when either single enzyme or mixed-enzyme was added. Copyright 2009. Published by Elsevier Ltd.
Rawat, Monica; Rawat, A P; Giri, Krishna; Rai, J P N
2013-08-01
Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin-Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber-Morris) revealed that the Langmuir model best correlated to experimental data, and Weber-Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu(2+), Mg(2+), Mn(2+) and Zn(2+) by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases
Su, Yan; Guengerich, F. Peter
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785
Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety.
Abee, T; Koomen, J; Metselaar, K I; Zwietering, M H; den Besten, H M W
2016-01-01
This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on Listeria monocytogenes, a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling-based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of L. monocytogenes wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.
2010-12-15
We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dosemore » and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.« less
3D Material Response Analysis of PICA Pyrolysis Experiments
NASA Technical Reports Server (NTRS)
Oliver, A. Brandon
2017-01-01
The PICA decomposition experiments of Bessire and Minton are investigated using 3D material response analysis. The steady thermoelectric equations have been added to the CHAR code to enable analysis of the Joule-heated experiments and the DAKOTA optimization code is used to define the voltage boundary condition that yields the experimentally observed temperature response. This analysis has identified a potential spatial non-uniformity in the PICA sample temperature driven by the cooled copper electrodes and thermal radiation from the surface of the test article (Figure 1). The non-uniformity leads to a variable heating rate throughout the sample volume that has an effect on the quantitative results of the experiment. Averaging the results of integrating a kinetic reaction mechanism with the heating rates seen across the sample volume yield a shift of peak species production to lower temperatures that is more significant for higher heating rates (Figure 2) when compared to integrating the same mechanism at the reported heating rate. The analysis supporting these conclusions will be presented along with a proposed analysis procedure that permits quantitative use of the existing data. Time permitting, a status on the in-development kinetic decomposition mechanism based on this data will be presented as well.
NASA Astrophysics Data System (ADS)
Alvanos, Michail; Christoudias, Theodoros
2017-10-01
This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.
Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution
NASA Astrophysics Data System (ADS)
Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong
2016-01-01
KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.
Phenytoin crystal growth rates in the presence of phosphate and chloride ions
NASA Astrophysics Data System (ADS)
Zipp, G. L.; Rodríguez-Hornedo, N.
1992-09-01
Phenytoin crystal growth kinetics have been measured as a function of supersaturation in pH 2.2 phosphoric acid and pH 2.2 hydrochloric acid solutions. Two different methods were used for the kinetic analysis. The first involved a zone-sensing device which provided an analysis of the distribution of crystals in a batch crystallizer. Crystal growth rates were calculated from the increase in the size of the distribution with time. In the second method, growth rates were evaluated from the change in size with time of individual crystals observed under an inverted microscope. The results from each method compare favorably. The use of both techniques provides an excellent opportunity to exploit the strengths of each: an average growth rate from a population of crystals from batch crystallization and insight into the effect of growth on the morphology of the crystals from the individual crystal measurements.
Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum.
Lee, Hye-Won; Jeon, Hye-Yeon; Choi, Hye-Jeong; Kim, Na-Ri; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; You, SangGuan; Shim, Jae-Hoon
2016-04-06
In this study, a novel α-amylase was cloned from Bifidobacterium longum and named BiLA. The enzyme exhibited optimal activity at 20 °C and a pH value of 5.0. Kinetic analysis using various carbohydrate substrates revealed that BiLA had the highest k(cat/)K(m) value for amylose. Interestingly, analysis of the enzymatic reaction products demonstrated that BiLA specifically catalyzed the hydrolysis of oligosaccharides and starches up to G5 from the nonreducing ends. To determine whether BiLA can be used to generate slowly digestible starch (SDS), starch was treated with BiLA, and the kinetic parameters were analyzed using porcine pancreatic α-amylase (PPA) and amyloglucosidase (AMG). Compared to normal starch, BiLA-treated starch showed lower k(cat)/K(m) values with PPA and AMG, suggesting that BiLA is a potential candidate for the production of SDS.
USDA-ARS?s Scientific Manuscript database
The growing incidence of chronic wounds in the world population has prompted increased interest in chronic wound dressings with protease-modulating activity and protease point of care sensors to treat and enable monitoring of elevated protease-based wound pathology. However, the overall design featu...
SathyaSelvabala, Vasanthakumar; Varathachary, Thiruvengadaravi Kadathur; Selvaraj, Dinesh Kirupha; Ponnusamy, Vijayalakshmi; Subramanian, Sivanesan
2010-08-01
In this study free fatty acids present in Azadirachta indica (Neem) oil were esterified with our synthesized phosphoric acid modified catalyst. During the esterification, the acid value was reduced from 24.4 to 1.8 mg KOH/g oil. Synthesized catalyst was characterized by NH(3) TPD, XRD, SEM, FTIR and TGA analysis. During phosphoric acid modification hydrophobic character and weak acid sites of the mordenite were increased, which lead to better esterification when compared to H-mordenite. A kinetic study demonstrates that the esterification reaction followed pseudo-first order kinetics. Thermodynamic studies were also done based on the Arrhenius model. (c) 2010 Elsevier Ltd. All rights reserved.
Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R
2001-02-01
The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.
Li, Xiaowei; Mei, Qingqing; Dai, Xiaohu; Ding, Guoji
2017-03-01
Thermogravimetric analysis, Gaussian-fit-peak model (GFPM), and distributed activation energy model (DAEM) were firstly used to explore the effect of anaerobic digestion on sequential pyrolysis kinetic of four organic solid wastes (OSW). Results showed that the OSW weight loss mainly occurred in the second pyrolysis stage relating to organic matter decomposition. Compared with raw substrate, the weight loss of corresponding digestate was lower in the range of 180-550°C, but was higher in 550-900°C. GFPM analysis revealed that organic components volatized at peak temperatures of 188-263, 373-401 and 420-462°C had a faster degradation rate than those at 274-327°C during anaerobic digestion. DAEM analysis showed that anaerobic digestion had discrepant effects on activation energy for four OSW pyrolysis, possibly because of their different organic composition. It requires further investigation for the special organic matter, i.e., protein-like and carbohydrate-like groups, to confirm the assumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
González-Martin, G; Lyndon, C; Sunkel, C
1998-11-01
The hepatic disposition of a new analgesic, SCP-1, a derivative of acetaminophen, was studied in the isolated perfused rat liver using a recirculating system. The aim of this study was to compare the kinetic parameters of this molecule with those of acetaminophen. Sprague-Dawley rat (230-330 g) livers were perfused for 2 h with 250 ml Krebs-Henseleit bicarbonate buffer containing SCP-1 or acetaminophen, 0.07 mmol l(-1) (n=4), 0.28 mmol l(-1) (n=4), and 0.8 mmol l(-1) (n=4) (approximately one, four and ten times the therapeutic doses in man, respectively). Perfusate samples were collected from the efflux at various times. The SCP-1 and acetaminophen perfusate concentrations were assayed by a HPLC method. Pharmacokinetic analysis was carried out using a computer program. There were significant differences between the hepatic kinetics of SCP-1 and those of acetaminophen. Thus, SCP-1 elimination half-life (mean 14.8+/-10.0 min) was shorter than that of the acetaminophen (186.1+/-27.7 min) (t=11.6, P=0.0001). While the half-life of SCP-1 increases with concentration, the half-life of acetaminophen remains constant as the concentration increases. The hepatic clearance was higher for SCP-1 than acetaminophen (mean 19.01+/-14.5 ml min(-1) vs. 1.29+/-0.08 ml min(-1), respectively) (t=2.44, P<0.05), and it behaved according to dose-dependent kinetics. The SCP-1 extraction ratio was higher (mean 0.63+/-0.49) than for acetaminophen (0.04+/-0.01) (t=2.41, P<0.05) and this parameter tended to decrease as the perfusate concentrations of SCP-1 increased. It was concluded that the hepatic kinetics of SCP-1 behaved according to dose-dependent kinetics, and statistically significant differences were found between pharmacokinetics parameters of both drugs studied. Copyright 1998 Elsevier Science B.V.
Bach, Quang-Vu; Chen, Wei-Hsin
2017-12-01
Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.
Katam, Keerthi; Bhattacharyya, Debraj
2018-05-12
Microalgae-based treatment systems have been successfully used for the polishing of domestic wastewater. Research is underway in studying the suitability of using these systems as main treatment units. This study focuses on comparing the performances of a mixed microalgal culture and an aerobic bacterial culture, based on the kinetic evaluation, in removing organic carbon from a kitchen wastewater. The two systems were operated at six different solid retention times (SRTs)-2, 4, 6, 8, 10, and 12 days in continuous mode. The influent and effluent samples were analyzed for chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), phosphates, and surfactants. Steady-state kinetics (k, K s , Y, and k d ) for organic carbon removal were obtained by fitting experimental data in linearized Michaelis-Menten and Monod equations. The mixed microalgal system showed similar or better performance in COD and TN removal (88 and 85%, respectively) when compared with the COD and TN removal by the aerobic bacterial system (89 and 48%). A maximum lipid yield of 40% (w/w of dry biomass) was observed in the microalgal system. Saturated fatty acids accounted for 50% of the total observed FAME species. The study indicates that the mixed microalgal culture is capable of treating kitchen wastewater and has the potential to replace aerobic bacteria in biological treatment systems in certain cases.
NASA Astrophysics Data System (ADS)
Dutta, Abhijit; Mondal, Achintya; Datta, Jayati
2015-06-01
Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.
NASA Astrophysics Data System (ADS)
Moaienla, T.; Bendangsenla, N.; David Singh, Th.; Sumitra, Ch.; Rajmuhon Singh, N.; Indira Devi, M.
2012-02-01
Spectral analysis of Nd(III) complexes with some amino acids viz.; glycine, L-alanine, L-phenylalanine and L-aspartic acid in the presence and absence of Ca 2+ was carried out in some organic solvents; CH 3OH, CH 3CN, DMF and dioxane using comparative absorption spectra of 4f-4f transitions. The study was carried out by evaluating various energy interaction parameters like Slator-Condon ( Fk), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding parameter ( b1/2), percent-covalency ( δ) by applying partial and multiple regression analysis. The values of oscillator strength ( Pobs) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been calculated. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( Pobs) and Tλ values, reveal the mode of binding with the different ligands. Kinetic studies for the complexation of Nd(III):glycine:Ca(II) have also been discussed at different temperatures in DMF medium and from it the values of activation energy ( Ea) and thermodynamic parameters like Δ H°, Δ S° and Δ G° for the complexation are evaluated.
NASA Astrophysics Data System (ADS)
Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.
2016-11-01
Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.
NASA Astrophysics Data System (ADS)
Bilyeu, Bryan
Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the unmodified epoxy, while the others showed much higher wear rates.
Human semen refrigeration at + 4 degrees C: bio-kinetic characteristics.
Dondero, Franco; Rossi, Tiziana; Delfino, Michele; Imbrogno, Norina; Cannistrà, Stefania; Mazzilli, Fernando
2006-01-01
The aim of our study was to evaluate the bio-kinetic characteristics of human semen refrigerated for different periods and to compare the effects of refrigeration at +4 degrees C against cryopreservation of human sperm at -196 degrees C. Semen was obtained from 30 male partners of infertile couples (infertile subjects) with the following semen profile: sperm count >or=10 x 10(6)/ml; progressive motility >or=20%; atypical forms <70% and white blood cells <1.0 x 10(6)/ml. Fifteen normospermic subjects were also selected as controls (control subjects). The following tests were carried out on basal, refrigerated and cryopreserved sperm: a) sperm kinetic properties (by Superimposed Image Analysis System); b) the Hypoosmotic Viability Test (HVT) (combined Hypoosmotic Swelling and Viability Test). The results of the study showed that the percentage recovery of kinetic properties and of HVT were optimum for up to 48 h. After refrigeration for 72 h, a drastic decrease in straight motility recovery was observed. No significant differences were observed between cryopreservation and refrigeration at +4 degrees C for 48 h for motility or HVT recoveries in samples from control subjects. However, in infertile subjects, a significant decrease in straight progressive motility and HVT recoveries was observed in cryopreserved samples compared to those refrigerated for 48 h. Neither refrigeration nor cryopreservation led to the growth of pathogenic bacteria in any of the cases studied. Based on the above results, refrigeration could represent a useful alternative to the cryopreservation method.
Effects of thigh holster use on kinematics and kinetics of active duty police officers.
Larsen, Louise Bæk; Tranberg, Roy; Ramstrand, Nerrolyn
2016-08-01
Body armour, duty belts and belt mounted holsters are standard equipment used by the Swedish police and have been shown to affect performance of police specific tasks, to decrease mobility and to potentially influence back pain. This study aimed to investigate the effects on gait kinematics and kinetics associated with use of an alternate load carriage system incorporating a thigh holster. Kinematic, kinetic and temporospatial data were collected using three dimensional gait analysis. Walking tests were conducted with nineteen active duty police officers under three different load carriage conditions: a) body armour and duty belt, b) load bearing vest, body armour and thigh holster and c) no equipment (control). No significant differences between testing conditions were found for temporospatial parameters. Range of trunk rotation was reduced for both load carriage conditions compared to the control condition (p<0.017). Range of hip rotation was more similar to the control condition when wearing thigh holster rather than the belt mounted hip holster (p<0.017). Moments and powers for both left and right ankles were significantly greater for both of the load carriage conditions compared to the control condition (p<0.017). This study confirms that occupational loads carried by police have a significant effect on gait kinematics and kinetics. Although small differences were observed between the two load carriage conditions investigated in this study, results do not overwhelmingly support selection of one design over the other. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sandhwar, Vishal Kumar; Prasad, Basheshwar
2017-12-01
In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silbernagel, Karin Grävare; Willy, Richard; Davis, Irene
2012-06-01
Case report. The Achilles tendon is the most frequently ruptured tendon, and the incidence of Achilles tendon rupture has increased in the last decade. The rupture generally occurs without any preceding warning signs, and therefore preinjury data are seldom available. This case represents a unique opportunity to compare preinjury running mechanics with postinjury evaluation in a patient with an Achilles tendon rupture. A 23-year-old female sustained a right complete Achilles tendon rupture while playing soccer. Running mechanics data were collected preinjury, as she was a healthy participant in a study on running analysis. In addition, patient-reported symptoms, physical activity level, strength, ankle range of motion, heel-rise ability, Achilles tendon length, and running kinetics were evaluated 1 year after surgical repair. During running, greater ankle dorsiflexion and eversion and rearfoot abduction were noted on the involved side postinjury when compared to preinjury data. In addition, postinjury, the magnitude of all kinetics data was lower on the involved limb when compared to the uninvolved limb. The involved side displayed differences in strength, ankle range of motion, heel rise, and tendon length when compared to the uninvolved side 1 year after injury. Despite a return to normal running routine and reports of only minor limitations with running, considerable changes were noted in running biomechanics 1 year after injury. Calf muscle weakness and Achilles tendon elongation were also found when comparing the involved and uninvolved sides.
Rubisco Catalytic Properties and Temperature Response in Crops1
2016-01-01
Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223
Rubisco Catalytic Properties and Temperature Response in Crops.
Hermida-Carrera, Carmen; Kapralov, Maxim V; Galmés, Jeroni
2016-08-01
Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. © 2016 American Society of Plant Biologists. All Rights Reserved.
Kinetic models in industrial biotechnology - Improving cell factory performance.
Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats
2014-07-01
An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
Escamilla, Rafael F; Fleisig, Glenn S; Groeschner, Dave; Akizuki, Ken
2017-12-01
In professional baseball pitchers, pitching biomechanics have not been examined for the slider, and the only known study for the curveball and changeup examined limited kinetics. Moreover, no known studies have investigated pitching biomechanics between strikes and balls. Purpose/Hypothesis: The purpose was to compare pitching biomechanics in professional baseball pitchers among the fastball, slider, curveball, and changeup and between balls and strikes. It was hypothesized that pitching kinematics and kinetics would be similar among the slider, fastball, and curveball; shoulder and elbow forces and torques would be significantly lower in the changeup; and pitching biomechanics would be similar between balls and strikes. Controlled laboratory study. Among 18 professional baseball pitchers, 38 reflective markers were positioned on the body and each player threw 32 to 40 maximum effort pitches-consisting of the fastball, curveball, slider, and changeup pitch types-from a regulation mound to a catcher. The markers were tracked by 18 high-speed 180-Hz cameras, and data were processed and run through a computer program to calculate 25 kinematic parameters, 7 kinetic parameters, and 4 temporal parameters for each pitch type and for both strikes and balls. A 2-way repeated-measures analysis of variance ( P < .01) was used to assess pitching biomechanical differences among pitch type and pitch result (balls vs strikes). During arm cocking, elbow varus torque was 8% to 9% greater in the fastball and slider compared with the changeup, shoulder horizontal adduction torque was 17% to 20% greater in the slider and curveball compared with the changeup, and shoulder anterior force was 13% greater in the curveball compared with the changeup. During arm deceleration, elbow flexor torque was 9% to 14% greater in the fastball compared with the curveball and changeup, and elbow and shoulder proximal forces were 10% to 14% greater in the fastball, slider, and curveball compared with the changeup. At ball release, forward trunk tilt was 16% to 19% greater in the fastball and curveball compared with the changeup, contralateral trunk tilt was 26% to 41% greater in the curveball compared with the slider and changeup, knee flexion was 18% greater in the changeup compared with the fastball, and the knee extended 7° more from lead foot contact to ball release in the fastball compared with the changeup. During arm cocking, pelvis angular velocity was 7% to 8% greater in the fastball compared with the curveball and changeup, and upper trunk angular velocity was 5% greater in the fastball compared with the changeup. During arm acceleration, shoulder internal rotation angular velocity was 6% to 7% greater in the fastball, slider, and curveball compared with the changeup, and ball velocity at ball release was 11% to 18% greater in the fastball compared with the slider, changeup, and curveball and 6% greater in the slider compared with the curveball. For all the kinematic, kinetic, and temporal parameters, analysis showed no significant differences between balls and strikes and no significant interactions between pitch type and pitch result. Nearly all kinetic differences among pitch types occurred between the changeup and the remaining 3 pitch types. Shoulder and elbow forces and torques and injury risk were greater among the fastball, slider, and curveball compared with the changeup but were similar among the fastball, slider, and curveball. Body segment and joint positions were similar among all pitch types at lead foot contact and at maximum shoulder external rotation; however, at ball release, throwing a fastball and curveball resulted in greater knee extension and more forward and contralateral trunk tilt compared with throwing a changeup and slider. Movement speeds for the pelvis, upper trunk, and shoulder were greatest in the fastball and least in the changeup and were generally similar among the fastball, slider, and curveball. The timing of when pelvis, upper trunk, elbow, and shoulder velocities occurred among the fastball, slider, curveball, and changeup was similar, and no kinematic or kinetic differences were noted between throwing balls and strikes. The results from the current study will help clinicians understand differences in pitching biomechanics in professional baseball pitchers among the fastball, slider, curveball, and changeup; the study provides limited insight into shoulder and elbow injury risk associated with different types of pitches.
Nucleation and Growth Kinetics from LaMer Burst Data.
Chu, Daniel B K; Owen, Jonathan S; Peters, Baron
2017-10-12
In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin
2018-03-01
A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin
2018-06-01
A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.
Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation.
Kayser, Veysel; Chennamsetty, Naresh; Voynov, Vladimir; Helk, Bernhard; Forrer, Kurt; Trout, Bernhardt L
2011-07-01
Understanding antibody aggregation is of great significance for the pharmaceutical industry. We studied the aggregation of five different therapeutic monoclonal antibodies (mAbs) with size-exclusion chromatography-high-performance liquid chromatography (SEC-HPLC), fluorescence spectroscopy, electron microscopy, and light scattering methods at various temperatures with the aim of gaining insight into the aggregation process and developing models of it. In particular, we find that the kinetics can be described by a second-order model and are non-Arrhenius. Thus, we develop a non-Arrhenius model to connect accelerated aggregation experiments at high temperature to long-term storage experiments at low temperature. We evaluate our model by predicting mAb aggregation and comparing it with long-term behavior. Our results suggest that the number of monomers and mAb conformations within aggregates vary with the size and age of the aggregates, and that only certain sizes of aggregates are populated in the solution. We also propose a kinetic model based on conformational changes of proteins and monomer peak loss kinetics from SEC-HPLC. This model could be employed for a detail analysis of mAb aggregation kinetics. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muta, K.; Nishimura, J.; Ideguchi, H.
1987-06-01
To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia veramore » compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.« less
Recruiting at the Edge: Kinetic Energy Inhibits Anchovy Populations in the Western Mediterranean
Ruiz, Javier; Macías, Diego; Rincón, Margarita M.; Pascual, Ananda; Catalán, Ignacio A.; Navarro, Gabriel
2013-01-01
The Strait of Gibraltar replenishes the Mediterranean with Atlantic waters through an intense eastward current known as the Atlantic Jet (AJ). The AJ fertilizes the southwestern Mediterranean and is considered to be the ultimate factor responsible for the comparatively high fish production of this region. Here, we perform an analysis of the available historical catches and catch per unit effort (CPUE), together with a long series of surface currents, kinetic energy and chlorophyll concentration. We show that the high kinetic energy of the AJ increases primary production but also negatively impacts the recruitment of anchovy. We contend that anchovy recruitment in the region is inhibited by the advection and dispersion of larvae and post-larvae during periods of strong advection by the AJ. The inhibitory impact of kinetic energy on anchovy landings is not a transient but rather a persistent state of the system. An exceptional combination of events creates an outbreak of this species in the Alboran Sea. These events depend on the Mediterranean-Atlantic exchange of water masses and, therefore, are highly sensitive to climate changes that are projected, though not always negatively, for fish landings. PMID:23451027
[CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].
Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai
2016-05-15
Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components.
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru
2007-03-01
Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.
Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert
2016-08-25
The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.
Vecino, Xanel; Devesa-Rey, Rosa; Villagrasa, Salvador; Cruz, Jose M; Moldes, Ana B
2015-12-01
In this work a comparative bioadsorption study between a biocomposite consisting of hydrolysed vineyard pruning waste entrapped in calcium alginate spheres and non entrapped vineyard residue was carried out. Results have demonstrated that the biocomposite based on lignocellulose-calcium alginate spheres removed 77.3% of dyes, while non entrapped lignocellulose eliminated only removed 27.8% of colour compounds. The experimental data were fitted to several kinetic models (pseudo-first order, pseudo-second order, Chien-Clayton model, intraparticle diffusion model and Bangham model); being pseudo-second order the kinetic model that better described the adsorption of dyes onto both bioadsorbents. In addition, a morphological study (roughness and shape) of alginate-vineyard biocomposite was established under extreme conditions, observing significant differences between hydrated and dehydrated alginate-vineyard biocomposite. The techniques used to carry out this morphological study consisted of scanning electron microscopy (SEM), perfilometry and 3D surface analysis. Copyright © 2015. Published by Elsevier B.V.
Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping
2013-01-01
Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.
1992-01-01
The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.
Microfluidic Dynamic Interfacial Tensiometry (μDIT).
Brosseau, Quentin; Vrignon, Jérémy; Baret, Jean-Christophe
2014-05-07
We designed, developed and characterized a microfluidic method for the measurement of surfactant adsorption kinetics via interfacial tensiometry on a microfluidic chip. The principle of the measurement is based on the deformability of droplets as a response to hydrodynamic forcing through a series of microfluidic expansions. We focus our analysis on one perfluoro surfactant molecule of practical interest for droplet-based microfluidic applications. We show that although the adsorption kinetics is much faster than the kinetics of the corresponding pendant drop experiment, our droplet-based microfluidic system has a sufficient time resolution to obtain quantitative measurement at the sub-second time-scale on nanoliter droplet volumes, leading to both a gain by a factor of ∼10 in time resolution and a downscaling of the measurement volumes by a factor of ∼1000 compared to standard techniques. Our approach provides new insight into the adsorption of surfactant molecules at liquid-liquid interfaces in a confined environment, relevant to emulsification, encapsulation and foaming, and the ability to measure adsorption and desorption rate constants.
Le Moullec, Y; Potier, O; Gentric, C; Leclerc, J P
2011-05-01
This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO(3) and NH(4) have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Scaling in the aggregation dynamics of a magnetorheological fluid.
Domínguez-García, P; Melle, Sonia; Pastor, J M; Rubio, M A
2007-11-01
We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-limited cluster-cluster aggregation. The kinetic exponents z and z' are obtained from the temporal evolution of the mean cluster size S(t) and the number of clusters N(t), respectively. The crossover exponent Delta is calculated in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggregated particles, n1(t). We report on results of Brownian two-dimensional dynamics simulations and compare the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the crossover exponent.
