García de la Concepción, Juan; Ávalos, Martín; Cintas, Pedro; Jiménez, José L; Light, Mark E
2018-05-09
This paper describes a mechanistic study, with the interplay of experiment and theory, on the cycloadditions of a bicyclic mesoionic 1,3-dipole versus a series of representative symmetrical (1-phenyl-1H-pyrrole-2,5-dione and dimethyl maleate) and asymmetrical [(E)-(2-nitrovinyl)benzene, acrylonitrile, and but-3-en-2-one] olefinic dipolarophiles. These results allow a comparative analysis with monocyclic dipoles and open further avenues to structurally diversified heteroatom-rich rings. The unichiral version of the bicyclic dipole leads to adducts containing up to five chiral centers, whose formation proceeds with high levels of facial stereoinduction in reactions involving bulky dipolarophiles. The second and largest part of this study provides a theoretical interrogation on the pericyclic mechanism with DFT-methods [M06-2X/6-311++G(d,p)]. In order to get further mechanistic insights, we have also explored charge transfers between reaction partners using NBO analysis, which satisfactorily justifies the stereochemical outcome.
DOT National Transportation Integrated Search
2001-09-01
This document presents an example of mechanistic design and analysis using a mix design and : testing protocol. More specifically, it addresses the structural properties of lime-treated subgrade, : subbase, and base layers through mechanistic design ...
Development of Alabama traffic factors for use in mechanistic-empirical pavement design.
DOT National Transportation Integrated Search
2015-02-01
The pavement engineering community is moving toward design practices that use mechanistic-empirical (M-E) approaches to the design and analysis of pavement structures. This effort is : embodied in the Mechanistic-Empirical Pavement Design Guide (MEPD...
Incorporating zebrafish omics into chemical biology and toxicology.
Sukardi, Hendrian; Ung, Choong Yong; Gong, Zhiyuan; Lam, Siew Hong
2010-03-01
In this communication, we describe the general aspects of omics approaches for analyses of transcriptome, proteome, and metabolome, and how they can be strategically incorporated into chemical screening and perturbation studies using the zebrafish system. Pharmacological efficacy and selectivity of chemicals can be evaluated based on chemical-induced phenotypic effects; however, phenotypic observation has limitations in identifying mechanistic action of chemicals. We suggest adapting gene-expression-based high-throughput screening as a complementary strategy to zebrafish-phenotype-based screening for mechanistic insights about the mode of action and toxicity of a chemical, large-scale predictive applications and comparative analysis of chemical-induced omics signatures, which are useful to identify conserved biological responses, signaling pathways, and biomarkers. The potential mechanistic, predictive, and comparative applications of omics approaches can be implemented in the zebrafish system. Examples of these using the omics approaches in zebrafish, including data of ours and others, are presented and discussed. Omics also facilitates the translatability of zebrafish studies across species through comparison of conserved chemical-induced responses. This review is intended to update interested readers with the current omics approaches that have been applied in chemical studies on zebrafish and their potential in enhancing discovery in chemical biology.
A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.
Revell, Christopher; Somveille, Marius
2017-08-29
In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.
Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging
NASA Astrophysics Data System (ADS)
Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.
2016-07-01
One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.
The application of systematic review practices in human health assessment includes integration of multi-disciplinary evidence from epidemiological, experimental, and mechanistic studies. Although mode of action analysis relies on the evaluation of mechanistic and toxicological ou...
A Virtual Rat for Simulating Environmental and Exertional Heat Stress
2014-10-02
unsuitable for accurately determin- ing the spatiotemporal temperature distribution in the animal due to heat stress and for performing mechanistic analysis ...possible in the original experiments. Finally, we performed additional simu- lations using the virtual rat to facilitate comparative analysis of the...capability of the virtual rat to account for the circadian rhythmicity in core temperatures during an in- crease in the external temperature from 22
The adoption of systematic review practices for risk assessment includes integration of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in mode of action analysis, the process of sorting and anal...
Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J
2008-01-01
ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of predictive genomic investigations.
DOT National Transportation Integrated Search
2017-02-08
The study re-evaluates distress prediction models using the Mechanistic-Empirical Pavement Design Guide (MEPDG) and expands the sensitivity analysis to a wide range of pavement structures and soils. In addition, an extensive validation analysis of th...
The Japanese utilities` expectations for subchannel analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toba, Akio; Omoto, Akira
1995-12-01
Boiling water reactor (BWR) utilities in Japan began to consider the development of a mechanistic model to describe the critical heat transfer conditions in the BWR fuel subchannel. Such a mechanistic model will not only decrease the necessity of tests, but will also help by removing some overly conservative safety margins in thermal hydraulics. With the use of a postdryout heat transfer correlation, new acceptance criteria may be applicable to evaluate the fuel integrity. Mechanistic subchannel analysis models will certainly back up this approach. This model will also be applicable to the analysis of large-size fuel bundles and examination ofmore » corrosion behavior.« less
DOT National Transportation Integrated Search
2015-02-01
This TechBrief describes evaluating the use of the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product as an alternative climatic data source for the Mechanistic-Empirical Pavement Design Guide (MEPDG) and other transporta...
Kini, Annapoorna S; Vengrenyuk, Yuliya; Pena, Jacobo; Motoyama, Sadako; Feig, Jonathan E; Meelu, Omar A; Rajamanickam, Anitha; Bhat, Arjun M; Panwar, Sadik; Baber, Usman; Sharma, Samin K
2015-11-15
This study sought to assess the mechanistic effect of rotational atherectomy (RA) and orbital atherectomy (OA) on heavily calcified coronary lesions and subsequent stent placement using optical coherence tomography (OCT). RA and OA are two main approaches to ablate coronary calcium. While small case reports have described the mechanistic effect of RA in calcified coronary lesions, there has been no imaging study to assess the effect of OA on coronary artery architecture and/or compare the effects of two atherectomy devices. This study analyzed 20 consecutive patients with OCT imaging performed after atherectomy and after stent implantation, RA (n = 10) and OA (n = 10). Postatherectomy OCT analysis identified tissue modification with deep dissections in around a third of lesions after RA and OA; however, post OA dissections ("lacunae") were significantly deeper (1.14 vs. 0.82 mm, P = 0.048). Post OA/RA lesions with dissections had significantly higher percentage of lipid rich plaques and smaller calcification arcs as compared to plaques without dissections. Stents after OA were associated with a significantly lower percent of stent strut malapposition than post RA stents (4.36 vs. 8.02%, P = 0.038). Although the incidence of dissections was comparable between RA and OA cases, OA resulted in deeper tissue modifications (lacunae) as shown by OCT imaging. The finding might provide an explanation for a better stent apposition after OA as compared to RA. Their impact on long-term outcome needs to be determined. © 2015 Wiley Periodicals, Inc.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Kaltenbacher, Barbara; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351
High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita
Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Cicin-Sain, Damjan; Jaeger, Johannes
2015-01-01
Gap genes are involved in segment determination during early development in dipteran insects (flies, midges, and mosquitoes). We carried out a systematic quantitative comparative analysis of the gap gene network across different dipteran species. Our work provides mechanistic insights into the evolution of this pattern-forming network. As a central component of our project, we created a high-resolution quantitative spatio-temporal data set of gap and maternal co-ordinate gene expression in the blastoderm embryo of the non-drosophilid scuttle fly, Megaselia abdita. Our data include expression patterns in both wild-type and RNAi-treated embryos. The data—covering 10 genes, 10 time points, and over 1,000 individual embryos—consist of original embryo images, quantified expression profiles, extracted positions of expression boundaries, and integrated expression patterns, plus metadata and intermediate processing steps. These data provide a valuable resource for researchers interested in the comparative study of gene regulatory networks and pattern formation, an essential step towards a more quantitative and mechanistic understanding of developmental evolution. PMID:25977812
Pathak, Shriram M; Ruff, Aaron; Kostewicz, Edmund S; Patel, Nikunjkumar; Turner, David B; Jamei, Masoud
2017-12-04
Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pK a ; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC 0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.
Model for estimating enteric methane emissions from United States dairy and feedlot cattle.
Kebreab, E; Johnson, K A; Archibeque, S L; Pape, D; Wirth, T
2008-10-01
Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.
Anguissola, Sergio; Garry, David; Salvati, Anna; O'Brien, Peter J; Dawson, Kenneth A
2014-01-01
The fast-paced development of nanotechnology needs the support of effective safety testing. We have developed a screening platform measuring simultaneously several cellular parameters for exposure to various concentrations of nanoparticles (NPs). Cell lines representative of different organ cell types, including lung, endothelium, liver, kidney, macrophages, glia, and neuronal cells were exposed to 50 nm amine-modified polystyrene (PS-NH2) NPs previously reported to induce apoptosis and to 50 nm sulphonated and carboxyl-modified polystyrene NPs that were reported to be silent. All cell lines apart from Raw 264.7 executed apoptosis in response to PS-NH2 NPs, showing specific sequences of EC50 thresholds; lysosomal acidification was the most sensitive parameter. Loss of mitochondrial membrane potential and plasma membrane integrity measured by High Content Analysis resulted comparably sensitive to the equivalent OECD-recommended assays, allowing increased output. Analysis of the acidic compartments revealed good cerrelation between size/fluorescence intensity and dose of PS-NH2 NPs applied; moreover steatosis and phospholipidosis were observed, consistent with the lysosomal alterations revealed by Lysotracker green; similar responses were observed when comparing astrocytoma cells with primary astrocytes. We have established a platform providing mechanistic insights on the response to exposure to nanoparticles. Such platform holds great potential for in vitro screening of nanomaterials in highthroughput format.
Aoyama, T; Hirata, K; Yamamoto, Y; Yokota, H; Hayashi, H; Aoyama, Y; Matsumoto, Y
2016-08-01
Midazolam (MDZ) is commonly used for sedating critically ill patients. The daily dose required for adequate sedation increases in increments over 100 h after administration. The objectives of this study were to characterize the MDZ pharmacokinetics in critically ill patients and to describe the phenomenon of increasing daily dose by means of population pharmacokinetic analysis. Data were obtained from 30 patients treated in an intensive care unit. The patients received MDZ intravenously as a combination of bolus and continuous infusion. Serum MDZ concentration was assayed by high-performance liquid chromatography. Population pharmacokinetic analysis was performed using the NONMEM software package. The alteration of clearance unexplained by demographic factors and clinical laboratory data was described as an autoinduction of MDZ clearance using a semi-mechanistic pharmacokinetic-enzyme turnover model. The final population pharmacokinetic model was a one-compartment model estimated by incorporating a semi-mechanistic pharmacokinetic-enzyme turnover model for clearance, taking autoinduction into account. A significant covariate for MDZ clearance was total bilirubin. An increase in total bilirubin indicated a reduction in MDZ clearance. From simulation using the population pharmacokinetic parameters obtained in this study, MDZ clearance increased 2·3 times compared with pre-induced clearance 100 h after the start of 12·5 mg/h continuous infusion. Autoinduction and total bilirubin were significant predictors of the clearance of MDZ in this population. Step-by-step dosage adjustment using this population pharmacokinetic model may be useful for establishing a MDZ dosage regimen in critically ill patients. © 2016 John Wiley & Sons Ltd.
Putting the psychology back into psychological models: mechanistic versus rational approaches.
Sakamoto, Yasuaki; Jones, Mattr; Love, Bradley C
2008-09-01
Two basic approaches to explaining the nature of the mind are the rational and the mechanistic approaches. Rational analyses attempt to characterize the environment and the behavioral outcomes that humans seek to optimize, whereas mechanistic models attempt to simulate human behavior using processes and representations analogous to those used by humans. We compared these approaches with regard to their accounts of how humans learn the variability of categories. The mechanistic model departs in subtle ways from rational principles. In particular, the mechanistic model incrementally updates its estimates of category means and variances through error-driven learning, based on discrepancies between new category members and the current representation of each category. The model yields a prediction, which we verify, regarding the effects of order manipulations that the rational approach does not anticipate. Although both rational and mechanistic models can successfully postdict known findings, we suggest that psychological advances are driven primarily by consideration of process and representation and that rational accounts trail these breakthroughs.
László G. Nagy; Robert Riley; Philip J. Bergmann; Krisztina Krizsán; Francis M. Martin; Igor V. Grigoriev; Dan Cullen; David S. Hibbett
2016-01-01
Fungal decomposition of plant cell walls (PCW) is a complex process that has diverse industrial applications and huge impacts on the carbon cycle. White rot (WR) is a powerful mode of PCW decay in which lignin and carbohydrates are both degraded. Mechanistic studies of decay coupled with comparative genomic analyses have provided clues to the enzymatic components of WR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulou, Myrto, E-mail: myrto.dimopoulou@wur.nl
Differential gene expression analysis in the rat whole embryo culture (WEC) assay provides mechanistic insight into the embryotoxicity of test compounds. In our study, we hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and prothioconazole) could lead to a better mechanism-based understanding of their embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the total morphological scoring system (TMS) in embryos exposed for 48 h. The compounds tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential gene expression after 4 h exposure at the ID{sub 10} (effectivemore » dose for 10% decreased TMS), revealed the sterol biosynthesis pathway and embryonic development genes, dominated by genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the most pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the RA pathway related genes were already differentially expressed at low dose levels while the sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour time point indicated an additional time-dependent difference in the aforementioned pathways regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics could add a mechanistic insight into the embryotoxic potency ranking and pharmacological mode of action of the tested compounds. - Highlights: • Embryonic exposure to azoles revealed concentration-dependent malformations. • Transcriptomics could enhance the mechanistic knowledge of embryotoxicants. • Retinoic acid gene set identifies early embryotoxic responses to azoles. • Toxic versus pharmacologic potency determines functional efficacy.« less
Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola
2016-09-01
In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic traits characteristic of high-performance clones and enables informed decisions on which clones provide a good match for a particular process platform. The proposed approach also provides a mechanistic link between observed clone phenotype, process setup, and feeding regimes, and thereby offers concrete starting points for subsequent process optimization. Biotechnol. Bioeng. 2016;113: 2005-2019. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Layer moduli of Nebraska pavements for the new Mechanistic-Empirical Pavement Design Guide (MEPDG).
DOT National Transportation Integrated Search
2010-12-01
As a step-wise implementation effort of the Mechanistic-Empirical Pavement Design Guide (MEPDG) for the design : and analysis of Nebraska flexible pavement systems, this research developed a database of layer moduli dynamic : modulus, creep compl...
DOT National Transportation Integrated Search
2010-02-01
This study developed traffic inputs for use with the Guide for the Mechanistic-Empirical Design of New & Rehabilitated Pavement Structures (MEPDG) in Virginia and sought to determine if the predicted distresses showed differences between site-specifi...
DOT National Transportation Integrated Search
2012-04-01
The new Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway Research Program (NCHRP) Project 1-37A represents a major change as compared to the 1993 AASHTO Pavement Design Guide. The MEPDG provides a r...
Assessing Metal Levels in Children from the Mechanistic Indicators of Childhood Asthma(MICA) study
Toxic and essential metals levels can be used as health indicators. Here, we quantitatively compare and contrast toxic and essential metals levels in vacuum dust, urine, and fingernail samples of 109 children in Detroit, Michigan as part of The Mechanistic Indicators of Childhood...
DOT National Transportation Integrated Search
2012-04-01
The new Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway : Research Program (NCHRP) Project 1-37A represents a major change as compared to the 1993 AASHTO Pavement : Design Guide. MEPDG provides a r...
A preliminary study of mechanistic approach in pavement design to accommodate climate change effects
NASA Astrophysics Data System (ADS)
Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.
2018-03-01
Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.
1995-08-01
This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less
DOT National Transportation Integrated Search
2015-05-01
Improvements in the Long-Term Pavement Performance (LTPP) Programs climate data are needed to support current and future research into climate effects on pavement materials, design, and performance. The calibration and enhancement of the Mechanist...
Bernardo, Joseph; Spotila, James R
2006-03-22
Recent syntheses indicate that global warming affects diverse biological processes, but also highlight the potential for some species to adapt behaviourally or evolutionarily to rapid climate change. Far less attention has addressed the alternative, that organisms lacking this ability may face extinction, a fate projected to befall one-quarter of global biodiversity. This conclusion is controversial, in part because there exist few mechanistic studies that show how climate change could precipitate extinction. We provide a concrete, mechanistic example of warming as a stressor of organisms that are closely adapted to cool climates from a comparative analysis of organismal tolerance among clinally varying populations along a natural thermal gradient. We found that two montane salamanders exhibit significant metabolic depression at temperatures within the natural thermal range experienced by low and middle elevation populations. Moreover, the magnitude of depression was inversely related to native elevation, suggesting that low elevation populations are already living near the limit of their physiological tolerances. If this finding generally applies to other montane specialists, the prognosis for biodiversity loss in typically diverse montane systems is sobering. We propose that indices of warming-induced stress tolerance may provide a critical new tool for quantitative assessments of endangerment due to anthropogenic climate change across diverse species.
Deducing Reaction Mechanism: A Guide for Students, Researchers, and Instructors
ERIC Educational Resources Information Center
Meek, Simon J.; Pitman, Catherine L.; Miller, Alexander J. M.
2016-01-01
An introductory guide to deducing the mechanism of chemical reactions is presented. Following a typical workflow for probing reaction mechanism, the guide introduces a wide range of kinetic and mechanistic tools. In addition to serving as a broad introduction to mechanistic analysis for students and researchers, the guide has also been used by…
ERIC Educational Resources Information Center
Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie
2008-01-01
Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-10-01
The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less
Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.
Blackmond, Donna G
2015-09-02
The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.
Mechanistic species distribution modelling as a link between physiology and conservation.
Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W
2015-01-01
Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and conservation practitioners would work collaboratively to build models, interpret results and consider conservation management options, and articulating this need here may help to stimulate collaboration.
Behavior analysis and mechanism: One is not the other
Morris, Edward K.
1993-01-01
Behavior analysts have been called mechanists, and behavior analysis is said to be mechanistic; that is, they are claimed to be aligned with the philosophy of mechanism. What this means is analyzed by (a) examining standard and specialized dictionary and encyclopedia definitions and descriptions of mechanism and its cognates and (b) reviewing contemporary representations of the mechanistic worldview in the literature on the philosophy of psychology. Although the term mechanism and its cognates are sometimes an honorific (e.g., “natural science”), their standard meanings, usages, and functions in society, science, psychology, and philosophy do not aptly characterize the discipline. These terms mischaracterize how behavior analysts conceptualize (a) the behavior of their subjects and the individuals with whom they work and (b) their own behavior as scientists. Discussion is interwoven throughout about the nature of terms and definitions in science. PMID:22478129
Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers
2015-01-01
We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...
Safaie, Ammar; Wendzel, Aaron; Ge, Zhongfu; Nevers, Meredith; Whitman, Richard L.; Corsi, Steven R.; Phanikumar, Mantha S.
2016-01-01
Statistical and mechanistic models are popular tools for predicting the levels of indicator bacteria at recreational beaches. Researchers tend to use one class of model or the other, and it is difficult to generalize statements about their relative performance due to differences in how the models are developed, tested, and used. We describe a cooperative modeling approach for freshwater beaches impacted by point sources in which insights derived from mechanistic modeling were used to further improve the statistical models and vice versa. The statistical models provided a basis for assessing the mechanistic models which were further improved using probability distributions to generate high-resolution time series data at the source, long-term “tracer” transport modeling based on observed electrical conductivity, better assimilation of meteorological data, and the use of unstructured-grids to better resolve nearshore features. This approach resulted in improved models of comparable performance for both classes including a parsimonious statistical model suitable for real-time predictions based on an easily measurable environmental variable (turbidity). The modeling approach outlined here can be used at other sites impacted by point sources and has the potential to improve water quality predictions resulting in more accurate estimates of beach closures.
Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaopeng
2003-01-01
Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH +3 - and mechanisms of ligand displacement and oxidation were proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew
GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level, the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of PRA methodologies to conduct a mechanistic source term (MST) analysis for event sequences that could result in the release ofmore » radionuclides. The MST analysis seeks to realistically model and assess the transport, retention, and release of radionuclides from the reactor to the environment. The MST methods developed during this project seek to satisfy the requirements of the Mechanistic Source Term element of the ASME/ANS Non-LWR PRA standard. The MST methodology consists of separate analysis approaches for risk-significant and non-risk significant event sequences that may result in the release of radionuclides from the reactor. For risk-significant event sequences, the methodology focuses on a detailed assessment, using mechanistic models, of radionuclide release from the fuel, transport through and release from the primary system, transport in the containment, and finally release to the environment. The analysis approach for non-risk significant event sequences examines the possibility of large radionuclide releases due to events such as re-criticality or the complete loss of radionuclide barriers. This paper provides details on the MST methodology, including the interface between the MST analysis and other elements of the PRA, and provides a simplified example MST calculation for a sodium fast reactor.« less
The natural history of biocatalytic mechanisms.
Nath, Neetika; Mitchell, John B O; Caetano-Anollés, Gustavo
2014-05-01
Phylogenomic analysis of the occurrence and abundance of protein domains in proteomes has recently showed that the α/β architecture is probably the oldest fold design. This holds important implications for the origins of biochemistry. Here we explore structure-function relationships addressing the use of chemical mechanisms by ancestral enzymes. We test the hypothesis that the oldest folds used the most mechanisms. We start by tracing biocatalytic mechanisms operating in metabolic enzymes along a phylogenetic timeline of the first appearance of homologous superfamilies of protein domain structures from CATH. A total of 335 enzyme reactions were retrieved from MACiE and were mapped over fold age. We define a mechanistic step type as one of the 51 mechanistic annotations given in MACiE, and each step of each of the 335 mechanisms was described using one or more of these annotations. We find that the first two folds, the P-loop containing nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like homologous superfamilies, were α/β architectures responsible for introducing 35% (18/51) of the known mechanistic step types. We find that these two oldest structures in the phylogenomic analysis of protein domains introduced many mechanistic step types that were later combinatorially spread in catalytic history. The most common mechanistic step types included fundamental building blocks of enzyme chemistry: "Proton transfer," "Bimolecular nucleophilic addition," "Bimolecular nucleophilic substitution," and "Unimolecular elimination by the conjugate base." They were associated with the most ancestral fold structure typical of P-loop containing nucleotide triphosphate hydrolases. Over half of the mechanistic step types were introduced in the evolutionary timeline before the appearance of structures specific to diversified organisms, during a period of architectural diversification. The other half unfolded gradually after organismal diversification and during a period that spanned ∼2 billion years of evolutionary history.
Explanation and inference: mechanistic and functional explanations guide property generalization.
Lombrozo, Tania; Gwynne, Nicholas Z
2014-01-01
The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1), experimentally provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional) can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.
Chiu, Weihsueh A.; Guyton, Kathryn Z.; Martin, Matthew T.; Reif, David M.; Rusyn, Ivan
2017-01-01
Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112 -113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets peroxisome proliferator activated and other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of “induces oxidative stress” and “alters cell proliferation, cell death or nutrient supply” and filling gaps for “modulates receptor-mediated effects.” Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations. PMID:28738424
Chiu, Weihsueh A; Guyton, Kathryn Z; Martin, Matthew T; Reif, David M; Rusyn, Ivan
2018-01-01
Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.
A mechanistic assessment of nutrient flushing at the catchment scale
Willem J. van Verseveld; Jeffrey J. McDonnell; Kate Lajtha
2008-01-01
This paper mechanistically assesses the flushing mechanism of DOC, DON, and DIN at the hillslope and catchment scales during two storm events, in a small catchment (WS10), H.J. Andrews Experimental Forest in the western Cascade Mountains of Oregon. Using a combination of natural tracer and hydrometric data, and end-member mixing analysis, we were able to describe the...
Predictive and mechanistic multivariate linear regression models for reaction development
Santiago, Celine B.; Guo, Jing-Yao
2018-01-01
Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Zawadzki, S.A.
The primary physical/chemical models that form the basis of the FASTGRASS mechanistic computer model for calculating fission-product release from nuclear fuel are described. Calculated results are compared with test data and the major mechanisms affecting the transport of fission products during steady-state and accident conditions are identified.
NASA Astrophysics Data System (ADS)
Xu, Dekang; Li, Anming; Yao, Lu; Lin, Hao; Yang, Shenghong; Zhang, Yueli
2017-02-01
The development, design and the performance evaluation of rare-earth doped host materials is important for further optical investigation and industrial applications. Herein, we successfully fabricate KLu2F7 upconversion nanoparticles (UCNPs) through hydrothermal synthesis by controlling the fluorine-to-lanthanide-ion molar ratio. The structural and morphological results show that the samples are orthorhombic-phase hexagonal-prisms UCNPs, with average side length of 80 nm and average thickness of 110 nm. The reaction time dependent crystal growth experiment suggests that the phase transformation is a thermo-dynamical process and the increasing F-/Ln3+ ratio favors the formation of the thermo-dynamical stable phase - orthorhombic KLu2F7 structure. The upconversion luminescence (UCL) spectra display that the orthorhombic KLu2F7:Yb/Er UCNPs present stronger UCL as much as 280-fold than their cubic counterparts. The UCNPS also display better UCL performance compared with the popular hexagonal-phase NaREF4 (RE = Y, Gd). Our mechanistic investigation, including Judd-Ofelt analysis and time decay behaviors, suggests that the lanthanide tetrad clusters structure at sublattice level accounts for the saturated luminescence and highly efficient UCL in KLu2F7:Yb/Er UCNPs. Our research demonstrates that the orthorhombic KLu2F7 is a promising host material for UCL and can find potential applications in lasing, photovoltaics and biolabeling techniques.
Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C
2010-03-12
Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.
Almonacid, Daniel E.; Yera, Emmanuel R.; Mitchell, John B. O.; Babbitt, Patricia C.
2010-01-01
Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. PMID:20300652
Grenier, Antonin; Porras-Gutierrez, Ana-Gabriela; Groult, Henri; ...
2017-07-05
Detailed analysis of electrochemical reactions occurring in rechargeable Fluoride-Ion Batteries (FIBs) is provided by means of synchrotron X-ray diffraction (XRD) and Pair Distribution Function (PDF) analysis.
Testing mechanistic models of growth in insects.
Maino, James L; Kearney, Michael R
2015-11-22
Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).
Brillant, Nathalie; Elmasry, Mohamed; Burton, Neal C; Rodriguez, Josep Monne; Sharkey, Jack W; Fenwick, Stephen; Poptani, Harish; Kitteringham, Neil R; Goldring, Christopher E; Kipar, Anja; Park, B Kevin; Antoine, Daniel J
2017-10-01
The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration. Copyright © 2017. Published by Elsevier Inc.
Mechanistic Studies of Flavivirus Inhibition and Nanoparticle-Catalyzed Decontamination
2016-06-01
Martin DP, Oliveira LM, Ribeiro BM, Nagata T. Comparative analysis of American dengue virus type 1 full-genome sequences. Virus Genes. 2010;40:60�–6...Genome Induced by a Peptide Inhibitor Shee-Mei Lok1,6., Joshua M. Costin2., Yancey M. Hrobowski2,3¤a, Andrew R. Hoffmann4, Dawne K. Rowe2, Petra ...formation, and pore enlargement. The Journal of 923 membrane biology 199:1-14. 924 13. Cole, K. S., M. Alvarez, D. H. Elliott, H. Lam, E. Martin , T. Chau, K
Jung, Hyung Hoon; Floreancig, Paul E.
2009-01-01
A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173
A comprehensive mechanistic model for upward two-phase flow in wellbores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, N.D.; Sarica, C.; Shoham, O.
1994-05-01
A comprehensive model is formulated to predict the flow behavior for upward two-phase flow. This model is composed of a model for flow-pattern prediction and a set of independent mechanistic models for predicting such flow characteristics as holdup and pressure drop in bubble, slug, and annular flow. The comprehensive model is evaluated by using a well data bank made up of 1,712 well cases covering a wide variety of field data. Model performance is also compared with six commonly used empirical correlations and the Hasan-Kabir mechanistic model. Overall model performance is in good agreement with the data. In comparison withmore » other methods, the comprehensive model performed the best.« less
The Natural History of Biocatalytic Mechanisms
Nath, Neetika; Mitchell, John B. O.; Caetano-Anollés, Gustavo
2014-01-01
Phylogenomic analysis of the occurrence and abundance of protein domains in proteomes has recently showed that the α/β architecture is probably the oldest fold design. This holds important implications for the origins of biochemistry. Here we explore structure-function relationships addressing the use of chemical mechanisms by ancestral enzymes. We test the hypothesis that the oldest folds used the most mechanisms. We start by tracing biocatalytic mechanisms operating in metabolic enzymes along a phylogenetic timeline of the first appearance of homologous superfamilies of protein domain structures from CATH. A total of 335 enzyme reactions were retrieved from MACiE and were mapped over fold age. We define a mechanistic step type as one of the 51 mechanistic annotations given in MACiE, and each step of each of the 335 mechanisms was described using one or more of these annotations. We find that the first two folds, the P-loop containing nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like homologous superfamilies, were α/β architectures responsible for introducing 35% (18/51) of the known mechanistic step types. We find that these two oldest structures in the phylogenomic analysis of protein domains introduced many mechanistic step types that were later combinatorially spread in catalytic history. The most common mechanistic step types included fundamental building blocks of enzyme chemistry: “Proton transfer,” “Bimolecular nucleophilic addition,” “Bimolecular nucleophilic substitution,” and “Unimolecular elimination by the conjugate base.” They were associated with the most ancestral fold structure typical of P-loop containing nucleotide triphosphate hydrolases. Over half of the mechanistic step types were introduced in the evolutionary timeline before the appearance of structures specific to diversified organisms, during a period of architectural diversification. The other half unfolded gradually after organismal diversification and during a period that spanned ∼2 billion years of evolutionary history. PMID:24874434
Causality, mediation and time: a dynamic viewpoint
Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno
2012-01-01
Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L.; Bassaganya-Riera, Josep; Hafler, David A.; Sontag, Eduardo; Wang, Jin; Tsang, John S.; Day, Judy D.; Kleinstein, Steven; Butte, Atul J.; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C.
2016-01-01
Emergent responses of the immune system result from integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the NIAID workshop “Complex Systems Science, Modeling and Immunity” and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. PMID:27986392
A white-box model of S-shaped and double S-shaped single-species population growth
Kalmykov, Lev V.
2015-01-01
Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J; Gehl, S M
1979-01-01
GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less
Merkle, Jerod A.; Cross, Paul C.; Scurlock, Brandon M.; Cole, Eric K.; Courtemanch, Alyson B.; Dewey, Sarah R.; Kauffman, Matthew J.
2018-01-01
Disease models typically focus on temporal dynamics of infection, while often neglecting environmental processes that determine host movement. In many systems, however, temporal disease dynamics may be slow compared to the scale at which environmental conditions alter host space-use and accelerate disease transmission.Using a mechanistic movement modelling approach, we made space-use predictions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucellosis) under environmental conditions that change daily and annually (e.g., plant phenology, snow depth), and we used these predictions to infer how spring phenology influences the risk of brucellosis transmission from elk (through aborted foetuses) to livestock in the Greater Yellowstone Ecosystem.Using data from 288 female elk monitored with GPS collars, we fit step selection functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for five plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevelance and elk population counts.Our results reveal strong spatial variation in disease transmission risk at daily and annual scales that is strongly governed by variation in host movement in response to spring phenology. For example, in comparison with an average snow year, years with early snowmelt are predicted to have 64% of the abortions occurring on feedgrounds shift to occurring on mainly public lands, and to a lesser extent on private lands.Synthesis and applications. Linking mechanistic models of host movement with disease dynamics leads to a novel bridge between movement and disease ecology. Our analysis framework offers new avenues for predicting disease spread, while providing managers tools to proactively mitigate risks posed by mobile disease hosts. More broadly, we demonstrate how mechanistic movement models can provide predictions of ecological conditions that are consistent with climate change but may be more extreme than has been observed historically.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
NASA Astrophysics Data System (ADS)
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
1987-07-07
College Station, TX 77843 Pittsburgh, PA 15260 Introduction: Chemical reactions come about through the reorganization of valence electrons. The notion...Contmnue on reverie of necessary and odentify 0)’ Wooc ,7umor r) Recently it has been suggested that many reaction traditionally classed in polar terms may...evaluates the utility of these alkenyl halide probes as mechanistic probes for SET. Reactions which interfere with the standard analysis ~ include the
Qosa, Hisham; Abuasal, Bilal S; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N; Kaddoumi, Amal
2014-04-01
Alzheimer's disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected (125)I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of (125)I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of (125)I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in (125)I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qosa, Hisham; Abuasal, Bilal S.; Romero, Ignacio A.; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N.; Kaddoumi, Amal
2014-01-01
Alzheimer’s disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected 125I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of 125I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of 125I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in 125I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB. PMID:24467845
2016-01-01
Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme’s cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >107-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes from existing promiscuous templates. More generally, comparative enzymology and analysis of catalytic promiscuity can provide mechanistic and evolutionary insights. PMID:27670607
MacLeod, Miles; Nersessian, Nancy J
2015-02-01
In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.
Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe
2017-04-01
Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.
Combining correlative and mechanistic habitat suitability models to improve ecological compensation.
Meineri, Eric; Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Béchet, Arnaud
2015-02-01
Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes on potential species' distributions should provide rigorous science-based tools for compensation planning. Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic models. We show how these models can be used alone or synoptically to improve compensation planning. While correlative models are easier to implement, they tend to ignore underlying ecological processes and lack accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more field data compared to correlative models. Hence we present two approaches which combine both methods for compensation planning, especially in relation to the spatial scale considered. We show how the availability of biological databases and software enabling fast and accurate population projections could be advantageously used to assess ecological compensation requirement efficiently in environmental impact assessments. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Transgenerational Adaptation to Pollution Changes Energy Allocation in Populations of Nematodes.
Goussen, Benoit; Péry, Alexandre R R; Bonzom, Jean-Marc; Beaudouin, Rémy
2015-10-20
Assessing the evolutionary responses of long-term exposed populations requires multigeneration ecotoxicity tests. However, the analysis of the data from these tests is not straightforward. Mechanistic models allow the in-depth analysis of the variation of physiological traits over many generations, by quantifying the trend of the physiological and toxicological parameters of the model. In the present study, a bioenergetic mechanistic model has been used to assess the evolution of two populations of the nematode Caenorhabditis elegans in control conditions or exposed to uranium. This evolutionary pressure resulted in a brood size reduction of 60%. We showed an adaptation of individuals of both populations to experimental conditions (increase of maximal length, decrease of growth rate, decrease of brood size, and decrease of the elimination rate). In addition, differential evolution was also highlighted between the two populations once the maternal effects had been diminished after several generations. Thus, individuals that were greater in maximal length, but with apparently a greater sensitivity to uranium were selected in the uranium population. In this study, we showed that this bioenergetics mechanistic modeling approach provided a precise, certain, and powerful analysis of the life strategy of C. elegans populations exposed to heavy metals resulting in an evolutionary pressure across successive generations.
Descriptive vs. mechanistic network models in plant development in the post-genomic era.
Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R
2015-01-01
Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.
Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics.
Sajjadi, Baharak; Abdul Aziz, A R; Ibrahim, Shaliza
2015-01-01
The influence of sonoluminescence transesterification on biodiesel physicochemical properties was investigated and the results were compared to those of traditional mechanical stirring. This study was conducted to identify the mechanistic features of ultrasonication by coupling statistical analysis of the experiments into the simulation of cavitation bubble. Different combinations of operational variables were employed for alkali-catalysis transesterification of palm oil. The experimental results showed that transesterification with ultrasound irradiation could change the biodiesel density by about 0.3kg/m(3); the viscosity by 0.12mm(2)/s; the pour point by about 1-2°C and the flash point by 5°C compared to the traditional method. Furthermore, 93.84% of yield with alcohol to oil molar ratio of 6:1 could be achieved through ultrasound assisted transesterification within only 20min. However, only 89.09% of reaction yield was obtained by traditional macro mixing/heating under the same condition. Based on the simulated oscillation velocity value, the cavitation phenomenon significantly contributed to generation of fine micro emulsion and was able to overcome mass transfer restriction. It was found that the sonoluminescence bubbles reached the temperature of 758-713K, pressure of 235.5-159.55bar, oscillation velocity of 3.5-6.5cm/s, and equilibrium radius of 17.9-13.7 times greater than its initial size under the ambient temperature of 50-64°C at the moment of collapse. This showed that the sonoluminescence bubbles were in the condition in which the decomposition phenomena were activated and the reaction rate was accelerated together with a change in the biodiesel properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L; Bassaganya-Riera, Josep; Hafler, David A; Sontag, Eduardo; Wang, Jin; Tsang, John S; Day, Judy D; Kleinstein, Steven H; Butte, Atul J; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C
2017-02-01
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
Turner, Cameron R; Derylo, Maksymilian; de Santana, C David; Alves-Gomes, José A; Smith, G Troy
2007-12-01
Electrocommunication signals in electric fish are diverse, easily recorded and have well-characterized neural control. Two signal features, the frequency and waveform of the electric organ discharge (EOD), vary widely across species. Modulations of the EOD (i.e. chirps and gradual frequency rises) also function as active communication signals during social interactions, but they have been studied in relatively few species. We compared the electrocommunication signals of 13 species in the largest gymnotiform family, Apteronotidae. Playback stimuli were used to elicit chirps and rises. We analyzed EOD frequency and waveform and the production and structure of chirps and rises. Species diversity in these signals was characterized with discriminant function analyses, and correlations between signal parameters were tested with phylogenetic comparative methods. Signals varied markedly across species and even between congeners and populations of the same species. Chirps and EODs were particularly evolutionarily labile, whereas rises differed little across species. Although all chirp parameters contributed to species differences in these signals, chirp amplitude modulation, frequency modulation (FM) and duration were particularly diverse. Within this diversity, however, interspecific correlations between chirp parameters suggest that mechanistic trade-offs may shape some aspects of signal evolution. In particular, a consistent trade-off between FM and EOD amplitude during chirps is likely to have influenced the evolution of chirp structure. These patterns suggest that functional or mechanistic linkages between signal parameters (e.g. the inability of electromotor neurons increase their firing rates without a loss of synchrony or amplitude of action potentials) constrain the evolution of signal structure.
Variation in social systems within Chaetodon butterflyfishes, with special reference to pair bonding
O’Connell, Lauren A.; Cowman, Peter F.; Walker, Stefan P. W.; Coker, Darren J.; Pratchett, Morgan S.
2018-01-01
For many animals, affiliative relationships such as pair bonds form the foundation of society and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying mechanistic principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Using stochastic character mapping, we provide the first analysis of the evolutionary history of butterflyfish sociality, revealing that pairing is ancestral, with at least seven independent transitions to gregarious grouping and solitary behavior since the late Miocene. We then formally verified social systems in six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping at Lizard Island, Australia. In situ observations of the size, selective affiliation and aggression, fidelity, and sex composition of social groups confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15%) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes, including parental care. Hence, the proposed butterflyfish populations are promising for inter- and intra-species comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the aforementioned utility of these species applies across their geographic disruptions. PMID:29641529
Nowicki, Jessica P; O'Connell, Lauren A; Cowman, Peter F; Walker, Stefan P W; Coker, Darren J; Pratchett, Morgan S
2018-01-01
For many animals, affiliative relationships such as pair bonds form the foundation of society and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying mechanistic principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Using stochastic character mapping, we provide the first analysis of the evolutionary history of butterflyfish sociality, revealing that pairing is ancestral, with at least seven independent transitions to gregarious grouping and solitary behavior since the late Miocene. We then formally verified social systems in six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping at Lizard Island, Australia. In situ observations of the size, selective affiliation and aggression, fidelity, and sex composition of social groups confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15%) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes, including parental care. Hence, the proposed butterflyfish populations are promising for inter- and intra-species comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the aforementioned utility of these species applies across their geographic disruptions.
DOT National Transportation Integrated Search
2017-03-01
This report describes the efforts undertaken to review the status of falling weight deflectometer (FWD) equipment, data collection, analysis, and interpretation, including dynamic backcalculation, as they relate to the models and procedures incorpora...
Wang, Peng-Qian; Liu, Qiong; Xu, Wen-Juan; Yu, Ya-Nan; Zhang, Ying-Ying; Li, Bing; Liu, Jun; Wang, Zhong
2018-06-01
Both baicalin (BA) and jasminoidin (JA) are active ingredients in Chinese herb medicine Scutellaria baicalensis and Fructus gardeniae, respectively. They have been shown to exert additive neuroprotective action in ischemic stroke models. In this study we used transcriptome analysis to explore the pure therapeutic mechanisms of BA, JA and their combination (BJ) contributing to phenotype variation and reversal of pathological processes. Mice with middle cerebral artery obstruction were treated with BA, JA, their combination (BJ), or concha margaritifera (CM). Cerebral infarct volume was examined to determine the effect of these compounds on phenotype. Using the hippocampus microarray and ingenuity pathway analysis (IPA) software, we exacted the differentially expressed genes, networks, pathways, and functions in positive-phenotype groups (BA, JA and BJ) by comparing with the negative-phenotype group (CM). In the BA, JA, and BJ groups, a total of 7, 4, and 11 specific target molecules, 1, 1, and 4 networks, 51, 59, and 18 canonical pathways and 70, 53, and 64 biological functions, respectively, were identified. Pure therapeutic mechanisms of BA and JA were mainly overlapped in specific target molecules, functions and pathways, which were related to the nervous system, inflammation and immune response. The specific mechanisms of BA and JA were associated with apoptosis and cancer-related signaling and endocrine and hormone regulation, respectively. In the BJ group, novel target profiles distinct from mono-therapies were revealed, including 11 specific target molecules, 10 functions, and 10 pathways, the majority of which were related to a virus-mediated immune response. The pure additive effects between BA and JA were based on enhanced action in virus-mediated immune response. This pure mechanistic analysis may provide a clearer outline of the target profiles of multi-target compounds and combination therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellinger-Ziegelbauer, Heidrun, E-mail: heidrun.ellinger-ziegelbauer@bayerhealthcare.com; Adler, Melanie; Amberg, Alexander
2011-04-15
The InnoMed PredTox consortium was formed to evaluate whether conventional preclinical safety assessment can be significantly enhanced by incorporation of molecular profiling ('omics') technologies. In short-term toxicological studies in rats, transcriptomics, proteomics and metabolomics data were collected and analyzed in relation to routine clinical chemistry and histopathology. Four of the sixteen hepato- and/or nephrotoxicants given to rats for 1, 3, or 14 days at two dose levels induced similar histopathological effects. These were characterized by bile duct necrosis and hyperplasia and/or increased bilirubin and cholestasis, in addition to hepatocyte necrosis and regeneration, hepatocyte hypertrophy, and hepatic inflammation. Combined analysis ofmore » liver transcriptomics data from these studies revealed common gene expression changes which allowed the development of a potential sequence of events on a mechanistic level in accordance with classical endpoint observations. This included genes implicated in early stress responses, regenerative processes, inflammation with inflammatory cell immigration, fibrotic processes, and cholestasis encompassing deregulation of certain membrane transporters. Furthermore, a preliminary classification analysis using transcriptomics data suggested that prediction of cholestasis may be possible based on gene expression changes seen at earlier time-points. Targeted bile acid analysis, based on LC-MS metabonomics data demonstrating increased levels of conjugated or unconjugated bile acids in response to individual compounds, did not provide earlier detection of toxicity as compared to conventional parameters, but may allow distinction of different types of hepatobiliary toxicity. Overall, liver transcriptomics data delivered mechanistic and molecular details in addition to the classical endpoint observations which were further enhanced by targeted bile acid analysis using LC/MS metabonomics.« less
Wang, Yi; Lee, Sui Mae; Dykes, Gary
2015-01-01
Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.
Comparing two-zone models of dust exposure.
Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W
2011-09-01
The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.
Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas P M; Westhoff, Peter; Gowik, Udo
2014-06-16
C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.
Dixit, Anshuman; Verkhivker, Gennady M.
2009-01-01
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203
Development of Novel Antibiotic Lysocin E Identified by Silkworm Infection Model.
Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2017-01-01
In this symposium, we reported the identification and mechanistic analysis of a novel antibiotic named lysocin E. Lysocin E was identified by screening for therapeutic effectiveness in a silkworm Staphylococcus aureus infection model. The advantages of the silkworm infection model for screening and purification of antibiotics from the culture supernatant of soil bacteria are: 1) low cost; 2) no ethical issues; 3) convenient for evaluation of the therapeutic effectiveness of antibiotics; and 4) pharmacokinetics similar to those of mammals. Lysocin E has remarkable features compared with known antibiotics such as a novel mechanism of action and target. Here, we summarize our reports presented in this symposium.
Towards predictive models of the human gut microbiome
2014-01-01
The intestinal microbiota is an ecosystem susceptible to external perturbations such as dietary changes and antibiotic therapies. Mathematical models of microbial communities could be of great value in the rational design of microbiota-tailoring diets and therapies. Here, we discuss how advances in another field, engineering of microbial communities for wastewater treatment bioreactors, could inspire development of mechanistic mathematical models of the gut microbiota. We review the current state-of-the-art in bioreactor modeling and current efforts in modeling the intestinal microbiota. Mathematical modeling could benefit greatly from the deluge of data emerging from metagenomic studies, but data-driven approaches such as network inference that aim to predict microbiome dynamics without explicit mechanistic knowledge seem better suited to model these data. Finally, we discuss how the integration of microbiome shotgun sequencing and metabolic modeling approaches such as flux balance analysis may fulfill the promise of a mechanistic model of the intestinal microbiota. PMID:24727124
Johnson, Douglas H.; Cook, R.D.
2013-01-01
In her AAAS News & Notes piece "Can the Southwest manage its thirst?" (26 July, p. 362), K. Wren quotes Ajay Kalra, who advocates a particular method for predicting Colorado River streamflow "because it eschews complex physical climate models for a statistical data-driven modeling approach." A preference for data-driven models may be appropriate in this individual situation, but it is not so generally, Data-driven models often come with a warning against extrapolating beyond the range of the data used to develop the models. When the future is like the past, data-driven models can work well for prediction, but it is easy to over-model local or transient phenomena, often leading to predictive inaccuracy (1). Mechanistic models are built on established knowledge of the process that connects the response variables with the predictors, using information obtained outside of an extant data set. One may shy away from a mechanistic approach when the underlying process is judged to be too complicated, but good predictive models can be constructed with statistical components that account for ingredients missing in the mechanistic analysis. Models with sound mechanistic components are more generally applicable and robust than data-driven models.
Factors related to the nursing student-patient relationship: the students' perspective.
Suikkala, Arja; Leino-Kilpi, Helena; Katajisto, Jouko
2008-07-01
The aim of this study was to describe nursing students' perceptions of factors related to three types of student-patient relationship identified in an earlier study: mechanistic, authoritative and facilitative. Another aim was to identify which factors predict the type of relationship. A convenience sample of 310 Bachelor of Health Care students was recruited. The data were collected by using a questionnaire especially designed for this study. Data analysis used the chi-square test, Fisher's exact test, one-way analysis of variance and multinomial logistic regression. Older age was the only significant predictor of a facilitative relationship, whereas fourth-year studies and support received from a person other than supervisor predicted an authoritative relationship. Furthermore, students in authoritative and facilitative relationships had a more positive perception of the patient's attributes as a patient and of patient's improved health and commitment to self-care than students in a mechanistic relationship. A positive perception of the atmosphere during collaboration was more common among students in an authoritative relationship than in a mechanistic relationship. The findings of this study offer useful clues for developing nursing education and empowering patients with a view to improving the quality of nursing care.
Important Aspects of Post-Prandial Antidiabetic Drug, Acarbose.
Singla, Rajeev Kumar; Singh, Radha; Dubey, Ashok Kumar
2016-01-01
Acarbose, a well known and efficacious α-amylase and α-glucosidase inhibitor, is a postprandial acting antidiabetic drug. DNS-based α-amylase inhibitory assays showed that use of acarbose at concentrations above 125 µg/ml resulted in release of reducing sugar in the reaction, an unexpected observation. Objective of the present study was to design experimental strategies to address this unusual finding. Acarbose was found to be susceptible to thermo-lysis. Further, besides being an inhibitor, it could also be hydrolyzed by porcine pancreatic α-amylase, but had weaker affinity for α - amylase compared to starch. GRIP docking was done for the mechanistic analysis of the active site in the enzyme for substrate, inhibitor and, inhibitor's metabolite (K2). Interaction between acarbose and α-amylase involved significant hydrogen binding compared to that of starch, producing a stronger enzyme-inhibitor complex. Further, docking analysis led us to predict the site on α-amylase where the inhibitor (acarbose) bound more tightly, which possibly affected the binding and hydrolysis of starch exerting its effective anti-diabetic function.
Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar
2016-11-01
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.
Theil, P K; Flummer, C; Hurley, W L; Kristensen, N B; Labouriau, R L; Sørensen, M T
2014-12-01
The aims of the present study were to quantify colostrum intake (CI) of piglets using the D2O dilution technique, to develop a mechanistic model to predict CI, to compare these data with CI predicted by a previous empirical predictive model developed for bottle-fed piglets, and to study how composition of diets fed to gestating sows affected piglet CI, sow colostrum yield (CY), and colostrum composition. In total, 240 piglets from 40 litters were enriched with D2O. The CI measured by D2O from birth until 24 h after the birth of first-born piglet was on average 443 g (SD 151). Based on measured CI, a mechanistic model to predict CI was developed using piglet characteristics (24-h weight gain [WG; g], BW at birth [BWB; kg], and duration of CI [D; min]: CI, g=-106+2.26 WG+200 BWB+0.111 D-1,414 WG/D+0.0182 WG/BWB (R2=0.944). This model was used to predict the CI for all colostrum suckling piglets within the 40 litters (n=500, mean=437 g, SD=153 g) and was compared with the CI predicted by a previous empirical predictive model (mean=305 g, SD=140 g). The previous empirical model underestimated the CI by 30% compared with that obtained by the new mechanistic model. The sows were fed 1 of 4 gestation diets (n=10 per diet) based on different fiber sources (low fiber [17%] or potato pulp, pectin residue, or sugarbeet pulp [32 to 40%]) from mating until d 108 of gestation. From d 108 of gestation until parturition, sows were fed 1 of 5 prefarrowing diets (n=8 per diet) varying in supplemented fat (3% animal fat, 8% coconut oil, 8% sunflower oil, 8% fish oil, or 4% fish oil+4% octanoic acid). Sows fed diets with pectin residue or sugarbeet pulp during gestation produced colostrum with lower protein, fat, DM, and energy concentrations and higher lactose concentrations, and their piglets had greater CI as compared with sows fed potato pulp or the low-fiber diet (P<0.05), and sows fed pectin residue had a greater CY than potato pulp-fed sows (P<0.05). Prefarrowing diets affected neither CI nor CY, but the prefarrowing diet with coconut oil decreased lactose and increased DM concentrations of colostrum compared with other prefarrowing diets (P<0.05). In conclusion, the new mechanistic predictive model for CI suggests that the previous empirical predictive model underestimates CI of sow-reared piglets by 30%. It was also concluded that nutrition of sows during gestation affected CY and colostrum composition.
EU Framework 6 Project: Predictive Toxicology (PredTox)-overview and outcome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suter, Laura, E-mail: Laura.suter-dick@roche.com; Schroeder, Susanne; Meyer, Kirstin
2011-04-15
In this publication, we report the outcome of the integrated EU Framework 6 Project: Predictive Toxicology (PredTox), including methodological aspects and overall conclusions. Specific details including data analysis and interpretation are reported in separate articles in this issue. The project, partly funded by the EU, was carried out by a consortium of 15 pharmaceutical companies, 2 SMEs, and 3 universities. The effects of 16 test compounds were characterized using conventional toxicological parameters and 'omics' technologies. The three major observed toxicities, liver hypertrophy, bile duct necrosis and/or cholestasis, and kidney proximal tubular damage were analyzed in detail. The combined approach ofmore » 'omics' and conventional toxicology proved a useful tool for mechanistic investigations and the identification of putative biomarkers. In our hands and in combination with histopathological assessment, target organ transcriptomics was the most prolific approach for the generation of mechanistic hypotheses. Proteomics approaches were relatively time-consuming and required careful standardization. NMR-based metabolomics detected metabolite changes accompanying histopathological findings, providing limited additional mechanistic information. Conversely, targeted metabolite profiling with LC/GC-MS was very useful for the investigation of bile duct necrosis/cholestasis. In general, both proteomics and metabolomics were supportive of other findings. Thus, the outcome of this program indicates that 'omics' technologies can help toxicologists to make better informed decisions during exploratory toxicological studies. The data support that hypothesis on mode of action and discovery of putative biomarkers are tangible outcomes of integrated 'omics' analysis. Qualification of biomarkers remains challenging, in particular in terms of identification, mechanistic anchoring, appropriate specificity, and sensitivity.« less
Auerbach, Scott S; Phadke, Dhiral P; Mav, Deepak; Holmgren, Stephanie; Gao, Yuan; Xie, Bin; Shin, Joo Heon; Shah, Ruchir R; Merrick, B Alex; Tice, Raymond R
2015-07-01
Formalin-fixed, paraffin-embedded (FFPE) pathology specimens represent a potentially vast resource for transcriptomic-based biomarker discovery. We present here a comparison of results from a whole transcriptome RNA-Seq analysis of RNA extracted from fresh frozen and FFPE livers. The samples were derived from rats exposed to aflatoxin B1 (AFB1 ) and a corresponding set of control animals. Principal components analysis indicated that samples were separated in the two groups representing presence or absence of chemical exposure, both in fresh frozen and FFPE sample types. Sixty-five percent of the differentially expressed transcripts (AFB1 vs. controls) in fresh frozen samples were also differentially expressed in FFPE samples (overlap significance: P < 0.0001). Genomic signature and gene set analysis of AFB1 differentially expressed transcript lists indicated highly similar results between fresh frozen and FFPE at the level of chemogenomic signatures (i.e., single chemical/dose/duration elicited transcriptomic signatures), mechanistic and pathology signatures, biological processes, canonical pathways and transcription factor networks. Overall, our results suggest that similar hypotheses about the biological mechanism of toxicity would be formulated from fresh frozen and FFPE samples. These results indicate that phenotypically anchored archival specimens represent a potentially informative resource for signature-based biomarker discovery and mechanistic characterization of toxicity. Copyright © 2014 John Wiley & Sons, Ltd.
LASSIM-A network inference toolbox for genome-wide mechanistic modeling.
Magnusson, Rasmus; Mariotti, Guido Pio; Köpsén, Mattias; Lövfors, William; Gawel, Danuta R; Jörnsten, Rebecka; Linde, Jörg; Nordling, Torbjörn E M; Nyman, Elin; Schulze, Sylvie; Nestor, Colm E; Zhang, Huan; Cedersund, Gunnar; Benson, Mikael; Tjärnberg, Andreas; Gustafsson, Mika
2017-06-01
Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We demonstrate the power of this approach by inferring a mechanistically motivated, genome-wide model of the Th2 transcription regulatory system, which plays an important role in several immune related diseases.
Proposal of an in silico profiler for categorisation of repeat dose toxicity data of hair dyes.
Nelms, M D; Ates, G; Madden, J C; Vinken, M; Cronin, M T D; Rogiers, V; Enoch, S J
2015-05-01
This study outlines the analysis of 94 chemicals with repeat dose toxicity data taken from Scientific Committee on Consumer Safety opinions for commonly used hair dyes in the European Union. Structural similarity was applied to group these chemicals into categories. Subsequent mechanistic analysis suggested that toxicity to mitochondria is potentially a key driver of repeat dose toxicity for chemicals within each of the categories. The mechanistic hypothesis allowed for an in silico profiler consisting of four mechanism-based structural alerts to be proposed. These structural alerts related to a number of important chemical classes such as quinones, anthraquinones, substituted nitrobenzenes and aromatic azos. This in silico profiler is intended for grouping chemicals into mechanism-based categories within the adverse outcome pathway paradigm.
Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G
2012-12-01
The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.
Performance evaluation of Louisiana superpave mixtures.
DOT National Transportation Integrated Search
2008-12-01
This report documents the performance of Louisiana Superpave mixtures through laboratory mechanistic tests, mixture : volumetric properties, gradation analysis, and early field performance. Thirty Superpave mixtures were evaluated in this : study. Fo...
A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)
NASA Astrophysics Data System (ADS)
Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique
2009-08-01
Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.
Veltman, Karin; Huijbregts, Mark A J; Hendriks, A Jan
2010-07-01
Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenquist, Ian; Tonks, Michael
2016-10-01
Light water reactor fuel pellets are fabricated using sintering to final densities of 95% or greater. During reactor operation, the porosity remaining in the fuel after fabrication decreases further due to irradiation-assisted densification. While empirical models have been developed to describe this densification process, a mechanistic model is needed as part of the ongoing work by the NEAMS program to develop a more predictive fuel performance code. In this work we will develop a phase field model of sintering of UO 2 in the MARMOT code, and validate it by comparing to published sintering data. We will then add themore » capability to capture irradiation effects into the model, and use it to develop a mechanistic model of densification that will go into the BISON code and add another essential piece to the microstructure-based materials models. The final step will be to add the effects of applied fields, to model field-assisted sintering of UO 2. The results of the phase field model will be validated by comparing to data from field-assisted sintering. Tasks over three years: 1. Develop a sintering model for UO 2 in MARMOT 2. Expand model to account for irradiation effects 3. Develop a mechanistic macroscale model of densification for BISON« less
Minnesota low volume road design 1998
DOT National Transportation Integrated Search
1999-09-01
In this project, researchers examined the current practices that local agencies use and evaluated the thickness design procedures by comparing predicted lives for the current designs with those obtained from the mechanistic-empirical design procedure...
Shwab, Elliot K; Juvvadi, Praveen R; Waitt, Greg; Soderblom, Erik J; Moseley, Martin A; Nicely, Nathan I; Steinbach, William J
2017-11-01
Protein kinase A (PKA) signaling is essential for growth and virulence of the fungal pathogen Aspergillus fumigatus. Little is known concerning the regulation of this pathway in filamentous fungi. Employing liquid chromatography-tandem mass spectroscopy, we identified novel phosphorylation sites on the regulatory subunit PkaR, distinct from those previously identified in mammals and yeasts, and demonstrated the importance of two phosphorylation clusters for hyphal growth and cell wall-stress response. We also identified key differences in the regulation of PKA subcellular localization in A. fumigatus compared with other species. This is the first analysis of the phosphoregulation of a PKA regulatory subunit in a filamentous fungus and uncovers critical mechanistic differences between PKA regulation in filamentous fungi compared with mammals and yeast species, suggesting divergent targeting opportunities. © 2017 Federation of European Biochemical Societies.
Moore, Joseph D; Rossi, Francis M; Welsh, Michael A; Nyffeler, Kayleigh E; Blackwell, Helen E
2015-11-25
Quorum sensing (QS) is a chemical signaling mechanism that allows bacterial populations to coordinate gene expression in response to social and environmental cues. Many bacterial pathogens use QS to initiate infection at high cell densities. Over the past two decades, chemical antagonists of QS in pathogenic bacteria have attracted substantial interest for use both as tools to further elucidate QS mechanisms and, with further development, potential anti-infective agents. Considerable recent research has been devoted to the design of small molecules capable of modulating the LasR QS receptor in the opportunistic pathogen Pseudomonas aeruginosa. These molecules hold significant promise in a range of contexts; however, as most compounds have been developed independently, comparative activity data for these compounds are scarce. Moreover, the mechanisms by which the bulk of these compounds act are largely unknown. This paucity of data has stalled the choice of an optimal chemical scaffold for further advancement. Herein, we submit the best-characterized LasR modulators to standardized cell-based reporter and QS phenotypic assays in P. aeruginosa, and we report the first comprehensive set of comparative LasR activity data for these compounds. Our experiments uncovered multiple interesting mechanistic phenomena (including a potential alternative QS-modulatory ligand binding site/partner) that provide new, and unexpected, insights into the modes by which many of these LasR ligands act. The lead compounds, data trends, and mechanistic insights reported here will significantly aid the design of new small molecule QS inhibitors and activators in P. aeruginosa, and in other bacteria, with enhanced potencies and defined modes of action.
Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism.
O'Dwyer, James P; Rominger, Andrew; Xiao, Xiao
2017-07-01
Simplified mechanistic models in ecology have been criticised for the fact that a good fit to data does not imply the mechanism is true: pattern does not equal process. In parallel, the maximum entropy principle (MaxEnt) has been applied in ecology to make predictions constrained by just a handful of state variables, like total abundance or species richness. But an outstanding question remains: what principle tells us which state variables to constrain? Here we attempt to solve both problems simultaneously, by translating a given set of mechanisms into the state variables to be used in MaxEnt, and then using this MaxEnt theory as a null model against which to compare mechanistic predictions. In particular, we identify the sufficient statistics needed to parametrise a given mechanistic model from data and use them as MaxEnt constraints. Our approach isolates exactly what mechanism is telling us over and above the state variables alone. © 2017 John Wiley & Sons Ltd/CNRS.
Mechanistic flexible pavement overlay design program.
DOT National Transportation Integrated Search
2009-07-01
The current Louisiana Department of Transportation and Development (LADOTD) overlay thickness design method follows the Component : Analysis procedure provided in the 1993 AASHTO pavement design guide. Since neither field nor laboratory tests a...
Hussain, Tajammul; Plunkett, Blue; Ejaz, Mahwish; Espley, Richard V.; Kayser, Oliver
2018-01-01
The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA), including its two first intermediates, stilbene acid (SA) and geranyl diphosphate (GPP). Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS), which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS) and gas chromatography mass spectrometry (GC-MS). Transcriptomic analysis revealed 1085 transcription factors (TF) from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs) and non-coding RNAs (ncRNAs). Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.
Mechanistic materials modeling for nuclear fuel performance
Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...
2017-03-15
Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less
Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen
2014-01-01
Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.
Casitas, Alicia; Ioannidis, Nikolaos; Mitrikas, George; Costas, Miquel; Ribas, Xavi
2011-09-21
Well-defined aryl-Cu(III) species undergo rapid reductive elimination upon reaction with phenolates (PhO(-)), to form aryl-OPh cross-coupling products. Kinetic studies show that the reaction follows a different mechanistic pathway compared to the reaction with phenols. The pH active cyclized pincer-like ligand undergoes an initial amine deprotonation that triggers a faster reactivity at room temperature. A mechanistic proposal for the enhanced reactivity and the role of EPR-detected Cu(II) species will be discussed in detail. This journal is © The Royal Society of Chemistry 2011
Performance evaluation of Louisiana superpave mixtures : tech summary.
DOT National Transportation Integrated Search
2008-12-01
The primary objective of this research was to evaluate the fundamental engineering : properties and mixture performance of Superpave hot mix asphalt (HMA) mixtures : in Louisiana through laboratory mechanistic tests, aggregate gradation analysis, and...
Mechanistic flexible pavement overlay design program : tech summary.
DOT National Transportation Integrated Search
2009-07-01
The Louisiana Department of Transportation and Development (LADOTD) currently follows the 1993 : AASHTO pavement design guides component analysis method in its fl exible pavement overlay thickness : design. Such an overlay design method, how...
Rougier, Thibaud; Lassalle, Géraldine; Drouineau, Hilaire; Dumoulin, Nicolas; Faure, Thierry; Deffuant, Guillaume; Rochard, Eric; Lambert, Patrick
2015-01-01
Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold temperatures deserved more attention in terms of modelling, but further in conservation planning as well.
Rougier, Thibaud; Lassalle, Géraldine; Drouineau, Hilaire; Dumoulin, Nicolas; Faure, Thierry; Deffuant, Guillaume; Rochard, Eric; Lambert, Patrick
2015-01-01
Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold temperatures deserved more attention in terms of modelling, but further in conservation planning as well. PMID:26426280
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria
Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas PM; Westhoff, Peter; Gowik, Udo
2014-01-01
C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3–C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect. DOI: http://dx.doi.org/10.7554/eLife.02478.001 PMID:24935935
Mechanistic Basis of Cocrystal Dissolution Advantage.
Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E
2018-01-01
Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Modeling Rabbit Responses to Single and Multiple Aerosol ...
Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev
Mechanistic and kinetic insights into the thermally induced rearrangement of alpha-pinene.
Stolle, Achim; Ondruschka, Bernd; Findeisen, Matthias
2008-11-07
The thermal rearrangement of alpha-pinene (1) is interesting from mechanistic as well as kinetic point of view. Carrier gas pyrolyses with 1 and its acyclic isomers ocimene (2) and alloocimene (3) were performed to investigate the thermal network of these hydrocarbons. Kinetic analysis of the major reaction steps allows for a deeper insight in the reaction mechanism. Thus it was possible to explain the racemization of 1, the formation of racemic limonene (4), and the absence of the primary pyrolysis product 2 in the reaction mixture resulting from thermal rearrangement of 1. Results supported the conclusion that the reactions starting with 1 involve biradical transition states.
Mechanistic Analysis of the C-H Amination Reaction of Menthol by CuBr2 and Selectfluor.
Sathyamoorthi, Shyam; Lai, Yin-Hung; Bain, Ryan M; Zare, Richard N
2018-05-18
The mechanism of the Ritter-type C-H amination reaction of menthol with acetonitrile using CuBr 2 , Selectfluor, and Zn(OTf) 2 , first disclosed by Baran and coworkers in 2012, was studied using a combination of online electrospray ionization mass spectrometry, continuous UV/vis spectrometric monitoring, and density functional theory calculations. In addition to corroborating Baran's original mechanistic proposal, these studies uncovered a second pathway to product formation, which likely only occurs in microdroplets. DFT calculations show that neither pathway has a barrier that is greater than 6.8 kcal/mol, suggesting that both mechanisms are potentially operative under ambient conditions.
Lai, Yin-Hung; Wang, Yi-Sheng
2017-01-01
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517
New mechanistic insights in the NH 3-SCR reactions at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggeri, Maria Pia; Selleri, Tomasso; Nova, Isabella
2016-05-06
The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Furthermore, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.
Estimating Cumulative Traffic Loads, Final Report for Phase 1
DOT National Transportation Integrated Search
2000-07-01
The knowledge of traffic loads is a prerequisite for the pavement analysis process, especially for the development of load-related distress prediction models. Furthermore, the emerging mechanistically based pavement performance models and pavement de...
Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method
Mark A. Dietenberger
2011-01-01
Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...
de Carvalho Barbosa, Mariana; Kosturakis, Alyssa K; Eng, Cathy; Wendelschafer-Crabb, Gwen; Kennedy, William R; Simone, Donald A; Wang, Xin S; Cleeland, Charles S; Dougherty, Patrick M
2014-11-01
Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy. ©2014 American Association for Cancer Research.
Understanding the effect of carbon status on stem diameter variations
De Swaef, Tom; Driever, Steven M.; Van Meulebroek, Lieven; Vanhaecke, Lynn; Marcelis, Leo F. M.; Steppe, Kathy
2013-01-01
Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions. PMID:23186836
Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts.
Francke, Robert; Schille, Benjamin; Roemelt, Michael
2018-05-09
The utilization of CO 2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO 2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO 2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.
Herron, Jeffrey A.; Ferrin, Peter; Mavrikakis, Manos
2014-08-27
Dimethyl ether is an attractive alternative to petroleum fuels due to its physical properties, comparable energy density to methanol and ethanol, and minimal deleterious environmental/toxicological effects. For direct fuel cells, it has a number of advantages over other prominent fuels, including easier storage with respect to hydrogen, lower toxicity and crossover when compared to methanol, and more facile complete oxidation as compared to ethanol (which includes a relatively difficult to break C–C bond). However, the dimethyl ether electro-oxidation reaction is poorly understood, hindering the development of improved electrocatalysts. Using periodic, self-consistent (PW91-GGA) density functional theory calculations, we evaluate the thermochemistrymore » of dimethyl ether (DME) electro-oxidation, at the elementary step level, on 12 model, closed-packed facets of pure transition metals: Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru, and Re. From the calculated thermochemistry, we determine the most probable reaction paths on each of these surfaces, focusing on Pt as a model system. Our results predict two key electro-oxidation peaks. At lower potentials, there is a peak corresponding to partial oxidation of DME to CO (and other surface poisoning species) or complete oxidation to CO 2 via formic acid as a key intermediate. A second, higher-potential peak is due to complete oxidation of adsorbed CO (and other surface poisoning species) to CO 2. Assuming the catalysts remain in their metallic state during the DME electro-oxidation process, our results suggest that the onset potential of the surfaces increases in the order Cu < Ni < Os < Rh < Ir < Co < Ru < Pt < Ag < Pd < Re < Au. Using our results, we construct a theoretical phase diagram showing predicted catalyst activity based on two key reactivity descriptors, the free energies of adsorbed CO and OH. Here, we compare all results to methanol electro-oxidation to understand key mechanistic differences and their impacts on optimal catalyst design for direct DME fuel cells.« less
Supporting Mechanistic Reasoning in Domain-Specific Contexts
ERIC Educational Resources Information Center
Weinberg, Paul J.
2017-01-01
Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides…
Stott, Lisa A; Hall, David A; Holliday, Nicholas D
2016-02-01
Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana
2011-12-01
This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.
