Comparative Genomics in Homo sapiens.
Oti, Martin; Sammeth, Michael
2018-01-01
Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.
Extensive Copy-Number Variation of Young Genes across Stickleback Populations
Eizaguirre, Christophe; Samonte, Irene E.; Kalbe, Martin; Lenz, Tobias L.; Stoll, Monika; Bornberg-Bauer, Erich; Milinski, Manfred; Reusch, Thorsten B. H.
2014-01-01
Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation. PMID:25474574
Population Genomics of Fungal and Oomycete Pathogens.
Grünwald, Niklaus J; McDonald, Bruce A; Milgroom, Michael G
2016-08-04
We are entering a new era in plant pathology in which whole-genome sequences of many individuals of a pathogen species are becoming readily available. Population genomics aims to discover genetic mechanisms underlying phenotypes associated with adaptive traits such as pathogenicity, virulence, fungicide resistance, and host specialization, as genome sequences or large numbers of single nucleotide polymorphisms become readily available from multiple individuals of the same species. This emerging field encompasses detailed genetic analyses of natural populations, comparative genomic analyses of closely related species, identification of genes under selection, and linkage analyses involving association studies in natural populations or segregating populations resulting from crosses. The era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. This review focuses on conceptual and methodological issues as well as the approaches to answering questions in population genomics. The major steps start with defining relevant biological and evolutionary questions, followed by sampling, genotyping, and phenotyping, and ending in analytical methods and interpretations. We provide examples of recent applications of population genomics to fungal and oomycete plant pathogens.
Ferchaud, Anne-Laure; Hansen, Michael M
2016-01-01
Heterogeneous genomic divergence between populations may reflect selection, but should also be seen in conjunction with gene flow and drift, particularly population bottlenecks. Marine and freshwater three-spine stickleback (Gasterosteus aculeatus) populations often exhibit different lateral armour plate morphs. Moreover, strikingly parallel genomic footprints across different marine-freshwater population pairs are interpreted as parallel evolution and gene reuse. Nevertheless, in some geographic regions like the North Sea and Baltic Sea, different patterns are observed. Freshwater populations in coastal regions are often dominated by marine morphs, suggesting that gene flow overwhelms selection, and genomic parallelism may also be less pronounced. We used RAD sequencing for analysing 28 888 SNPs in two marine and seven freshwater populations in Denmark, Europe. Freshwater populations represented a variety of environments: river populations accessible to gene flow from marine sticklebacks and large and small isolated lakes with and without fish predators. Sticklebacks in an accessible river environment showed minimal morphological and genomewide divergence from marine populations, supporting the hypothesis of gene flow overriding selection. Allele frequency spectra suggested bottlenecks in all freshwater populations, and particularly two small lake populations. However, genomic footprints ascribed to selection could nevertheless be identified. No genomic regions were consistent freshwater-marine outliers, and parallelism was much lower than in other comparable studies. Two genomic regions previously described to be under divergent selection in freshwater and marine populations were outliers between different freshwater populations. We ascribe these patterns to stronger environmental heterogeneity among freshwater populations in our study as compared to most other studies, although the demographic history involving bottlenecks should also be considered in the interpretation of results. © 2015 John Wiley & Sons Ltd.
Mitochondrial pathogenic mutations are population-specific.
Breen, Michael S; Kondrashov, Fyodor A
2010-12-31
Surveying deleterious variation in human populations is crucial for our understanding, diagnosis and potential treatment of human genetic pathologies. A number of recent genome-wide analyses focused on the prevalence of segregating deleterious alleles in the nuclear genome. However, such studies have not been conducted for the mitochondrial genome. We present a systematic survey of polymorphisms in the human mitochondrial genome, including those predicted to be deleterious and those that correspond to known pathogenic mutations. Analyzing 4458 completely sequenced mitochondrial genomes we characterize the genetic diversity of different types of single nucleotide polymorphisms (SNPs) in African (L haplotypes) and non-African (M and N haplotypes) populations. We find that the overall level of polymorphism is higher in the mitochondrial compared to the nuclear genome, although the mitochondrial genome appears to be under stronger selection as indicated by proportionally fewer nonsynonymous than synonymous substitutions. The African mitochondrial genomes show higher heterozygosity, a greater number of polymorphic sites and higher frequencies of polymorphisms for synonymous, benign and damaging polymorphism than non-African genomes. However, African genomes carry significantly fewer SNPs that have been previously characterized as pathogenic compared to non-African genomes. Finding SNPs classified as pathogenic to be the only category of polymorphisms that are more abundant in non-African genomes is best explained by a systematic ascertainment bias that favours the discovery of pathogenic polymorphisms segregating in non-African populations. This further suggests that, contrary to the common disease-common variant hypothesis, pathogenic mutations are largely population-specific and different SNPs may be associated with the same disease in different populations. Therefore, to obtain a comprehensive picture of the deleterious variability in the human population, as well as to improve the diagnostics of individuals carrying African mitochondrial haplotypes, it is necessary to survey different populations independently. This article was reviewed by Dr Mikhail Gelfand, Dr Vasily Ramensky (nominated by Dr Eugene Koonin) and Dr David Rand (nominated by Dr Laurence Hurst).
Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions
Havt, Alexandre; Nayak, Uma; Pinkerton, Relana; Farber, Emily; Concannon, Patrick; Lima, Aldo A.; Guerrant, Richard L.
2017-01-01
Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas. PMID:28100790
USDA-ARS?s Scientific Manuscript database
In this study we sequenced the genomes of 60 Fusarium graminearum, the major fungal pathogen responsible for Fusarium head blight (FHB) in cereal crops world-wide. To investigate adaptive evolution of FHB pathogens, we performed population-level analyses to characterize genomic structure, signatures...
Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing
Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal
2016-01-01
Goats (Capra hircus) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat’s selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome. PMID:27989103
Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing.
Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal
2016-12-01
Goats ( Capra hircus ) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat's selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome.
Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L
2016-01-01
Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.
Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace
2017-03-01
Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.
Yang, Melinda A; Harris, Kelley; Slatkin, Montgomery
2014-12-01
We introduce a method for comparing a test genome with numerous genomes from a reference population. Sites in the test genome are given a weight, w, that depends on the allele frequency, x, in the reference population. The projection of the test genome onto the reference population is the average weight for each x, [Formula: see text]. The weight is assigned in such a way that, if the test genome is a random sample from the reference population, then [Formula: see text]. Using analytic theory, numerical analysis, and simulations, we show how the projection depends on the time of population splitting, the history of admixture, and changes in past population size. The projection is sensitive to small amounts of past admixture, the direction of admixture, and admixture from a population not sampled (a ghost population). We compute the projections of several human and two archaic genomes onto three reference populations from the 1000 Genomes project-Europeans, Han Chinese, and Yoruba-and discuss the consistency of our analysis with previously published results for European and Yoruba demographic history. Including higher amounts of admixture between Europeans and Yoruba soon after their separation and low amounts of admixture more recently can resolve discrepancies between the projections and demographic inferences from some previous studies. Copyright © 2014 by the Genetics Society of America.
Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee
2009-09-30
To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (P<0.01) and standard deviation of copy numbers (SD>or= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (P<0.001 and SD>or=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.
Biogeography of the Sulfolobus islandicus pan-genome
Reno, Michael L.; Held, Nicole L.; Fields, Christopher J.; Burke, Patricia V.; Whitaker, Rachel J.
2009-01-01
Variation in gene content has been hypothesized to be the primary mode of adaptive evolution in microorganisms; however, very little is known about the spatial and temporal distribution of variable genes. Through population-scale comparative genomics of 7 Sulfolobus islandicus genomes from 3 locations, we demonstrate the biogeographical structure of the pan-genome of this species, with no evidence of gene flow between geographically isolated populations. The evolutionary independence of each population allowed us to assess genome dynamics over very recent evolutionary time, beginning ≈910,000 years ago. On this time scale, genome variation largely consists of recent strain-specific integration of mobile elements. Localized sectors of parallel gene loss are identified; however, the balance between the gain and loss of genetic material suggests that S. islandicus genomes acquire material slowly over time, primarily from closely related Sulfolobus species. Examination of the genome dynamics through population genomics in S. islandicus exposes the process of allopatric speciation in thermophilic Archaea and brings us closer to a generalized framework for understanding microbial genome evolution in a spatial context. PMID:19435847
Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements
Anderson, Rika E.; Kouris, Angela; Seward, Christopher H.; Campbell, Kate M.; Whitaker, Rachel J.
2017-01-01
The impact of a structured environment on genome evolution can be determined through comparative population genomics of species that live in the same habitat. Recent work comparing three genome sequences of Sulfolobus acidocaldarius suggested that highly structured, extreme, hot spring environments do not limit dispersal of this thermoacidophile, in contrast to other co-occurring Sulfolobus species. Instead, a high level of conservation among these three S. acidocaldarius genomes was hypothesized to result from rapid, global-scale dispersal promoted by low susceptibility to viruses that sets S. acidocaldarius apart from its sister Sulfolobus species. To test this hypothesis, we conducted a comparative analysis of 47 genomes of S. acidocaldarius from spatial and temporal sampling of two hot springs in Yellowstone National Park. While we confirm the low diversity in the core genome, we observe differentiation among S. acidocaldarius populations, likely resulting from low migration among hot spring “islands” in Yellowstone National Park. Patterns of genomic variation indicate that differing geological contexts result in the elimination or preservation of diversity among differentiated populations. We observe multiple deletions associated with a large genomic island rich in glycosyltransferases, differential integrations of the Sulfolobus turreted icosahedral virus, as well as two different plasmid elements. These data demonstrate that neither rapid dispersal nor lack of mobile genetic elements result in low diversity in the S. acidocaldariusgenomes. We suggest instead that significant differences in the recent evolutionary history, or the intrinsic evolutionary rates, of sister Sulfolobusspecies result in the relatively low diversity of the S. acidocaldarius genome.
Kashtan, Nadav; Roggensack, Sara E; Berta-Thompson, Jessie W; Grinberg, Maor; Stepanauskas, Ramunas; Chisholm, Sallie W
2017-09-01
The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.
Genomic continuity of Argentinean Mennonites
Pardo-Seco, Jacobo; Llull, Cintia; Berardi, Gabriela; Gómez, Andrea; Andreatta, Fernando; Martinón-Torres, Federico; Toscanini, Ulises; Salas, Antonio
2016-01-01
Mennonites are Anabaptist communities that originated in Central Europe about 500 years ago. They initially migrated to different European countries, and in the early 18th century they established their first communities in North America, from where they moved to other American regions. We aimed to analyze an Argentinean Mennonite congregation from a genome-wide perspective by way of investigating >580.000 autosomal SNPs. Several analyses show that Argentinean Mennonites have European ancestry without signatures of admixture with other non-European American populations. Among the worldwide datasets used for population comparison, the CEU, which is the best-subrogated Central European population existing in The 1000 Genome Project, is the dataset showing the closest genome affinity to the Mennonites. When compared to other European population samples, the Mennonites show higher inbreeding coefficient values. Argentinean Mennonites show signatures of genetic continuity with no evidence of admixture with Americans of Native American or sub-Saharan African ancestry. Their genome indicates the existence of an increased endogamy compared to other Europeans most likely mirroring their lifestyle that involve small communities and historical consanguineous marriages. PMID:27824108
2012-01-01
Background Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution. Conclusions Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut. PMID:23140574
Across language families: Genome diversity mirrors linguistic variation within Europe
Longobardi, Giuseppe; Ghirotto, Silvia; Guardiano, Cristina; Tassi, Francesca; Benazzo, Andrea; Ceolin, Andrea
2015-01-01
ABSTRACT Objectives: The notion that patterns of linguistic and biological variation may cast light on each other and on population histories dates back to Darwin's times; yet, turning this intuition into a proper research program has met with serious methodological difficulties, especially affecting language comparisons. This article takes advantage of two new tools of comparative linguistics: a refined list of Indo‐European cognate words, and a novel method of language comparison estimating linguistic diversity from a universal inventory of grammatical polymorphisms, and hence enabling comparison even across different families. We corroborated the method and used it to compare patterns of linguistic and genomic variation in Europe. Materials and Methods: Two sets of linguistic distances, lexical and syntactic, were inferred from these data and compared with measures of geographic and genomic distance through a series of matrix correlation tests. Linguistic and genomic trees were also estimated and compared. A method (Treemix) was used to infer migration episodes after the main population splits. Results: We observed significant correlations between genomic and linguistic diversity, the latter inferred from data on both Indo‐European and non‐Indo‐European languages. Contrary to previous observations, on the European scale, language proved a better predictor of genomic differences than geography. Inferred episodes of genetic admixture following the main population splits found convincing correlates also in the linguistic realm. Discussion: These results pave the ground for previously unfeasible cross‐disciplinary analyses at the worldwide scale, encompassing populations of distant language families. Am J Phys Anthropol 157:630–640, 2015. © 2015 Wiley Periodicals, Inc. PMID:26059462
Al-Mamun, Hawlader Abdullah; Clark, Samuel A; Kwan, Paul; Gondro, Cedric
2015-11-24
Knowledge of the genetic structure and overall diversity of livestock species is important to maximise the potential of genome-wide association studies and genomic prediction. Commonly used measures such as linkage disequilibrium (LD), effective population size (N e ), heterozygosity, fixation index (F ST) and runs of homozygosity (ROH) are widely used and help to improve our knowledge about genetic diversity in animal populations. The development of high-density single nucleotide polymorphism (SNP) arrays and the subsequent genotyping of large numbers of animals have greatly increased the accuracy of these population-based estimates. In this study, we used the Illumina OvineSNP50 BeadChip array to estimate and compare LD (measured by r (2) and D'), N e , heterozygosity, F ST and ROH in five Australian sheep populations: three pure breeds, i.e., Merino (MER), Border Leicester (BL), Poll Dorset (PD) and two crossbred populations i.e. F1 crosses of Merino and Border Leicester (MxB) and MxB crossed to Poll Dorset (MxBxP). Compared to other livestock species, the sheep populations that were analysed in this study had low levels of LD and high levels of genetic diversity. The rate of LD decay was greater in Merino than in the other pure breeds. Over short distances (<10 kb), the levels of LD were higher in BL and PD than in MER. Similarly, BL and PD had comparatively smaller N e than MER. Observed heterozygosity in the pure breeds ranged from 0.3 in BL to 0.38 in MER. Genetic distances between breeds were modest compared to other livestock species (highest F ST = 0.063) but the genetic diversity within breeds was high. Based on ROH, two chromosomal regions showed evidence of strong recent selection. This study shows that there is a large range of genome diversity in Australian sheep breeds, especially in Merino sheep. The observed range of diversity will influence the design of genome-wide association studies and the results that can be obtained from them. This knowledge will also be useful to design reference populations for genomic prediction of breeding values in sheep.
Xue, Alexander T; Hickerson, Michael J
2017-11-01
Population genetic data from multiple taxa can address comparative phylogeographic questions about community-scale response to environmental shifts, and a useful strategy to this end is to employ hierarchical co-demographic models that directly test multi-taxa hypotheses within a single, unified analysis. This approach has been applied to classical phylogeographic data sets such as mitochondrial barcodes as well as reduced-genome polymorphism data sets that can yield 10,000s of SNPs, produced by emergent technologies such as RAD-seq and GBS. A strategy for the latter had been accomplished by adapting the site frequency spectrum to a novel summarization of population genomic data across multiple taxa called the aggregate site frequency spectrum (aSFS), which potentially can be deployed under various inferential frameworks including approximate Bayesian computation, random forest and composite likelihood optimization. Here, we introduce the r package multi-dice, a wrapper program that exploits existing simulation software for flexible execution of hierarchical model-based inference using the aSFS, which is derived from reduced genome data, as well as mitochondrial data. We validate several novel software features such as applying alternative inferential frameworks, enforcing a minimal threshold of time surrounding co-demographic pulses and specifying flexible hyperprior distributions. In sum, multi-dice provides comparative analysis within the familiar R environment while allowing a high degree of user customization, and will thus serve as a tool for comparative phylogeography and population genomics. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.
2016-01-01
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855
Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K
2016-03-01
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.
The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...
The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.
Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P; Song, Yun S; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R; Behar, Doron M; Bravi, Claudio M; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T S; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael F; Kivisild, Toomas; Klitz, William; Winkler, Cheryl A; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B; Tishkoff, Sarah A; Watkins, W Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David
2016-10-13
Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
The Simons Genome Diversity Project: 300 genomes from 142 diverse populations
Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P.; Song, Yun S.; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R.; Behar, Doron M.; Bravi, Claudio M.; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L.; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M. Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M.; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B.; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M.; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T. S.; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael; Kivisild, Toomas; Klitz, William; Winkler, Cheryl; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B.; Tishkoff, Sarah A.; Watkins, W. Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David
2016-01-01
We report the Simons Genome Diversity Project (SGDP) dataset: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioral modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that in other non-Africans. PMID:27654912
Phenetic Comparison of Prokaryotic Genomes Using k-mers
Déraspe, Maxime; Raymond, Frédéric; Boisvert, Sébastien; Culley, Alexander; Roy, Paul H.; Laviolette, François; Corbeil, Jacques
2017-01-01
Abstract Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets. PMID:28957508
Reddy, Umesh K.; Nimmakayala, Padma; Abburi, Venkata Lakshmi; Reddy, C. V. C. M.; Saminathan, Thangasamy; Percy, Richard G.; Yu, John Z.; Frelichowski, James; Udall, Joshua A.; Page, Justin T.; Zhang, Dong; Shehzad, Tariq; Paterson, Andrew H.
2017-01-01
Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima’s D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication. PMID:28128280
Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.
Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing
2017-12-15
By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.
Ahmad, Meraj; Sinha, Anubhav; Ghosh, Sreya; Kumar, Vikrant; Davila, Sonia; Yajnik, Chittaranjan S; Chandak, Giriraj R
2017-07-27
Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.
Harnessing Whole Genome Sequencing in Medical Mycology.
Cuomo, Christina A
2017-01-01
Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.
Minimal-assumption inference from population-genomic data
NASA Astrophysics Data System (ADS)
Weissman, Daniel; Hallatschek, Oskar
Samples of multiple complete genome sequences contain vast amounts of information about the evolutionary history of populations, much of it in the associations among polymorphisms at different loci. Current methods that take advantage of this linkage information rely on models of recombination and coalescence, limiting the sample sizes and populations that they can analyze. We introduce a method, Minimal-Assumption Genomic Inference of Coalescence (MAGIC), that reconstructs key features of the evolutionary history, including the distribution of coalescence times, by integrating information across genomic length scales without using an explicit model of recombination, demography or selection. Using simulated data, we show that MAGIC's performance is comparable to PSMC' on single diploid samples generated with standard coalescent and recombination models. More importantly, MAGIC can also analyze arbitrarily large samples and is robust to changes in the coalescent and recombination processes. Using MAGIC, we show that the inferred coalescence time histories of samples of multiple human genomes exhibit inconsistencies with a description in terms of an effective population size based on single-genome data.
Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations
Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter
2017-01-01
Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594
Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding
Ayub, Qasim; Szpak, Michal; Frandsen, Peter; Chen, Yuan; Yngvadottir, Bryndis; Cooper, David N.; de Manuel, Marc; Hernandez-Rodriguez, Jessica; Lobon, Irene; Siegismund, Hans R.; Pagani, Luca; Quail, Michael A.; Hvilsom, Christina; Mudakikwa, Antoine; Eichler, Evan E.; Cranfield, Michael R.; Marques-Bonet, Tomas; Tyler-Smith, Chris; Scally, Aylwyn
2015-01-01
Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival. PMID:25859046
Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations
Rodriguez-Flores, Juan L.; Fakhro, Khalid; Agosto-Perez, Francisco; Ramstetter, Monica D.; Arbiza, Leonardo; Vincent, Thomas L.; Robay, Amal; Malek, Joel A.; Suhre, Karsten; Chouchane, Lotfi; Badii, Ramin; Al-Nabet Al-Marri, Ajayeb; Abi Khalil, Charbel; Zirie, Mahmoud; Jayyousi, Amin; Salit, Jacqueline; Keinan, Alon; Clark, Andrew G.; Crystal, Ronald G.; Mezey, Jason G.
2016-01-01
An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations. PMID:26728717
Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster
Song, Yun S.
2012-01-01
Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity. PMID:23284288
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun
2014-01-01
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun
2014-01-01
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare methods for genomic evaluation in a Rainbow Trout (Oncorhynchus mykiss) population for survival when challenged by Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD). The used methods were: 1)regular ssGBLUP that assume...
Leitwein, M; Gagnaire, P-A; Desmarais, E; Guendouz, S; Rohmer, M; Berrebi, P; Guinand, B
2016-12-01
A genome-wide assessment of diversity is provided for wild Mediterranean brown trout Salmo trutta populations from headwater tributaries of the Orb River and from Atlantic and Mediterranean hatchery-reared strains that have been used for stocking. Double-digest restriction-site-associated DNA sequencing (dd-RADseq) was performed and the efficiency of de novo and reference-mapping approaches to obtain individual genotypes was compared. Large numbers of single nucleotide polymorphism (SNP) markers with similar genome-wide distributions were discovered using both approaches (196 639 v. 121 016 SNPs, respectively), with c. 80% of the loci detected de novo being also found with reference mapping, using the Atlantic salmon Salmo salar genome as a reference. Lower mapping density but larger nucleotide diversity (π) was generally observed near extremities of linkage groups, consistent with regions of residual tetrasomic inheritance observed in salmonids. Genome-wide diversity estimates revealed reduced polymorphism in hatchery strains (π = 0·0040 and π = 0·0029 in Atlantic and Mediterranean strains, respectively) compared to wild populations (π = 0·0049), a pattern that was congruent with allelic richness estimated from microsatellite markers. Finally, pronounced heterozygote deficiency was found in hatchery strains (Atlantic F IS = 0·18; Mediterranean F IS = 0·42), indicating that stocking practices may affect the genetic diversity in wild populations. These new genomic resources will provide important tools to define better conservation strategies in S. trutta. © 2016 The Fisheries Society of the British Isles.
Khoury, Muin J.; Clauser, Steven B.; Freedman, Andrew N.; Gillanders, Elizabeth M.; Glasgow, Russ E.; Klein, William M. P.; Schully, Sheri D.
2011-01-01
Advances in genomics and related fields are promising tools for risk assessment, early detection, and targeted therapies across the entire cancer care continuum. In this commentary, we submit that this promise cannot be fulfilled without an enhanced translational genomics research agenda firmly rooted in the population sciences. Population sciences include multiple disciplines that are needed throughout the translational research continuum. For example, epidemiologic studies are needed not only to accelerate genomic discoveries and new biological insights into cancer etiology and pathogenesis, but to characterize and critically evaluate these discoveries in well defined populations for their potential for cancer prediction, prevention and response to treatments. Behavioral, social and communication sciences are needed to explore genomic-modulated responses to old and new behavioral interventions, adherence to therapies, decision-making across the continuum, and effective use in health care. Implementation science, health services, outcomes research, comparative effectiveness research and regulatory science are needed for moving validated genomic applications into practice and for measuring their effectiveness, cost effectiveness and unintended consequences. Knowledge synthesis, evidence reviews and economic modeling of the effects of promising genomic applications will facilitate policy decisions, and evidence-based recommendations. Several independent and multidisciplinary panels have recently made specific recommendations for enhanced research and policy infrastructure to inform clinical and population research for moving genomic innovations into the cancer care continuum. An enhanced translational genomics and population sciences agenda is urgently needed to fulfill the promise of genomics in reducing the burden of cancer. PMID:21795499
Li, Cai; Zhang, Yong; Li, Jianwen; Kong, Lesheng; Hu, Haofu; Pan, Hailin; Xu, Luohao; Deng, Yuan; Li, Qiye; Jin, Lijun; Yu, Hao; Chen, Yan; Liu, Binghang; Yang, Linfeng; Liu, Shiping; Zhang, Yan; Lang, Yongshan; Xia, Jinquan; He, Weiming; Shi, Qiong; Subramanian, Sankar; Millar, Craig D; Meader, Stephen; Rands, Chris M; Fujita, Matthew K; Greenwold, Matthew J; Castoe, Todd A; Pollock, David D; Gu, Wanjun; Nam, Kiwoong; Ellegren, Hans; Ho, Simon Yw; Burt, David W; Ponting, Chris P; Jarvis, Erich D; Gilbert, M Thomas P; Yang, Huanming; Wang, Jian; Lambert, David M; Wang, Jun; Zhang, Guojie
2014-01-01
Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
Strategies for implementing genomic selection for feed efficiency in dairy cattle breeding schemes.