The Kelvin-Helmholtz instability of boundary-layer plasmas in the kinetic regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbusch, Benedikt, E-mail: b.steinbusch@fz-juelich.de; Gibbon, Paul, E-mail: p.gibbon@fz-juelich.de; Department of Mathematics, Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven
2016-05-15
The dynamics of the Kelvin-Helmholtz instability are investigated in the kinetic, high-frequency regime with a novel, two-dimensional, mesh-free tree code. In contrast to earlier studies which focused on specially prepared equilibrium configurations in order to compare with fluid theory, a more naturally occurring plasma-vacuum boundary layer is considered here with relevance to both space plasma and linear plasma devices. Quantitative comparisons of the linear phase are made between the fluid and kinetic models. After establishing the validity of this technique via comparison to linear theory and conventional particle-in-cell simulation for classical benchmark problems, a quantitative analysis of the more complexmore » magnetized plasma-vacuum layer is presented and discussed. It is found that in this scenario, the finite Larmor orbits of the ions result in significant departures from the effective shear velocity and width underlying the instability growth, leading to generally slower development and stronger nonlinear coupling between fast growing short-wavelength modes and longer wavelengths.« less
2016-03-15
mutants hisC1 (PA4447), hisD (PA4448), hutH (PA5098), and PA0006. We predicted that uro - canate was depleted in these high biofilm-producing mutants and...Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. PseudomonasGenome Database: improved comparative analysis and population genomics capability for
NASA Astrophysics Data System (ADS)
Choe, Ju Eun; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon
2015-05-01
Poly(3,4-ethylenedioxythiophene) functionalized graphene with palladium nanoparticles (denoted as Pd/PEDOT/rGO) has been synthesized for electrochemical oxygen reduction reaction (ORR) in alkaline solution. The structural features of catalyst are characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The TEM images suggest a well dispersed PdNPs onto PEDOT/rGO film. The ORR activity of Pd/PEDOT/rGO has been investigated via cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in 0.1 M KOH aqueous solution. Comparative CV analysis suggests a general approach of intermolecular charge-transfer in between graphene sheet and PdNPs via PEDOT which leads to the better PdNPs dispersion and subsequently superior ORR kinetics. The results from ORR measurements show that Pd/PEDOT/rGO has remarkable electrocatalytic activity and stability compared to Pd/rGO and state-of-the-art Pt/C. The Koutecky-Levich and Tafel analysis suggest that the proposed main path in the ORR mechanism has direct four-electron transfer process with faster transfer kinetic rate on the Pd/PEDOT/rGO.
Solving complex photocycle kinetics. Theory and direct method.
Nagle, J F
1991-01-01
A direct nonlinear least squares method is described that obtains the true kinetic rate constants and the temperature-independent spectra of n intermediates from spectroscopic data taken in the visible at three or more temperatures. A theoretical analysis, which is independent of implementation of the direct method, proves that well determined local solutions are not possible for fewer than three temperatures. This analysis also proves that measurements at more than n wavelengths are redundant, although the direct method indicates that convergence is faster if n + m wavelengths are measured, where m is of order one. This suggests that measurements should concentrate on high precision for a few measuring wavelengths, rather than lower precision for many wavelengths. Globally, false solutions occur, and the ability to reject these depends upon the precision of the data, as shown by explicit example. An optimized way to analyze vibrational spectroscopic data is also presented. Such data yield unique results, which are comparably accurate to those obtained from data taken in the visible with comparable noise. It is discussed how use of both kinds of data is advantageous if the data taken in the visible are significantly less noisy. PMID:2009362
Yellapu, Nanda Kumar; Valasani, Koteswara Rao; Pasupuleti, Santhosh Kumar; Gopal, Sowjenya; Potukuchi Venkata Gurunadha Krishna, Sarma; Matcha, Bhaskar
2014-01-01
Glucokinase (GK) plays a critical role in glucose homeostasis and the mutations in GK gene result in pathogenic complications known as Maturity Onset Diabetes of the Young 2, an autosomal dominant form of diabetic condition. In the present study, GK was purified from human liver tissue and the pure enzyme showed single band in SDS-PAGE with a molecular weight of 50 kDa. The kinetics of pure GK showed enzyme activity of 0.423±0.02 µM glucose-6-phosphate (G6P)/mL/Min and Km value of 6.66±0.02 µM. These values were compared in the liver biopsy of a clinically proven type 2 diabetic patient, where GK kinetics showed decreased enzyme activity of 0.16±0.025 µM G6P/mL/Min and increased Km of 23±0.9 µM, indicating the hyperglycemic condition in the patient. The genetic analysis of 10th exon of GK gene from this patient showed a R308K mutation. To substantiate these results, comparative molecular dynamics and docking studies were carried out where a higher docking score (-10.218 kcal/mol) was observed in the mutated GK than wild-type GK structure (-12.593 kcal/mol) indicating affinity variations for glucose. During the simulation process, glucose was expelled out from the mutant conformation but not from wild-type GK, making glucose unavailable for phosphorylation. Therefore, these results conclusively explain hyperglycemic condition in this patient. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Koontz, Alicia M; Cooper, Rory A; Boninger, Michael L; Yang, Yusheng; Impink, Bradley G; van der Woude, Lucas H V
2005-01-01
The objective of this study was to conduct a kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces. Eleven manual wheelchairs were fitted with a SMART(Wheel) and their users were asked to push on a course consisting of high- and low-pile carpet, indoor tile, interlocking concrete pavers, smooth level concrete, grass, hardwood flooring, and a sidewalk with a 5-degree grade. Peak resultant force, wheel torque, mechanical effective force, and maximum resultant force rate of rise were analyzed during start-up for each surface and normalized relative to their steady-state values on the smooth level concrete. Additional variables included peak velocity, distance traveled, and number of strokes in the first 5 s of the trial. We compared biomechanical data between surfaces using repeated-measures mixed models and paired comparisons with a Bonferroni adjustment. Applied resultant force (p = 0.0154), wheel torque (p < 0.0001), and mechanical effective force (p = 0.0047) were significantly different between surfaces. The kinetic values for grass, interlocking pavers, and ramp ascent were typically higher compared with tile, wood, smooth level concrete, and high- and low-pile carpet. Users were found to travel shorter distances up the ramp and across grass (p < 0.0025) and had a higher stroke count on the ramp (p = 0.0124). While peak velocity was not statistically different, average velocity was slower for the ramp and grass, which indicates greater wheelchair/user deceleration between strokes. The differences noted between surfaces highlight the importance of evaluating wheelchair propulsion ability over a range of surfaces.
Upper limb kinetic analysis of three sitting pivot wheelchair transfer techniques.
Koontz, Alicia M; Kankipati, Padmaja; Lin, Yen-Sheng; Cooper, Rory A; Boninger, Michael L
2011-11-01
The objective of this study was to investigate differences in shoulder, elbow and hand kinetics while performing three different SPTs that varied in terms of hand and trunk positioning. Fourteen unimpaired individuals (8 male and 6 female) performed three variations of sitting pivot transfers in a random order from a wheelchair to a level tub bench. Two transfers involved a forward flexed trunk (head-hips technique) and the third with the trunk remaining upright. The two transfers involving a head hips technique were performed with two different leading hand initial positions. Motion analysis equipment recorded upper body movements and force sensors recorded hand reaction forces. Shoulder and elbow joint and hand kinetics were computed for the lift phase of the transfer. Transferring using either of the head hips techniques compared to the trunk upright style of transferring resulted in reduced superior forces at the shoulder (P<0.002), elbow (P<0.004) and hand (P<0.013). There was a significant increase in the medial forces in the leading elbow (P=0.049) for both head hip transfers and the trailing hand for the head hip technique with the arm further away from the body (P<0.028). The head hip techniques resulted in higher shoulder external rotation, flexion and extension moments compared to the trunk upright technique (P<0.021). Varying the hand placement and trunk positioning during transfers changes the load distribution across all upper limb joints. The results of this study may be useful for determining a technique that helps preserve upper limb function overtime. Published by Elsevier Ltd.
Sheffler, Lynne R; Bailey, Stephanie Nogan; Wilson, Richard D; Chae, John
2013-06-01
The relative effect of a transcutaneous peroneal nerve stimulator (tPNS) and an ankle foot orthosis (AFO) on spatiotemporal, kinematic, and kinetic parameters of hemiparetic gait has not been well described. To compare the relative neuroprosthetic effect of a tPNS with the orthotic effect of an AFO using quantitative gait analysis (QGA). In all, 12 stroke survivors underwent QGA under 3 device conditions: (1) no device (ND), (2) AFO, and (3) tPNS. A series of repeated-measures analyses of variance (rmANOVAs) were performed with dorsiflexion status (presence or absence of volitional dorsiflexion) as a covariate to compare selected spatiotemporal, kinematic, and kinetic parameters for each device condition. Post hoc pairwise comparisons and/or subset analysis by dorsiflexion status were performed for significant effect. Stride length was improved with both the AFO (P = .035) and the tPNS (P = .029) relative to ND. Those with absent dorsiflexion had longer stride length with the tPNS relative to ND (P = .034) and a higher walking velocity with a tPNS relative to the AFO (P = .015). There was no device effect on dorsiflexion angle at initial contact; however, a significant Device × Dorsiflexion status interaction effect favored the AFO relative to ND (P = .025) in those with dorsiflexion present. This study suggests that level of motor impairment may influence the relative effects of the tPNS and AFO devices in chronic hemiparetic gait; however, the small sample size limits generalizability. Future studies are necessary to determine if motor impairment level should be considered in the clinical prescription of these devices.
Hu, Jiandong; Ma, Liuzheng; Wang, Shun; Yang, Jianming; Chang, Keke; Hu, Xinran; Sun, Xiaohui; Chen, Ruipeng; Jiang, Min; Zhu, Juanhua; Zhao, Yuanyuan
2015-01-01
Kinetic analysis of biomolecular interactions are powerfully used to quantify the binding kinetic constants for the determination of a complex formed or dissociated within a given time span. Surface plasmon resonance biosensors provide an essential approach in the analysis of the biomolecular interactions including the interaction process of antigen-antibody and receptors-ligand. The binding affinity of the antibody to the antigen (or the receptor to the ligand) reflects the biological activities of the control antibodies (or receptors) and the corresponding immune signal responses in the pathologic process. Moreover, both the association rate and dissociation rate of the receptor to ligand are the substantial parameters for the study of signal transmission between cells. A number of experimental data may lead to complicated real-time curves that do not fit well to the kinetic model. This paper presented an analysis approach of biomolecular interactions established by utilizing the Marquardt algorithm. This algorithm was intensively considered to implement in the homemade bioanalyzer to perform the nonlinear curve-fitting of the association and disassociation process of the receptor to ligand. Compared with the results from the Newton iteration algorithm, it shows that the Marquardt algorithm does not only reduce the dependence of the initial value to avoid the divergence but also can greatly reduce the iterative regression times. The association and dissociation rate constants, ka, kd and the affinity parameters for the biomolecular interaction, KA, KD, were experimentally obtained 6.969×105 mL·g-1·s-1, 0.00073 s-1, 9.5466×108 mL·g-1 and 1.0475×10-9 g·mL-1, respectively from the injection of the HBsAg solution with the concentration of 16ng·mL-1. The kinetic constants were evaluated distinctly by using the obtained data from the curve-fitting results. PMID:26147997
Driver, Erin M; Roberts, Jeff; Dollar, Peter; Charles, Maurissa; Hurst, Paul; Halden, Rolf U
2017-02-05
A systematic comparison was performed between batch bottle and continuous-flow column microcosms (BMs and CMs, respectively) commonly used for in situ groundwater remedial design. Review of recent literature (2000-2014) showed a preference for reporting batch kinetics, even when corresponding column data were available. Additionally, CMs produced higher observed rate constants, exceeding those of BMs by a factor of 6.1±1.1 standard error. In a subsequent laboratory investigation, 12 equivalent microcosm pairs were constructed from fractured bedrock and perchloroethylene (PCE) impacted groundwater. First-order PCE transformation kinetics of CMs were 8.0±4.8 times faster than BMs (rates: 1.23±0.87 vs. 0.16±0.05d -1 , respectively). Additionally, CMs transformed 16.1±8.0-times more mass than BMs owing to continuous-feed operation. CMs are concluded to yield more reliable kinetic estimates because of much higher data density stemming from long-term, steady-state conditions. Since information from BMs and CMs is valuable and complementary, treatability studies should report kinetic data from both when available. This first systematic investigation of BMs and CMs highlights the need for a more unified framework for data use and reporting in treatability studies informing decision-making for field-scale groundwater remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.
2016-01-01
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat. PMID:26644471
A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling
NASA Astrophysics Data System (ADS)
Shapiro, B.; Jin, Q.
2015-12-01
Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.
CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komm, Rudolf; Gosain, Sanjay, E-mail: komm@nso.edu
2015-01-01
We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%,more » respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.
Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less
Chen, Dengyu; Zheng, Yan; Zhu, Xifeng
2013-03-01
An in-depth investigation was conducted on the kinetic analysis of raw biomass using thermogravimetric analysis (TGA), from which the activation energy distribution of the whole pyrolysis process was obtained. Two different stages, namely, drying stage (Stage I) and devolatilization stage (Stage II), were shown in the pyrolysis process in which the activation energy values changed with conversion. The activation energy at low conversions (below 0.15) in the drying stage ranged from 10 to 30 kJ/mol. Such energy was calculated using the nonisothermal Page model, known as the best model to describe the drying kinetics. Kinetic analysis was performed using the distributed activation energy model in a wide range of conversions (0.15-0.95) in the devolatilization stage. The activation energy first ranged from 178.23 to 245.58 kJ/mol and from 159.66 to 210.76 kJ/mol for corn straw and wheat straw, respectively, then increasing remarkably with an irregular trend. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impact of PCOS on early embryo cleavage kinetics.
Wissing, M L; Bjerge, M R; Olesen, A I G; Hoest, T; Mikkelsen, A L
2014-04-01
This study investigated whether polycystic ovary syndrome (PCOS) affected early embryo development assessed by time-lapse analysis of embryo kinetics from fertilization to the blastocyst stage. This was a prospective cohort study of two pronuclei (2PN) embryos from 25 hyperandrogenic PCOS patients (110 2PN embryos), 26 normoandrogenic PCOS patients (140 2PN embryos) and 20 healthy, regularly cycling women (controls, 97 2PN embryos). Patients underwent the same baseline evaluation and the same ovarian stimulation from April 2010 to February 2013. Oocytes were fertilized by intracytoplasmic sperm injection and incubated in an EmbryoScope with pictures taken every 20 min in seven focal planes. Time to 2PN breakdown, first cleavage and cleavage to 3, 4, 5, 6, 7 and 8 cells, morula and blastocyst (t₂, t₃, t₄, t₅, t₆, t₇, t₈, t(M), t(B)) were annotated. Differences in embryo kinetics between groups were assessed by mixed modelling. Compared with controls, embryos from hyperandrogenic PCOS patients were significantly delayed at 2PN breakdown, t₂, t₃, t₄ and t₇ but not at t₅, t₆, t₈, t(M) or t(B). Embryos from hyperandrogenic PCOS women had developed slower from fertilization to the 8-cell stage compared with embryos from controls. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Comparison of skating kinetics and kinematics on ice and on a synthetic surface.
Stidwill, T J; Pearsall, David; Turcotte, Rene
2010-03-01
The recent popularization and technological improvements of synthetic or artificial ice surfaces provide an attractive alternative to real ice in venues where the latter is impractical to install. Potentially, synthetic ice (SI) may be installed in controlled laboratory settings to permit detailed biomechanical analysis of skating manoeuvres. Unknown, however, is the extent to which skating on SI replicates skating on traditional ice (ICE). Hence, the purpose of this study was to compare kinetic and kinematic forward skating parameters between SI and ICE surfaces. With 11 male hockey players, a portable strain gauge system adhered to the outside of the skate blade holder was used to measure skate propulsive force synchronized with electrogoniometers for tracking dynamic knee and ankle movements during forward skating acceleration. In general, the kinetic and kinematic variables investigated in this study showed minimal differences between the two surfaces (P > 0.06), and no individual variable differences were identified between the two surfaces (P > or = 0.1) with the exception of greater knee extension on SI than ICE (15.2 degrees to 11.0 degrees; P < or = 0.05). Overall, SI surfaces permit comparable mechanics for on-ice forward skating, and thus offer the potential for valid analogous conditions for in-lab testing and training.
Studies on adsorption of phenol from wastewater by agricultural waste.
Girish, C R; Ramachandramurty, V
2013-07-01
In this paper, preliminary investigation of various agricultural wastes-Rice mill residue (RM), Wheat mill reside (WM), Dall mill residue (DM) and the Banana peels (BM) was carried out to study their ability to be used as adsorbents for phenol-removal from wastewater. This study reports the feasibility of employing dal mill residue waste (DM) as an adsorbent for removing phenol from wastewater. The performance of DM was compared with the commercially available activated carbon (CAC). Batch mode experiments were conducted with activated DM to study the effects of initial concentration of phenol, pH and the temperature of aqueous solution on adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models and the isotherm data fitted well to the Freundlich isotherm with monolayer adsorption capacity of 6.189 mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first order and pseudo-second- order equation. The experimental data fitted very well with the pseudo-first-order kinetic model. The FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of phenol. Finally, the DM was found to be a promising adsorbent for phenol adsorption as compared to activated carbon.
Kankipati, Padmaja; Boninger, Michael L; Gagnon, Dany; Cooper, Rory A; Koontz, Alicia M
2015-07-01
Repeated measures design. This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Research laboratory. Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head-hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement.
Comparing kinetic curves in liquid chromatography
NASA Astrophysics Data System (ADS)
Kurganov, A. A.; Kanat'eva, A. Yu.; Yakubenko, E. E.; Popova, T. P.; Shiryaeva, V. E.
2017-01-01
Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t 0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho
2012-02-01
Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.
Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi
2012-11-29
Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.
Automated region selection for analysis of dynamic cardiac SPECT data
NASA Astrophysics Data System (ADS)
Di Bella, E. V. R.; Gullberg, G. T.; Barclay, A. B.; Eisner, R. L.
1997-06-01
Dynamic cardiac SPECT using Tc-99m labeled teboroxime can provide kinetic parameters (washin, washout) indicative of myocardial blood flow. A time-consuming and subjective step of the data analysis is drawing regions of interest to delineate blood pool and myocardial tissue regions. The time-activity curves of the regions are then used to estimate local kinetic parameters. In this work, the appropriate regions are found automatically, in a manner similar to that used for calculating maximum count circumferential profiles in conventional static cardiac studies. The drawbacks to applying standard static circumferential profile methods are the high noise level and high liver uptake common in dynamic teboroxime studies. Searching along each ray for maxima to locate the myocardium does not typically provide useful information. Here we propose an iterative scheme in which constraints are imposed on the radii searched along each ray. The constraints are based on the shape of the time-activity curves of the circumferential profile members and on an assumption that the short axis slices are approximately circular. The constraints eliminate outliers and help to reduce the effects of noise and liver activity. Kinetic parameter estimates from the automatically generated regions were comparable to estimates from manually selected regions in dynamic canine teboroxime studies.
Characterization of fine motor development: dynamic analysis of children's drawing movements.
Lin, Qiushi; Luo, Jianfei; Wu, Zhongcheng; Shen, Fei; Sun, Zengwu
2015-04-01
In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Diamandis, E. P.; And Others
1983-01-01
The kinetic of the Jaffe reaction with picrate ion selective electrode (ISE) and a kinetic method for determining creatinine in urine is presented. The experiment could be used to familarize students with the application of ISE in kinetic studies and chemical analysis. (Author/JN)
Andreozzi, Stefano; Miskovic, Ljubisa; Hatzimanikatis, Vassily
2016-01-01
Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin
2015-12-01
The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heterodimer Binding Scaffolds Recognition via the Analysis of Kinetically Hot Residues.
Perišić, Ognjen
2018-03-16
Physical interactions between proteins are often difficult to decipher. The aim of this paper is to present an algorithm that is designed to recognize binding patches and supporting structural scaffolds of interacting heterodimer proteins using the Gaussian Network Model (GNM). The recognition is based on the (self) adjustable identification of kinetically hot residues and their connection to possible binding scaffolds. The kinetically hot residues are residues with the lowest entropy, i.e., the highest contribution to the weighted sum of the fastest modes per chain extracted via GNM. The algorithm adjusts the number of fast modes in the GNM's weighted sum calculation using the ratio of predicted and expected numbers of target residues (contact and the neighboring first-layer residues). This approach produces very good results when applied to dimers with high protein sequence length ratios. The protocol's ability to recognize near native decoys was compared to the ability of the residue-level statistical potential of Lu and Skolnick using the Sternberg and Vakser decoy dimers sets. The statistical potential produced better overall results, but in a number of cases its predicting ability was comparable, or even inferior, to the prediction ability of the adjustable GNM approach. The results presented in this paper suggest that in heterodimers at least one protein has interacting scaffold determined by the immovable, kinetically hot residues. In many cases, interacting proteins (especially if being of noticeably different sizes) either behave as a rigid lock and key or, presumably, exhibit the opposite dynamic behavior. While the binding surface of one protein is rigid and stable, its partner's interacting scaffold is more flexible and adaptable.
Vismara, Luca; Romei, Marianna; Galli, Manuela; Montesano, Angelo; Baccalaro, Gabriele; Crivellini, Marcello; Grugni, Graziano
2007-05-10
Being severely overweight is a distinctive clinical feature of Prader-Willi Syndrome (PWS). PWS is a complex multisystem disorder, representing the most common form of genetic obesity. The aim of this study was the analysis of the gait pattern of adult subjects with PWS by using three-Dimensional Gait Analysis. The results were compared with those obtained in a group of obese patients and in a group of healthy subjects. Cross-sectional, comparative study: 19 patients with PWS (11 males and 8 females, age: 18-40 years, BMI: 29.3-50.3 kg/m2); 14 obese matched patients (5 males and 9 females, age: 18-40 years, BMI: 34.3-45.2 kg/m2); 20 healthy subjects (10 males and 10 females, age: 21-41 years, BMI: 19.3-25.4 kg/m2). Kinematic and kinetic parameters during walking were assessed by an optoelectronic system and two force platforms. PWS adult patients walked slower, had a shorter stride length, a lower cadence and a longer stance phase compared with both matched obese, and healthy subjects. Obese matched patients showed spatio-temporal parameters significantly different from healthy subjects.Furthermore, Range Of Motion (ROM) at knee and ankle, and plantaflexor activity of PWS patients were significantly different between obese and healthy subjects. Obese subjects revealed kinematic and kinetic data similar to healthy subjects. PWS subjects had a gait pattern significantly different from obese patients. Despite that, both groups had a similar BMI. We suggest that PWS gait abnormalities may be related to abnormalities in the development of motor skills in childhood, due to precocious obesity. A tailored rehabilitation program in early childhood of PWS patients could prevent gait pattern changes.
Gianni, Stefano; Jemth, Per
2014-07-01
The only experimental strategy to address the structure of folding transition states, the so-called Φ value analysis, relies on the synergy between site directed mutagenesis and the measurement of reaction kinetics. Despite its importance, the Φ value analysis has been often criticized and its power to pinpoint structural information has been questioned. In this hypothesis, we demonstrate that comparing the Φ values between proteins not only allows highlighting the robustness of folding pathways but also provides per se a strong validation of the method. © 2014 International Union of Biochemistry and Molecular Biology.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1981-01-01
Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.
Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors
NASA Astrophysics Data System (ADS)
Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.
2016-09-01
Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.
Dehydration and fluid volume kinetics before major open abdominal surgery.
Hahn, R G; Bahlmann, H; Nilsson, L
2014-11-01
Assessment of dehydration in the preoperative setting is of potential clinical value. The present study uses urine analysis and plasma volume kinetics, which have both been validated against induced changes in body water in volunteers, to study the incidence and severity of dehydration before open abdominal surgery begins. Thirty patients (mean age 64 years) had their urine analysed before major elective open abdominal surgery for colour, specific weight, osmolality and creatinine. The results were scored and the mean taken to represent a 'dehydration index'. Thereafter, the patients received an infusion of 5 ml/kg of Ringer's acetate intravenously for over 15 min. Blood was sampled for 70 min and the blood haemoglobin concentration used to estimate the plasma volume kinetics. Distribution of fluid occurred more slowly (P < 0.01) and the elimination half-life was twice as long (median 40 min, not significant) in the 11 patients (37%) diagnosed to be moderately dehydrated as compared with euhydrated patients. The dehydration index indicated that the fluid deficit in these patients corresponded to 2.5% of the body weight, whereas the deficit in the others was 1%. In contrast, the 11 patients who later developed postoperative nausea and vomiting had a very short elimination half-life, only 9 min (median, P < 0.01). These patients were usually euhydrated but had microalbuminuria (P < 0.03) and higher natriuresis (P < 0.01). The degree of dehydration before major surgery was modest as evidenced both by urine sampling and volume kinetic analysis. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Radhadrishnan, Krishnan
1993-01-01
A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.
Orcutt, Sonia T; Abuodeh, Yazan; Naghavi, Arash; Frakes, Jessica; Hoffe, Sarah; Kis, Bela; Anaya, Daniel A
2018-05-01
Radioembolization induces liver hypertrophy, although the extent and rate of hypertrophy are unknown. Our goal was to examine the kinetics of contralateral liver hypertrophy after transarterial radioembolization. A retrospective study (2010-2014) of treatment-naïve patients with primary/secondary liver malignancies undergoing right lobe radioembolization was performed. Computed tomography volumetry was performed before and 1, 3, and 6 months after radioembolization. Outcomes of interest were left lobe (standardized future liver remnant) degree of hypertrophy, kinetic growth rate, and ability to reach goal standardized future liver remnant ≥40%. Medians were compared with the Kruskall-Wallis test. Time to event analysis was used to estimate time to reach goal standardized future liver remnant. In the study, 25 patients were included. At 1, 3, and 6 months, median degree of hypertrophy was 4%, 8%, and 12% (P < .001), degree of hypertrophy relative to baseline future liver remnants was 11%, 17%, and 31% (P = .015), and kinetic growth rate was 0.8%, 0.5%, and 0.4%/week (P = .002). In patients with baseline standardized future liver remnant <40% (N= 16), median time to reach standardized future liver remnant ≥40% was 7.3 months, with 75% accomplishing standardized future liver remnant ≥40% at 8.2 months. Radioembolization induces hypertrophy of the contralateral lobe to a similar extent as existing methods, although at a lower rate. The role of radioembolization as a dual therapy (neoadjuvant and hypetrophy-inducing) for selected patients needs to be studied. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.