Dimitrić Marković, Jasmina M; Marković, Zoran S; Milenković, Dejan; Jeremić, Svetlana
2011-12-01
This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm(-1) wavenumber region. This region involves a combination of the CO, C2C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm(-1) range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm(-1) is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boitier, Eric, E-mail: eric.boitier@sanofi-aventis.com; Amberg, Alexander; Barbie, Valerie
2011-04-15
The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for themore » generation of mechanistic models of LH. In response to a xenobiotic stimulus, a marked increase in the expression of xenobiotic metabolizing enzymes (XME) was observed in a subset of 4 studies. Accumulation of these newly-synthesized proteins within the smooth endoplasmic reticulum (SER) would suggest proliferation of this organelle, which most likely is the main molecular process underlying the LH observed in XME studies. In another subset of 2 studies (including troglitazone), a marked up-regulation of genes involved in peroxisomal fatty acid {beta}-oxidation was noted, associated with induction of genes involved in peroxisome proliferation. Therefore, an increase in peroxisome abundance would be the main mechanism underlying LH noted in this second study subset. Together, the use of transcript profiling provides a means to generate putative mechanistic models underlying the pathogenesis of liver hypertrophy, to distinguish between subtle variations in subcellular organelle proliferation and creates opportunities for improved mechanism-based risk assessment.« less
McDyre, B Claire; AbdulHameed, Mohamed Diwan M; Permenter, Matthew G; Dennis, William E; Baer, Christine E; Koontz, Jason M; Boyle, Molly H; Wallqvist, Anders; Lewis, John A; Ippolito, Danielle L
2018-02-01
The past decade has seen an increase in the development and clinical use of biomarkers associated with histological features of liver disease. Here, we conduct a comparative histological and global proteomics analysis to identify coregulated modules of proteins in the progression of hepatic steatosis or fibrosis. We orally administered the reference chemicals bromobenzene (BB) or 4,4'-methylenedianiline (4,4'-MDA) to male Sprague-Dawley rats for either 1 single administration or 5 consecutive daily doses. Livers were preserved for histopathology and global proteomics assessment. Analysis of liver sections confirmed a dose- and time-dependent increase in frequency and severity of histopathological features indicative of lipid accumulation after BB or fibrosis after 4,4'-MDA. BB administration resulted in a dose-dependent increase in the frequency and severity of inflammation and vacuolation. 4,4'-MDA administration resulted in a dose-dependent increase in the frequency and severity of periportal collagen accumulation and inflammation. Pathway analysis identified a time-dependent enrichment of biological processes associated with steatogenic or fibrogenic initiating events, cellular functions, and toxicological states. Differentially expressed protein modules were consistent with the observed histology, placing physiologically linked protein networks into context of the disease process. This study demonstrates the potential for protein modules to provide mechanistic links between initiating events and histopathological outcomes.
Improved spring load restriction guidelines using mechanistic analysis
DOT National Transportation Integrated Search
2000-07-01
This project used research to develop more effective criteria for placement and removal of spring load restrictions (SLR). Researchers investigated a method that uses a thawing index equation based on air temperatures to predict thawing events. Resul...
Optimizing construction quality management of pavements using mechanistic performance analysis.
DOT National Transportation Integrated Search
2004-08-01
This report presents a statistical-based algorithm that was developed to reconcile the results from several pavement performance models used in the state of practice with systematic process control techniques. These algorithms identify project-specif...
Kim, Jaeseung; Kreller, Cortney R.; Greenberg, Marc M.
2005-01-01
The C4′-oxidized abasic site (C4-AP) is produced by a variety of DNA damaging agents. This alkali labile lesion can exist in up to four diastereomeric cyclic forms, in addition to the acyclic keto-aldehyde. Synthetic oligonucleotides containing the lesion were prepared from a stable photochemical precursor. Chemical integrity of the lesion containing oligonucleotides was probed using phosphodiesterase lability. Analysis of the 3′,5′-phosphate diester of the monomeric lesion released from single diastereomers of photolabile precursors by 1H NMR indicates that isomerization of the hemiacetal and/or hemiketal is rapid. The syntheses and characterization of oligonucleotides containing configurationally stable analogues of C4-AP, which serve as mechanistic probes for deciphering the structural basis of the biochemical and biological effects of the C4′-oxidized abasic lesion, are also described. PMID:16277338
Non-fluent speech following stroke is caused by impaired efference copy.
Feenaughty, Lynda; Basilakos, Alexandra; Bonilha, Leonardo; den Ouden, Dirk-Bart; Rorden, Chris; Stark, Brielle; Fridriksson, Julius
2017-09-01
Efference copy is a cognitive mechanism argued to be critical for initiating and monitoring speech: however, the extent to which breakdown of efference copy mechanisms impact speech production is unclear. This study examined the best mechanistic predictors of non-fluent speech among 88 stroke survivors. Objective speech fluency measures were subjected to a principal component analysis (PCA). The primary PCA factor was then entered into a multiple stepwise linear regression analysis as the dependent variable, with a set of independent mechanistic variables. Participants' ability to mimic audio-visual speech ("speech entrainment response") was the best independent predictor of non-fluent speech. We suggest that this "speech entrainment" factor reflects integrity of internal monitoring (i.e., efference copy) of speech production, which affects speech initiation and maintenance. Results support models of normal speech production and suggest that therapy focused on speech initiation and maintenance may improve speech fluency for individuals with chronic non-fluent aphasia post stroke.
Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.
2012-01-01
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897
Mechanistic analysis of challenge-response experiments.
Shotwell, M S; Drake, K J; Sidorov, V Y; Wikswo, J P
2013-09-01
We present an application of mechanistic modeling and nonlinear longitudinal regression in the context of biomedical response-to-challenge experiments, a field where these methods are underutilized. In this type of experiment, a system is studied by imposing an experimental challenge, and then observing its response. The combination of mechanistic modeling and nonlinear longitudinal regression has brought new insight, and revealed an unexpected opportunity for optimal design. Specifically, the mechanistic aspect of our approach enables the optimal design of experimental challenge characteristics (e.g., intensity, duration). This article lays some groundwork for this approach. We consider a series of experiments wherein an isolated rabbit heart is challenged with intermittent anoxia. The heart responds to the challenge onset, and recovers when the challenge ends. The mean response is modeled by a system of differential equations that describe a candidate mechanism for cardiac response to anoxia challenge. The cardiac system behaves more variably when challenged than when at rest. Hence, observations arising from this experiment exhibit complex heteroscedasticity and sharp changes in central tendency. We present evidence that an asymptotic statistical inference strategy may fail to adequately account for statistical uncertainty. Two alternative methods are critiqued qualitatively (i.e., for utility in the current context), and quantitatively using an innovative Monte-Carlo method. We conclude with a discussion of the exciting opportunities in optimal design of response-to-challenge experiments. © 2013, The International Biometric Society.
Assessing causal mechanistic interactions: a peril ratio index of synergy based on multiplicativity.
Lee, Wen-Chung
2013-01-01
The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often will misinterpret a statistically significant interaction as a genuine mechanistic interaction. The author adopts an alternative metric system for risk, the 'peril'. A peril is an exponentiated cumulative rate, or simply, the inverse of a survival (risk complement) or one plus an odds. The author proposes a new index based on multiplicativity of peril ratios, the 'peril ratio index of synergy based on multiplicativity' (PRISM). Under the assumption of no redundancy, PRISM can be used to assess synergisms in sufficient cause sense, i.e., causal co-actions or causal mechanistic interactions. It has a less stringent threshold to detect a synergy as compared to a previous index of 'relative excess risk due to interaction'. Using the new PRISM criterion, many situations in which there is not evidence of interaction judged by the traditional indices are in fact corresponding to bona fide positive or negative synergisms.
Assessing Causal Mechanistic Interactions: A Peril Ratio Index of Synergy Based on Multiplicativity
Lee, Wen-Chung
2013-01-01
The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often will misinterpret a statistically significant interaction as a genuine mechanistic interaction. The author adopts an alternative metric system for risk, the ‘peril’. A peril is an exponentiated cumulative rate, or simply, the inverse of a survival (risk complement) or one plus an odds. The author proposes a new index based on multiplicativity of peril ratios, the ‘peril ratio index of synergy based on multiplicativity’ (PRISM). Under the assumption of no redundancy, PRISM can be used to assess synergisms in sufficient cause sense, i.e., causal co-actions or causal mechanistic interactions. It has a less stringent threshold to detect a synergy as compared to a previous index of ‘relative excess risk due to interaction’. Using the new PRISM criterion, many situations in which there is not evidence of interaction judged by the traditional indices are in fact corresponding to bona fide positive or negative synergisms. PMID:23826299
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheis, Katja A., E-mail: katja.matheis@boehringer-ingelheim.com; Com, Emmanuelle; High-Throughput Proteomics Core Facility OUEST-genopole
2011-04-15
The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinicalmore » chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.« less
DOT National Transportation Integrated Search
2009-05-01
The characterization of materials is an intergral part of the overall effort to validate the Superpave system and to calibrate the performance prdeictionmodels for the environmental conditions observed in the Commonwealth of Pennsylvania.
Traffic and data preparation for AASHTO MEPDG analysis and designs.
DOT National Transportation Integrated Search
2011-10-01
"The Mechanistic Empirical Pavement Design Guide (MEPDG) and the : subsequent AASHTO product DARWin-ME are signifi cant advancements in : pavement design. However, they are substantially more complex than the : 1993 AASHTO Guide, which is currently u...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, S.; Chowdhury, R.; Biswas, G.K.
A mathematical model based on the mechanistic approach to the reaction kinetics of pyrolysis reactions and the realistic analysis of the interaction between simultaneous heat and mass transfer along with the chemical reaction has been developed for the design of smoothly running pyrolyzers. The model of a fixed-bed pyrolysis reactor has been proposed on the basis of the dimensionless parameters with respect to time and radial position. The variation of physical parameters like bed voidage, heat capacity, diffusivity, density, thermal conductivity, etc., on temperature and conversion has been taken into account. A deactivation model has also been incorporated to explainmore » the behavior of pyrolysis reactions at temperatures above 673 K. The simulated results of the model have been explained by comparing them with the experimental results.« less
Moore, Shannon R.; Saidel, Gerald M.; Knothe, Ulf; Knothe Tate, Melissa L.
2014-01-01
The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms. PMID:24967742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Julie, E-mail: jgoodman@gradientcorp.com
Background: The International Agency for Research on Cancer (IARC) recently developed a framework for evaluating mechanistic evidence that includes a list of 10 key characteristics of carcinogens. This framework is useful for identifying and organizing large bodies of literature on carcinogenic mechanisms, but it lacks sufficient guidance for conducting evaluations that fully integrate mechanistic evidence into hazard assessments. Objectives: We summarize the framework, and suggest approaches to strengthen the evaluation of mechanistic evidence using this framework. Discussion: While the framework is useful for organizing mechanistic evidence, its lack of guidance for implementation limits its utility for understanding human carcinogenic potential.more » Specifically, it does not include explicit guidance for evaluating the biological significance of mechanistic endpoints, inter- and intra-individual variability, or study quality and relevance. It also does not explicitly address how mechanistic evidence should be integrated with other realms of evidence. Because mechanistic evidence is critical to understanding human cancer hazards, we recommend that IARC develop transparent and systematic guidelines for the use of this framework so that mechanistic evidence will be evaluated and integrated in a robust manner, and concurrently with other realms of evidence, to reach a final human cancer hazard conclusion. Conclusions: IARC does not currently provide a standardized approach to evaluating mechanistic evidence. Incorporating the recommendations discussed here will make IARC analyses of mechanistic evidence more transparent, and lead to assessments of cancer hazards that reflect the weight of the scientific evidence and allow for scientifically defensible decision-making. - Highlights: • IARC has a revised framework for evaluating literature on carcinogenic mechanisms. • The framework is based on 10 key characteristics of carcinogens. • IARC should develop transparent and systematic guidelines for using the framework. • It should better address biological significance, study quality, and relevance. • It should better address integrating mechanistic evidence with other evidence.« less
Assmus, Frauke; Houston, J Brian; Galetin, Aleksandra
2017-11-15
The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237-48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pK a ≥7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (>1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among cell types. Despite this extensive lysosomal sequestration in the individual cells types, the maximal change in the overall predicted tissue Kpu was <3-fold for lysosome-rich tissues investigated here. Accounting for the variability in cellular physiological model input parameters, in particular lysosomal pH and fraction of the cellular volume occupied by the lysosomes, only partially explained discrepancies between observed and predicted Kpu data in the lung. Improved understanding of the system properties, e.g., cell/organelle composition is required to support further development of mechanistic equations for the prediction of drug tissue distribution. Application of this revised mechanistic model is recommended for prediction of Kpu in lysosome-rich tissue to facilitate the advancement of physiologically-based prediction of volume of distribution and drug exposure in the tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut
2016-10-10
The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulmonary Transcriptional Response to Ozone in Healthy and Cardiovascular Compromised Rat Models
The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic ins...
Grimsrud, K N; Ait-Oudhia, S; Durbin-Johnson, B P; Rocke, D M; Mama, K R; Rezende, M L; Stanley, S D; Jusko, W J
2015-02-01
The present study characterizes the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of the α2-adrenergic receptor agonists detomidine (DET), medetomidine (MED) and dexmedetomidine (DEX) in parallel groups of horses from in vivo data after single bolus doses. Head height (HH), heart rate (HR), and blood glucose concentrations were measured over 6 h. Compartmental PK and minimal physiologically based PK (mPBPK) models were applied and incorporated into basic and extended indirect response models (IRM). Population PK/PD analysis was conducted using the Monolix software implementing the stochastic approximation expectation maximization algorithm. Marked reductions in HH and HR were found. The drug concentrations required to obtain inhibition at half-maximal effect (IC50 ) were approximately four times larger for DET than MED and DEX for both HH and HR. These effects were not gender dependent. Medetomidine had a greater influence on the increase in glucose concentration than DEX. The developed models demonstrate the use of mechanistic and mPBPK/PD models for the analysis of clinically obtainable in vivo data. © 2014 John Wiley & Sons Ltd.
Grimsrud, K. N.; Ait-Oudhia, S.; Durbin-Johnson, B. P.; Rocke, D. M.; Mama, K. R.; Rezende, M. L.; Stanley, S. D.; Jusko, W. J.
2014-01-01
The present study characterizes the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of the α2-adrenergic receptor agonists detomidine (DET), medetomidine (MED) and dexmedetomidine (DEX) in parallel groups of horses from in vivo data after single bolus doses. Head height (HH), heart rate (HR), and blood glucose concentrations were measured over 6 h. Compartmental PK and minimal physiologically based PK (mPBPK) models were applied and incorporated into basic and extended indirect response models (IRM). Population PK/PD analysis was conducted using the Monolix software implementing the stochastic approximation expectation maximization algorithm. Marked reductions in HH and HR were found. The drug concentrations required to obtain inhibition at half-maximal effect (IC50) were approximately four times larger for DET than MED and DEX for both HH and HR. These effects were not gender dependent. Medetomidine had a greater influence on the increase in glucose concentration than DEX. The developed models demonstrate the use of mechanistic and mPBPK/PD models for the analysis of clinically obtainable in vivo data. PMID:25073816
Mechanistic-empirical asphalt overlay thickness design and analysis system.
DOT National Transportation Integrated Search
2009-10-01
The placement of an asphalt overlay is the most common method used by the Texas Department of Transportation (TxDOT) to rehabilitate : existing asphalt and concrete pavements. The type of overlay and its required thickness are important decisions tha...
Research notes : measuring the strain of the road.
DOT National Transportation Integrated Search
2005-09-01
This study will monitor the pavement structure to investigate if the assumptions used in a mechanistic-empirical design analysis are valid, or if adjustments are needed. The study will be assessing the reaction of the pavement structure to traffic lo...
Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu
2016-10-01
We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Mechanisms of Developmental Change in Infant Categorization
ERIC Educational Resources Information Center
Westermann, Gert; Mareschal, Denis
2012-01-01
Computational models are tools for testing mechanistic theories of learning and development. Formal models allow us to instantiate theories of cognitive development in computer simulations. Model behavior can then be compared to real performance. Connectionist models, loosely based on neural information processing, have been successful in…
Halogen, Hydroxy, Mercapto and Amino-Compounds: A Mechanistic Study--2
ERIC Educational Resources Information Center
Hanson, R. W.
1976-01-01
Compare reactions in which the functional groups of title compounds are displaced. The overall order of activity observed for alkyl halides, alcohols, thiels, and aliphatic amines acting as bases or nucleophiles is reversed when reactions involve displacement of the functional group. (MLH)
Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen
2017-03-03
Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe
2018-06-01
In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.
Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory
Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...
Mechanistic-empirical Pavement Design Guide Implementation
DOT National Transportation Integrated Search
2010-06-01
The recently introduced Mechanistic-Empirical Pavement Design Guide (MEPDG) and associated computer software provides a state-of-practice mechanistic-empirical highway pavement design methodology. The MEPDG methodology is based on pavement responses ...
WANG, Chao; ZHANG, Ruiming; ZHOU, Le; HE, Jintian; HUANG, Qiang; SIYAL, Farman A; ZHANG, Lili; ZHONG, Xiang; WANG, Tian
2017-01-01
Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway. PMID:28855439
Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. Steven; Resat, Haluk
2012-01-01
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models to determine the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor phosphorylation kinetics at the cell surface and early endosomes are comparable. We validated the last finding by measuring the EGFR dephosphorylation rates at various times following ligand addition both in whole cells and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks. PMID:22952062
Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza
2012-01-01
Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541
Knutson, Stacy T.; Westwood, Brian M.; Leuthaeuser, Janelle B.; Turner, Brandon E.; Nguyendac, Don; Shea, Gabrielle; Kumar, Kiran; Hayden, Julia D.; Harper, Angela F.; Brown, Shoshana D.; Morris, John H.; Ferrin, Thomas E.; Babbitt, Patricia C.
2017-01-01
Abstract Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification—amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two‐Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure‐Function Linkage Database, SFLD) self‐identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self‐identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well‐curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP‐identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F‐measure and performance analysis on the enolase search results and comparison to GEMMA and SCI‐PHY demonstrate that TuLIP avoids the over‐division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results. PMID:28054422
Knutson, Stacy T; Westwood, Brian M; Leuthaeuser, Janelle B; Turner, Brandon E; Nguyendac, Don; Shea, Gabrielle; Kumar, Kiran; Hayden, Julia D; Harper, Angela F; Brown, Shoshana D; Morris, John H; Ferrin, Thomas E; Babbitt, Patricia C; Fetrow, Jacquelyn S
2017-04-01
Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification-amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two-Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure-Function Linkage Database, SFLD) self-identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self-identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well-curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP-identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F-measure and performance analysis on the enolase search results and comparison to GEMMA and SCI-PHY demonstrate that TuLIP avoids the over-division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
DOT National Transportation Integrated Search
2010-08-01
This study was intended to recommend future directions for the development of TxDOTs Mechanistic-Empirical : (TexME) design system. For stress predictions, a multi-layer linear elastic system was evaluated and its validity was : verified by compar...
Traffic and data preparation for AASHTO DARWin-ME analysis and design : [tech summary].
DOT National Transportation Integrated Search
2015-02-01
Although the Mechanistic Empirical Pavement Design Guide (MEPDG), now called Pavement ME Design, is a signi cant advancement : in pavement design, it requires much more input from designers. Many data sets, such as weigh-in-motion (WIM) tra c d...
Major uncertainties remain in our ability to identify the key reactions and primary oxidation products of volatile hydrocarbons that contribute to ozone formation in the troposphere. To reduce these uncertainties, computational chemistry, mechanistic and process analysis techniqu...
Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization
2016-01-01
The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick’s law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid–liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine–saccharin (CBZ-SAC) and carbamazepine–salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals. PMID:26877267
Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.
Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E
2016-03-07
The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.
Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.
Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622
Comparison of mechanistic transport cycle models of ABC exporters.
Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas
2018-04-01
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu
2016-01-01
Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487
Electrons on a spherical surface: Physical properties and hollow spherical clusters
NASA Astrophysics Data System (ADS)
Cricchio, Dario; Fiordilino, Emilio; Persico, Franco
2012-07-01
We discuss the physical properties of a noninteracting electron gas constrained to a spherical surface. In particular we consider its chemical potentials, its ionization potential, and its electric static polarizability. All these properties are discussed analytically as functions of the number N of electrons. The trends obtained with increasing N are compared with those of the corresponding properties experimentally measured or theoretically evaluated for quasispherical hollow atomic and molecular clusters. Most of the properties investigated display similar trends, characterized by a prominence of shell effects. This leads to the definition of a scale-invariant distribution of magic numbers which follows a power law with critical exponent -0.5. We conclude that our completely mechanistic and analytically tractable model can be useful for the analysis of self-assembling complex systems.
Although a clear link between cardiopulmonary disease and an increased susceptibility to air pollution has been established epidemiologically, the mechanistic link remains undefined. Animal models of disease are widely used to investigate this link. Here we compare the cardiopu...
Pathway and network analysis of cancer genomes.
Creixell, Pau; Reimand, Jüri; Haider, Syed; Wu, Guanming; Shibata, Tatsuhiro; Vazquez, Miguel; Mustonen, Ville; Gonzalez-Perez, Abel; Pearson, John; Sander, Chris; Raphael, Benjamin J; Marks, Debora S; Ouellette, B F Francis; Valencia, Alfonso; Bader, Gary D; Boutros, Paul C; Stuart, Joshua M; Linding, Rune; Lopez-Bigas, Nuria; Stein, Lincoln D
2015-07-01
Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.
An Ecological Critique of Education
ERIC Educational Resources Information Center
LeFay, Raven
2006-01-01
This discussion is a critical analysis of mainstream Western education. It explores the system's historical ties with industrial civilization, and considers how both have emerged from a mechanistic worldview, and how the education system has evolved to serve the interests of capitalism and colonialism. The corporate takeover of the education…
DOT National Transportation Integrated Search
2001-02-01
A new version of the CRCP computer program, CRCP-9, has been developed in this study. The numerical model of the CRC pavements was developed using finite element theories, the crack spacing prediction model was developed using the Monte Carlo method,...
A two-room model is developed to estimate the emission rate of di-2-ethylhexyl phthalate (DEHP) from vinyl flooring and the evolving gas-phase and adsorbed surface concentrations in a realistic indoor environment. Adsorption isotherms for phthalates and plasticizers on interior ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubart, M.A.; Chandler, B.D.; Gould, R.A.T.
Platinum- and palladium-gold cluster compounds were evaluated with respect to their ability to catalyze H{sub 2}-D{sub 2} equilibration. In addition, these phosphine-stabilized complexes were structurally characterized. Mechanistic studies for this reaction were performed by kinetic and spectroscopic analysis. The catalytic reaction appears to occur in three steps, which were determined.
Stocker, Elena; Toschkoff, Gregor; Sacher, Stephan; Khinast, Johannes G
2014-11-20
The purpose of this study is to evaluate the use of computer simulations for generating quantitative knowledge as a basis for risk ranking and mechanistic process understanding, as required by ICH Q9 on quality risk management systems. In this specific publication, the main focus is the demonstration of a risk assessment workflow, including a computer simulation for the generation of mechanistic understanding of active tablet coating in a pan coater. Process parameter screening studies are statistically planned under consideration of impacts on a potentially critical quality attribute, i.e., coating mass uniformity. Based on computer simulation data the process failure mode and effects analysis of the risk factors is performed. This results in a quantitative criticality assessment of process parameters and the risk priority evaluation of failure modes. The factor for a quantitative reassessment of the criticality and risk priority is the coefficient of variation, which represents the coating mass uniformity. The major conclusion drawn from this work is a successful demonstration of the integration of computer simulation in the risk management workflow leading to an objective and quantitative risk assessment. Copyright © 2014. Published by Elsevier B.V.
Integrating perspectives on vocal performance and consistency
Sakata, Jon T.; Vehrencamp, Sandra L.
2012-01-01
SUMMARY Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection. PMID:22189763
Kodamullil, Alpha Tom; Iyappan, Anandhi; Karki, Reagon; Madan, Sumit; Younesi, Erfan; Hofmann-Apitius, Martin
2017-01-01
Perturbance in inflammatory pathways have been identified as one of the major factors which leads to neurodegenerative diseases (NDD). Owing to the limited access of human brain tissues and the immense complexity of the brain, animal models, specifically mouse models, play a key role in advancing the NDD field. However, many of these mouse models fail to reproduce the clinical manifestations and end points of the disease. NDD drugs, which passed the efficacy test in mice, were repeatedly not successful in clinical trials. There are numerous studies which are supporting and opposing the applicability of mouse models in neuroinflammation and NDD. In this paper, we assessed to what extend a mouse can mimic the cellular and molecular interactions in humans at a mechanism level. Based on our mechanistic modeling approach, we investigate the failure of a neuroinflammation targeted drug in the late phases of clinical trials based on the comparative analyses between the two species.
AhR-mediated gene expression in the developing mouse telencephalon.
Gohlke, Julia M; Stockton, Pat S; Sieber, Stella; Foley, Julie; Portier, Christopher J
2009-11-01
We hypothesize that TCDD-induced developmental neurotoxicity is modulated through an AhR-dependent interaction with key regulatory neuronal differentiation pathways during telencephalon development. To test this hypothesis we examined global gene expression in both dorsal and ventral telencephalon tissues in E13.5 AhR-/- and wildtype mice exposed to TCDD or vehicle. Consistent with previous biochemical, pathological and behavioral studies, our results suggest TCDD initiated changes in gene expression in the developing telencephalon are primarily AhR-dependent, as no statistically significant gene expression changes are evident after TCDD exposure in AhR-/- mice. Based on a gene regulatory network for neuronal specification in the developing telencephalon, the present analysis suggests differentiation of GABAergic neurons in the ventral telencephalon is compromised in TCDD exposed and AhR-/- mice. In addition, our analysis suggests Sox11 may be directly regulated by AhR based on gene expression and comparative genomics analyses. In conclusion, this analysis supports the hypothesis that AhR has a specific role in the normal development of the telencephalon and provides a mechanistic framework for neurodevelopmental toxicity of chemicals that perturb AhR signaling.
Dynamical glucometry: Use of multiscale entropy analysis in diabetes
NASA Astrophysics Data System (ADS)
Costa, Madalena D.; Henriques, Teresa; Munshi, Medha N.; Segal, Alissa R.; Goldberger, Ary L.
2014-09-01
Diabetes mellitus (DM) is one of the world's most prevalent medical conditions. Contemporary management focuses on lowering mean blood glucose values toward a normal range, but largely ignores the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 min are not uncorrelated noise. Next, using multiscale entropy analysis, we quantified the complexity of the temporal structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched controls. We further probed the structure of these CGM time series using detrended fluctuation analysis. Our findings indicate that the dynamics of glucose fluctuations from control subjects are more complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare therapeutic interventions, which should enhance complexity of glucose fluctuations and not just lower mean and variance of blood glucose levels.
NASA Astrophysics Data System (ADS)
Coccini, Teresa; Fabbri, Marco; Roda, Elisa; Grazia Sacco, Maria; Manzo, Luigi; Gribaldo, Laura
2011-07-01
Silica nanoparticles (NPs) incorporating cadmium (Cd) have been developed for a range of potential application including drug delivery devices. Occupational Cd inhalation has been associated with emphysema, pulmonary fibrosis and lung tumours. Mechanistically, Cd can induce oxidative stress and mediate cell-signalling pathways that are involved in inflammation.This in vivo study aimed at investigating pulmonary molecular effects of NPs doped with Cd (NP-Cd, 1 mg/animal) compared to soluble CdCl2 (400 μg/animal), in Sprague Dawley rats treated intra-tracheally, 7 and 30 days after administration. NPs of silica containing Cd salt were prepared starting from commercial nano-size silica powder (HiSil™ T700 Degussa) with average pore size of 20 nm and surface area of 240 m2/g. Toxicogenomic analysis was performed by the DNA microarray technology (using Agilent Whole Rat Genome Microarray 4×44K) to evaluate changes in gene expression of the entire genome. These findings indicate that the whole genome analysis may represent a valuable approach to assess the whole spectrum of biological responses to cadmium containing nanomaterials.
NASA Astrophysics Data System (ADS)
Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede
2017-10-01
Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.
Harrison, Robert W; Radhakrishnan, Vaishnavi; Lam, Peter S; Allocco, Dominic J; Brar, Sandeep; Fahy, Martin; Fisher, Rebecca; Ikeno, Fumiaki; Généreux, Philippe; Kimura, Takeshi; Liu, Minglei; Lye, Weng Kit; Mintz, Gary S; Nagai, Hirofumi; Suzuki, Yuka; White, Roseann; Allen, John C; Krucoff, Mitchell W
2016-12-01
The contemporary evaluation of novel drug-eluting stents (DES) includes mechanistic observations that characterize postdeployment stent behavior. Quantification of late lumen loss due to neointimal hyperplasia 8-13 months after stent implantation, via quantitative coronary angiography (QCA), constitutes such an observation and is required by most regulatory authorities. Late lumen loss, as determined by QCA, has been validated as a surrogate for clinical endpoints such as target vessel revascularization. The mechanistic response to DES has not been directly compared across predominantly Asian or Western populations, whereas understanding their comparability across geographic populations could enhance global DES evaluation. The East-West late lumen loss study is designed to demonstrate whether the residual differences in late lumen loss, as assessed by QCA, is different between Eastern and Western DES recipients from studies with protocol angiography at 8-13 months of follow-up. Data from independent core laboratories that have characterized angiographic late lumen loss in DES clinical trials with protocol follow-up angiography will be compiled and dichotomized into Eastern and Western populations. A prospectively developed propensity score model incorporating clinical and anatomic variables affecting late lumen loss will be used to adjust comparisons of QCA measurements. Documentation of whether there are clinically meaningful differences in mechanistic response to DES implantation across genetically unique geographies could facilitate both the quality and efficiency of global device evaluation requiring invasive follow-up for novel stent designs. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanistic Analysis of Mechano-Electrochemical Interaction in Silicon Electrodes with Surface Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Ankit; Mukherjee, Partha P.
2017-11-17
High-capacity anode materials for lithium-ion batteries, such as silicon, are prone to large volume change during lithiation/delithiation which may cause particle cracking and disintegration, thereby resulting in severe capacity fade and reduction in cycle life. In this work, a stochastic analysis is presented in order to understand the mechano-electrochemical interaction in silicon active particles along with a surface film during cycling. Amorphous silicon particles exhibiting single-phase lithiation incur lower amount of cracking as compared to crystalline silicon particles exhibiting two-phase lithiation for the same degree of volumetric expansion. Rupture of the brittle surface film is observed for both amorphous andmore » crystalline silicon particles and is attributed to the large volumetric expansion of the silicon active particle with lithiation. The mechanical property of the surface film plays an important role in determining the amount of degradation in the particle/film assembly. A strategy to ameliorate particle cracking in silicon active particles is proposed.« less
Beretta, Vanesa H; Bannoud, Florencia; Insani, Marina; Galmarini, Claudio R; Cavagnaro, Pablo F
2017-06-01
Onion pyruvate concentration is used as a predictor of flavor intensity and nutraceutical value. The protocol of Schwimmer and Weston (SW) (1961) is the most widespread methodology for estimating onion pyruvate. Anthon and Barret (AB) (2003) proposed modifications to this procedure. Here, we compared these spectrophotometry-based procedures for pyruvate analysis using a diverse collection of onion cultivars. The SW method always led to over-estimation of pyruvate levels in colored, but not in white onions, by up to 65%. Identification of light-absorbance interfering compounds was performed by spectrophotometry and HPLC analysis. Interference by quercetin and anthocyanins, jointly, accounted for more than 90% of the over-estimation of pyruvate. Pyruvate determinations according to AB significantly reduced absorbance interference from compounds other than pyruvate. This study provides evidence about the mechanistic basis underlying differences between the SW and AB methods for indirect assessment of onion flavor and nutraceutical value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Armitage, Emily G; Godzien, Joanna; Peña, Imanol; López-Gonzálvez, Ángeles; Angulo, Santiago; Gradillas, Ana; Alonso-Herranz, Vanesa; Martín, Julio; Fiandor, Jose M; Barrett, Michael P; Gabarro, Raquel; Barbas, Coral
2018-05-18
A lack of viable hits, increasing resistance, and limited knowledge on mode of action is hindering drug discovery for many diseases. To optimize prioritization and accelerate the discovery process, a strategy to cluster compounds based on more than chemical structure is required. We show the power of metabolomics in comparing effects on metabolism of 28 different candidate treatments for Leishmaniasis (25 from the GSK Leishmania box, two analogues of Leishmania box series, and amphotericin B as a gold standard treatment), tested in the axenic amastigote form of Leishmania donovani. Capillary electrophoresis-mass spectrometry was applied to identify the metabolic profile of Leishmania donovani, and principal components analysis was used to cluster compounds on potential mode of action, offering a medium throughput screening approach in drug selection/prioritization. The comprehensive and sensitive nature of the data has also made detailed effects of each compound obtainable, providing a resource to assist in further mechanistic studies and prioritization of these compounds for the development of new antileishmanial drugs.
A novel method for the quantification of fatty infiltration in skeletal muscle.
Biltz, Nicole K; Meyer, Gretchen A
2017-01-10
Fatty infiltration of the skeletal muscle is a common but poorly understood feature of many myopathies. It is best described in human muscle, where non-invasive imaging techniques and representative histology have been optimized to view and quantify infiltrating fat. However, human studies are limited in their ability to identify cellular and molecular mechanisms regulating fatty infiltration, a likely prerequisite to developing targeted interventions. As mechanistic investigations move to small animals, studies may benefit from new or adapted imaging tools optimized for high resolution and whole muscle quantification. Here, we describe a novel method to evaluate fatty infiltration, developed for use with mouse muscle. In this methodology, muscle cellular membranes and proteins are removed via decellularization, but fatty infiltrate lipid is spared, trapped in its native distribution in a transparent extracellular matrix construct. This lipid can then be stained with visible or fluorescent dyes and imaged. We present three methods to stain and evaluate lipid in decellularized muscles which can be used individually or combined: (1) qualitative visualization of the amount and 3D spatial distribution of fatty infiltration using visible lipid soluble dye Oil Red O (ORO), (2) quantitative analysis of individual lipid droplet metrics (e.g., volume) via confocal imaging of fluorescent lipid soluble dye boron-dipyrromethene (BODIPY), and (3) quantitative analysis of total lipid content by optical density reading of extracted stained lipid. This methodology was validated by comparing glycerol-induced fatty infiltration between two commonly used mouse strains: 129S1/SvlmJ (129S1) and C57BL/6J (BL/6J). All three methods were able to detect a significant increase in fatty infiltrate volume in the 129S1 muscle compared with that in BL/6J, and methods 1 and 2 additionally described a difference in the distribution of fatty infiltrate, indicating susceptibility to glycerol-induced fatty infiltration is strain-specific. With more mechanistic studies of fatty infiltration moving to small animal models, having an alternative to expensive non-invasive imaging techniques and selective representative histology will be beneficial. In this work, we present a method that can quantify both individual adipocyte lipids and whole muscle total fatty infiltrate lipid.
Pollard, Thomas D
2014-12-02
This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2009-11-01
The new Mechanistic-Empirical Pavement Design Guide (NCHRP 1-37A and 1-40D) is based on fundamental engineering principles and is far more comprehensive than the current empirical AASHTO Design Guide developed for conditions more than 40 years previo...
Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically-relevant markers of toxicity. To be useful for risk assessment however, microarray data must be challenged to determine its reliability and inter...