Wallén, S E; Lillehammer, M; Meuwissen, T H E
2017-08-01
Alternative genomic selection and traditional BLUP breeding schemes were compared for the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and achievable selection accuracy were studied for milk yield and residual feed intake, as a measure of feed efficiency. When including feed efficiency in genomic BLUP schemes, it was possible to achieve high selection accuracies for genomic selection, and all genomic BLUP schemes gave better genetic gain for feed efficiency than BLUP using a pedigree relationship matrix. However, introducing a second trait in the breeding goal caused a reduction in the genetic gain for milk yield. When using contracted test herds with genotyped and feed efficiency recorded cows as a reference population, adding an additional 4,000 new heifers per year to the reference population gave accuracies that were comparable to a male reference population that used progeny testing with 250 daughters per sire. When the test herd consisted of 500 or 1,000 cows, lower genetic gain was found than using progeny test records to update the reference population. It was concluded that to improve difficult to record traits, the use of contracted test herds that had additional recording (e.g., measurements required to calculate feed efficiency) is a viable option, possibly through international collaborations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Variation and Functional Impact of Neanderthal Ancestry in Western Asia
Taskent, Recep Ozgur; Alioglu, Nursen Duha; Fer, Evrim
2017-01-01
Abstract Neanderthals contributed genetic material to modern humans via multiple admixture events. Initial admixture events presumably occurred in Western Asia shortly after humans migrated out of Africa. Despite being a focal point of admixture, earlier studies indicate lower Neanderthal introgression rates in some Western Asian populations as compared with other Eurasian populations. To better understand the genome-wide and phenotypic impact of Neanderthal introgression in the region, we sequenced whole genomes of nine present-day Europeans, Africans, and the Western Asian Druze at high depth, and analyzed available whole genome data from various other populations, including 16 genomes from present-day Turkey. Our results confirmed previous observations that contemporary Western Asian populations, on an average, have lower levels of Neanderthal-introgressed DNA relative to other Eurasian populations. Modern Western Asians also show comparatively high variability in Neanderthal ancestry, which may be attributed to the complex demographic history of the region. We further replicated the previously described depletion of putatively functional sequences among Neanderthal-introgressed haplotypes. Still, we find dozens of common Neanderthal-introgressed haplotypes in the Turkish sample associated with human phenotypes, including anthropometric and metabolic traits, as well as the immune response. One of these haplotypes is unusually long and harbors variants that affect the expression of members of the CCR gene family and are associated with celiac disease. Overall, our results paint a complex first picture of the genomic impact of Neanderthal introgression in the Western Asian populations. PMID:29040546
Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding.
Xue, Yali; Prado-Martinez, Javier; Sudmant, Peter H; Narasimhan, Vagheesh; Ayub, Qasim; Szpak, Michal; Frandsen, Peter; Chen, Yuan; Yngvadottir, Bryndis; Cooper, David N; de Manuel, Marc; Hernandez-Rodriguez, Jessica; Lobon, Irene; Siegismund, Hans R; Pagani, Luca; Quail, Michael A; Hvilsom, Christina; Mudakikwa, Antoine; Eichler, Evan E; Cranfield, Michael R; Marques-Bonet, Tomas; Tyler-Smith, Chris; Scally, Aylwyn
2015-04-10
Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival. Copyright © 2015, American Association for the Advancement of Science.
Genomic selection in sugar beet breeding populations.
Würschum, Tobias; Reif, Jochen C; Kraft, Thomas; Janssen, Geert; Zhao, Yusheng
2013-09-18
Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.
Dreger, Dayna L; Rimbault, Maud; Davis, Brian W; Bhatnagar, Adrienne; Parker, Heidi G; Ostrander, Elaine A
2016-12-01
In the decade following publication of the draft genome sequence of the domestic dog, extraordinary advances with application to several fields have been credited to the canine genetic system. Taking advantage of closed breeding populations and the subsequent selection for aesthetic and behavioral characteristics, researchers have leveraged the dog as an effective natural model for the study of complex traits, such as disease susceptibility, behavior and morphology, generating unique contributions to human health and biology. When designing genetic studies using purebred dogs, it is essential to consider the unique demography of each population, including estimation of effective population size and timing of population bottlenecks. The analytical design approach for genome-wide association studies (GWAS) and analysis of whole-genome sequence (WGS) experiments are inextricable from demographic data. We have performed a comprehensive study of genomic homozygosity, using high-depth WGS data for 90 individuals, and Illumina HD SNP data from 800 individuals representing 80 breeds. These data were coupled with extensive pedigree data analyses for 11 breeds that, together, allowed us to compute breed structure, demography, and molecular measures of genome diversity. Our comparative analyses characterize the extent, formation and implication of breed-specific diversity as it relates to population structure. These data demonstrate the relationship between breed-specific genome dynamics and population architecture, and provide important considerations influencing the technological and cohort design of association and other genomic studies. © 2016. Published by The Company of Biologists Ltd.
Dreger, Dayna L.; Rimbault, Maud; Davis, Brian W.; Bhatnagar, Adrienne; Parker, Heidi G.
2016-01-01
ABSTRACT In the decade following publication of the draft genome sequence of the domestic dog, extraordinary advances with application to several fields have been credited to the canine genetic system. Taking advantage of closed breeding populations and the subsequent selection for aesthetic and behavioral characteristics, researchers have leveraged the dog as an effective natural model for the study of complex traits, such as disease susceptibility, behavior and morphology, generating unique contributions to human health and biology. When designing genetic studies using purebred dogs, it is essential to consider the unique demography of each population, including estimation of effective population size and timing of population bottlenecks. The analytical design approach for genome-wide association studies (GWAS) and analysis of whole-genome sequence (WGS) experiments are inextricable from demographic data. We have performed a comprehensive study of genomic homozygosity, using high-depth WGS data for 90 individuals, and Illumina HD SNP data from 800 individuals representing 80 breeds. These data were coupled with extensive pedigree data analyses for 11 breeds that, together, allowed us to compute breed structure, demography, and molecular measures of genome diversity. Our comparative analyses characterize the extent, formation and implication of breed-specific diversity as it relates to population structure. These data demonstrate the relationship between breed-specific genome dynamics and population architecture, and provide important considerations influencing the technological and cohort design of association and other genomic studies. PMID:27874836
Cho, Yun Sung; Kim, Hyunho; Kim, Hak-Min; Jho, Sungwoong; Jun, JeHoon; Lee, Yong Joo; Chae, Kyun Shik; Kim, Chang Geun; Kim, Sangsoo; Eriksson, Anders; Edwards, Jeremy S.; Lee, Semin; Kim, Byung Chul; Manica, Andrea; Oh, Tae-Kwang; Church, George M.; Bhak, Jong
2016-01-01
Human genomes are routinely compared against a universal reference. However, this strategy could miss population-specific and personal genomic variations, which may be detected more efficiently using an ethnically relevant or personal reference. Here we report a hybrid assembly of a Korean reference genome (KOREF) for constructing personal and ethnic references by combining sequencing and mapping methods. We also build its consensus variome reference, providing information on millions of variants from 40 additional ethnically homogeneous genomes from the Korean Personal Genome Project. We find that the ethnically relevant consensus reference can be beneficial for efficient variant detection. Systematic comparison of human assemblies shows the importance of assembly quality, suggesting the necessity of new technologies to comprehensively map ethnic and personal genomic structure variations. In the era of large-scale population genome projects, the leveraging of ethnicity-specific genome assemblies as well as the human reference genome will accelerate mapping all human genome diversity. PMID:27882922
Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations.
Rodriguez-Flores, Juan L; Fakhro, Khalid; Agosto-Perez, Francisco; Ramstetter, Monica D; Arbiza, Leonardo; Vincent, Thomas L; Robay, Amal; Malek, Joel A; Suhre, Karsten; Chouchane, Lotfi; Badii, Ramin; Al-Nabet Al-Marri, Ajayeb; Abi Khalil, Charbel; Zirie, Mahmoud; Jayyousi, Amin; Salit, Jacqueline; Keinan, Alon; Clark, Andrew G; Crystal, Ronald G; Mezey, Jason G
2016-02-01
An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations. © 2016 Rodriguez-Flores et al.; Published by Cold Spring Harbor Laboratory Press.
Genomic data for 78 chickens from 14 populations
Li, Diyan; Che, Tiandong; Chen, Binlong; Tian, Shilin; Zhou, Xuming; Zhang, Guolong; Li, Miao; Gaur, Uma; Li, Yan; Luo, Majing; Zhang, Long; Xu, Zhongxian; Zhao, Xiaoling; Yin, Huadong; Wang, Yan; Jin, Long; Tang, Qianzi; Xu, Huailiang; Yang, Mingyao; Zhou, Rongjia; Li, Ruiqiang
2017-01-01
Abstract Background: Since the domestication of the red jungle fowls (Gallus gallus; dating back to ∼10 000 B.P.) in Asia, domestic chickens (Gallus gallus domesticus) have been subjected to the combined effects of natural selection and human-driven artificial selection; this has resulted in marked phenotypic diversity in a number of traits, including behavior, body composition, egg production, and skin color. Population genomic variations through diversifying selection have not been fully investigated. Findings: The whole genomes of 78 domestic chickens were sequenced to an average of 18-fold coverage for each bird. By combining this data with publicly available genomes of five wild red jungle fowls and eight Xishuangbanna game fowls, we conducted a comprehensive comparative genomics analysis of 91 chickens from 17 populations. After aligning ∼21.30 gigabases (Gb) of high-quality data from each individual to the reference chicken genome, we identified ∼6.44 million (M) single nucleotide polymorphisms (SNPs) for each population. These SNPs included 1.10 M novel SNPs in 17 populations that were absent in the current chicken dbSNP (Build 145) entries. Conclusions: The current data is important for population genetics and further studies in chickens and will serve as a valuable resource for investigating diversifying selection and candidate genes for selective breeding in chickens. PMID:28431039
Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen
2015-01-01
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952
Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F
2015-04-28
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.
Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo)
2012-01-01
Background The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery study in turkey resulted in the detection of 5.49 million putative SNPs compared to the reference genome. All commercial lines appear to share a common origin. Presence of different alleles/haplotypes in the SM population highlights that specific haplotypes have been selected in the modern domesticated turkey. PMID:22891612
Assessing genome-wide copy number variation in the Han Chinese population.
Lu, Jianqi; Lou, Haiyi; Fu, Ruiqing; Lu, Dongsheng; Zhang, Feng; Wu, Zhendong; Zhang, Xi; Li, Changhua; Fang, Baijun; Pu, Fangfang; Wei, Jingning; Wei, Qian; Zhang, Chao; Wang, Xiaoji; Lu, Yan; Yan, Shi; Yang, Yajun; Jin, Li; Xu, Shuhua
2017-10-01
Copy number variation (CNV) is a valuable source of genetic diversity in the human genome and a well-recognised cause of various genetic diseases. However, CNVs have been considerably under-represented in population-based studies, particularly the Han Chinese which is the largest ethnic group in the world. To build a representative CNV map for the Han Chinese population. We conducted a genome-wide CNV study involving 451 male Han Chinese samples from 11 geographical regions encompassing 28 dialect groups, representing a less-biased panel compared with the currently available data. We detected CNVs by using 4.2M NimbleGen comparative genomic hybridisation array and whole-genome deep sequencing of 51 samples to optimise the filtering conditions in CNV discovery. A comprehensive Han Chinese CNV map was built based on a set of high-quality variants (positive predictive value >0.8, with sizes ranging from 369 bp to 4.16 Mb and a median of 5907 bp). The map consists of 4012 CNV regions (CNVRs), and more than half are novel to the 30 East Asian CNV Project and the 1000 Genomes Project Phase 3. We further identified 81 CNVRs specific to regional groups, which was indicative of the subpopulation structure within the Han Chinese population. Our data are complementary to public data sources, and the CNV map may facilitate in the identification of pathogenic CNVs and further biomedical research studies involving the Han Chinese population. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Random genetic drift, natural selection, and noise in human cranial evolution.
Roseman, Charles C
2016-08-01
This study assesses the extent to which relationships among groups complicate comparative studies of adaptation in recent human cranial variation and the extent to which departures from neutral additive models of evolution hinder the reconstruction of population relationships among groups using cranial morphology. Using a maximum likelihood evolutionary model fitting approach and a mixed population genomic and cranial data set, I evaluate the relative fits of several widely used models of human cranial evolution. Moreover, I compare the goodness of fit of models of cranial evolution constrained by genomic variation to test hypotheses about population specific departures from neutrality. Models from population genomics are much better fits to cranial variation than are traditional models from comparative human biology. There is not enough evolutionary information in the cranium to reconstruct much of recent human evolution but the influence of population history on cranial variation is strong enough to cause comparative studies of adaptation serious difficulties. Deviations from a model of random genetic drift along a tree-like population history show the importance of environmental effects, gene flow, and/or natural selection on human cranial variation. Moreover, there is a strong signal of the effect of natural selection or an environmental factor on a group of humans from Siberia. The evolution of the human cranium is complex and no one evolutionary process has prevailed at the expense of all others. A holistic unification of phenome, genome, and environmental context, gives us a strong point of purchase on these problems, which is unavailable to any one traditional approach alone. Am J Phys Anthropol 160:582-592, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Campo, D; Lehmann, K; Fjeldsted, C; Souaiaia, T; Kao, J; Nuzhdin, S V
2013-10-01
The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale. © 2013 John Wiley & Sons Ltd.
Cow genotyping strategies for genomic selection in small dairy cattle population
USDA-ARS?s Scientific Manuscript database
This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds there are few sires with progeny records and genotyping cows can improve the accuracy of genomic EBV. The Guernsey bre...
Doorduin, Leonie; Gravendeel, Barbara; Lammers, Youri; Ariyurek, Yavuz; Chin-A-Woeng, Thomas; Vrieling, Klaas
2011-01-01
Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific polymorphic markers. We therefore sequenced the complete chloroplast genomes of 12 native and 5 invasive individuals of J. vulgaris with next generation sequencing and discovered single-nucleotide polymorphisms (SNPs) and microsatellites. This is the first study in which the chloroplast genome of that many individuals within a single species was sequenced. Thirty-two SNPs and 34 microsatellite regions were found. For none of the individuals, differences were found between the inverted repeats. Furthermore, being the first chloroplast genome sequenced in the Senecioneae clade, we compared it with four other members of the Asteraceae family to identify new regions for phylogentic inference within this clade and also within the Asteraceae family. Five markers (ndhC-trnV, ndhC-atpE, rps18-rpl20, clpP and psbM-trnD) contained parsimony-informative characters higher than 2%. Finally, we compared two procedures of preparing chloroplast DNA for next generation sequencing. PMID:21444340
Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel
2013-01-01
The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196
A partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan
Kanzawa-Kiriyama, Hideaki; Kryukov, Kirill; Jinam, Timothy A; Hosomichi, Kazuyoshi; Saso, Aiko; Suwa, Gen; Ueda, Shintaroh; Yoneda, Minoru; Tajima, Atsushi; Shinoda, Ken-ichi; Inoue, Ituro; Saitou, Naruya
2017-01-01
The Jomon period of the Japanese Archipelago, characterized by cord-marked ‘jomon' potteries, has yielded abundant human skeletal remains. However, the genetic origins of the Jomon people and their relationships with modern populations have not been clarified. We determined a total of 115 million base pair nuclear genome sequences from two Jomon individuals (male and female each) from the Sanganji Shell Mound (dated 3000 years before present) with the Jomon-characteristic mitochondrial DNA haplogroup N9b, and compared these nuclear genome sequences with those of worldwide populations. We found that the Jomon population lineage is best considered to have diverged before diversification of present-day East Eurasian populations, with no evidence of gene flow events between the Jomon and other continental populations. This suggests that the Sanganji Jomon people descended from an early phase of population dispersals in East Asia. We also estimated that the modern mainland Japanese inherited <20% of Jomon peoples' genomes. Our findings, based on the first analysis of Jomon nuclear genome sequence data, firmly demonstrate that the modern mainland Japanese resulted from genetic admixture of the indigenous Jomon people and later migrants. PMID:27581845
Genomic Signature of Kin Selection in an Ant with Obligately Sterile Workers
Warner, Michael R.; Mikheyev, Alexander S.
2017-01-01
Abstract Kin selection is thought to drive the evolution of cooperation and conflict, but the specific genes and genome-wide patterns shaped by kin selection are unknown. We identified thousands of genes associated with the sterile ant worker caste, the archetype of an altruistic phenotype shaped by kin selection, and then used population and comparative genomic approaches to study patterns of molecular evolution at these genes. Consistent with population genetic theoretical predictions, worker-upregulated genes experienced reduced selection compared with genes upregulated in reproductive castes. Worker-upregulated genes included more taxonomically restricted genes, indicating that the worker caste has recruited more novel genes, yet these genes also experienced reduced selection. Our study identifies a putative genomic signature of kin selection and helps to integrate emerging sociogenomic data with longstanding social evolution theory. PMID:28419349
Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.
Irizarry, Kristopher J. L.; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L.; Barrett, Gini; Barr, Margaret C.
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management. PMID:27376076
Geographic Population Structure in Epstein-Barr Virus Revealed by Comparative Genomics
Chiara, Matteo; Manzari, Caterina; Lionetti, Claudia; Mechelli, Rosella; Anastasiadou, Eleni; Chiara Buscarinu, Maria; Ristori, Giovanni; Salvetti, Marco; Picardi, Ernesto; D’Erchia, Anna Maria; Pesole, Graziano; Horner, David S.
2016-01-01
Epstein-Barr virus (EBV) latently infects the majority of the human population and is implicated as a causal or contributory factor in numerous diseases. We sequenced 27 complete EBV genomes from a cohort of Multiple Sclerosis (MS) patients and healthy controls from Italy, although no variants showed a statistically significant association with MS. Taking advantage of the availability of ∼130 EBV genomes with known geographical origins, we reveal a striking geographic distribution of EBV sub-populations with distinct allele frequency distributions. We discuss mechanisms that potentially explain these observations, and their implications for understanding the association of EBV with human disease. PMID:27635051
Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact.
Walters-Conte, Kathryn B; Johnson, Diana L E; Allard, Marc W; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.
Carnivore-Specific SINEs (Can-SINEs): Distribution, Evolution, and Genomic Impact
Johnson, Diana L.E.; Allard, Marc W.; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics. PMID:21846743
Whitehead, Andrew; Roach, Jennifer L; Zhang, Shujun; Galvez, Fernando
2012-04-15
The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.
Medaka: a promising model animal for comparative population genomics
Matsumoto, Yoshifumi; Oota, Hiroki; Asaoka, Yoichi; Nishina, Hiroshi; Watanabe, Koji; Bujnicki, Janusz M; Oda, Shoji; Kawamura, Shoji; Mitani, Hiroshi
2009-01-01
Background Within-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate model with the following characteristics: (1) high within-species genetic diversity, (2) a variety of gene-manipulation protocols already developed, and (3) a completely sequenced genome. Medaka (Oryzias latipes) and its congeneric species, tiny fresh-water teleosts distributed broadly in East and Southeast Asia, meet these criteria. Findings Using Oryzias species from 27 local populations, we conducted a simple screening of nonsynonymous SNPs for 11 genes with apparent orthology between medaka and humans. We found medaka SNPs for which the same sites in human orthologs are known to be highly differentiated among the HapMap populations. Importantly, some of these SNPs show signals of positive selection. Conclusion These results indicate that medaka is a promising model system for comparative population genomics exploring the functional and adaptive significance of allelic differentiations. PMID:19426554
Signatures of natural selection and ecological differentiation in microbial genomes.
Shapiro, B Jesse
2014-01-01
We live in a microbial world. Most of the genetic and metabolic diversity that exists on earth - and has existed for billions of years - is microbial. Making sense of this vast diversity is a daunting task, but one that can be approached systematically by analyzing microbial genome sequences. This chapter explores how the evolutionary forces of recombination and selection act to shape microbial genome sequences, leaving signatures that can be detected using comparative genomics and population-genetic tests for selection. I describe the major classes of tests, paying special attention to their relative strengths and weaknesses when applied to microbes. Specifically, I apply a suite of tests for selection to a set of closely-related bacterial genomes with different microhabitat preferences within the marine water column, shedding light on the genomic mechanisms of ecological differentiation in the wild. I will focus on the joint problem of simultaneously inferring the boundaries between microbial populations, and the selective forces operating within and between populations.
Quantifying Temporal Genomic Erosion in Endangered Species.
Díez-Del-Molino, David; Sánchez-Barreiro, Fatima; Barnes, Ian; Gilbert, M Thomas P; Dalén, Love
2018-03-01
Many species have undergone dramatic population size declines over the past centuries. Although stochastic genetic processes during and after such declines are thought to elevate the risk of extinction, comparative analyses of genomic data from several endangered species suggest little concordance between genome-wide diversity and current population sizes. This is likely because species-specific life-history traits and ancient bottlenecks overshadow the genetic effect of recent demographic declines. Therefore, we advocate that temporal sampling of genomic data provides a more accurate approach to quantify genetic threats in endangered species. Specifically, genomic data from predecline museum specimens will provide valuable baseline data that enable accurate estimation of recent decreases in genome-wide diversity, increases in inbreeding levels, and accumulation of deleterious genetic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Variation and Functional Impact of Neanderthal Ancestry in Western Asia.
Taskent, Recep Ozgur; Alioglu, Nursen Duha; Fer, Evrim; Melike Donertas, Handan; Somel, Mehmet; Gokcumen, Omer
2017-12-01
Neanderthals contributed genetic material to modern humans via multiple admixture events. Initial admixture events presumably occurred in Western Asia shortly after humans migrated out of Africa. Despite being a focal point of admixture, earlier studies indicate lower Neanderthal introgression rates in some Western Asian populations as compared with other Eurasian populations. To better understand the genome-wide and phenotypic impact of Neanderthal introgression in the region, we sequenced whole genomes of nine present-day Europeans, Africans, and the Western Asian Druze at high depth, and analyzed available whole genome data from various other populations, including 16 genomes from present-day Turkey. Our results confirmed previous observations that contemporary Western Asian populations, on an average, have lower levels of Neanderthal-introgressed DNA relative to other Eurasian populations. Modern Western Asians also show comparatively high variability in Neanderthal ancestry, which may be attributed to the complex demographic history of the region. We further replicated the previously described depletion of putatively functional sequences among Neanderthal-introgressed haplotypes. Still, we find dozens of common Neanderthal-introgressed haplotypes in the Turkish sample associated with human phenotypes, including anthropometric and metabolic traits, as well as the immune response. One of these haplotypes is unusually long and harbors variants that affect the expression of members of the CCR gene family and are associated with celiac disease. Overall, our results paint a complex first picture of the genomic impact of Neanderthal introgression in the Western Asian populations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Gusev, A.; Shah, M. J.; Kenny, E. E.; Ramachandran, A.; Lowe, J. K.; Salit, J.; Lee, C. C.; Levandowsky, E. C.; Weaver, T. N.; Doan, Q. C.; Peckham, H. E.; McLaughlin, S. F.; Lyons, M. R.; Sheth, V. N.; Stoffel, M.; De La Vega, F. M.; Friedman, J. M.; Breslow, J. L.
2012-01-01
Whole-genome sequencing in an isolated population with few founders directly ascertains variants from the population bottleneck that may be rare elsewhere. In such populations, shared haplotypes allow imputation of variants in unsequenced samples without resorting to complex statistical methods as in studies of outbred cohorts. We focus on an isolated population cohort from the Pacific Island of Kosrae, Micronesia, where we previously collected SNP array and rich phenotype data for the majority of the population. We report identification of long regions with haplotypes co-inherited between pairs of individuals and methodology to leverage such shared genetic content for imputation. Our estimates show that sequencing as few as 40 personal genomes allows for inference in up to 60% of the 3000-person cohort at the average locus. We ascertained a pilot data set of whole-genome sequences from seven Kosraean individuals, with average 5× coverage. This assay identified 5,735,306 unique sites of which 1,212,831 were previously unknown. Additionally, these variants are unusually enriched for alleles that are rare in other populations when compared to geographic neighbors (published Korean genome SJK). We used the presence of shared haplotypes between the seven Kosraen individuals to estimate expected imputation accuracy of known and novel homozygous variants at 99.6% and 97.3%, respectively. This study presents whole-genome analysis of a homogenous isolate population with emphasis on optimal rare variant inference. PMID:22135348
Wang, Daxi; Korhonen, Pasi K; Gasser, Robin B; Young, Neil D
Clonorchis sinensis (family Opisthorchiidae) is an important foodborne parasite that has a major socioeconomic impact on ~35 million people predominantly in China, Vietnam, Korea and the Russian Far East. In humans, infection with C. sinensis causes clonorchiasis, a complex hepatobiliary disease that can induce cholangiocarcinoma (CCA), a malignant cancer of the bile ducts. Central to understanding the epidemiology of this disease is knowledge of genetic variation within and among populations of this parasite. Although most published molecular studies seem to suggest that C. sinensis represents a single species, evidence of karyotypic variation within C. sinensis and cryptic species within a related opisthorchiid fluke (Opisthorchis viverrini) emphasise the importance of studying and comparing the genes and genomes of geographically distinct isolates of C. sinensis. Recently, we sequenced, assembled and characterised a draft nuclear genome of a C. sinensis isolate from Korea and compared it with a published draft genome of a Chinese isolate of this species using a bioinformatic workflow established for comparing draft genome assemblies and their gene annotations. We identified that 50.6% and 51.3% of the Korean and Chinese C. sinensis genomic scaffolds were syntenic, respectively. Within aligned syntenic blocks, the genomes had a high level of nucleotide identity (99.1%) and encoded 15 variable proteins likely to be involved in diverse biological processes. Here, we review current technical challenges of using draft genome assemblies to undertake comparative genomic analyses to quantify genetic variation between isolates of the same species. Using a workflow that overcomes these challenges, we report on a high-quality draft genome for C. sinensis from Korea and comparative genomic analyses, as a basis for future investigations of the genetic structures of C. sinensis populations, and discuss the biotechnological implications of these explorations. Copyright © 2018 Elsevier Inc. All rights reserved.
Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle.
Jiménez-Montero, J A; González-Recio, O; Alenda, R
2013-01-01
The aim of this study was to evaluate methods for genomic evaluation of the Spanish Holstein population as an initial step toward the implementation of routine genomic evaluations. This study provides a description of the population structure of progeny tested bulls in Spain at the genomic level and compares different genomic evaluation methods with regard to accuracy and bias. Two bayesian linear regression models, Bayes-A and Bayesian-LASSO (B-LASSO), as well as a machine learning algorithm, Random-Boosting (R-Boost), and BLUP using a realized genomic relationship matrix (G-BLUP), were compared. Five traits that are currently under selection in the Spanish Holstein population were used: milk yield, fat yield, protein yield, fat percentage, and udder depth. In total, genotypes from 1859 progeny tested bulls were used. The training sets were composed of bulls born before 2005; including 1601 bulls for production and 1574 bulls for type, whereas the testing sets contained 258 and 235 bulls born in 2005 or later for production and type, respectively. Deregressed proofs (DRP) from January 2009 Interbull (Uppsala, Sweden) evaluation were used as the dependent variables for bulls in the training sets, whereas DRP from the December 2011 DRPs Interbull evaluation were used to compare genomic predictions with progeny test results for bulls in the testing set. Genomic predictions were more accurate than traditional pedigree indices for predicting future progeny test results of young bulls. The gain in accuracy, due to inclusion of genomic data varied by trait and ranged from 0.04 to 0.42 Pearson correlation units. Results averaged across traits showed that B-LASSO had the highest accuracy with an advantage of 0.01, 0.03 and 0.03 points in Pearson correlation compared with R-Boost, Bayes-A, and G-BLUP, respectively. The B-LASSO predictions also showed the least bias (0.02, 0.03 and 0.10 SD units less than Bayes-A, R-Boost and G-BLUP, respectively) as measured by mean difference between genomic predictions and progeny test results. The R-Boosting algorithm provided genomic predictions with regression coefficients closer to unity, which is an alternative measure of bias, for 4 out of 5 traits and also resulted in mean squared errors estimates that were 2%, 10%, and 12% smaller than B-LASSO, Bayes-A, and G-BLUP, respectively. The observed prediction accuracy obtained with these methods was within the range of values expected for a population of similar size, suggesting that the prediction method and reference population described herein are appropriate for implementation of routine genome-assisted evaluations in Spanish dairy cattle. R-Boost is a competitive marker regression methodology in terms of predictive ability that can accommodate large data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hozé, C; Fritz, S; Phocas, F; Boichard, D; Ducrocq, V; Croiseau, P
2014-01-01
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Relevance of genetic relationship in GWAS and genomic prediction.
Pereira, Helcio Duarte; Soriano Viana, José Marcelo; Andrade, Andréa Carla Bastos; Fonseca E Silva, Fabyano; Paes, Geísa Pinheiro
2018-02-01
The objective of this study was to analyze the relevance of relationship information on the identification of low heritability quantitative trait loci (QTLs) from a genome-wide association study (GWAS) and on the genomic prediction of complex traits in human, animal and cross-pollinating populations. The simulation-based data sets included 50 samples of 1000 individuals of seven populations derived from a common population with linkage disequilibrium. The populations had non-inbred and inbred progeny structure (50 to 200) with varying number of members (5 to 20). The individuals were genotyped for 10,000 single nucleotide polymorphisms (SNPs) and phenotyped for a quantitative trait controlled by 10 QTLs and 90 minor genes showing dominance. The SNP density was 0.1 cM and the narrow sense heritability was 25%. The QTL heritabilities ranged from 1.1 to 2.9%. We applied mixed model approaches for both GWAS and genomic prediction using pedigree-based and genomic relationship matrices. For GWAS, the observed false discovery rate was kept below the significance level of 5%, the power of detection for the low heritability QTLs ranged from 14 to 50%, and the average bias between significant SNPs and a QTL ranged from less than 0.01 to 0.23 cM. The QTL detection power was consistently higher using genomic relationship matrix. Regardless of population and training set size, genomic prediction provided higher prediction accuracy of complex trait when compared to pedigree-based prediction. The accuracy of genomic prediction when there is relatedness between individuals in the training set and the reference population is much higher than the value for unrelated individuals.
Kikuchi, Taisei; Hino, Akina; Tanaka, Teruhisa; Aung, Myo Pa Pa Thet Hnin Htwe; Afrin, Tanzila; Nagayasu, Eiji; Tanaka, Ryusei; Higashiarakawa, Miwa; Win, Kyu Kyu; Hirata, Tetsuo; Htike, Wah Win; Fujita, Jiro; Maruyama, Haruhiko
2016-12-01
The helminth Strongyloides stercoralis, which is transmitted through soil, infects 30-100 million people worldwide. S. stercoralis reproduces sexually outside the host as well as asexually within the host, which causes a life-long infection. To understand the population structure and transmission patterns of this parasite, we re-sequenced the genomes of 33 individual S. stercoralis nematodes collected in Myanmar (prevalent region) and Japan (non-prevalent region). We utilised a method combining whole genome amplification and next-generation sequencing techniques to detect 298,202 variant positions (0.6% of the genome) compared with the reference genome. Phylogenetic analyses of SNP data revealed an unambiguous geographical separation and sub-populations that correlated with the host geographical origin, particularly for the Myanmar samples. The relatively higher heterozygosity in the genomes of the Japanese samples can possibly be explained by the independent evolution of two haplotypes of diploid genomes through asexual reproduction during the auto-infection cycle, suggesting that analysing heterozygosity is useful and necessary to infer infection history and geographical prevalence.
Smith, Barbara A.; Imamura, Hideo; Sanders, Mandy; Svobodova, Milena; Volf, Petr; Berriman, Matthew; Cotton, James A.; Smith, Deborah F.
2014-01-01
Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle. PMID:24453988
Genomic selection in sugar beet breeding populations
2013-01-01
Background Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. Results We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. Conclusions The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding. PMID:24047500
Calus, M P L; de Haas, Y; Veerkamp, R F
2013-10-01
Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genomic evaluation of regional dairy cattle breeds in single-breed and multibreed contexts.
Jónás, D; Ducrocq, V; Fritz, S; Baur, A; Sanchez, M-P; Croiseau, P
2017-02-01
An important prerequisite for high prediction accuracy in genomic prediction is the availability of a large training population, which allows accurate marker effect estimation. This requirement is not fulfilled in case of regional breeds with a limited number of breeding animals. We assessed the efficiency of the current French routine genomic evaluation procedure in four regional breeds (Abondance, Tarentaise, French Simmental and Vosgienne) as well as the potential benefits when the training populations consisting of males and females of these breeds are merged to form a multibreed training population. Genomic evaluation was 5-11% more accurate than a pedigree-based BLUP in three of the four breeds, while the numerically smallest breed showed a < 1% increase in accuracy. Multibreed genomic evaluation was beneficial for two breeds (Abondance and French Simmental) with maximum gains of 5 and 8% in correlation coefficients between yield deviations and genomic estimated breeding values, when compared to the single-breed genomic evaluation results. Inflation of genomic evaluation of young candidates was also reduced. Our results indicate that genomic selection can be effective in regional breeds as well. Here, we provide empirical evidence proving that genetic distance between breeds is only one of the factors affecting the efficiency of multibreed genomic evaluation. © 2016 Blackwell Verlag GmbH.
Legras, Jean-Luc; Galeote, Virginie; Bigey, Frédéric; Camarasa, Carole; Marsit, Souhir; Nidelet, Thibault; Sanchez, Isabelle; Couloux, Arnaud; Guy, Julie; Franco-Duarte, Ricardo; Marcet-Houben, Marina; Gabaldon, Toni; Schuller, Dorit; Sampaio, José Paulo; Dequin, Sylvie
2018-07-01
The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.
In vitro screening for population variability in toxicity of pesticide-containing mixtures
Abdo, Nour; Wetmore, Barbara A.; Chappell, Grace A.; Shea, Damian; Wright, Fred A.; Rusyna, Ivan
2016-01-01
Population-based human in vitro models offer exceptional opportunities for evaluating the potential hazard and mode of action of chemicals, as well as variability in responses to toxic insults among individuals. This study was designed to test the hypothesis that comparative population genomics with efficient in vitro experimental design can be used for evaluation of the potential for hazard, mode of action, and the extent of population variability in responses to chemical mixtures. We selected 146 lymphoblast cell lines from 4 ancestrally and geographically diverse human populations based on the availability of genome sequence and basal RNA-seq data. Cells were exposed to two pesticide mixtures – an environmental surface water sample comprised primarily of organochlorine pesticides and a laboratory-prepared mixture of 36 currently used pesticides – in concentration response and evaluated for cytotoxicity. On average, the two mixtures exhibited a similar range of in vitro cytotoxicity and showed considerable inter-individual variability across screened cell lines. However, when in vitroto-in vivo extrapolation (IVIVE) coupled with reverse dosimetry was employed to convert the in vitro cytotoxic concentrations to oral equivalent doses and compared to the upper bound of predicted human exposure, we found that a nominally more cytotoxic chlorinated pesticide mixture is expected to have greater margin of safety (more than 5 orders of magnitude) as compared to the current use pesticide mixture (less than 2 orders of magnitude) due primarily to differences in exposure predictions. Multivariate genome-wide association mapping revealed an association between the toxicity of current use pesticide mixture and a polymorphism in rs1947825 in C17orf54. We conclude that a combination of in vitro human population-based cytotoxicity screening followed by dosimetric adjustment and comparative population genomics analyses enables quantitative evaluation of human health hazard from complex environmental mixtures. Additionally, such an approach yields testable hypotheses regarding potential toxicity mechanisms. PMID:26386728
Ramu, P; Kassahun, B; Senthilvel, S; Ashok Kumar, C; Jayashree, B; Folkertsma, R T; Reddy, L Ananda; Kuruvinashetti, M S; Haussmann, B I G; Hash, C T
2009-11-01
The sequencing and detailed comparative functional analysis of genomes of a number of select botanical models open new doors into comparative genomics among the angiosperms, with potential benefits for improvement of many orphan crops that feed large populations. In this study, a set of simple sequence repeat (SSR) markers was developed by mining the expressed sequence tag (EST) database of sorghum. Among the SSR-containing sequences, only those sharing considerable homology with rice genomic sequences across the lengths of the 12 rice chromosomes were selected. Thus, 600 SSR-containing sorghum EST sequences (50 homologous sequences on each of the 12 rice chromosomes) were selected, with the intention of providing coverage for corresponding homologous regions of the sorghum genome. Primer pairs were designed and polymorphism detection ability was assessed using parental pairs of two existing sorghum mapping populations. About 28% of these new markers detected polymorphism in this 4-entry panel. A subset of 55 polymorphic EST-derived SSR markers were mapped onto the existing skeleton map of a recombinant inbred population derived from cross N13 x E 36-1, which is segregating for Striga resistance and the stay-green component of terminal drought tolerance. These new EST-derived SSR markers mapped across all 10 sorghum linkage groups, mostly to regions expected based on prior knowledge of rice-sorghum synteny. The ESTs from which these markers were derived were then mapped in silico onto the aligned sorghum genome sequence, and 88% of the best hits corresponded to linkage-based positions. This study demonstrates the utility of comparative genomic information in targeted development of markers to fill gaps in linkage maps of related crop species for which sufficient genomic tools are not available.
Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.
2014-01-01
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. PMID:25033203
Incidental and clinically actionable genetic variants in 1005 whole exomes and genomes from Qatar.
Jain, Abhinav; Gandhi, Shrey; Koshy, Remya; Scaria, Vinod
2018-03-20
Incidental findings in genomic data have been studied in great detail in the recent years, especially from population-scale data sets. However, little is known about the frequency of such findings in ethnic groups, specifically the Middle East, which were not previously covered in global sequencing studies. The availability of whole exome and genome data sets for a highly consanguineous Arab population from Qatar motivated us to explore the incidental findings in this population-scale data. The sequence data of 1005 Qatari individuals were systematically analyzed for incidental genetic variants in the 59 genes suggested by the American College of Medical Genetics and Genomics. We identified four genetic variants which were pathogenic or likely pathogenic. These variants occurred in six individuals, suggesting a frequency of 0.59% in the population, much lesser than that previously reported from European and African populations. Our analysis identified a variant in RYR1 gene associated with Malignant Hyperthermia that has significantly higher frequency in the population compared to global frequencies. Evaluation of the allele frequencies of these variants suggested enrichment in sub-populations, especially in individuals of Sub-Saharan African ancestry. The present study thereby provides the information on pathogenicity and frequency, which could aid in genomic medicine. To the best of our knowledge, this is the first comprehensive analysis of incidental genetic findings in any Arab population and suggests ethnic differences in incidental findings.
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.
Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A
2016-01-01
One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alkan, Can; Kavak, Pinar; Somel, Mehmet; Gokcumen, Omer; Ugurlu, Serkan; Saygi, Ceren; Dal, Elif; Bugra, Kuyas; Güngör, Tunga; Sahinalp, S Cenk; Özören, Nesrin; Bekpen, Cemalettin
2014-11-07
Turkey is a crossroads of major population movements throughout history and has been a hotspot of cultural interactions. Several studies have investigated the complex population history of Turkey through a limited set of genetic markers. However, to date, there have been no studies to assess the genetic variation at the whole genome level using whole genome sequencing. Here, we present whole genome sequences of 16 Turkish individuals resequenced at high coverage (32×-48×). We show that the genetic variation of the contemporary Turkish population clusters with South European populations, as expected, but also shows signatures of relatively recent contribution from ancestral East Asian populations. In addition, we document a significant enrichment of non-synonymous private alleles, consistent with recent observations in European populations. A number of variants associated with skin color and total cholesterol levels show frequency differentiation between the Turkish populations and European populations. Furthermore, we have analyzed the 17q21.31 inversion polymorphism region (MAPT locus) and found increased allele frequency of 31.25% for H1/H2 inversion polymorphism when compared to European populations that show about 25% of allele frequency. This study provides the first map of common genetic variation from 16 western Asian individuals and thus helps fill an important geographical gap in analyzing natural human variation and human migration. Our data will help develop population-specific experimental designs for studies investigating disease associations and demographic history in Turkey.
Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai
2015-11-24
Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.
Carmi, Shai; Hui, Ken Y.; Kochav, Ethan; Liu, Xinmin; Xue, James; Grady, Fillan; Guha, Saurav; Upadhyay, Kinnari; Ben-Avraham, Dan; Mukherjee, Semanti; Bowen, B. Monica; Thomas, Tinu; Vijai, Joseph; Cruts, Marc; Froyen, Guy; Lambrechts, Diether; Plaisance, Stéphane; Van Broeckhoven, Christine; Van Damme, Philip; Van Marck, Herwig; Barzilai, Nir; Darvasi, Ariel; Offit, Kenneth; Bressman, Susan; Ozelius, Laurie J.; Peter, Inga; Cho, Judy H.; Ostrer, Harry; Atzmon, Gil; Clark, Lorraine N.; Lencz, Todd; Pe’er, Itsik
2014-01-01
The Ashkenazi Jewish (AJ) population is a genetic isolate close to European and Middle Eastern groups, with genetic diversity patterns conducive to disease mapping. Here we report high-depth sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ panel has 47% more novel variants per genome and is eightfold more effective at filtering benign variants out of AJ clinical genomes. Our panel improves imputation accuracy for AJ SNP arrays by 28%, and covers at least one haplotype in ≈67% of any AJ genome with long, identical-by-descent segments. Reconstruction of recent AJ history from such segments confirms a recent bottleneck of merely ≈350 individuals. Modelling of ancient histories for AJ and European populations using their joint allele frequency spectrum determines AJ to be an even admixture of European and likely Middle Eastern origins. We date the split between the two ancestral populations to ≈12–25 Kyr, suggesting a predominantly Near Eastern source for the repopulation of Europe after the Last Glacial Maximum. PMID:25203624
Li, Xiujin; Lund, Mogens Sandø; Janss, Luc; Wang, Chonglong; Ding, Xiangdong; Zhang, Qin; Su, Guosheng
2017-03-15
With the development of SNP chips, SNP information provides an efficient approach to further disentangle different patterns of genomic variances and covariances across the genome for traits of interest. Due to the interaction between genotype and environment as well as possible differences in genetic background, it is reasonable to treat the performances of a biological trait in different populations as different but genetic correlated traits. In the present study, we performed an investigation on the patterns of region-specific genomic variances, covariances and correlations between Chinese and Nordic Holstein populations for three milk production traits. Variances and covariances between Chinese and Nordic Holstein populations were estimated for genomic regions at three different levels of genome region (all SNP as one region, each chromosome as one region and every 100 SNP as one region) using a novel multi-trait random regression model which uses latent variables to model heterogeneous variance and covariance. In the scenario of the whole genome as one region, the genomic variances, covariances and correlations obtained from the new multi-trait Bayesian method were comparable to those obtained from a multi-trait GBLUP for all the three milk production traits. In the scenario of each chromosome as one region, BTA 14 and BTA 5 accounted for very large genomic variance, covariance and correlation for milk yield and fat yield, whereas no specific chromosome showed very large genomic variance, covariance and correlation for protein yield. In the scenario of every 100 SNP as one region, most regions explained <0.50% of genomic variance and covariance for milk yield and fat yield, and explained <0.30% for protein yield, while some regions could present large variance and covariance. Although overall correlations between two populations for the three traits were positive and high, a few regions still showed weakly positive or highly negative genomic correlations for milk yield and fat yield. The new multi-trait Bayesian method using latent variables to model heterogeneous variance and covariance could work well for estimating the genomic variances and covariances for all genome regions simultaneously. Those estimated genomic parameters could be useful to improve the genomic prediction accuracy for Chinese and Nordic Holstein populations using a joint reference data in the future.
Segmental Duplications and Copy-Number Variation in the Human Genome
Sharp, Andrew J. ; Locke, Devin P. ; McGrath, Sean D. ; Cheng, Ze ; Bailey, Jeffrey A. ; Vallente, Rhea U. ; Pertz, Lisa M. ; Clark, Royden A. ; Schwartz, Stuart ; Segraves, Rick ; Oseroff, Vanessa V. ; Albertson, Donna G. ; Pinkel, Daniel ; Eichler, Evan E.
2005-01-01
The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders. PMID:15918152
Detecting and Characterizing Genomic Signatures of Positive Selection in Global Populations
Liu, Xuanyao; Ong, Rick Twee-Hee; Pillai, Esakimuthu Nisha; Elzein, Abier M.; Small, Kerrin S.; Clark, Taane G.; Kwiatkowski, Dominic P.; Teo, Yik-Ying
2013-01-01
Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event. PMID:23731540
Cavanagh, Colin R; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K; Sorrells, Mark E; Hayden, Matthew J; Akhunov, Eduard
2013-05-14
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.
Cavanagh, Colin R.; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L.; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A.; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K.; Sorrells, Mark E.; Hayden, Matthew J.; Akhunov, Eduard
2013-01-01
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. PMID:23630259
Kroneis, Thomas; El-Heliebi, Amin
2015-01-01
Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.
Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.
Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T
2017-04-21
Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.
Jacquemin, Julie; Bhatia, Dharminder; Singh, Kuldeep; Wing, Rod A
2013-05-01
The wild relatives of rice contain a virtually untapped reservoir of traits that can be used help drive the 21st century green revolution aimed at solving world food security issues by 2050. To better understand and exploit the 23 species of the Oryza genus the rice research community is developing foundational resources composed of: 1) reference genomes and transcriptomes for all 23 species; 2) advanced mapping populations for functional and breeding studies; and 3) in situ conservation sites for ecological, evolutionary and population genomics. To this end, 16 genome sequencing projects are currently underway, and all completed assemblies have been annotated; and several advanced mapping populations have been developed, and more will be generated, mapped, and phenotyped, to uncover useful alleles. As wild Oryza populations are threatened by human activity and climate change, we also discuss the urgent need for sustainable in situ conservation of the genus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed
Browett, Sam; McHugo, Gillian; Richardson, Ian W.; Magee, David A.; Park, Stephen D. E.; Fahey, Alan G.; Kearney, John F.; Correia, Carolina N.; Randhawa, Imtiaz A. S.; MacHugh, David E.
2018-01-01
Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland. PMID:29520297
Human pigmentation genes under environmental selection
2012-01-01
Genome-wide association studies and comparative genomics have established major loci and specific polymorphisms affecting human skin, hair and eye color. Environmental changes have had an impact on selected pigmentation genes as populations have expanded into different regions of the globe. PMID:23110848
Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints.
Glusman, Gustavo; Mauldin, Denise E; Hood, Leroy E; Robinson, Max
2017-01-01
We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into "genome fingerprints" via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics.
Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock
Zhang, Chunyan; Plastow, Graham
2011-01-01
We have reviewed the current pig (Sus scrofa) genomic diversity within and between sites and compared them with human and other livestock. The current Porcine 60K single nucleotide polymorphism (SNP) panel has an average SNP distance in a range of 30 - 40 kb. Most of genetic variation was distributed within populations, and only a small proportion of them existed between populations. The average heterozygosity was lower in pig than in human and other livestock. Genetic inbreeding coefficient (FIS), population differentiation (FST), and Nei’s genetic distance between populations were much larger in pig than in human and other livestock. Higher average genetic distance existed between European and Asian populations than between European or between Asian populations. Asian breeds harboured much larger variability and higher average heterozygosity than European breeds. The samples of wild boar that have been analyzed displayed more extensive genetic variation than domestic breeds. The average linkage disequilibrium (LD) in improved pig breeds extended to 1 - 3 cM, much larger than that in human (~ 30 kb) and cattle (~ 100 kb), but smaller than that in sheep (~ 10 cM). European breeds showed greater LD that decayed more slowly than Asian breeds. We briefly discuss some processes for maintaining genomic diversity in pig, including migration, introgression, selection, and drift. We conclude that, due to the long time of domestication, the pig possesses lower heterozygosity, higher FIS, and larger LD compared with human and cattle. This implies that a smaller effective population size and less informative markers are needed in pig for genome wide association studies. PMID:21966252
Recovering complete and draft population genomes from metagenome datasets
Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.
2016-03-08
Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less
Recovering complete and draft population genomes from metagenome datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.
Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less
Comparison of phasing strategies for whole human genomes
Kirkness, Ewen; Schork, Nicholas J.
2018-01-01
Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not ‘phase’ the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available ‘Genome-In-A-Bottle’ (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a consensus haplotype combining multiple predictions for enhanced performance and site coverage. Finally, we also identified DNA sequence signatures associated with the genomic regions harboring phasing switch errors, which included regions of low polymorphism or SNV density. PMID:29621242
Consequences of Asexuality in Natural Populations: Insights from Stick Insects.
Bast, Jens; Parker, Darren J; Dumas, Zoé; Jalvingh, Kirsten M; Tran Van, Patrick; Jaron, Kamil S; Figuet, Emeric; Brandt, Alexander; Galtier, Nicolas; Schwander, Tanja
2018-07-01
Recombination is a fundamental process with significant impacts on genome evolution. Predicted consequences of the loss of recombination include a reduced effectiveness of selection, changes in the amount of neutral polymorphisms segregating in populations, and an arrest of GC-biased gene conversion. Although these consequences are empirically well documented for nonrecombining genome portions, it remains largely unknown if they extend to the whole genome scale in asexual organisms. We identify the consequences of asexuality using de novo transcriptomes of five independently derived, obligately asexual lineages of stick insects, and their sexual sister-species. We find strong evidence for higher rates of deleterious mutation accumulation, lower levels of segregating polymorphisms and arrested GC-biased gene conversion in asexuals as compared with sexuals. Taken together, our study conclusively shows that predicted consequences of genome evolution under asexuality can indeed be found in natural populations.
2016-03-15
mutants hisC1 (PA4447), hisD (PA4448), hutH (PA5098), and PA0006. We predicted that uro - canate was depleted in these high biofilm-producing mutants and...Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. PseudomonasGenome Database: improved comparative analysis and population genomics capability for
Genetic Variation in the Acorn Barnacle from Allozymes to Population Genomics
Flight, Patrick A.; Rand, David M.