Ramsay, Rona R
2012-01-01
Monoamine oxidase (MAO, EC.1.4.3.4) has been a drug target for 60 years, with the primary rationale of developing drugs to treat neuropsychiatric disorders. The biological importance of MAO is to regulate amine levels is the brain and to metabolize amines and drugs in the periphery. This review of the biochemistry of MAO A and MAO B describes the functional properties of the two enzymes integrated with knowledge of the structures of the many MAOinhibitor complexes published in the last 10 years. The analysis of activity, and the chemical and kinetic mechanisms are discussed. Inhibition studies on human MAO in vitro are now facilitated by assays using readily available materials but the kinetics of MAO involving alternative oxidative pathways and sensitivity to the oxygen concentration mean that careful analysis of the data is required as well as the good practice of determining mechanism of inhibition and kinetic constants. Kinetic constants can then be compared with thermodynamic calculations. Inhibitors bind to both the oxidized and reduced forms of MAO present during turnover so both forms should be considered when using molecular dynamics to facilitate drug design. Interaction of inhibitors with the active site can be detected as changes in the visible spectrum and these changes can provide clues about the flavin adduct formed for irreversible inhibitors or about the proximity to the flavin for reversible inhibitors. Developing areas (knock-out mice for behavior, the imidazoline binding site, and imaging to monitor the activity and the inhibition of MAO in the patient) are mentioned.
Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.
Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G
2015-01-01
Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.
Steady state plasma [3H]-noradrenaline kinetics in quadriplegic chronic spinal cord injury patients.
Krum, H; Brown, D J; Rowe, P R; Louis, W J; Howes, L G
1990-08-01
1. Steady state plasma noradrenaline kinetics were measured in eight male quadriplegic patients and in eight age and sex matched controls. 2. Plasma noradrenaline levels were significantly lower in quadriplegic patients compared to controls. Noradrenaline spillover rate was markedly reduced in quadriplegics compared to controls while noradrenaline clearance was similar in both groups. 3. Noradrenaline kinetics in quadriplegic patients differ from peripheral autonomic neuropathy patients where reductions in both the spillover and clearance of noradrenaline are present.
Yu, Xiaopeng; Mi, Xueyang; He, Zhihui; Meng, Minjia; Li, Hongji; Yan, Yongsheng
2017-01-01
Highly selective cellulose acetate (CA)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) imprinted membranes were synthesized by phase inversion and dip coating technique. The CA blend imprinted membrane was synthesized by phase inversion technique with CA as membrane matrix, polyethyleneimine (PEI) as the functional polymer, and the salicylic acid (SA) as the template molecule. The CA/PVA/TiO2 imprinted membranes were synthesized by dip coating of CA blend imprinted membrane in PVA and different concentration (0.05, 0.1, 0.2, 0.4 wt %) of TiO2 nanoparticles aqueous solution. The SEM analysis showed that the surface morphology of membrane was strongly influenced by the concentration of TiO2 nanoparticles. Compared with CA/PVA-TiO2(0.05, 0.1, 0.2%)-MIM, the CA/PVA-TiO2(0.4%)-MIM possessed higher membrane flux, kinetic equilibrium adsorption amount, binding capacity and better selectivity for SA. It was found that the pseudo-second-order kinetic model was studied to describe the kinetic of CA/PVA-TiO2(0.2%)-MIM judging by multiple regression analysis. Adsorption isotherm analysis indicated that the maximum adsorption capacity for SA were 24.43 mg g−1. Moreover, the selectivity coefficients of CA/PVA-TiO2 (0.2%)-MIM for SA relative to p-hydroxybenzoic acid (p-HB) and methyl salicylate (MS) were 3.87 and 3.55, respectively. PMID:28184369
Harper, M E; Brand, M D
1994-08-01
Thyroid hormones have well-known effects on oxidative phosphorylation, but there is little quantitative information on their important sites of action. We have used top-down elasticity analysis, an extension of metabolic control analysis, to identify the sites of action of thyroid hormones on oxidative phosphorylation in rat hepatocytes. We divided the oxidative phosphorylation system into three blocks of reactions: the substrate oxidation subsystem, the phosphorylating subsystem, and the mitochondrial proton leak subsystem and have identified those blocks of reactions whose kinetics are significantly changed by hyperthyroidism. Our results show significant effects on the kinetics of the proton leak and the phosphorylating subsystems. Quantitative analyses revealed that 43% of the increase in resting respiration rate in hyperthyroid hepatocytes compared with euthyroid hepatocytes was due to differences in the proton leak and 59% was due to differences in the activity of the phosphorylating subsystem. There were no significant effects on the substrate oxidation subsystem. Changes in nonmitochondrial oxygen consumption accounted for -2% of the change in respiration rate. Top-down control analysis revealed that the distribution of control over the rates of mitochondrial oxygen consumption, ATP synthesis and consumption, and proton leak and over mitochondrial membrane potential (delta psi m) was similar in hepatocytes from hyperthyroid and littermate-paired euthyroid controls. The results of this study include the first complete top-down elasticity and control analyses of oxidative phosphorylation in hepatocytes from hyperthyroid rats.
The logic of kinetic regulation in the thioredoxin system
2011-01-01
Background The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. Results Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. Conclusions Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions. PMID:21266044
Evaluation of the cure kinetics of the wood/pMDI bondline
David P. Harper; Michael P. Wolcott; Timothy G. Rials
2001-01-01
Micro-dielectric analysis (µDEA) and differentia1 scanning calorimetry (DSC) were used to monitor cure of polymeric diphenyl-methane diisocyanate (pMDI) resin with wood strands in a saturated steam environment. A first-order autocatalyzed kinetic model was employed to determine kinetic parameters. The kinetics were found to follow an Arrhenius relation. A single ramp...
Reliability of four models for clinical gait analysis.
Kainz, Hans; Graham, David; Edwards, Julie; Walsh, Henry P J; Maine, Sheanna; Boyd, Roslyn N; Lloyd, David G; Modenese, Luca; Carty, Christopher P
2017-05-01
Three-dimensional gait analysis (3DGA) has become a common clinical tool for treatment planning in children with cerebral palsy (CP). Many clinical gait laboratories use the conventional gait analysis model (e.g. Plug-in-Gait model), which uses Direct Kinematics (DK) for joint kinematic calculations, whereas, musculoskeletal models, mainly used for research, use Inverse Kinematics (IK). Musculoskeletal IK models have the advantage of enabling additional analyses which might improve the clinical decision-making in children with CP. Before any new model can be used in a clinical setting, its reliability has to be evaluated and compared to a commonly used clinical gait model (e.g. Plug-in-Gait model) which was the purpose of this study. Two testers performed 3DGA in eleven CP and seven typically developing participants on two occasions. Intra- and inter-tester standard deviations (SD) and standard error of measurement (SEM) were used to compare the reliability of two DK models (Plug-in-Gait and a six degrees-of-freedom model solved using Vicon software) and two IK models (two modifications of 'gait2392' solved using OpenSim). All models showed good reliability (mean SEM of 3.0° over all analysed models and joint angles). Variations in joint kinetics were less in typically developed than in CP participants. The modified 'gait2392' model which included all the joint rotations commonly reported in clinical 3DGA, showed reasonable reliable joint kinematic and kinetic estimates, and allows additional musculoskeletal analysis on surgically adjustable parameters, e.g. muscle-tendon lengths, and, therefore, is a suitable model for clinical gait analysis. Copyright © 2017. Published by Elsevier B.V.
Comprehensive non-dimensional normalization of gait data.
Pinzone, Ornella; Schwartz, Michael H; Baker, Richard
2016-02-01
Normalizing clinical gait analysis data is required to remove variability due to physical characteristics such as leg length and weight. This is particularly important for children where both are associated with age. In most clinical centres conventional normalization (by mass only) is used whereas there is a stronger biomechanical argument for non-dimensional normalization. This study used data from 82 typically developing children to compare how the two schemes performed over a wide range of temporal-spatial and kinetic parameters by calculating the coefficients of determination with leg length, weight and height. 81% of the conventionally normalized parameters had a coefficient of determination above the threshold for a statistical association (p<0.05) compared to 23% of those normalized non-dimensionally. All the conventionally normalized parameters exceeding this threshold showed a reduced association with non-dimensional normalization. In conclusion, non-dimensional normalization is more effective that conventional normalization in reducing the effects of height, weight and age in a comprehensive range of temporal-spatial and kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison between overground and dynamometer manual wheelchair propulsion.
Koontz, Alicia M; Worobey, Lynn A; Rice, Ian M; Collinger, Jennifer L; Boninger, Michael L
2012-08-01
Laboratory-based simulators afford many advantages for studying physiology and biomechanics; however, they may not perfectly mimic wheelchair propulsion over natural surfaces. The goal of this study was to compare kinetic and temporal parameters between propulsion overground on a tile surface and on a dynamometer. Twenty-four experienced manual wheelchair users propelled at a self-selected speed on smooth, level tile and a dynamometer while kinetic data were collected using an instrumented wheel. A Pearson correlation test was used to examine the relationship between propulsion variables obtained on the dynamometer and the overground condition. Ensemble resultant force and moment curves were compared using cross-correlation and qualitative analysis of curve shape. User biomechanics were correlated (R ranging from 0.41 to 0.83) between surfaces. Overall, findings suggest that although the dynamometer does not perfectly emulate overground propulsion, wheelchair users were consistent with the direction and amount of force applied, the time peak force was reached, push angle, and their stroke frequency between conditions.
Comparison Between Overground and Dynamometer Manual Wheelchair Propulsion
Worobey, Lynn A.; Rice, Ian M.; Collinger, Jennifer L.; Boninger, Michael L.
2017-01-01
Laboratory-based simulators afford many advantages for studying physiology and biomechanics; however, they may not perfectly mimic wheelchair propulsion over natural surfaces. The goal of this study was to compare kinetic and temporal parameters between propulsion overground on a tile surface and on a dynamometer. Twenty-four experienced manual wheelchair users propelled at a self-selected speed on smooth, level tile and a dynamometer while kinetic data were collected using an instrumented wheel. A Pearson correlation test was used to examine the relationship between propulsion variables obtained on the dynamometer and the overground condition. Ensemble resultant force and moment curves were compared using cross-correlation and qualitative analysis of curve shape. User biomechanics were correlated (R ranging from 0.41 to 0.83) between surfaces. Overall, findings suggest that although the dynamometer does not perfectly emulate overground propulsion, wheelchair users were consistent with the direction and amount of force applied, the time peak force was reached, push angle, and their stroke frequency between conditions. PMID:22085811
Gazem, Mufedah A H; Nazareth, Sarita
2012-07-01
The isolate Aspergillus versicolor was obtained from an estuary, which is exposed to metal contamination. It was found to have a good metal tolerance and sorption capacity. Further studies revealed that the rate of metal removal from solution is very rapid in the first 5-10 min, and is favoured by a pH of 6.0. The biosorption data obtained was explained by the Freundlich adsorption isotherm model and followed a pseudo-second order kinetics reaction. The fungus showed a higher accumulation of fatty acids when grown in presence of metals as compared to the mycelium grown in absence of the metal; there was also an increase in the saturation index of fatty acids in presence of Cu(2+) which serves as a protective mechanism for the fungus. Fourier Transform Infrared, scanning electron microscopy and EDAX analysis indicated that metal removal from solution by A. versicolor occurred by a passive adsorption to the fungal cell surface, involving an ion exchange mechanism.
Davis, W C; Naessens, J; Brown, W C; Ellis, J A; Hamilton, M J; Cantor, G H; Barbosa, J I; Ferens, W; Bohach, G A
1996-08-01
Monoclonal antibodies potentially specific for antigens expressed or upregulated on activated leukocytes were selected for further analysis from the panel submitted to the third international workshop on ruminant leukocyte antigens. The kinetics of expression of these activation antigens on resting peripheral mononuclear cells (PBMC) and PBMC stimulated with concanavalin A or staphylococcal superantigen SECI for 4, 24 or 96 h were compared, as well as their appearance on various subsets of cells. For some of them, a molecular mass could be determined after immunoprecipitation from radio-labeled, lectin-stimulated cells. Based on the results from the clustering, kinetic studies and biochemical data, evidence was gathered for assigning two additional mAbs to cluster BoCD25 (IL-2 receptor) and two mAbs to cluster BoCD71 (transferrin receptor). Four mAbs recognized an early activation antigen predominantly expressed on gamma delta T cells in short-term cultures. A number of other activation antigens were further characterized.
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2016-09-01
The energetics of the atmosphere of the northern hemisphere of Mars during the pre-winter solstice period are explored using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation, with the quasi-geostrophic omega equation providing vertical velocities. Traveling waves are typically triggered by geopotential flux convergence. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a global-scale dust storm. During the non-GDS years, results agree with that of a previous study using a general circulation model simulation. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
Cotten, Cameron; Reed, Jennifer L
2013-01-30
Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets.
2013-01-01
Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. PMID:23360254
Dynamic Clinical Assessment of Femoral Acetabular Impingement
Maak, Travis; Kraszewski, Andrew; Ranawat, Anil S.; Backus, Sherry I.; Magennis, Erin; Hillstrom, Howard; Kelly, Bryan T.
2013-01-01
Objectives: There has been a recent interest in the non-arthritic hip and its associated complex pathologies. Passive range of motion and static specialty tests are the corner stone of diagnosis and assessment of treatment. Little information exists on the use of dynamic functional measurements to assess non-arthritic hip function. The aims of this study were: (1) to measure and identify objective and reliable functional parameters to assess dynamic hip function, and (2) to compare functional kinematic and kinetic parameters among healthy controls and subjects with symptomatic diagnosed femoral acetabular impingement (FAI). Methods: An ongoing cross-sectional study was conducted on male healthy non-arthritic control and symptomatic, diagnosed FAI subjects. Functional kinematic and kinetic data were acquired with dynamic 3D motion analysis during stair ascent, stair descent, and a sit-to-stand maneuver. Joint kinematics were measured in degrees and joint kinetic moments were normalized by body mass (N-m/kg). Surface electromyographic (EMG) activity was measured for hip and trunk musculature. Measurement reliability was quantified with the adjusted coefficient of multiple correlation (CMC), and was calculated for angle, moment and EMG per subject, and averaged across subjects. Control and FAI subjects were compared with differences in kinematic and kinetic waveforms. Results: Data from ten healthy subjects (Age=25±4 years; BMI=24.3±3.6); and six FAI subjects (Age=32±10 years; BMI=25±4) have been recorded. Control and FAI subject CMC values are listed in Table 1. Kinematic and kinetic behavior differed (>1 SD) between control and FAI for multiple joints and planes of motion. Increased internal hip rotation moments were recorded in FAI subjects during both stair ascent and descent tasks, as compared to healthy controls. Increased external rotation moments were recorded in FAI subjects during the sit-to-stand task. Electromyographic data demonstrated notable differences (>1 SD) between healthy and FAI subjects (Figure 1). The stair ascent task elicited increased medial hamstring EMG activity, stair descent produced decreased gluteus medius EMG activity, and early sit-to-stand produced decreased rectus femoris EMG activity in FAI subjects, as compared to healthy controls. Conclusion: Overall the kinematic, kinetic and EMG repeatability was very reliable; these measures are sufficiently reliable to objectively assess dynamic function in healthy and pathologic subjects. Kinematic and kinetic data have shown striking differences between the kinematic and kinetic data of control and FAI subjects, particularly the increased external rotation moments and pelvic flexion during sit to stand for subjects with FAI. We hypothesize that increased pelvic flexion with FAI may be a reason why patients develop impingement and symptoms. Likewise, the decreased medial hamstring and rectus femoris activation in FAI subjects may be an attempt to decrease lumbar lordosis, which may be a compensatory behavior to decrease anterior impingement. In addition, we hypothesize that decreased gluteus medius EMG activity in FAI patients is a sign of abductor fatigue. This study provides a foundation to assess specific gait abnormalities associated with FAI, which will advance the understanding of this pathology and direct future treatment regimens.
Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether.
Rodriguez, Anne; Frottier, Ophélie; Herbinet, Olivier; Fournet, René; Bounaceur, Roda; Fittschen, Christa; Battin-Leclerc, Frédérique
2015-07-16
The oxidation of dimethyl ether (DME) was studied using a jet-stirred reactor over a wide range of conditions: temperatures from 500 to 1100 K; equivalence ratios of 0.25, 1, and 2; residence time of 2 s; pressure of 106.7 kPa (close to the atmospheric pressure); and an inlet fuel mole fraction of 0.02 (with high dilution in helium). Reaction products were quantified using two analysis methods: gas chromatography and continuous wave cavity ring-down spectroscopy (cw-CRDS). cw-CRDS enabled the quantification of formaldehyde, which is one of the major products from DME oxidation, as well as that of hydrogen peroxide, which is an important branching agent in low-temperature oxidation chemistry. Experimental data were compared with data computed using models from the literature with important deviations being observed for the reactivity at low-temperature. A new detailed kinetic model for the oxidation of DME was developed in this study. Kinetic parameters used in this model were taken from literature or calculated in the present work using quantum calculations. This new model enables a better prediction of the reactivity in the low-temperature region. Under the present JSR conditions, error bars on predictions were given. Simulations were also successfully compared with experimental flow reactor, jet-stirred reactor, shock tube, rapid compression machine, and flame data from literature. The kinetic analysis of the model enabled the highlighting of some specificities of the oxidation chemistry of DME: (1) the early reactivity which is observed at very low-temperature (e.g., compared to propane) is explained by the absence of inhibiting reaction of the radical directly obtained from the fuel (by H atom abstraction) with oxygen yielding an olefin + HO2·; (2) the low-temperature reactivity is driven by the relative importance of the second addition to O2 (promoting the reactivity through branching chain) and the competitive decomposition reactions with an inhibiting effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Rimner, A; Hayes, S
Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series formore » motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer kinetic modeling is feasible in determining micro-vascular characteristics of MPM. This project was supported from Cycle for Survival and MSK Imaging and radiation science (IMRAS) grants.« less
Modeling the heating and atomic kinetics of a photoionized neon plasma experiment
NASA Astrophysics Data System (ADS)
Lockard, Tom E.
Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found that the computed plasma heating compares well with experimental observation when the effects of the windows, hydrodynamics, and non-equilbirium neon emissivity and opacity are employed. The atomic kinetics shows significant time-dependent effects because the timescale of the x-ray drive is too short compared to that of the photoionization process. These modeling and simulation results are important to test theory and modeling assumptions and approximations, and also to provide guidance on data interpretation and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Yunlong; Li, Jinshan
2016-01-15
Alloy with composition of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} off normal stoichiometric proportion is selected to investigate the effect of defects introduced by non-stoichiometry on hydrogenation kinetics of Zr–Ti–V Laves phase alloys. Microstructure and phase constituent of melt-spun ribbons have been investigated in this work. The activation process, hydrogenation kinetics, thermodynamics characteristics and hydride phase constituent of as-cast alloy and melt-spun ribbons are also compared. Comparing with the as-cast alloy, the dominant Laves phase ZrV{sub 2} is preserved, V-BCC phase is reduced and α-Zr phase is replaced by a small amount of Zr{sub 3}V{sub 3}O phase in melt-spun ribbons. Melt-spun ribbonsmore » exhibit easy activation and fast initial hydrogen absorption on account of the increased specific surface area. However, the decrease in unit cell volume of the dominant phase leads to the decrease in hydrogen absorption capacity. Melt-spinning technique raises the equilibrium pressure and decreases the stability of hydride due to the decrease of unit cell volume and the elimination of α-Zr phase, respectively. Melt-spun ribbons with fine grains show improved hydrogen absorption kinetics comparing with that of the as-cast alloy. Meanwhile, the prevalent micro twins observed within melt-spun ribbons are believed to account for the improved hydrogen absorption kinetics. - Highlights: • Role of defects on hydrogenation kinetics of Zr-based alloys is proposed. • Microstructure and hydrogenation properties of as-cast/melt-spun alloy are compared. • Melt-spinning technique improves the hydrogenation kinetics of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} alloy. • Refined grains and twin defects account for improved hydrogen absorption kinetics.« less
NASA Technical Reports Server (NTRS)
Avissar, Roni; Chen, Fei
1993-01-01
Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.
The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.
West, T; Ng, L; Campbell, A
2014-12-01
The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah
2015-08-21
Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.
Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R
1997-07-05
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.
Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S
2016-05-15
This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetics on cocondensation of phenol and urea
Bunichiro Tomita; Yasunori Yoshida; Chung-Yun. Hse
1993-01-01
The chemical kinetics on cocondensation between methylolphenols and urea under acidic condition were investigated using 2- and 4-hydroxybenzyl alcohols as well as 2,4,6-trimethylolphenol as model compounds. The reactivity of the cocondensation were compared between o- and p-methylol groups. Moreover, the kinetics on self-condensations of monomethylolphenols and...
Kinetics of Acid Reactions: Making Sense of Associated Concepts
ERIC Educational Resources Information Center
Tan, Kim Chwee Daniel; Treagust, David F.; Chandrasegaran, A. L.; Mocerino, Mauro
2010-01-01
In chemical kinetics, in addition to the concepts related to kinetics, stoichiometry, chemical equilibrium and the characteristics of the reactants are often involved when comparing the rates of different reactions, making such comparisons very challenging for students at all levels, as well as for pre-service science teachers. Consequently, four…
NASA Astrophysics Data System (ADS)
Ianiri, H. L.; Timko, S.; Gonsior, M.
2016-02-01
Marine dissolved organic matter (DOM) is one of the largest reduced carbon reservoirs on Earth, yet we only have a limited understanding of its production, cycling, degradation, and overall structure. It was previously believed that a significant portion of refractory dissolved organic carbon (RDOC) in the ocean was derived from terrestrial sources, however recent studies indicated that the majority of marine DOM might be produced in situ by marine biota. Previous research has found that terrestrial and microbial DOM fluorescent signatures are similar, complicating the identification of the origins of marine fluorescent DOM (FDOM). However, photodegradation kinetics of terrestrial and microbial-derived DOM are expected to be different due to their assumed different chemical compositions. In this study we analyzed for the first time the photodegradation kinetics of microbial-derived DOM originating from different cyanobacteria strains. Cyanobacterial-derived DOM were exposed to simulated sunlight for a total of 20 hours while recording excitation emission matrix (EEM) fluorescence every twenty minutes to observe the photodegradation of this specific FDOM. Parallel Factor Analysis (PARAFAC) was applied to deconvolute the EEM matrices into six separate components. The photodegradation kinetics was then calculated for each component and compared with previously obtained photodegradation data of marine and terrestrial FDOM. This six component PARAFAC model was similar to those generated from open ocean data and global DOM data sets. The "humic-like" FDOM was also found in cyanobacteria FDOM and showed similar fluorescence intensities and percent fluorescence loss when compared to marine DOM. The degradation kinetics of the "humic-like" component of microbial-derived DOM was faster than that of terrestrial-derived DOM, and marine FDOM samples showed degradation kinetics more similar to microbial-derived FDOM. This indicates marine FDOM is more similar in chemical composition to microbial-derived FDOM than terrestrial-derived FDOM, supporting the hypothesis that the majority of marine FDOM is produced in situ.
Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S
2015-01-21
The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y
2016-10-01
This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the K d approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because K d,1 and k - were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF.
Duan, Chong; Kallehauge, Jesper F; Pérez-Torres, Carlos J; Bretthorst, G Larry; Beeman, Scott C; Tanderup, Kari; Ackerman, Joseph J H; Garbow, Joel R
2018-02-01
This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. Bayesian probability theory-based parameter estimation and model selection were used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, cervical cancer DCE-MRI data. When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., had a higher posterior probability) in 80 % of the voxels compared to the direct use of a single R-AIF. Maps of spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, such as cervical cancer, are accessible with the cL-AIF approach. The cL-AIF method, which estimates unique local-AIF amplitude and arrival time for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords estimates of uncertainties for each model parameter, via posterior probability density functions, and voxel-wise comparison across methods/models, via model selection in data modeling.
Salinas-Hernández, Rosa María; González-Aguilar, Gustavo A; Tiznado-Hernández, Martín Ernesto
2015-01-01
Sensory evaluation is the ideal tool for shelf-life determination. With the objective to develop an easy shelf-life indicator, color (L*, a*, b*, chroma and hue angle), total soluble solids (TSS), firmness (F), pH, acidity, and the sensory attributes of appearance, brightness, browning, odor, flavor, texture, color, acidity and sweetness were evaluated in fresh cut mangoes (FCM) stored at 5, 10, 15 and 20 °C. Overall acceptability was evaluated by consumers. Correlation analysis between sensory attributes and physicochemical variables was carried out. Physicochemical cut-off points based on sensory attributes and consumer acceptability was obtained by regression analysis and utilized to estimate FCM shelf-life by kinetic models fitted to each variable. The validation of the model was done by comparing the shelf life estimated by kinetic models and consumers. It was recorded large correlations between appearance, brightness, and color with L*; appearance and color with chroma and hue angle; sweetness and flavor with TSS, and between F and texture. The shelf life estimated based on consumer using a 9 point hedonic scale was in the range of 10-12, 2.3-2.6, 1.3-1.5 and 1.0-1.1 days for 5, 10, 15 and 20 °C. It was recorded large correlation coefficients between the shelf life estimated by consumer acceptability scores and physicochemical variables. Kinetic models based on physicochemical variables showed a tendency to overestimate the shelf life as compared with the models bases on the sensory attributes. It was concluded that physicochemical variables can be used as a tool to estimate the FCM shelf life.