The mechanistic model, GoMDOM: Development , calibration and sensitivity analysis
This presentation will be in a series of Gulf Hypoxia modeling presentations which will be used to: 1) aid NOAA in informing scientific directions and funding decisions for their cooperators and 2) a Technical Review of all models will be provided to the Mississippi River Nutrie...
The Office of Pesticide Programs’ (OPP) routinely utilizes mode of action (MOA) data when available for pesticide cancer risk assessment. A MOA analysis incorporates data from required toxicology studies and supplemental mechanistic data. These data are evaluated to identify a ...
DOT National Transportation Integrated Search
2013-08-01
The overall goal of Global Sensitivity Analysis (GSA) is to determine sensitivity of pavement performance prediction models to the variation in the design input values. The main difference between GSA and detailed sensitivity analyses is the way the ...
Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling
USDA-ARS?s Scientific Manuscript database
We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...
Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights
NASA Astrophysics Data System (ADS)
Van Gordon, M.; Groenke, A.; Larsen, L.
2017-12-01
While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.
Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; Diego Mandelli; Cristian Rabiti
2013-11-01
The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim tomore » improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.« less
Mapping and analysis of phosphorylation sites: a quick guide for cell biologists
Dephoure, Noah; Gould, Kathleen L.; Gygi, Steven P.; Kellogg, Douglas R.
2013-01-01
A mechanistic understanding of signaling networks requires identification and analysis of phosphorylation sites. Mass spectrometry offers a rapid and highly sensitive approach to mapping phosphorylation sites. However, mass spectrometry has significant limitations that must be considered when planning to carry out phosphorylation-site mapping. Here we provide an overview of key information that should be taken into consideration before beginning phosphorylation-site analysis, as well as a step-by-step guide for carrying out successful experiments. PMID:23447708
Rational and Mechanistic Perspectives on Reinforcement Learning
ERIC Educational Resources Information Center
Chater, Nick
2009-01-01
This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…
Rational and mechanistic perspectives on reinforcement learning.
Chater, Nick
2009-12-01
This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: mechanistic and rational. Reinforcement learning is often viewed in mechanistic terms--as describing the operation of aspects of an agent's cognitive and neural machinery. Yet it can also be viewed as a rational level of description, specifically, as describing a class of methods for learning from experience, using minimal background knowledge. This paper considers how rational and mechanistic perspectives differ, and what types of evidence distinguish between them. Reinforcement learning research in the cognitive and brain sciences is often implicitly committed to the mechanistic interpretation. Here the opposite view is put forward: that accounts of reinforcement learning should apply at the rational level, unless there is strong evidence for a mechanistic interpretation. Implications of this viewpoint for reinforcement-based theories in the cognitive and brain sciences are discussed.
The use of mechanistic evidence in drug approval.
Aronson, Jeffrey K; La Caze, Adam; Kelly, Michael P; Parkkinen, Veli-Pekka; Williamson, Jon
2018-06-11
The role of mechanistic evidence tends to be under-appreciated in current evidence-based medicine (EBM), which focusses on clinical studies, tending to restrict attention to randomized controlled studies (RCTs) when they are available. The EBM+ programme seeks to redress this imbalance, by suggesting methods for evaluating mechanistic studies alongside clinical studies. Drug approval is a problematic case for the view that mechanistic evidence should be taken into account, because RCTs are almost always available. Nevertheless, we argue that mechanistic evidence is central to all the key tasks in the drug approval process: in drug discovery and development; assessing pharmaceutical quality; devising dosage regimens; assessing efficacy, harms, external validity, and cost-effectiveness; evaluating adherence; and extending product licences. We recommend that, when preparing for meetings in which any aspect of drug approval is to be discussed, mechanistic evidence should be systematically analysed and presented to the committee members alongside analyses of clinical studies. © 2018 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.
Chastin, Sebastien F M; De Craemer, Marieke; De Cocker, Katrien; Powell, Lauren; Van Cauwenberg, Jelle; Dall, Philippa; Hamer, Mark; Stamatakis, Emmanuel
2018-04-25
To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Systematic review and meta-analysis. Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis. Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83). Light-intensity physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Aaron A.; Baldwin, David L.; Cinson, Anthony D.
2014-08-06
This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of themore » SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.« less
The Newtonian Mechanistic Paradigm, Special Education, and Contours of Alternatives: An Overview.
ERIC Educational Resources Information Center
Heshusius, Lous
1989-01-01
The article examines theoretical reorientations in special education away from the Newtonian mechanistic paradigm toward an emerging holistic paradigm. Recent literature is critiqued for renaming theories as paradigms, thereby providing an illusion of change while leaving fundamental mechanistic assumptions in place. (Author/DB)
Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality
Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Misra, Vikram; Cryan, Paul M.; Blehert, David S.; Wibbelt, Gudrun; Willis, Craig K.R.
2013-01-01
White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid–base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid–base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.
Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M
2018-07-01
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
Barton Cole, Emily E.; Baruch, Maor F.; L’Esperance, Robert P.; ...
2014-11-15
A series of substituted pyridiniums were examined for their catalytic ability to electrochemically reduce carbon dioxide to methanol. It is found that in general increased basicity of the nitrogen of the amine and higher LUMO energy of the pyridinium correlate with enhanced carbon dioxide reduction. The highest faradaic yield for methanol production at a platinum electrode was 39 ± 4 % for 4-aminopyridine compared to 22 ± 2 % for pyridine. However, 4-tertbutyl and 4-dimethylamino pyridine showed decreased catalytic behavior, contrary to the enhanced activity associated with the increased basicity and LUMO energy, and suggesting that steric effects also playmore » a significant role in the behavior of pyridinium electrocatalysts. As a result, mechanistic models for the the reaction of the pyridinium with carbon dioxide are considered.« less
"Ratio via Machina": Three Standards of Mechanistic Explanation in Sociology
ERIC Educational Resources Information Center
Aviles, Natalie B.; Reed, Isaac Ariail
2017-01-01
Recently, sociologists have expended much effort in attempts to define social mechanisms. We intervene in these debates by proposing that sociologists in fact have a choice to make between three standards of what constitutes a good mechanistic explanation: substantial, formal, and metaphorical mechanistic explanation. All three standards are…
Intriguing mechanistic labyrinths in gold(i) catalysis
Obradors, Carla
2014-01-01
Many mechanistically intriguing reactions have been developed in the last decade using gold(i) as catalyst. Here we review the main mechanistic proposals in gold-catalysed activation of alkynes and allenes, in which this metal plays a central role by stabilising a variety of complex cationic intermediates. PMID:24176910
Transitioning from AOP to IATA - Exploiting mechanistic ...
Slide presentation at satellite meeting of the QSAR2016 Meeting on How to Transition from AOP to IATA-Exploiting mechanistic insight for practical decision making. . Slide presentation at satellite meeting of the QSAR2016 Meeting on How to Transition from AOP to IATA-Exploiting mechanistic insight for practical decision making. .
Xin, Hongqi; Katakowski, Mark; Wang, Fengjie; Qian, Jian-Yong; Liu, Xian Shuang; Ali, Meser M; Buller, Benjamin; Zhang, Zheng Gang; Chopp, Michael
2017-03-01
Multipotent mesenchymal stromal cell (MSC) harvested exosomes are hypothesized as the major paracrine effectors of MSCs. In vitro, the miR-17-92 cluster promotes oligodendrogenesis, neurogenesis, and axonal outgrowth. We, therefore, investigated whether the miR-17-92 cluster-enriched exosomes harvested from MSCs transfected with an miR-17-92 cluster plasmid enhance neurological recovery compared with control MSC-derived exosomes. Rats subjected to 2 hours of transient middle cerebral artery occlusion were intravenously administered miR-17-92 cluster-enriched exosomes, control MSC exosomes, or liposomes and were euthanized 28 days post-middle cerebral artery occlusion. Histochemistry, immunohistochemistry, and Golgi-Cox staining were used to assess dendritic, axonal, synaptic, and myelin remodeling. Expression of phosphatase and tensin homolog and activation of its downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β in the peri-infarct region were measured by means of Western blots. Compared with the liposome treatment, both exosome treatment groups exhibited significant improvement of functional recovery, but miR-17-92 cluster-enriched exosome treatment had significantly more robust effects on improvement of neurological function and enhancements of oligodendrogenesis, neurogenesis, and neurite remodeling/neuronal dendrite plasticity in the ischemic boundary zone (IBZ) than the control MSC exosome treatment. Moreover, miR-17-92 cluster-enriched exosome treatment substantially inhibited phosphatase and tensin homolog, a validated miR-17-92 cluster target gene, and subsequently increased the phosphorylation of phosphatase and tensin homolog downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β compared with control MSC exosome treatment. Our data suggest that treatment of stroke with tailored exosomes enriched with the miR-17-92 cluster increases neural plasticity and functional recovery after stroke, possibly via targeting phosphatase and tensin homolog to activate the PI3K/protein kinase B/mechanistic target of rapamycin/glycogen synthase kinase 3β signaling pathway. © 2017 American Heart Association, Inc.
Quantifying fat, oil, and grease deposit formation kinetics.
Iasmin, Mahbuba; Dean, Lisa O; Ducoste, Joel J
2016-01-01
Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to understand the kinetics of FOG deposit formation in sewers for two types of fat (Canola and Beef Tallow) and two types of calcium sources (calcium chloride and calcium sulfate) under three pH (7 ± 0.5, 10 ± 0.5, and ≈14) and two temperature conditions (22 ± 0.5 and 45 ± 0.5 °C). The results of this study displayed quick reactions of a fraction of fats with calcium ions to form calcium based saponified solids. Results further showed that increased palmitic fatty acid content in source fats, the magnitude of the pH, and temperature significantly affect the FOG deposit formation and saponification rates. The experimental data of the kinetics were compared with two empirical models: a) Cotte saponification model and b) Foubert crystallization model and a mass-action based mechanistic model that included alkali driven hydrolysis of triglycerides. Results showed that the mass action based mechanistic model was able to predict changes in the rate of formation of saponified solids under the different experimental conditions compared to both empirical models. The mass-action based saponification model also revealed that the hydrolysis of Beef Tallow was slower compared to liquid Canola fat resulting in smaller quantities of saponified solids. This mechanistic saponification model, with its ability to track the saponified solids chemical precursors, may provide an initial framework to predict the spatial formation of FOG deposits in municipal sewers using system wide sewer collection modeling software. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2016-03-01
Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007-2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman's r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen's kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements.
Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu
2015-12-01
Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Woodward, Bill
2016-04-11
Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, L.J.; Mihalich, J.P.
1995-12-31
The chlorinated alkenes 1,1-dichloroethene (1,1-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) are common environmental contaminants found in soil and groundwater at hazardous waste sites. Recent assessment of data from epidemiology and mechanistic studies indicates that although exposure to 1,1-DCE, PCE, and TCE causes tumor formation in rodents, it is unlikely that these chemicals are carcinogenic to humans. Nevertheless, many state and federal agencies continue to regulate these compounds as carcinogens through the use of the linearized multistage model and resulting cancer slope factor (CSF). The available data indicate that 1,1-DCE, PCE, and TCE should be assessed using a threshold (i.e., referencemore » dose [RfD]) approach rather than a CSF. This paper summarizes the available metabolic, toxicologic, and epidemiologic data that question the use of the linear multistage model (and CSF) for extrapolation from rodents to humans. A comparative analysis of potential risk-based cleanup goals (RBGs) for these three compounds in soil is presented for a hazardous waste site. Goals were calculated using the USEPA CSFs and using a threshold (i.e., RfD) approach. Costs associated with remediation activities required to meet each set of these cleanup goals are presented and compared.« less
High matrix metalloproteinase activity is a hallmark of periapical granulomas.
de Paula-Silva, Francisco Wanderley Garcia; D'Silva, Nisha J; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-09-01
The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tukey test. We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts.
Integrating protein structural dynamics and evolutionary analysis with Bio3D.
Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J
2014-12-10
Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .
The effect of loading time on flexible pavement dynamic response: a finite element analysis
NASA Astrophysics Data System (ADS)
Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley
2007-12-01
Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.
Recently, air pollution has been linked to insulin resistance and obesity but the mechanisms remain to be elucidated. We have recently shown that acute O3 exposure induces glucose intolerance, hyperglycemia and increases in leptin and epinephrine in rats. Here, we hypothesized th...
MELODI: Mining Enriched Literature Objects to Derive Intermediates
Elsworth, Benjamin; Dawe, Karen; Vincent, Emma E; Langdon, Ryan; Lynch, Brigid M; Martin, Richard M; Relton, Caroline; Higgins, Julian P T; Gaunt, Tom R
2018-01-01
Abstract Background The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. Methods Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. Results Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. Conclusions We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk]. PMID:29342271
PCAN: phenotype consensus analysis to support disease-gene association.
Godard, Patrice; Page, Matthew
2016-12-07
Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene's signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package ( http://bioconductor.org/packages/PCAN/ ) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows.
Growth of Malignant Non-CNS Tumors Alters Brain Metabolome
Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga
2018-01-01
Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623
Assessing uncertainty in mechanistic models
Edwin J. Green; David W. MacFarlane; Harry T. Valentine
2000-01-01
Concern over potential global change has led to increased interest in the use of mechanistic models for predicting forest growth. The rationale for this interest is that empirical models may be of limited usefulness if environmental conditions change. Intuitively, we expect that mechanistic models, grounded as far as possible in an understanding of the biology of tree...
Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji
2017-01-01
We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.
SUMMARY: Mechanistic data should provide the Agency with a more accurate basis to estimate risk than do the Agency’s default assumptions (10x uncertainty factors, etc.), thereby improving risk assessment decisions. NTD is providing mechanistic data for toxicant effects on two maj...
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
Hauschild, L; Lovatto, P A; Pomar, J; Pomar, C
2012-07-01
The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation. Thus, the amino acid requirements estimated by model are animal- and time-dependent and follow, in real time, the individual DFI and BW growth patterns. The proposed model can follow the average feed intake and feed weight trajectory of each individual pig in real time with good accuracy. Based on these trajectories and using classical factorial equations, the model makes it possible to estimate dynamically the AA requirements of each animal, taking into account the intake and growth changes of the animal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Paul W; Mulder, David W; Artz, Jacob H.
The crystallization of FeS cluster-containing proteins has been challenging due to their oxygen sensitivity, and yet these enzymes are involved in many critical catalytic reactions. The last few years have seen a wealth of innovative experiments designed to elucidate not just structural but mechanistic insights into FeS cluster enzymes. Here, we focus on the crystallization of hydrogenases, which catalyze the reversible reduction of protons to hydrogen, and nitrogenases, which reduce dinitrogen to ammonia. A specific focus is given to the different experimental parameters and strategies that are used to trap distinct enzyme states, specifically, oxidants, reductants, and gas-treatments. Other themesmore » presented here include the recent use of Cryo-EM, and how coupling various spectroscopies to crystallization is opening up new approaches for structural and mechanistic analysis.« less
How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement
de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; van de Koppel, Johan
2014-01-01
Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern. PMID:24225464
de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J; Hengeveld, Geerten M; Nolet, Bart A; Herman, Peter M J; van de Koppel, Johan
2014-01-07
Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.
Kim, Sean H. J.; Jackson, Andre J.; Hunt, C. Anthony
2014-01-01
The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog’s plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability. PMID:25268237
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Giraldez, J. V.
2016-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-01-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121
To support risk assessment efforts, a comparative intratracheal instillation (IT) study is being conducted to provide mechanistic understanding of the toxicity of different types of fibers encountered in EPA clean-up efforts. While other types of asbestos have been shown to cause...
USDA-ARS?s Scientific Manuscript database
Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on th...
van Bilsen, Jolanda H M; Sienkiewicz-Szłapka, Edyta; Lozano-Ojalvo, Daniel; Willemsen, Linette E M; Antunes, Celia M; Molina, Elena; Smit, Joost J; Wróblewska, Barbara; Wichers, Harry J; Knol, Edward F; Ladics, Gregory S; Pieters, Raymond H H; Denery-Papini, Sandra; Vissers, Yvonne M; Bavaro, Simona L; Larré, Colette; Verhoeckx, Kitty C M; Roggen, Erwin L
2017-01-01
The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Quantitative analysis to guide orphan drug development.
Lesko, L J
2012-08-01
The development of orphan drugs for rare diseases has made impressive strides in the past 10 years. There has been a surge in orphan drug designations, but new drug approvals have not kept up. This article presents a three-pronged hierarchical strategy for quantitative analysis of data at the descriptive, mechanistic, and systems levels of the biological system that could represent a standardized and rational approach to orphan drug development. Examples are provided to illustrate the concept.
Evidence, illness, and causation: an epidemiological perspective on the Russo-Williamson Thesis.
Fiorentino, Alexander R; Dammann, Olaf
2015-12-01
According to the Russo-Williamson Thesis, causal claims in the health sciences need to be supported by both difference-making and mechanistic evidence. In this article, we attempt to determine whether Evidence-based Medicine (EBM) can be improved through the consideration of mechanistic evidence. We discuss the practical composition and function of each RWT evidence type and propose that exposure-outcome evidence (previously known as difference-making evidence) provides associations that can be explained through a hypothesis of causation, while mechanistic evidence provides finer-grained associations and knowledge of entities that ultimately explains a causal hypothesis. We suggest that mechanistic evidence holds untapped potential to add value to the assessment of evidence quality in EBM and propose initial recommendations for the integration of mechanistic and exposure-outcome evidence to improve EBM by robustly leveraging available evidence in support of good medical decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pietsch, Kerstin; Saul, Nadine; Swain, Suresh C.; Menzel, Ralph; Steinberg, Christian E. W.; Stürzenbaum, Stephen R.
2012-01-01
Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of Caenorhabditis elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to three concentrations of Quercetin or Tannic acid, respectively. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published datasets derived from (i) longevity mutants or (ii) infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the prediction of putative mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling, and the p38 MAPK pathway and Tannic acid’s impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, and genetic players of the p38 MAPK pathway therefore seem to be crucial regulators for both polyphenols. Taken together, this study underlines how meta-analyses can provide an insight of molecular events that go beyond the traditional categorization into gene ontology-terms and Kyoto encyclopedia of genes and genomes-pathways. It also supports the call to expand the generation of comparative and integrative databases, an effort that is currently still in its infancy. PMID:22493606
Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
NASA Astrophysics Data System (ADS)
Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie
2018-05-01
Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.
Perception of mind and dehumanization: Human, animal, or machine?
Morera, María D; Quiles, María N; Correa, Ana D; Delgado, Naira; Leyens, Jacques-Philippe
2016-08-02
Dehumanization is reached through several approaches, including the attribute-based model of mind perception and the metaphor-based model of dehumanization. We performed two studies to find different (de)humanized images for three targets: Professional people, Evil people, and Lowest of the low. In Study 1, we examined dimensions of mind, expecting the last two categories to be dehumanized through denial of agency (Lowest of the low) or experience (Evil people), compared with humanized targets (Professional people). Study 2 aimed to distinguish these targets using metaphors. We predicted that Evil and Lowest of the low targets would suffer mechanistic and animalistic dehumanization, respectively; our predictions were confirmed, but the metaphor-based model nuanced these results: animalistic and mechanistic dehumanization were shown as overlapping rather than independent. Evil persons were perceived as "killing machines" and "predators." Finally, Lowest of the low were not animalized but considered human beings. We discuss possible interpretations. © 2016 International Union of Psychological Science.
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Theoretical studies on the inactivation mechanism of γ-aminobutyric acid aminotransferase.
Durak, A T; Gökcan, H; Konuklar, F A S
2011-07-21
The inactivation mechanism of γ-aminobutyric acid aminotransferase (GABA-AT) in the presence of γ-vinyl-aminobutyric acid, an anti-epilepsy drug, has been studied by means of theoretical calculations. Density functional theory methods have been applied to compare the three experimentally proposed inactivation mechanisms (Silverman et al., J. Biol. Chem., 2004, 279, 363). All the calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Single point solvent calculations were carried out in water, by means of an integral equation formalism-polarizable continuum model (IEFPCM) at the B3LYP/6-31+G(d,p) level of theory. The present calculations provide an insight into the mechanistic preferences of the inactivation reaction of GABA-AT. The results also allow us to elucidate the key factors behind the mechanistic preferences. The computations also confirm the importance of explicit water molecules around the reacting center in the proton transfer steps.
Introduction to the Minireview Series on Modern Technologies for In-cell Biochemistry.
Lutsenko, Svetlana
2016-02-19
The last decade has seen enormous progress in the exploration and understanding of the behavior of molecules in their natural cellular environments at increasingly high spatial and temporal resolution. Advances in microscopy and the development of new fluorescent reagents as well as genetic editing techniques have enabled quantitative analysis of protein interactions, intracellular trafficking, metabolic changes, and signaling. Modern biochemistry now faces new and exciting challenges. Can traditionally "in vitro" experiments, e.g. analysis of protein folding and conformational transitions, be done in cells? Can the structure and behavior of endogenous and/or non-tagged recombinant proteins be analyzed and altered within the cell or in cellular compartments? How can molecules and their actions be studied mechanistically in tissues and organs? Is personalized cellular biochemistry a reality? This thematic series summarizes recent studies that illustrate some first steps toward successfully answering these modern biochemical questions. The first minireview focuses on utilization of three-dimensional primary enteroids and organoids for mechanistic studies of intestinal biology with molecular resolution. The second minireview describes application of single chain antibodies (nanobodies) for monitoring and regulating protein dynamics in vitro and in cells. The third minireview highlights advances in using NMR spectroscopy for analysis of protein folding and assembly in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Systems Toxicology: From Basic Research to Risk Assessment
2014-01-01
Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment. PMID:24446777
Systems toxicology: from basic research to risk assessment.
Sturla, Shana J; Boobis, Alan R; FitzGerald, Rex E; Hoeng, Julia; Kavlock, Robert J; Schirmer, Kristin; Whelan, Maurice; Wilks, Martin F; Peitsch, Manuel C
2014-03-17
Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment.
AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer.
Bi, Lihong; Ma, Feng; Tian, Rui; Zhou, Yanli; Lan, Weiguang; Song, Quanmao; Cheng, Xiankui
2018-02-20
Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times. Copyright © 2017 Elsevier B.V. All rights reserved.
DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
OGDEN DM; KIRCH NW
2007-10-31
This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.
Generative mechanistic explanation building in undergraduate molecular and cellular biology
NASA Astrophysics Data System (ADS)
Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.
2017-09-01
When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.
ERIC Educational Resources Information Center
Nichols, Michael A.; Waner, Mark J.
2010-01-01
An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be…
ERIC Educational Resources Information Center
Cooper, Richard P.
2007-01-01
It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories…
ERIC Educational Resources Information Center
Saba, Shahrokh; Ciaccio, James A.
2016-01-01
While orthoesters are often used by chemists as alkylating, acylating, and formylating agents, they are rarely encountered in introductory organic chemistry curricula. We describe a second-semester organic chemistry laboratory experiment in which students acetylate unknown amine hydrochloride salts with trimethyl orthoacetate (TMOA) in the absence…
Mechanistic linkage of hydrologic regime to summer growth of age-0 Atlantic salmon
K.H. Nislow; A.J. Sepulveda; C.L. Folt
2004-01-01
Significant reductions in juvenile stream salmonid growth have been observed in association with low summer flow, but underlying mechanisms are poorly understood and predictive power is limited. We conducted a stage-specific analysis of the relationship between summer flow and the growth of age-0 Atlantic salmon Salmo salar in two rearing sites in...
Scherrer, Stephen R; Rideout, Brendan P; Giorli, Giacomo; Nosal, Eva-Marie; Weng, Kevin C
2018-01-01
Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI) is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. A series of experiments were designed to develop and validate our model. Deep (300 m) and shallow (25 m) ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver's blanking interval cause CPDI effects. Analysis of empirical data estimated the average maximum detection radius (AMDR), the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was estimated within a 276.5 m radius of the receiver. These empirical estimations were consistent with mechanistic model predictions. CPDI affected detection at distances closer than 259-326 m from receivers. AMDR determined from the shallow ranging experiment was between 278 and 290 m with CPDI neither predicted nor observed. Results of validation experiments were consistent with mechanistic model predictions. Finally, we were able to predict detection/nondetection with 95.7% accuracy using the mechanistic model's criterion when simulating transmissions with and without multipaths. Close proximity detection interference results from combinations of depth and distance that produce reflected signals arriving after a receiver's blanking interval has ended. Deployment scenarios resulting in CPDI can be predicted with the proposed mechanistic model. For deeper deployments, sea-surface reflections can produce CPDI conditions, resulting in transmission rejection, regardless of the reflective properties of the seafloor.
Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo
2014-01-01
The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072
Lee, Jaejin; Kim, Dohyeon; Yu, Kyunghoon; Cho, Youngki; You, Joshua H
2018-01-01
Isometric cervical flexor system exercise (ICF) and isometric cervical extensor system exercise (ICE) are cervical stabilization techniques that have been used to restore cervical crossed syndrome (CCS)-associated forward head posture. However, the therapeutic effects and underlying motor control mechanisms remain elusive. The purpose of present study was investigating the concurrent therapeutic effects of ICF and ICE on muscle size, muscle imbalance ratio, and muscle recruitment sequence using ultrasound imaging and electromyography. A total of 18 participants (7 females; age=24±4.0 years) with CCS associated with forward head posture underwent ICF and ICE. Paired t-test analysis was used for statistical analysis. Paired t-test analysis showed that sternocleidomastoid thickness was greater during ICF than ICE. Similarly, cross-sectional area and horizontal thickness of the longus colli were greater during ICE than ICF. The upper trapezius/lower trapezius muscle imbalance ratio and the pectoralis major/lower trapezius muscle imbalance ratio were significantly decreased during the application of ICE compared to ICF. These results provide compelling, mechanistic evidence as to how ICE is more beneficial for the restoration of neuromuscular imbalance than ICF in individuals with CCS.
Khare, Sangeeta; Lawhon, Sara D.; Drake, Kenneth L.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris A.; Galindo, Cristi L.; Garner, Harold R.; Adams, Leslie Garry
2012-01-01
Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch. PMID:22912686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankaran, Harish; Zhang, Yi; Chrisler, William B.
2012-10-02
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerizationmore » and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.« less
Smith, Sherri A; Gagnon, Sandra; Waters, Nigel J
2017-03-01
1. The plasma clearance of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was shown to be markedly lower in human compared to the preclinical species, mouse, rat and dog. 2. This led to vertical allometry where various interspecies scaling methods were applied to the data, with fold-errors between 4 and 13. We had previously reported the elimination and metabolic pathways of EPZ-5676 were similar across species. Therefore, the aim of this work was to explore the mechanistic basis for the species difference in clearance for EPZ-5676, focusing on other aspects of disposition. 3. The protein binding of EPZ-5676 in human plasma demonstrated a non-linear relationship suggesting saturable binding at physiologically relevant concentrations. Saturation of protein binding was not observed in plasma from preclinical species. Kinetic determinations using purified serum albumin and alpha-1-acid glycoprotein (AAG) confirmed that EPZ-5676 is a high affinity ligand for AAG with a dissociation constant (K d ) of 0.24 μM. 4. Permeability limited uptake was also considered since hepatocyte CL int was much lower in human relative to preclinical species. Passive unbound CL int for EPZ-5676 was estimated using a correlation analysis of logD and data previously reported on seven drugs in sandwich cultured human hepatocytes. 5. Incorporation of AAG binding and permeability limited hepatic uptake into the well-stirred liver model gave rise to a predicted clearance for EPZ-5676 within 2-fold of the observed value of 1.4 mL min -1 kg -1 . This analysis suggests that the marked species difference in EPZ-5676 clearance is driven by high affinity binding to human AAG as well as species-specific hepatic uptake invoking the role of transporters.
Kelly, Damian J; McCann, Gerald P; Blackman, Daniel; Curzen, Nicholas P; Dalby, Miles; Greenwood, John P; Fairbrother, Kathryn; Shipley, Lorraine; Kelion, Andrew; Heatherington, Simon; Khan, Jamal N; Nazir, Sheraz; Alahmar, Albert; Flather, Marcus; Swanton, Howard; Schofield, Peter; Gunning, Mark; Hall, Roger; Gershlick, Anthony H
2013-02-22
Primary percutaneous coronary intervention (PPCI) is the preferred strategy for acute ST-segment elevation myocardial infarction (STEMI), with evidence of improved clinical outcomes compared to fibrinolytic therapy. However, there is no consensus on how best to manage multivessel coronary disease detected at the time of PPCI, with little robust data on best management of angiographically significant stenoses detected in non-infarct-related (N-IRA) coronary arteries. CVLPRIT will determine the optimal management of N-IRA lesions detected during PPCI. CVLPRIT (Complete Versus culprit-Lesion only PRimary PCI Trial) is an open-label, prospective, randomised, multicentre trial. STEMI patients undergo verbal "assent" on presentation. Patients are included when angiographic MVD has been detected, and randomised to culprit (IRA)-only PCI (n=150) or in-patient complete multivessel PCI (n=150). Cumulative major adverse cardiac events (MACE) - all-cause mortality, recurrent MI, heart failure, need for revascularisation (PCI or CABG) will be recorded at 12 months. Secondary endpoints include safety endpoints of confirmed ischaemic stroke, intracranial haemorrhage, major non-intracranial bleeding, and repair of vascular complications. A cardiac magnetic resonance (CMR) substudy will provide mechanistic data on infarct size, myocardial salvage index and microvascular obstruction. A cost efficacy analysis will be undertaken. The management of multivessel coronary artery disease in the setting of PPCI for STEMI, including the timing of when to perform non-culprit-artery revascularisation if undertaken, remains unresolved. CVLPRIT will yield mechanistic insights into the myocardial consequence of N-IRA intervention undertaken during the peri-infarct period.
Intercellular interaction mechanisms for the origination of blast crisis in chronic myeloid leukemia
Sachs, Rainer; Johnsson, Kerstin; Hahnfeldt, Philip; Luo, Janet; Chen, Allen; Hlatky, Lynn
2011-01-01
Chronic myeloid leukemia (CML) is characterized by a specific chromosome translocation, and its pathobiology is considered comparatively well understood. Thus, quantitative analysis of CML and its progression to blast crisis may help elucidate general mechanisms of carcinogenesis and cancer progression. Hitherto it has been widely postulated that CML blast crisis originates mainly via cell-autonomous mechanisms such as secondary mutations or genomic instability, rather than by intercellular interactions. However, recent results suggest that intercellular interactions play an important role in carcinogenesis. In this study, we analyzed alternative mechanisms, including pairwise intercellular interactions, for CML blast crisis origination. A quantitative, mechanistic cell population dynamics model was employed. This model used recent data on imatinib-treated CML; it also used earlier clinical data, not previously incorporated into current mathematical CML/imatinib models. With the pre-imatinib data, which include results on many more blast crises, we obtained evidence that the driving mechanism for blast crisis origination is intercellular interaction between specific cell types. Assuming leukemic-normal interactions resulted in a statistically significant improvement over assuming either cell-autonomous mechanisms or interactions between leukemic cells. This conclusion was robust with regard to changes in the model’s adjustable parameters. Application of the results to patients treated with imatinib suggests that imatinib may act not only on malignant blast precursors, but also, to a limited degree, on the malignant blasts themselves. Major Findings A comprehensive mechanistic model gives evidence that the main driving mechanisms for CML blast crisis origination are interactions between leukemic and normal cells. PMID:21487044
Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A
2010-04-20
Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, D.; Brunett, A.; Passerini, S.
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less
Characterizing Chain Processes in Visible Light Photoredox Catalysis
Cismesia, Megan A.
2015-01-01
The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708
Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.
Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M
2018-06-18
Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Indeterminate Growth: Could It Represent the Ancestral Condition?
Hariharan, Iswar K.; Wake, David B.; Wake, Marvalee H.
2016-01-01
Although we are used to the idea that many organisms stop growing when they reach a predictable size, in many taxa, growth occurs throughout the life of an organism, a phenomenon referred to as indeterminate growth. Our comparative analysis suggests that indeterminate growth may indeed represent the ancestral condition, whereas the permanent arrest of growth may be a more derived state. Consistent with this idea, in diverse taxa, the basal branches show indeterminate growth, whereas more derived branches arrest their growth. Importantly, in some closely related taxa, the termination of growth has evolved in mechanistically distinct ways. Also, even within a single organism, different organs can differ with respect to whether they terminate their growth or not. Finally, the study of tooth development indicates that, even at the level of a single tissue, multiple determinate patterns of growth can evolve from an ancestral one that is indeterminate. PMID:26216720
Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan
2016-10-11
Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This 'healthy' gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues.
The cultural evolution of fertility decline
Colleran, Heidi
2016-01-01
Cultural evolutionists have long been interested in the problem of why fertility declines as populations develop. By outlining plausible mechanistic links between individual decision-making, information flow in populations and competition between groups, models of cultural evolution offer a novel and powerful approach for integrating multiple levels of explanation of fertility transitions. However, only a modest number of models have been published. Their assumptions often differ from those in other evolutionary approaches to social behaviour, but their empirical predictions are often similar. Here I offer the first overview of cultural evolutionary research on demographic transition, critically compare it with approaches taken by other evolutionary researchers, identify gaps and overlaps, and highlight parallel debates in demography. I suggest that researchers divide their labour between three distinct phases of fertility decline—the origin, spread and maintenance of low fertility—each of which may be driven by different causal processes, at different scales, requiring different theoretical and empirical tools. A comparative, multi-level and mechanistic framework is essential for elucidating both the evolved aspects of our psychology that govern reproductive decision-making, and the social, ecological and cultural contingencies that precipitate and sustain fertility decline. PMID:27022079
The structural basis for enhanced silver reflectance in Koi fish scale and skin.
Gur, Dvir; Leshem, Ben; Oron, Dan; Weiner, Steve; Addadi, Lia
2014-12-10
Fish have evolved biogenic multilayer reflectors composed of stacks of intracellular anhydrous guanine crystals separated by cytoplasm, to produce the silvery luster of their skin and scales. Here we compare two different variants of the Japanese Koi fish; one of them with enhanced reflectivity. Our aim is to determine how biology modulates reflectivity, and from this to obtain a mechanistic understanding of the structure and properties governing the intensity of silver reflectance. We measured the reflectance of individual scales with a custom-made microscope, and then for each individual scale we characterized the structure of the guanine crystal/cytoplasm layers using high-resolution cryo-SEM. The measured reflectance and the structural-geometrical parameters were used to calculate the reflectance of each scale, and the results were compared to the experimental measurements. We show that enhanced reflectivity is obtained with the same basic guanine crystal/cytoplasm stacks, but the structural arrangement between the stack, inside the stacks, and relative to the scale surface is varied when reflectivity is enhanced. Finally, we propose a model that incorporates the basic building block parameters, the crystal orientation inside the tissue, and the resulting reflectance and explains the mechanistic basis for reflectance enhancement.
Renner, Simone; Dobenecker, Britta; Blutke, Andreas; Zöls, Susanne; Wanke, Rüdiger; Ritzmann, Mathias; Wolf, Eckhard
2016-07-01
The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Intra-oral models to assess cariogenicity: evaluation of oral fluoride and pH.