2012-01-01
Understanding the patterns of genetic variation within and among populations is a central problem in population and evolutionary genetics. We examine this question in the acorn barnacle, Semibalanus balanoides, in which the allozyme loci Mpi and Gpi have been implicated in balancing selection due to varying selective pressures at different spatial scales. We review the patterns of genetic variation at the Mpi locus, compare this to levels of population differentiation at mtDNA and microsatellites, and place these data in the context of genome-wide variation from high-throughput sequencing of population samples spanning the North Atlantic. Despite considerable geographic variation in the patterns of selection at the Mpi allozyme, this locus shows rather low levels of population differentiation at ecological and trans-oceanic scales (FST ∼ 5%). Pooled population sequencing was performed on samples from Rhode Island (RI), Maine (ME), and Southwold, England (UK). Analysis of more than 650 million reads identified approximately 335,000 high-quality SNPs in 19 million base pairs of the S. balanoides genome. Much variation is shared across the Atlantic, but there are significant examples of strong population differentiation among samples from RI, ME, and UK. An FST outlier screen of more than 22,000 contigs provided a genome-wide context for interpretation of earlier studies on allozymes, mtDNA, and microsatellites. FST values for allozymes, mtDNA and microsatellites are close to the genome-wide average for random SNPs, with the exception of the trans-Atlantic FST for mtDNA. The majority of FST outliers were unique between individual pairs of populations, but some genes show shared patterns of excess differentiation. These data indicate that gene flow is high, that selection is strong on a subset of genes, and that a variety of genes are experiencing diversifying selection at large spatial scales. This survey of polymorphism in S. balanoides provides a number of genomic tools that promise to make this a powerful model for ecological genomics of the rocky intertidal. PMID:22767487
Genomic basis for the pest status of two Helicoverpa species
USDA-ARS?s Scientific Manuscript database
Background: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative and population genomics an...
Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes
Fierst, Janna L.; Willis, John H.; Thomas, Cristel G.; Wang, Wei; Reynolds, Rose M.; Ahearne, Timothy E.; Cutter, Asher D.; Phillips, Patrick C.
2015-01-01
The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei) to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se. PMID:26114425
The population genomics of rhesus macaques (Macaca mulatta) based on whole-genome sequences
Xue, Cheng; Raveendran, Muthuswamy; Harris, R. Alan; Fawcett, Gloria L.; Liu, Xiaoming; White, Simon; Dahdouli, Mahmoud; Rio Deiros, David; Below, Jennifer E.; Salerno, William; Cox, Laura; Fan, Guoping; Ferguson, Betsy; Horvath, Julie; Johnson, Zach; Kanthaswamy, Sree; Kubisch, H. Michael; Liu, Dahai; Platt, Michael; Smith, David G.; Sun, Binghua; Vallender, Eric J.; Wang, Feng; Wiseman, Roger W.; Chen, Rui; Muzny, Donna M.; Gibbs, Richard A.; Yu, Fuli; Rogers, Jeffrey
2016-01-01
Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little is known about genome-wide genetic variation in this species. A detailed understanding of extant genomic variation among rhesus macaques has implications for the use of this species as a model for studies of human health and disease, as well as for evolutionary population genomics. Whole-genome sequencing analysis of 133 rhesus macaques revealed more than 43.7 million single-nucleotide variants, including thousands predicted to alter protein sequences, transcript splicing, and transcription factor binding sites. Rhesus macaques exhibit 2.5-fold higher overall nucleotide diversity and slightly elevated putative functional variation compared with humans. This functional variation in macaques provides opportunities for analyses of coding and noncoding variation, and its cellular consequences. Despite modestly higher levels of nonsynonymous variation in the macaques, the estimated distribution of fitness effects and the ratio of nonsynonymous to synonymous variants suggest that purifying selection has had stronger effects in rhesus macaques than in humans. Demographic reconstructions indicate this species has experienced a consistently large but fluctuating population size. Overall, the results presented here provide new insights into the population genomics of nonhuman primates and expand genomic information directly relevant to primate models of human disease. PMID:27934697
The aggregate site frequency spectrum for comparative population genomic inference.
Xue, Alexander T; Hickerson, Michael J
2015-12-01
Understanding how assemblages of species responded to past climate change is a central goal of comparative phylogeography and comparative population genomics, an endeavour that has increasing potential to integrate with community ecology. New sequencing technology now provides the potential to perform complex demographic inference at unprecedented resolution across assemblages of nonmodel species. To this end, we introduce the aggregate site frequency spectrum (aSFS), an expansion of the site frequency spectrum to use single nucleotide polymorphism (SNP) data sets collected from multiple, co-distributed species for assemblage-level demographic inference. We describe how the aSFS is constructed over an arbitrary number of independent population samples and then demonstrate how the aSFS can differentiate various multispecies demographic histories under a wide range of sampling configurations while allowing effective population sizes and expansion magnitudes to vary independently. We subsequently couple the aSFS with a hierarchical approximate Bayesian computation (hABC) framework to estimate degree of temporal synchronicity in expansion times across taxa, including an empirical demonstration with a data set consisting of five populations of the threespine stickleback (Gasterosteus aculeatus). Corroborating what is generally understood about the recent postglacial origins of these populations, the joint aSFS/hABC analysis strongly suggests that the stickleback data are most consistent with synchronous expansion after the Last Glacial Maximum (posterior probability = 0.99). The aSFS will have general application for multilevel statistical frameworks to test models involving assemblages and/or communities, and as large-scale SNP data from nonmodel species become routine, the aSFS expands the potential for powerful next-generation comparative population genomic inference. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
ENGINES: exploring single nucleotide variation in entire human genomes.
Amigo, Jorge; Salas, Antonio; Phillips, Christopher
2011-04-19
Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to the web interface is granted from http://spsmart.cesga.es/engines.php. © 2011 Amigo et al; licensee BioMed Central Ltd.
Terekhanova, Nadezhda V.; Logacheva, Maria D.; Penin, Aleksey A.; Neretina, Tatiana V.; Barmintseva, Anna E.; Bazykin, Georgii A.; Kondrashov, Alexey S.; Mugue, Nikolai S.
2014-01-01
Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci. PMID:25299485
Terekhanova, Nadezhda V; Logacheva, Maria D; Penin, Aleksey A; Neretina, Tatiana V; Barmintseva, Anna E; Bazykin, Georgii A; Kondrashov, Alexey S; Mugue, Nikolai S
2014-10-01
Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci.
Rapid evolution in insect pests: the importance of space and time in population genomics studies.
Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D
2018-04-01
Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.
Nirea, K G; Meuwissen, T H E
2017-04-01
We simulated a genomic selection pig breeding schemes containing nucleus and production herds to improve feed efficiency of production pigs that were cross-breed. Elite nucleus herds had access to high-quality feed, and production herds were fed low-quality feed. Feed efficiency in the nucleus herds had a heritability of 0.3 and 0.25 in the production herds. It was assumed the genetic relationships between feed efficiency in the nucleus and production were low (r g = 0.2), medium (r g = 0.5) and high (r g = 0.8). In our alternative breeding schemes, different proportion of production animals were recorded for feed efficiency and genotyped with high-density panel of genetic markers. Genomic breeding value of the selection candidates for feed efficiency was estimated based on three different approaches. In one approach, genomic breeding value was estimated including nucleus animals in the reference population. In the second approach, the reference population was containing a mixture of nucleus and production animals. In the third approach, the reference population was only consisting of production herds. Using a mixture reference population, we generated 40-115% more genetic gain in the production environment as compared to only using nucleus reference population that were fed high-quality feed sources when the production animals were offspring of the nucleus animals. When the production animals were grand offspring of the nucleus animals, 43-104% more genetic gain was generated. Similarly, a higher genetic gain generated in the production environment when mixed reference population was used as compared to only using production animals. This was up to 19 and 14% when the production animals were offspring and grand offspring of nucleus animals, respectively. Therefore, in genomic selection pig breeding programmes, feed efficiency traits could be improved by properly designing the reference population. © 2016 Blackwell Verlag GmbH.
Detecting and characterizing genomic signatures of positive selection in global populations.
Liu, Xuanyao; Ong, Rick Twee-Hee; Pillai, Esakimuthu Nisha; Elzein, Abier M; Small, Kerrin S; Clark, Taane G; Kwiatkowski, Dominic P; Teo, Yik-Ying
2013-06-06
Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Mycosphaerella graminicola causes septoria tritici blotch, one of the most important diseases of wheat worldwide. Previous analyses showed that populations of this species are extremely variable and that polymorphisms for chromosome length and number can be generated during meiosis. To better unders...
Selecting sequence variants to improve genomic predictions for dairy cattle
USDA-ARS?s Scientific Manuscript database
Millions of genetic variants have been identified by population-scale sequencing projects, but subsets are needed for routine genomic predictions or to include on genotyping arrays. Methods of selecting sequence variants were compared using both simulated sequence genotypes and actual data from run ...
Everts-van der Wind, Annelie; Kata, Srinivas R.; Band, Mark R.; Rebeiz, Mark; Larkin, Denis M.; Everts, Robin E.; Green, Cheryl A.; Liu, Lei; Natarajan, Shreedhar; Goldammer, Tom; Lee, Jun Heon; McKay, Stephanie; Womack, James E.; Lewin, Harris A.
2004-01-01
A second-generation 5000 rad radiation hybrid (RH) map of the cattle genome was constructed primarily using cattle ESTs that were targeted to gaps in the existing cattle–human comparative map, as well as to sparsely populated map intervals. A total of 870 targeted markers were added, bringing the number of markers mapped on the RH5000 panel to 1913. Of these, 1463 have significant BLASTN hits (E < e–5) against the human genome sequence. A cattle–human comparative map was created using human genome sequence coordinates of the paired orthologs. One-hundred and ninety-five conserved segments (defined by two or more genes) were identified between the cattle and human genomes, of which 31 are newly discovered and 34 were extended singletons on the first-generation map. The new map represents an improvement of 20% genome-wide comparative coverage compared with the first-generation map. Analysis of gene content within human genome regions where there are gaps in the comparative map revealed gaps with both significantly greater and significantly lower gene content. The new, more detailed cattle–human comparative map provides an improved resource for the analysis of mammalian chromosome evolution, the identification of candidate genes for economically important traits, and for proper alignment of sequence contigs on cattle chromosomes. PMID:15231756
Lu, Wei; Wise, Michael J.; Tay, Chin Yen; Windsor, Helen M.; Marshall, Barry J.; Peacock, Christopher
2014-01-01
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains. PMID:24375107
Lu, Wei; Wise, Michael J; Tay, Chin Yen; Windsor, Helen M; Marshall, Barry J; Peacock, Christopher; Perkins, Tim
2014-03-01
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.
Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L
2016-01-04
The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Evolutionary biology through the lens of budding yeast comparative genomics.
Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R
2017-10-01
The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.
Gong, Xian; Zhang, Chao; Yiliyasi·Aisa, Yiliyasi·Aisa; Shi, Ying; Yang, Xue-wei; NuersimanguliAosiman, NuersimanguliAosiman; Guan, Ya-qun; Xu, Shu-hua
2016-06-20
Over the last decade, a larger number of type 2 diabetes mellitus (T2DM) susceptible candidate genes have been reported by numerous genome-wide association studies (GWAS). Understanding the genetic diversity of these candidate genes among worldwide populations not only facilitates to elucidating the genetic mechanism of T2DM, but also provides guidance to further studies of pathogenesis of T2DM in any certain population. In this study, we identified 170 genes or genomic regions associated with T2DM by searching the GWAS databases and related literatures. We next analyzed the genetic diversity of these genes (or genomic regions) among present-day human populations by curetting the 1000 Genomes Projects phase1 dataset covering 14 worldwide populations. We further compared the characteristics of T2DM genes in different populations. No significant differences of genetic diversity were observed among the 14 worldwide populations between the T2DM candidate genes and the non-T2DM genes in terms of overall pattern. However, we observed some genes, such as IL20RA, RNMTL1-NXN, NOTCH2, ADRA2A-BTBD7P2, TBC1D4, RBM38-HMGB1P1, UBE2E2, and PPARD, show considerable differentiation between populations. In particular, IL20RA (FST=0.1521) displays the greatest population difference which is mainly contributed by that between Africans and non-Africans. Moreover, we revealed genetic differences between East Asians and Europeans on some candidate genes such as DGKB-AGMO (FST=0.173) and JAZF1 (FST=0.182). Our results indicate that some T2DM susceptible candidate genes harbor highly-differentiated variants between populations. These analyses, despite preliminary, should advance our understanding of the population difference of susceptibility to T2DM and provide insightful reference that future studies can relay on.
Deep whole-genome sequencing of 90 Han Chinese genomes.
Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen
2017-09-01
Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects. © The Authors 2017. Published by Oxford University Press.
Olsson, Sanna; Seoane-Zonjic, Pedro; Bautista, Rocío; Claros, M Gonzalo; González-Martínez, Santiago C; Scotti, Ivan; Scotti-Saintagne, Caroline; Hardy, Olivier J; Heuertz, Myriam
2017-07-01
Population genetic studies in tropical plants are often challenging because of limited information on taxonomy, phylogenetic relationships and distribution ranges, scarce genomic information and logistic challenges in sampling. We describe a strategy to develop robust and widely applicable genetic markers based on a modest development of genomic resources in the ancient tropical tree species Symphonia globulifera L.f. (Clusiaceae), a keystone species in African and Neotropical rainforests. We provide the first low-coverage (11X) fragmented draft genome sequenced on an individual from Cameroon, covering 1.027 Gbp or 67.5% of the estimated genome size. Annotation of 565 scaffolds (7.57 Mbp) resulted in the prediction of 1046 putative genes (231 of them containing a complete open reading frame) and 1523 exact simple sequence repeats (SSRs, microsatellites). Aligning a published transcriptome of a French Guiana population against this draft genome produced 923 high-quality single nucleotide polymorphisms. We also preselected genic SSRs in silico that were conserved and polymorphic across a wide geographical range, thus reducing marker development tests on rare DNA samples. Of 23 SSRs tested, 19 amplified and 18 were successfully genotyped in four S. globulifera populations from South America (Brazil and French Guiana) and Africa (Cameroon and São Tomé island, F ST = 0.34). Most loci showed only population-specific deviations from Hardy-Weinberg proportions, pointing to local population effects (e.g. null alleles). The described genomic resources are valuable for evolutionary studies in Symphonia and for comparative studies in plants. The methods are especially interesting for widespread tropical or endangered taxa with limited DNA availability. © 2016 John Wiley & Sons Ltd.
Pengelly, Reuben J; Tapper, William; Gibson, Jane; Knut, Marcin; Tearle, Rick; Collins, Andrew; Ennis, Sarah
2015-09-03
An understanding of linkage disequilibrium (LD) structures in the human genome underpins much of medical genetics and provides a basis for disease gene mapping and investigating biological mechanisms such as recombination and selection. Whole genome sequencing (WGS) provides the opportunity to determine LD structures at maximal resolution. We compare LD maps constructed from WGS data with LD maps produced from the array-based HapMap dataset, for representative European and African populations. WGS provides up to 5.7-fold greater SNP density than array-based data and achieves much greater resolution of LD structure, allowing for identification of up to 2.8-fold more regions of intense recombination. The absence of ascertainment bias in variant genotyping improves the population representativeness of the WGS maps, and highlights the extent of uncaptured variation using array genotyping methodologies. The complete capture of LD patterns using WGS allows for higher genome-wide association study (GWAS) power compared to array-based GWAS, with WGS also allowing for the analysis of rare variation. The impact of marker ascertainment issues in arrays has been greatest for Sub-Saharan African populations where larger sample sizes and substantially higher marker densities are required to fully resolve the LD structure. WGS provides the best possible resource for LD mapping due to the maximal marker density and lack of ascertainment bias. WGS LD maps provide a rich resource for medical and population genetics studies. The increasing availability of WGS data for large populations will allow for improved research utilising LD, such as GWAS and recombination biology studies.
Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints
Glusman, Gustavo; Mauldin, Denise E.; Hood, Leroy E.; Robinson, Max
2017-01-01
We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into “genome fingerprints” via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics. PMID:29018478
Hou, Aihua; Lin, Shuan-Pei; Ho, Shi Yun; Chen, Chi-Fung Jennifer; Lin, Hsiang-Yu; Chen, Yen-Juin; Huang, Chi-Yu; Chiu, Huei-Ching; Chuang, Chih-Kuang; Chen, Ken-Shiung
2011-03-01
Prader-Willi syndrome (PWS) is a neurogenetic disorder associated with recurrent genomic recombination involving low copy repeats (LCRs) located in the human chromosome 15q11-q13. Previous studies of PWS patients from Asia suggested that there is a higher incidence of deletion and lower incidence of maternal uniparental disomy (mUPD) compared to that of Western populations. In this report, we present genetic etiology of 28 PWS patients from Taiwan. Consistent with the genetic etiology findings from Western populations, the type II deletion appears to be the most common deletion subtype. Furthermore, the ratio of the two most common deletion subtypes and the ratio of the maternal heterodisomy to isodisomy cases observed from this study are in agreement with previous findings from Western populations. In addition, we identified and further mapped the deletion breakpoints in two patients with atypical deletions using array CGH (comparative genomic hybridization). Despite the relatively small numbers of patients in each subgroup, our findings suggest that the genomic architecture responsible for the recurrent recombination in PWS is conserved in Taiwanese of the Han Chinese heritage and Western populations, thereby predisposing chromosome 15q11-q13 to a similar risk of rearrangements. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.
Comparative population genomics of maize domestication and improvement
USDA-ARS?s Scientific Manuscript database
Domestication and modern breeding represent exemplary case studies of evolution in action. Maize is an outcrossing species with a complex genome, and an understanding of maize evolution is thus relevant for both plant and animal systems. This study is the largest plant resequencing effort to date, ...
Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D
2018-01-01
Abstract The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. PMID:29346588
Moore, Carrie B.; Wallace, John R.; Wolfe, Daniel J.; Frase, Alex T.; Pendergrass, Sarah A.; Weiss, Kenneth M.; Ritchie, Marylyn D.
2013-01-01
Analyses investigating low frequency variants have the potential for explaining additional genetic heritability of many complex human traits. However, the natural frequencies of rare variation between human populations strongly confound genetic analyses. We have applied a novel collapsing method to identify biological features with low frequency variant burden differences in thirteen populations sequenced by the 1000 Genomes Project. Our flexible collapsing tool utilizes expert biological knowledge from multiple publicly available database sources to direct feature selection. Variants were collapsed according to genetically driven features, such as evolutionary conserved regions, regulatory regions genes, and pathways. We have conducted an extensive comparison of low frequency variant burden differences (MAF<0.03) between populations from 1000 Genomes Project Phase I data. We found that on average 26.87% of gene bins, 35.47% of intergenic bins, 42.85% of pathway bins, 14.86% of ORegAnno regulatory bins, and 5.97% of evolutionary conserved regions show statistically significant differences in low frequency variant burden across populations from the 1000 Genomes Project. The proportion of bins with significant differences in low frequency burden depends on the ancestral similarity of the two populations compared and types of features tested. Even closely related populations had notable differences in low frequency burden, but fewer differences than populations from different continents. Furthermore, conserved or functionally relevant regions had fewer significant differences in low frequency burden than regions under less evolutionary constraint. This degree of low frequency variant differentiation across diverse populations and feature elements highlights the critical importance of considering population stratification in the new era of DNA sequencing and low frequency variant genomic analyses. PMID:24385916
Westbrook, Jared W.; Chhatre, Vikram E.; Wu, Le-Shin; Chamala, Srikar; Neves, Leandro Gomide; Muñoz, Patricio; Martínez-García, Pedro J.; Neale, David B.; Kirst, Matias; Mockaitis, Keithanne; Nelson, C. Dana; Peter, Gary F.; Echt, Craig S.
2015-01-01
A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spacing was 0.6 cM and total map length was 2305 cM. Functional predictions of mapped genes were improved by aligning expressed sequence tags used for marker discovery to full-length P. taeda transcripts. Alignments to the P. taeda genome mapped 3305 scaffold sequences onto 12 linkage groups. The consensus genetic map was used to compare the genome-wide linkage disequilibrium in a population of distantly related P. taeda individuals (ADEPT2) used for association genetic studies and a multiple-family pedigree used for genomic selection (CCLONES). The prevalence and extent of LD was greater in CCLONES as compared to ADEPT2; however, extended LD with LGs or between LGs was rare in both populations. The average squared correlations, r2, between SNP alleles less than 1 cM apart were less than 0.05 in both populations and r2 did not decay substantially with genetic distance. The consensus map and analysis of linkage disequilibrium establish a foundation for comparative association mapping and genomic selection in P. taeda and P. elliottii. PMID:26068575
Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D
2016-03-01
Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.
2014-01-01
Background African Americans have been treated as a representative population for African ancestry for many purposes, including pharmacogenomic studies. However, the contribution of European ancestry is expected to result in considerable differences in the genetic architecture of African American individuals compared with an African genome. In particular, the genetic admixture influences the genomic diversity of drug metabolism-related genes, and may cause high heterogeneity of drug responses in admixed populations such as African Americans. Results The genomic ancestry information of African-American (ASW) samples was obtained from data of the 1000 Genomes Project, and local ancestral components were also extracted for 32 core genes and 252 extended genes, which are associated with drug absorption, distribution, metabolism, and excretion (ADME) genes. As expected, the global genetic diversity pattern in ASW was determined by the contributions of its putative ancestral source populations, and the whole profiles of ADME genes in ASW are much closer to those in YRI than in CEU. However, we observed much higher diversity in some functionally important ADME genes in ASW than either CEU or YRI, which could be a result of either genetic drift or natural selection, and we identified some signatures of the latter. We analyzed the clinically relevant polymorphic alleles and haplotypes, and found that 28 functional mutations (including 3 missense, 3 splice, and 22 regulator sites) exhibited significantly higher differentiation between the three populations. Conclusions Analysis of the genetic diversity of ADME genes showed differentiation between admixed population and its ancestral source populations. In particular, the different genetic diversity between ASW and YRI indicated that the ethnic differences in pharmacogenomic studies are broadly existed despite that African ancestry is dominant in Africans Americans. This study should advance our understanding of the genetic basis of the drug response heterogeneity between populations, especially in the case of population admixture, and have significant implications for evaluating potential inter-population heterogeneity in drug treatment effects. PMID:24884825
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
Ribeiro, Ilda Patrícia; Caramelo, Francisco; Esteves, Luísa; Menoita, Joana; Marques, Francisco; Barroso, Leonor; Miguéis, Jorge; Melo, Joana Barbosa; Carreira, Isabel Marques
2017-10-24
The head and neck squamous cell carcinoma (HNSCC) population consists mainly of high-risk for recurrence and locally advanced stage patients. Increased knowledge of the HNSCC genomic profile can improve early diagnosis and treatment outcomes. The development of models to identify consistent genomic patterns that distinguish HNSCC patients that will recur and/or develop metastasis after treatment is of utmost importance to decrease mortality and improve survival rates. In this study, we used array comparative genomic hybridization data from HNSCC patients to implement a robust model to predict HNSCC recurrence/metastasis. This predictive model showed a good accuracy (>80%) and was validated in an independent population from TCGA data portal. This predictive genomic model comprises chromosomal regions from 5p, 6p, 8p, 9p, 11q, 12q, 15q and 17p, where several upstream and downstream members of signaling pathways that lead to an increase in cell proliferation and invasion are mapped. The introduction of genomic predictive models in clinical practice might contribute to a more individualized clinical management of the HNSCC patients, reducing recurrences and improving patients' quality of life. The power of this genomic model to predict the recurrence and metastases development should be evaluated in other HNSCC populations.
Genetic signatures of natural selection in a model invasive ascidian
NASA Astrophysics Data System (ADS)
Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin
2017-03-01
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.
Comparative genomics of wild type yeast strains unveils important genome diversity
Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS
2008-01-01
Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome. PMID:18983662
Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj
2009-06-29
Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and accessed locally in an easily transferable, informative and extensible format based on comparative genomic analyses.
Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.
Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V
2017-08-04
Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Salvato, Paola; Simonato, Mauro; Battisti, Andrea; Negrisolo, Enrico
2008-01-01
Background Knowledge of animal mitochondrial genomes is very important to understand their molecular evolution as well as for phylogenetic and population genetic studies. The Lepidoptera encompasses more than 160,000 described species and is one of the largest insect orders. To date only nine lepidopteran mitochondrial DNAs have been fully and two others partly sequenced. Furthermore the taxon sampling is very scant. Thus advance of lepidopteran mitogenomics deeply requires new genomes derived from a broad taxon sampling. In present work we describe the mitochondrial genome of the moth Ochrogaster lunifer. Results The mitochondrial genome of O. lunifer is a circular molecule 15593 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. It contains also 7 intergenic spacers. The gene order of the newly sequenced genome is that typical for Lepidoptera and differs from the insect ancestral type for the placement of trnM. The 77.84% A+T content of its α strand is the lowest among known lepidopteran genomes. The mitochondrial genome of O. lunifer exhibits one of the most marked C-skew among available insect Pterygota genomes. The protein-coding genes have typical mitochondrial start codons except for cox1 that present an unusual CGA. The O. lunifer genome exhibits the less biased synonymous codon usage among lepidopterans. Comparative genomics analysis study identified atp6, cox1, cox2 as cox3, cob, nad1, nad2, nad4, and nad5 as potential markers for population genetics/phylogenetics studies. A peculiar feature of O. lunifer mitochondrial genome it that the intergenic spacers are mostly made by repetitive sequences. Conclusion The mitochondrial genome of O. lunifer is the first representative of superfamily Noctuoidea that account for about 40% of all described Lepidoptera. New genome shares many features with other known lepidopteran genomes. It differs however for its low A+T content and marked C-skew. Compared to other lepidopteran genomes it is less biased in synonymous codon usage. Comparative evolutionary analysis of lepidopteran mitochondrial genomes allowed the identification of previously neglected coding genes as potential phylogenetic markers. Presence of repetitive elements in intergenic spacers of O. lunifer genome supports the role of DNA slippage as possible mechanism to produce spacers during replication. PMID:18627592
Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.
Tan, Daniel S W; Mok, Tony S K; Rebbeck, Timothy R
2016-01-01
Ethnic and geographic differences in cancer incidence, prognosis, and treatment outcomes can be attributed to diversity in the inherited (germline) and somatic genome. Although international large-scale sequencing efforts are beginning to unravel the genomic underpinnings of cancer traits, much remains to be known about the underlying mechanisms and determinants of genomic diversity. Carcinogenesis is a dynamic, complex phenomenon representing the interplay between genetic and environmental factors that results in divergent phenotypes across ethnicities and geography. For example, compared with whites, there is a higher incidence of prostate cancer among Africans and African Americans, and the disease is generally more aggressive and fatal. Genome-wide association studies have identified germline susceptibility loci that may account for differences between the African and non-African patients, but the lack of availability of appropriate cohorts for replication studies and the incomplete understanding of genomic architecture across populations pose major limitations. We further discuss the transformative potential of routine diagnostic evaluation for actionable somatic alterations, using lung cancer as an example, highlighting implications of population disparities, current hurdles in implementation, and the far-reaching potential of clinical genomics in enhancing cancer prevention, diagnosis, and treatment. As we enter the era of precision cancer medicine, a concerted multinational effort is key to addressing population and genomic diversity as well as overcoming barriers and geographical disparities in research and health care delivery. © 2015 by American Society of Clinical Oncology.
The genomic landscape of rapid, repeated evolutionary rescue from toxic pollution in wild fish
USDA-ARS?s Scientific Manuscript database
Here we describe evolutionary rescue from intense pollution via multiple modes of selection in killifish populations from 4 urban estuaries of the US eastern seaboard. Comparative transcriptomics and analysis of 384 whole genome sequences show that the functioning of a receptor-based signaling pathw...
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWAS) are a powerful method to dissect the genetic basis of traits, though in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissect the genetic control of flavonoid pigmentatio...
Comparative and demographic analysis of orangutan genomes
Locke, Devin P.; Hillier, LaDeana W.; Warren, Wesley C.; Worley, Kim C.; Nazareth, Lynne V.; Muzny, Donna M.; Yang, Shiaw-Pyng; Wang, Zhengyuan; Chinwalla, Asif T.; Minx, Pat; Mitreva, Makedonka; Cook, Lisa; Delehaunty, Kim D.; Fronick, Catrina; Schmidt, Heather; Fulton, Lucinda A.; Fulton, Robert S.; Nelson, Joanne O.; Magrini, Vincent; Pohl, Craig; Graves, Tina A.; Markovic, Chris; Cree, Andy; Dinh, Huyen H.; Hume, Jennifer; Kovar, Christie L.; Fowler, Gerald R.; Lunter, Gerton; Meader, Stephen; Heger, Andreas; Ponting, Chris P.; Marques-Bonet, Tomas; Alkan, Can; Chen, Lin; Cheng, Ze; Kidd, Jeffrey M.; Eichler, Evan E.; White, Simon; Searle, Stephen; Vilella, Albert J.; Chen, Yuan; Flicek, Paul; Ma, Jian; Raney, Brian; Suh, Bernard; Burhans, Richard; Herrero, Javier; Haussler, David; Faria, Rui; Fernando, Olga; Darré, Fleur; Farré, Domènec; Gazave, Elodie; Oliva, Meritxell; Navarro, Arcadi; Roberto, Roberta; Capozzi, Oronzo; Archidiacono, Nicoletta; Valle, Giuliano Della; Purgato, Stefania; Rocchi, Mariano; Konkel, Miriam K.; Walker, Jerilyn A.; Ullmer, Brygg; Batzer, Mark A.; Smit, Arian F. A.; Hubley, Robert; Casola, Claudio; Schrider, Daniel R.; Hahn, Matthew W.; Quesada, Victor; Puente, Xose S.; Ordoñez, Gonzalo R.; López-Otín, Carlos; Vinar, Tomas; Brejova, Brona; Ratan, Aakrosh; Harris, Robert S.; Miller, Webb; Kosiol, Carolin; Lawson, Heather A.; Taliwal, Vikas; Martins, André L.; Siepel, Adam; RoyChoudhury, Arindam; Ma, Xin; Degenhardt, Jeremiah; Bustamante, Carlos D.; Gutenkunst, Ryan N.; Mailund, Thomas; Dutheil, Julien Y.; Hobolth, Asger; Schierup, Mikkel H.; Chemnick, Leona; Ryder, Oliver A.; Yoshinaga, Yuko; de Jong, Pieter J.; Weinstock, George M.; Rogers, Jeffrey; Mardis, Elaine R.; Gibbs, Richard A.; Wilson, Richard K.
2011-01-01
“Orangutan” is derived from the Malay term “man of the forest” and aptly describes the Southeast Asian great apes native to Sumatra and Borneo. The orangutan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orangutan draft genome assembly and short read sequence data from five Sumatran and five Bornean orangutan genomes. Our analyses reveal that, compared to other primates, the orangutan genome has many unique features. Structural evolution of the orangutan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe the first primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orangutan genome structure. Orangutans have extremely low energy usage for a eutherian mammal1, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400k years ago (ya), is more recent than most previous studies and underscores the complexity of the orangutan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts. PMID:21270892
Deep whole-genome sequencing of 100 southeast Asian Malays.
Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying
2013-01-10
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Deep Whole-Genome Sequencing of 100 Southeast Asian Malays
Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying
2013-01-01
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. PMID:23290073
Comparative Analysis of Genome Diversity in Bullmastiff Dogs
Mortlock, Sally-Anne; Khatkar, Mehar S.; Williamson, Peter
2016-01-01
Management and preservation of genomic diversity in dog breeds is a major objective for maintaining health. The present study was undertaken to characterise genomic diversity in Bullmastiff dogs using both genealogical and molecular analysis. Genealogical analysis of diversity was conducted using a database consisting of 16,378 Bullmastiff pedigrees from year 1980 to 2013. Additionally, a total of 188 Bullmastiff dogs were genotyped using the 170,000 SNP Illumina CanineHD Beadchip. Genealogical parameters revealed a mean inbreeding coefficient of 0.047; 142 total founders (f); an effective number of founders (fe) of 79; an effective number of ancestors (fa) of 62; and an effective population size of the reference population of 41. Genetic diversity and the degree of genome-wide homogeneity within the breed were also investigated using molecular data. Multiple-locus heterozygosity (MLH) was equal to 0.206; runs of homozygosity (ROH) as proportion of the genome, averaged 16.44%; effective population size was 29.1, with an average inbreeding coefficient of 0.035, all estimated using SNP Data. Fine-scale population structure was analysed using NETVIEW, a population analysis pipeline. Visualisation of the high definition network captured relationships among individuals within and between subpopulations. Effects of unequal founder use, and ancestral inbreeding and selection, were evident. While current levels of Bullmastiff heterozygosity, inbreeding and homozygosity are not unusual, a relatively small effective population size indicates that a breeding strategy to reduce the inbreeding rate may be beneficial. PMID:26824579
Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.
2017-01-01
The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918
Levels of taurine introgression in the current Brazilian Nelore and Gir indicine cattle populations
USDA-ARS?s Scientific Manuscript database
A high density panel of more than 777000 genome-wide single nucleotide polymorphisms (SNPs) were used to investigate the population structure of Nelore and Gir, compared to seven other populations worldwide. Principal Component Analysis and model-based ancestry estimation clearly separate the indici...
Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle
2016-01-01
Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto–Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India. PMID:27797945
Evolutionary genetics of insect innate immunity.
Viljakainen, Lumi
2015-11-01
Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. © The Author 2015. Published by Oxford University Press.
Population Genomics of Daphnia pulex
Lynch, Michael; Gutenkunst, Ryan; Ackerman, Matthew; Spitze, Ken; Ye, Zhiqiang; Maruki, Takahiro; Jia, Zhiyuan
2017-01-01
Using data from 83 isolates from a single population, the population genomics of the microcrustacean Daphnia pulex are described and compared to current knowledge for the only other well-studied invertebrate, Drosophila melanogaster. These two species are quite similar with respect to effective population sizes and mutation rates, although some features of recombination appear to be different, with linkage disequilibrium being elevated at short (<100 bp) distances in D. melanogaster and at long distances in D. pulex. The study population adheres closely to the expectations under Hardy–Weinberg equilibrium, and reflects a past population history of no more than a twofold range of variation in effective population size. Fourfold redundant silent sites and a restricted region of intronic sites appear to evolve in a nearly neutral fashion, providing a powerful tool for population genetic analyses. Amino acid replacement sites are predominantly under strong purifying selection, as are a large fraction of sites in UTRs and intergenic regions, but the majority of SNPs at such sites that rise to frequencies >0.05 appear to evolve in a nearly neutral fashion. All forms of genomic sites (including replacement sites within codons, and intergenic and UTR regions) appear to be experiencing an ∼2× higher level of selection scaled to the power of drift in D. melanogaster, but this may in part be a consequence of recent demographic changes. These results establish D. pulex as an excellent system for future work on the evolutionary genomics of natural populations. PMID:27932545
Tay, Y C; Chng, M W P; Sew, W W G; Rheindt, F E; Tun, K P P; Meier, R
2016-08-01
The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome.
Grinberg, Alex; Biggs, Patrick J; Zhang, Ji; Ritchie, Stephen; Oneroa, Zachary; O'Neill, Charlotte; Karkaba, Ali; Velathanthiri, Niluka S; Coombs, Geoffrey W
2017-10-01
Staphylococcus aureus skin and soft tissue infection (Sa-SSTI) places a significant burden on healthcare systems. New Zealand has a high incidence of Sa-SSTI, and here most morbidity is caused by a polyclonal methicillin-susceptible (MSSA) bacterial population. However, MSSA also colonise asymptomatically the cornified epithelia of approximately 20% of the population, and their divide between commensalism and pathogenicity is poorly understood. We aimed to see whether MSSA are genetically differentiated across colonisation and SSTI; and given the close interactions between people and pets, whether strains isolated from pets differ from human strains. We compared the genomes of contemporaneous colonisation and clinical MSSA isolates obtained in New Zealand from humans and pets. Core and accessory genome comparisons revealed a homogeneous bacterial population across colonisation, disease, humans, and pets. The rate of MSSA colonisation in dogs was comparatively low (5.4%). In New Zealand, most Sa-SSTI morbidity is caused by a random sample of the colonising MSSA population, consistent with the opportunistic infection model rather than the paradigm distinguishing strains according to their pathogenicity. Thus, studies of the factors determining colonisation and immune-escape may be more beneficial than comparative virulence studies. Contact with house-hold pets may pose low zoonotic risk. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Metspalu, Mait; Romero, Irene Gallego; Yunusbayev, Bayazit; Chaubey, Gyaneshwer; Mallick, Chandana Basu; Hudjashov, Georgi; Nelis, Mari; Mägi, Reedik; Metspalu, Ene; Remm, Maido; Pitchappan, Ramasamy; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Kivisild, Toomas
2011-01-01
South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes. PMID:22152676
Targeted enrichment strategies for next-generation plant biology
Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua Udall
2012-01-01
The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...
Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L
2017-10-01
Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations.
Kugelman, Jeffrey R; Wiley, Michael R; Nagle, Elyse R; Reyes, Daniel; Pfeffer, Brad P; Kuhn, Jens H; Sanchez-Lockhart, Mariano; Palacios, Gustavo F
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA) as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5) of all compared methods.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations
Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717
Genetic resources offer efficient tools for rice functional genomics research.
Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May
2016-05-01
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops. © 2015 John Wiley & Sons Ltd.
de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.
2017-01-01
Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data. PMID:28759591
Cridland, Julie M; Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D
2018-02-01
The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Population Genomics of Reduced Vancomycin Susceptibility in Staphylococcus aureus
Rishishwar, Lavanya; Kraft, Colleen S.
2016-01-01
ABSTRACT The increased prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) is an emerging health care threat. Genome-based comparative methods hold great promise to uncover the genetic basis of the VISA phenotype, which remains obscure. S. aureus isolates were collected from a single individual that presented with recurrent staphylococcal bacteremia at three time points, and the isolates showed successively reduced levels of vancomycin susceptibility. A population genomic approach was taken to compare patient S. aureus isolates with decreasing vancomycin susceptibility across the three time points. To do this, patient isolates were sequenced to high coverage (~500×), and sequence reads were used to model site-specific allelic variation within and between isolate populations. Population genetic methods were then applied to evaluate the overall levels of variation across the three time points and to identify individual variants that show anomalous levels of allelic change between populations. A successive reduction in the overall levels of population genomic variation was observed across the three time points, consistent with a population bottleneck resulting from antibiotic treatment. Despite this overall reduction in variation, a number of individual mutations were swept to high frequency in the VISA population. These mutations were implicated as potentially involved in the VISA phenotype and interrogated with respect to their functional roles. This approach allowed us to identify a number of mutations previously implicated in VISA along with allelic changes within a novel class of genes, encoding LPXTG motif-containing cell-wall-anchoring proteins, which shed light on a novel mechanistic aspect of vancomycin resistance. IMPORTANCE The emergence and spread of antibiotic resistance among bacterial pathogens are two of the gravest threats to public health facing the world today. We report the development and application of a novel population genomic technique aimed at uncovering the evolutionary dynamics and genetic determinants of antibiotic resistance in Staphylococcus aureus. This method was applied to S. aureus cultures isolated from a single patient who showed decreased susceptibility to the vancomycin antibiotic over time. Our approach relies on the increased resolution afforded by next-generation genome-sequencing technology, and it allowed us to discover a number of S. aureus mutations, in both known and novel gene targets, which appear to have evolved under adaptive pressure to evade vancomycin mechanisms of action. The approach we lay out in this work can be applied to resistance to any number of antibiotics across numerous species of bacterial pathogens. PMID:27446992
Rolf, Megan M; Taylor, Jeremy F; Schnabel, Robert D; McKay, Stephanie D; McClure, Matthew C; Northcutt, Sally L; Kerley, Monty S; Weaber, Robert L
2010-04-19
Molecular estimates of breeding value are expected to increase selection response due to improvements in the accuracy of selection and a reduction in generation interval, particularly for traits that are difficult or expensive to record or are measured late in life. Several statistical methods for incorporating molecular data into breeding value estimation have been proposed, however, most studies have utilized simulated data in which the generated linkage disequilibrium may not represent the targeted livestock population. A genomic relationship matrix was developed for 698 Angus steers and 1,707 Angus sires using 41,028 single nucleotide polymorphisms and breeding values were estimated using feed efficiency phenotypes (average daily feed intake, residual feed intake, and average daily gain) recorded on the steers. The number of SNPs needed to accurately estimate a genomic relationship matrix was evaluated in this population. Results were compared to estimates produced from pedigree-based mixed model analysis of 862 Angus steers with 34,864 identified paternal relatives but no female ancestors. Estimates of additive genetic variance and breeding value accuracies were similar for AFI and RFI using the numerator and genomic relationship matrices despite fewer animals in the genomic analysis. Bootstrap analyses indicated that 2,500-10,000 markers are required for robust estimation of genomic relationship matrices in cattle. This research shows that breeding values and their accuracies may be estimated for commercially important sires for traits recorded in experimental populations without the need for pedigree data to establish identity by descent between members of the commercial and experimental populations when at least 2,500 SNPs are available for the generation of a genomic relationship matrix.
Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.
2015-01-01
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089
Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui
2012-01-01
Polyploidization is a major evolutionary process. Approximately 70-75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution.
Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui
2012-01-01
Polyploidization is a major evolutionary process. Approximately 70–75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution. PMID:22363542
Genomic legacy of the African cheetah, Acinonyx jubatus.
Dobrynin, Pavel; Liu, Shiping; Tamazian, Gaik; Xiong, Zijun; Yurchenko, Andrey A; Krasheninnikova, Ksenia; Kliver, Sergey; Schmidt-Küntzel, Anne; Koepfli, Klaus-Peter; Johnson, Warren; Kuderna, Lukas F K; García-Pérez, Raquel; Manuel, Marc de; Godinez, Ricardo; Komissarov, Aleksey; Makunin, Alexey; Brukhin, Vladimir; Qiu, Weilin; Zhou, Long; Li, Fang; Yi, Jian; Driscoll, Carlos; Antunes, Agostinho; Oleksyk, Taras K; Eizirik, Eduardo; Perelman, Polina; Roelke, Melody; Wildt, David; Diekhans, Mark; Marques-Bonet, Tomas; Marker, Laurie; Bhak, Jong; Wang, Jun; Zhang, Guojie; O'Brien, Stephen J
2015-12-10
Patterns of genetic and genomic variance are informative in inferring population history for human, model species and endangered populations. Here the genome sequence of wild-born African cheetahs reveals extreme genomic depletion in SNV incidence, SNV density, SNVs of coding genes, MHC class I and II genes, and mitochondrial DNA SNVs. Cheetah genomes are on average 95 % homozygous compared to the genomes of the outbred domestic cat (24.08 % homozygous), Virunga Mountain Gorilla (78.12 %), inbred Abyssinian cat (62.63 %), Tasmanian devil, domestic dog and other mammalian species. Demographic estimators impute two ancestral population bottlenecks: one >100,000 years ago coincident with cheetah migrations out of the Americas and into Eurasia and Africa, and a second 11,084-12,589 years ago in Africa coincident with late Pleistocene large mammal extinctions. MHC class I gene loss and dramatic reduction in functional diversity of MHC genes would explain why cheetahs ablate skin graft rejection among unrelated individuals. Significant excess of non-synonymous mutations in AKAP4 (p<0.02), a gene mediating spermatozoon development, indicates cheetah fixation of five function-damaging amino acid variants distinct from AKAP4 homologues of other Felidae or mammals; AKAP4 dysfunction may cause the cheetah's extremely high (>80 %) pleiomorphic sperm. The study provides an unprecedented genomic perspective for the rare cheetah, with potential relevance to the species' natural history, physiological adaptations and unique reproductive disposition.
Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik
2013-05-01
With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations. © 2013 Blackwell Publishing Ltd.
Galanter, Joshua Mark; Fernandez-Lopez, Juan Carlos; Gignoux, Christopher R; Barnholtz-Sloan, Jill; Fernandez-Rozadilla, Ceres; Via, Marc; Hidalgo-Miranda, Alfredo; Contreras, Alejandra V; Figueroa, Laura Uribe; Raska, Paola; Jimenez-Sanchez, Gerardo; Zolezzi, Irma Silva; Torres, Maria; Ponte, Clara Ruiz; Ruiz, Yarimar; Salas, Antonio; Nguyen, Elizabeth; Eng, Celeste; Borjas, Lisbeth; Zabala, William; Barreto, Guillermo; González, Fernando Rondón; Ibarra, Adriana; Taboada, Patricia; Porras, Liliana; Moreno, Fabián; Bigham, Abigail; Gutierrez, Gerardo; Brutsaert, Tom; León-Velarde, Fabiola; Moore, Lorna G; Vargas, Enrique; Cruz, Miguel; Escobedo, Jorge; Rodriguez-Santana, José; Rodriguez-Cintrón, William; Chapela, Rocio; Ford, Jean G; Bustamante, Carlos; Seminara, Daniela; Shriver, Mark; Ziv, Elad; Burchard, Esteban Gonzalez; Haile, Robert; Parra, Esteban; Carracedo, Angel
2012-01-01
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R² > 0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.
Galanter, Joshua Mark; Fernandez-Lopez, Juan Carlos; Gignoux, Christopher R.; Barnholtz-Sloan, Jill; Fernandez-Rozadilla, Ceres; Via, Marc; Hidalgo-Miranda, Alfredo; Contreras, Alejandra V.; Figueroa, Laura Uribe; Raska, Paola; Jimenez-Sanchez, Gerardo; Silva Zolezzi, Irma; Torres, Maria; Ponte, Clara Ruiz; Ruiz, Yarimar; Salas, Antonio; Nguyen, Elizabeth; Eng, Celeste; Borjas, Lisbeth; Zabala, William; Barreto, Guillermo; Rondón González, Fernando; Ibarra, Adriana; Taboada, Patricia; Porras, Liliana; Moreno, Fabián; Bigham, Abigail; Gutierrez, Gerardo; Brutsaert, Tom; León-Velarde, Fabiola; Moore, Lorna G.; Vargas, Enrique; Cruz, Miguel; Escobedo, Jorge; Rodriguez-Santana, José; Rodriguez-Cintrón, William; Chapela, Rocio; Ford, Jean G.; Bustamante, Carlos; Seminara, Daniela; Shriver, Mark; Ziv, Elad; Gonzalez Burchard, Esteban; Haile, Robert
2012-01-01
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2>0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region. PMID:22412386
Population structure and genomic inbreeding in nine Swiss dairy cattle populations.
Signer-Hasler, Heidi; Burren, Alexander; Neuditschko, Markus; Frischknecht, Mirjam; Garrick, Dorian; Stricker, Christian; Gredler, Birgit; Bapst, Beat; Flury, Christine
2017-11-07
Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH ) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH : 0.027), OB (F ROH : 0.029), and SI (F ROH : 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH : 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service results in more sires having progeny at each generation and thus this breeding practice is likely the major reason for the remarkable levels of genetic diversity retained within these populations. The fact that the EV population is regionally restricted and its small census size of herd-book cows explain its high level of genomic inbreeding.
USDA-ARS?s Scientific Manuscript database
Recent Meta-analysis of quantitative trait loci (QTL) in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of various trait QTL called clusters, and specific trait QTL called hotspots. The Meta-analysis included all population types of Gossypium mixing ...
USDA-ARS?s Scientific Manuscript database
During the last decade, a combination of molecular surveillance and population genetic analyses have significantly altered our understanding of Fusarium graminearum, the major FHB pathogen in North America. In addition to the native NA1 population (largely 15ADON toxin type) and the invasive NA2 pop...
Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou
2017-08-01
Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Bozinovic, Goran; Oleksiak, Marjorie F.
2010-01-01
Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843
Hood, Glen R.; Meyers, Peter J.; Powell, Thomas H. Q.; Lazorchak, Peter; Glover, Mary M.; Tait, Cheyenne; Hahn, Daniel A.; Berlocher, Stewart H.; Smith, James J.; Nosil, Patrik; Feder, Jeffrey L.
2018-01-01
A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity. PMID:29783692
Doellman, Meredith M; Ragland, Gregory J; Hood, Glen R; Meyers, Peter J; Egan, Scott P; Powell, Thomas H Q; Lazorchak, Peter; Glover, Mary M; Tait, Cheyenne; Schuler, Hannes; Hahn, Daniel A; Berlocher, Stewart H; Smith, James J; Nosil, Patrik; Feder, Jeffrey L
2018-05-18
A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella . Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity.
Wenger, Yvan; Galliot, Brigitte
2013-03-25
Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.
2013-01-01
Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871
Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes.
Lohse, Konrad; Frantz, Laurent A F
2014-04-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4-7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.
Neandertal Admixture in Eurasia Confirmed by Maximum-Likelihood Analysis of Three Genomes
Lohse, Konrad; Frantz, Laurent A. F.
2014-01-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4−7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination. PMID:24532731
Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J
2014-03-20
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Payen, Celia; Di Rienzi, Sara C.; Ong, Giang T.; Pogachar, Jamie L.; Sanchez, Joseph C.; Sunshine, Anna B.; Raghuraman, M. K.; Brewer, Bonita J.; Dunham, Maitreya J.