On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hmadeh, Mohamad; Fang, Lei; Trabolsi, Ali
2010-01-01
We report a variety of [c2]daisy chain molecules which undergo quantitative, efficient, and fully reversible molecular movements upon the addition of base/acid in organic solvents. Such externally triggered molecular movements can induce the contraction and extension of the [c2]daisy chain molecule as a whole. A linear polymer of such a bistable [c2]daisy chain exerts similar types of movements and can be looked upon as a candidate for the development of artificial muscles. The spectrophotometric investigations of both the monomeric and polymeric bistable [c2]daisy chains, as well as the corresponding model compounds, were performed in MeCN at room temperature, in ordermore » to obtain the thermodynamic parameters for these mechanically interlocked molecules. Based on their spectrophotometric and thermodynamic characteristics, kinetic analysis of the acid/base-induced contraction and extension of the [c2]daisy chain monomer and polymer were conducted by employing a stopped-flow technique. These kinetic data suggest that the rates of contraction and extension for these [c2]daisy chain molecules are determined by the thermodynamic stabilities of the corresponding kinetic intermediates. Faster switching rates for both the contraction and extension processes of the polymeric [c2]daisy chain were observed when compared to those of its monomeric counterpart. These kinetic and thermodynamic investigations on [c2]daisy chain-based muscle-like compounds provide important information for those seeking an understanding of the mechanisms of actuation in mechanically interlocked macromolecules.« less
Plummer, Hillary A; Oliver, Gretchen D
2016-08-01
In order to decrease the amount of time that it takes the catcher to throw the ball, a catcher may chose to throw from the knees. Upper extremity kinematics may play a significant role in the kinetics about the elbow observed in catchers throwing from the knees. If relationships between kinematics and kinetics exist then the development of training and coaching instruction may help in reduced upper extremity injury risk. Twenty-two baseball and softball catchers (14.36±3.86years; 165.11±17.54cm; 65.67±20.60kg) volunteered. The catchers exhibited a less trunk rotation (5.6±16.2°), greater elbow flexion (87.9±21.4°) and decreased humeral elevation (71.1±12.3°) at the event of maximum shoulder external rotation as compared to what has previously reported in catchers. These variables are important, as they have previously been established as potential injury risk factors in pitchers, however it is not yet clear the role these variables play in catchers' risk of injury. A positive relationship between elbow varus torque during the deceleration phase and elbow flexion at MIR was observed (r=0.609; p=0.003). Throwing from the knees reduces a catcher's ability to utilize the proximal kinetic chain and this may help to explain why their kinematics and kinetics differ from what has previously been presented in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparative Solid-State Stability of Perindopril Active Substance vs. Pharmaceutical Formulation
Buda, Valentina; Andor, Minodora; Ledeti, Adriana; Ledeti, Ionut; Vlase, Gabriela; Vlase, Titus; Cristescu, Carmen; Voicu, Mirela; Suciu, Liana; Tomescu, Mirela Cleopatra
2017-01-01
This paper presents the results obtained after studying the thermal stability and decomposition kinetics of perindopril erbumine as a pure active pharmaceutical ingredient as well as a solid pharmaceutical formulation containing the same active pharmaceutical ingredient (API). Since no data were found in the literature regarding the spectroscopic description, thermal behavior, or decomposition kinetics of perindopril, our goal was the evaluation of the compatibility of this antihypertensive agent with the excipients in the tablet under ambient conditions and to study the effect of thermal treatment on the stability of perindopril erbumine. ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared) spectroscopy, thermal analysis (thermogravimetric mass curve (TG—thermogravimetry), derivative thermogravimetric mass curve (DTG), and heat flow (HF)) and model-free kinetics were chosen as investigational tools. Since thermal behavior is a simplistic approach in evaluating the thermal stability of pharmaceuticals, in-depth kinetic studies were carried out by classical kinetic methods (Kissinger and ASTM E698) and later with the isoconversional methods of Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa. It was shown that the main thermal degradation step of perindopril erbumine is characterized by activation energy between 59 and 69 kJ/mol (depending on the method used), while for the tablet, the values were around 170 kJ/mol. The used excipients (anhydrous colloidal silica, microcrystalline cellulose, lactose, and magnesium stearate) should be used in newly-developed generic solid pharmaceutical formulations, since they contribute to an increased thermal stability of perindopril erbumine. PMID:28098840
Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device.
Nelson, Gilbert L; Asmussen, Susan E; Lines, Amanda M; Casella, Amanda J; Bottenus, Danny R; Clark, Sue B; Bryan, Samuel A
2018-05-21
Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO 3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.
Worek, Franz; Aurbek, Nadine; Wille, Timo; Eyer, Peter; Thiermann, Horst
2011-01-15
Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Atmospheric Transformation of Volatile Organic Compounds
2008-03-01
Study Analysis Reactant mixtures and standards from product identification experiments were sampled by exposing a 100% polydimethylsiloxane solid...later using the DNPH derivatization method described above and confirmed against a commercial standard. HPLC analysis of the DNPH cartridges also...reaction mixture for a combined total photolysis time ofapproximately 50 seconds. 2.3. Kinetic Study Analysis Samples from kinetic studies were
NASA Astrophysics Data System (ADS)
Gravier, E.; Klein, R.; Morel, P.; Besse, N.; Bertrand, P.
2008-12-01
A new model is presented, named collisional-gyro-water-bag (CGWB), which describes the collisional drift waves and ion-temperature-gradient (ITG) instabilities in a plasma column. This model is based on the kinetic gyro-water-bag approach recently developed [P. Morel et al., Phys. Plasmas 14, 112109 (2007)] to investigate ion-temperature-gradient modes. In CGWB electron-neutral collisions have been introduced and are now taken into account. The model has been validated by comparing CGWB linear analysis with other models previously proposed and experimental results as well. Kinetic effects on collisional drift waves are investigated, resulting in a less effective growth rate, and the transition from collisional drift waves to ITG instability depending on the ion temperature gradient is studied.
Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1990-01-01
A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
Role of Water Activity on Intergranular Transport at High Pressure
NASA Astrophysics Data System (ADS)
Gasc, J.; Brunet, F.; Brantut, N.; Corvisier, J.; Findling, N.; Verlaguet, A.; Lathe, C.
2016-12-01
The kinetics of the reaction Ca(OH)2 + MgCO3 = CaCO3 + Mg(OH)2 were investigated at a pressure of 1.8 GPa and temperatures of 120-550°C, using synchrotron X-ray diffraction and analysis of reaction rims on recovered samples. Comparable reaction kinetics were obtained under water saturated ( 10 wt.%), intermediate (0.1-1 wt.%) and dry conditions at 150, 400 and 550°C, respectively, where, in the latter case, water activity was buffered below one (no free water). At a given temperature, these gaps imply differences of several orders of magnitude in terms of reaction kinetics. Microscopy analysis shows that intergranular transport of Ca controls the reaction progress. Grain boundary diffusivities were retrieved from measurements of reaction rim widths on recovered samples. In addition, an innovative reaction rim growth model was developed to simulate and fit kinetic data. The diffusion values thus obtained show that both dry and intermediate datasets are in fact consistent with a water saturated intergranular medium with different levels of connectivity. Diffusivity of Ca in the CaCO3 + Mg(OH)2 rims is found to be much larger than that of Mg in enstatite rims, which emphasizes the prominent role of interactions between diffusing species and mineral surfaces on diffusion. We suggest that diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is not only water-content dependent but also strongly depends on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to the other, needs to be considered when extrapolating (P,T,t, xH2O) laboratory diffusion data to metamorphic processes. The present study, along with previous data from the literature, will help quantify the tremendous effect of small water content variations, i.e., within the 0-1 wt. % range, on intergranular transport and reaction kinetics (Gasc et al., J. Pet., In press).
Kinetic parameters and structural variations in Cu-Al-Mn and Cu-Al-Mn-Mg shape memory alloys
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu
2017-02-01
In this work polycrystalline Cu-Al-Mn and Cu-Al-Mn-Mg SMAs were fabricated by arc melting. The thermal analysis was made to determine the characteristic transformation temperatures of the samples and kinetic parameters. Also the effect of Mg on transformation temperatures and kinetic parameters detected. The structural analysis was made to designate the diffraction planes of martensite phase at room temperature and this was supported by optical measurement observations.
Validation of Bayesian analysis of compartmental kinetic models in medical imaging.
Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M
2016-10-01
Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Larik, Fayaz Ali; Saeed, Aamer; Channar, Pervaiz Ali; Muqadar, Urooj; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum; Bolte, Michael
2017-12-01
A series of novel 1-pentanoyl-3-arylthioureas was designed as new mushroom tyrosinase inhibitors and free radical scavengers. The title compounds were obtained in excellent yield and characterized by FTIR, 1 H NMR, 13 C NMR and X-ray crystallography in case of compound (4a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 1-Pentanoyl-3-(4-methoxyphenyl) thiourea (4f) showed tyrosinase inhibitory activity (IC 50 1.568 ± 0.01 mM) comparable to Kojic acid (IC 50 16.051 ± 1.27 mM). Interestingly compound 4f exhibited higher antioxidant potential compared to other derivatives. The docking studies of synthesized 1-Pentanoyl-3-arylthioureas analogues were also carried out against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC 50 values. The predicted binding affinities are in good agreement with the IC 50 values as compound (4f) showed highest binding affinity (-7.50 kcal/mol) compared to others derivatives. The kinetic mechanism analyzed by Line-weavere Burk plots exhibited that compound (4f) inhibit the enzyme inhibits the tyrosinase non-competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (4f) is 1.10 μM. It was also found from kinetic analysis that derivative 4f irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound (4f) may serve as lead structure for the design of more potent tyrosinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M
2008-07-01
Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farde, L.; Eriksson, L.; Blomquist, G.
1989-10-01
(11C)Raclopride binding to central D2-dopamine receptors in humans has previously been examined by positron emission tomography (PET). Based on the rapid occurrence of binding equilibrium, a saturation analysis has been developed for the determination of receptor density (Bmax) and affinity (Kd). For analysis of PET measurements obtained with other ligands, a kinetic three-compartment model has been used. In the present study, the brain uptake of (11C)raclopride was analyzed further by applying both a kinetic and an equilibrium analysis to data obtained from four PET experiments in each of three healthy subjects. First regional CBV was determined. In the second andmore » third experiment, (11C)-raclopride with high and low specific activity was used. In a fourth experiment, the (11C)raclopride enantiomer (11C)FLB472 was used to examine the concentration of free radioligand and nonspecific binding in brain. Radio-activity in arterial blood was measured using an automated blood sampling system. Bmax and Kd values for (11C)raclopride binding could be determined also with the kinetic analysis. As expected theoretically, those values were similar to those obtained with the equilibrium analysis. In addition, the kinetic analysis allowed separate determination of the association and dissociation rate constants, kon and koff, respectively. Examination of (11C)raclopride and (11C)FLB472 uptake in brain regions devoid of specific D2-dopamine receptor binding indicated a fourth compartment in which uptake was reversible, nonstereoselective, and nonsaturable in the dose range studied.« less
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
NASA Technical Reports Server (NTRS)
Anderson, William E.; Lucht, Robert P.; Mongia, Hukam
2015-01-01
Concurrent simulation and experiment was undertaken to assess the ability of a hybrid RANS-LES model to predict combustion dynamics in a single-element lean direct-inject (LDI) combustor showing self-excited instabilities. High frequency pressure modes produced by Fourier and modal decomposition analysis were compared quantitatively, and trends with equivalence ratio and inlet temperature were compared qualitatively. High frequency OH PLIF and PIV measurements were also taken. Submodels for chemical kinetics and primary and secondary atomization were also tested against the measured behavior. For a point-wise comparison, the amplitudes matched within a factor of two. The dependence on equivalence ratio was matched. Preliminary results from simulation using an 18-reaction kinetics model indicated instability amplitudes closer to measurement. Analysis of the simulations suggested a band of modes around 1400 Hz were due to a vortex bubble breakdown and a band of modes around 6 kHz were due to a precessing vortex core hydrodynamic instability. The primary needs are directly coupled and validated ab initio models of the atomizer free surface flow and the primary atomization processes, and more detailed study of the coupling between the 3D swirling flow and the local thermoacoustics in the diverging venturi section.
Koit, Andre; Ounpuu, Lyudmila; Klepinin, Aleksandr; Chekulayev, Vladimir; Timohhina, Natalja; Tepp, Kersti; Puurand, Marju; Truu, Laura; Heck, Karoliina; Valvere, Vahur; Guzun, Rita
2017-01-01
We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures. PMID:28781720
Biomechanical Analysis of the Closed Kinetic Chain Upper-Extremity Stability Test.
Tucci, Helga T; Felicio, Lilian R; McQuade, Kevin J; Bevilaqua-Grossi, Debora; Camarini, Paula Maria Ferreira; Oliveira, Anamaria S
2017-01-01
The closed kinetic chain upper-extremity stability (CKCUES) test is a functional test for the upper extremity performed in the push-up position, where individuals support their body weight on 1 hand placed on the ground and swing the opposite hand until touching the hand on the ground, then switch hands and repeat the process as fast as possible for 15 s. To study scapular kinematic and kinetic measures during the CKCUES test for 3 different distances between hands. Experimental. Laboratory. 30 healthy individuals (15 male, 15 female). Participants performed 3 repetitions of the test at 3 distance conditions: original (36 in), interacromial, and 150% interacromial distance between hands. Participants completed a questionnaire on pain intensity and perceived exertion before and after the procedures. Scapular internal/external rotation, upward/downward rotation, and posterior/anterior tilting kinematics and kinetic data on maximum force and time to maximum force were measured bilaterally in all participants. Percentage of body weight on upper extremities was calculated. Data analyses were based on the total numbers of hand touches performed for each distance condition, and scapular kinematics and kinetic values were averaged over the 3 trials. Scapular kinematics, maximum force, and time to maximum force were compared for the 3 distance conditions within each gender. Significance level was set at α = .05. Scapular internal rotation, posterior tilting, and upward rotation were significantly greater in the dominant side for both genders. Scapular upward rotation was significantly greater in original distance than interacromial distance in swing phase. Time to maximum force in women was significantly greater in the dominant side. CKCUES test kinematic and kinetic measures were not different among 3 conditions based on distance between hands. However, the test might not be suitable for initial or mild-level rehabilitation due to its challenging requirements.
Iremashvili, Viacheslav; Barney, Shane L; Manoharan, Murugesan; Kava, Bruce R; Parekh, Dipen J; Punnen, Sanoj
2016-04-01
To analyze the association between prediagnostic prostate-specific antigen kinetics and the risk of biopsy progression in prostate cancer patients on active surveillance, and to study the effect of prediagnostic prostate-specific antigen values on the predictive performance of prostate-specific antigen velocity and prostate-specific antigen doubling time. The study included 137 active surveillance patients with two or more prediagnostic prostate-specific antigen levels measured over a period of at least 3 months. Two sets of analyses were carried out. First, the association between prostate-specific antigen kinetics calculated using only the prediagnostic prostate-specific antigen values and the risk of biopsy progression was studied. Second, using the same cohort of patients, the predictive value of prostate-specific antigen kinetics calculated using only post-diagnostic prostate-specific antigens and compared with that of prostate-specific antigen kinetics based on both pre- and post-diagnostic prostate-specific antigen levels was analyzed. Of 137 patients included in the analysis, 37 (27%) had biopsy progression over a median follow-up period of 3.2 years. Prediagnostic prostate-specific antigen velocity of more than 2 ng/mL/year and 3 ng/mL/year was statistically significantly associated with the risk of future biopsy progression. However, after adjustment for baseline prostate-specific antigen density, these associations were no longer significant. None of the tested prostate-specific antigen kinetics based on combined pre- and post-diagnostic prostate-specific antigen values were statistically significantly associated with the risk of biopsy progression. Historical prediagnostic prostate-specific antigens seems to be not clinically useful in patients diagnosed with low-risk prostate cancer on active surveillance. © 2016 The Japanese Urological Association.
Loy, Adrian Chun Minh; Gan, Darren Kin Wai; Yusup, Suzana; Chin, Bridgid Lai Fui; Lam, Man Kee; Shahbaz, Muhammad; Unrean, Pornkamol; Acda, Menandro N; Rianawati, Elisabeth
2018-08-01
The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different heating rates of 10, 20, 50 and 100 K/min. Four different iso conversional kinetic models such as Kissinger, Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were applied in this study to calculate the activation energy (E A ) and pre-exponential value (A) of the system. The E A of non-catalytic and catalytic pyrolysis was found to be in the range of 152-190 kJ/mol and 146-153 kJ/mol, respectively. The results showed that the catalytic pyrolysis of RH had resulted in a lower E A as compared to non-catalytic pyrolysis of RH and other biomass in literature. Furthermore, the high Gibb's free energy obtained in RH implied that it has the potential to serve as a source of bioenergy production. Copyright © 2018 Elsevier Ltd. All rights reserved.
On the applicability of the standard kinetic theory to the study of nanoplasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Angola, A., E-mail: antonio.dangola@unibas.it; Boella, E.; GoLP/Instituto de Plasmas e Fusão Nuclear-Laboratório Associado, Instituto Superior Técnico, Avenida Rovisco Pais 1-1049-001 Lisboa
Kinetic theory applies to systems with a large number of particles, while nanoplasma generated by the interaction of ultra–short laser pulses with atomic clusters are systems composed by a relatively small number (10{sup 2} ÷ 10{sup 4}) of electrons and ions. In the paper, the applicability of the kinetic theory for studying nanoplasmas is discussed. In particular, two typical phenomena are investigated: the collisionless expansion of electrons in a spherical nanoplasma with immobile ions and the formation of shock shells during Coulomb explosions. The analysis, which is carried out comparing ensemble averages obtained by solving the exact equations of motionmore » with reference solutions of the Vlasov-Poisson model, shows that for the dynamics of the electrons the error of the usually employed models is of the order of few percents (but the standard deviation in a single experiment can be of the order of 10%). Instead, special care must be taken in the study of shock formation, as the discrete structure of the electric charge can destroy or strongly modify the phenomenon.« less
Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid
NASA Astrophysics Data System (ADS)
Yusof, F. A. M.; Hashim, A. S.; Tajudin, Z.
2017-12-01
Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid materials was investigated by thermogravimetric analysis (TGA). Model-free iso-conversion Flynn-Wall-Ozawa (FWO) and Coats-Redfern-modified (CRm) were chosen to evaluate the activation energy of the kenaf (KF) and kenaf/sol-gel silica (KFS) at heating rates (β) of 10, 20, 30 and 40 °C/min. The results shows that an apparent activation energy was increased for the kenaf/sol-gel silica hybrid (211.59 kJ/mol for FWO and 191.55 kJ/mol for CRm) as compared to kenaf fiber (202.84 kJ/mol for FWO and 186.20 kJ/mol for CRm). Other parameters such as integral procedure decomposition temperature (IPDT), final residual weight (Rf), temperature of maximum degradation rate (Tmax) and residual at maximum temperature (RTmax) were obtained from TGA curves, additionally confirmed the thermal stability of the kenaf/sol-gel silica hybrid. These activation energy values and other findings developed the simplified approach in order to understand the thermal stability and degradation kinetics behavior of kenaf/sol-gel silica hybrid materials.
Thermodynamic properties and crystallization kinetics at high liquid undercooling
NASA Technical Reports Server (NTRS)
Fecht, Hans J.
1990-01-01
The heat capacities of liquid and crystalline Au-Pb-Sb alloys in the glass-forming composition range were measured with droplet emulsion and bulk samples. Based on the measured C(sub p) data, the entropy, enthalpy, and Gibbs free energy functions of the eutectic, solid mixture, and undercooled liquid were determined as a function of undercooling and compared with theoretical predictions. The results indicate an isentropic temperature at 313 + or - 5 K, which agrees well with experimental data for the glass transition. A kinetics analysis of the nucleation undercooling response suggests that the proper choice for the Gibbs free energy change during crystallization is most important in analyzing the nucleation kinetics. By classical nucleation theory, the prefactors obtained, based on a variety of theoretical predictions for the driving force, can differ by six orders of magnitude. If the nucleation rates are extrapolated to high undercooling, the extrapolations based on measured heat capacity data show agreement, whereas the predicted nucleation rates are inconsistent with results from drop tower experiments. The implications for microg experiments are discussed.
Analytical approach to impurity transport studies: Charge state dynamics in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurygin, V. A.
2006-08-15
Ionization and recombination of plasma impurities govern their charge state kinetics, which is imposed upon the dynamics of ions that implies a superposition of the appropriate probabilities and causes an impurity charge state dynamics. The latter is considered in terms of a vector field of conditional probabilities and presented by a vector charge state distribution function with coupled equations of the Kolmogorov type. Analytical solutions of a diffusion problem are derived with the basic spatial and temporal dimensionless parameters. Analysis shows that the empirical scaling D{sub A}{proportional_to}n{sub e}{sup -1} [K. Krieger, G. Fussmann, and the ASDEX Upgrade Team, Nucl. Fusionmore » 30, 2392 (1990)] can be explained by the ratio of the diffusive and kinetic terms, D{sub A}/(n{sub e}a{sup 2}), being used instead of diffusivity, D{sub A}. The derived time scales of charge state dynamics are given by a sum of the diffusive and kinetic times. Detailed simulations of charge state dynamics are performed for argon impurity and compared with the reference modeling.« less
Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih
2018-05-01
Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2 = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.
Chea, F P; Chen, Y; Montville, T J; Schaffner, D W
2000-08-01
The germination kinetics of proteolytic Clostridium botulinum 56A spores were modeled as a function of temperature (15, 22, 30 degrees C), pH (5.5, 6.0, 6.5), and sodium chloride (0.5, 2.0, 4.0%). Germination in brain heart infusion (BHI) broth was followed with phase-contrast microscopy. Data collected were used to develop the mathematical models. The germination kinetics expressed as cumulated fraction of germinated spores over time at each environmental condition were best described by an exponential distribution. Quadratic polynomial models were developed by regression analysis to describe the exponential parameter (time to 63% germination) (r2 = 0.982) and the germination extent (r2 = 0.867) as a function of temperature, pH, and sodium chloride. Validation experiments in BHI broth (pH: 5.75, 6.25; NaCl: 1.0, 3.0%; temperature: 18, 26 degrees C) confirmed that the model's predictions were within an acceptable range compared to the experimental results and were fail-safe in most cases.
Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi
2015-12-01
Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. Copyright © 2015. Published by Elsevier Ltd.
Plasma stability analysis using Consistent Automatic Kinetic Equilibrium reconstruction (CAKE)
NASA Astrophysics Data System (ADS)
Roelofs, Matthijs; Kolemen, Egemen; Eldon, David; Glasser, Alex; Meneghini, Orso; Smith, Sterling P.
2017-10-01
Presented here is the Consistent Automatic Kinetic Equilibrium (CAKE) code. CAKE is being developed to perform real-time kinetic equilibrium reconstruction, aiming to do a reconstruction in less than 100ms. This is achieved by taking, next to real-time Motional Stark Effect (MSE) and magnetics data, real-time Thomson Scattering (TS) and real-time Charge Exchange Recombination (CER, still in development) data in to account. Electron densities and temperature are determined by TS, while ion density and pressures are determined using CER. These form, together with the temperature and density of neutrals, the additional pressure constraints. Extra current constraints are imposed in the core by the MSE diagnostics. The pedestal current density is estimated using Sauters equation for the bootstrap current density. By comparing the behaviour of the ideal MHD perturbed potential energy (δW) and the linear stability index (Δ') of CAKE to magnetics-only reconstruction, it can be seen that the use of diagnostics to reconstruct the pedestal have a large effect on stability. Supported by U.S. DOE DE-SC0015878 and DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Vekilov, Peter G.; Lin, Hong; Alexander, J. Iwan D.
1997-01-01
Protein crystallization experiments at reduced gravity have yielded crystals that, depending on the specific material, are either superior or inferior in their structural perfection compared to counterparts grown at normal gravity. A reduction of the crystals' quality due to their growth at low gravity cannot be understood from existing models. Our experimental investigations of the ground-based crystallization of the protein lysozyme have revealed pronounced unsteady growth layer dynamics and associated defect formation under steady external conditions. Through scaling analysis and numerical simulations we show that the observed fluctuations originate from the coupling of bulk transport with non-linear interface kinetics under mixed kinetics-transport control of the growth rate. The amplitude of the fluctuations is smallest when either transport or interfacial kinetics dominate the control of the crystallization process. Thus, depending on the specific system, crystal quality may be improved by either enhancing or suppressing the transport in the solution. These considerations provide, for the first time, a material-dependent rationale for the advantages, as well as the disadvantages, of reduced gravity for (protein) crystallization.
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
NASA Technical Reports Server (NTRS)
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
Kankipati, Padmaja; Boninger, Michael L.; Gagnon, Dany; Cooper, Rory A.; Koontz, Alicia M.
2015-01-01
Study design Repeated measures design. Objective This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Setting Research laboratory. Methods Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head–hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Results Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Conclusion Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement. PMID:25130053
Dynamic identification of growth and survival kinetic parameters of microorganisms in foods
USDA-ARS?s Scientific Manuscript database
Inverse analysis is a mathematical method used in predictive microbiology to determine the kinetic parameters of microbial growth and survival in foods. The traditional approach in inverse analysis relies on isothermal experiments that are time-consuming and labor-intensive, and errors are accumula...
Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture
Buehler, Edward A.; Mesbah, Ali
2016-01-01
Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663
k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design
Chowdhury, Anupam; Zomorrodi, Ali R.; Maranas, Costas D.