Duckworth, R M; Gilbert, R J
1992-04-01
The main purpose of this paper is to review the various methods used for evaluation of fluoride retention in saliva, plaque, and enamel following application of topical anti-caries treatments such as F dentifrices and F mouthwashes. Such methods monitor delivery of fluoride to the site of action, the mouth, and so can be regarded as assessing potential for treatment action. It is concluded that intra-oral fluoride measurements are appropriate to support bioequivalence claims for anti-caries treatments, provided that particular chosen methods have been calibrated against clinical data. Studies purporting to show superiority are of interest mechanistically, but links to caries are not sufficiently understood to define superiority claims. A wide variety of methods has been used for determination of the fluoride content of enamel. Of these, well-established methods such as the micro-drill and acid-etch procedures are appropriate for routine comparative testing, whereas sophisticated instrumental techniques such as SIMS are more appropriate for detailed mechanistic studies. Intra-oral pH measurements are also relevant to many topical treatments. Single-site determinations in plaque are preferred, but for comparative studies non-specific determinations may be adequate.
Model reduction of the numerical analysis of Low Impact Developments techniques
NASA Astrophysics Data System (ADS)
Brunetti, Giuseppe; Šimůnek, Jirka; Wöhling, Thomas; Piro, Patrizia
2017-04-01
Mechanistic models have proven to be accurate and reliable tools for the numerical analysis of the hydrological behavior of Low Impact Development (LIDs) techniques. However, their widespread adoption is limited by their complexity and computational cost. Recent studies have tried to address this issue by investigating the application of new techniques, such as surrogate-based modeling. However, current results are still limited and fragmented. One of such approaches, the Model Order Reduction (MOR) technique, can represent a valuable tool for reducing the computational complexity of a numerical problems by computing an approximation of the original model. While this technique has been extensively used in water-related problems, no studies have evaluated its use in LIDs modeling. Thus, the main aim of this study is to apply the MOR technique for the development of a reduced order model (ROM) for the numerical analysis of the hydrologic behavior of LIDs, in particular green roofs. The model should be able to correctly reproduce all the hydrological processes of a green roof while reducing the computational cost. The proposed model decouples the subsurface water dynamic of a green roof in a) one-dimensional (1D) vertical flow through a green roof itself and b) one-dimensional saturated lateral flow along the impervious rooftop. The green roof is horizontally discretized in N elements. Each element represents a vertical domain, which can have different properties or boundary conditions. The 1D Richards equation is used to simulate flow in the substrate and drainage layers. Simulated outflow from the vertical domain is used as a recharge term for saturated lateral flow, which is described using the kinematic wave approximation of the Boussinesq equation. The proposed model has been compared with the mechanistic model HYDRUS-2D, which numerically solves the Richards equation for the whole domain. The HYDRUS-1D code has been used for the description of vertical flow, while a Finite Volume Scheme has been adopted for lateral flow. Two scenarios involving flat and steep green roofs were analyzed. Results confirmed the accuracy of the reduced order model, which was able to reproduce both subsurface outflow and the moisture distribution in the green roof, significantly reducing the computational cost.
Liu, Zhichao; Wang, Yuping; Borlak, Jürgen; Tong, Weida
2016-04-05
Hepatic steatosis is characterised by excessive triglyceride accumulation in the form of lipid droplets (LD); however, mechanisms differ in drug induced (DIS) and/or non-alcoholic fatty liver disease (NAFLD). Here we hypothesized distinct molecular circuits of microRNA/LD-associated target genes and searched for mechanistically linked serum and tissue biomarkers that would distinguish between DIS and human NAFLD of different grades. We analysed >800 rat hepatic whole genome data for 17 steatotic drugs and identified 157 distinct miRNAs targeting 77 DIS regulated genes. Subsequently, genomic data of N = 105 cases of human NAFLD and N = 32 healthy controls were compared to serum miRNA profiles of N = 167 NAFLD patients. This revealed N = 195 tissue-specific miRNAs being mechanistically linked to LD-coding genes and 24 and 9 miRNAs were commonly regulated in serum and tissue of advanced and mild NAFLD, respectively. The NASH serum regulated miRNAs informed on hepatic inflammation, adipocytokine and insulin signalling, ER-and caveolae associated activities and altered glycerolipid metabolism. Conversely, serum miRNAs associated with blunt steatosis specifically highlighted activity of FOXO1&HNF4α on CPT2, the lipid droplet and ER-lipid-raft associated PLIN3 and Erlin1. Altogether, serum miRNAs informed on the molecular pathophysiology of NAFLD and permitted differentiation between DIS and NAFLD of different grades.
The importance of mechanisms for the evolution of cooperation
van den Berg, Pieter; Weissing, Franz J.
2015-01-01
Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. PMID:26246554
Bakker, Ronan; Pierce, Stephanie; Myers, Dean
2017-08-01
Prostaglandins play a critical role in cervical ripening by increasing inflammatory mediators in the cervix and inducing cervical remodeling. Prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) exert different effects on these processes and on myometrial contractility. These mechanistic differences may affect outcomes in women treated with dinoprostone, a formulation identical to endogenous PGE2, compared with misoprostol, a PGE1 analog. The objective of this review is to evaluate existing evidence regarding mechanistic differences between PGE1 and PGE2, and consider the clinical implications of these differences in patients requiring cervical ripening for labor induction. We conducted a critical narrative review of peer-reviewed articles identified using PubMed and other online databases. While both dinoprostone and misoprostol are effective in cervical ripening and labor induction, they differ in their clinical and pharmacological profiles. PGE2 has been shown to stimulate interleukin-8, an inflammatory cytokine that promotes the influx of neutrophils and induces remodeling of the cervical extracellular matrix, and to induce functional progesterone withdrawal. Misoprostol has been shown to elicit a dose-dependent effect on myometrial contractility, which may affect rates of uterine tachysystole in clinical practice. Differences in the mechanism of action between misoprostol and PGE2 may contribute to their variable effects in the cervix and myometrium, and should be considered to optimize outcomes.
Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.
Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J
2014-01-01
A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.
NASA Astrophysics Data System (ADS)
Azhar, Ehtsham; Maraj, E. N.; Iqbal, Z.
2018-03-01
The present paper provides a comparative analysis between nano and hybrid nanofluid axisymmetric flow towards a radially stretching porous surface along with heat transfer mechanism in the presence of magnetic force and internal heat source/sink. The effect of various shapes of nanoparticles is also taken into account. The physical flow problem is modeled and presented in cylindrical coordinates. Governing nonlinear equations are converted into a system of differential equations by using the similarity approach. Numerical results are computed by means of a well-established and stable numerical procedure. The main implication of this research is the influence of nanoparticle shapes, internal heating and applied magnetic field on fluid flow and heat transfer. Computational results are extracted out with the help of mathematics software MATLAB. One of the key findings of the present analysis is the fact that the maximum temperature is achieved for lamina-shaped SiO2 and MoS2-SiO2 nanoparticles and the lowest temperature is attained in the case of sphere-shaped nanoparticles.
Beck, Ashley; Bernstein, Hans; Carlson, Ross
2017-06-19
Metabolic acclimation to photosynthesis-associated stresses was examined in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass composition, was analyzed using ecological resource allocation theory to predict and interpret metabolic acclimation to irradiance, O 2, and nutrient stresses. Reduced growth efficiency, shifts in photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion patterns were predicted to occur along culturing stress gradients. These predictions were compared with photobioreactor physiological data and previously published transcriptomic data and found to be highly consistent with observations, providing a systems-based rationale for themore » culture phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight into stress acclimation strategies in photoautotrophs and establishes a framework for predicting, designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of controllable parameters.« less
NASA Astrophysics Data System (ADS)
Kosasih, U.; Wahyudin, W.; Prabawanto, S.
2017-09-01
This study aims to understand how learners do look back their idea of problem solving. This research is based on qualitative approach with case study design. Participants in this study were xx students of Junior High School, who were studying the material of congruence and similarity. The supporting instruments in this research are test and interview sheet. The data obtained were analyzed by coding and constant-comparison. The analysis find that there are three ways in which the students review the idea of problem solving, which is 1) carried out by comparing answers to the completion measures exemplified by learning resources; 2) carried out by examining the logical relationship between the solution and the problem; and 3) carried out by means of confirmation to the prior knowledge they have. This happens because most students learn in a mechanistic way. This study concludes that students validate the idea of problem solving obtained, influenced by teacher explanations, learning resources, and prior knowledge. Therefore, teacher explanations and learning resources contribute to the success or failure of students in solving problems.
Accurate, Streamlined Analysis of mRNA Translation by Sucrose Gradient Fractionation
Aboulhouda, Soufiane; Di Santo, Rachael; Therizols, Gabriel; Weinberg, David
2017-01-01
The efficiency with which proteins are produced from mRNA molecules can vary widely across transcripts, cell types, and cellular states. Methods that accurately assay the translational efficiency of mRNAs are critical to gaining a mechanistic understanding of post-transcriptional gene regulation. One way to measure translational efficiency is to determine the number of ribosomes associated with an mRNA molecule, normalized to the length of the coding sequence. The primary method for this analysis of individual mRNAs is sucrose gradient fractionation, which physically separates mRNAs based on the number of bound ribosomes. Here, we describe a streamlined protocol for accurate analysis of mRNA association with ribosomes. Compared to previous protocols, our method incorporates internal controls and improved buffer conditions that together reduce artifacts caused by non-specific mRNA–ribosome interactions. Moreover, our direct-from-fraction qRT-PCR protocol eliminates the need for RNA purification from gradient fractions, which greatly reduces the amount of hands-on time required and facilitates parallel analysis of multiple conditions or gene targets. Additionally, no phenol waste is generated during the procedure. We initially developed the protocol to investigate the translationally repressed state of the HAC1 mRNA in S. cerevisiae, but we also detail adapted procedures for mammalian cell lines and tissues. PMID:29170751
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-07-14
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-01-01
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928
Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-08-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Mondal, A; Chatterjee, R; Datta, S
2018-02-08
Phosphopantetheine adenylyltransferase (PPAT) is a rate-limiting enzyme essential for biosynthesis of coenzyme A (CoA), which in turn is responsible to regulate the secretion of exotoxins via type III secretion system in Pseudomonas aeruginosa, causing severe health concerns ranging from nosocomial infections to respiratory failure. Acetyl coenzyme A (AcCoA) is a newly reported inhibitor of PPAT, believed to regulate the cellular levels of CoA and thereby the pathogenesis. Very little is known so far regarding the mechanistic details of AcCoA binding inside PPAT-binding cleft. Herein, we have used extensive umbrella sampling simulations to decipher mechanistic insight into the inhibitor accommodation inside the binding cavity. We found that R90 and D94 residues act like a gate near the binding cavity to accommodate and stabilize the incoming ligand. Mutational models concerning these residues also show considerable difference in AcCoA-binding thermodynamics. To substantiate our findings, we have solved the first crystal structure of apo-PPAT from P. aeruginosa, which also found to agree with the simulation results. Collectively, these results describe the mechanistic details of accommodation of inhibitor molecule inside PPAT-binding cavity and also offer valuable insight into regulating cellular levels of CoA/AcCoA and thus controlling the pathogenicity.
Gu, Bon-Wun; Lee, Chang-Gu; Park, Seong-Jik
2018-03-01
The aim of this study was to investigate the removal of fluoride from aqueous solutions by using crushed concrete fines as a filter medium under varying conditions of pH 3-7, flow rate of 0.3-0.7 mL/min, and filter depth of 10-20 cm. The performance of fixed-bed columns was evaluated on the basis of the removal ratio (Re), uptake capacity (qe), degree of sorbent used (DoSU), and sorbent usage rate (SUR) obtained from breakthrough curves (BTCs). Three widely used semi-mechanistic models, that is, Bohart-Adams, Thomas, and Yoon-Nelson models, were applied to simulate the BTCs and to derive the design parameters. The Box-Behnken design of response surface methodology (RSM) was used to elucidate the individual and interactive effects of the three operational parameters on the column performance and to optimize these parameters. The results demonstrated that pH is the most important factor in the performance of fluoride removal by a fixed-bed column. The flow rate had a significant negative influence on Re and DoSU, and the effect of filter depth was observed only in the regression model for DoSU. Statistical analysis indicated that the model attained from the RSM study is suitable for describing the semi-mechanistic model parameters.
Wagner, Andrew J; Malinowska-Kolodziej, Izabela; Morgan, Jeffrey A; Qin, Wei; Fletcher, Christopher D M; Vena, Natalie; Ligon, Azra H; Antonescu, Cristina R; Ramaiya, Nikhil H; Demetri, George D; Kwiatkowski, David J; Maki, Robert G
2010-02-10
PURPOSE Perivascular epithelioid cell tumors (PEComas) represent a family of mesenchymal neoplasms, mechanistically linked through activation of the mTOR signaling pathway. There is no known effective therapy for PEComa, and the molecular pathophysiology of aberrant mTOR signaling provided us with a scientific rationale to target this pathway therapeutically. On this mechanistic basis, we treated three consecutive patients with metastatic PEComa with an oral mTOR inhibitor, sirolimus. PATIENTS AND METHODS Patients with advanced PEComa were treated with sirolimus and consented to retrospective collection of data from their medical records and analysis of archival tumor specimens. Tumor response was determined by computed tomography scans obtained at the clinical discretion of the treating physicians. Tumors were assessed for immunohistochemical evidence of mTORC1 activation and genetic evidence of alterations in TSC1 and TSC2. Results Radiographic responses to sirolimus were observed in all patients. PEComas demonstrated loss of TSC2 protein expression and evidence of baseline mTORC1 activation. Homozygous loss of TSC1 was identified in one PEComa. CONCLUSION Inhibition of mTORC1, pathologically activated by loss of the TSC1/TSC2 tumor suppressor complex, is a rational mechanistic target for therapy in PEComas. The clinical activity of sirolimus in PEComa additionally strengthens the pathobiologic similarities linking PEComas to other neoplasms related to the tuberous sclerosis complex.
Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation
Taylor, Janet L.; Hong, S. Lee; Law, Timothy D.; Russ, David W.
2015-01-01
Background. Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. Methods. Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. Results. The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. Conclusions. These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex. PMID:25834195
Thiem, Alrik
2014-12-01
In recent years, the method of Qualitative Comparative Analysis (QCA) has been enjoying increasing levels of popularity in evaluation and directly neighboring fields. Its holistic approach to causal data analysis resonates with researchers whose theories posit complex conjunctions of conditions and events. However, due to QCA's relative immaturity, some of its technicalities and objectives have not yet been well understood. In this article, I seek to raise awareness of six pitfalls of employing QCA with regard to the following three central aspects: case numbers, necessity relations, and model ambiguities. Most importantly, I argue that case numbers are irrelevant to the methodological choice of QCA or any of its variants, that necessity is not as simple a concept as it has been suggested by many methodologists, and that doubt must be cast on the determinacy of virtually all results presented in past QCA research. By means of empirical examples from published articles, I explain the background of these pitfalls and introduce appropriate procedures, partly with reference to current software, that help avoid them. QCA carries great potential for scholars in evaluation and directly neighboring areas interested in the analysis of complex dependencies in configurational data. If users beware of the pitfalls introduced in this article, and if they avoid mechanistic adherence to doubtful "standards of good practice" at this stage of development, then research with QCA will gain in quality, as a result of which a more solid foundation for cumulative knowledge generation and well-informed policy decisions will also be created. © The Author(s) 2014.
Weissgerber, Tracey L.; Milic, Natasa M.; Milin-Lazovic, Jelena S.; Garovic, Vesna D.
2015-01-01
Endothelial dysfunction is believed to play a critical role in preeclampsia, however it is unclear whether this dysfunction precedes the pregnancy or is caused by early pathophysiological events. It is also unclear for how long vascular dysfunction may persist post-partum, and whether it represents a mechanism linking preeclampsia with future cardiovascular disease. Our objective was to determine whether women with preeclampsia have worse vascular function compared to women who did not have preeclampsia by performing systematic review and meta-analysis of studies that examined endothelial dysfunction using flow-mediated dilation (FMD). We included studies published before May 29, 2015 that examined FMD before, during and after preeclampsia. Differences in FMD between study groups were evaluated by standardized mean differences. Out of 610 abstracts identified through PubMED, EMBASE and Web of Science, 37 studies were eligible for the meta-analysis. When compared to women who did not have preeclampsia, women who had preeclampsia had lower FMD prior to the development of preeclampsia (~20–29 weeks gestation), at the time of preeclampsia, and for three years post-partum, with the estimated magnitude of the effect ranging between 0.5 and 3 standard deviations. Similar effects were observed when the analysis was limited to studies that excluded women with chronic hypertension, smokers, or both. Vascular dysfunction predates preeclampsia and may contribute to its pathogenesis. Future studies should address whether vascular changes that persist after preeclamptic pregnancies may represent a mechanistic link with the increased risk for future cardiovascular disease. PMID:26711737
"Ambivalence to Technology in Jeunet's" Le Fabuleux Destin d'Amelie Poulain
ERIC Educational Resources Information Center
Moore, Rick Clifton
2006-01-01
Although at one level Jean-Pierre Jeunets "Le Fabuleux Destin d'Amelie Poulain" is a sweet, attractive film about a young Parisian doing good deeds, it also offers a compelling analysis of the role of technology in our modern lives. The film paints a world where machines and a mechanistic worldview are appealing because humans have a desire to…
The Possible Role of Intuition in the Child's Epistemic Beliefs in the Piagetian Data Set
ERIC Educational Resources Information Center
Bickart, John
2013-01-01
U.S. schools teach predominately to the analytical, left-brain, which has foundations in behaviorism, and uses a mechanistic paradigm that influences epistemic beliefs of how learning takes place. This result is that learning is impeded. Using discourse analysis of a set of Piagetian children, this study re-analyzed Piaget's work. This study found…
Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy.
Montefiori, David C
2014-01-01
This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection.
ERIC Educational Resources Information Center
Ciaccio, James A.; Guevara, Elena L.; Alam, Rabeka; D'agrosa, Christina D.
2010-01-01
We introduce students to dimethylsulfoxonium methylide (DMSY) epoxidation of aryl and nonconjugated aliphatic aldehydes and ketones without revealing that DMSY cyclopropanates enones by Michael-initiated ring closure (MIRC). Each student performs the reaction of DMSY with one of nine carbonyl compounds, including four enones, and then analyzes the…
Anomalous toluene transport in model segmented polyurethane-urea/clay nanocomposites.
Rath, Sangram K; Bahadur, Jitendra; Panda, Himanshu S; Sen, Debasis; Patro, T Umasankar; S, Praveen; Patri, Manornajan; Khakhar, Devang V
2018-05-16
The kinetics of liquid solvent sorption in polymeric systems and their nanocomposites often deviate from normal Fickian behaviour. This needs to be understood and interpreted, in terms of their underlying mechanistic origins. In the present study, the results of time dependent toluene sorption measurements in model segmented polyurethane-urea/clay nanocomposites have been analysed at room temperature. The studies revealed pronounced S-shaped sorption curves and unusually higher swelling of the nanocomposites compared to the neat polyurethane-urea matrix. Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements on the nanocomposites in the dry and liquid toluene saturated state have been carried out. The DMA studies revealed a significant decrease in the α relaxation temperature and storage modulus of the nanocomposites in the swollen state compared to the dry samples. The SAXS results showed that the nanoclay dispersion morphology transformed from intercalation in the dry state to exfoliation in the swollen state and the interdomain distance between hard segments increased upon swelling. Thermodynamic analysis of the Flory-Huggins interaction parameter (χ) of nanocomposite/toluene systems revealed increasingly negative χ values with increased clay loading. These results imply a significant plasticization effect of toluene on the nanocomposites. An interpretation of these data, which relates the abovementioned results, is presented in the framework of differential swelling stress (DSS) induced deviation from Fickian transport characteristics. We expect that these findings and methods may provide new insight into the analysis of the solvent diffusion process in heterogeneous polymers and their nanocomposites.
Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling
NASA Astrophysics Data System (ADS)
Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.
2016-12-01
In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.
Klein, Penelope; Picard, George; Baumgarden, Joseph; Schneider, Roger
2017-09-23
Abstract : Qigong is the meditative movement and therapeutic exercise of Eastern medicine. A growing body of evidence is validating its health benefits leading to mechanistic questions of how it works. The purpose of this article is to explore mechanisms of action related to Qigong, with the intent of unifying Eastern and Western exercise theory and to present a model for Qigong exercise analysis. Three exercises from a standardized Qigong form: 'Plucking the Stars', 'Lotus Leaves Rustle in the Wind', and 'Pacing Forwards and Backwards' were selected for meditative, energetic, and physical analyses. Meditative aspects include relaxation response, interoception and exteroception. Energetic aspects include stimulation of meridians through mental intent, acupressure, and self-massage. Physical aspects include flexibility, strength, articular stimulation, neuro-integration, respiratory effect, fascial stretch, visceral massage, balance challenge CranioSacral pump, lymphatic and venous return and glandular stimulation, and physiologic response to relaxation. Knowledge of mechanisms of action for specific Qigong exercises can guide operational definition of Qigong, selection of outcomes assessment in future research, inform prescriptive practice addressing clinical health issues, and advance adoption of Qigong practice within integrative health care. The model of analysis demonstrated in this discussion may assist in these endeavors.
MELODI: Mining Enriched Literature Objects to Derive Intermediates.
Elsworth, Benjamin; Dawe, Karen; Vincent, Emma E; Langdon, Ryan; Lynch, Brigid M; Martin, Richard M; Relton, Caroline; Higgins, Julian P T; Gaunt, Tom R
2018-01-12
The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk]. © The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association
Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches
2010-07-01
1-0431 TITLE: Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches PRINCIPAL INVESTIGATOR...June 2010 4. TITLE AND SUBTITLE Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic 5a. CONTRACT NUMBER...1-0430; W81XWH-08-1-0431; Grant sponsor: NIH/NCRR COBRE Grant; Grant number: 1P20RR020171; Grant sponsor: NIH/NIDDK Grant; Grant number: R01DK053525
Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI
2015-10-01
1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include
Cognitive science as an interface between rational and mechanistic explanation.
Chater, Nick
2014-04-01
Cognitive science views thought as computation; and computation, by its very nature, can be understood in both rational and mechanistic terms. In rational terms, a computation solves some information processing problem (e.g., mapping sensory information into a description of the external world; parsing a sentence; selecting among a set of possible actions). In mechanistic terms, a computation corresponds to causal chain of events in a physical device (in engineering context, a silicon chip; in biological context, the nervous system). The discipline is thus at the interface between two very different styles of explanation--as the papers in the current special issue well illustrate, it explores the interplay of rational and mechanistic forces. Copyright © 2014 Cognitive Science Society, Inc.
Allison, Beth J.; Kaandorp, Joepe J.; Kane, Andrew D.; Camm, Emily J.; Lusby, Ciara; Cross, Christine M.; Nevin-Dolan, Rhianon; Thakor, Avnesh S.; Derks, Jan B.; Tarry-Adkins, Jane L.; Ozanne, Susan E.; Giussani, Dino A.
2016-01-01
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2–1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.—Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. PMID:26932929
Allison, Beth J; Kaandorp, Joepe J; Kane, Andrew D; Camm, Emily J; Lusby, Ciara; Cross, Christine M; Nevin-Dolan, Rhianon; Thakor, Avnesh S; Derks, Jan B; Tarry-Adkins, Jane L; Ozanne, Susan E; Giussani, Dino A
2016-05-01
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2-1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.-Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. © FASEB.
Bartolucci, Chiara; Lombardo, Giovanni Pietro
2012-08-01
This article examines the scientific-cultural context of the second half of the 1800s, during which psychological science emerged in Italy. The article explores the contribution made by the emergence of the primary research traditions of that period, namely, physiological anthropology and phreniatry, by means of a methodology that combines content analysis with a classical historiographical study of the period. Themes and authors deriving from the various disciplines in the human and natural sciences were identified through a content analysis of the Rivista di Filosofia Scientifica [Journal of Scientific Philosophy], a periodical that is representative of Italian positivism. The analysis highlights the epistemological perspective held by scholars who, distancing themselves from the mechanistic reductionism of the proponents of positivism, integrated a naturalistic and evolutionary conceptualization with the neo-Kantian critique. A clearly delineated naturalistic and differential perspective of scientific research that brought about the birth of psychology as an experimental discipline in Italy in the 1900s emerges from the analysis, including psychology and psychopathology as studied by the phreniatrists Gabriele Buccola, Enrico Morselli, and Eugenio Tanzi; Tito Vignoli and Giuseppe Sergi's work in comparative anthropology; Giulio Fano's approach and contribution to physiology; and Enrico Ferri's contribution to criminology. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Characterization of juvenile play in rats: importance of sex of self and sex of partner.
Argue, Kathryn J; McCarthy, Margaret M
2015-01-01
Juvenile social play is observed in many mammalian species, and its disruption in several neuropsychiatric disorders has greatly increased interest in understanding the origins and sources of variability in this behavior. We quantified social play behavior in juvenile rats and investigated the impact of sex and familiarity of the play partner. Sex differences in play behavior were investigated by comparing males and females from either same- or mixed-sex pairs with data pooled over 12 days of analysis. Whether play was altered based on the sex of the play partner was assessed using a paired analysis to compare play with a same- or opposite-sex play partner for both males and females. Additionally, a repeated measures design was utilized to determine whether play changed with increasing age. On postnatal day 33, a novel play partner was introduced. We used a repeated measures analysis to compare postnatal day 33 with the previous day. These approaches were used to assess the effects of age, sex, sex of partner, and familiarity of partner on total social play behavior as well as how play was broken down into components, such as pouncing, pinning, chasing, and boxing. There were sex differences in total frequency of play, and specific parameters of play behavior, such as chasing, pouncing, pinning, and boxing. Additionally, males significantly altered their play behavior in response to the sex of their play partner, whereas females were more sensitive to the familiarity of the play partner. This study provides critical groundwork for uncovering factors that regulate social play behavior and can be used to guide future mechanistic based work.
Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.
2013-01-01
To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021
Bridging paradigms: hybrid mechanistic-discriminative predictive models.
Doyle, Orla M; Tsaneva-Atansaova, Krasimira; Harte, James; Tiffin, Paul A; Tino, Peter; Díaz-Zuccarini, Vanessa
2013-03-01
Many disease processes are extremely complex and characterized by multiple stochastic processes interacting simultaneously. Current analytical approaches have included mechanistic models and machine learning (ML), which are often treated as orthogonal viewpoints. However, to facilitate truly personalized medicine, new perspectives may be required. This paper reviews the use of both mechanistic models and ML in healthcare as well as emerging hybrid methods, which are an exciting and promising approach for biologically based, yet data-driven advanced intelligent systems.
Atopic Dermatitis According to GARP: New Mechanistic Insights in Disease Pathogenesis.
Nousbeck, Janna; Irvine, Alan D
2016-12-01
In complex disease such as atopic dermatitis, the journey from identification of strong risk loci to profound functional and mechanistic insights can take several years. Here, Manz et al. have elegantly deciphered the mechanistic pathways in the well-established 11q13.5 atopic dermatitis risk locus. Their genetic and functional insights emphasize a role for T regulatory cells in atopic dermatitis pathogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Jiang Md, Chen-Yang; Jiang Ms, Ru-Hong
2014-01-01
Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Catheter ablation has proven more effective than antiarrhythmic drugs in preventing clinical recurrence of AF, however long-term outcome remains unsatisfactory. Ablation strategies have evolved based on progress in mechanistic understanding, and technologies have advanced continuously. This article reviews current mechanistic concepts and technological advancements in AF treatment, and summarizes their impact on improvement of AF ablation outcome.
Rocca, Elena
2017-02-01
The cultural divide between scientists and clinicians has been described as undermining the advance of medical science, by hindering the production of practice-relevant research and of research-informed clinical decisions. Here, I consider the field of post-marketing risk assessment of drugs as an example of strict interdependence between basic biomedical research, clinical research, and clinical evaluation and show how it would benefit from a closer collaboration between scientists and clinicians. The risk assessment of drugs after their marketing relies on spontaneous adverse effect reports to drug agencies and on peer-reviewed case reports. I emphasize the importance of qualitative analysis of such reports for the improvement of mechanistic understanding of harmful effects of drugs. I argue that mechanistic explanations of drug effects are at least as important as determination of their frequency, in order to establish causation. An ideal risk assessment, then, verifies not only the frequency of undesired effects but also why and how the harm happens. For this purpose, the frequency or novelty of the unintended outcome, although contextually indicative, should not determine the epistemic value of a report. Details about the context that generated an unexpected outcome, instead, can offer the chance of improving causal understanding about how the intervention works. This is illustrated through examples from medical research. Mechanistic understanding is a domain of joint collaboration among (1) clinicians, in charge of detailed, qualitative reporting of patient stories about side effects, (2) qualitative clinical researchers, in charge of analyzing clinical contexts or harmful effects and formulating explanatory hypotheses, and (3) basic biomedical researchers, in charge of verifying such hypotheses. In addition, direct information flow can on one side focus clinicians' attention on knowledge gaps about drugs/effects where more research is needed, while on the other side create a more contextualized concept of mechanism among scientists. © 2016 John Wiley & Sons, Ltd.
Holmes, Brent; Lee, Jihye; Landon, Kenna A; Benavides-Serrato, Angelica; Bashir, Tariq; Jung, Michael E; Lichtenstein, Alan; Gera, Joseph
2016-07-01
Our previous work has demonstrated an intrinsic mRNA-specific protein synthesis salvage pathway operative in glioblastoma (GBM) tumor cells that is resistant to mechanistic target of rapamycin (mTOR) inhibitors. The activation of this internal ribosome entry site (IRES)-dependent mRNA translation initiation pathway results in continued translation of critical transcripts involved in cell cycle progression in the face of global eIF-4E-mediated translation inhibition. Recently we identified compound 11 (C11), a small molecule capable of inhibiting c-MYC IRES translation as a consequence of blocking the interaction of a requisite c-MYC IRES trans-acting factor, heterogeneous nuclear ribonucleoprotein A1, with its IRES. Here we demonstrate that C11 also blocks cyclin D1 IRES-dependent initiation and demonstrates synergistic anti-GBM properties when combined with the mechanistic target of rapamycin kinase inhibitor PP242. The structure-activity relationship of C11 was investigated and resulted in the identification of IRES-J007, which displayed improved IRES-dependent initiation blockade and synergistic anti-GBM effects with PP242. Mechanistic studies with C11 and IRES-J007 revealed binding of the inhibitors within the UP1 fragment of heterogeneous nuclear ribonucleoprotein A1, and docking analysis suggested a small pocket within close proximity to RRM2 as the potential binding site. We further demonstrate that co-therapy with IRES-J007 and PP242 significantly reduces tumor growth of GBM xenografts in mice and that combined inhibitor treatments markedly reduce the mRNA translational state of cyclin D1 and c-MYC transcripts in these tumors. These data support the combined use of IRES-J007 and PP242 to achieve synergistic antitumor responses in GBM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.
2014-12-01
In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers leads to overall improvements in CLM4.5's global carbon cycling predictions.
Vugmeyster, Yulia; Rohde, Cynthia; Perreault, Mylene; Gimeno, Ruth E; Singh, Pratap
2013-01-01
TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h(-1)). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level<10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action.
2013-01-01
Background High-throughput profiling of human tissues typically yield as results the gene lists comprised of a mix of relevant molecular entities with multiple false positives that obstruct the translation of such results into mechanistic hypotheses. From general probabilistic considerations, gene lists distilled for the mechanistically relevant components can be far more useful for subsequent experimental design or data interpretation. Results The input candidate gene lists were processed into different tiers of evidence consistency established by enrichment analysis across subsets of the same experiments and across different experiments and platforms. The cut-offs were established empirically through ontological and semantic enrichment; resultant shortened gene list was re-expanded by Ingenuity Pathway Assistant tool. The resulting sub-networks provided the basis for generating mechanistic hypotheses that were partially validated by literature search. This approach differs from previous consistency-based studies in that the cut-off on the Receiver Operating Characteristic of the true-false separation process is optimized by flexible selection of the consistency building procedure. The gene list distilled by this analytic technique and its network representation were termed Compact Disease Model (CDM). Here we present the CDM signature for the study of early-stage Alzheimer’s disease. The integrated analysis of this gene signature allowed us to identify the protein traffic vesicles as prominent players in the pathogenesis of Alzheimer’s. Considering the distances and complexity of protein trafficking in neurons, it is plausible that spontaneous protein misfolding along with a shortage of growth stimulation result in neurodegeneration. Several potentially overlapping scenarios of early-stage Alzheimer pathogenesis have been discussed, with an emphasis on the protective effects of AT-1 mediated antihypertensive response on cytoskeleton remodeling, along with neuronal activation of oncogenes, luteinizing hormone signaling and insulin-related growth regulation, forming a pleiotropic model of its early stages. Alignment with emerging literature confirmed many predictions derived from early-stage Alzheimer’s disease’ CDM. Conclusions A flexible approach for high-throughput data analysis, the Compact Disease Model generation, allows extraction of meaningful, mechanism-centered gene sets compatible with instant translation of the results into testable hypotheses. PMID:24196233
Glinsky, Gennadi V.
2016-01-01
Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290
Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes.
Faber-Hammond, Joshua J; Phillips, Ruth B; Brown, Kim H
2015-06-25
Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Altered intestinal epithelium-associated lymphocyte repertoires and function in ApcMin/+ mice.
Marsh, Lorraine; Coletta, P Louise; Hull, Mark A; Selby, Peter J; Carding, Simon R
2012-01-01
ApcMin/+ mice spontaneously develop multiple intestinal adenomas along the length of the small intestine and colon. Currently little is known about the role of the immune system in regulating intestinal tumorigenesis in these animals. This study characterised small intestinal intraepithelial lympho-- cyte (IEL) populations in C56BL/6J ApcMin/+ mice and wild-type (Apc+/+) mice. We also determined the effect that T cells expressing either γδ or αβ encoded T cell receptors (TcR) exert on intestinal tumorigenesis. ApcMin/+ mice had significantly lower numbers of CD3+ IELs compared with Apc+/+ littermates and displayed reduced cytotoxicity against tumour target cells. Further analysis of IEL cytotoxicity revealed differences in the cytotoxic pathways utilised by IELs in ApcMin/+ and Apc+/+ mice with ApcMin/+ IELs displaying an absence of perforin/granzyme-mediated killing and increased levels of Fas-FasL-mediated cytotoxicity compared with wild-type IELs. Analysis of ApcMin/+ mice crossed with αβ T-cell deficient (TcRβ-/-) or γδ T-cell deficient (TcRδ-/-) mice on the same genetic background revealed decreased tumour multiplicity in the absence of both αβ and γδ T-cells. This study demonstrates that altered T-cell subsets play important roles in promoting tumorigenesis in ApcMin/+ mice and forms the basis for future mechanistic studies.