2014-01-01
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another. PMID:24368781
Facey, Paul D.; Méric, Guillaume; Hitchings, Matthew D.; Pachebat, Justin A.; Hegarty, Matt J.; Chen, Xiaorui; Morgan, Laura V.A.; Hoeppner, James E.; Whitten, Miranda M.A.; Kirk, William D.J.; Dyson, Paul J.; Sheppard, Sam K.; Sol, Ricardo Del
2015-01-01
Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. PMID:26185096
Facey, Paul D; Méric, Guillaume; Hitchings, Matthew D; Pachebat, Justin A; Hegarty, Matt J; Chen, Xiaorui; Morgan, Laura V A; Hoeppner, James E; Whitten, Miranda M A; Kirk, William D J; Dyson, Paul J; Sheppard, Sam K; Del Sol, Ricardo
2015-07-15
Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genetic signatures of natural selection in a model invasive ascidian
Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin
2017-01-01
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616
Ma, Xin; Kelley, Joanna L.; Eilertson, Kirsten; Musharoff, Shaila; Degenhardt, Jeremiah D.; Martins, André L.; Vinar, Tomas; Kosiol, Carolin; Siepel, Adam; Gutenkunst, Ryan N.; Bustamante, Carlos D.
2013-01-01
To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (∼3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations. PMID:24194868
Ma, Xin; Kelley, Joanna L; Eilertson, Kirsten; Musharoff, Shaila; Degenhardt, Jeremiah D; Martins, André L; Vinar, Tomas; Kosiol, Carolin; Siepel, Adam; Gutenkunst, Ryan N; Bustamante, Carlos D
2013-01-01
To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (~3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations.
MACHADO, HEATHER E.; BERGLAND, ALAN O.; O’BRIEN, KATHERINE R.; BEHRMAN, EMILY L.; SCHMIDT, PAUL S.; PETROV, DMITRI A.
2016-01-01
Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848
Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle
2016-12-31
Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto-Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Variation in Genomic Methylation in Natural Populations of Chinese White Poplar
Ma, Kaifeng; Song, Yuepeng; Yang, Xiaohui; Zhang, Zhiyi; Zhang, Deqiang
2013-01-01
Background It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. Principal Findings On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001), respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu) to 1.211 (Shaanxi), and the coefficients of epigenetic differentiation (GST = 0.159) were assessed by Shannon’s diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. Conclusions Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5′-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match. PMID:23704963
Leveraging the rice genome sequence for monocot comparative and translational genomics.
Lohithaswa, H C; Feltus, F A; Singh, H P; Bacon, C D; Bailey, C D; Paterson, A H
2007-07-01
Common genome anchor points across many taxa greatly facilitate translational and comparative genomics and will improve our understanding of the Tree of Life. To add to the repertoire of genomic tools applicable to the study of monocotyledonous plants in general, we aligned Allium and Musa ESTs to Oryza BAC sequences and identified candidate Allium-Oryza and Musa-Oryza conserved intron-scanning primers (CISPs). A random sampling of 96 CISP primer pairs, representing loci from 11 of the 12 chromosomes in rice, were tested on seven members of the order Poales and on representatives of the Arecales, Asparagales, and Zingiberales monocot orders. The single-copy amplification success rates of Allium (31.3%), Cynodon (31.4%), Hordeum (30.2%), Musa (37.5%), Oryza (61.5%), Pennisetum (33.3%), Sorghum (47.9%), Zea (33.3%), Triticum (30.2%), and representatives of the palm family (32.3%) suggest that subsets of these primers will provide DNA markers suitable for comparative and translational genomics in orphan crops, as well as for applications in conservation biology, ecology, invasion biology, population biology, systematic biology, and related fields.
Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity
Andersen, Erik C.; Gerke, Justin P.; Shapiro, Joshua A.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Félix, Marie-Anne; Kruglyak, Leonid
2011-01-01
The nematode Caenorhabditis elegans is central to research in molecular, cell, and developmental biology, but nearly all of this research has been conducted on a single strain. Comparatively little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation by high-throughput selective sequencing of a worldwide collection of 200 wild strains, identifying 41,188 single nucleotide polymorphisms. Unexpectedly, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of the six chromosomes, each spanning many megabases. Population-genetic modeling shows that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps likely occurred in the past few hundred years. These sweeps, which we hypothesize to be a result of human activity, have dramatically reshaped the global C. elegans population in the recent past. PMID:22286215
Feliziani, Sofía; Moyano, Alejandro J.; Di Rienzo, Julio A.; Krogh Johansen, Helle; Molin, Søren; Smania, Andrea M.
2014-01-01
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections. PMID:25330091
Metspalu, Mait; Romero, Irene Gallego; Yunusbayev, Bayazit; Chaubey, Gyaneshwer; Mallick, Chandana Basu; Hudjashov, Georgi; Nelis, Mari; Mägi, Reedik; Metspalu, Ene; Remm, Maido; Pitchappan, Ramasamy; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Kivisild, Toomas
2011-12-09
South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G
2014-10-01
Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.
Population sequencing reveals breed and sub-species specific CNVs in cattle
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...
van den Berg, Irene; Boichard, Didier; Lund, Mogens Sandø
2016-11-01
The objective of this study was to compare mapping precision and power of within-breed and multibreed genome-wide association studies (GWAS) and to compare the results obtained by the multibreed GWAS with 3 meta-analysis methods. The multibreed GWAS was expected to improve mapping precision compared with a within-breed GWAS because linkage disequilibrium is conserved over shorter distances across breeds than within breeds. The multibreed GWAS was also expected to increase detection power for quantitative trait loci (QTL) segregating across breeds. GWAS were performed for production traits in dairy cattle, using imputed full genome sequences of 16,031 bulls, originating from 6 French and Danish dairy cattle populations. Our results show that a multibreed GWAS can be a valuable tool for the detection and fine mapping of quantitative trait loci. The number of QTL detected with the multibreed GWAS was larger than the number detected by the within-breed GWAS, indicating an increase in power, especially when the 2 Holstein populations were combined. The largest number of QTL was detected when all populations were combined. The analysis combining all breeds was, however, dominated by Holstein, and QTL segregating in other breeds but not in Holstein were sometimes overshadowed by larger QTL segregating in Holstein. Therefore, the GWAS combining all breeds except Holstein was useful to detect such peaks. Combining all breeds except Holstein resulted in smaller QTL intervals on average, but this outcome was not the case when the Holstein populations were included in the analysis. Although no decrease in the average QTL size was observed, mapping precision did improve for several QTL. Out of 3 different multibreed meta-analysis methods, the weighted z-scores model resulted in the most similar results to the full multibreed GWAS and can be useful as an alternative to a full multibreed GWAS. Differences between the multibreed GWAS and the meta-analyses were larger when different breeds were combined than when the 2 Holstein populations were combined. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus.
Lack, Justin B; Lange, Jeremy D; Tang, Alison D; Corbett-Detig, Russell B; Pool, John E
2016-12-01
The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user's needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Estimation and Partitioning of Heritability in Human Populations using Whole Genome Analysis Methods
Vinkhuyzen, Anna AE; Wray, Naomi R; Yang, Jian; Goddard, Michael E; Visscher, Peter M
2014-01-01
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. But major questions remain unanswered: how much phenotypic variation is genetic, how much of the genetic variation is additive and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLM) to estimate genetic variation, using the relationship between close or distant relatives based on pedigree or SNPs. We discuss theory, estimation procedures, bias and precision of each method and review recent advances in the dissection of additive genetic variation of complex traits in human populations that are based upon the application of MLM. Using genome wide data, SNPs account for far more of the genetic variation than the highly significant SNPs associated with a trait, but they do not account for all of the genetic variance estimated by pedigree based methods. We explain possible reasons for this ‘missing’ heritability. PMID:23988118
2012-01-01
Background Efficient, robust, and accurate genotype imputation algorithms make large-scale application of genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all pedigree, genomic, and phenotypic information into a single-stage genomic evaluation. Methods An algorithm was developed for imputation of genotypes in pedigreed populations that allows imputation for completely ungenotyped animals and for low-density genotyped animals, accommodates a wide variety of pedigree structures for genotyped animals, imputes unmapped SNP, and works for large datasets. The method involves simple phasing rules, long-range phasing and haplotype library imputation and segregation analysis. Results Imputation accuracy was high and computational cost was feasible for datasets with pedigrees of up to 25 000 animals. The resulting single-stage genomic evaluation increased the accuracy of estimated genomic breeding values compared to a scenario in which phenotypes on relatives that were not genotyped were ignored. Conclusions The developed imputation algorithm and software and the resulting single-stage genomic evaluation method provide powerful new ways to exploit imputation and to obtain more accurate genetic evaluations. PMID:22462519
Tay, Y. C.; Chng, M. W. P.; Sew, W. W. G.; Rheindt, F. E.; Tun, K. P. P.
2016-01-01
The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome. PMID:27853600
The genome of the vervet (Chlorocebus aethiops sabaeus)
Warren, Wesley C.; Jasinska, Anna J.; García-Pérez, Raquel; Svardal, Hannes; Tomlinson, Chad; Rocchi, Mariano; Archidiacono, Nicoletta; Capozzi, Oronzo; Minx, Patrick; Montague, Michael J.; Kyung, Kim; Hillier, LaDeana W.; Kremitzki, Milinn; Graves, Tina; Chiang, Colby; Hughes, Jennifer; Tran, Nam; Huang, Yu; Ramensky, Vasily; Choi, Oi-wa; Jung, Yoon J.; Schmitt, Christopher A.; Juretic, Nikoleta; Wasserscheid, Jessica; Turner, Trudy R.; Wiseman, Roger W.; Tuscher, Jennifer J.; Karl, Julie A.; Schmitz, Jörn E.; Zahn, Roland; O'Connor, David H.; Redmond, Eugene; Nisbett, Alex; Jacquelin, Béatrice; Müller-Trutwin, Michaela C.; Brenchley, Jason M.; Dione, Michel; Antonio, Martin; Schroth, Gary P.; Kaplan, Jay R.; Jorgensen, Matthew J.; Thomas, Gregg W.C.; Hahn, Matthew W.; Raney, Brian J.; Aken, Bronwen; Nag, Rishi; Schmitz, Juergen; Churakov, Gennady; Noll, Angela; Stanyon, Roscoe; Webb, David; Thibaud-Nissen, Francoise; Nordborg, Magnus; Marques-Bonet, Tomas; Dewar, Ken; Weinstock, George M.; Wilson, Richard K.; Freimer, Nelson B.
2015-01-01
We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations. PMID:26377836
Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent.
Baker, Robert J; Dickins, Benjamin; Wickliffe, Jeffrey K; Khan, Faisal A A; Gaschak, Sergey; Makova, Kateryna D; Phillips, Caleb D
2017-09-01
Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole ( Myodes glareolus ) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.
Single-cell copy number variation detection
2011-01-01
Detection of chromosomal aberrations from a single cell by array comparative genomic hybridization (single-cell array CGH), instead of from a population of cells, is an emerging technique. However, such detection is challenging because of the genome artifacts and the DNA amplification process inherent to the single cell approach. Current normalization algorithms result in inaccurate aberration detection for single-cell data. We propose a normalization method based on channel, genome composition and recurrent genome artifact corrections. We demonstrate that the proposed channel clone normalization significantly improves the copy number variation detection in both simulated and real single-cell array CGH data. PMID:21854607
Wan, KangKang; Zhang, Zhong; Pang, Xiaoming; Yin, Xiao; Bai, Yang; Sun, Xiaoqing; Gao, Lizhi; Li, Ruiqiang; Zhang, Jinbo
2016-01-01
Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar ‘Junzao’ and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa). Comparative analysis revealed that the genome of ‘Dongzao’, a fresh jujube, was ~86.5 Mb larger than that of the ‘Junzao’, partially due to the recent insertions of transposable elements in the ‘Dongzao’ genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication. PMID:28005948
Huang, Jian; Zhang, Chunmei; Zhao, Xing; Fei, Zhangjun; Wan, KangKang; Zhang, Zhong; Pang, Xiaoming; Yin, Xiao; Bai, Yang; Sun, Xiaoqing; Gao, Lizhi; Li, Ruiqiang; Zhang, Jinbo; Li, Xingang
2016-12-01
Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar 'Junzao' and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa). Comparative analysis revealed that the genome of 'Dongzao', a fresh jujube, was ~86.5 Mb larger than that of the 'Junzao', partially due to the recent insertions of transposable elements in the 'Dongzao' genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication.
Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D
2016-12-01
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis
Ma, Liang; Wei Huang, Da; Khil, Pavel P.; Dekker, John P.; Kutty, Geetha; Bishop, Lisa; Liu, Yueqin; Deng, Xilong; Pagni, Marco; Hirsch, Vanessa; Lempicki, Richard A.
2018-01-01
ABSTRACT Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro. Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals. PMID:29739910
MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yu-Wei; Simmons, Blake A.; Singer, Steven W.
The recovery of genomes from metagenomic datasets is a critical step to defining the functional roles of the underlying uncultivated populations. We previously developed MaxBin, an automated binning approach for high-throughput recovery of microbial genomes from metagenomes. Here, we present an expanded binning algorithm, MaxBin 2.0, which recovers genomes from co-assembly of a collection of metagenomic datasets. Tests on simulated datasets revealed that MaxBin 2.0 is highly accurate in recovering individual genomes, and the application of MaxBin 2.0 to several metagenomes from environmental samples demonstrated that it could achieve two complementary goals: recovering more bacterial genomes compared to binning amore » single sample as well as comparing the microbial community composition between different sampling environments. Availability and implementation: MaxBin 2.0 is freely available at http://sourceforge.net/projects/maxbin/ under BSD license. Supplementary information: Supplementary data are available at Bioinformatics online.« less
Population sequencing reveals breed and sub-species specific CNVs in cattle
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect the rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an incre...
USDA-ARS?s Scientific Manuscript database
High-density linkage maps are fundamental to contemporary organismal research and scientific approaches to genetic improvement, especially in paleopolyploids with exceptionally complex genomes, e.g., Upland cotton (Gossypium hirsutum L., 2n=52). Using 3 full-sib intra-specific mapping populations fr...
Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume
Hilton, Jason A; Satinsky, Brandon M; Doherty, Mary; Zielinski, Brian; Zehr, Jonathan P
2015-01-01
Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities. PMID:25514535
Dynamics of Dark-Fly Genome Under Environmental Selections.
Izutsu, Minako; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, Naoyuki
2015-12-04
Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize "Dark-fly", a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly. Copyright © 2016 Izutsu et al.
Dynamics of Dark-Fly Genome Under Environmental Selections
Izutsu, Minako; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, Naoyuki
2015-01-01
Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize “Dark-fly”, a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly. PMID:26637434
Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes.
Troell, Karin; Hallström, Björn; Divne, Anna-Maria; Alsmark, Cecilia; Arrighi, Romanico; Huss, Mikael; Beser, Jessica; Bertilsson, Stefan
2016-06-23
Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units.
Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E
2015-04-01
Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.
Kim, Soonok; Cho, Yun Sung; Bhak, Jong; O’Brian, Stephen J.; Yeo, Joo-Hong
2017-01-01
Recent advances in genome sequencing technologies have enabled humans to generate and investigate the genomes of wild species. This includes the big cat family, such as tigers, lions, and leopards. Adding the first high quality leopard genome, we have performed an in-depth comparative analysis to identify the genomic signatures in the evolution of felid to become the top predators on land. Our study focused on how the carnivore genomes, as compared to the omnivore or herbivore genomes, shared evolutionary adaptations in genes associated with nutrient metabolism, muscle strength, agility, and other traits responsible for hunting and meat digestion. We found genetic evidence that genomes represent what animals eat through modifying genes. Highly conserved genetically relevant regions were discovered in genomes at the family level. Also, the Felidae family genomes exhibited low levels of genetic diversity associated with decreased population sizes, presumably because of their strict diet, suggesting their vulnerability and critical conservation status. Our findings can be used for human health enhancement, since we share the same genes as cats with some variation. This is an example how wildlife genomes can be a critical resource for human evolution, providing key genetic marker information for disease treatment. PMID:28042784
Hanušová, Kristýna; Ekrt, Libor; Vít, Petr; Kolář, Filip; Urfus, Tomáš
2014-01-01
Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together) suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation. PMID:24932509
Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.
2014-01-01
Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611
Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.
2016-01-01
Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830
Monteil, Caroline L; Yahara, Koji; Studholme, David J; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E; Vinatzer, Boris A; Sheppard, Samuel K
2016-10-01
Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1 , to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae .
Erbe, M; Hayes, B J; Matukumalli, L K; Goswami, S; Bowman, P J; Reich, C M; Mason, B A; Goddard, M E
2012-07-01
Achieving accurate genomic estimated breeding values for dairy cattle requires a very large reference population of genotyped and phenotyped individuals. Assembling such reference populations has been achieved for breeds such as Holstein, but is challenging for breeds with fewer individuals. An alternative is to use a multi-breed reference population, such that smaller breeds gain some advantage in accuracy of genomic estimated breeding values (GEBV) from information from larger breeds. However, this requires that marker-quantitative trait loci associations persist across breeds. Here, we assessed the gain in accuracy of GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference population, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations in a validation population. Two methods were used to predict breeding values, either a genomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal distributions as the prior for SNP effects, including one distribution that set SNP effects to zero. The GBLUP_mod method scaled both the genomic relationship matrix and the additive relationship matrix to a base at the time the breeds diverged, and regressed the genomic relationship matrix to account for sampling errors in estimating relationship coefficients due to a finite number of markers, before combining the 2 matrices. Although these modifications did result in less biased breeding values for Jerseys compared with an unmodified genomic relationship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated (milk yield, fat yield, and protein yield), with an average increase in accuracy compared with GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins. The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 39,745 SNP (0.01 for Holsteins and 0.03 for Jerseys, averaged across traits). Even this limited and nonsignificant advantage was only observed when BayesR was used. An alternative panel, which extracted the SNP in the transcribed part of the bovine genome from the 624,213 SNP panel (to give 58,532 SNP), performed better, with an increase in accuracy of 0.03 for Jerseys across traits. This panel captures much of the increased genomic content of the 624,213 SNP panel, with the advantage of a greatly reduced number of SNP effects to estimate. Taken together, using this panel, a combined breed reference and using BayesR rather than GBLUP_mod increased the accuracy of GEBV in Jerseys from 0.43 to 0.52, averaged across the 3 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Namroud, Marie-Claire; Beaulieu, Jean; Juge, Nicolas; Laroche, Jérôme; Bousquet, Jean
2008-01-01
Conifers are characterized by a large genome size and a rapid decay of linkage disequilibrium, most often within gene limits. Genome scans based on noncoding markers are less likely to detect molecular adaptation linked to genes in these species. In this study, we assessed the effectiveness of a genome-wide single nucleotide polymorphism (SNP) scan focused on expressed genes in detecting local adaptation in a conifer species. Samples were collected from six natural populations of white spruce (Picea glauca) moderately differentiated for several quantitative characters. A total of 534 SNPs representing 345 expressed genes were analysed. Genes potentially under natural selection were identified by estimating the differentiation in SNP frequencies among populations (FST) and identifying outliers, and by estimating local differentiation using a Bayesian approach. Both average expected heterozygosity and population differentiation estimates (HE = 0.270 and FST = 0.006) were comparable to those obtained with other genetic markers. Of all genes, 5.5% were identified as outliers with FST at the 95% confidence level, while 14% were identified as candidates for local adaptation with the Bayesian method. There was some overlap between the two gene sets. More than half of the candidate genes for local adaptation were specific to the warmest population, about 20% to the most arid population, and 15% to the coldest and most humid higher altitude population. These adaptive trends were consistent with the genes’ putative functions and the divergence in quantitative traits noted among the populations. The results suggest that an approach separating the locus and population effects is useful to identify genes potentially under selection. These candidates are worth exploring in more details at the physiological and ecological levels. PMID:18662225
VariantSpark: population scale clustering of genotype information.
O'Brien, Aidan R; Saunders, Neil F W; Guo, Yi; Buske, Fabian A; Scott, Rodney J; Bauer, Denis C
2015-12-10
Genomic information is increasingly used in medical practice giving rise to the need for efficient analysis methodology able to cope with thousands of individuals and millions of variants. The widely used Hadoop MapReduce architecture and associated machine learning library, Mahout, provide the means for tackling computationally challenging tasks. However, many genomic analyses do not fit the Map-Reduce paradigm. We therefore utilise the recently developed SPARK engine, along with its associated machine learning library, MLlib, which offers more flexibility in the parallelisation of population-scale bioinformatics tasks. The resulting tool, VARIANTSPARK provides an interface from MLlib to the standard variant format (VCF), offers seamless genome-wide sampling of variants and provides a pipeline for visualising results. To demonstrate the capabilities of VARIANTSPARK, we clustered more than 3,000 individuals with 80 Million variants each to determine the population structure in the dataset. VARIANTSPARK is 80 % faster than the SPARK-based genome clustering approach, ADAM, the comparable implementation using Hadoop/Mahout, as well as ADMIXTURE, a commonly used tool for determining individual ancestries. It is over 90 % faster than traditional implementations using R and Python. The benefits of speed, resource consumption and scalability enables VARIANTSPARK to open up the usage of advanced, efficient machine learning algorithms to genomic data.
Increased genomic prediction accuracy in wheat breeding using a large Australian panel.
Norman, Adam; Taylor, Julian; Tanaka, Emi; Telfer, Paul; Edwards, James; Martinant, Jean-Pierre; Kuchel, Haydn
2017-12-01
Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom TM Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...
Functional genomics of physiological plasticity and local adaptation in killifish.
Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish
Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107
Kauffman, Tia L; Wilfond, Benjamin S; Jarvik, Gail P; Leo, Michael C; Lynch, Frances L; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O; Goddard, Katrina A B
2017-02-01
Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results are placed into the medical record for use by healthcare providers. Through quantitative and qualitative measures, including baseline and post result disclosure surveys, post result disclosure interviews, 1-2year follow-up interviews, and team journaling, we are obtaining data about the clinical and personal utility of genomic carrier screening in this population. Key outcomes include the number of reportable carrier and additional findings, and the comparative cost, utilization, and psychosocial impacts of usual care vs. genomic carrier screening. As the study progresses, we will compare the costs of genome sequencing and usual care as well as the cost of screening, pattern of use of genetic or mental health counseling services, number of outpatient visits, and total healthcare costs. This project includes novel investigation into human reactions and responses from would-be parents who are learning information that could both affect a future pregnancy and their own health. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tang, Jia-Min; Li, Fen; Cheng, Tian-Yin; Duan, De-Yong; Liu, Guo-Hua
2018-05-22
The sheep ked Melophagus ovinus is mainly found in Europe, Northwestern Africa, and Asia. Although M. ovinus is an important ectoparasite of sheep in many countries, the population genetics, molecular biology, and systematics of this ectoparasite remain poorly understood. Herein, we determined the mitochondrial (mt) genome of M. ovinus from Gansu Province, China (MOG) and compared with that of M. ovinus Xinjiang Uygur Autonomous Region, China (MOX). The mt genome sequence (15,044 bp) of M. ovinus MOG was significantly shorter (529 bp) than M. ovinus MOX. Nucleotide sequence difference in the whole mt genome except for non-coding region was 0.37% between M. ovinus MOG and MOX. For the 13 protein-coding genes, comparison revealed sequence divergences at both the nucleotide (0-1.1%) and amino acid (0-0.59%) levels between M. ovinus MOG and MOX, respectively. Interestingly, the cox1 gene of M. ovinus MOX is predicted to employ unusual mt start codons AAA, which has not been predicted previously for any parasite genome. Phylogenetic analyses showed that M. ovinus (Hippoboscoidea) is related to the superfamilies Oestroidea + Muscoidea. Our results have also indicated the paraphylies of the four families (Anthomyiidae, Calliphoridae, Muscidae, and Oestridae) and two superfamilies (Oestroidea and Muscoidea). This mt genome of M. ovinus provides useful molecular markers for studies into the population genetics, molecular biology, and systematics of this ectoparasite.
Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying
2014-05-01
South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.
Galaverni, Marco; Caniglia, Romolo; Pagani, Luca; Fabbri, Elena; Boattini, Alessio; Randi, Ettore
2017-01-01
Abstract Hybridization is a natural or anthropogenic process that can deeply affect the genetic make-up of populations, possibly decreasing individual fitness but sometimes favoring local adaptations. The population of Italian wolves (Canis lupus), after protracted demographic declines and isolation, is currently expanding in anthropic areas, with documented cases of hybridization with stray domestic dogs. However, identifying admixture patterns in deeply introgressed populations is far from trivial. In this study, we used a panel of 170,000 SNPs analyzed with multivariate, Bayesian and local ancestry reconstruction methods to identify hybrids, estimate their ancestry proportions and timing since admixture. Moreover, we carried out preliminary genotype–phenotype association analyses to identify the genetic bases of three phenotypic traits (black coat, white claws, and spur on the hind legs) putative indicators of hybridization. Results showed no sharp subdivisions between nonadmixed wolves and hybrids, indicating that recurrent hybridization and deep introgression might have started mostly at the beginning of the population reexpansion. In hybrids, we identified a number of genomic regions with excess of ancestry in one of the parental populations, and regions with excess or resistance to introgression compared with neutral expectations. The three morphological traits showed significant genotype–phenotype associations, with a single genomic region for black coats and white claws, and with multiple genomic regions for the spur. In all cases the associated haplotypes were likely derived from dogs. In conclusion, we show that the use of multiple genome-wide ancestry reconstructions allows clarifying the admixture dynamics even in highly introgressed populations, and supports their conservation management. PMID:28549194
Oecomys catherinae (Sigmodontinae, Cricetidae): Evidence for chromosomal speciation?