2014-01-01
Computational strain design protocols aim at the system-wide identification of intervention strategies for the enhanced production of biochemicals in microorganisms. Existing approaches relying solely on stoichiometry and rudimentary constraint-based regulation overlook the effects of metabolite concentrations and substrate-level enzyme regulation while identifying metabolic interventions. In this paper, we introduce k-OptForce, which integrates the available kinetic descriptions of metabolic steps with stoichiometric models to sharpen the prediction of intervention strategies for improving the bio-production of a chemical of interest. It enables identification of a minimal set of interventions comprised of both enzymatic parameter changes (for reactions with available kinetics) and reaction flux changes (for reactions with only stoichiometric information). Application of k-OptForce to the overproduction of L-serine in E. coli and triacetic acid lactone (TAL) in S. cerevisiae revealed that the identified interventions tend to cause less dramatic rearrangements of the flux distribution so as not to violate concentration bounds. In some cases the incorporation of kinetic information leads to the need for additional interventions as kinetic expressions render stoichiometry-only derived interventions infeasible by violating concentration bounds, whereas in other cases the kinetic expressions impart flux changes that favor the overproduction of the target product thereby requiring fewer direct interventions. A sensitivity analysis on metabolite concentrations shows that the required number of interventions can be significantly affected by changing the imposed bounds on metabolite concentrations. Furthermore, k-OptForce was capable of finding non-intuitive interventions aiming at alleviating the substrate-level inhibition of key enzymes in order to enhance the flux towards the product of interest, which cannot be captured by stoichiometry-alone analysis. This study paves the way for the integrated analysis of kinetic and stoichiometric models and enables elucidating system-wide metabolic interventions while capturing regulatory and kinetic effects. PMID:24586136
Sousa, Ana C.; Vilas-Boas, João P.; Fernandes, Ricardo J.
2014-01-01
A bioenergetical analysis of swimming at intensities near competitive distances is inexistent. It was aimed to compare the transient VO2 kinetics responses and metabolic contributions whilst swimming at different velocities around VO2max. 12 trained male swimmers performed (i) an incremental protocol to determine the velocity at VO2max (vVO2max) and (ii) three square wave exercises from rest to 95, 100, and 105% of vVO2max. VO2 was directly measured using a telemetric portable gas analyser and its kinetics analysed through a double-exponential model. Metabolic contributions were assessed through the sum of three energy components. No differences were observed in the fast component response (τ 1—15, 18, and 16 s, A 1—36, 34, and 37 mL · kg−1 · min−1, and Gain—32, 29, and 30 mL · min−1 at 95, 100, and 105% of the vVO2max, resp.) but A2 was higher in 95 and 100% compared to 105% intensity (480.76 ± 247.01, 452.18 ± 217.04, and 147.04 ± 60.40 mL · min−1, resp.). The aerobic energy contribution increased with the time sustained (83 ± 5, 74 ± 6, and 59 ± 7% for 95, 100, and 105%, resp.). The adjustment of the cardiovascular and/or pulmonary systems that determine O2 delivery and diffusion to the exercising muscles did not change with changing intensity, with the exception of VO2 slow component kinetics metabolic profiles. PMID:25045690
Heterodimer Binding Scaffolds Recognition via the Analysis of Kinetically Hot Residues
Perišić, Ognjen
2018-01-01
Physical interactions between proteins are often difficult to decipher. The aim of this paper is to present an algorithm that is designed to recognize binding patches and supporting structural scaffolds of interacting heterodimer proteins using the Gaussian Network Model (GNM). The recognition is based on the (self) adjustable identification of kinetically hot residues and their connection to possible binding scaffolds. The kinetically hot residues are residues with the lowest entropy, i.e., the highest contribution to the weighted sum of the fastest modes per chain extracted via GNM. The algorithm adjusts the number of fast modes in the GNM’s weighted sum calculation using the ratio of predicted and expected numbers of target residues (contact and the neighboring first-layer residues). This approach produces very good results when applied to dimers with high protein sequence length ratios. The protocol’s ability to recognize near native decoys was compared to the ability of the residue-level statistical potential of Lu and Skolnick using the Sternberg and Vakser decoy dimers sets. The statistical potential produced better overall results, but in a number of cases its predicting ability was comparable, or even inferior, to the prediction ability of the adjustable GNM approach. The results presented in this paper suggest that in heterodimers at least one protein has interacting scaffold determined by the immovable, kinetically hot residues. In many cases, interacting proteins (especially if being of noticeably different sizes) either behave as a rigid lock and key or, presumably, exhibit the opposite dynamic behavior. While the binding surface of one protein is rigid and stable, its partner’s interacting scaffold is more flexible and adaptable. PMID:29547506
Kimura, Yuka; Ishibashi, Yasuyuki; Tsuda, Eiichi; Yamamoto, Yuji; Hayashi, Yoshimitsu; Sato, Shuichi
2012-03-01
In badminton, knees opposite to the racket-hand side received anterior cruciate ligament (ACL) injuries during single-leg landing after overhead stroke. Most of them occurred in the backhand-side of the rear court. Comparing lower limb biomechanics during single-leg landing after overhead stroke between the forehand-side and backhand-side court may help explain the different injury rates depending on court position. The knee kinematics and kinetics during single-leg landing after overhead stroke following back-stepping were different between the forehand-side and backhand-side court. Controlled laboratory study. Hip, knee and ankle joint kinematic and knee kinetic data were collected for 17 right-handed female college badminton players using a 3-dimensional motion analysis system. Subjects performed single-left-legged landing after an overhead stroke following left and right back-stepping. The kinematic and kinetic data of the left lower extremities during landing were measured and compared between left and right back-steps. Hip flexion and abduction and knee valgus at the initial contact, hip and knee flexion and knee valgus at the maximum knee flexion and the maximum knee valgus moment were significantly larger for the left back-step than the right back-step (p<0.05). Significant differences in joint kinematics and kinetics of the lower extremity during single-leg landing after overhead stroke were observed between different back-step directions. Increased knee valgus angle and moment following back-stepping to the backhand-side might be related to the higher incidence of ACL injury during single-leg landing after overhead stroke.
Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
2001-01-01
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.
Kinematic and kinetic comparisons between American and Korean professional baseball pitchers.
Escamilla, Rafael; Fleisig, Glen; Barrentine, Steven; Andrews, James; Moorman, Claude
2002-07-01
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.
ERIC Educational Resources Information Center
Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George
2014-01-01
A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan
Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less
Hurd, Wendy J; Kavros, Steven J; Kaufman, Kenton R
2010-11-01
Evaluate effects of a new off-the-shelf insert on frontal plane foot biomechanics and compare effectiveness of the new and an existing off-the-shelf insert and a motion-control shoe in neutralizing frontal plane foot biomechanics. Descriptive. Biomechanics laboratory. Fifteen uninjured subjects with a flexible flatfoot secondary to forefoot varus. Three-dimensional kinematic and kinetic data were collected as subjects walked and jogged at their self-selected speed while wearing a motion-control running shoe, the shoe with a new off-the-shelf insert, and the shoe with an existing off-the-shelf insert. Frontal plane kinematics and rearfoot kinetics were evaluated during stance. Statistical analysis was performed using a repeated measures analysis of variance and Student-Newman-Keuls post hoc tests (α ≤ 0.05). The new insert and motion-control shoe placed the forefoot in a less-everted position than the existing off-the-shelf insert during walking. There were no differences in forefoot kinematics during jogging, nor were there differences in rearfoot motion during walking or jogging. The rearfoot eversion moment was significantly lower with the new off-the-shelf insert compared with the motion-control shoe and the existing insert during walking and jogging. A new off-the-shelf device is available that promotes more neutral frontal plane biomechanics, thus providing a theoretical rationale for using this device for injury prevention and treatment. The comparative biomechanical effectiveness of a motion-control shoe and the orthotic inserts may assist health care professionals in selecting a device to correct the flatfoot structure.
NASA Astrophysics Data System (ADS)
Pirveysian, Mahtab; Ghiaci, Mehran
2018-01-01
A very simple, one pot method was used for preparation of sulfur functionalized graphene oxide (GO-SOxR) with sodium sulfide and water in reflux condition. The elemental analysis data showed high sulfur content up to 15%. EDS and XPS analysis also proved introduction of sulfur element. To make the sorbent more efficient operationally, the GO-SOxR was coated with a mesoporous shell of TiO2 or SiO2. The prepared sorbents were characterized by SEM, TEM, TGA, XPS, XRD, IR and EDS. GO-SOxR@TiO2 and GO-SOxR@SiO2 composites were tested for removal of Pb(II), Cd(II), Ni(II) and Zn(II) as heavy metal ions from aqueous solution in batch method. Adsorption of the heavy metal ions was studied kinetically, and the adsorption capacities of GO-SOxR, GO-SOxR@TiO2, and GO-SOxR@SiO2 were evaluated using equilibrium adsorption isotherms, and compared to other adsorbents used for removal of these heavy metals. Kinetic studies showed that the experimental data was fitted with pseudo second order model. The adsorption capacity of GO was significantly improved by sulfur functionalization and TiO2 coating.
NASA Astrophysics Data System (ADS)
Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry
2018-04-01
The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.
dos Reis, Amir Curcio; Correa, João Carlos Ferrari; Bley, André Serra; Rabelo, Nayra Deise dos Anjos; Fukuda, Thiago Yukio; Lucareli, Paulo Roberto Garcia
2015-10-01
Cross-sectional study. To compare the biomechanical strategies of the trunk and lower extremity during the transition period between the first and second hop of a single-leg triple hop test in women with and without patellofemoral pain (PFP). Recent literature has shown that PFP is associated with biomechanical impairments of the lower extremities. A number of studies have analyzed the position of the trunk and lower extremities for functional activities such as walking, squatting, jumping, and the step-down test. However, studies on more challenging activities, such as the single-leg triple hop test, may be more representative of sports requiring jumping movements. Women between 18 and 35 years of age (control group, n = 20; PFP group, n = 20) participated in the study. Three-dimensional kinematic and kinetic data were collected during the transition period between the first and second hops while participants performed the single-leg triple hop test. Compared to the control group, women with PFP exhibited greater (P<.05) anterior and ipsilateral trunk lean, contralateral pelvic drop, hip internal rotation and adduction, and ankle eversion, while exhibiting less hip and knee flexion. A significant difference (P<.05) in time to peak joint angle was also found between groups for all the variables analyzed, except anterior pelvic tilt and hip flexion. In addition, women with PFP exhibited greater (P<.05) hip and knee abductor internal moments. Compared to the control group, women with PFP exhibited altered trunk, pelvis, hip, knee, and ankle kinematics and kinetics.
Analysis of a boron-carbide-drum-controlled critical reactor experiment
NASA Technical Reports Server (NTRS)
Mayo, W. T.
1972-01-01
In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.
Molecular mechanisms of protein aggregation from global fitting of kinetic models.
Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J
2016-02-01
The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and fitting the chosen models using an advanced minimization algorithm to yield the reaction orders and rate constants. Finally, we outline how to use this approach to investigate which targets potential inhibitors of amyloid formation bind to and where in the reaction mechanism they act. The protocol, from processing data to determining mechanisms, can be completed in <1 d.
NASA Astrophysics Data System (ADS)
Tsaplev, Yu. B.
2016-12-01
The kinetics and mechanism of chemiluminescence during the reduction of manganese(IV) ions with lactic acid in an H2SO4-AcOH medium are studied. Kinetic spectrophotometric measurements are used to determine the profiles of change in the concentrations of Mn(IV) and Mn(III) ions during the reaction. The results from kinetic spectrophotometric measurements are compared to the light yield kinetics. The quantum chemiluminescence and chemiexcitation yields reach record values.
Damorim, Igor Rodrigues; Santos, Tony Meireles; Barros, Gustavo Willames Pimentel; Carvalho, Paulo Roberto Cavalcanti
2017-01-01
Background Resistance and aerobic training are recommended as an adjunctive treatment for hypertension. However, the number of sessions required until the hypotensive effect of the exercise has stabilized has not been clearly established. Objective To establish the adaptive kinetics of the blood pressure (BP) responses as a function of time and type of training in hypertensive patients. Methods We recruited 69 patients with a mean age of 63.4 ± 2.1 years, randomized into one group of resistance training (n = 32) and another of aerobic training (n = 32). Anthropometric measurements were obtained, and one repetition maximum (1RM) testing was performed. BP was measured before each training session with a digital BP arm monitor. The 50 training sessions were categorized into quintiles. To compare the effect of BP reduction with both training methods, we used two-way analysis of covariance (ANCOVA) adjusted for the BP values obtained before the interventions. The differences between the moments were established by one-way analysis of variance (ANOVA). Results The reductions in systolic (SBP) and diastolic BP (DBP) were 6.9 mmHg and 5.3 mmHg, respectively, with resistance training and 16.5 mmHg and 11.6 mmHg, respectively, with aerobic training. The kinetics of the hypotensive response of the SBP showed significant reductions until the 20th session in both groups. Stabilization of the DBP occurred in the 20th session of resistance training and in the 10th session of aerobic training. Conclusion A total of 20 sessions of resistance or aerobic training are required to achieve the maximum benefits of BP reduction. The methods investigated yielded distinct adaptive kinetic patterns along the 50 sessions. PMID:28380132
Chehab, E F; Andriacchi, T P; Favre, J
2017-06-14
The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
Walkenhorst, W F; Green, S M; Roder, H
1997-05-13
The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.
ERIC Educational Resources Information Center
Jones, Lawrence; Graham, Ian
1986-01-01
Reviews the main principles of interfacing and discusses the software developed to perform kinetic data capture and analysis with a BBC microcomputer linked to a recording spectrophotometer. Focuses on the steps in software development. Includes results of a lactate dehydrogenase assay. (ML)
Spectral method for a kinetic swarming model
Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien
2015-04-28
Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.
Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.
2009-01-01
Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179
Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W
1987-01-01
The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results. PMID:3032390
Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W
1987-01-01
The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results.
Drescher, U; Koschate, J; Thieschäfer, L; Schneider, S; Hoffmann, U
2018-06-22
The aim of the study was to test whether or not the arteriovenous oxygen concentration difference (avDO 2 ) kinetics at the pulmonary (avDO 2 pulm) and muscle (avDO 2 musc) levels is significantly different during dynamic exercise. A re-analysis involving six publications dealing with kinetic analysis was utilized with an overall sample size of 69 participants. All studies comprised an identical pseudorandom binary sequence work rate (WR) protocol-WR changes between 30 and 80 W-to analyze the kinetic responses of pulmonary ([Formula: see text]) and muscle ([Formula: see text]) oxygen uptake kinetics as well as those of avDO 2 pulm and avDO 2 musc. A significant difference between [Formula: see text] (0.395 ± 0.079) and [Formula: see text] kinetics (0.330 ± 0.078) was observed (p < 0.001), where the variables showed a significant relationship (r SP = 0.744, p < 0.001). There were no significant differences between avDO 2 musc (0.446 ± 0.077) and avDO 2 pulm kinetics (0.451 ± 0.075), which are highly correlated (r = 0.929, p < 0.001). It is suggested that neither avDO 2 pulm nor avDO 2 musc kinetic responses seem to be responsible for the differences between estimated [Formula: see text] and measured [Formula: see text] kinetics. Obviously, the conflation of avDO 2 and perfusion ([Formula: see text] ) at different points in time and at different physiological levels drive potential differences in [Formula: see text] and [Formula: see text] kinetics. Therefore, [Formula: see text] should, in general, be considered whenever oxygen uptake kinetics are analyzed or discussed.
Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS
NASA Astrophysics Data System (ADS)
Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.
2017-04-01
The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.
Topological and kinetic determinants of the modal matrices of dynamic models of metabolism
2017-01-01
Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329
Tremor analysis separates Parkinson's disease and dopamine receptor blockers induced parkinsonism.
Shaikh, Aasef G
2017-05-01
Parkinson's disease, the most common cause of parkinsonism is often difficult to distinguish from its second most common etiology due to exposure to dopamine receptor blocking agents such as antiemetics and neuroleptics. Dual axis accelerometry was used to quantify tremor in 158 patients with parkinsonism; 62 had Parkinson's disease and 96 were clinically diagnosed with dopamine receptor blocking agent-induced parkinsonism. Tremor was measured while subjects rested arms (resting tremor), outstretched arms in front (postural tremor), and reached a target (kinetic tremor). Cycle-by-cycle analysis was performed to measure cycle duration, oscillation amplitude, and inter-cycle variations in the frequency. Patients with dopamine receptor blocker induced parkinsonism had lower resting and postural tremor amplitude. There was a substantial increase of kinetic tremor amplitude in both disorders. Postural and resting tremor in subjects with dopamine receptor blocking agent-induced parkinsonism was prominent in the abduction-adduction plane. In contrast, the Parkinson's disease tremor had equal amplitude in all three planes of motion. Tremor frequency was comparable in both groups. Remarkable variability in the width of the oscillatory cycles suggested irregularity in the oscillatory waveforms in both subtypes of parkinsonism. Quantitative tremor analysis can distinguish Parkinson's disease from dopamine receptor blocking agent-induced parkinsonism.
Chemical kinetics as a contract sport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, C.E.
1990-01-01
Earlier in this century chemical kinetics was a basic physical chemistry research topic widely pursued in leading academic chemistry departments. Chemical kinetics now appears to be a discipline practiced chiefly for its applications to societal problems. The chemical kinetics activities directed by D.M. Golden at SRI International are strikingly successful in generating data for key applied problems while at the same time advancing our understanding of chemical kinetics as a scientific discipline. In this talk, the author will contrast the chemical kinetics activities in two contract R D laboratories, one on the right side of the U.S. (ARI) and themore » other on the left (SRI). Their approach to common applied problems ranging from stratospheric heterogeneous kinetics to plasma etching systems for semiconductor processing will be compared and contrasted. Empirically discovered Golden Rules for the pursuit of quality chemical kinetics research in a contract R D environment will be presented and discussed.« less
Schalk, Stefan G; Demi, Libertario; Smeenge, Martijn; Mills, David M; Wallace, Kirk D; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo
2015-05-01
Currently, nonradical treatment for prostate cancer is hampered by the lack of reliable diagnostics. Contrastultrasound dispersion imaging (CUDI) has recently shown great potential as a prostate cancer imaging technique. CUDI estimates the local dispersion of intravenously injected contrast agents, imaged by transrectal dynamic contrast-enhanced ultrasound (DCE-US), to detect angiogenic processes related to tumor growth. The best CUDI results have so far been obtained by similarity analysis of the contrast kinetics in neighboring pixels. To date, CUDI has been investigated in 2-D only. In this paper, an implementation of 3-D CUDI based on spatiotemporal similarity analysis of 4-D DCE-US is described. Different from 2-D methods, 3-D CUDI permits analysis of the entire prostate using a single injection of contrast agent. To perform 3-D CUDI, a new strategy was designed to estimate the similarity in the contrast kinetics at each voxel, and data processing steps were adjusted to the characteristics of 4-D DCE-US images. The technical feasibility of 4-D DCE-US in 3-D CUDI was assessed and confirmed. Additionally, in a preliminary validation in two patients, dispersion maps by 3-D CUDI were quantitatively compared with those by 2-D CUDI and with 12-core systematic biopsies with promising results.
NASA Technical Reports Server (NTRS)
Zweibel, Ellen G.; Mckee, Christopher F.
1995-01-01
Molecular clouds are observed to be partially supported by turbulent pressure. The kinetic energy of the turbulence is directly measurable, but the potential energy, which consists of magnetic, thermal, and gravitational potential energy, is largly unseen. We have extended previous results on equipartition between kinetic and potential energy to show that it is likely to be a very good approximation in molecular clouds. We have used two separate approaches to demonstrate this result: For small-amplitude perturbations of a static equilibrium, we have used the energy principle analysis of Bernstein et al. (1958); this derivation applies to perturbations of arbitary wavelength. To treat perturbations of a nonstatic equilibrium, we have used the Lagrangian analysis of Dewar (1970); this analysis applies only to short-wavelength perturbations. Both analysis assume conservation of energy. Wave damping has only a small effect on equipartition if the wave frequency is small compared to the neutral-ion collision frequency; for the particular case we considered, radiative losses have no effect on equipartition. These results are then incorporated in a simple way into analyses of cloud equilibrium and global stability. We discuss the effect of Alfvenic turbulence on the Jeans mass and show that it has little effect on the magnetic critical mass.
Hajizadeh, Maryam; Hashemi Oskouei, Alireza; Ghalichi, Farzan; Sole, Gisela
2016-06-01
Biomechanical changes have been reported for patients with anterior cruciate ligament deficiency (ACLD) and anterior cruciate ligament (ACL reconstruction) (ACLR), likely due to loss of stability and changes in proprioception and neuromotor control. This review evaluated kinematics and kinetics of ACLD and ACLR knees, compared with those on the contralateral uninjured sides, as well as and those in asymptomatic controls during stair navigation. This is a systematic review and meta-analysis. Electronic database searches were conducted from their original available dates to January 2015. Studies that included participants with ACLD or ACLR and reported knee joint angles or moments during stair ascent or descent were included. Nine studies met the inclusion criteria, and the methodological quality of these was assessed with a modified Downs and Black checklist. Effect sizes for differences between injured leg and uninjured contralateral leg or controls were calculated, and meta-analyses were performed if two or more studies considered the same variable. Quality assessment showed an average (± standard deviation) of 70.3% ± 7.2%. Meta-analysis showed less knee flexion at initial contact for ACLR knees compared with that in contralateral knees during stair ascent, with a moderate effect size and minimal heterogeneity. Knees with ACLD showed less peak knee flexion compared with that on contralateral sides during stair ascent, with minimal heterogeneity. External knee flexion moments were lower for ACLR compared with those in controls and contralateral sides during ascent and descent, whereas these moments were decreased for the ACLD compared with controls only during ascent. Meta-analysis results exhibited moderate/high heterogeneity or small/trivial effect sizes. Differences for kinematics and kinetics for the ACL-injured knees indicate long-term compensatory and asymmetric movement patterns while ascending and descending stairs. Due to the heterogeneity as well as the small numbers of available studies, the consequences of these differences in terms of long-term function or posttraumatic osteoarthritis need further exploration. Copyright © 2016. Published by Elsevier Inc.
Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations
NASA Astrophysics Data System (ADS)
Kuzemsky, A. L.
2018-01-01
We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.
NASA Technical Reports Server (NTRS)
Clark, R. K.
1972-01-01
The differential equations governing the transient response of a one-dimensional ablative thermal protection system undergoing stagnation ablation are derived. These equations are for thermal nonequilibrium effects between the pyrolysis gases and the char layer and kinetically controlled chemical reactions and mass transfer between the pyrolysis gases and the char layer. The boundary conditions are written for the particular case of stagnation heating with surface removal by oxidation or sublimation and pyrolysis of the uncharred layer occurring in a plane. The governing equations and boundary conditions are solved numerically using the modified implicit method (Crank-Nicolson method). Numerical results are compared with exact solutions for a number of simplified cases. The comparison is favorable in each instance.
Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite
Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai
2013-04-01
The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.
Nogami, Yoshie; Ishizu, Tomoko; Atsumi, Akiko; Yamamoto, Masayoshi; Kawamura, Ryo; Seo, Yoshihiro; Aonuma, Kazutaka
2013-03-01
Recently developed vector flow mapping (VFM) enables evaluation of local flow dynamics without angle dependency. This study used VFM to evaluate quantitatively the index of intraventricular haemodynamic kinetic energy in patients with left ventricular (LV) diastolic dysfunction and to compare those with normal subjects. We studied 25 patients with estimated high left atrial (LA) pressure (pseudonormal: PN group) and 36 normal subjects (control group). Left ventricle was divided into basal, mid, and apical segments. Intraventricular haemodynamic energy was evaluated in the dimension of speed, and it was defined as the kinetic energy index. We calculated this index and created time-energy index curves. The time interval from electrocardiogram (ECG) R wave to peak index was measured, and time differences of the peak index between basal and other segments were defined as ΔT-mid and ΔT-apex. In both groups, early diastolic peak kinetic energy index in mid and apical segments was significantly lower than that in the basal segment. Time to peak index did not differ in apex, mid, and basal segments in the control group but was significantly longer in the apex than that in the basal segment in the PN group. ΔT-mid and ΔT-apex were significantly larger in the PN group than the control group. Multiple regression analysis showed sphericity index, E/E' to be significant independent variables determining ΔT apex. Retarded apical kinetic energy fluid dynamics were detected using VFM and were closely associated with LV spherical remodelling in patients with high LA pressure.
Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy
NASA Astrophysics Data System (ADS)
Wang, T.; Liu, J.; Ge, K.; Fang, M.
2014-12-01
Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer optimization. Chemical reaction kinetics could be enhanced by stronger binding energy or higher temperature. However, the total kinetics can only be significantly improved by chemical reaction enhancement if the physical diffusion is fast enough.
Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method
Mark A. Dietenberger
2011-01-01
Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...
USDA-ARS?s Scientific Manuscript database
This research applied a new one-step methodology to directly construct a tertiary model for describing the growth of C. perfringens in cooked turkey meat under dynamically cooling conditions. The kinetic parameters of the growth models were determined by numerical analysis and optimization using mu...
Mayville, Francis C; Wigent, Rodney J; Schwartz, Joseph B
2006-01-01
The purpose of this work was to determine the total amount of water contained in dry powder and wet bead samples of microcrystalline cellulose, MCC, (Avicel PH-101), taken from various stages of the extrusion/marumerization process used to make beads and to determine the kinetic rates of water release from each sample. These samples were allowed to equilibrate in controlled humidity chambers at 25 degrees C. The total amount of water in each sample, after equilibration, was determined by thermogravimetric analysis (TGA) as a function of temperature. The rates of water release from these samples were determined by using isothermal gravimetric analysis (ITGA) as a function of time. Analysis of the results for these studies suggest that water was released from these systems by several different kinetic mechanisms. The water release mechanisms for these systems include: zero order, second order, and diffusion controlled kinetics. It is believed that all three kinetic mechanisms will occur at the same time, however; only one mechanism will be prominent. The prominent mechanism was based on the amount of water present in the sample.