High Matrix Metalloproteinase Activity is a Hallmark of Periapical Granulomas
de Paula e Silva, Francisco Wanderley Garcia; D'Silva, Nisha J.; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-01-01
Introduction Inability to distinguish periapical cysts from granulomas prior to performing root canal treatment leads to uncertainty in treatment outcomes, because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Since matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed using one-way ANOVA followed by Tukey test. Results We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the matrix metalloproteinase (MMP) family. Compared to cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs), in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared to cysts. Conclusion Our findings indicate that high enzymatic MMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas, unlike periapical cysts. PMID:19720222
Kirk, Devin; Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K; Krkošek, Martin; Luijckx, Pepijn
2018-02-01
The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.
Shaffer, David W.; Xie, Yan; Concepcion, Javier J.
2017-09-01
In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less
Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K.; Krkošek, Martin; Luijckx, Pepijn
2018-01-01
The complexity of host–parasite interactions makes it difficult to predict how host–parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host–parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level. PMID:29415043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, David W.; Xie, Yan; Concepcion, Javier J.
In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less
Development of a minimal saponin vaccine adjuvant based on QS-21
NASA Astrophysics Data System (ADS)
Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, Nagavarakishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.
2014-07-01
Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability and an enigmatic molecular mechanism of action. Herein we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained preferentially at the injection site and the nearest draining lymph nodes compared with the attenuated variants. Overall, these studies have yielded critical insights into saponin structure-function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.
Development of a minimal saponin vaccine adjuvant based on QS-21
Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, NagaVaraKishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.
2014-01-01
Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies. PMID:24950335
Willms, J Alexander; Beel, Rita; Schmidt, Martin L; Mundt, Christian
2014-01-01
Summary A new 4-hydroxy-L-proline derivative with a charged 1-ethylpyridinium-4-phenoxy substituent has been synthesized with the aim of facilitating mechanistic studies of proline-catalyzed reactions by ESI mass spectrometry. The charged residue ensures a strongly enhanced ESI response compared to neutral unmodified proline. The connection by a rigid linker fixes the position of the charge tag far away from the catalytic center in order to avoid unwanted interactions. The use of a charged catalyst leads to significantly enhanced ESI signal abundances for every catalyst-derived species which are the ones of highest interest present in a reacting solution. The new charged proline catalyst has been tested in the direct asymmetric inverse aldol reaction between aldehydes and diethyl ketomalonate. Two intermediates in accordance with the List–Houk mechanism for enamine catalysis have been detected and characterized by gas-phase fragmentation. In addition, their temporal evolution has been followed using a microreactor continuous-flow technique. PMID:25246962
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Eltahir, Elfatih A. B.
2011-02-01
This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.
Fawzy, Ahmed
2016-03-15
The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shaffer, David W; Xie, Yan; Concepcion, Javier J
2017-10-16
In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O-O bond formation step as the key step in water oxidation catalysis. The two main pathways to accomplish this step, single-site water nucleophilic attack and O-O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.
Ionizing Radiation: The issue of radiation quality
NASA Astrophysics Data System (ADS)
Prise, Kevin; Schettino, Giuseppe
Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.
Dinavahi, Saketh S; Noory, Mohammad A; Gowda, Raghavendra; Drabick, Joseph J; Berg, Arthur; Neves, Rogerio I; Robertson, Gavin P
2018-03-01
Drug combinations acting synergistically to kill cancer cells have become increasingly important in melanoma as an approach to manage the recurrent resistant disease. Protein kinase B (AKT) is a major target in this disease but its inhibitors are not effective clinically, which is a major concern. Targeting AKT in combination with WEE1 (mitotic inhibitor kinase) seems to have potential to make AKT-based therapeutics effective clinically. Since agents targeting AKT and WEE1 have been tested individually in the clinic, the quickest way to move the drug combination to patients would be to combine these agents sequentially, enabling the use of existing phase I clinical trial toxicity data. Therefore, a rapid preclinical approach is needed to evaluate whether simultaneous or sequential drug treatment has maximal therapeutic efficacy, which is based on a mechanistic rationale. To develop this approach, melanoma cell lines were treated with AKT inhibitor AZD5363 [4-amino- N -[(1 S )-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7 H -pyrrolo[2,3- d ]pyrimidin-4-yl)piperidine-4-carboxamide] and WEE1 inhibitor AZD1775 [2-allyl-1-(6-(2-hydroxypropan-2-yl)pyridin-2-yl)-6-((4-(4-methylpiperazin-1-yl)phenyl)amino)-1 H -pyrazolo[3,4- d ]pyrimidin-3(2 H )-one] using simultaneous and sequential dosing schedules. Simultaneous treatment synergistically reduced melanoma cell survival and tumor growth. In contrast, sequential treatment was antagonistic and had a minimal tumor inhibitory effect compared with individual agents. Mechanistically, simultaneous targeting of AKT and WEE1 enhanced deregulation of the cell cycle and DNA damage repair pathways by modulating transcription factors p53 and forkhead box M1, which was not observed with sequential treatment. Thus, this study identifies a rapid approach to assess the drug combinations with a mechanistic basis for selection, which suggests that combining AKT and WEE1 inhibitors is needed for maximal efficacy. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract.
Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches
2012-07-01
1-0431 TITLE: Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches PRINCIPAL INVESTIGATOR...July 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 July 2008 – 30 June 2012 4. TITLE AND SUBTITLE Biomarker Discovery and Mechanistic...Department of Defense Synergistic Idea Development Award W81XWH-08-1-0430 (to H.Z) and W81XWH-08-1-0431 (to N.K.), an NIH/NCRR COBRE grant 1P20RR020171 (to
Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia
While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less
A mechanistic study of limonene oxidation products and pathways following cleaning activities
NASA Astrophysics Data System (ADS)
Carslaw, Nicola
2013-12-01
Indoor air pollution has caused increasing concern since the 1970s, when the advent of stricter energy efficiency measures lead to increased reports of building related symptoms. Cleaning activities have been linked to adverse health effects indoors, although it is unclear which of the components of cleaning products cause these reported health effects. This paper uses a detailed chemical model for indoor air chemistry, to identify the species formed at the highest concentrations following use of a limonene-based cleaning product. The explicit nature of the chemical mechanism also permits the key pathways to their formation to be identified. The results show that the key species in terms of gas-phase concentration are multi-functional carbonyl species including limonaldehyde, 4-acetyl-1-methyl-1-cyclohexene and other dicarbonyl species. The particle-phase was dominated by peroxide species. The predicted gas-phase concentrations for three limonene-oxidation products were compared to recently published human reference values, but found not to be high enough to cause concern for typical indoor conditions, or under high indoor ozone conditions. However, cleaning products contain a range of terpenes other than limonene, which could also produce some of the secondary products identified here, as well as more common species such as formaldehyde, glyoxal and hydrogen peroxide. A mechanistic pathway analysis shows that the secondary products formed through limonene oxidation indoors depend critically on the competition between ozone and hydroxyl radicals, such that indoor pollutant concentrations and composition could vary widely in different locations for a nominally similar residence and indoor activities. Future studies should focus on aiming to measure multi-functional carbonyl species indoors to help validate models, whilst human reference values are needed for many more relevant species indoors.
Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y.; Mattay, Govind S.; Braun, Allen R.
2014-01-01
A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. PMID:25225001
Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y; Mattay, Govind S; Braun, Allen R
2014-12-01
A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; and 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Wind on Coxiella burnetii Transmission Between Cattle Herds: a Mechanistic Approach.
Nusinovici, S; Hoch, T; Brahim, M L; Joly, A; Beaudeau, F
2017-04-01
There is a consensus that wind plays a key role in the transmission of Coxiella burnetii, the causative agent of Q fever, between ruminants and from ruminants to humans. However, no observational study so far has focused on the mechanisms associated with this airborne transmission. This study applied a mechanistic epidemiological approach to investigate the processes underlying the wind effect and to assess its influence on the risk for a dairy herd to become C. burnetii infected. Ninety-five dairy cattle herds located in the Finistère department (western France) were subjected to samplings of bulk tank milk and indoor dust every 4 months over a 1-year period to determine their C. burnetii status using PCR tests. A total of 27 incident herd-periods (negative-tested on both PCR tests and becoming positive-tested at least once at the subsequent sampling time) and 71 negative herd-periods were retained for analysis. Using logistic regression, we assessed the effect of (i) the cumulated number of bacteria in herds located under the main wind direction and (ii) the mean wind speed in this area, on a given herd's risk of becoming incident. Compared to herds in areas with low wind speed (≤5.5 m/s), the risk was significantly higher (OR = 3.7) in herds in areas with high wind speed (>5.5 m/s) and high bacterial load (>10), whereas it was not significantly different from unity in other situations. In agreement with our assumptions, C. burnetii transmission to a previously infection-free herd occurs only when (i) the wind transporting from infected sources and (ii) the load in the contaminated particles/aerosols generated are high enough to act jointly. © 2015 Blackwell Verlag GmbH.
Mechanistic analysis of water oxidation catalyst cis-[Ru(bpy) 2(H 2O) 2] 2+: Effect of dimerization
Erdman, Darren; Pineda-Galvan, Yuliana; Pushkar, Yulia
2017-01-25
While the catalytic activity of some Ru-based polypyridine complexes in water oxidation is well established, the relationship between their chemical structure and activity is less known. In this work, the single site Ru complex [Ru(bpy) 2(H 2O) 2] 2+ (bpy = 2,20-bipyridine)—which can exist as either a cis isomer or a trans isomer—is investigated. While a difference in the catalytic activity of these two isomers is well established, with cis-[Ru(bpy) 2(H 2O) 2] 2+ being much more active, no mechanistic explanation of this fact has been presented. The oxygen evolving capability of both isomers at multiple concentrations has been investigated,more » with cis-[Ru(bpy) 2(H 2O) 2] 2+ showing a second-order dependence of O2 evolution activity with increased catalyst concentration. Measurement of the electron paramagnetic resonance (EPR) spectrum of cis-[Ru(bpy) 2(H 2O) 2] 2+, shortly after oxidation with CeIV, showed the presence of a signal matching that of cis,cis-[Ru III(bpy) 2(H 2O)ORu IV(bpy) 2(OH)] 4+, also known as “blue dimer”. The formation of dimers is a concentration-dependent process, which could serve to explain the greater than first order increase in catalytic activity. The trans isomer showed a first-order dependence of O 2 evolution on catalyst concentration. As a result, behavior of [Ru(bpy) 2(H 2O) 2] 2+ isomers is compared with other Ru-based catalysts, in particular [Ru(tpy)(bpy)(H 2O)] 2+ (tpy = 2,20;6,20 0-terpyridine).« less
A general model for stray dose calculation of static and intensity-modulated photon radiation.
Hauri, Pascal; Hälg, Roger A; Besserer, Jürgen; Schneider, Uwe
2016-04-01
There is an increasing number of cancer survivors who are at risk of developing late effects caused by ionizing radiation such as induction of second tumors. Hence, the determination of out-of-field dose for a particular treatment plan in the patient's anatomy is of great importance. The purpose of this study was to analytically model the stray dose according to its three major components. For patient scatter, a mechanistic model was developed. For collimator scatter and head leakage, an empirical approach was used. The models utilize a nominal beam energy of 6 MeV to describe two linear accelerator types of a single vendor. The parameters of the models were adjusted using ionization chamber measurements registering total absorbed dose in simple geometries. Whole-body dose measurements using thermoluminescent dosimeters in an anthropomorphic phantom for static and intensity-modulated treatment plans were compared to the 3D out-of-field dose distributions calculated by a combined model. The absolute mean difference between the whole-body predicted and the measured out-of-field dose of four different plans was 11% with a maximum difference below 44%. Computation time of 36 000 dose points for one field was around 30 s. By combining the model-calculated stray dose with the treatment planning system dose, the whole-body dose distribution can be viewed in the treatment planning system. The results suggest that the model is accurate, fast and can be used for a wide range of treatment modalities to calculate the whole-body dose distribution for clinical analysis. For similar energy spectra, the mechanistic patient scatter model can be used independently of treatment machine or beam orientation.
Sen, Sambuddha; Cowan, J A
2017-10-01
Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS) 4 complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
Fawcett, Tim W.; Higginson, Andrew D.; Metsä-Simola, Niina; Hagen, Edward H.; Houston, Alasdair I.; Martikainen, Pekka
2017-01-01
Divorce is associated with an increased probability of a depressive episode, but the causation of events remains unclear. Adaptive models of depression propose that depression is a social strategy in part, whereas non-adaptive models tend to propose a diathesis-stress mechanism. We compare an adaptive evolutionary model of depression to three alternative non-adaptive models with respect to their ability to explain the temporal pattern of depression around the time of divorce. Register-based data (304,112 individuals drawn from a random sample of 11% of Finnish people) on antidepressant purchases is used as a proxy for depression. This proxy affords an unprecedented temporal resolution (a 3-monthly prevalence estimates over 10 years) without any bias from non-compliance, and it can be linked with underlying episodes via a statistical model. The evolutionary-adaptation model (all time periods with risk of divorce are depressogenic) was the best quantitative description of the data. The non-adaptive stress-relief model (period before divorce is depressogenic and period afterwards is not) provided the second best quantitative description of the data. The peak-stress model (periods before and after divorce can be depressogenic) fit the data less well, and the stress-induction model (period following divorce is depressogenic and the preceding period is not) did not fit the data at all. The evolutionary model was the most detailed mechanistic description of the divorce-depression link among the models, and the best fit in terms of predicted curvature; thus, it offers most rigorous hypotheses for further study. The stress-relief model also fit very well and was the best model in a sensitivity analysis, encouraging development of more mechanistic models for that hypothesis. PMID:28614385
Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro
2014-02-01
Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P < 0.001). Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.
Rosenström, Tom; Fawcett, Tim W; Higginson, Andrew D; Metsä-Simola, Niina; Hagen, Edward H; Houston, Alasdair I; Martikainen, Pekka
2017-01-01
Divorce is associated with an increased probability of a depressive episode, but the causation of events remains unclear. Adaptive models of depression propose that depression is a social strategy in part, whereas non-adaptive models tend to propose a diathesis-stress mechanism. We compare an adaptive evolutionary model of depression to three alternative non-adaptive models with respect to their ability to explain the temporal pattern of depression around the time of divorce. Register-based data (304,112 individuals drawn from a random sample of 11% of Finnish people) on antidepressant purchases is used as a proxy for depression. This proxy affords an unprecedented temporal resolution (a 3-monthly prevalence estimates over 10 years) without any bias from non-compliance, and it can be linked with underlying episodes via a statistical model. The evolutionary-adaptation model (all time periods with risk of divorce are depressogenic) was the best quantitative description of the data. The non-adaptive stress-relief model (period before divorce is depressogenic and period afterwards is not) provided the second best quantitative description of the data. The peak-stress model (periods before and after divorce can be depressogenic) fit the data less well, and the stress-induction model (period following divorce is depressogenic and the preceding period is not) did not fit the data at all. The evolutionary model was the most detailed mechanistic description of the divorce-depression link among the models, and the best fit in terms of predicted curvature; thus, it offers most rigorous hypotheses for further study. The stress-relief model also fit very well and was the best model in a sensitivity analysis, encouraging development of more mechanistic models for that hypothesis.
Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate
NASA Astrophysics Data System (ADS)
Mosselhy, Dina A.; El-Aziz, Mohamed Abd; Hanna, Magdy; Ahmed, Mohamed A.; Husien, Mona M.; Feng, Qingling
2015-12-01
The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag+ ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO3) against five different bacterial species; Aeromonas hydrophila ( A. hydrophila), Pseudomonas putida ( Ps. putida), Escherichia coli ( E. coli), Staphylococcus aureus ( S. aureus), and Bacillus subtilis ( B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO3. The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO3.
Comparing mechanistic and empirical approaches to modeling the thermal niche of almond
NASA Astrophysics Data System (ADS)
Parker, Lauren E.; Abatzoglou, John T.
2017-09-01
Delineating locations that are thermally viable for cultivating high-value crops can help to guide land use planning, agronomics, and water management. Three modeling approaches were used to identify the potential distribution and key thermal constraints on on almond cultivation across the southwestern United States (US), including two empirical species distribution models (SDMs)—one using commonly used bioclimatic variables (traditional SDM) and the other using more physiologically relevant climate variables (nontraditional SDM)—and a mechanistic model (MM) developed using published thermal limitations from field studies. While models showed comparable results over the majority of the domain, including over existing croplands with high almond density, the MM suggested the greatest potential for the geographic expansion of almond cultivation, with frost susceptibility and insufficient heat accumulation being the primary thermal constraints in the southwestern US. The traditional SDM over-predicted almond suitability in locations shown by the MM to be limited by frost, whereas the nontraditional SDM showed greater agreement with the MM in these locations, indicating that incorporating physiologically relevant variables in SDMs can improve predictions. Finally, opportunities for geographic expansion of almond cultivation under current climatic conditions in the region may be limited, suggesting that increasing production may rely on agronomical advances and densifying current almond plantations in existing locations.
Fluid mechanics of Windkessel effect.
Mei, C C; Zhang, J; Jing, H X
2018-01-08
We describe a mechanistic model of Windkessel phenomenon based on the linear dynamics of fluid-structure interactions. The phenomenon has its origin in an old-fashioned fire-fighting equipment where an air chamber serves to transform the intermittent influx from a pump to a more steady stream out of the hose. A similar mechanism exists in the cardiovascular system where blood injected intermittantly from the heart becomes rather smooth after passing through an elastic aorta. In existing haeodynamics literature, this mechanism is explained on the basis of electric circuit analogy with empirical impedances. We present a mechanistic theory based on the principles of fluid/structure interactions. Using a simple one-dimensional model, wave motion in the elastic aorta is coupled to the viscous flow in the rigid peripheral artery. Explicit formulas are derived that exhibit the role of material properties such as the blood density, viscosity, wall elasticity, and radii and lengths of the vessels. The current two-element model in haemodynamics is shown to be the limit of short aorta and low injection frequency and the impedance coefficients are derived theoretically. Numerical results for different aorta lengths and radii are discussed to demonstrate their effects on the time variations of blood pressure, wall shear stress, and discharge. Graphical Abstract A mechanistic analysis of Windkessel Effect is described which confirms theoretically the well-known feature that intermittent influx becomes continuous outflow. The theory depends only on the density and viscosity of the blood, the elasticity and dimensions of the vessel. Empirical impedence parameters are avoided.
Wagner, Andrew J.; Malinowska-Kolodziej, Izabela; Morgan, Jeffrey A.; Qin, Wei; Fletcher, Christopher D.M.; Vena, Natalie; Ligon, Azra H.; Antonescu, Cristina R.; Ramaiya, Nikhil H.; Demetri, George D.; Kwiatkowski, David J.; Maki, Robert G.
2010-01-01
Purpose Perivascular epithelioid cell tumors (PEComas) represent a family of mesenchymal neoplasms, mechanistically linked through activation of the mTOR signaling pathway. There is no known effective therapy for PEComa, and the molecular pathophysiology of aberrant mTOR signaling provided us with a scientific rationale to target this pathway therapeutically. On this mechanistic basis, we treated three consecutive patients with metastatic PEComa with an oral mTOR inhibitor, sirolimus. Patients and Methods Patients with advanced PEComa were treated with sirolimus and consented to retrospective collection of data from their medical records and analysis of archival tumor specimens. Tumor response was determined by computed tomography scans obtained at the clinical discretion of the treating physicians. Tumors were assessed for immunohistochemical evidence of mTORC1 activation and genetic evidence of alterations in TSC1 and TSC2. Results Radiographic responses to sirolimus were observed in all patients. PEComas demonstrated loss of TSC2 protein expression and evidence of baseline mTORC1 activation. Homozygous loss of TSC1 was identified in one PEComa. Conclusion Inhibition of mTORC1, pathologically activated by loss of the TSC1/TSC2 tumor suppressor complex, is a rational mechanistic target for therapy in PEComas. The clinical activity of sirolimus in PEComa additionally strengthens the pathobiologic similarities linking PEComas to other neoplasms related to the tuberous sclerosis complex. PMID:20048174
Stomatal control and hydraulic conductance, with special reference to tall trees.
Franks, Peter J
2004-08-01
A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.
NASA Astrophysics Data System (ADS)
Thomas, Stephanie Margarete; Beierkuhnlein, Carl
2013-05-01
The occurrence of ectotherm disease vectors outside of their previous distribution area and the emergence of vector-borne diseases can be increasingly observed at a global scale and are accompanied by a growing number of studies which investigate the vast range of determining factors and their causal links. Consequently, a broad span of scientific disciplines is involved in tackling these complex phenomena. First, we evaluate the citation behaviour of relevant scientific literature in order to clarify the question "do scientists consider results of other disciplines to extend their expertise?" We then highlight emerging tools and concepts useful for risk assessment. Correlative models (regression-based, machine-learning and profile techniques), mechanistic models (basic reproduction number R 0) and methods of spatial regression, interaction and interpolation are described. We discuss further steps towards multidisciplinary approaches regarding new tools and emerging concepts to combine existing approaches such as Bayesian geostatistical modelling, mechanistic models which avoid the need for parameter fitting, joined correlative and mechanistic models, multi-criteria decision analysis and geographic profiling. We take the quality of both occurrence data for vector, host and disease cases, and data of the predictor variables into consideration as both determine the accuracy of risk area identification. Finally, we underline the importance of multidisciplinary research approaches. Even if the establishment of communication networks between scientific disciplines and the share of specific methods is time consuming, it promises new insights for the surveillance and control of vector-borne diseases worldwide.
This overview summarizes several EPA Assessment publications reviewing approaches for applying mechanistic information in human health risk assessment and exploring opportunities for progress in this area.
Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes
Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K
2014-01-01
The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840
The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis
Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.
2013-01-01
Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844
Freund, Anat; Drach-Zahavy, Anat
2007-06-01
Teamwork in community clinics was examined to propose and test a model that views the different kinds of commitment (job involvement and organizational commitment) and the potential conflict between them, as mediators between personal and organizational factors (mechanistic structuring and organic structuring) and the effectiveness of interprofessional teamwork. Differences among the professional groups became evident with regard to their views of the goals of teamwork and the ways to achieve them. As for mechanistic structuring, although the clinic members saw their mechanistic structuring in a more bureaucratic sense, the combination of mechanistic structuring and organic structuring led to effective teamwork. In terms of commitment, while staff members were committed primarily to their job and not the organization, commitment to the organization produced effective teamwork in the clinics.
Cremer, Jonas; Arnoldini, Markus; Hwa, Terence
2017-06-20
The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.
Functional and mechanistic diversity of distal transcription enhancers
Bulger, Michael; Groudine, Mark
2013-01-01
Biological differences among metazoans, and between cell types in a given organism, arise in large part due to differences in gene expression patterns. The sequencing of multiple metazoan genomes, coupled with recent advances in genome-wide analysis of histone modifications and transcription factor binding, has revealed that among regulatory DNA sequences, gene-distal enhancers appear to exhibit the greatest diversity and cell-type specificity. Moreover, such elements are emerging as important targets for mutations that can give rise to disease and to genetic variability that underlies evolutionary change. Studies of long-range interactions between distal genomic sequences in the nucleus indicate that enhancers are often important determinants of nuclear organization, contributing to a general model for enhancer function that involves direct enhancer-promoter contact. In a number of systems, however, mechanisms for enhancer function are emerging that do not fit solely within such a model, suggesting that enhancers as a class of DNA regulatory element may be functionally and mechanistically diverse. PMID:21295696
Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier.
Bramini, Mattia; Ye, Dong; Hallerbach, Anna; Nic Raghnaill, Michelle; Salvati, Anna; Aberg, Christoffer; Dawson, Kenneth A
2014-05-27
Understanding nanoparticle interactions with the central nervous system, in particular the blood-brain barrier, is key to advances in therapeutics, as well as assessing the safety of nanoparticles. Challenges in achieving insights have been significant, even for relatively simple models. Here we use a combination of live cell imaging and computational analysis to directly study nanoparticle translocation across a human in vitro blood-brain barrier model. This approach allows us to identify and avoid problems in more conventional inferential in vitro measurements by identifying the catalogue of events of barrier internalization and translocation as they occur. Potentially this approach opens up the window of applicability of in vitro models, thereby enabling in depth mechanistic studies in the future. Model nanoparticles are used to illustrate the method. For those, we find that translocation, though rare, appears to take place. On the other hand, barrier uptake is efficient, and since barrier export is small, there is significant accumulation within the barrier.
Alierta, J A; Pérez, M A; Seral, B; García-Aznar, J M
2016-09-01
The aim of this study is to evaluate the fracture union or non-union for a specific patient that presented oblique fractures in tibia and fibula, using a mechanistic-based bone healing model. Normally, this kind of fractures can be treated through an intramedullary nail using two possible configurations that depends on the mechanical stabilisation: static and dynamic. Both cases are simulated under different fracture geometries in order to understand the effect of the mechanical stabilisation on the fracture healing outcome. The results of both simulations are in good agreement with previous clinical experience. From the results, it is demonstrated that the dynamization of the fracture improves healing in comparison with a static or rigid fixation of the fracture. This work shows the versatility and potential of a mechanistic-based bone healing model to predict the final outcome (union, non-union, delayed union) of realistic 3D fractures where even more than one bone is involved.
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chemical and Biological Studies of Nakiterpiosin and Nakiterpiosinone
Gao, Shuanhu; Wang, Qiaoling; Huang, Lily Jun-Shen; Lum, Lawrence; Chen, Chuo
2009-01-01
Nakiterpiosin and nakiterpiosinone are two related C-nor-D-homosteroids isolated from the sponge Terpios hoshinota that show promise as anti-cancer agents. We have previously described the asymmetric synthesis and the revision of the relative configuration of nakiterpiosin. We now provide detailed information on the stereochemical analysis that supports our structure revision and the synthesis of the originally proposed and revised nakiterpiosin. In addition, we herein describe a refined approach for the synthesis of nakiterpiosin, the first synthesis of nakiterpiosinone, and preliminary mechanistic studies of nakiterpiosin's action in mammalian cells. Cells treated with nakiterpiosin exhibit compromised formation of the primary cilium, an organelle that functions as an assembly point for components of the Hedgehog signal transduction pathway. We provide evidence that the biological effects exhibited by nakiterpiosin are mechanistically distinct from those of well-established anti-mitotic agents such as taxol. Nakiterpiosin may be useful as an anti-cancer agent in those tumors resistant to existing anti-mitotic agents and those dependent on Hedgehog pathway responses for growth. PMID:20000429
Papini, Christina; Royer, Catherine A
2018-02-01
Biological function results from properly timed bio-molecular interactions that transduce external or internal signals, resulting in any number of cellular fates, including triggering of cell-state transitions (division, differentiation, transformation, apoptosis), metabolic homeostasis and adjustment to changing physical or nutritional environments, amongst many more. These bio-molecular interactions can be modulated by chemical modifications of proteins, nucleic acids, lipids and other small molecules. They can result in bio-molecular transport from one cellular compartment to the other and often trigger specific enzyme activities involved in bio-molecular synthesis, modification or degradation. Clearly, a mechanistic understanding of any given high level biological function requires a quantitative characterization of the principal bio-molecular interactions involved and how these may change dynamically. Such information can be obtained using fluctation analysis, in particular scanning number and brightness, and used to build and test mechanistic models of the functional network to define which characteristics are the most important for its regulation.
Shen, Ming-Yi; Liu, Yan-Jun; Don, Ming-Jaw; Liu, Hsien-Yueh; Chen, Zeng-Weng; Mettling, Clément; Corbeau, Pierre; Chiang, Chih-Kang; Jang, Yu-Song; Li, Tzu-Hsuan; Young, Paul; Chang, Cicero L. T.; Lin, Yea-Lih; Yang, Wen-Chin
2011-01-01
Plants provide a rich source of lead compounds for a variety of diseases. A novel approach combining phytochemistry and chemotaxis assays was developed and used to identify and study the mechanisms of action of the active compounds in F. japonica, a medicinal herb traditionally used to treat inflammation. Based on a bioactivity-guided purification strategy, two anthranoids, emodin and physcion, were identified from F. japonica. Spectroscopic techniques were used to characterize its crude extract, fractions and phytochemicals. The crude extract, chloroform fraction, and anthranoids of F. japonica significantly inhibited CXCR4-mediated chemotaxis. Mechanistic studies showed that emodin and physcion inhibited chemotaxis via inactivating the MEK/ERK pathway. Moreover, the crude extract and emodin could prevent or treat type 1 diabetes in non-obese diabetic (NOD) mice. This study illustrates the applicability of a combinational approach for the study of anti-inflammatory medicine and shows the potential of F. japonica and its anthranoids for anti-inflammatory therapy. PMID:22087325
Kandelbauer, A; Kessler, W; Kessler, R W
2008-03-01
The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.
Cremer, Jonas; Arnoldini, Markus; Hwa, Terence
2017-01-01
The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144
A method to identify and analyze biological programs through automated reasoning
Yordanov, Boyan; Dunn, Sara-Jane; Kugler, Hillel; Smith, Austin; Martello, Graziano; Emmott, Stephen
2016-01-01
Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function. PMID:27668090
An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier
Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.
2013-01-01
Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Cross-benzoin and Stetter-type reactions mediated by KOtBu-DMF via an electron-transfer process.
Ragno, Daniele; Zaghi, Anna; Di Carmine, Graziano; Giovannini, Pier Paolo; Bortolini, Olga; Fogagnolo, Marco; Molinari, Alessandra; Venturini, Alessandro; Massi, Alessandro
2016-10-18
The condensation of aromatic α-diketones (benzils) with aromatic aldehydes (benzoin-type reaction) and chalcones (Stetter-type reaction) in DMF in the presence of catalytic (25 mol%) KOtBu is reported. Both types of umpolung processes proceed with good efficiency and complete chemoselectivity. On the basis of spectroscopic evidence (MS analysis) of plausible intermediates and literature reports, the occurrence of different ionic pathways have been evaluated to elucidate the mechanism of a model cross-benzoin-like reaction along with a radical route initiated by an electron-transfer process to benzil from the carbamoyl anion derived from DMF. This mechanistic investigation has culminated in a different proposal, supported by calculations and a trapping experiment, based on double electron-transfer to benzil with formation of the corresponding enediolate anion as the key reactive intermediate. A mechanistic comparison between the activation modes of benzils in KOtBu-DMF and KOtBu-DMSO systems is also described.
Yamagiwa, Noriyuki; Qin, Hongbo; Matsunaga, Shigeki; Shibasaki, Masakatsu
2005-09-28
The full details of a catalytic asymmetric aza-Michael reaction of methoxylamine promoted by rare earth-alkali metal heterobimetallic complexes are described, demonstrating the effectiveness of Lewis acid-Lewis acid cooperative catalysis. First, enones were used as substrates, and the 1,4-adducts were obtained in good yield (57-98%) and high ee (81-96%). Catalyst loading was successfully reduced to 0.3-3 mol % with enones. To broaden the substrate scope of the reaction to carboxylic acid derivatives, alpha,beta-unsaturated N-acylpyrroles were used as monodentate, carboxylic acid derivatives. With beta-alkyl-substituted N-acylpyrroles, the reaction proceeded smoothly and the products were obtained in high yield and good ee. Transformation of the 1,4-adducts from enones and alpha,beta-unsaturated N-acylpyrroles afforded corresponding chiral aziridines and beta-amino acids. Detailed mechanistic studies, including kinetics, NMR analysis, nonlinear effects, and rare earth metal effects, are also described. The Lewis acid-Lewis acid cooperative mechanism, including the substrate coordination mode, is discussed in detail.
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...
2015-04-20
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Virginia E.; Ellebracht, Nathan C.; Lindy, George I.
The kinetic and mechanistic understanding of cooperatively catalyzed aldol and nitroaldol condensations is probed using a series of mesoporous silicas functionalized with aminosilanes to provide bifunctional acid–base character. Mechanistically, a Hammett analysis is performed to determine the effects of electron-donating and electron-withdrawing groups of para-substituted benzaldehyde derivatives on the catalytic activity of each condensation reaction. This information is also used to discuss the validity of previously proposed catalytic mechanisms and to propose a revised mechanism with plausible reaction intermediates. For both reactions, electron-withdrawing groups increase the observed rates of reaction, though resonance effects play an important, yet subtle, role inmore » the nitroaldol condensation, in which a p-methoxy electron-donating group is also able to stabilize the proposed carbocation intermediate. Additionally, activation energies and pre-exponential factors are calculated via the Arrhenius analysis of two catalysts with similar amine loadings: one catalyst had silanols available for cooperative interactions (acid–base catalysis), while the other was treated with a silanol-capping reagent to prevent such cooperativity (base-only catalysis). The values obtained for activation energies and pre-exponential factors in each reaction are discussed in the context of the proposed mechanisms and the importance of cooperative interactions in each reaction. The catalytic activity decreases for all reactions when the silanols are capped with trimethylsilyl groups, and higher temperatures are required to make accurate rate measurements, emphasizing the vital role the weakly acidic silanols play in the catalytic cycles. The results indicate that loss of acid sites is more detrimental to the catalytic activity of the aldol condensation than the nitroaldol condensation, as evidenced by the significant decrease in the pre-exponential factor for the aldol condensation when silanols are unavailable for cooperative interactions. Cooperative catalysis is evidenced by significant changes in the pre-exponential factor, rather than the activation energy for the aldol condensation.« less
Collier, Virginia E.; Ellebracht, Nathan C.; Lindy, George I.; ...
2015-12-09
The kinetic and mechanistic understanding of cooperatively catalyzed aldol and nitroaldol condensations is probed using a series of mesoporous silicas functionalized with aminosilanes to provide bifunctional acid–base character. Mechanistically, a Hammett analysis is performed to determine the effects of electron-donating and electron-withdrawing groups of para-substituted benzaldehyde derivatives on the catalytic activity of each condensation reaction. This information is also used to discuss the validity of previously proposed catalytic mechanisms and to propose a revised mechanism with plausible reaction intermediates. For both reactions, electron-withdrawing groups increase the observed rates of reaction, though resonance effects play an important, yet subtle, role inmore » the nitroaldol condensation, in which a p-methoxy electron-donating group is also able to stabilize the proposed carbocation intermediate. Additionally, activation energies and pre-exponential factors are calculated via the Arrhenius analysis of two catalysts with similar amine loadings: one catalyst had silanols available for cooperative interactions (acid–base catalysis), while the other was treated with a silanol-capping reagent to prevent such cooperativity (base-only catalysis). The values obtained for activation energies and pre-exponential factors in each reaction are discussed in the context of the proposed mechanisms and the importance of cooperative interactions in each reaction. The catalytic activity decreases for all reactions when the silanols are capped with trimethylsilyl groups, and higher temperatures are required to make accurate rate measurements, emphasizing the vital role the weakly acidic silanols play in the catalytic cycles. The results indicate that loss of acid sites is more detrimental to the catalytic activity of the aldol condensation than the nitroaldol condensation, as evidenced by the significant decrease in the pre-exponential factor for the aldol condensation when silanols are unavailable for cooperative interactions. Cooperative catalysis is evidenced by significant changes in the pre-exponential factor, rather than the activation energy for the aldol condensation.« less
Esposito, Susanna; Soto-Martinez, Manuel E; Feleszko, Wojciech; Jones, Marcus H; Shen, Kun-Ling; Schaad, Urs B
2018-06-01
To provide an overview of the mechanistic and clinical evidence for the use of nonspecific immunomodulators in paediatric respiratory tract infection (RTI) and wheezing/asthma prophylaxis. Nonspecific immunomodulators have a long history of empirical use for the prevention of RTIs in vulnerable populations, such as children. The past decade has seen an increase in both the number and quality of studies providing mechanistic and clinical evidence for the prophylactic potential of nonspecific immunomodulators against both respiratory infections and wheezing/asthma in the paediatric population. Orally administered immunomodulators result in the mounting of innate and adaptive immune responses to infection in the respiratory mucosa and anti-inflammatory effects in proinflammatory environments. Clinical data reflect these mechanistic effects in reductions in the recurrence of respiratory infections and wheezing events in high-risk paediatric populations. A new generation of clinical studies is currently underway with the power to position the nonspecific bacterial lysate immunomodulator OM-85 as a potential antiasthma prophylactic. An established mechanistic and clinical role for prophylaxis against paediatric respiratory infections by nonspecific immunomodulators exists. Clinical trials underway promise to provide high-quality data to establish whether a similar role exists in wheezing/asthma prevention.