Konop, Katherine A; Strifling, Kelly M B; Wang, Mei; Cao, Kevin; Schwab, Jeffrey P; Eastwood, Daniel; Jackson, Scott; Ackman, Jeffrey D; Harris, Gerald F
2009-10-01
Upper extremity (UE) joint kinetics during aided ambulation is an area of research that is not well characterized in the current literature. Biped UE joints are not anatomically designed to be weight bearing, therefore it is important to quantify UE kinetics during assisted gait. This will help to better understand the biomechanical implications of UE weight bearing, and enable physicians to prescribe more effective methods for treatment and therapy, perhaps minimizing excessive loads and torques. To address this challenge, an UE model that incorporates both kinematics and kinetics has been developed for use with walkers instrumented with load cells. In this study, the UE joint kinetics are calculated for 10 children with cerebral palsy using both anterior and posterior walkers. Three-dimensional joint reaction forces and moments are fully characterized for the wrist, elbow, and shoulder (glenohumeral) joints for both walker types. Statistical analysis methods are used to quantify the differences in forces or moments between the two walker types. Comparisons showed no significant differences in kinetic joint parameters between walker types. Results from a power analysis of the current data are provided which may be useful for planning longer term clinical studies. If risk factors for UE joint pathology can be identified early, perhaps a change in gait training routine, walker prescription, or walker design could prevent further harm.
Barnes, Samuel R; Ng, Thomas S C; Santa-Maria, Naomi; Montagne, Axel; Zlokovic, Berislav V; Jacobs, Russell E
2015-06-16
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .
Plate with decentralised velocity feedback loops: Power absorption and kinetic energy considerations
NASA Astrophysics Data System (ADS)
Gardonio, P.; Miani, S.; Blanchini, F.; Casagrande, D.; Elliott, S. J.
2012-04-01
This paper is focused on the vibration effects produced by an array of decentralised velocity feedback loops that are evenly distributed over a rectangular thin plate to minimise its flexural response. The velocity feedback loops are formed by collocated ideal velocity sensor and point force actuator pairs, which are unconditionally stable and produce 'sky-hook' damping on the plate. The study compares how the overall flexural vibration of the plate and the local absorption of vibration power by the feedback loops vary with the control gains. The analysis is carried out both considering a typical frequency-domain formulation based on kinetic energy and structural power physical quantities, which is normally used to study vibration and noise problems, and a time-domain formulation also based on kinetic energy and structural power, which is usually implemented to investigate control problems. The time-domain formulation shows to be much more computationally efficient and robust with reference to truncation errors. Thus it has been used to perform a parametric study to assess if, and under which conditions, the minimum of the kinetic energy and the maximum of the absorbed power cost functions match with reference to: (a) the number of feedback control loops, (b) the structural damping in the plate, (c) the mutual distance of a pair of control loops and (d) the mutual gains implemented in a pair of feedback loops.
Lovvorn, Harold N.; Ayers, Dan; Zhao, Zhiguo; Hilmes, Melissa; Prasad, Pinki; Shinall, Myrick C.; Berch, Barry; Neblett, Wallace W.; O'Neill, James A.
2010-01-01
Purpose Hepatoblastoma is commonly unresectable at presentation, necessitating induction chemotherapy before definitive resection. To refine the paradigm for timing of resection, we questioned whether a plateau in hepatoblastoma responsiveness to neoadjuvant therapy could be detected by calculating tumor volume (TV) and serum α-fetoprotein (sAFP) kinetics. Methods To calculate TV and sAFP as measures of treatment responsiveness over time, infants having initially unresectable epithelial-type hepatoblastomas were identified at a single institution (1996-2008). Effects of therapy type, therapy duration, and lobe of liver involvement on TV, sAFP, margin status, and toxicity were analyzed. Results Of 24 infants treated for epithelial-type hepatoblastoma during this interval, 5 were resected primarily, and 15 had complete digital films for kinetics analysis. Both TV and sAFP decreased dramatically over time (p<0.0001). No statistically significant difference in mean TV or sAFP was detected after chemotherapy cycle 2. Left lobe tumors had greater presenting levels of and significantly slower decay in sAFP compared to right lobe tumors (p=0.005), although no statistically significant differences in TV existed between liver lobes. Resection margins did not change with therapy duration. Conclusions Measuring TV and sAFP kinetics accurately reflects hepatoblastoma responsiveness to induction therapy. Treatment toxicities may be reduced by earlier resection and tailoring of chemotherapeutic regimens. PMID:20105591
Marconi, Valeria; Hachez, Hélèn; Renders, Anne; Docquier, Pierre-Louis; Detrembleur, Chrisitine
2014-09-01
Multilevel surgery is commonly performed to improve walking in children with cerebral palsy (CP). Classical gait analysis (kinetics, kinematics) demonstrated positive outcomes after this intervention, however it doesn't give global indication about gait's features. The assessment of energy cost and mechanical work of locomotion can provide an overall description of walking functionality. Therefore, we propose to describe the effects of multilevel surgery in children with CP, considering energetics, mechanical work, kinetic and kinematic of walking. We measured external, internal, total work, energy cost, recovery, efficiency, kinetic and kinematic of walking in 10 children with CP (4 girls, 6 boys; 13 years ± 2) before and 1 year after multilevel surgery. Kinetic and kinematic results are partially comparable to previous findings, energy cost of walking is significantly reduced (p < 0.05); external, internal, total work, recovery, efficiency are not significantly different (p = 0.129; p = 0.147; p = 0.795; p = 0.119; p = 0.21). The improvement of the walking's energy consumption is not accompanied by a corresponding improvement of mechanical work. Therefore it is conceivable that the improvement of walking economy depend on a reduced effort of the muscle to maintain the posture, rather then to an improvement of the mechanism of energy recovery typical of human locomotion. Copyright © 2014 Elsevier B.V. All rights reserved.
Cell Kinetic and Histomorphometric Analysis of Microgravitational Osteopenia: PARE.03B
NASA Technical Reports Server (NTRS)
Roberts, W. Eugene; Garetto, Lawrence P.
1997-01-01
The final report includes the hypotheses and specific aims of the project as well as summaries of the experimental findings. Descriptions of several figures that are not included in the report are also presented. A list of publications that resulted from the research is also given. The three experimental summaries are entitled: (1) Pre-flight Experiment to compare 5-Bromo-2'Deoxyuridine (BrdU) Immunohistochemistry and 3H-Thymidine (3HT) Autoradiography; (2) Recovery of Osteoblast Histogenesis in Rat Periodontal Ligament following a 9-day Spaceflight (PARE.03); and (3) Analysis of Mandibular Condyles from PARE.03 Flight Experiment.
Budgets of divergent and rotational kinetic energy during two periods of intense convection
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Fuelberg, H. E.
1986-01-01
The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.
Reduced chemical kinetics for propane combustion
NASA Technical Reports Server (NTRS)
Ying, Shuh-Jing; Nguyen, Hung Lee
1990-01-01
It is pointed out that a detailed chemical kinetics mechanism for the combustion of propane consists of 40 chemical species and 118 elementary chemical reactions. An attempt is made to reduce the number of chemical species and elementary chemical reactions so that the computer run times and storage requirements may be greatly reduced in three-dimensional gas turbine combustion flow calculations, while maintaining accurate predictions of the propane combustion and exhaust emissions. By way of a sensitivity analysis, the species of interest and chemical reactions are classified in descending order of importance. Nineteen species are chosen, and their pressure, temperature, and concentration profiles are presented for the reduced mechanisms, which are then compared with those from the full 118 reactions. It is found that 45 reactions involving 27 species have to be kept for comparable agreement. A comparison of the results obtained from the 45 reactions to that of the full 118 shows that the pressure and temperature profiles and concentrations of C3H8, O2, N2, H2O, CO, and CO2 are within 10 percent of maximum change.
NASA Astrophysics Data System (ADS)
Kadum, Hawwa; Ali, Naseem; Cal, Raúl
2016-11-01
Hot-wire anemometry measurements have been performed on a 3 x 3 wind turbine array to study the multifractality of the turbulent kinetic energy dissipations. A multifractal spectrum and Hurst exponents are determined at nine locations downstream of the hub height, and bottom and top tips. Higher multifractality is found at 0.5D and 1D downstream of the bottom tip and hub height. The second order of the Hurst exponent and combination factor show an ability to predict the flow state in terms of its development. Snapshot proper orthogonal decomposition is used to identify the coherent and incoherent structures and to reconstruct the stochastic velocity using a specific number of the POD eigenfunctions. The accumulation of the turbulent kinetic energy in top tip location exhibits fast convergence compared to the bottom tip and hub height locations. The dissipation of the large and small scales are determined using the reconstructed stochastic velocities. The higher multifractality is shown in the dissipation of the large scale compared to small-scale dissipation showing consistency with the behavior of the original signals.
Effects of barefoot and barefoot inspired footwear on knee and ankle loading during running.
Sinclair, Jonathan
2014-04-01
Recreational runners frequently suffer from chronic pathologies. The knee and ankle have been highlighted as common injury sites. Barefoot and barefoot inspired footwear have been cited as treatment modalities for running injuries as opposed to more conventional running shoes. This investigation examined knee and ankle loading in barefoot and barefoot inspired footwear in relation to conventional running shoes. Thirty recreational male runners underwent 3D running analysis at 4.0m·s(-1). Joint moments, patellofemoral contact force and pressure and Achilles tendon forces were compared between footwear. At the knee the results show that barefoot and barefoot inspired footwear were associated with significant reductions in patellofemoral kinetic parameters. The ankle kinetics indicate that barefoot and barefoot inspired footwear were associated with significant increases in Achilles tendon force compared to conventional shoes. Barefoot and barefoot inspired footwear may serve to reduce the incidence of knee injuries in runners although corresponding increases in Achilles tendon loading may induce an injury risk at this tendon. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April
2013-10-01
Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition.more » From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.« less
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.
Spectator Ions ARE Important! A Kinetic Study of the Copper-Aluminum Displacement Reaction
ERIC Educational Resources Information Center
Sobel, Sabrina G.; Cohen, Skyler
2010-01-01
Surprisingly, spectator ions are responsible for unexpected kinetics in the biphasic copper(II)-aluminum displacement reaction, with the rate of reaction dependent on the identity of the otherwise ignored spectator ions. Application of a published kinetic analysis developed for a reaction between a rotating Al disk and a Cu(II) ion solution to the…
Kinetic concepts of thermally stimulated reactions in solids
NASA Astrophysics Data System (ADS)
Vyazovkin, Sergey
Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.
Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.
2013-01-01
Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912
NASA Astrophysics Data System (ADS)
Wu, Kaizhi; Zhang, Xuming; Chen, Guangxie; Weng, Fei; Ding, Mingyue
2013-10-01
Images acquired in free breathing using contrast enhanced ultrasound exhibit a periodic motion that needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. In this work, we present an algorithm to compensate the respiratory motion by effectively combining the PCA (Principal Component Analysis) method and block matching method. The respiratory kinetics of the ultrasound hepatic perfusion image sequences was firstly extracted using the PCA method. Then, the optimal phase of the obtained respiratory kinetics was detected after normalizing the motion amplitude and determining the image subsequences of the original image sequences. The image subsequences were registered by the block matching method using cross-correlation as the similarity. Finally, the motion-compensated contrast images can be acquired by using the position mapping and the algorithm was evaluated by comparing the TICs extracted from the original image sequences and compensated image subsequences. Quantitative comparisons demonstrated that the average fitting error estimated of ROIs (region of interest) was reduced from 10.9278 +/- 6.2756 to 5.1644 +/- 3.3431 after compensating.
Effects of clove essential oil and eugenol on quality and browning control of fresh-cut lettuce.
Chen, Xiangning; Ren, Lupei; Li, Menglin; Qian, Jia; Fan, Junfeng; Du, Bin
2017-01-01
This study confirmed the inhibitory effects of clove essential oil (CEO) and eugenol (EUG) on the browning and relevant enzymes of fresh-cut lettuce, and examined associated mechanisms by inhibition kinetics and computational docking analysis. Fresh-cut lettuce was treated with 0.05% CEO and 0.05% EUG solutions, resulting in inhibition of the deterioration of texture quality and browning of the lettuce surface and interior. Compared with the controls, CEO and EUG significantly inhibited the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD, all p<0.05). EUG suppressed PAL, PPO, and POD in vitro in a dose-dependent manner, with IC50 values of 5.4±0.9, 29.5±3.5, and 61.9±6.7mM, respectively. The binding and inhibition effects of EUG on PAL, PPO, and POD, determined by inhibition kinetics and computational docking analysis, established EUG as a competitive inhibitor of these browning-relevant enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lower extremity kinetics in tap dance.
Mayers, Lester; Bronner, Shaw; Agraharasamakulam, Sujani; Ojofeitimi, Sheyi
2010-01-01
Tap dance is a unique performing art utilizing the lower extremities as percussion instruments. In a previous study these authors reported decreased injury prevalence among tap dancers compared to other dance and sports participants. No biomechanical analyses of tap dance exist to explain this finding. The purpose of the current pilot study was to provide a preliminary overview of normative peak kinetic and kinematic data, based on the hypothesis that tap dance generates relatively low ground reaction forces and joint forces and moments. Six professional tap dancers performed four common tap dance sequences that produced data captured by the use of a force platform and a five-camera motion analysis system. The mean vertical ground reaction force for all sequences was found to be 2.06+/-0.55 BW. Mean peak sagittal, frontal, and transverse plane joint moments (hip, knee, and ankle) ranged from 0.07 to 2.62 N.m/kg. These small ground reaction forces and joint forces and moments support our hypothesis, and may explain the relatively low injury incidence in tap dancers. Nevertheless, the analysis is highly complex, and other factors remain to be studied and clarified.
Konggidinata, Mas Iwan; Chao, Bing; Lian, Qiyu; Subramaniam, Ramalingam; Zappi, Mark; Gang, Daniel Dianchen
2017-08-15
Chemical and petrochemical industries produce substantial amounts of wastewater everyday. This wastewater contains organic pollutants such as benzene, toluene, ethylbenzene and xylenes (BTEX) that are toxic to human and aquatic life. Ordered Mesoporous Carbon (OMC), the adsorbent that possesses the characteristics of an ideal adsorbent was investigated to understand its properties and suitability for BTEX removal. Adsorption isotherms, adsorption kinetics, the effects of initial BTEX concentrations and temperatures on the adsorption process were studied. The OMCs were characterized using surface area and pore size analyzer, transmission electron microscopy (TEM), elemental analysis, thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR). The results suggested that the Langmuir Isotherm and Pseudo-Second-Order Models described the experimental data well. The thermodynamic parameters, Gibbs free energy (ΔG°), the enthalpy change (ΔH°) and the entropy change (ΔS°) of adsorption indicated that the adsorption processes were physical, endothermic, and spontaneous. In addition, OMC had 27% higher overall adsorption capacities compared to granular activated carbon (GAC). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Amirthalingam, M.; Hermans, M. J. M.; Zhao, L.; Richardson, I. M.
2010-02-01
A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)-welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel with different base metal austenite fractions has been measured by magnetic saturation measurements, to study the effect of weld thermal cycles on the stabilization of austenite. It is found that for base metals containing 3 to 14 pct of austenite, 4 to 13 pct of austenite is found in the heat-affected zones and 6 to 10 pct in the fusion zones. The decomposition kinetics of retained austenite in the base metal and welded samples was also studied by thermomagnetic measurements. The decomposition kinetics of the austenite in the fusion zone is found to be slower compared to that in the base metal. Thermomagnetic measurements indicated the formation of ferromagnetic ɛ carbides above 290 °C and paramagnetic η( ɛ') transient iron carbides at approximately 400 °C due to the decomposition of austenite during heating.
Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J
2013-04-21
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.
Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet
2014-10-01
JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bittker, David A.; Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Graph-based analysis of kinetics on multidimensional potential-energy surfaces.
Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y
2009-09-01
The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
Wang, Ying; Edalji, Rohinton P; Panchal, Sanjay C; Sun, Chaohong; Djuric, Stevan W; Vasudevan, Anil
2017-10-26
It is advocated that kinetic and thermodynamic profiling of bioactive compounds should be incorporated and utilized as complementary tools for hit and lead optimizations in drug discovery. To assess their applications in the EED hit-to-lead optimization process, large amount of thermodynamic and kinetic data were collected and analyzed via isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), respectively. Slower dissociation rates (k off ) of the lead compounds were observed as the program progressed. Analysis of the kinetic data indicated that compound cellular activity correlated with both K i and k off . Our analysis revealed that ITC data should be interpreted in the context of chiral purity of the compounds. The thermodynamic signatures of the EED aminopyrrolidine compounds were found to be mainly enthalpy driven with improved enthalpic contributions as the program progressed. Our study also demonstrated that significant challenges still exist in utilizing kinetic and thermodynamic parameters for hit selection.
Program Helps To Determine Chemical-Reaction Mechanisms
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Radhakrishnan, K.
1995-01-01
General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.
Desai, Nina; Ploskonka, Stephanie; Goodman, Linnea R; Austin, Cynthia; Goldberg, Jeffrey; Falcone, Tommaso
2014-06-20
Time-lapse imaging combined with embryo morphokinetics may offer a non-invasive means for improving embryo selection. Data from clinics worldwide are necessary to compare and ultimately develop embryo classifications models using kinetic data. The primary objective of this study was to determine if there were kinetic differences between embryos with limited potential and those more often associated with in vitro blastocyst formation and/or implantation. We also wanted to compare putative kinetic markers for embryo selection as proposed by other laboratories to what we were observing in our own laboratory setting. Kinetic data and cycle outcomes were retrospectively analyzed in patients age 39 and younger with 7 or more zygotes cultured in the Embryoscope. Timing of specific events from the point of insemination were determined using time-lapse (TL) imaging. The following kinetic markers were assessed: time to syngamy (tPNf), t2, time to two cells (c), 3c (t3), 4c ( t4), 5c (t5), 8c (t8), morula (tMor), start of blastulation (tSB); tBL, blastocyst (tBL); expanded blastocyst (tEBL). Durations of the second (cc2) and third (cc3) cell cycles, the t5-t2 interval as well as time to complete synchronous divisions s1, s2 and s3 were calculated. Incidence and impact on development of nuclear and cleavage anomalies were also assessed. A total of 648 embryos transferred on day 5 were analyzed. The clinical pregnancy and implantation rate were 72% and 50%, respectively. Morphokinetic data showed that tPNf, t2,t4, t8, s1, s2,s3 and cc2 were significantly different in embryos forming blastocysts (ET or frozen) versus those with limited potential either failing to blastulate or else forming poor quality blastocysts ,ultimately discarded. Comparison of embryo kinetics in cycles with all embryos implanting (KID+) versus no implantation (KID-) suggested that markers of embryo competence to implant may be different from ability to form a blastocyst. The incidence of multinucleation and reverse cleavage amongst the embryos observed was 25% and 7%, respectively. Over 40% of embryos exhibiting these characteristics did however form blastocysts meeting our criteria for freezing. These data provide us with a platform with which to potentially enhance embryo selection for transfer.
2014-01-01
Background Time-lapse imaging combined with embryo morphokinetics may offer a non-invasive means for improving embryo selection. Data from clinics worldwide are necessary to compare and ultimately develop embryo classifications models using kinetic data. The primary objective of this study was to determine if there were kinetic differences between embryos with limited potential and those more often associated with in vitro blastocyst formation and/or implantation. We also wanted to compare putative kinetic markers for embryo selection as proposed by other laboratories to what we were observing in our own laboratory setting. Methods Kinetic data and cycle outcomes were retrospectively analyzed in patients age 39 and younger with 7 or more zygotes cultured in the Embryoscope. Timing of specific events from the point of insemination were determined using time-lapse (TL) imaging. The following kinetic markers were assessed: time to syngamy (tPNf), t2, time to two cells (c), 3c (t3), 4c ( t4), 5c (t5), 8c (t8), morula (tMor), start of blastulation (tSB); tBL, blastocyst (tBL); expanded blastocyst (tEBL). Durations of the second (cc2) and third (cc3) cell cycles, the t5-t2 interval as well as time to complete synchronous divisions s1, s2 and s3 were calculated. Incidence and impact on development of nuclear and cleavage anomalies were also assessed. Results A total of 648 embryos transferred on day 5 were analyzed. The clinical pregnancy and implantation rate were 72% and 50%, respectively. Morphokinetic data showed that tPNf, t2,t4, t8, s1, s2,s3 and cc2 were significantly different in embryos forming blastocysts (ET or frozen) versus those with limited potential either failing to blastulate or else forming poor quality blastocysts ,ultimately discarded. Comparison of embryo kinetics in cycles with all embryos implanting (KID+) versus no implantation (KID-) suggested that markers of embryo competence to implant may be different from ability to form a blastocyst. The incidence of multinucleation and reverse cleavage amongst the embryos observed was 25% and 7%, respectively. Over 40% of embryos exhibiting these characteristics did however form blastocysts meeting our criteria for freezing. Conclusions These data provide us with a platform with which to potentially enhance embryo selection for transfer. PMID:24951056
Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method
Mark Dietenberger
2012-01-01
Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above...
Vismara, Luca; Romei, Marianna; Galli, Manuela; Montesano, Angelo; Baccalaro, Gabriele; Crivellini, Marcello; Grugni, Graziano
2007-01-01
Background Being severely overweight is a distinctive clinical feature of Prader-Willi Syndrome (PWS). PWS is a complex multisystem disorder, representing the most common form of genetic obesity. The aim of this study was the analysis of the gait pattern of adult subjects with PWS by using three-Dimensional Gait Analysis. The results were compared with those obtained in a group of obese patients and in a group of healthy subjects. Methods Cross-sectional, comparative study: 19 patients with PWS (11 males and 8 females, age: 18–40 years, BMI: 29.3–50.3 kg/m2); 14 obese matched patients (5 males and 9 females, age: 18–40 years, BMI: 34.3–45.2 kg/m2); 20 healthy subjects (10 males and 10 females, age: 21–41 years, BMI: 19.3–25.4 kg/m2). Kinematic and kinetic parameters during walking were assessed by an optoelectronic system and two force platforms. Results PWS adult patients walked slower, had a shorter stride length, a lower cadence and a longer stance phase compared with both matched obese, and healthy subjects. Obese matched patients showed spatio-temporal parameters significantly different from healthy subjects. Furthermore, Range Of Motion (ROM) at knee and ankle, and plantaflexor activity of PWS patients were significantly different between obese and healthy subjects. Obese subjects revealed kinematic and kinetic data similar to healthy subjects. Conclusion PWS subjects had a gait pattern significantly different from obese patients. Despite that, both groups had a similar BMI. We suggest that PWS gait abnormalities may be related to abnormalities in the development of motor skills in childhood, due to precocious obesity. A tailored rehabilitation program in early childhood of PWS patients could prevent gait pattern changes. PMID:17493259
On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less
Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Murzov, S. A.; Sergeev, O. V.; Dyachkov, S. A.; Egorova, M. S.; Parshikov, A. N.; Zhakhovsky, V. V.
2016-11-01
Here we extend consistent simulations to reactive materials by the example of AB model explosive. The kinetic model of chemical reactions observed in a molecular dynamics (MD) simulation of self-sustained detonation wave can be used in hydrodynamic simulation of detonation initiation. Kinetic coefficients are obtained by minimization of difference between profiles of species calculated from the kinetic model and observed in MD simulations of isochoric thermal decomposition with a help of downhill simplex method combined with random walk in multidimensional space of fitting kinetic model parameters.
Calculation of kinetic rate constants from thermodynamic data
NASA Technical Reports Server (NTRS)
Marek, C. John
1995-01-01
A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.
NASA Technical Reports Server (NTRS)
Dare, P. M.; Smith, P. J.
1983-01-01
The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.
NASA Astrophysics Data System (ADS)
Zhang, Yiqun; Li, Na; Yang, Guigeng; Ru, Wenrui
2017-02-01
This paper presents a dynamic analysis approach for the composite structure of a deployable truss and cable-net system. An Elastic Catenary Element is adopted to model the slack/tensioned cables. Then, from the energy standpoint, the kinetic energy, elasticity-potential energy and geopotential energy of the cable-net structure and deployable truss are derived. Thus, the flexible multi-body dynamic model of the deployable antenna is built based on the Lagrange equation. The effect of the cable-net tension on the antenna truss is discussed and compared with previous publications and a dynamic deployment analysis is performed. Both the simulation and experimental results verify the validity of the method presented.
Son, Minky; Bang, Woo Young; Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.
Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily. PMID:24646606
Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad
2015-01-01
The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335
NASA Astrophysics Data System (ADS)
Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.
2017-04-01
The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.
Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru
2017-12-01
We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.
2016-04-01
Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.
Biomechanical Analysis of Weighted-Ball Exercises for Baseball Pitchers.
Fleisig, Glenn S; Diffendaffer, Alek Z; Aune, Kyle T; Ivey, Brett; Laughlin, Walter A
Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound). Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls. Controlled laboratory study. Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data. Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds. While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing. As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.
Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations
NASA Technical Reports Server (NTRS)
Shiuhong, Lui; Xu, Jun
1999-01-01
Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.
Hill, Deborah K; Orton, Matthew R; Mariotti, Erika; Boult, Jessica K R; Panek, Rafal; Jafar, Maysam; Parkes, Harold G; Jamin, Yann; Miniotis, Maria Falck; Al-Saffar, Nada M S; Beloueche-Babari, Mounia; Robinson, Simon P; Leach, Martin O; Chung, Yuen-Li; Eykyn, Thomas R
2013-01-01
Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC) of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized (13)C metabolic imaging in humans, where measurement of the input function can be problematic.
NASA Astrophysics Data System (ADS)
Öztürk, A.; Malkoc, E.
2014-04-01
In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.
Deng, Gejing; Gu, Rong-Fang; Marmor, Stephen; Fisher, Stewart L; Jahic, Haris; Sanyal, Gautam
2004-06-29
An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated. Copyright 2004 Elsevier B.V.
Mariotti, Erika; Boult, Jessica K. R.; Panek, Rafal; Jafar, Maysam; Parkes, Harold G.; Jamin, Yann; Miniotis, Maria Falck; Al-Saffar, Nada M. S.; Beloueche-Babari, Mounia; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.
2013-01-01
Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC) of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized 13C metabolic imaging in humans, where measurement of the input function can be problematic. PMID:24023724
Kinetic analysis of manure pyrolysis and combustion processes.
Fernandez-Lopez, M; Pedrosa-Castro, G J; Valverde, J L; Sanchez-Silva, L
2016-12-01
Due to the depletion of fossil fuel reserves and the environmental issues derived from their use, biomass seems to be an excellent source of renewable energy. In this work, the kinetics of the pyrolysis and combustion of three different biomass waste samples (two dairy manure samples before (Pre) and after (Dig R) anaerobic digestion and one swine manure sample (SW)) was studied by means of thermogravimetric analysis. In this work, three iso-conversional methods (Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) were compared with the Coats-Redfern method. The E a values of devolatilization stages were in the range of 152-170kJ/mol, 148-178kJ/mol and 156-209kJ/mol for samples Pre, Dig R and SW, respectively. Concerning combustion process, char oxidation stages showed lower E a values than that obtained for the combustion devolatilization stage, being in the range of 140-175kJ/mol, 178-199kJ/mol and 122-144kJ/mol for samples Pre, Dig R and SW, respectively. These results were practically the same for samples Pre and Dig R, which means that the kinetics of the thermochemical processes were not affected by anaerobic digestion. Finally, the distributed activation energy model (DAEM) and the pseudo-multi component stage model (PMSM) were applied to predict the weight loss curves of pyrolysis and combustion. DAEM was the best model that fitted the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hypovalency--a kinetic-energy density description of a 4c-2e bond.
Jacobsen, Heiko
2009-06-07
A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study.
Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics
NASA Astrophysics Data System (ADS)
Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.
2010-02-01
We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.
Kinetics of Static Strain Aging in Polycrystalline NiAl-based Alloys
NASA Technical Reports Server (NTRS)
Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.
1996-01-01
The kinetics of yield point return have been studied in two NiAl-based alloys as a function of aging time at temperatures between 300 and 700 K. The results indicate that the upper yield stress increment, Delta sigma(sub u) (i.e., stress difference between the upper yield point and the final flow stress achieved during prestraining), in conventional purity (CP-NiAl) and in high purity carbon-doped (NiAl-C) material first increased with a t(exp 2/3) relationship before reaching a plateau. This behavior suggests that a Cottrell locking mechanism is the cause for yield points in NiAl. In addition, positive y-axis intercepts were observed in plots of Delta sigma(sub u) versus t(exp 2/3) suggesting the operation of a Snoek mechanism. Analysis according to the Cottrell Bilby model of atmosphere formation around dislocations yields an activation energy for yield point return in the range 70 to 76 kJ/mol which is comparable to the activation energy for diffusion of interstitial impurities in bcc metals. It is, thus, concluded that the kinetics of static strain aging in NiAl are controlled by the locking of dislocations by Cottrell atmospheres of carbon atoms around dislocations.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2011-04-01
This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2010-12-01
This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry-generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we find that FHH adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFFH ~ 2.25 ± 0.75, BFFH ~ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.
Shattuck-Hufnagel, S.; Choi, J. Y.; Moro-Velázquez, L.; Gómez-García, J. A.
2017-01-01
Although a large amount of acoustic indicators have already been proposed in the literature to evaluate the hypokinetic dysarthria of people with Parkinson’s Disease, the goal of this work is to identify and interpret new reliable and complementary articulatory biomarkers that could be applied to predict/evaluate Parkinson’s Disease from a diadochokinetic test, contributing to the possibility of a further multidimensional analysis of the speech of parkinsonian patients. The new biomarkers proposed are based on the kinetic behaviour of the envelope trace, which is directly linked with the articulatory dysfunctions introduced by the disease since the early stages. The interest of these new articulatory indicators stands on their easiness of identification and interpretation, and their potential to be translated into computer based automatic methods to screen the disease from the speech. Throughout this paper, the accuracy provided by these acoustic kinetic biomarkers is compared with the one obtained with a baseline system based on speaker identification techniques. Results show accuracies around 85% that are in line with those obtained with the complex state of the art speaker recognition techniques, but with an easier physical interpretation, which open the possibility to be transferred to a clinical setting. PMID:29240814
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Arya, Vinod K.; Halford, Gary R.; Barrett, Charles A.
1996-01-01
Sapphire fiber-reinforced MA956 composites hold promise for significant weight savings and increased high-temperature structural capability, as compared to unreinforced MA956. As part of an overall assessment of the high-temperature characteristics of this material system, cyclic oxidation behavior was studied at 1093 C and 1204 C. Initially, both sets of coupons exhibited parabolic oxidation kinetics. Later, monolithic MA956 exhibited spallation and a linear weight loss, whereas the composite showed a linear weight gain without spallation. Weight loss of the monolithic MA956 resulted from the linking of a multiplicity of randomly oriented and closely spaced surface cracks that facilitated ready spallation. By contrast, cracking of the composite's oxide layer was nonintersecting and aligned nominally parallel with the orientation of the subsurface reinforcing fibers. Oxidative lifetime of monolithic MA956 was projected from the observed oxidation kinetics. Linear elastic, finite element continuum, and micromechanics analyses were performed on coupons of the monolithic and composite materials. Results of the analyses qualitatively agreed well with the observed oxide cracking and spallation behavior of both the MA956 and the Sapphire/MA956 composite coupons.
A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments
NASA Astrophysics Data System (ADS)
Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.
2016-12-01
The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.
Kinetic transition in the order-disorder transformation at a solid/liquid interface
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Nizovtseva, I. G.; Reuther, K.; Rettenmayr, M.
2018-01-01
Phase-field analysis for the kinetic transition in an ordered crystal structure growing from an undercooled liquid is carried out. The results are interpreted on the basis of analytical and numerical solutions of equations describing the dynamics of the phase field, the long-range order parameter as well as the atomic diffusion within the crystal/liquid interface and in the bulk crystal. As an example, the growth of a binary A50B50 crystal is described, and critical undercoolings at characteristic changes of growth velocity and the long-range order parameter are defined. For rapidly growing crystals, analogies and qualitative differences are found in comparison with known non-equilibrium effects, particularly solute trapping and disorder trapping. The results and model predictions are compared qualitatively with results of the theory of kinetic phase transitions (Chernov 1968 Sov. Phys. JETP 26, 1182-1190) and with experimental data obtained for rapid dendritic solidification of congruently melting alloy with order-disorder transition (Hartmann et al. 2009 Europhys. Lett. 87, 40007 (doi:10.1209/0295-5075/87/40007)). This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Paths from meso to submesoscale processes in the western Mediterranean Sea
NASA Astrophysics Data System (ADS)
Capó, Esther; Mason, Evan; Hernández-Carrasco, Ismael; Orfila, Alejandro
2017-04-01
In this work we characterize the mesoscale dynamics in the western Mediterranean (WMed) by analyzing the different contributions to the kinetic energy budgets using a 20 year high-resolution numerical model. The length of the numerical solution allows us to consider statistically stationary state of the ocean, a necessary condition for using the quantification of energy budgets as a tool for analyzing dynamical processes. To identify and characterize the different submesoscale processes, we isolate the terms in the energy balance equations (the Lorenz Energy Cycle, LEC, equations) responsible for the production (conversion and generation) of the eddy kinetic energy (EKE). Firstly, by comparing the predominance of each conversion term among the others, three different submesoscale instabilities can be identified in a certain region: baroclinic, barotropic and Kelvin-Helmholtz type. Conversely, given the crucial role of the wind forcing in the dynamics of this area, the generation of kinetic energy by surface winds has been also considered. Finally, a regional analysis of the EKE production terms permits the identification of the areas dominated by submesoscale activity. As will be shown in this work those areas are located near the main currents, and submesoscale processes are strongly influenced by sharp bathymetry-flow interaction.
Statistical inference in single molecule measurements of protein adsorption
NASA Astrophysics Data System (ADS)
Armstrong, Megan J.; Tsitkov, Stanislav; Hess, Henry
2018-02-01
Significant effort has been invested into understanding the dynamics of protein adsorption on surfaces, in particular to predict protein behavior at the specialized surfaces of biomedical technologies like hydrogels, nanoparticles, and biosensors. Recently, the application of fluorescent single molecule imaging to this field has permitted the tracking of individual proteins and their stochastic contribution to the aggregate dynamics of adsorption. However, the interpretation of these results is complicated by (1) the finite time available to observe effectively infinite adsorption timescales and (2) the contribution of photobleaching kinetics to adsorption kinetics. Here, we perform a protein adsorption simulation to introduce specific survival analysis methods that overcome the first complication. Additionally, we collect single molecule residence time data from the adsorption of fibrinogen to glass and use survival analysis to distinguish photobleaching kinetics from protein adsorption kinetics.
Analysis of senior high school student understanding on gas kinetic theory material
NASA Astrophysics Data System (ADS)
Anri, Y.; Maknun, J.; Chandra, D. T.
2018-05-01
The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.
NASA Astrophysics Data System (ADS)
Jejčič, S.; Susino, R.; Heinzel, P.; Dzifčáková, E.; Bemporad, A.; Anzer, U.
2017-11-01
Context. We study the physics of erupting prominences in the core of coronal mass ejections (CMEs) and present a continuation of a previous analysis. Aims: We determine the kinetic temperature and microturbulent velocity of an erupting prominence embedded in the core of a CME that occurred on August 2, 2000 using the Ultraviolet Coronagraph and Spectrometer observations (UVCS) on board the Solar and Heliospheric Observatory (SOHO) simultaneously in the hydrogen Lα and C III lines. We develop the non-LTE (departures from the local thermodynamic equilibrium - LTE) spectral diagnostics based on Lα and Lβ measured integrated intensities to derive other physical quantities of the hot erupting prominence. Based on this, we synthesize the C III line intensity to compare it with observations. Methods: Our method is based on non-LTE modeling of eruptive prominences. We used a general non-LTE radiative-transfer code only for optically thin prominence points because optically thick points do not allow the direct determination of the kinetic temperature and microturbulence from the line profiles. The input parameters of the code were the kinetic temperature and microturbulent velocity derived from the Lα and C III line widths, as well as the integrated intensity of the Lα and Lβ lines. The code runs in three loops to compute the radial flow velocity, electron density, and effective thickness as the best fit to the Lα and Lβ integrated intensities within the accuracy defined by the absolute radiometric calibration of UVCS data. Results: We analyzed 39 observational points along the whole erupting prominence because for these points we found a solution for the kinetic temperature and microturbulent velocity. For these points we ran the non-LTE code to determine best-fit models. All models with τ0(Lα) ≤ 0.3 and τ0(C III) ≤ 0.3 were analyzed further, for which we computed the integrated intensity of the C III line using a two-level atom. The best agreement between computed and observed integrated intensity led to 30 optically thin points along the prominence. The results are presented as histograms of the kinetic temperature, microturbulent velocity, effective thickness, radial flow velocity, electron density, and gas pressure. We also show the relation between the microturbulence and kinetic temperature together with a scatter plot of computed versus observed C III integrated intensities and the ratio of the computed to observed C III integrated intensities versus kinetic temperature. Conclusions: The erupting prominence embedded in the CME is relatively hot with a low electron density, a wide range of effective thicknesses, a rather narrow range of radial flow velocities, and a microturbulence of about 25 km s-1. This analysis shows a disagreement between observed and synthetic intensities of the C III line, the reason for which most probably is that photoionization is neglected in calculations of the ionization equilibrium. Alternatively, the disagreement might be due to non-equilibrium processes.
Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan
2018-06-14
Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Papagiannis, Georgios I; Roumpelakis, Ilias M; Triantafyllou, Athanasios I; Makris, Ioannis N; Babis, George C
2016-08-01
Total knee arthroplasties (TKAs) using well-designed, fixed bearing prostheses, such as medial pivot (MP), have produced good long-term results. Rotating-platform, posterior-stabilized (RP-PS) mobile bearing implants were designed to decrease polyethylene wear. Sagittal and coronal plane TKA biomechanics are well examined and correlated to polyethylene wear. However, limited research findings describe this relationship in transverse plane. We assumed that although axial plane biomechanics might not be the most destructive parameters on polyethylene wear, it is important to clarify their role because both joint kinematics and kinetics in all 3 planes are important input parameters for TKA wear testing (International Organization for Standardization 14243-1 and 14343-3). Our hypothesis was that transverse plane overall range of motion (ROM) and/or peak moment show differences that reflect on wear advantages when compared RP-PS implants to MP designs. Two groups (MPs = 24 and RP-PSs = 22 subjects) were examined by using 3D gait analysis. The variables were total internal-external rotation (IER) ROM and peak IER moments. No statistically significant difference was demonstrated between the 2 groups in kinetics (P = .389) or kinematics (P = .275). In the present study, no wear advantages were found between 2 TKAs. Both designs showed identical kinetics at the transverse plane in level-ground walking. Kinematic analysis could not illustrate any statistically significant difference in terms of overall IER ROM. Nevertheless, kinematic gait pattern differences observed possibly reflect different patterns of joint surface motion or abnormal gait patterns. Thus, wear testing with various input waveforms combined with functional data analysis will be necessary to identify the actual effects of gait variability on polyethylene wear. Copyright © 2016 Elsevier Inc. All rights reserved.
Del Gallego, R; Sadeghi, S; Blasco, E; Soler, C; Yániz, J L; Silvestre, M A
2017-02-01
Several factors unrelated to the semen samples could be influencing in the sperm motility analysis. The aim of the present research was to study the effect of four chambers with different characteristics, namely; slide-coverslip, Spermtrack, ISAS D4C10, and ISAS D4C20 on the sperm motility. The filling procedure (drop or capillarity) and analysis time (0, 120 and 240s), depth of chamber (10 or 20μm) and field on motility variables were analysed by use of the CASA-mot system in goat sperm. Use of the drop-filling chambers resulted in greater values than capillarity-filling chambers for all sperm motility and kinetic variables, except for LIN (64.5% compared with 56.3% of motility for drop- and capillarity-filling chambers respectively, P<0.05). There were no significant differences in total sperm motility between different chamber depths, however, use of the 20μm-chambers resulted in greater sperm progressive motility rate, VSL and LIN, and less VCL and VAP than chambers with a lesser depth. There was less sperm motility and lesser values for kinetic variables as time that elapsed increased between sample loading and sperm evaluation. For sperm motility, use of droplet-loaded chambers resulted in similar values of MOT in all microscopic fields, but sperm motility assessed in capillarity-loaded chambers was less in the central fields than in the outermost microscopic fields. For goats, it is recommended that sperm motility be analysed using the CASA-mot system with a drop-loaded chamber within 2min after filling the chamber. Copyright © 2016 Elsevier B.V. All rights reserved.
Barret, Olivier; Alagille, David; Sanabria, Sandra; Comley, Robert A; Weimer, Robby M; Borroni, Edilio; Mintun, Mark; Seneca, Nicholas; Papin, Caroline; Morley, Thomas; Marek, Ken; Seibyl, John P; Tamagnan, Gilles D; Jennings, Danna
2017-07-01
18 F-AV-1451 is currently the most widely used of several experimental tau PET tracers. The objective of this study was to evaluate 18 F-AV-1451 binding with full kinetic analysis using a metabolite-corrected arterial input function and to compare parameters derived from kinetic analysis with SUV ratio (SUVR) calculated over different imaging time intervals. Methods: 18 F-AV-1451 PET brain imaging was completed in 16 subjects: 4 young healthy volunteers (YHV), 4 aged healthy volunteers (AHV), and 8 Alzheimer disease (AD) subjects. Subjects were imaged for 3.5 h, with arterial blood samples obtained throughout. PET data were analyzed using plasma and reference tissue-based methods to estimate the distribution volume, binding potential (BP ND ), and SUVR. BP ND and SUVR were calculated using the cerebellar cortex as a reference region and were compared across the different methods and across the 3 groups (YHV, AHV, and AD). Results: AD demonstrated increased 18 F-AV-1451 retention compared with YHV and AHV based on both invasive and noninvasive analyses in cortical regions in which paired helical filament tau accumulation is expected in AD. A correlation of R 2 > 0.93 was found between BP ND (130 min) and SUVR-1 at all time intervals. Cortical SUVR curves reached a relative plateau around 1.0-1.2 for YHV and AHV by approximately 50 min, but increased in AD by up to approximately 20% at 110-130 min and approximately 30% at 160-180 min relative to 80-100 min. Distribution volume (130 min) was lower by 30%-35% in the YHV than AHV. Conclusion: Our data suggest that although 18 F-AV-1451 SUVR curves do not reach a plateau and are still increasing in AD, an SUVR calculated over an imaging window of 80-100 min (as currently used in clinical studies) provides estimates of paired helical filament tau burden in good correlation with BP ND , whereas SUVR sensitivity to regional cerebral blood changes needs further investigation. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.
Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj
2012-01-01
Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration-dissolving of a tablet, is conducive to the reduction of gastrointestinal side effects and better tolerance of the therapeutic product by a patient. The study on pharmaceutical availability indicated relevant kinetic differences between tested therapeutic products. They are particularly visible between standard formulations and the one with prolonged release (Glucophage XR500). Its release profile bears features of kinetics similar to zero-order reactions. Tested therapeutic products contain a large amount of the biologically active substance in relation to the content of excipients. A higher content of excipients in a single tablet mass distinguishes Siofor in comparison with Glucophage i Metformax. The excipients used in the formulations of tested preparations are comparable. A higher percentage of binding agents (HPMC, PVP) is observed, but there is a lack of typical disintegrants which results in a longer disintegration time up to 15 minutes. Siofor disintegrates at the same time as Formetic, but longer than Glucophage i Metformax. Considering the large content of the active substance and pharmacological properties of metformin hydrochloride, such a disintegration might have beneficial consequences, because the amount of the free active substance in the gastrointestinal tract will increase over the longer time period what will reduce the level of gastrointestinal side effects. The release profiles of metformin hydrochloride from tested therapeutic products are comparable. The Glucophage XR 500 formulation with the release kinetics of metformin hydrochloride similar to the zero-order kinetics is completely different from the others. The above is confirmed by the mathematical analysis of release profiles of metformin hydrochloride from tested preparations where equations of lines describing the release profile are characterized by similar values of correlation coefficients.
Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M
2017-05-11
As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.
Optimization of deflection of a big NEO through impact with a small one.
Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou
2014-01-01
Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed.
Optimization of Deflection of a Big NEO through Impact with a Small One
Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou
2014-01-01
Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed. PMID:25525627
Analysis of Mathematical Modelling on Potentiometric Biosensors
Mehala, N.; Rajendran, L.
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.
Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Steven Overbury
2015-01-08
We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less
Nutrient Removal from Wastewater Using Microalgae: A Kinetic Evaluation and Lipid Analysis.
Babu, Anjana; Katam, Keerthi; Gundupalli, Marttin Paulraj; Bhattacharyya, Debraj
2018-06-01
The objective of this study was to examine the performance of mixed microalgal bioreactors in treating three different types of wastewaters-kitchen wastewater (KWW), palm oil mill effluent (POME), and pharmaceutical wastewater (PWW) in semi-continuous mode and to analyze the lipid content in the harvested algal biomass. The reactors were monitored for total nitrogen and phosphate removal at eight solid retention times (SRTs): 2, 4, 6, 8, 10, 12, 14, and 16 days. The nutrient uptake kinetic parameters were quantified using linearized Michaelis-Menten and Monod models at steady-state conditions. The nutrient removal efficiency and lipid production were found to be higher in KWW when compared with the other wastewaters. Saturated fatty acids (C16:0, C18:0, and C18:1) accounted for more than 60% of the algal fatty acids for all the wastewaters. The lipid is, therefore, considered suitable for synthesizing biodiesel.
NASA Technical Reports Server (NTRS)
Herley, P. J.; Wang, C. S.; Varsi, G.; Levy, P. W.
1974-01-01
The thermal decomposition kinetics have been determined for ammonium perchlorate crystals subjected to a fast neutron irradiation or to a fast neutron irradiation followed by a gamma-ray irradiation. Qualitatively, the radiation induced changes are similar to those obtained in this and in previous studies, with samples exposed only to gamma rays. The induction period is shortened and the rate constants, obtained from an Avrami-Erofeyev kinetic analysis, are modified. The acceleratory period constant increases and the decay period constant decreases. When compared on an equal deposited energy basis, the fast neutron induced changes are appreciably larger than the gamma-ray induced changes. Some, or all, of the fast neutron induced effects might be attributable to the introduction of localized regions of concentrated radiation damage ('spikes') by lattice atom recoils which become thermal decomposition sites when the crystals are heated.
NASA Astrophysics Data System (ADS)
Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.
2007-04-01
In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.
Wu, Baojian; Morrow, John Kenneth; Singh, Rashim; Zhang, Shuxing; Hu, Ming
2011-02-01
Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.
Laffon, E; Calcagni, M L; Galli, G; Giordano, A; Capotosti, A; Marthan, R; Indovina, L
2018-03-27
Patlak's graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant (k b ) set to zero. We compared linear Patlak's analysis to non-linear three-compartment three-parameter kinetic model analysis (3P-KMA) providing Ki, k b , and fraction of free 18 F-FDG in blood and interstitial volume (V b ). Dynamic PET data of 21 lung cancer patients were retrospectively analyzed, yielding for each patient an 18 F-FDG input function (IF) and a tissue time-activity curve. The former was fitted with a three-exponentially decreasing function, and the latter was fitted with an analytical formula involving the fitted IF data (11 data points, ranging 7.5-57.5 min post-injection). Bland-Altman analysis was used for Ki comparison between Patlak's analysis and 3P-KMA. Additionally, a three-compartment five-parameter KMA (5P-KMA) was implemented for comparison with Patlak's analysis and 3P-KMA. We found that 3P-KMA Ki was significantly greater than Patlak's Ki over the whole patient series, + 6.0% on average, with limits of agreement of ± 17.1% (95% confidence). Excluding 8 out of 21 patients with k b > 0 deleted this difference. A strong correlation was found between Ki ratio (=3P-KMA/Patlak) and k b (R = 0.801; P < 0.001). No significant difference in Ki was found between 3P-KMA versus 5P-KMA, and between 5P-KMA versus Patlak's analysis, with limits of agreement of ± 23.0 and ± 31.7% (95% confidence), respectively. Comparison between 3P-KMA and Patlak's analysis significantly showed that the latter underestimates Ki because it arbitrarily set k b to zero: the greater the k b value, the greater the Ki underestimation. This underestimation was not revealed when comparing 5P-KMA and Patlak's analysis. We suggest that further studies are warranted to investigate the 3P-KMA efficiency in various tissues showing greater 18 F-FDG trapping reversibility than lung cancer lesions.
Multi-segment foot landing kinematics in subjects with chronic ankle instability.
De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip
2015-07-01
Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jain, Rachna; Garg, Veena; Yadav, Deepak
2014-06-01
Fungal degradation is emerging as a new powerful tool for the removal of potent neurotoxin pesticide, monocrotophos. Therefore, the present study is aimed at comparative characterization of monocrotophos degrading ability of three different fungal strains. Fungal strains were isolated from local agricultural soil by enrichment culture method, screened by gradient culture and identified as Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Growth kinetics revealed a direct positive influence of monocrotophos on the viability of fungal isolates. Fungal degradation was studied in phosphorus free liquid culture medium supplemented with 150 mg L(-1) concentration of monocrotophos for a period of 15 days under optimized culture conditions. Degradation of MCP followed first order kinetics with kdeg of 0.007, 0.002 and 0.005 day(-1) and half life (t1/2) of 4.21, 12.64 and 6.32 days for A. flavus, F. pallidoroseum and Macrophomina sp. respectively. To the best of our knowledge, it is the first report signifying the potential of monocrotophos degradation by Fusarium and Macrophomina sp. The results were further confirmed by HPTLC and FTIR which indicates disappearance of monocrotophos by hydrolytic cleavage of vinyl phosphate bond. Degradation of monocrotophos by fungal isolates was accompanied by the release of extracellular alkaline phosphatases, inorganic phosphates and ammonia. The overall comparative analysis followed the order of A. flavus > Macrophomina sp. > F. pallidoroseum. Therefore, it could be concluded from the study that these three different fungal strains could be effectively used as a potential candidate for the removal of monocrotophos from contaminated sites.