Toma, Tania; Athanasiou, Thanos; Harling, Leanne; Darzi, Ara; Ashrafian, Hutan
2014-11-01
Social networking services (SNS) can facilitate real-time communication and feedback of blood glucose and other physiological data between patients and healthcare professionals. This systematic review and meta-analysis aims to summarise the current evidence surrounding the role of online social networking services in diabetes care. We performed a systematic literature review of the Medline, EMBASE and PsychINFO databases of all studies reporting HbA1c (glycated haemoglobin) as a measure of glycaemic control for social networking services in diabetes care. HbA1c, clinical outcomes and the type of technology used were extracted. Study quality and publication bias were assessed. SNS interventions beneficially reduced HbA1c when compared to controls, which was confirmed by sensitivity analysis. SNS interventions also significantly improved systolic and diastolic blood pressure, triglycerides and total cholesterol. Subgroup analysis according to diabetes type demonstrated that Type 2 diabetes patients had a significantly greater reduction in HbA1c than those with Type 1 diabetes. Online SNS provide a novel, feasible approach to improving glycaemic control, particularly in patients with Type 2 diabetes. Further mechanistic and cost-effectiveness studies are required to improve our understanding of SNS and its efficacy in diabetes care. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Calibrating the mechanistic-empirical pavement design guide for Kansas.
DOT National Transportation Integrated Search
2015-04-01
The Kansas Department of Transportation (KDOT) is moving toward the implementation of the new American : Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) : for pavement design. The...
Mechanistic-empirical design concepts for continuously reinforced concrete pavements in Illinois.
DOT National Transportation Integrated Search
2009-04-01
The Illinois Department of Transportation (IDOT) currently has an existing jointed plain concrete pavement : (JPCP) design based on mechanistic-empirical (M-E) principles. However, their continuously reinforced concrete : pavement (CRCP) design proce...
A primer on caspase mechanisms.
Ramirez, Monica L Gonzalez; Salvesen, Guy S
2018-01-12
Caspases belong to a diverse clan of proteolytic enzymes known as clan CD with highly disparate functions in cell signaling. The caspase members of this clan are only found in animals, and most of them orchestrate the demise of cells by the highly distinct regulated cell death phenotypes known as apoptosis and pyroptosis. This review looks at the mechanistic distinctions between the activity and activation mechanisms of mammalian caspases compared to other members of clan CD. We also compare and contrast the role of different caspase family members that program anti-inflammatory and pro-inflammatory cell death pathways. Copyright © 2018. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...
K.E. Lenz; G.E. Host; K. Roskoski; A. Noormets; A. Sober; D.F. Karnosky
2010-01-01
The balance of mechanistic detail with mathematical simplicity contributes to the broad use of the Farquhar, von Caemmerer and Berry (FvCB) photosynthetic rate model. Here the FvCB model was coupled with a stomatal conductance model to form an [A,gs] model, and parameterized for mature Populus tremuloides leaves under varying CO2...
ter Haar, E; Day, B W; Rosenkranz, H S
1996-03-09
The computational analysis data presented indicate a significant mechanistic association between the ability of a chemical to cause tubulin polymerization perturbation (TPP), via direct interaction with the protein, and the in vivo induction of micronuclei (MN). Since it is known that TPP is not a genotoxic event, the analyses suggest that the induction of MN by a non-genotoxic mechanism is a significant alternate pathway.
Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in Daphnia magna.
Antczak, Philipp; White, Thomas A; Giri, Anirudha; Michelangeli, Francesco; Viant, Mark R; Cronin, Mark T D; Vulpe, Chris; Falciani, Francesco
2015-09-15
The expanding diversity and ever increasing amounts of man-made chemicals discharged to the environment pose largely unknown hazards to ecosystem and human health. The concept of adverse outcome pathways (AOPs) emerged as a comprehensive framework for risk assessment. However, the limited mechanistic information available for most chemicals and a lack of biological pathway annotation in many species represent significant challenges to effective implementation of this approach. Here, a systems level, multistep modeling strategy demonstrates how to integrate information on chemical structure with mechanistic insight from genomic studies, and phenotypic effects to define a putative adverse outcome pathway. Results indicated that transcriptional changes indicative of intracellular calcium mobilization were significantly overrepresented in Daphnia magna (DM) exposed to sublethal doses of presumed narcotic chemicals with log Kow ≥ 1.8. Treatment of DM with a calcium ATPase pump inhibitor substantially recapitulated the common transcriptional changes. We hypothesize that calcium mobilization is a potential key molecular initiating event in DM basal (narcosis) toxicity. Heart beat rate analysis and metabolome analysis indicated sublethal effects consistent with perturbations of calcium preceding overt acute toxicity. Together, the results indicate that altered calcium homeostasis may be a key early event in basal toxicity or narcosis induced by lipophilic compounds.
Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R
2017-08-30
Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.
Mechanistic Considerations Used in the Development of the PROFIT PCI Failure Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankaskie, P. J.
A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) Interactions (PC!) failure model for estimating the probability of failure in !ransient increases in power (PROFIT) was developed. PROFIT is based on 1) standard statistical methods applied to available PC! fuel failure data and 2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmentalmore » and strain-rate dependent strain energy absorption to failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-disloction interaction effects in the Zircaloy cladding. Assuming that the power ramping rate is the operating corollary of strain-rate in the Zircaloy cladding, then the variables of first order importance in the PCI fuel failure phenomenon are postulated to be: 1. pre-transient fuel rod power, P{sub I}, 2. transient increase in fuel rod power, {Delta}P, 3. fuel burnup, Bu, and 4. the constitutive material property of the Zircaloy cladding, SEAF.« less
Roy, Shambhu; Kulkarni, Rohan; Hewitt, Nicola J; Aardema, Marilyn J
2016-07-01
The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising novel animal alternative for evaluating genotoxicity of topically applied chemicals. It is particularly useful for assessing cosmetic ingredients that can no longer be tested using in vivo assays. To advance the use of this test especially for regulatory decision-making, we have established the RSMN assay in our laboratory according to Good Laboratory Practice and following the principles of the OECD test guideline 487 in vitro mammalian cell micronucleus test. Proficiency with the assay was established by correctly identifying direct-acting genotoxins and genotoxins requiring metabolism, as well as non-genotoxic/non-carcinogenic chemicals. We also report the analysis of our historical control data that demonstrate vehicle control and positive control values for %micronuclei in binucleated cells are in the ranges reported previously. Technical issues including evaluating various solvents with both 48h and 72h treatment regimens were investigated. For the first time, mechanistic studies using CREST analysis revealed that the RSMN assay is suitable for distinguishing aneugens and clastogens. Moreover, the assay is also suitable for measuring cytokines as markers for proliferative and toxic effects of chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.
Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer
2016-01-01
The enzymes that facilitate phosphate and sulfate hydrolysis are among the most proficient natural catalysts known to date. Interestingly, a large number of these enzymes are promiscuous catalysts that exhibit both phosphatase and sulfatase activities in the same active site and, on top of that, have also been demonstrated to efficiently catalyze the hydrolysis of other additional substrates with varying degrees of efficiency. Understanding the factors that underlie such multifunctionality is crucial both for understanding functional evolution in enzyme superfamilies and for the development of artificial enzymes. In this Current Topic, we have primarily focused on the structural and mechanistic basis for catalytic promiscuity among enzymes that facilitate both phosphoryl and sulfuryl transfer in the same active site, while comparing this to how catalytic promiscuity manifests in other promiscuous phosphatases. We have also drawn on the large number of experimental and computational studies of selected model systems in the literature to explore the different features driving the catalytic promiscuity of such enzymes. Finally, on the basis of this comparative analysis, we probe the plausible origins and determinants of catalytic promiscuity in enzymes that catalyze phosphoryl and sulfuryl transfer. PMID:27187273
Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging
Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A.; Bauer, Johann W.; Breitenbach, Michael
2015-01-01
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls. PMID:26143532
Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging.
Breitenbach, Jenny S; Rinnerthaler, Mark; Trost, Andrea; Weber, Manuela; Klausegger, Alfred; Gruber, Christina; Bruckner, Daniela; Reitsamer, Herbert A; Bauer, Johann W; Breitenbach, Michael
2015-06-01
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII,COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex- and age-matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.
Morphological and biochemical examination of Cosmos 1887 rat heart tissue. Part 1: Ultrastructure
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Popova, I. A.; Kato, K.; Stevenson, J.; Miquel, J.; Sapp, W.
1990-01-01
Morphological changes were observed in the left ventricle of rat heart tissue from animals flown on the Cosmos 1887 biosatellite for 12.5 days. These tissues were compared to the synchronous and vivarium control hearts. While many normal myofibrils were observed, others exhibited ultrastructural alterations, i.e., damaged and irregular-shaped mitochondria and generalized myofibrillar edema. Analysis of variance (ANOVA) of the volume density data revealed a statistically significant increase in glycogen and a significant decrease in mitochondria compared to the synchronous and vivarium controls. Point counting indicated an increase in lipid and myeloid bodies and a decrease in microtubules, but these changes were not statistically significant. In addition, the flight animals exhibited some patchy loss of protofibrils (actin and myosin filaments) and some abnormal supercontracted myofibrils that were not seen in the controls. This study was undertaken to gain insight into the mechanistic aspects of cardiac changes in both animals and human beings as a consequence of space travel. Cardiac hypotrophy and fluid shifts have been observed after actual or simulated weightlessness and raise concerns about the functioning of the heart and circulatory system during and after travel in space.
Sun, Yuhao; Pan, Sijian; Gu, Changwei; Chen, Xiao; Wang, Weiqing; Ning, Guang; Bian, Liuguan; Sun, Qingfang
2018-01-01
Cushing's disease is primarily caused by pituitary adrenocorticotropin-secreting adenoma. However, its pathogenesis has remained obscure. In the present study, whole transcriptome analysis was performed by RNA sequencing (RNA-Seq) and expression of secreted frizzled-related protein 2 (SFRP2) was decreased in corticotroph tumors compared with normal pituitary glands. Furthermore, the RNA-Seq results were validated and the expression of SFRP2 in tumor tissues was analyzed by comparing another cohort of 23 patients with Cushing's disease and 3 normal human pituitary samples using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemistry staining. Clinically, there was an association between lower SFRP2 expression and aggressive adenoma characteristics, including larger size and invasiveness. Conversely, SFRP2 overexpression reduced the ability of AtT20 cells to proliferate and migrate, and reduced production of the adrenocorticotrophic hormone in vitro. Mechanistically, overexpressed SFRP2 reduced the level of β-catenin in the cytoplasm and nucleus, and decreased Wnt signaling activity in AtT20 cells. Therefore, SFRP2 appears to act as a tumor suppressor in Cushing's disease by regulating the activity of the Wnt signaling pathway. PMID:29620167
Kawamura, Takahisa; Kasai, Hidefumi; Fermanelli, Valentina; Takahashi, Toshiaki; Sakata, Yukinori; Matsuoka, Toshiyuki; Ishii, Mika; Tanigawara, Yusuke
2018-06-22
Post-marketing surveillance is useful to collect safety data in real-world clinical settings. In this study, we firstly applied the post-marketing real-world data on a mechanistic model analysis for neutropenic profiles of eribulin in patients with recurrent or metastatic breast cancer (RBC/MBC). Demographic and safety data were collected using an active surveillance method from eribulin-treated RBC/MBC patients. Changes in neutrophil counts over time were analyzed using a mechanistic pharmacodynamic model. Pathophysiological factors that may affect the severity of neutropenia were investigated and neutropenic patterns were simulated for different treatment schedules. Clinical and laboratory data were collected from 401 patients (5199 neutrophil count measurements) who had not received granulocyte colony stimulating factor and were eligible for pharmacodynamic analysis. The estimated mean parameters were: mean transit time = 104.5 h, neutrophil proliferation rate constant = 0.0377 h -1 , neutrophil elimination rate constant = 0.0295 h -1 , and linear coefficient of drug effect = 0.0413 mL/ng. Low serum albumin levels and low baseline neutrophil counts were associated with severe neutropenia. The probability of grade ≥3 neutropenia was predicted to be 69%, 27%, and 27% for patients on standard, biweekly, and triweekly treatment scenarios, respectively, based on virtual simulations using the developed pharmacodynamic model. In conclusion, this is the first application of post-marketing surveillance data to a model-based safety analysis. This analysis of safety data reflecting authentic clinical settings will provide useful information on the safe use and potential risk factors of eribulin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea
Benito, Ernesto P.; Couloux, Arnaud; Coutinho, Pedro M.; de Vries, Ronald P.; Dyer, Paul S.; Fillinger, Sabine; Fournier, Elisabeth; Gout, Lilian; Hahn, Matthias; Kohn, Linda; Lapalu, Nicolas; Plummer, Kim M.; Pradier, Jean-Marc; Quévillon, Emmanuel; Sharon, Amir; Simon, Adeline; ten Have, Arjen; Tudzynski, Bettina; Tudzynski, Paul; Wincker, Patrick; Andrew, Marion; Anthouard, Véronique; Beffa, Rolland; Benoit, Isabelle; Bouzid, Ourdia; Brault, Baptiste; Chen, Zehua; Choquer, Mathias; Collémare, Jérome; Cotton, Pascale; Danchin, Etienne G.; Da Silva, Corinne; Gautier, Angélique; Giraud, Corinne; Giraud, Tatiana; Gonzalez, Celedonio; Grossetete, Sandrine; Güldener, Ulrich; Henrissat, Bernard; Howlett, Barbara J.; Kodira, Chinnappa; Kretschmer, Matthias; Lappartient, Anne; Leroch, Michaela; Levis, Caroline; Mauceli, Evan; Neuvéglise, Cécile; Oeser, Birgitt; Pearson, Matthew; Poulain, Julie; Poussereau, Nathalie; Quesneville, Hadi; Rascle, Christine; Schumacher, Julia; Ségurens, Béatrice; Sexton, Adrienne; Silva, Evelyn; Sirven, Catherine; Soanes, Darren M.; Talbot, Nicholas J.; Templeton, Matt; Yandava, Chandri; Yarden, Oded; Zeng, Qiandong; Rollins, Jeffrey A.; Lebrun, Marc-Henri; Dickman, Marty
2011-01-01
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops. PMID:21876677
NASA Astrophysics Data System (ADS)
Giangrande, Chiara; Auberger, Nicolas; Rentier, Cédric; Papini, Anna Maria; Mallet, Jean-Maurice; Lavielle, Solange; Vinh, Joëlle
2016-04-01
Synthetic sugar-modified peptides were identified as antigenic probes in the context of autoimmune diseases. The aim of this work is to provide a mechanistic study on the fragmentation of different glycosylated analogs of a synthetic antigenic probe able to detect antibodies in a subpopulation of multiple sclerosis patients. In particular the N-glucosylated type I' β-turn peptide structure called CSF114(Glc) was used as a model to find signature fragmentations exploring the potential of multi-stage mass spectrometry by MALDI-LTQ Orbitrap. Here we compare the fragmentation of the glucosylated form of the synthetic peptide CSF114(Glc), bearing a glucose moiety on an asparagine residue, with less or non- immunoreactive forms, bearing different sugar-modifications, such as CSF114(GlcNAc), modified with a residue of N-acetylglucosamine, and CSF114[Lys7(1-deoxyfructopyranosyl)], this last one modified with a 1-deoxyfructopyranosyl moiety on a lysine at position 7. The analysis was set up using a synthetic compound specifically deuterated on the C-1 to compare its fragmentation with the fragmentation of the undeuterated form, and thus ascertain with confidence the presence on an Asn(Glc) within a peptide sequence. At the end of the study, our analysis led to the identification of signature neutral losses inside the sugar moieties to characterize the different types of glycosylation/glycation. The interest of this study lies in the possibility of applyimg this approach to the discovery of biomarkers and in the diagnosis of autoimmune diseases.
Giangrande, Chiara; Auberger, Nicolas; Rentier, Cédric; Papini, Anna Maria; Mallet, Jean-Maurice; Lavielle, Solange; Vinh, Joëlle
2016-04-01
Synthetic sugar-modified peptides were identified as antigenic probes in the context of autoimmune diseases. The aim of this work is to provide a mechanistic study on the fragmentation of different glycosylated analogs of a synthetic antigenic probe able to detect antibodies in a subpopulation of multiple sclerosis patients. In particular the N-glucosylated type I' β-turn peptide structure called CSF114(Glc) was used as a model to find signature fragmentations exploring the potential of multi-stage mass spectrometry by MALDI-LTQ Orbitrap. Here we compare the fragmentation of the glucosylated form of the synthetic peptide CSF114(Glc), bearing a glucose moiety on an asparagine residue, with less or non- immunoreactive forms, bearing different sugar-modifications, such as CSF114(GlcNAc), modified with a residue of N-acetylglucosamine, and CSF114[Lys(7)(1-deoxyfructopyranosyl)], this last one modified with a 1-deoxyfructopyranosyl moiety on a lysine at position 7. The analysis was set up using a synthetic compound specifically deuterated on the C-1 to compare its fragmentation with the fragmentation of the undeuterated form, and thus ascertain with confidence the presence on an Asn(Glc) within a peptide sequence. At the end of the study, our analysis led to the identification of signature neutral losses inside the sugar moieties to characterize the different types of glycosylation/glycation. The interest of this study lies in the possibility of applyimg this approach to the discovery of biomarkers and in the diagnosis of autoimmune diseases. Graphical Abstract .
Coulthard, Sally A; Berry, Phil; McGarrity, Sarah; McLaughlin, Simon; Ansari, Azhar; Redfern, Christopher P F
2017-06-01
Use of azathioprine (AZA) for inflammatory bowel disease is limited by side effects or poor efficacy. Combining low-dose azathioprine with allopurinol (LDAA) bypasses side effects, improves efficacy, and may be appropriate as first-line therapy. We test the hypothesis that standard-dose azathioprine (AZA) and LDAA treatments work by similar mechanisms, using incorporation of the metabolite deoxythioguanosine into patient DNA, white-blood cell counts, and transcriptome analysis as biological markers of drug effect. DNA was extracted from peripheral whole-blood from patients with IBD treated with AZA or LDAA, and analyzed for DNA-incorporated deoxythioguanosine. Measurement of red-blood cell thiopurine metabolites was part of usual clinical practice, and pre- and on-treatment (12 wk) blood samples were used for transcriptome analysis. There were no differences in reduction of white-cell counts between the 2 treatment groups, but patients on LDAA had lower DNA-incorporated deoxythioguanosine than those on AZA; for both groups, incorporated deoxythioguanosine was lower in patients on thiopurines for 24 weeks or more (maintenance of remission) compared to patients treated for less than 24 weeks (achievement of remission). Patients on LDAA had higher levels of red-blood cell thioguanine nucleotides than those on AZA, but there was no correlation between these or their methylated metabolites, and incorporated deoxythioguanosine. Transcriptome analysis suggested down-regulation of immune responses consistent with effective immunosuppression in patients receiving LDAA, with evidence for different mechanisms of action between the 2 therapies. LDAA is biologically effective despite lower deoxythioguanosine incorporation into DNA, and has different mechanisms of action compared to standard-dose azathioprine.
Investigation of mechanistic deterioration modeling for bridge design and management.
DOT National Transportation Integrated Search
2017-04-01
The ongoing deterioration of highway bridges in Colorado dictates that an effective method for allocating limited management resources be developed. In order to predict bridge deterioration in advance, mechanistic models that analyze the physical pro...
Local calibration of the MEPDG for New Hampshire.
DOT National Transportation Integrated Search
2013-10-01
This report summarizes the UNH results of a study to calibrate the Mechanistic-Empirical Pavement : Design Guide (MEPDG) model for sites and conditions within New Hampshire. : MEPDG adds mechanistic understanding of material properties into methods f...
Mechanistic-empirical pavement design guide calibration for pavement rehabilitation.
DOT National Transportation Integrated Search
2013-01-01
The Oregon Department of Transportation (ODOT) is in the process of implementing the recently introduced AASHTO : Mechanistic-Empirical Pavement Design Guide (MEPDG) for new pavement sections. The majority of pavement work : conducted by ODOT involve...
Existing pavement input information for the mechanistic-empirical pavement design guide.
DOT National Transportation Integrated Search
2009-02-01
The objective of this study is to systematically evaluate the Iowa Department of Transportations (DOTs) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Des...
AASHTO mechanistic-empirical pavement design guide parametric study.
DOT National Transportation Integrated Search
2012-03-01
This study focuses on assessing the robustness of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG v 1.1) for rigid pavement : design projects in Wisconsin. The primary tasks conducted in this study included performing sensitivity analys...
Draft user's guide for UDOT mechanistic-empirical pavement design.
DOT National Transportation Integrated Search
2009-10-01
Validation of the new AASHTO Mechanistic-Empirical Pavement Design Guides (MEPDG) nationally calibrated pavement distress and smoothness prediction models when applied under Utah conditions, and local calibration of the new hot-mix asphalt (HMA) p...
Calibrating the mechanistic-empirical pavement design guide for Kansas : [technical summary].
DOT National Transportation Integrated Search
2015-04-01
The Kansas Department of Transportation (KDOT) is moving toward the implementation : of the new American Association of State Highway and Transportation Officials : (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) for pavement : design. T...
Final Technical Report of Research
DOE R&D Accomplishments Database
Taube, H.
1972-04-03
The studies conducted embrace the following subject areas: ion solvation, mechanistic studies on substitution reactions in metal complexes, oxidation of coordinated ligands, mechanistic studies on electron transfer reactions, preparation and characterization of new species in the aquo and ammino systems.
MECHANISTIC INDICATORS OF CHILDHOOD ASTHMA (MICA)
The US Environmental Protection Agency (EPA) is interested in the interplay of environmental and genetic factors on the development and exacerbation of asthma. The Mechanistic Indicators of Childhood Asthma (MICA) study will use exposure measurements and markers of environmental ...
Li, Shiguo; Liu, Chuang; Zhan, Aibin; Xie, Liping; Zhang, Rongqing
2017-07-05
The byssus is an important adhesive structure by which bivalves robustly adhere to underwater substrates. It is susceptible to carbon dioxide-driven ocean acidification (OA). Previous investigations have documented significant adverse effects of OA on the performance of byssal threads, but the mechanisms remain largely unknown. In this study, multiple approaches were employed to reveal the underlying mechanisms for the effects of OA on byssus production and mechanical properties in the pearl oyster Pinctada fucata. The results showed that OA altered the abundance and secondary structure of byssal proteins and affected the contents of metal ions in distal threads, which together reduced the byssus diameter and amplified byssus nanocavity, causing reductions in mechanical properties (strength and extensibility). Expression analysis of key foot protein genes further confirmed changes in byssal protein abundance. Moreover, comparative transcriptome analysis revealed enrichment of ion transportation- and apoptosis-related categories, up-regulation of apoptosis-related pathways, and down-regulation of the "extracellular matrix-receptor interaction" pathway, which may influence foot locomotion physiology, leading to a decrease in byssus production. This study provides mechanistic insight into the effects of OA on pearl oyster byssus, which should broaden our overall understanding of the impacts of OA on marine ecosystem.
Zhang, Dawei; Li, Haiyan; Xie, Juping; Jiang, Decan; Cao, Liangqi; Yang, Xuewei; Xue, Ping; Jiang, Xiaofeng
2018-06-01
The aim of the present study was to elucidate whether, and how, long intergenic non-protein coding RNA 1296 (LINC01296) is involved in the modulation of human cholangiocarcinoma (CCA) development and progression. Microarray data analysis and reverse transcription-quantitative polymerase chain reaction analysis demonstrated that LINC01296 was significantly upregulated in human CCA compared with nontumor tissues. Furthermore, the expression of LINC01296 in human CCA was positively associated with tumor severity and clinical stage. Knockdown of LINC01296 dramatically suppressed the viability, migration and invasion of RBE and CCLP1 cells, and promoted cell apoptosis in vitro. Furthermore, LINC01296 knockdown inhibited tumor growth in a xenograft model. Mechanistically, LINC01296 was demonstrated to sponge microRNA-5095 (miR-5095), which targets MYCN proto-oncogene bHLH transcription factor (MYCN) mRNA in human CCA. By inhibition of miR-5095, LINC01296 overexpression upregulated the expression of MYCN and promoted cell viability, migration and invasion in CCA cells. The results reveal that the axis of LINC01296/miR-5095/MYCN may be a mechanism to regulate CCA development and progression.
Study of cnidarian-algal symbiosis in the "omics" age.
Meyer, Eli; Weis, Virginia M
2012-08-01
The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.
Managing mechanistic and organic structure in health care organizations.
Olden, Peter C
2012-01-01
Managers at all levels in a health care organization must organize work to achieve the organization's mission and goals. This requires managers to decide the organization structure, which involves dividing the work among jobs and departments and then coordinating them all toward the common purpose. Organization structure, which is reflected in an organization chart, may range on a continuum from very mechanistic to very organic. Managers must decide how mechanistic versus how organic to make the entire organization and each of its departments. To do this, managers should carefully consider 5 factors for the organization and for each individual department: external environment, goals, work production, size, and culture. Some factors may push toward more mechanistic structure, whereas others may push in the opposite direction toward more organic structure. Practical advice can help managers at all levels design appropriate structure for their departments and organization.
Gering, Kevin L
2013-08-27
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.
Mechanisms, determination and the metaphysics of neuroscience.
Soom, Patrice
2012-09-01
In this paper, I evaluate recently defended mechanistic accounts of the unity of neuroscience from a metaphysical point of view. Considering the mechanistic framework in general (Sections 2 and 3), I argue that explanations of this kind are essentially reductive (Section 4). The reductive character of mechanistic explanations provides a sufficiency criterion, according to which the mechanism underlying a certain phenomenon is sufficient for the latter. Thus, the concept of supervenience can be used in order to describe the relation between mechanisms and phenomena (Section 5). Against this background, I show that the mechanistic framework is subject to the causal exclusion problem and faces the classical metaphysical options when it comes to the relations obtaining between different levels of mechanisms (Section 6). Finally, an attempt to improve the metaphysics of mechanisms is made (Section 7) and further difficulties are pointed out (Section 8). Copyright © 2012 Elsevier Ltd. All rights reserved.
Why did Jacques Monod make the choice of mechanistic determinism?
Loison, Laurent
2015-06-01
The development of molecular biology placed in the foreground a mechanistic and deterministic conception of the functioning of macromolecules. In this article, I show that this conception was neither obvious, nor necessary. Taking Jacques Monod as a case study, I detail the way he gradually came loose from a statistical understanding of determinism to finally support a mechanistic understanding. The reasons of the choice made by Monod at the beginning of the 1950s can be understood only in the light of the general theoretical schema supported by the concept of mechanistic determinism. This schema articulates three fundamental notions for Monod, namely that of the rigidity of the sequence of the genetic program, that of the intrinsic stability of macromolecules (DNA and proteins), and that of the specificity of molecular interactions. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Structures and Mechanism of the Monoamine Oxidase Family
Gaweska, Helena; Fitzpatrick, Paul F.
2011-01-01
Members of the monoamine oxidase family of flavoproteins catalyze the oxidation of primary and secondary amines, polyamines, amino acids, and methylated lysine side chains in proteins. The enzymes have similar overall structures, with conserved FAD-binding domains and varied substrate-binding sites. Multiple mechanisms have been proposed for the catalytic reactions of these enzymes. The present review compares the structures of different members of the family and the various mechanistic proposals. PMID:22022344
Computational modeling of neurostimulation in brain diseases.
Wang, Yujiang; Hutchings, Frances; Kaiser, Marcus
2015-01-01
Neurostimulation as a therapeutic tool has been developed and used for a range of different diseases such as Parkinson's disease, epilepsy, and migraine. However, it is not known why the efficacy of the stimulation varies dramatically across patients or why some patients suffer from severe side effects. This is largely due to the lack of mechanistic understanding of neurostimulation. Hence, theoretical computational approaches to address this issue are in demand. This chapter provides a review of mechanistic computational modeling of brain stimulation. In particular, we will focus on brain diseases, where mechanistic models (e.g., neural population models or detailed neuronal models) have been used to bridge the gap between cellular-level processes of affected neural circuits and the symptomatic expression of disease dynamics. We show how such models have been, and can be, used to investigate the effects of neurostimulation in the diseased brain. We argue that these models are crucial for the mechanistic understanding of the effect of stimulation, allowing for a rational design of stimulation protocols. Based on mechanistic models, we argue that the development of closed-loop stimulation is essential in order to avoid inference with healthy ongoing brain activity. Furthermore, patient-specific data, such as neuroanatomic information and connectivity profiles obtainable from neuroimaging, can be readily incorporated to address the clinical issue of variability in efficacy between subjects. We conclude that mechanistic computational models can and should play a key role in the rational design of effective, fully integrated, patient-specific therapeutic brain stimulation. © 2015 Elsevier B.V. All rights reserved.
Long-range RNA pairings contribute to mutually exclusive splicing
Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng
2016-01-01
Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA–RNA interactions in gene regulatory networks. PMID:26554032
Optimal imaging and analysis of human vaginal coating by drug delivery gels
Henderson, Marcus H; Couchman, Grace M; Walmer, David K; Peters, Jennifer J; Owen, Derek H; Brown, Matthew A; Lavine, Michael L; Katz, David F
2007-01-01
Objective We used a new optical imaging technique to compare human intravaginal coating distributions of Conceptrol® and Advantage™. These gels are surrogates for future microbicidal gels, differing in molecular structures and biophysical properties. Methods For each protocol, a 3-mL gel bolus was inserted to the posterior fornix while the woman was in the supine position. She then either: (1) remained supine (10 min); or (2) sat up (1 min), stood up (1 min), sat down (1 min), and returned to supine for a net elapsed time of 10 min. The imaging device is sized/shaped like a phallus, and measurements while the device was inserted provide data that simulate peri-intromission coating. Results Coating by Advantage™ was more extensive and uniform than coating by Conceptrol®, with smaller bare spots of uncoated epithelium. Change in posture tended to increase extent and uniformity of coating, details differing between gels. Conclusions Results are consistent with predictions of mechanistic coating theory, using gel rheological data as inputs. PMID:17241845
Long-range RNA pairings contribute to mutually exclusive splicing.
Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng
2016-01-01
Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks. © 2015 Yue et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Membrane Driven Spatial Organization of GPCRs
NASA Astrophysics Data System (ADS)
Mondal, Sayan; Johnston, Jennifer M.; Wang, Hao; Khelashvili, George; Filizola, Marta; Weinstein, Harel
2013-10-01
Spatial organization of G-protein coupled receptors (GPCRs) into dimers and higher order oligomers has been demonstrated in vitro and in vivo. The pharmacological readout was shown to depend on the specific interfaces, but why particular regions of the GPCR structure are involved, and how ligand-determined states change them remains unknown. Here we show why protein-membrane hydrophobic matching is attained upon oligomerization at specific interfaces from an analysis of coarse-grained molecular dynamics simulations of the spontaneous diffusion-interaction of the prototypical beta2-adrenergic (β2AR) receptors in a POPC lipid bilayer. The energy penalty from mismatch is significantly reduced in the spontaneously emerging oligomeric arrays, making the spatial organization of the GPCRs dependent on the pattern of mismatch in the monomer. This mismatch pattern is very different for β2AR compared to the highly homologous and structurally similar β1AR, consonant with experimentally observed oligomerization patterns of β2AR and β1AR. The results provide a mechanistic understanding of the structural context of oligomerization.
The Constitutive Modeling of Thin Films with Randon Material Wrinkles
NASA Technical Reports Server (NTRS)
Murphey, Thomas W.; Mikulas, Martin M.
2001-01-01
Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%
NASA Astrophysics Data System (ADS)
Blaszczuk, Artur; Nowak, Wojciech
2016-10-01
In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...
2017-02-03
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.; Bangia, A.K.; Kevrekidis, I.G.
1996-12-05
Spatiotemporal dynamics in reaction-diffusion systems can be altered through the properties (reactivity, diffusivity) of the medium in which they occur. We construct active heterogeneous media (composite catalytic surfaces with inert as well as active illusions) using microelectronics fabrication techniques and study the spatiotemporal dynamics of heterogeneous catalytic reactions on these catalysts. In parallel, we perform simulations as well as numerical stability and bifurcation analysis of these patterns using mechanistic models. At the limit of large heterogeneity `grain size` (compared to the wavelength of spontaneously arising structures) the interaction patterns with inert or active boundaries dominates (e.g., pinning, transmission, and boundarymore » breakup of spirals, interaction of pulses with corners, `pacemaker` effects). At the opposite limit of very small or very finely distributed heterogeneity, effective behavior is observed (slight modulation of pulses, nearly uniform oscillations, effective spirals). Some representative studies of transitions between the two limits are presented. 48 refs., 11 figs.« less
Mitchell, E. Siobhan; Xiu, Jin; Tiwari, Jyoti K.; Hu, Yinghe; Cao, Xiaohua; Zhao, Zheng
2012-01-01
Background Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. Methodology We assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via exon array analysis of cortical and hippocampal mRNA transcription. The results revealed a transcriptional network interaction of genes involved in neurotransmission, neuronal development, signal transduction, and metabolism in response to the curcumin treatment. Conclusions The results suggest a neurogenesis- and cognition-enhancing potential of prolonged curcumin treatment in aged rats, which may be due to its diverse effects on genes related to growth and plasticity. PMID:22359574
Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim
2016-01-01
Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712
Circulating Tumor Cells (CTCs): Emerging Technologies for Detection, Diagnosis and Treatment
NASA Astrophysics Data System (ADS)
McCarty, Owen
2010-03-01
Circulating tumor cell enumeration and characterization have the potential of providing real-time access to epithelial cancers in patients. This fluid phase biopsy of solid phase tumors is crucial to the development of quantitative diagnostic aiding personalized medicine. Cancer is a highly heterogeneous disease over space and time. Our goal is to generate a mechanistic, yet comprehensive view of both the `FORCE-journey' of a cancer cell during the metastatic phase, and a `TIME-journey' of the disease as it progresses. The approach will correlate the `FORCE' and `TIME' journey with both the bio-clinical aspects and the genomics of this complex problem. Presented will be results from a case study in lung cancer patients for which CTC analysis is compared with clinical progression. Morphologic and molecular characterization at the single cell level will be discussed in the context of the data set and in the context of individual patient management. Preliminary data will be shown to guide a future research agenda to investigate the fluid phase of solid tumors.