Advances in electron kinetics and theory of gas discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolobov, Vladimir I.; The University of Alabama in Huntsville, Huntsville, Alabama 35899
2013-10-15
“Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples ofmore » the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.« less
Marcolin, Giuseppe; Buriani, Alessandro; Balasso, Alberto; Villaminar, Renato; Petrone, Nicola
2015-01-01
Achilles tendon rupture is a disabling injury that requires a long recovery time. We describe a unique case of a 46-year-old male who had undergone gait analysis as part of a personal physical examination and who, 16 months later, ruptured his left Achilles tendon while running. With gait kinematic and kinetic data available both before and after his injury, we determined the residual gait asymmetries on his uninjured side and compared the pre- and postinjury measurements. We analyzed his gait at 1, 4, and 7 weeks after his return to full weightbearing. Compared with the preinjury values, at 7 weeks he had almost complete range of motion in his left ankle (-2%) and a slight increase in gait velocity (+6%) and cadence (+3%). The peak power of his injured ankle was 90% of its preinjury value. In contrast, the unaffected ankle was at 118%. These observations suggest that measuring the asymmetries of the gait cycle, especially at the beginning of rehabilitation, can be used to improve treatment. We had the patient strengthen his ankle using a stationary bicycle before he returned to running. Kinetics also appears to be more powerful than kinematics in detecting functional asymmetries associated with reduced calf strength, even 15 weeks after surgery. Gait analysis could be used to predict the effectiveness of rehabilitation protocols and help calibrate and monitor the return to sports participation while preventing overloading muscle and tendon syndromes. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Faria, Eliney F; Caputo, Peter A; Wood, Christopher G; Karam, Jose A; Nogueras-González, Graciela M; Matin, Surena F
2014-02-01
Laparoscopic and robotic partial nephrectomy (LPN and RPN) are strongly related to influence of tumor complexity and learning curve. We analyzed a consecutive experience between RPN and LPN to discern if warm ischemia time (WIT) is in fact improved while accounting for these two confounding variables and if so by which particular aspect of WIT. This is a retrospective analysis of consecutive procedures performed by a single surgeon between 2002-2008 (LPN) and 2008-2012 (RPN). Specifically, individual steps, including tumor excision, suturing of intrarenal defect, and parenchyma, were recorded at the time of surgery. Multivariate and univariate analyzes were used to evaluate influence of learning curve, tumor complexity, and time kinetics of individual steps during WIT, to determine their influence in WIT. Additionally, we considered the effect of RPN on the learning curve. A total of 146 LPNs and 137 RPNs were included. Considering renal function, WIT, suturing time, renorrhaphy time were found statistically significant differences in favor of RPN (p < 0.05). In the univariate analysis, surgical procedure, learning curve, clinical tumor size, and RENAL nephrometry score were statistically significant predictors for WIT (p < 0.05). RPN decreased the WIT on average by approximately 7 min compared to LPN even when adjusting for learning curve, tumor complexity, and both together (p < 0.001). We found RPN was associated with a shorter WIT when controlling for influence of the learning curve and tumor complexity. The time required for tumor excision was not shortened but the time required for suturing steps was significantly shortened.
Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds
NASA Astrophysics Data System (ADS)
Koledina, K. F.; Gubaidullin, I. M.
2016-05-01
The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.
Joyce, Paul; Kempson, Ivan; Prestidge, Clive A
2015-09-22
Quartz crystal microbalance with dissipation (QCM-D) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide insights into the relationship between lipid adsorption kinetics and molecular behavior in porous silica particles of varying hydrophobicities on lipase activity. Lipase (an interfacial enzyme that cleaves ester bonds to break down lipids to fatty acids and monoglycerides) activity was controlled by loading triglycerides at different surface coverages in hydrophilic and hydrophobic porous silica particles. The rate of lipid adsorption increased 2-fold for the hydrophobic surface compared to the hydrophilic surface. However, for submonolayer lipid coverage, the hydrophilic surface enhanced lipase activity 4-fold, whereas the hydrophobic surface inhibited lipase activity 16-fold, compared to lipid droplets in water. A difference in lipid orientation for low surface coverage, evidenced by ToF-SIMS, indicated that lipid adsorbs to hydrophilic silica in a conformation promoting hydrolysis. Multilayer coverage on hydrophobic and hydrophilic surfaces was indistinguishable with ToF-SIMS analysis. Increased lipid adsorption for both substrates facilitated digestion kinetics comparable to a conventional emulsion. Improved understanding of the interfacial adsorption and orientation of lipid and its digestibility in porous silica has implications in improving the uptake of pharmaceuticals and nutrients from lipid-based delivery systems.
IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
Huang, Lihan
2017-12-04
The objective of this work is to develop and validate a unified optimization algorithm for performing one-step global regression analysis of isothermal growth and survival curves for determination of kinetic parameters in predictive microbiology. The algorithm is incorporated with user-friendly graphical interfaces (GUIs) to develop a data analysis tool, the USDA IPMP-Global Fit. The GUIs are designed to guide the users to easily navigate through the data analysis process and properly select the initial parameters for different combinations of mathematical models. The software is developed for one-step kinetic analysis to directly construct tertiary models by minimizing the global error between the experimental observations and mathematical models. The current version of the software is specifically designed for constructing tertiary models with time and temperature as the independent model parameters in the package. The software is tested with a total of 9 different combinations of primary and secondary models for growth and survival of various microorganisms. The results of data analysis show that this software provides accurate estimates of kinetic parameters. In addition, it can be used to improve the experimental design and data collection for more accurate estimation of kinetic parameters. IPMP-Global Fit can be used in combination with the regular USDA-IPMP for solving the inverse problems and developing tertiary models in predictive microbiology. Published by Elsevier B.V.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
NASA Astrophysics Data System (ADS)
Yalçınkaya, Eylem; Taştan-Kırık, Özgecan; Boz, Yezdan; Yıldıran, Demet
2012-07-01
Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students have generally low levels of conceptual understanding and many alternative conceptions regarding it. Purpose: This study aimed to explore the effect of CBL on dealing with students' alternative conceptions about chemical kinetics. Sample: The sample consists of 53 high school students from one public high school in Turkey. Design and methods : Nonequivalent pre-test and post-test control group design was used. Reaction Rate Concept Test and semi-structured interviews were used for data collection. Convenience sampling technique was followed. For data analysis, the independent samples t-test and ANOVA was performed. Results : Both concept test and interview results showed that students instructed with cases had better understanding of core concepts of chemical kinetics and had less alternative conceptions related to the subject matter compared to the control group students, despite the fact that it was impossible to challenge all the alternative conceptions in the experimental group. Conclusions: CBL is an effective teaching method for challenging students' alternative conceptions in the context of chemical kinetics. Since using cases in small groups and whole class discussions has been found to be an effective way to cope with the alternative conceptions, it can be applied to other subjects and grade levels in high schools with a higher sample size. Furthermore, the effect of this method on academic achievement, motivation and critical thinking skills are other variables that can be investigated for future studies in the subject area of chemistry.
Atai, Mohammad; Ahmadi, Mehdi; Babanzadeh, Samal; Watts, David C
2007-08-01
The aim of the study was to synthesize and characterize an isophorone-based urethane dimethacrylate (IP-UDMA) resin-monomer and to investigate its shrinkage and curing kinetics. The IP-UDMA monomer was synthesized through the reaction of polyethylene glycol 400 and isophorone diisocyanate followed by reacting with HEMA to terminate it with methacrylate end groups. The reaction was followed using a standard back titration method and FTIR spectroscopy. The final product was purified and characterized using FTIR, (1)H NMR, elemental analysis and refractive index measurement. The shrinkage-strain of the specimens photopolymerized at circa 700mW/cm(2) was measured using the bonded-disk technique at 23, 35, and 45 degrees C. Initial shrinkage-strain-rates were obtained by numerical differentiation of shrinkage-strain data with respect to time. Degree-of-conversion of the specimens was measured using FTIR spectroscopy. The thermal curing kinetics of the monomer were also studied by differential scanning calorimetry (DSC). The characterization methods confirmed the suggested reaction route and the synthesized monomer. A low shrinkage-strain of about 4% was obtained for the new monomer. The results showed that the shrinkage-strain-rate of the monomer followed the autocatalytic model of Kamal and Sourour [Kamal MR, Sourour S. Kinetic and thermal characterization of thermoset cure. Polym Eng Sci 1973;13(1):59-64], which is used to describe the reaction kinetics of thermoset resins. The model parameters were calculated by linearization of the equation. The model prediction was in a good agreement with the experimental data. The properties of the new monomer compare favorably with properties of the commercially available resins.
Ferey, Justine; Da Silva, David; Bravo-Veyrat, Sophie; Lafite, Pierre; Daniellou, Richard; Maunit, Benoît
2016-12-16
This paper presents a kinetic study of invertase, a specific fructofuranosidase cloned from the Leishmania major genome. The kinetic parameters of the β-d-fructofuranosidase from Leishmania major (BfrA) were determined using Thin-Layer Chromatography (TLC) and UV-densitometry (TLC@UV) specifically developed for the separation and detection of three carbohydrates namely sucrose, glucose and fructose. Separation was performed on TLC silica gel 60 F254 plates impregnated with sodium bisulphate and citrate and heated prior to development. This fast and easy separation was performed with two successive developments using ACN/H 2 O 80/20 (v/v) as mobile phase. Sensitive and repeatable derivatization of sugars was achieved by dipping the plates in a solution of 4-aminobenzoic acid. Quantification was performed by UV-detection. The method was validated according to ICH guidelines Q2(R1) in terms of specificity, limits of detection and quantification, precision and robustness (with n=3 replicates and CV ≤10%). The characterization of BfrA reaction kinetic was performed by monitoring the accumulation of either glucose or fructose detected by TLC@UV. Hydrolysis of sucrose was described by the Michaelis-Menten kinetic parameters (K M ; V max ) respectively equal to 63.09±7.590mM; 0.037±0.00094mM/min using glucose production and 83.01±14.39mM; 0.031±0.0021mM/min monitoring fructose. Hydrolyses of three alternative substrates, raffinose, stachyose and inulin, were also compared and the regiospecificity of the reaction was characterized. This TLC@UV method is shown to be suitable for the refined kinetic analysis of different reactions related to the hydrolysis of sugars. Copyright © 2016. Published by Elsevier B.V.
Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline.
Campi-Azevedo, Ana Carolina; de Almeida Estevam, Paula; Coelho-Dos-Reis, Jordana Grazziela; Peruhype-Magalhães, Vanessa; Villela-Rezende, Gabriela; Quaresma, Patrícia Flávia; Maia, Maria de Lourdes Sousa; Farias, Roberto Henrique Guedes; Camacho, Luiz Antonio Bastos; Freire, Marcos da Silva; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando Carvalho; Lima, Sheila Maria Barbosa; Nogueira, Rita Maria Ribeiro; Silva Sá, Gloria Regina; Hokama, Darcy Akemi; de Carvalho, Ricardo; Freire, Ricardo Aguiar Villanova; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira; Teixeira-Carvalho, Andréa; Martins, Reinaldo Menezes; Martins-Filho, Olindo Assis
2014-07-15
The live attenuated 17DD Yellow Fever vaccine is one of the most successful prophylactic interventions for controlling disease expansion ever designed and utilized in larger scale. However, increase on worldwide vaccine demands and manufacturing restrictions urge for more detailed dose sparing studies. The establishment of complementary biomarkers in addition to PRNT and Viremia could support a secure decision-making regarding the use of 17DD YF vaccine subdoses. The present work aimed at comparing the serum chemokine and cytokine kinetics triggered by five subdoses of 17DD YF Vaccine. Neutralizing antibody titers, viremia, cytokines and chemokines were tested on blood samples obtained from eligible primary vaccinees. The results demonstrated that a fifty-fold lower dose of 17DD-YF vaccine (587 IU) is able to trigger similar immunogenicity, as evidenced by significant titers of anti-YF PRNT. However, only subdoses as low as 3,013 IU elicit viremia kinetics with an early peak at five days after primary vaccination equivalent to the current dose (27,476 IU), while other subdoses show a distinct, lower in magnitude and later peak at day 6 post-vaccination. Although the subdose of 587 IU is able to trigger equivalent kinetics of IL-8/CXCL-8 and MCP-1/CCL-2, only the subdose of 3,013 IU is able to trigger similar kinetics of MIG/CXCL-9, pro-inflammatory (TNF, IFN-γ and IL-2) and modulatory cytokines (IL-5 and IL-10). The analysis of serum biomarkers IFN-γ and IL-10, in association to PRNT and viremia, support the recommendation of use of a ten-fold lower subdose (3,013 IU) of 17DD-YF vaccine.
Wave Energetics of the Atmosphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael
A comprehensive assessment of the energetics of transient waves is presented for the atmosphere of Mars using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. Each hemisphere is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for each of the three Mars years available. Northern hemisphere fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the winter solstitial pause in wave activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout each year with little reduction in amplitude during the solstitial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical temperature profile around winter solstice. Traveling waves are typically triggered by geopotential flux convergence. Individual waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation. The southern hemisphere energetics is similar to the northern hemisphere in timing, but wave energetics is much weaker as a result of the high and zonally asymmetric topography. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a GDS. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
Sen, Rickdeb; Escorihuela, Jorge; Smulders, Maarten M J; Zuilhof, Han
2016-04-12
In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.
Chen, Mingmin; Cao, Hongxia; Peng, Huasong; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2014-01-01
The phenazine derivative 2-hydroxyphenazine (2-OH-PHZ) plays an important role in the biocontrol of plant diseases, and exhibits stronger bacteriostatic and fungistatic activity than phenazine-1-carboxylic acid (PCA) toward some pathogens. PhzO has been shown to be responsible for the conversion of PCA to 2-OH-PHZ, however the kinetics of the reaction have not been systematically studied. Further, the yield of 2-OH-PHZ in fermentation culture is quite low and enhancement in our understanding of the reaction kinetics may contribute to improvements in large-scale, high-yield production of 2-OH-PHZ for biological control and other applications. In this study we confirmed previous reports that free PCA is converted to 2-hydroxy-phenazine-1-carboxylic acid (2-OH-PCA) by the action of a single enzyme PhzO, and particularly demonstrate that this reaction is dependent on NADP(H) and Fe3+. Fe3+ enhanced the conversion from PCA to 2-OH-PHZ and 28°C was a optimum temperature for the conversion. However, PCA added in excess to the culture inhibited the production of 2-OH-PHZ. 2-OH-PCA was extracted and purified from the broth, and it was confirmed that the decarboxylation of 2-OH-PCA could occur without the involvement of any enzyme. A kinetic analysis of the conversion of 2-OH-PCA to 2-OH-PHZ in the absence of enzyme and under different temperatures and pHs in vitro, revealed that the conversion followed first-order reaction kinetics. In the fermentation, the concentration of 2-OH-PCA increased to about 90 mg/L within a red precipitate fraction, as compared to 37 mg/L within the supernatant. The results of this study elucidate the reaction kinetics involved in the biosynthesis of 2-OH-PHZ and provide insights into in vitro methods to enhance yields of 2-OH-PHZ. PMID:24905009
Large-N kinetic theory for highly occupied systems
NASA Astrophysics Data System (ADS)
Walz, R.; Boguslavski, K.; Berges, J.
2018-06-01
We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. This allows us to compute the universal scaling form of the distribution function at an infrared nonthermal fixed point within a kinetic description, and we compare to existing lattice field theory simulation results.
Quantification of 18F-Fluoride Kinetics: Evaluation of Simplified Methods.
Raijmakers, Pieter; Temmerman, Olivier P P; Saridin, Carrol P; Heyligers, Ide C; Becking, Alfred G; van Lingen, Arthur; Lammertsma, Adriaan A
2014-07-01
(18)F-fluoride PET is a promising noninvasive method for measuring bone metabolism and bone blood flow. The purpose of this study was to assess the performance of various clinically useful simplified methods by comparing them with full kinetic analysis. In addition, the validity of deriving bone blood flow from K1 of (18)F-fluoride was investigated using (15)O-H2O as a reference. Twenty-two adults (mean age ± SD, 44.8 ± 25.2 y), including 16 patients scheduled for bone surgery and 6 healthy volunteers, were studied. All patients underwent dynamic (15)O-H2O and (18)F-fluoride scans before surgery. Ten of these patients had serial PET measurements before and at 2 time points after local bone surgery. During all PET scans, arterial blood was monitored continuously. (18)F-fluoride data were analyzed using nonlinear regression (NLR) and several simplified methods (Patlak and standardized uptake value [SUV]). SUV was evaluated for different time intervals after injection and after normalizing to body weight, lean body mass, and body surface area, and simplified measurements were compared with NLR results. In addition, changes in SUV and Patlak-derived fluoride influx rate (Ki) after surgery were compared with corresponding changes in NLR-derived Ki. Finally, (18)F-fluoride K1 was compared with bone blood flow derived from (15)O-H2O data, using the standard single-tissue-compartment model. K1 of (18)F-fluoride correlated with measured blood flow, but the correlation coefficient was relatively low (r = 0.35, P < 0.001). NLR resulted in a mean Ki of 0.0160 ± 0.0122, whereas Patlak analysis, for the interval 10-60 min after injection, resulted in an almost-identical mean Ki of 0.0161 ± 0.0117. The Patlak-derived Ki, for 10-60 min after injection, showed a high correlation with the NLR-derived Ki (r = 0.976). The highest correlation between Ki and lean body mass-normalized SUV was found for the interval 50-60 min (r = 0.958). Finally, changes in SUV correlated significantly with those in Ki (r = 0.97). The present data support the use of both Patlak and SUV for assessing fluoride kinetics in humans. However, (18)F-fluoride PET has only limited accuracy in monitoring bone blood flow. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
NASA Astrophysics Data System (ADS)
Campbell, B. D.; Higgins, S. R.
2008-12-01
Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.
NASA Astrophysics Data System (ADS)
Hemingway, Jordon D.; Rothman, Daniel H.; Rosengard, Sarah Z.; Galy, Valier V.
2017-11-01
Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.
Computer-aided sperm analysis: a useful tool to evaluate patient's response to varicocelectomy.
Ariagno, Julia I; Mendeluk, Gabriela R; Furlan, María J; Sardi, M; Chenlo, P; Curi, Susana M; Pugliese, Mercedes N; Repetto, Herberto E; Cohen, Mariano
2017-01-01
Preoperative and postoperative sperm parameter values from infertile men with varicocele were analyzed by computer-aided sperm analysis (CASA) to assess if sperm characteristics improved after varicocelectomy. Semen samples of men with proven fertility (n = 38) and men with varicocele-related infertility (n = 61) were also analyzed. Conventional semen analysis was performed according to WHO (2010) criteria and a CASA system was employed to assess kinetic parameters and sperm concentration. Seminal parameters values in the fertile group were very far above from those of the patients, either before or after surgery. No significant improvement in the percentage normal sperm morphology (P = 0.10), sperm concentration (P = 0.52), total sperm count (P = 0.76), subjective motility (%) (P = 0.97) nor kinematics (P = 0.30) was observed after varicocelectomy when all groups were compared. Neither was significant improvement found in percentage normal sperm morphology (P = 0.91), sperm concentration (P = 0.10), total sperm count (P = 0.89) or percentage motility (P = 0.77) after varicocelectomy in paired comparisons of preoperative and postoperative data. Analysis of paired samples revealed that the total sperm count (P = 0.01) and most sperm kinetic parameters: curvilinear velocity (P = 0.002), straight-line velocity (P = 0.0004), average path velocity (P = 0.0005), linearity (P = 0.02), and wobble (P = 0.006) improved after surgery. CASA offers the potential for accurate quantitative assessment of each patient's response to varicocelectomy.
Ankle joint function during walking in tophaceous gout: A biomechanical gait analysis study.
Carroll, Matthew; Boocock, Mark; Dalbeth, Nicola; Stewart, Sarah; Frampton, Christopher; Rome, Keith
2018-04-17
The foot and ankle are frequently affected in tophaceous gout, yet kinematic and kinetic changes in this region during gait are unknown. The aim of the study was to evaluate ankle biomechanical characteristics in people with tophaceous gout using three-dimensional gait analysis. Twenty-four participants with tophaceous gout were compared with 24 age-and sex-matched control participants. A 9-camera motion analysis system and two floor-mounted force plates were used to calculate kinematic and kinetic parameters. Peak ankle joint angular velocity was significantly decreased in participants with gout (P < 0.01). No differences were found for ankle ROM in either the sagittal (P = 0.43) or frontal planes (P = 0.08). No differences were observed between groups for peak ankle joint power (P = 0.41), peak ankle joint force (P = 0.25), peak ankle joint moment (P = 0.16), timing for peak ankle joint force (P = 0.81), or timing for peak ankle joint moment (P = 0.16). Three dimensional gait analysis demonstrated that ankle joint function does not change in people with gout. People with gout demonstrated a reduced peak ankle joint angular velocity which may reflect gait-limiting factors and adaptations from the high levels of foot pain, impairment and disability experienced by this population. Copyright © 2018 Elsevier B.V. All rights reserved.
Kinetic Damage from Meteorites
NASA Technical Reports Server (NTRS)
Cooke, W.; Brown, P.; Matney, M.
2017-01-01
Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.
Kinetic Damage from Meteorites
NASA Technical Reports Server (NTRS)
Cooke, W.; Matney, M.; Brown, P.
2017-01-01
Comparing the natural meteorite flux at the Earth's surface to that of space debris, reentering debris is approx. 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.
Cummins, Peter L; Kannappan, Babu; Gready, Jill E
2018-01-01
The ubiquitous enzyme Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) fixes atmospheric carbon dioxide within the Calvin-Benson cycle that is utilized by most photosynthetic organisms. Despite this central role, RuBisCO's efficiency surprisingly struggles, with both a very slow turnover rate to products and also impaired substrate specificity, features that have long been an enigma as it would be assumed that its efficiency was under strong evolutionary pressure. RuBisCO's substrate specificity is compromised as it catalyzes a side-fixation reaction with atmospheric oxygen; empirical kinetic results show a trend to tradeoff between relative specificity and low catalytic turnover rate. Although the dominant hypothesis has been that the active-site chemistry constrains the enzyme's evolution, a more recent study on RuBisCO stability and adaptability has implicated competing selection pressures. Elucidating these constraints is crucial for directing future research on improving photosynthesis, as the current literature casts doubt on the potential effectiveness of site-directed mutagenesis to improve RuBisCO's efficiency. Here we use regression analysis to quantify the relationships between kinetic parameters obtained from empirical data sets spanning a wide evolutionary range of RuBisCOs. Most significantly we found that the rate constant for dissociation of CO 2 from the enzyme complex was much higher than previous estimates and comparable with the corresponding catalytic rate constant. Observed trends between relative specificity and turnover rate can be expressed as the product of negative and positive correlation factors. This provides an explanation in simple kinetic terms of both the natural variation of relative specificity as well as that obtained by reported site-directed mutagenesis results. We demonstrate that the kinetic behaviour shows a lesser rather than more constrained RuBisCO, consistent with growing empirical evidence of higher variability in relative specificity. In summary our analysis supports an explanation for the origin of the tradeoff between specificity and turnover as due to competition between protein stability and activity, rather than constraints between rate constants imposed by the underlying chemistry. Our analysis suggests that simultaneous improvement in both specificity and turnover rate of RuBisCO is possible.
A study of hydriding kinetics of metal hydrides using a physically based model
NASA Astrophysics Data System (ADS)
Voskuilen, Tyler G.
The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the effects of multidimensional phase growth and transitions between rate-limiting processes on the experimentally determined reaction rates. Unlike conventional solid state reaction analysis methods, this model relies fully on rate parameters based on the physical mechanisms occurring in the hydride reaction and can be extended to reactions in any dimension.
Development of Methods of Characterizing Coal in Its Plastic State
NASA Technical Reports Server (NTRS)
Lloyd, W. G.
1978-01-01
Coal in its plastic state (typically 400-460 C) was examined by the isothermal Gieseler plastometry of seven selected coals of widely varying plastic properties. Kinetic models were proposed for the isothermal plastometric curves. Plastic behavior was compared with a variety of laboratory analyses and characterizations of these coals, including classical coal analysis; mineral analysis; microstructural analysis (extractable fractions, surface area measurement, and petrographic analysis); and thermal analysis (thermogravimetric analysis, thermomechanical analysis, and differential scanning calorimetry). The phenomenon of a sharp, large, poorly reproducible exotherm in the differential scanning calorimetric analysis of coking coals was examined. Several coal extrudates show mineral distribution, organic maceral composition and overall calorific value to be little affected by 800 F extrusion. Volatile matter and plastic properties are moderately reduced, and the network structure (as gauged by extractables) appears to be slightly degraded in the extrusion process.
Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.
Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T
2014-11-01
We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.
De Benedetti, Pier G; Fanelli, Francesca
2018-03-21
Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Two methods for estimating limits to large-scale wind power generation
Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel
2015-01-01
Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925
Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold
NASA Astrophysics Data System (ADS)
Postnikov, Eugene B.
2016-01-01
This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.
The Oxidation of CVD Silicon Carbide in Carbon Dioxide
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Nguyen, QuynchGiao N.
1997-01-01
Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.
Catalysts for electrochemical generation of oxygen
NASA Technical Reports Server (NTRS)
Hagans, P.; Yeager, E.
1979-01-01
Several aspects of the electrolytic evolution of oxygen for use in life support systems are analyzed including kinetic studies of various metal and nonmetal electrode materials, the formation of underpotential films on electrodes, and electrode surface morphology and the use of single crystal metals. In order to investigate the role of surface morphology to electrochemical reactions, a low energy electron diffraction and an Auger electron spectrometer are combined with an electrochemical thin-layer cell allowing initial characterization of the surface, reaction run, and then a comparative surface analysis.
Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaopeng
2003-01-01
Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH +3 - and mechanisms of ligand displacement and oxidation were proposed.
PET kinetic analysis --pitfalls and a solution for the Logan plot.
Kimura, Yuichi; Naganawa, Mika; Shidahara, Miho; Ikoma, Yoko; Watabe, Hiroshi
2007-01-01
The Logan plot is a widely used algorithm for the quantitative analysis of neuroreceptors using PET because it is easy to use and simple to implement. The Logan plot is also suitable for receptor imaging because its algorithm is fast. However, use of the Logan plot, and interpretation of the formed receptor images should be regarded with caution, because noise in PET data causes bias in the Logan plot estimates. In this paper, we describe the basic concept of the Logan plot in detail and introduce three algorithms for the Logan plot. By comparing these algorithms, we demonstrate the pitfalls of the Logan plot and discuss the solution.
Nin, Darren Z; Lam, Wing K; Kong, Pui W
2016-01-01
This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into "heavy" (n = 15, mass 82.7 ± 4.3 kg) or "light" (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the "heavy" than "light" groups (P = .014) and 12.4% higher in hard compared with soft shoes (P = .011). Forefoot peak VGRF in a soft shoe was higher (P = .011) than in a hard shoe during shot-block landing. Both "heavy" and "light" groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.
2012-01-01
Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051
Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M
2013-02-05
This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.
Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.
2016-10-01
New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.
The study of zinc ions binding to casein.
Pomastowski, P; Sprynskyy, M; Buszewski, B
2014-08-01
The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.
LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
2000-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).