Type I interferons modulate methotrexate resistance in gestational trophoblastic neoplasia.
Elias, Kevin M; Harvey, Richard A; Hasselblatt, Kathleen T; Seckl, Michael J; Berkowitz, Ross S
2017-06-01
Resistance to methotrexate is a leading clinical problem in gestational trophoblastic neoplasia (GTN), but there are limited laboratory models for this condition. We created isogenic trophoblastic cell lines resistant to methotrexate and compared these to the parent cell lines using gene expression microarrays and qRT-PCR followed by mechanistic studies using recombinant cytokines, pathway inhibitors, and patient sera. Gene expression microarrays and focused analysis by qRT-PCR revealed methotrexate led to type I interferon upregulation, in particular interferon alpha 2 (IFNA2), and methotrexate resistance was associated with chronic low level increases in type I interferon expression. Recombinant IFNA2 imparted chemosensitive choriocarcinoma cells with partial resistance to methotrexate, while chemoresistant choriocarcinoma cells were uniquely sensitive to fludarabine, a STAT1 inhibitor. In pre-treatment patient sera, IFNA2 levels correlated with subsequent resistance to methotrexate chemotherapy. Methotrexate resistance is influenced by type I interferon signaling with prognostic and therapeutic implications for treating women with GTN. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
MECHANISTIC DOSIMETRY MODELS OF NANOMATERIAL DEPOSITION IN THE RESPIRATORY TRACT
Accurate health risk assessments of inhalation exposure to nanomaterials will require dosimetry models that account for interspecies differences in dose delivered to the respiratory tract. Mechanistic models offer the advantage to interspecies extrapolation that physicochemica...
Base course resilient modulus for the mechanistic-empirical pavement design guide.
DOT National Transportation Integrated Search
2011-11-01
The Mechanistic-Empirical Pavement Design Guidelines (MEPDG) recommend use of modulus in lieu of structural number for base layer thickness design. Modulus is nonlinear with respect to effective confinement stress, loading strain, and moisture. For d...
Controversy on toxicological dose-response relationships and low-dose extrapolation of respective risks is often the consequence of misleading data presentation, lack of differentiation between types of response variables, and diverging mechanistic interpretation. In this chapter...
DOT National Transportation Integrated Search
2016-12-01
The Wyoming Department of Transportation (WYDOT) recently transitioned from the empirical AASHTO Design for Design of Pavement Structures to the Mechanistic Empirical Pavement Design Guide (MEPDG) as their standard pavement design procedure. A compre...
Implementation of the AASHTO mechanistic-empirical pavement design guide for Colorado.
DOT National Transportation Integrated Search
2000-01-01
The objective of this project was to integrate the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice and its accompanying software into the d...
Base course resilient modulus for the mechanistic-empirical pavement design guide : [summary].
DOT National Transportation Integrated Search
2011-01-01
Elastic modulus determination is often used in designing pavements and evaluating pavement performance. The Mechanistic-Empirical Pavement Design Guide (MEPDG) has become an important source of guidance for pavement design and rehabilitation. MEPDG r...
Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas
2016-06-01
Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings. Copyright © 2016. Published by Elsevier B.V.
Engeli, Roger T; Rhouma, Bochra Ben; Sager, Christoph P; Tsachaki, Maria; Birk, Julia; Fakhfakh, Faiza; Keskes, Leila; Belguith, Neila; Odermatt, Alex
2016-01-01
Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket, was moderately expressed and completely lost its enzymatic activity. Wild-type 17β-HSD3 and mutant G133R showed comparable expression levels and intracellular localization. The conversion of Δ4-androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant G133R compared with wild-type 17β-HSD3. To obtain further mechanistic insight, G133 was mutated to alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17β-HSD3 is located in a motif highly conserved in 17β-HSDs and other short-chain dehydrogenase/reductase (SDR) enzymes. A homology model of 17β-HSD3 predicted that arginine or any other bulky residue at position 133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding pocket, thus explaining the loss-of-function of 17β-HSD3 mutant G133R in the patients investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antoine, Daniel J; Jenkins, Rosalind E; Dear, James W; Williams, Dominic P; McGill, Mitchell R; Sharpe, Matthew R; Craig, Darren G; Simpson, Kenneth J; Jaeschke, Hartmut; Park, B. Kevin
2014-01-01
Background & Aims Full length keratin-18 (FL-K18) and High Mobility Group Box-1 (HMGB1) represent circulating indicators of necrosis during acetaminophen (APAP) hepatotoxicity in vivo. In addition, the caspase-cleaved fragment of K18 (cK18) and hyper-acetylated HMGB1 represent serum indicators of apoptosis and immune cell activation respectively. The study aim was to assess their mechanistic utility to establish the balance between apoptosis, necrosis and immune cell activation throughout the time course of clinical APAP hepatotoxicity. Methods HMGB1 (total, acetylated) and K18 (apoptotic, necrotic) were identified and quantified by novel LC-MS/MS assays in APAP overdose patients (n=78). Results HMGB1 (total; 15.4±1.9ng/ml, p<0.01, acetylated; 5.4±2.6ng/ml, p<0.001), cK18 (5649.8±721.0U/l, p<0.01) and FL-K18 (54770.2±6717.0U/l, p<0.005) were elevated in the sera of APAP overdose patients with liver injury compared to overdose patients without liver injury and healthy volunteers. HMGB1 and FL-K18 correlated with alanine aminotransferase (ALT) activity (R2=0.60 and 0.58 respectively, p<0.0001) and prothrombin time (R2=0.62 and 0.71 respectively, p<0.0001). Increased total and acetylated HMGB1 and FL-K18 were associated with worse prognosis (King’s College Criteria) or patients that died/required liver transplant compared to spontaneous survivors (all p<0.05-0.001), a finding not reflected by ALT and supported by ROC analysis. Acetylated HMGB1 was a better predictor of outcome than the other markers of cell death. Conclusion K18 and HMGB1 represent blood-based tools to investigate the cell death balance clinical APAP hepatotoxicity. Activation of the immune response was seen later in the time course as shown by the distinct profile of acetylated HMGB1 and was associated with worse outcome. PMID:22266604
Kasprak, Alan; Caster, Joshua J.; Bangen, Sara G.; Sankey, Joel B.
2017-01-01
The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.
Minimum area requirements for an at-risk butterfly based on movement and demography.
Brown, Leone M; Crone, Elizabeth E
2016-02-01
Determining the minimum area required to sustain populations has a long history in theoretical and conservation biology. Correlative approaches are often used to estimate minimum area requirements (MARs) based on relationships between area and the population size required for persistence or between species' traits and distribution patterns across landscapes. Mechanistic approaches to estimating MAR facilitate prediction across space and time but are few. We used a mechanistic MAR model to determine the critical minimum patch size (CMP) for the Baltimore checkerspot butterfly (Euphydryas phaeton), a locally abundant species in decline along its southern range, and sister to several federally listed species. Our CMP is based on principles of diffusion, where individuals in smaller patches encounter edges and leave with higher probability than those in larger patches, potentially before reproducing. We estimated a CMP for the Baltimore checkerspot of 0.7-1.5 ha, in accordance with trait-based MAR estimates. The diffusion rate on which we based this CMP was broadly similar when estimated at the landscape scale (comparing flight path vs. capture-mark-recapture data), and the estimated population growth rate was consistent with observed site trends. Our mechanistic approach to estimating MAR is appropriate for species whose movement follows a correlated random walk and may be useful where landscape-scale distributions are difficult to assess, but demographic and movement data are obtainable from a single site or the literature. Just as simple estimates of lambda are often used to assess population viability, the principles of diffusion and CMP could provide a starting place for estimating MAR for conservation. © 2015 Society for Conservation Biology.
Keane, R E; Ryan, K C; Running, S W
1996-03-01
A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.
Clinical Research Strategies for Fructose Metabolism12
Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma
2014-01-01
Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471
Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain
Quinkert, Amy Wells; Vimal, Vivek; Weil, Zachary M.; Reeke, George N.; Schiff, Nicholas D.; Banavar, Jayanth R.; Pfaff, Donald W.
2011-01-01
We review a concept of the most primitive, fundamental function of the vertebrate CNS, generalized arousal (GA). Three independent lines of evidence indicate the existence of GA: statistical, genetic, and mechanistic. Here we ask, is this concept amenable to quantitative analysis? Answering in the affirmative, four quantitative approaches have proven useful: (i) factor analysis, (ii) information theory, (iii) deterministic chaos, and (iv) application of a Gaussian equation. It strikes us that, to date, not just one but at least four different quantitative approaches seem necessary for describing different aspects of scientific work on GA. PMID:21555568
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sezen, Halil; Aldemir, Tunc; Denning, R.
Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.
Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago
Chalmandrier, Loïc; Albouy, Camille; Descombes, Patrice; Sandel, Brody; Faurby, Soren; Svenning, Jens-Christian; Zimmermann, Niklaus E.
2018-01-01
Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns. PMID:29657753
Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago.
Chalmandrier, Loïc; Albouy, Camille; Descombes, Patrice; Sandel, Brody; Faurby, Soren; Svenning, Jens-Christian; Zimmermann, Niklaus E; Pellissier, Loïc
2018-03-01
Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns.
NASA Astrophysics Data System (ADS)
Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.
2017-04-01
Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of mapping the nanostructure of water layers on soil surfaces and assessing the consequences for wettability. The collected information on macroscopic wetting properties, nanoscale roughness and adhesion structure of the investigated surfaces in this study are discussed in view of the applicability of the mechanistic wetting models given by Wenzel and Cassie-Baxter.
DOT National Transportation Integrated Search
2009-02-01
The resilient modulus (MR) input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG) program have a significant effect on the projected pavement performance. The MEPDG program uses three different levels of inputs depending on the d...
MECHANISTIC-BASED DISINFECTION AND DISINFECTION BYPRODUCT MODELS
We propose developing a mechanistic-based numerical model for chlorine decay and regulated DBP (THM and HAA) formation derived from (free) chlorination; the model framework will allow future modifications for other DBPs and chloramination. Predicted chlorine residual and DBP r...
MECHANISTIC AND SOURCE UNDERSTANDING OF PCDD/F FORMATION
The paper discusses mechanistic and source understanding of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) formation. (NOTE: Considerable research effort has been expended over the last 15-plus years to understand how combustion sources result in formation of PCDDs/F...
Application of Mechanistic Toxicology Data to Ecological Risk Assessments
The ongoing evolution of knowledge and tools in the areas of molecular biology, bioinformatics, and systems biology holds significant promise for reducing uncertainties associated with ecological risk assessment. As our understanding of the mechanistic basis of responses of organ...
A traffic data plan for mechanistic-empirical pavement designs (2002 pavement design guide).
DOT National Transportation Integrated Search
2003-01-01
The Virginia Department of Transportation (VDOT) is preparing to implement the mechanistic-empirical pavement design methodology being developed under the National Cooperative Research Program's Project 1-37A, commonly referred to as the 2002 Pavemen...
Development of traffic data input resources for the mechanistic empirical pavement design process.
DOT National Transportation Integrated Search
2011-12-12
The Mechanistic-Empirical Pavement Design Guide (MEPDG) for New and Rehabilitated Pavement Structures uses : nationally based data traffic inputs and recommends that state DOTs develop their own site-specific and regional : values. To support the MEP...
DOT National Transportation Integrated Search
2015-08-01
A mechanistic-empirical (ME) pavement design procedure allows for analyzing and selecting pavement structures based : on predicted distress progression resulting from stresses and strains within the pavement over its design life. The Virginia : Depar...
Validation of pavement performance curves for the mechanistic-empirical pavement design guide.
DOT National Transportation Integrated Search
2009-02-01
The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical : Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accu...
Implementation of mechanistic pavement design : field and laboratory implementation.
DOT National Transportation Integrated Search
2006-12-01
One of the most important parameters needed for 2002 Mechanistic Pavement Design Guide is the dynamic modulus (E*). : The dynamic modulus (E*) describes the relationship between stress and strain for a linear viscoelastic material. The E* is the : pr...
Mechanistic Indicators of Childhood Asthma (MICA) Study
The Mechanistic Indicators of Childhood Asthma (MICA) Study has been designed to incorporate state-of-the-art technologies to examine the physiological and environmental factors that interact to increase the risk of asthmatic responses. MICA is primarily a clinically-bases obser...
Mechanistic-empirical evaluation of the Mn/ROAD low volume road test sections.
DOT National Transportation Integrated Search
1998-05-01
The purpose of this study was to use Mn/ROAD mainline flexible pavement data to verify, refine, and modify the Illinois Department of Transportation (IDOT) Mechanistic-Empirical (M-E) based flexible pavement design procedures and concepts.
Investigation of Dynamic Modulus and Flow Number Properties of Asphalt Mixtures In Washington State
DOT National Transportation Integrated Search
2011-11-11
Pavement design is now moving toward more mechanistic based design methodologies for the purpose of producing long : lasting and higher performance pavements in a cost-effective manner. The recent Mechanistic-Empirical pavement : design guide (MEPDG)...
DOT National Transportation Integrated Search
2007-01-01
The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure is an improved methodology for pavement design and evaluation of paving materials. Since this new procedure depends heavily on the characterization of the fundamental engineer...
DOT National Transportation Integrated Search
2014-05-01
This document is a summary of tasks performed for Project ICT-R27-060. : Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were : developed in previous Illinois Cooperative Highway Research Program projects (IHR-510...
Roberts, David W; Patlewicz, Grace; Kern, Petra S; Gerberick, Frank; Kimber, Ian; Dearman, Rebecca J; Ryan, Cindy A; Basketter, David A; Aptula, Aynur O
2007-07-01
The goal of eliminating animal testing in the predictive identification of chemicals with the intrinsic ability to cause skin sensitization is an important target, the attainment of which has recently been brought into even sharper relief by the EU Cosmetics Directive and the requirements of the REACH legislation. Development of alternative methods requires that the chemicals used to evaluate and validate novel approaches comprise not only confirmed skin sensitizers and non-sensitizers but also substances that span the full chemical mechanistic spectrum associated with skin sensitization. To this end, a recently published database of more than 200 chemicals tested in the mouse local lymph node assay (LLNA) has been examined in relation to various chemical reaction mechanistic domains known to be associated with sensitization. It is demonstrated here that the dataset does cover the main reaction mechanistic domains. In addition, it is shown that assignment to a reaction mechanistic domain is a critical first step in a strategic approach to understanding, ultimately on a quantitative basis, how chemical properties influence the potency of skin sensitizing chemicals. This understanding is necessary if reliable non-animal approaches, including (quantitative) structure-activity relationships (Q)SARs, read-across, and experimental chemistry based models, are to be developed.
Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2015-01-01
Background Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Objectives Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Methods Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007–2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. Results CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman’s r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen’s kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. Conclusions The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements. Citation Nøst TH, Breivik K, Wania F, Rylander C, Odland JØ, Sandanger TM. 2016. Estimating time-varying PCB exposures using person-specific predictions to supplement measured values: a comparison of observed and predicted values in two cohorts of Norwegian women. Environ Health Perspect 124:299–305; http://dx.doi.org/10.1289/ehp.1409191 PMID:26186800
Soriano, Elena; Marco-Contelles, José
2009-06-05
The mechanisms for the formation of conformationally constrained epibatidine analogues by intramolecular free radical processes have been computationally addressed by means of DFT methods. The mechanism and the critical effect of the 7-nitrogen protecting group on the outcome of these radical-mediated cyclizations are discussed. Theoretical findings account for unexpected experimental results and can assist in the selection of proper precursors for a successful cyclization.
Exploring the pros and cons of mechanistic case diagrams for problem-based learning
2017-01-01
Purpose Mechanistic case diagram (MCD) was recommended for increasing the depth of understanding of disease, but with few articles on its specific methods. We address the experience of making MCD in the fullest depth to identify the pros and cons of using MCDs in such ways. Methods During problem-based learning, we gave guidelines of MCD for its mechanistic exploration from subcellular processes to clinical features, being laid out in as much detail as possible. To understand the students’ attitudes and depth of study using MCDs, we analyzed the results of a questionnaire in an open format about experiencing MCDs and examined the resulting products. Results Through the responses to questionnaire, we found several favorable outcomes, major of which was deeper insight and comprehensive understanding of disease facilitated by the process of making well-organized diagram. The main disadvantages of these guidelines were the feeling of too much workload and difficulty of finding mechanisms. Students gave suggestions to overcome these problems: cautious reading of comprehensive texts, additional guidance from staff about depth and focus of mechanisms, and cooperative group work. From the analysis of maps, we recognized there should be allowance of diversities in the appearance of maps and many hypothetical connections, which could be related to an insufficient understanding of mechanisms in nature. Conclusion The more detailed an MCD task is, the better students can become acquainted with deep knowledges. However, this advantage should be balanced by the results that there are many ensuing difficulties for the work and deliberate help plans should be prepared. PMID:28870018
NASA Astrophysics Data System (ADS)
Zhang, Wenyan; Wirtz, Kai
2017-10-01
The mutual dependence between sedimentary total organic carbon (TOC) and infaunal macrobenthos is here quantified by a mechanistic model. The model describes (i) the vertical distribution of infaunal macrobenthic biomass resulting from a trade-off between nutritional benefit (quantity and quality of TOC) and the costs of burial (respiration) and mortality, and (ii) the variable vertical distribution of TOC being in turn shaped by bioturbation of local macrobenthos. In contrast to conventional approaches, our model emphasizes variations of bioturbation both spatially and temporally depending on local food resources and macrobenthic biomass. Our implementation of the dynamic interaction between TOC and infaunal macrobenthos is able to capture a temporal benthic response to both depositional and erosional environments and provides improved estimates of the material exchange flux at the sediment-water interface. Applications to literature data for the North Sea demonstrate the robustness and accuracy of the model and its potential as an analysis tool for the status of TOC and macrobenthos in marine sediments. Results indicate that the vertical distribution of infaunal biomass is shaped by both the quantity and the quality of OC, while the community structure is determined only by the quality of OC. Bioturbation intensity may differ by 1 order of magnitude over different seasons owing to variations in the OC input, resulting in a significant modulation on the distribution of OC. Our relatively simple implementation may further improve models of early diagenesis and marine food web dynamics by mechanistically connecting the vertical distribution of both TOC and macrobenthic biomass.
Social stress shortens lifespan in mice.
Razzoli, Maria; Nyuyki-Dufe, Kewir; Gurney, Allison; Erickson, Connor; McCallum, Jacob; Spielman, Nicholas; Marzullo, Marta; Patricelli, Jessica; Kurata, Morito; Pope, Emily A; Touma, Chadi; Palme, Rupert; Largaespada, David A; Allison, David B; Bartolomucci, Alessandro
2018-05-28
Stress and low socioeconomic status in humans confer increased vulnerability to morbidity and mortality. However, this association is not mechanistically understood nor has its causation been explored in animal models thus far. Recently, cellular senescence has been suggested as a potential mechanism linking lifelong stress to age-related diseases and shorter life expectancy in humans. Here, we established a causal role for lifelong social stress on shortening lifespan and increasing the risk of cardiovascular disease in mice. Specifically, we developed a lifelong chronic psychosocial stress model in which male mouse aggressive behavior is used to study the impact of negative social confrontations on healthspan and lifespan. C57BL/6J mice identified through unbiased cluster analysis for receiving high while exhibiting low aggression, or identified as subordinate based on an ethologic criterion, had lower median and maximal lifespan, and developed earlier onset of several organ pathologies in the presence of a cellular senescence signature. Critically, subordinate mice developed spontaneous early-stage atherosclerotic lesions of the aortic sinuses characterized by significant immune cells infiltration and sporadic rupture and calcification, none of which was found in dominant subjects. In conclusion, we present here the first rodent model to study and mechanistically dissect the impact of chronic stress on lifespan and disease of aging. These data highlight a conserved role for social stress and low social status on shortening lifespan and increasing the risk of cardiovascular disease in mammals and identify a potential mechanistic link for this complex phenomenon. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
2012-12-01
The recently developed mechanistic-empirical pavement design guide (MEPDG) requires a multitude of traffic : inputs to be defined for the design of pavement structures, including the initial two-way annual average daily truck : traffic (AADTT), direc...
DOT National Transportation Integrated Search
2012-09-01
Properties of concrete embodying materials typically used in Wisconsin paving projects were evaluated in support of future : implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG). The primary concrete : properties studied w...
DOT National Transportation Integrated Search
2012-09-01
Properties of concrete embodying materials typically used in Wisconsin paving projects were evaluated in support of future : implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG). The primary concrete : properties studied w...
DOT National Transportation Integrated Search
2018-06-01
This document is a summary of the tasks performed for Project ICT-R27-149-1. Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were previously developed in Illinois Cooperative Highway Research Program projects IHR-...
DEVELOPMENT AND VALIDATION OF A MECHANISTIC GROUND SPRAYER MODEL
In the last ten years the Spray Drift Task Force (SDTF), U.S. Environmental Protection Agency (EPA), USDA Agricultural Research Service, and USDA Forest Service cooperated in the refinement and evaluation of a mechanistically-based aerial spray model (contained within AGDISP and ...
DOT National Transportation Integrated Search
1997-05-01
Current pavement design procedures are based principally on empirical approaches. The current trend toward developing more mechanistic-empirical type pavement design methods led Minnesota to develop the Minnesota Road Research Project (Mn/ROAD), a lo...
Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H
2017-07-01
A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Farmer, William H.; Knight, Rodney R.; Eash, David A.; Kasey J. Hutchinson,; Linhart, S. Mike; Christiansen, Daniel E.; Archfield, Stacey A.; Over, Thomas M.; Kiang, Julie E.
2015-08-24
Daily records of streamflow are essential to understanding hydrologic systems and managing the interactions between human and natural systems. Many watersheds and locations lack streamgages to provide accurate and reliable records of daily streamflow. In such ungaged watersheds, statistical tools and rainfall-runoff models are used to estimate daily streamflow. Previous work compared 19 different techniques for predicting daily streamflow records in the southeastern United States. Here, five of the better-performing methods are compared in a different hydroclimatic region of the United States, in Iowa. The methods fall into three classes: (1) drainage-area ratio methods, (2) nonlinear spatial interpolations using flow duration curves, and (3) mechanistic rainfall-runoff models. The first two classes are each applied with nearest-neighbor and map-correlated index streamgages. Using a threefold validation and robust rank-based evaluation, the methods are assessed for overall goodness of fit of the hydrograph of daily streamflow, the ability to reproduce a daily, no-fail storage-yield curve, and the ability to reproduce key streamflow statistics. As in the Southeast study, a nonlinear spatial interpolation of daily streamflow using flow duration curves is found to be a method with the best predictive accuracy. Comparisons with previous work in Iowa show that the accuracy of mechanistic models with at-site calibration is substantially degraded in the ungaged framework.
Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA
Nolan, Bernard T.; Malone, Robert W.; Gronberg, Jo Ann M.; Thorp, K.R.; Ma, Liwang
2012-01-01
Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.
Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit
2018-02-01
Cell division is compromised in DnaAcos mutant E. coli cells due to chromosome over-replication. In these cells, CedA acts as a regulatory protein and initiates cell division by a hitherto unknown mechanism. CedA, a double stranded DNA binding protein, interacts with various subunits of RNA polymerase complex, including rpoB. To reveal how this concert between CedA, rpoB and DNA brings about cell division in E. coli, we performed biophysical and in silico analysis and obtained mechanistic insights. Interaction between CedA and rpoB was shown by circular dichroism spectrometry and in silico docking experiments. Further, CedA and rpoB were allowed to interact individually to a selected DNA and their binding was monitored by fluorescence spectroscopy. The binding constants of these interactions as determined by BioLayer Interferometry clearly show that rpoB binds to DNA with higher affinity (K D2 =<1.0E-12M) as compared to CedA (K D2 =9.58E-09M). These findings were supported by docking analysis where 12 intermolecular H-bonds were formed in rpoB-DNA complex as compared to 4 in CedA-DNA complex. Based on our data we propose that in E. coli cells chromosome over-replication signals CedA to recruit rpoB to specific DNA site(s), which initiates transcription of cell division regulatory elements. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Shenxuan; Yin, Lei; Shengyang Yu, Kevin; Hofmann, Marie-Claude; Yu, Xiaozhong
2017-01-01
Bisphenol A (BPA), an endocrine-disrupting compound, was found to be a testicular toxicant in animal models. Bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) were recently introduced to the market as alternatives to BPA. However, toxicological data of these compounds in the male reproductive system are still limited so far. This study developed and validated an automated multi-parametric high-content analysis (HCA) using the C18-4 spermatogonial cell line as a model. We applied these validated HCA, including nuclear morphology, DNA content, cell cycle progression, DNA synthesis, cytoskeleton integrity, and DNA damage responses, to characterize and compare the testicular toxicities of BPA and 3 selected commercial available BPA analogues, BPS, BPAF, and TBBPA. HCA revealed BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS, including dose- and time-dependent alterations in nuclear morphology, cell cycle, DNA damage responses, and perturbation of the cytoskeleton. Our results demonstrated that this specific culture model together with HCA can be utilized for quantitative screening and discriminating of chemical-specific testicular toxicity in spermatogonial cells. It also provides a fast and cost-effective approach for the identification of environmental chemicals that could have detrimental effects on reproduction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Wagener, Thorsten; McGlynn, Brian
2015-01-01
Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197
Chebolu, Rajesh; Kommi, Damodara N; Kumar, Dinesh; Bollineni, Narendra; Chakraborti, Asit K
2012-11-16
Hydrogen-bond-driven electrophilic activation for selectivity control during competitive formation of 1,2-disubstituted and 2-substituted benzimidazoles from o-phenylenediamine and aldehydes is reported. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol efficiently promote the cyclocondensation of o-phenylenediamine with aldehydes to afford selectively the 1,2-disubstituted benzimidazoles at rt in short times. A mechanistic insight is invoked by NMR, mass spectrometry, and chemical studies to rationalize the selectivity. The ability of the fluorous alcohols in promoting the reaction and controlling the selectivity can be envisaged from their better hydrogen bond donor (HBD) abilities compared to that of the other organic solvents as well as of water. Due to the better HBD values, the fluorous alcohols efficiently promote the initial bisimine formation by electrophilic activation of the aldehyde carbonyl. Subsequently the hydrogen-bond-mediated activation of the in situ-formed bisimine triggers the rearrangement via 1,3-hydride shift to form the 1,2-disubstituted benzimidazoles.
An Illness of Power: Gender and the Social Causes of Depression.
Neitzke, Alex B
2016-03-01
There is considerable discourse surrounding the disproportionate diagnosis of women with depression as compared to men, often times cited at a rate around 2:1. While this disparity clearly draws attention to gender, a focus on gender tends to fall away in the study and treatment of depression in neuroscience and psychiatry, which largely understand its workings in mechanistic terms of brain chemistry and neurological processes. I first consider how this brain-centered biological model for depression came about. I then argue that the authoritative scientific models for disorder have serious consequences for those diagnosed. Finally, I argue that mechanistic biological models of depression have the effect of silencing women and marginalizing or preventing the examination of social-structural causes of depression, like gender oppression, and therein contribute to the ideological reproduction of oppressive social relations. I argue that depression is best understood in terms of systems of power, including gender, and where a given individual is situated within such social relations. The result is a model of depression that accounts for the influence of biological, psychological, and social factors.
Constrained variability of modeled T:ET ratio across biomes
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Pappas, Christoforos
2017-07-01
A large variability (35-90%) in the ratio of transpiration to total evapotranspiration (referred here as T:ET) across biomes or even at the global scale has been documented by a number of studies carried out with different methodologies. Previous empirical results also suggest that T:ET does not covary with mean precipitation and has a positive dependence on leaf area index (LAI). Here we use a mechanistic ecohydrological model, with a refined process-based description of evaporation from the soil surface, to investigate the variability of T:ET across biomes. Numerical results reveal a more constrained range and higher mean of T:ET (70 ± 9%, mean ± standard deviation) when compared to observation-based estimates. T:ET is confirmed to be independent from mean precipitation, while it is found to be correlated with LAI seasonally but uncorrelated across multiple sites. Larger LAI increases evaporation from interception but diminishes ground evaporation with the two effects largely compensating each other. These results offer mechanistic model-based evidence to the ongoing research about the patterns of T:ET and the factors influencing its magnitude across biomes.
The great diversity of HMX conformers: probing the potential energy surface using CCSD(T).
Molt, Robert W; Watson, Thomas; Bazanté, Alexandre P; Bartlett, Rodney J
2013-04-25
The octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX) molecule is a very commonly studied system, in all 3 phases, because of its importance as an explosive; however, no one has ever attempted a systematic study of what all the major gas-phase conformers are. This is critical to a mechanistic study of the kinetics involved, as well as the viability of various crystalline polymorphs based on the gas-phase conformers. We have used existing knowledge of basic cyclooctane chemistry to survey all possible HMX conformers based on its fundamental ring structure. After studying what geometries are possible after second-order many-body perturbation theory (MBPT(2)) geometry optimization, we calculated the energetics using coupled cluster singles, doubles, and perturbative triples (CCSD(T))/cc-pVTZ. These highly accurate energies allow us to better calculate starting points for future mechanistic studies. Additionally, the plethora of structures are compared to existing experimental data of crystals. It is found that the crystal field effect is sometimes large and sometimes small for HMX.
SIRT2 deletion enhances KRAS-induced tumorigenesis in vivo by regulating K147 acetylation status.
Song, Ha Yong; Biancucci, Marco; Kang, Hong-Jun; O'Callaghan, Carol; Park, Seong-Hoon; Principe, Daniel R; Jiang, Haiyan; Yan, Yufan; Satchell, Karla Fullner; Raparia, Kirtee; Gius, David; Vassilopoulos, Athanassios
2016-12-06
The observation that cellular transformation depends on breaching a crucial KRAS activity threshold, along with the finding that only a small percentage of cellsharboring KRAS mutations are transformed, support the idea that additional, not fully uncovered, regulatory mechanisms may contribute to KRAS activation. Here we report that KrasG12D mice lacking Sirt2 show an aggressive tumorigenic phenotype as compared to KrasG12D mice. This phenotype includes increased proliferation, KRAS acetylation, and activation of RAS downstream signaling markers. Mechanistically, KRAS K147 is identified as a novel SIRT2-specific deacetylation target by mass spectrometry, whereas its acetylation status directly regulates KRAS activity, ultimately exerting an impact on cellular behavior as revealed by cell proliferation, colony formation, and tumor growth. Given the significance of KRAS activity as a driver in tumorigenesis, identification of K147 acetylation as a novel post-translational modification directed by SIRT2 in vivo may provide a better understanding of the mechanistic link regarding the crosstalk between non-genetic and genetic factors in KRAS driven tumors.
Robins, Lori I; Fogle, Emily J; Marlier, John F
2015-11-01
The hydrolysis of amides, oxoesters and thioesters is an important reaction in both organic chemistry and biochemistry. Kinetic isotope effects (KIEs) are one of the most important physical organic methods for determining the most likely transition state structure and rate-determining step of these reaction mechanisms. This method induces a very small change in reaction rates, which, in turn, results in a minimum disturbance of the natural mechanism. KIE studies were carried out on both the non-enzymatic and the enzyme-catalyzed reactions in an effort to compare both types of mechanisms. In these studies the amides and esters of formic acid were chosen because this molecular structure allowed development of methodology to determine heavy-atom solvent (nucleophile) KIEs. This type of isotope effect is difficult to measure, but is rich in mechanistic information. Results of these investigations point to transition states with varying degrees of tetrahedral character that fit a classical stepwise mechanism. This article is part of a special issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2014 Elsevier B.V. All rights reserved.
The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...
World-View Entrapment: Moral-Ethical Implications for Gifted Education.
ERIC Educational Resources Information Center
Ambrose, Don
2000-01-01
This article explores the moral-ethical implications of the mechanistic world view and related issues such as technological determinism, social Darwinism, and androcentrism. It finds that educational approaches reinforced by the mechanistic world view include positivistic approaches to curriculum, instruction, and research. Recommendations for…
DOT National Transportation Integrated Search
2014-02-01
The GDOT is preparing for implementation of the Mechanistic-Empirical Pavement Design : Guide (MEPDG). As part of this preparation, a statewide traffic load spectra program is being : developed for gathering truck axle loading data. This final report...
DOT National Transportation Integrated Search
2009-12-01
The purpose of this study is to characterize traffic inputs in support of the new Mechanistic- : Empirical Pavement Design Guide (M-E PDG) for the state of Michigan. These traffic : characteristics include monthly distribution factors (MDF), hourly d...
CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT
CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT
The current understanding of cancer as a genetic disease, requiring a specific set of genomic alterations for a normal cell to form a metastatic tumor, has provided the oppor...
PROPOSED SUITE OF MODELS FOR ESTIMATING DOSE RESULTING FROM EXPOSURES BY THE DERMAL ROUTE
Recent risk assessment guidance emphasizes consideration of mechanistic factors for influencing disposition of a toxicant. To incorporate mechanistic information into risk assessment, a suite of models is proposed for use in characterizing and quantifying dosimetry of toxic age...
Is timing the key to good fruit phenolics?: year 2
USDA-ARS?s Scientific Manuscript database
Despite a century of research, we still lack a concrete, mechanistic understanding of solar radiation and temperature effects on anthocyanin accumulation and composition, crucial for red wine grapes. Our aim was to elucidate the mechanistic response to microclimate of anthocyanin metabolism in Vitis...
DOT National Transportation Integrated Search
2011-03-01
Each design input in the Mechanistic-Empirical Design Guide (MEPDG) required for the design of Jointed Plain Concrete : Pavements (JPCPs) is introduced and discussed in this report. Best values for Pennsylvania conditions were established and : recom...
DOT National Transportation Integrated Search
2011-03-01
Each design input in the Mechanistic-Empirical Design Guide (MEPDG) required for the design of Jointed Plain Concrete Pavements (JPCPs) is introduced and discussed in this report. Best values for Pennsylvania conditions were established and recommend...
Modeling of Mn/Road test sections with the CRREL mechanistic pavement design procedure
DOT National Transportation Integrated Search
1996-09-01
The U.S. Army Cold Regions Research and Engineering Laboratory is developing a mechanistic pavement design procedure for use in seasonal frost areas. The procedure was used to predict pavement performance of some test sections under construction at t...