Malcher, Stella Miranda; Pieczarka, Julio Cesar; Geise, Lena; Rossi, Rogério Vieira; Pereira, Adenilson Leão; O'Brien, Patricia Caroline Mary; Asfora, Paulo Henrique; Fonsêca da Silva, Victor; Sampaio, Maria Iracilda; Ferguson-Smith, Malcolm Andrew; Nagamachi, Cleusa Yoshiko
2017-01-01
Among the Oryzomyini (Sigmodontinae), Oecomys is the most speciose, with 17 species. This genus presents high karyotypic diversity (2n = 54 to 2n = 86) and many taxonomic issues at the species level because of the presence of cryptic species and the overlap of morphological characters. For these reasons the real number of species of Oecomys may be underestimated. With the aim of verifying if the taxon Oecomys catherinae is composed of more than one species, we made comparative studies on two populations from two regions of Brazil, one from the Amazon and another from the Atlantic Forest using both classical cytogenetics (G- and C-banding) and comparative genomic mapping with whole chromosome probes of Hylaeamys megacephalus (HME), molecular data (cytochrome b mitochondrial DNA) and morphology. Our results confirm that Oecomys catherinae occurs in the southeast Amazon, and reveal a new karyotype for the species (2n = 62, FNa = 62). The comparative genomic analysis with HME probes identified chromosomal homeologies between both populations and rearrangements that are responsible for the different karyotypes. We compared our results in Sigmodontinae genera with other studies that also used HME probes. These chromosomal differences together with the absence of consistent differentiation between the two populations on morphological and molecular analyses suggest that these populations may represent cryptic species.
2010-01-01
Background Diatoms are one of the most species-rich groups of eukaryotic microbes known. Diatoms are also the only group of eukaryotic micro-algae with a diplontic life history, suggesting that the ancestral diatom switched to a life history dominated by a duplicated genome. A key mechanism of speciation among diatoms could be a propensity for additional stable genome duplications. Across eukaryotic taxa, genome size is directly correlated to cell size and inversely correlated to physiological rates. Differences in relative genome size, cell size, and acclimated growth rates were analyzed in isolates of the diatom Ditylum brightwellii. Ditylum brightwellii consists of two main populations with identical 18s rDNA sequences; one population is distributed globally at temperate latitudes and the second appears to be localized to the Pacific Northwest coast of the USA. These two populations co-occur within the Puget Sound estuary of WA, USA, although their peak abundances differ depending on local conditions. Results All isolates from the more regionally-localized population (population 2) possessed 1.94 ± 0.74 times the amount of DNA, grew more slowly, and were generally larger than isolates from the more globally distributed population (population 1). The ITS1 sequences, cell sizes, and genome sizes of isolates from New Zealand were the same as population 1 isolates from Puget Sound, but their growth rates were within the range of the slower-growing population 2 isolates. Importantly, the observed genome size difference between isolates from the two populations was stable regardless of time in culture or the changes in cell size that accompany the diatom life history. Conclusions The observed two-fold difference in genome size between the D. brightwellii populations suggests that whole genome duplication occurred within cells of population 1 ultimately giving rise to population 2 cells. The apparent regional localization of population 2 is consistent with a recent divergence between the populations, which are likely cryptic species. Genome size variation is known to occur in other diatom genera; we hypothesize that genome duplication may be an active and important mechanism of genetic and physiological diversification and speciation in diatoms. PMID:20044934
2014-01-01
Background Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns. Methods By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation. Results For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1. Conclusions The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance. PMID:24592996
Diversity and population-genetic properties of copy number variations and multicopy genes in cattle
Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.
2016-01-01
The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184
Structural Genomics: Correlation Blocks, Population Structure, and Genome Architecture
Hu, Xin-Sheng; Yeh, Francis C.; Wang, Zhiquan
2011-01-01
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level. PMID:21886455
Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.
Xu, Jianping
2006-06-01
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.
Hughes, Austin L
2013-02-15
The hypothesis that domestication leads to a relaxation of purifying selection on mitochondrial (mt) genomes was tested by comparative analysis of mt genes from dog, pig, chicken, and silkworm. The three vertebrate species showed mt genome phylogenies in which domestic and wild isolates were intermingled, whereas the domestic silkworm (Bombyx mori) formed a distinct cluster nested within its closest wild relative (Bombyx mandarina). In spite of these differences in phylogenetic pattern, significantly greater proportions of nonsynonymous SNPs than of synonymous SNPs were unique to the domestic populations of all four species. Likewise, in all four species, significantly greater proportions of RNA-encoding SNPs than of synonymous SNPs were unique to the domestic populations. Thus, domestic populations were characterized by an excess of unique polymorphisms in two categories generally subject to purifying selection: nonsynonymous sites and RNA-encoding sites. Many of these unique polymorphisms thus seem likely to be slightly deleterious; the latter hypothesis was supported by the generally lower gene diversities of polymorphisms unique to domestic populations in comparison to those of polymorphisms shared by domestic and wild populations. Copyright © 2012 Elsevier B.V. All rights reserved.
Population genomic data reveal genes related to important traits of quail.
Wu, Yan; Zhang, Yaolei; Hou, Zhuocheng; Fan, Guangyi; Pi, Jinsong; Sun, Shuai; Chen, Jiang; Liu, Huaqiao; Du, Xiao; Shen, Jie; Hu, Gang; Chen, Wenbin; Pan, Ailuan; Yin, Pingping; Chen, Xiaoli; Pu, Yuejin; Zhang, He; Liang, Zhenhua; Jian, Jianbo; Zhang, Hao; Wu, Bin; Sun, Jing; Chen, Jianwei; Tao, Hu; Yang, Ting; Xiao, Hongwei; Yang, Huan; Zheng, Chuanwei; Bai, Mingzhou; Fang, Xiaodong; Burt, David W; Wang, Wen; Li, Qingyi; Xu, Xun; Li, Chengfeng; Yang, Huanming; Wang, Jian; Yang, Ning; Liu, Xin; Du, Jinping
2018-05-01
Japanese quail (Coturnix japonica), a recently domesticated poultry species, is important not only as an agricultural product, but also as a model bird species for genetic research. However, most of the biological questions concerning genomics, phylogenetics, and genetics of some important economic traits have not been answered. It is thus necessary to complete a high-quality genome sequence as well as a series of comparative genomics, evolution, and functional studies. Here, we present a quail genome assembly spanning 1.04 Gb with 86.63% of sequences anchored to 30 chromosomes (28 autosomes and 2 sex chromosomes Z/W). Our genomic data have resolved the long-term debate of phylogeny among Perdicinae (Japanese quail), Meleagridinae (turkey), and Phasianinae (chicken). Comparative genomics and functional genomic data found that four candidate genes involved in early maturation had experienced positive selection, and one of them encodes follicle stimulating hormone beta (FSHβ), which is correlated with different FSHβ levels in quail and chicken. We re-sequenced 31 quails (10 wild, 11 egg-type, and 10 meat-type) and identified 18 and 26 candidate selective sweep regions in the egg-type and meat-type lines, respectively. That only one of them is shared between egg-type and meat-type lines suggests that they were subject to an independent selection. We also detected a haplotype on chromosome Z, which was closely linked with maroon/yellow plumage in quail using population resequencing and a genome-wide association study. This haplotype block will be useful for quail breeding programs. This study provided a high-quality quail reference genome, identified quail-specific genes, and resolved quail phylogeny. We have identified genes related to quail early maturation and a marker for plumage color, which is significant for quail breeding. These results will facilitate biological discovery in quails and help us elucidate the evolutionary processes within the Phasianidae family.
Can males contribute to the genetic improvement of a species?
NASA Astrophysics Data System (ADS)
Bernardes, Américo T.
1997-01-01
In the time evolution of finite populations, the accumulation of harmful mutations in further generations might have lead to a temporal decay in the mean fitness of the whole population. This, in turn, would reduce the population size and so lead to its extinction. The production of genetically diverse offspring, through recombination, is a powerful mechanism in order to avoid this catastrophic route. From a selfish point of view, meiotic parthenogenesis can ensure the maintenance of better genomes, while sexual reproduction presents the risk of genome dilution. In this paper, by using Monte Carlo simulations of age-structured populations, through the Penna model, I compare the evolution of populations with different repoductive regimes. It is shown that sexual reproduction with male competition can produce better results than meiotic parthenogenesis. This contradicts results recently published, but agrees with the strong evidence that nature chose sexual reproduction instead of partenogenesis for most of the higher species.
Conley, Andrew B.; Rishishwar, Lavanya; Norris, Emily T.; Valderrama-Aguirre, Augusto; Mariño-Ramírez, Leonardo; Medina-Rivas, Miguel A.; Jordan, I. King
2017-01-01
At least 20% of Colombians identify as having African ancestry, yielding the second largest population of Afro-descendants in Latin America. To date, there have been relatively few studies focused on the genetic ancestry of Afro-Latino populations. We report a comparative analysis of the genetic ancestry of Chocó, a state located on Colombia’s Pacific coast with a population that is >80% Afro-Colombian. We compared genome-wide patterns of genetic ancestry and admixture for Chocó to six other admixed American populations, with an emphasis on a Mestizo population from the nearby Colombian city of Medellín. One hundred sample donors from Chocó were genotyped across 610,545 genomic sites and compared with 94 publicly available whole genome sequences from Medellín. At the continental level, Chocó shows mostly African genetic ancestry (76%) with a nearly even split between European (13%) and Native American (11%) fractions, whereas Medellín has primarily European ancestry (75%), followed by Native American (18%) and African (7%). Sample donors from Chocó self-identify as having more African ancestry, and conversely less European and Native American ancestry, than can be genetically inferred, as opposed to what we previously found for Medellín, where individuals tend to overestimate levels of European ancestry. We developed a novel approach for subcontinental ancestry assignment, which allowed us to characterize subcontinental source populations for each of the three distinct continental ancestry fractions separately. Despite the clear differences between Chocó and Medellín at the level of continental ancestry, the two populations show overall patterns of subcontinental ancestry that are highly similar. Their African subcontinental ancestries are only slightly different, with Chocó showing more exclusive shared ancestry with the modern Yoruba (Nigerian) population, and Medellín having relatively more shared ancestry with West African populations in Sierra Leone and Gambia. Both populations show very similar Spanish ancestry within Europe and virtually identical patterns of Native American ancestry, with main contributions from the Embera and Waunana tribes. When the three subcontinental ancestry components are considered jointly, the populations of Chocó and Medellín are shown to be most closely related, to the exclusion of the other admixed American populations that we analyzed. We consider the implications of the existence of shared subcontinental ancestries for Colombian populations that appear, at first glance, to be clearly distinct with respect to competing notions of national identity that emphasize ethnic mixing (mestizaje) vs. group-specific identities (multiculturalism). PMID:28855283
Li, X; Buitenhuis, A J; Lund, M S; Li, C; Sun, D; Zhang, Q; Poulsen, N A; Su, G
2015-11-01
The identification of causal genes or genomic regions associated with fatty acids (FA) will enhance our understanding of the pathways underlying FA synthesis and provide opportunities for changing milk fat composition through a genetic approach. The linkage disequilibrium between adjacent markers is highly consistent between the Chinese and Danish Holstein populations, such that a joint genome-wide association study (GWAS) can be performed. In this study, a joint GWAS was performed for 16 milk FA traits based on data of 784 Chinese and 371 Danish Holstein cows genotyped by a high-density bovine single nucleotide polymorphism (SNP) array. A total of 486,464 SNP markers on 29 bovine autosomes were used. Bonferroni corrections were applied to adjust the significance thresholds for multiple testing at the genome- and chromosome-wide levels. According to the analysis of either the Chinese or Danish data individually, the total numbers of overlapping SNP that were significant at the chromosome level were 94 for C14:1, 208 for the C14 index, and 1 for C18:0. Joint analysis using the combined data of the 2 populations detected greater numbers of significant SNP compared with either of the individual populations alone for 7 and 10 traits at the genome- and chromosome-wide significance levels, respectively. Greater numbers of significant SNP were detected for C18:0 and the C18 index in the Chinese population compared with the joint analysis. Sixty-five significant SNP across all traits had significantly different effects in the 2 populations. Ten FA were influenced by a quantitative trait loci (QTL) region including DGAT1. Both C14:1 and the C14 index were influenced by a QTL region including SCD1 in the combined population. Other QTL regions also showed significant associations with the studied FA. A large region (14.9-24.9 Mbp) in BTA26 significantly influenced C14:1 and the C14 index in both populations, mostly likely due to the SNP in SCD1. A QTL region (69.97-73.69 Mbp) on BTA9 showed a significantly different effect on C18:0 between the 2 populations. Detection of these important SNP and the corresponding QTL regions will be helpful for follow-up studies to identify causal mutations and their interaction with environments for milk FA in dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Montague, Michael J; Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L; Searle, Steven M J; Minx, Patrick; Hillier, LaDeana W; Koboldt, Daniel C; Davis, Brian W; Driscoll, Carlos A; Barr, Christina S; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W C; Hahn, Matthew W; Menotti-Raymond, Marilyn; O'Brien, Stephen J; Wilson, Richard K; Lyons, Leslie A; Murphy, William J; Warren, Wesley C
2014-12-02
Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.
Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L.; Searle, Steven M. J.; Minx, Patrick; Hillier, LaDeana W.; Koboldt, Daniel C.; Davis, Brian W.; Driscoll, Carlos A.; Barr, Christina S.; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W. C.; Hahn, Matthew W.; Menotti-Raymond, Marilyn; O’Brien, Stephen J.; Wilson, Richard K.; Lyons, Leslie A.; Murphy, William J.; Warren, Wesley C.
2014-01-01
Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae. PMID:25385592
Barony, Gustavo M; Tavares, Guilherme C; Pereira, Felipe L; Carvalho, Alex F; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P
2017-10-19
Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.
Genomics of Escherichia and Shigella
NASA Astrophysics Data System (ADS)
Perna, Nicole T.
The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.
Blanchard, Adam M; Jolley, Keith A; Maiden, Martin C J; Coffey, Tracey J; Maboni, Grazieli; Staley, Ceri E; Bollard, Nicola J; Warry, Andrew; Emes, Richard D; Davies, Peers L; Tötemeyer, Sabine
2018-01-01
Dichelobacter nodosus ( D. nodosus ) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.
[Landscape and ecological genomics].
Tetushkin, E Ia
2013-10-01
Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment.
Reconstructing Native American migrations from whole-genome and whole-exome data.
Gravel, Simon; Zakharia, Fouad; Moreno-Estrada, Andres; Byrnes, Jake K; Muzzio, Marina; Rodriguez-Flores, Juan L; Kenny, Eimear E; Gignoux, Christopher R; Maples, Brian K; Guiblet, Wilfried; Dutil, Julie; Via, Marc; Sandoval, Karla; Bedoya, Gabriel; Oleksyk, Taras K; Ruiz-Linares, Andres; Burchard, Esteban G; Martinez-Cruzado, Juan Carlos; Bustamante, Carlos D
2013-01-01
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is 48% in MXL, 25% in CLM, and 13% in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern American ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas 16 thousand years ago (kya), supports that the MXL Ancestors split 12.2kya, with a subsequent split of the ancestors to CLM and PUR 11.7kya. The model also features effective populations of 62,000 in Mexico, 8,700 in Colombia, and 1,900 in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.
Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data
Gravel, Simon; Muzzio, Marina; Rodriguez-Flores, Juan L.; Kenny, Eimear E.; Gignoux, Christopher R.; Maples, Brian K.; Guiblet, Wilfried; Dutil, Julie; Via, Marc; Sandoval, Karla; Bedoya, Gabriel; Oleksyk, Taras K.; Ruiz-Linares, Andres; Burchard, Esteban G.; Martinez-Cruzado, Juan Carlos; Bustamante, Carlos D.
2013-01-01
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is in MXL, in CLM, and in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern America ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas thousand years ago (kya), supports that the MXL Ancestors split kya, with a subsequent split of the ancestors to CLM and PUR kya. The model also features effective populations of in Mexico, in Colombia, and in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations. PMID:24385924
Comparative oncology: what dogs and other species can teach us about humans with cancer
Schiffman, Joshua D.; Breen, Matthew
2015-01-01
Over 1.66 million humans (approx. 500/100 000 population rate) and over 4.2 million dogs (approx. 5300/100 000 population rate) are diagnosed with cancer annually in the USA. The interdisciplinary field of comparative oncology offers a unique and strong opportunity to learn more about universal cancer risk and development through epidemiology, genetic and genomic investigations. Working across species, researchers from human and veterinary medicine can combine scientific findings to understand more quickly the origins of cancer and translate these findings to novel therapies to benefit both human and animals. This review begins with the genetic origins of canines and their advantage in cancer research. We next focus on recent findings in comparative oncology related to inherited, or genetic, risk for tumour development. We then detail the somatic, or genomic, changes within tumours and the similarities between species. The shared cancers between humans and dogs that we discuss include sarcoma (osteosarcoma, soft tissue sarcoma, histiocytic sarcoma, hemangiosarcoma), haematological malignancies (lymphoma, leukaemia), bladder cancer, intracranial neoplasms (meningioma, glioma) and melanoma. Tumour risk in other animal species is also briefly discussed. As the field of genomics advances, we predict that comparative oncology will continue to benefit both humans and the animals that live among us. PMID:26056372
A score-statistic approach for determining threshold values in QTL mapping.
Kao, Chen-Hung; Ho, Hsiang-An
2012-06-01
Issues in determining the threshold values of QTL mapping are often investigated for the backcross and F2 populations with relatively simple genome structures so far. The investigations of these issues in the progeny populations after F2 (advanced populations) with relatively more complicated genomes are generally inadequate. As these advanced populations have been well implemented in QTL mapping, it is important to address these issues for them in more details. Due to an increasing number of meiosis cycle, the genomes of the advanced populations can be very different from the backcross and F2 genomes. Therefore, special devices that consider the specific genome structures present in the advanced populations are required to resolve these issues. By considering the differences in genome structure between populations, we formulate more general score test statistics and gaussian processes to evaluate their threshold values. In general, we found that, given a significance level and a genome size, threshold values for QTL detection are higher in the denser marker maps and in the more advanced populations. Simulations were performed to validate our approach.
Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.
Kim, Soonok; Cho, Yun Sung; Kim, Hak-Min; Chung, Oksung; Kim, Hyunho; Jho, Sungwoong; Seomun, Hong; Kim, Jeongho; Bang, Woo Young; Kim, Changmu; An, Junghwa; Bae, Chang Hwan; Bhak, Youngjune; Jeon, Sungwon; Yoon, Hyejun; Kim, Yumi; Jun, JeHoon; Lee, HyeJin; Cho, Suan; Uphyrkina, Olga; Kostyria, Aleksey; Goodrich, John; Miquelle, Dale; Roelke, Melody; Lewis, John; Yurchenko, Andrey; Bankevich, Anton; Cho, Juok; Lee, Semin; Edwards, Jeremy S; Weber, Jessica A; Cook, Jo; Kim, Sangsoo; Lee, Hang; Manica, Andrea; Lee, Ilbeum; O'Brien, Stephen J; Bhak, Jong; Yeo, Joo-Hong
2016-10-11
There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.
The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross
2011-01-01
Background Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. Results We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. Conclusions CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations. PMID:21936954
Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.
Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross
2016-08-01
High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed. PMID:24773920
Li, Yang; Wang, Yixin; Fang, Lichun; Fu, Jiayuan; Cui, Shuai; Zhao, Yingjie; Cui, Zhizhong; Chang, Shuang; Zhao, Peng
2016-01-01
The antibody to chicken infectious anemia virus (CIAV) was positive in a specific pathogen-free (SPF) chicken population by ELISA test in our previous inspection, indicating a possible infection with CIAV. In this study, blood samples collected from the SPF chickens were used to isolate CIAV by inoculating into MSB1 cells and PCR amplification. A CIAV strain (SD1403) was isolated and successfully identified. Three overlapping genomic fragments were obtained by PCR amplification and sequencing. The full genome sequence of the SD1403 strain was obtained by aligning the sequences. The genome of the SD1403 strain was 2293 bp with a nucleotide identity of 94.8% to 98.5% when compared with 30 referred CIAV strains. The viral proteins VP2 and VP3 were highly conserved, but VP1 was not relatively conserved. Both amino acids 139 and 144 of VP1 were glutamine, which was in accord with the low pathogenic characteristics. In this study, we first reported that CIAV exists in Chinese SPF chicken populations and may be an important reason why attenuated vaccine can be contaminated with CIAV. PMID:27298822
Li, Yang; Wang, Yixin; Fang, Lichun; Fu, Jiayuan; Cui, Shuai; Zhao, Yingjie; Cui, Zhizhong; Chang, Shuang; Zhao, Peng
2016-01-01
The antibody to chicken infectious anemia virus (CIAV) was positive in a specific pathogen-free (SPF) chicken population by ELISA test in our previous inspection, indicating a possible infection with CIAV. In this study, blood samples collected from the SPF chickens were used to isolate CIAV by inoculating into MSB1 cells and PCR amplification. A CIAV strain (SD1403) was isolated and successfully identified. Three overlapping genomic fragments were obtained by PCR amplification and sequencing. The full genome sequence of the SD1403 strain was obtained by aligning the sequences. The genome of the SD1403 strain was 2293 bp with a nucleotide identity of 94.8% to 98.5% when compared with 30 referred CIAV strains. The viral proteins VP2 and VP3 were highly conserved, but VP1 was not relatively conserved. Both amino acids 139 and 144 of VP1 were glutamine, which was in accord with the low pathogenic characteristics. In this study, we first reported that CIAV exists in Chinese SPF chicken populations and may be an important reason why attenuated vaccine can be contaminated with CIAV.
The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (Sus cebifrons).
Nuijten, Rascha J M; Bosse, Mirte; Crooijmans, Richard P M A; Madsen, Ole; Schaftenaar, Willem; Ryder, Oliver A; Groenen, Martien A M; Megens, Hendrik-Jan
2016-01-01
The list of threatened and endangered species is growing rapidly, due to various anthropogenic causes. Many endangered species are present in captivity and actively managed in breeding programs in which often little is known about the founder individuals. Recent developments in genetic research techniques have made it possible to sequence and study whole genomes. In this study we used the critically endangered Visayan warty pig (Sus cebifrons) as a case study to test the use of genomic information as a tool in conservation management. Two captive populations of S. cebifrons exist, which originated from two different Philippine islands. We found some evidence for a recent split between the two island populations; however all individuals that were sequenced show a similar demographic history. Evidence for both past and recent inbreeding indicated that the founders were at least to some extent related. Together with this, the low level of nucleotide diversity compared to other Sus species potentially poses a threat to the viability of the captive populations. In conclusion, genomic techniques answered some important questions about this critically endangered mammal and can be a valuable toolset to inform future conservation management in other species as well.
Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.).
Cloutier, Sylvie; Ragupathy, Raja; Miranda, Evelyn; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Ward, Kerry; Rowland, Gordon; Duguid, Scott; Banik, Mitali
2012-12-01
Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.
Genome-wide analysis of epistasis in body mass index using multiple human populations.
Wei, Wen-Hua; Hemani, Gib; Gyenesei, Attila; Vitart, Veronique; Navarro, Pau; Hayward, Caroline; Cabrera, Claudia P; Huffman, Jennifer E; Knott, Sara A; Hicks, Andrew A; Rudan, Igor; Pramstaller, Peter P; Wild, Sarah H; Wilson, James F; Campbell, Harry; Hastie, Nicholas D; Wright, Alan F; Haley, Chris S
2012-08-01
We surveyed gene-gene interactions (epistasis) in human body mass index (BMI) in four European populations (n<1200) via exhaustive pair-wise genome scans where interactions were computed as F ratios by testing a linear regression model fitting two single-nucleotide polymorphisms (SNPs) with interactions against the one without. Before the association tests, BMI was corrected for sex and age, normalised and adjusted for relatedness. Neither single SNPs nor SNP interactions were genome-wide significant in either cohort based on the consensus threshold (P=5.0E-08) and a Bonferroni corrected threshold (P=1.1E-12), respectively. Next we compared sub genome-wide significant SNP interactions (P<5.0E-08) across cohorts to identify common epistatic signals, where SNPs were annotated to genes to test for gene ontology (GO) enrichment. Among the epistatic genes contributing to the commonly enriched GO terms, 19 were shared across study cohorts of which 15 are previously published genome-wide association loci, including CDH13 (cadherin 13) associated with height and SORCS2 (sortilin-related VPS10 domain containing receptor 2) associated with circulating insulin-like growth factor 1 and binding protein 3. Interactions between the 19 shared epistatic genes and those involving BMI candidate loci (P<5.0E-08) were tested across cohorts and found eight replicated at the SNP level (P<0.05) in at least one cohort, which were further tested and showed limited replication in a separate European population (n>5000). We conclude that genome-wide analysis of epistasis in multiple populations is an effective approach to provide new insights into the genetic regulation of BMI but requires additional efforts to confirm the findings.
Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.
Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske
2013-07-04
The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.
A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome
Chapman, Jarrod A.; Mascher, Martin; Buluc, Aydin; ...
2015-01-31
We report that polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible tomore » construct a mapping population.« less
A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Jarrod A.; Mascher, Martin; Buluc, Aydin
We report that polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible tomore » construct a mapping population.« less
USDA-ARS?s Scientific Manuscript database
Breeding and selection for the traits with polygenic inheritance is a challenging task that can be done by phenotypic selection, by marker-assisted selection or by genome wide selection. We tested predictive ability of four selection models in a biparental population genotyped with 95 SNP markers an...
Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis
2017-02-01
Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Piter
2015-09-29
Breeding goals in a crossbreeding system should be defined at the commercial crossbred level. However, selection is often performed to improve purebred performance. A genomic selection (GS) model that includes dominance effects can be used to select purebreds for crossbred performance. Optimization of the GS model raises the question of whether marker effects should be estimated from data on the pure lines or crossbreds. Therefore, the first objective of this study was to compare response to selection of crossbreds by simulating a two-way crossbreeding program with either a purebred or a crossbred training population. We assumed a trait of interest that was controlled by loci with additive and dominance effects. Animals were selected on estimated breeding values for crossbred performance. There was no genotype by environment interaction. Linkage phase and strength of linkage disequilibrium between quantitative trait loci (QTL) and single nucleotide polymorphisms (SNPs) can differ between breeds, which causes apparent effects of SNPs to be line-dependent. Thus, our second objective was to compare response to GS based on crossbred phenotypes when the line origin of alleles was taken into account or not in the estimation of breeding values. Training on crossbred animals yielded a larger response to selection in crossbred offspring compared to training on both pure lines separately or on both pure lines combined into a single reference population. Response to selection in crossbreds was larger if both phenotypes and genotypes were collected on crossbreds than if phenotypes were only recorded on crossbreds and genotypes on their parents. If both parental lines were distantly related, tracing the line origin of alleles improved genomic prediction, whereas if both parental lines were closely related and the reference population was small, it was better to ignore the line origin of alleles. Response to selection in crossbreeding programs can be increased by training on crossbred genotypes and phenotypes. Moreover, if the reference population is sufficiently large and both pure lines are not very closely related, tracing the line origin of alleles in crossbreds improves genomic prediction.
Zielaskowski, Kate; White, Kirsten AM; Rodríguez, Vivian M; Robers, Erika; Guest, Dolores D; Sussman, Andrew; Talamantes, Yvonne; Schwartz, Matthew R; Greb, Jennie; Bigney, Jessica; Kaphingst, Kimberly A; Hunley, Keith; Buller, David B
2017-01-01
Background Limited translational genomic research currently exists to guide the availability, comprehension, and appropriate use of personalized genomics in diverse general population subgroups. Melanoma skin cancers are preventable, curable, common in the general population, and disproportionately increasing in Hispanics. Objective Variants in the melanocortin-1 receptor (MC1R) gene are present in approximately 50% of the population, are major factors in determining sun sensitivity, and confer a 2-to-3-fold increase in melanoma risk in the general population, even in populations with darker skin. Therefore, feedback regarding MC1R risk status may raise risk awareness and protective behavior in the general population. Methods We are conducting a randomized controlled trial examining Internet presentation of the risks and benefits of personalized genomic testing for MC1R gene variants that are associated with increased melanoma risk. We will enroll a total of 885 participants (462 participants are currently enrolled), who will be randomized 6:1 to personalized genomic testing for melanoma risk versus waiting list control. Control participants will be offered testing after outcome assessments. Participants will be balanced across self-reported Hispanic versus non-Hispanic ethnicity (n=750 in personalized genomic testing for melanoma risk arm; n=135 in control arm), and will be recruited from a general population cohort in Albuquerque, New Mexico, which is subject to year-round sun exposure. Baseline surveys will be completed in-person with study staff and follow-up measures will be completed via telephone. Results Aim 1 of the trial will examine the personal utility of personalized genomic testing for melanoma risk in terms of short-term (3-month) sun protection and skin screening behaviors, family and physician communication, and melanoma threat and control beliefs (ie, putative mediators of behavior change). We will also examine potential unintended consequences of testing among those who receive average-risk personalized genomic testing for melanoma risk findings, and examine predictors of sun protection at 3 months as the outcome. These findings will be used to develop messages for groups that receive average-risk feedback. Aim 2 will compare rates of test consideration in Hispanics versus non-Hispanics, including consideration of testing pros and cons and registration of a decision to either accept or decline testing. Aim 3 will examine personalized genomic testing for melanoma risk feedback comprehension, recall, satisfaction, and cancer-related distress in those who undergo testing, and whether these outcomes differ by ethnicity (Hispanic vs non-Hispanic), or sociocultural or demographic factors. Final outcome data collection is anticipated to be complete by October 2017, at which point data analysis will commence. Conclusions This study has important implications for personalized genomics in the context of melanoma risk, and may be broadly applicable as a model for delivery of personalized genomic feedback for other health conditions. PMID:28442450
Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups
Lou, Haiyi; Li, Shilin; Jin, Wenfei; Fu, Ruiqing; Lu, Dongsheng; Pan, Xinwei; Zhou, Huaigu; Ping, Yuan; Jin, Li; Xu, Shuhua
2015-01-01
Xinjiang is geographically located in central Asia, and it has played an important historical role in connecting eastern Eurasian (EEA) and western Eurasian (WEA) people. However, human population genomic studies in this region have been largely underrepresented, especially with respect to studies of copy number variations (CNVs). Here we constructed the first CNV map of the three major ethnic minority groups, the Uyghur, Kazakh and Kirgiz, using Affymetrix Genome-Wide Human SNP Array 6.0. We systematically compared the properties of CNVs we identified in the three groups with the data from representatives of EEA and WEA. The analyses indicated a typical genetic admixture pattern in all three groups with ancestries from both EEA and WEA. We also identified several CNV regions showing significant deviation of allele frequency from the expected genome-wide distribution, which might be associated with population-specific phenotypes. Our study provides the first genome-wide perspective on the CNVs of three major Xinjiang ethnic minority groups and has implications for both evolutionary and medical studies. PMID:25026903
Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups.
Lou, Haiyi; Li, Shilin; Jin, Wenfei; Fu, Ruiqing; Lu, Dongsheng; Pan, Xinwei; Zhou, Huaigu; Ping, Yuan; Jin, Li; Xu, Shuhua
2015-04-01
Xinjiang is geographically located in central Asia, and it has played an important historical role in connecting eastern Eurasian (EEA) and western Eurasian (WEA) people. However, human population genomic studies in this region have been largely underrepresented, especially with respect to studies of copy number variations (CNVs). Here we constructed the first CNV map of the three major ethnic minority groups, the Uyghur, Kazakh and Kirgiz, using Affymetrix Genome-Wide Human SNP Array 6.0. We systematically compared the properties of CNVs we identified in the three groups with the data from representatives of EEA and WEA. The analyses indicated a typical genetic admixture pattern in all three groups with ancestries from both EEA and WEA. We also identified several CNV regions showing significant deviation of allele frequency from the expected genome-wide distribution, which might be associated with population-specific phenotypes. Our study provides the first genome-wide perspective on the CNVs of three major Xinjiang ethnic minority groups and has implications for both evolutionary and medical studies.
Joost, Stéphane; Kalbermatten, Michael; Bezault, Etienne; Seehausen, Ole
2012-01-01
When searching for loci possibly under selection in the genome, an alternative to population genetics theoretical models is to establish allele distribution models (ADM) for each locus to directly correlate allelic frequencies and environmental variables such as precipitation, temperature, or sun radiation. Such an approach implementing multiple logistic regression models in parallel was implemented within a computing program named MATSAM: . Recently, this application was improved in order to support qualitative environmental predictors as well as to permit the identification of associations between genomic variation and individual phenotypes, allowing the detection of loci involved in the genetic architecture of polymorphic characters. Here, we present the corresponding methodological developments and compare the results produced by software implementing population genetics theoretical models (DFDIST: and BAYESCAN: ) and ADM (MATSAM: ) in an empirical context to detect signatures of genomic divergence associated with speciation in Lake Victoria cichlid fishes.
Conserved noncoding sequences conserve biological networks and influence genome evolution.
Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang
2018-05-01
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.
Higher Levels of Neanderthal Ancestry in East Asians than in Europeans
Wall, Jeffrey D.; Yang, Melinda A.; Jay, Flora; Kim, Sung K.; Durand, Eric Y.; Stevison, Laurie S.; Gignoux, Christopher; Woerner, August; Hammer, Michael F.; Slatkin, Montgomery
2013-01-01
Neanderthals were a group of archaic hominins that occupied most of Europe and parts of Western Asia from ∼30,000 to 300,000 years ago (KYA). They coexisted with modern humans during part of this time. Previous genetic analyses that compared a draft sequence of the Neanderthal genome with genomes of several modern humans concluded that Neanderthals made a small (1–4%) contribution to the gene pools of all non-African populations. This observation was consistent with a single episode of admixture from Neanderthals into the ancestors of all non-Africans when the two groups coexisted in the Middle East 50–80 KYA. We examined the relationship between Neanderthals and modern humans in greater detail by applying two complementary methods to the published draft Neanderthal genome and an expanded set of high-coverage modern human genome sequences. We find that, consistent with the recent finding of Meyer et al. (2012), Neanderthals contributed more DNA to modern East Asians than to modern Europeans. Furthermore we find that the Maasai of East Africa have a small but significant fraction of Neanderthal DNA. Because our analysis is of several genomic samples from each modern human population considered, we are able to document the extent of variation in Neanderthal ancestry within and among populations. Our results combined with those previously published show that a more complex model of admixture between Neanderthals and modern humans is necessary to account for the different levels of Neanderthal ancestry among human populations. In particular, at least some Neanderthal–modern human admixture must postdate the separation of the ancestors of modern European and modern East Asian populations. PMID:23410836
Koton, Yael; Gordon, Michal; Chalifa-Caspi, Vered; Bisharat, Naiel
2014-01-01
In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59 and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C) and environmental (E), all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins) were present in all human pathogenic strains (both biotype 3 and non-biotype 3) and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS) proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and formed a genetically distinct group within the E-cluster. The unique epidemiological circumstances facilitated disease outbreak and brought this genotype to the attention of the scientific community.
Kim, Hyoung Tae; Kim, Ki-Joong
2014-01-01
Comparative analyses of complete chloroplast (cp) DNA sequences within a species may provide clues to understand the population dynamics and colonization histories of plant species. Equisetum arvense (Equisetaceae) is a widely distributed fern species in northeastern Asia, Europe, and North America. The complete cp DNA sequences from Asian and American E. arvense individuals were compared in this study. The Asian E. arvense cp genome was 583 bp shorter than that of the American E. arvense. In total, 159 indels were observed between two individuals, most of which were concentrated on the hypervariable trnY-trnE intergenic spacer (IGS) in the large single-copy (LSC) region of the cp genome. This IGS region held a series of 19 bp repeating units. The numbers of the 19 bp repeat unit were responsible for 78% of the total length difference between the two cp genomes. Furthermore, only other closely related species of Equisetum also show the hypervariable nature of the trnY-trnE IGS. By contrast, only a single indel was observed in the gene coding regions: the ycf1 gene showed 24 bp differences between the two continental individuals due to a single tandem-repeat indel. A total of 165 single-nucleotide polymorphisms (SNPs) were recorded between the two cp genomes. Of these, 52 SNPs (31.5%) were distributed in coding regions, 13 SNPs (7.9%) were in introns, and 100 SNPs (60.6%) were in intergenic spacers (IGS). The overall difference between the Asian and American E. arvense cp genomes was 0.12%. Despite the relatively high genetic diversity between Asian and American E. arvense, the two populations are recognized as a single species based on their high morphological similarity. This indicated that the two regional populations have been in morphological stasis. PMID:25157804
The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing
Culleton, Richard; Coban, Cevayir; Zeyrek, Fadile Yildiz; Cravo, Pedro; Kaneko, Akira; Randrianarivelojosia, Milijaona; Andrianaranjaka, Voahangy; Kano, Shigeyuki; Farnert, Anna; Arez, Ana Paula; Sharp, Paul M.; Carter, Richard; Tanabe, Kazuyuki
2011-01-01
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa. PMID:22195007
A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds.
Manunza, Arianna; Noce, Antonia; Serradilla, Juan Manuel; Goyache, Félix; Martínez, Amparo; Capote, Juan; Delgado, Juan Vicente; Jordana, Jordi; Muñoz, Eva; Molina, Antonio; Landi, Vincenzo; Pons, Agueda; Balteanu, Valentin; Traoré, Amadou; Vidilla, Montse; Sánchez-Rodríguez, Manuel; Sànchez, Armand; Cardoso, Tainã Figueiredo; Amills, Marcel
2016-07-25
The main goal of the current work was to infer the demographic history of seven Spanish goat breeds (Malagueña, Murciano-Granadina, Florida, Palmera, Mallorquina, Bermeya and Blanca de Rasquera) based on genome-wide diversity data generated with the Illumina Goat SNP50 BeadChip (population size, N = 176). Five additional populations from Europe (Saanen and Carpathian) and Africa (Tunisian, Djallonké and Sahel) were also included in this analysis (N = 80) for comparative purposes. Our results show that the genetic background of Spanish goats traces back mainly to European breeds although signs of North African admixture were detected in two Andalusian breeds (Malagueña and Murciano-Granadina). In general, observed and expected heterozygosities were quite similar across the seven Spanish goat breeds under analysis irrespective of their population size and conservation status. For the Mallorquina and Blanca de Rasquera breeds, which have suffered strong population declines during the past decades, we observed increased frequencies of large-sized (ROH), a finding that is consistent with recent inbreeding. In contrast, a substantial part of the genome of the Palmera goat breed comprised short ROH, which suggests a strong and ancient founder effect. Admixture with African goats, genetic drift and inbreeding have had different effects across the seven Spanish goat breeds analysed in the current work. This has generated distinct patterns of genome-wide diversity that provide new clues about the demographic history of these populations.
Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution
Pope, Welkin H.; Jacobs-Sera, Deborah; Russell, Daniel A.; Peebles, Craig L.; Al-Atrache, Zein; Alcoser, Turi A.; Alexander, Lisa M.; Alfano, Matthew B.; Alford, Samantha T.; Amy, Nichols E.; Anderson, Marie D.; Anderson, Alexander G.; Ang, Andrew A. S.; Ares, Manuel; Barber, Amanda J.; Barker, Lucia P.; Barrett, Jonathan M.; Barshop, William D.; Bauerle, Cynthia M.; Bayles, Ian M.; Belfield, Katherine L.; Best, Aaron A.; Borjon, Agustin; Bowman, Charles A.; Boyer, Christine A.; Bradley, Kevin W.; Bradley, Victoria A.; Broadway, Lauren N.; Budwal, Keshav; Busby, Kayla N.; Campbell, Ian W.; Campbell, Anne M.; Carey, Alyssa; Caruso, Steven M.; Chew, Rebekah D.; Cockburn, Chelsea L.; Cohen, Lianne B.; Corajod, Jeffrey M.; Cresawn, Steven G.; Davis, Kimberly R.; Deng, Lisa; Denver, Dee R.; Dixon, Breyon R.; Ekram, Sahrish; Elgin, Sarah C. R.; Engelsen, Angela E.; English, Belle E. V.; Erb, Marcella L.; Estrada, Crystal; Filliger, Laura Z.; Findley, Ann M.; Forbes, Lauren; Forsyth, Mark H.; Fox, Tyler M.; Fritz, Melissa J.; Garcia, Roberto; George, Zindzi D.; Georges, Anne E.; Gissendanner, Christopher R.; Goff, Shannon; Goldstein, Rebecca; Gordon, Kobie C.; Green, Russell D.; Guerra, Stephanie L.; Guiney-Olsen, Krysta R.; Guiza, Bridget G.; Haghighat, Leila; Hagopian, Garrett V.; Harmon, Catherine J.; Harmson, Jeremy S.; Hartzog, Grant A.; Harvey, Samuel E.; He, Siping; He, Kevin J.; Healy, Kaitlin E.; Higinbotham, Ellen R.; Hildebrandt, Erin N.; Ho, Jason H.; Hogan, Gina M.; Hohenstein, Victoria G.; Holz, Nathan A.; Huang, Vincent J.; Hufford, Ericka L.; Hynes, Peter M.; Jackson, Arrykka S.; Jansen, Erica C.; Jarvik, Jonathan; Jasinto, Paul G.; Jordan, Tuajuanda C.; Kasza, Tomas; Katelyn, Murray A.; Kelsey, Jessica S.; Kerrigan, Larisa A.; Khaw, Daryl; Kim, Junghee; Knutter, Justin Z.; Ko, Ching-Chung; Larkin, Gail V.; Laroche, Jennifer R.; Latif, Asma; Leuba, Kohana D.; Leuba, Sequoia I.; Lewis, Lynn O.; Loesser-Casey, Kathryn E.; Long, Courtney A.; Lopez, A. Javier; Lowery, Nicholas; Lu, Tina Q.; Mac, Victor; Masters, Isaac R.; McCloud, Jazmyn J.; McDonough, Molly J.; Medenbach, Andrew J.; Menon, Anjali; Miller, Rachel; Morgan, Brandon K.; Ng, Patrick C.; Nguyen, Elvis; Nguyen, Katrina T.; Nguyen, Emilie T.; Nicholson, Kaylee M.; Parnell, Lindsay A.; Peirce, Caitlin E.; Perz, Allison M.; Peterson, Luke J.; Pferdehirt, Rachel E.; Philip, Seegren V.; Pogliano, Kit; Pogliano, Joe; Polley, Tamsen; Puopolo, Erica J.; Rabinowitz, Hannah S.; Resiss, Michael J.; Rhyan, Corwin N.; Robinson, Yetta M.; Rodriguez, Lauren L.; Rose, Andrew C.; Rubin, Jeffrey D.; Ruby, Jessica A.; Saha, Margaret S.; Sandoz, James W.; Savitskaya, Judith; Schipper, Dale J.; Schnitzler, Christine E.; Schott, Amanda R.; Segal, J. Bradley; Shaffer, Christopher D.; Sheldon, Kathryn E.; Shepard, Erica M.; Shepardson, Jonathan W.; Shroff, Madav K.; Simmons, Jessica M.; Simms, Erika F.; Simpson, Brandy M.; Sinclair, Kathryn M.; Sjoholm, Robert L.; Slette, Ingrid J.; Spaulding, Blaire C.; Straub, Clark L.; Stukey, Joseph; Sughrue, Trevor; Tang, Tin-Yun; Tatyana, Lyons M.; Taylor, Stephen B.; Taylor, Barbara J.; Temple, Louise M.; Thompson, Jasper V.; Tokarz, Michael P.; Trapani, Stephanie E.; Troum, Alexander P.; Tsay, Jonathan; Tubbs, Anthony T.; Walton, Jillian M.; Wang, Danielle H.; Wang, Hannah; Warner, John R.; Weisser, Emilie G.; Wendler, Samantha C.; Weston-Hafer, Kathleen A.; Whelan, Hilary M.; Williamson, Kurt E.; Willis, Angelica N.; Wirtshafter, Hannah S.; Wong, Theresa W.; Wu, Phillip; Yang, Yun jeong; Yee, Brandon C.; Zaidins, David A.; Zhang, Bo; Zúniga, Melina Y.; Hendrix, Roger W.; Hatfull, Graham F.
2011-01-01
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. PMID:21298013
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation.
Wang, Daxi; Young, Neil D; Korhonen, Pasi K; Gasser, Robin B
2018-01-01
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets. © 2018 Elsevier Ltd All rights reserved.
Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.
Pope, Welkin H; Jacobs-Sera, Deborah; Russell, Daniel A; Peebles, Craig L; Al-Atrache, Zein; Alcoser, Turi A; Alexander, Lisa M; Alfano, Matthew B; Alford, Samantha T; Amy, Nichols E; Anderson, Marie D; Anderson, Alexander G; Ang, Andrew A S; Ares, Manuel; Barber, Amanda J; Barker, Lucia P; Barrett, Jonathan M; Barshop, William D; Bauerle, Cynthia M; Bayles, Ian M; Belfield, Katherine L; Best, Aaron A; Borjon, Agustin; Bowman, Charles A; Boyer, Christine A; Bradley, Kevin W; Bradley, Victoria A; Broadway, Lauren N; Budwal, Keshav; Busby, Kayla N; Campbell, Ian W; Campbell, Anne M; Carey, Alyssa; Caruso, Steven M; Chew, Rebekah D; Cockburn, Chelsea L; Cohen, Lianne B; Corajod, Jeffrey M; Cresawn, Steven G; Davis, Kimberly R; Deng, Lisa; Denver, Dee R; Dixon, Breyon R; Ekram, Sahrish; Elgin, Sarah C R; Engelsen, Angela E; English, Belle E V; Erb, Marcella L; Estrada, Crystal; Filliger, Laura Z; Findley, Ann M; Forbes, Lauren; Forsyth, Mark H; Fox, Tyler M; Fritz, Melissa J; Garcia, Roberto; George, Zindzi D; Georges, Anne E; Gissendanner, Christopher R; Goff, Shannon; Goldstein, Rebecca; Gordon, Kobie C; Green, Russell D; Guerra, Stephanie L; Guiney-Olsen, Krysta R; Guiza, Bridget G; Haghighat, Leila; Hagopian, Garrett V; Harmon, Catherine J; Harmson, Jeremy S; Hartzog, Grant A; Harvey, Samuel E; He, Siping; He, Kevin J; Healy, Kaitlin E; Higinbotham, Ellen R; Hildebrandt, Erin N; Ho, Jason H; Hogan, Gina M; Hohenstein, Victoria G; Holz, Nathan A; Huang, Vincent J; Hufford, Ericka L; Hynes, Peter M; Jackson, Arrykka S; Jansen, Erica C; Jarvik, Jonathan; Jasinto, Paul G; Jordan, Tuajuanda C; Kasza, Tomas; Katelyn, Murray A; Kelsey, Jessica S; Kerrigan, Larisa A; Khaw, Daryl; Kim, Junghee; Knutter, Justin Z; Ko, Ching-Chung; Larkin, Gail V; Laroche, Jennifer R; Latif, Asma; Leuba, Kohana D; Leuba, Sequoia I; Lewis, Lynn O; Loesser-Casey, Kathryn E; Long, Courtney A; Lopez, A Javier; Lowery, Nicholas; Lu, Tina Q; Mac, Victor; Masters, Isaac R; McCloud, Jazmyn J; McDonough, Molly J; Medenbach, Andrew J; Menon, Anjali; Miller, Rachel; Morgan, Brandon K; Ng, Patrick C; Nguyen, Elvis; Nguyen, Katrina T; Nguyen, Emilie T; Nicholson, Kaylee M; Parnell, Lindsay A; Peirce, Caitlin E; Perz, Allison M; Peterson, Luke J; Pferdehirt, Rachel E; Philip, Seegren V; Pogliano, Kit; Pogliano, Joe; Polley, Tamsen; Puopolo, Erica J; Rabinowitz, Hannah S; Resiss, Michael J; Rhyan, Corwin N; Robinson, Yetta M; Rodriguez, Lauren L; Rose, Andrew C; Rubin, Jeffrey D; Ruby, Jessica A; Saha, Margaret S; Sandoz, James W; Savitskaya, Judith; Schipper, Dale J; Schnitzler, Christine E; Schott, Amanda R; Segal, J Bradley; Shaffer, Christopher D; Sheldon, Kathryn E; Shepard, Erica M; Shepardson, Jonathan W; Shroff, Madav K; Simmons, Jessica M; Simms, Erika F; Simpson, Brandy M; Sinclair, Kathryn M; Sjoholm, Robert L; Slette, Ingrid J; Spaulding, Blaire C; Straub, Clark L; Stukey, Joseph; Sughrue, Trevor; Tang, Tin-Yun; Tatyana, Lyons M; Taylor, Stephen B; Taylor, Barbara J; Temple, Louise M; Thompson, Jasper V; Tokarz, Michael P; Trapani, Stephanie E; Troum, Alexander P; Tsay, Jonathan; Tubbs, Anthony T; Walton, Jillian M; Wang, Danielle H; Wang, Hannah; Warner, John R; Weisser, Emilie G; Wendler, Samantha C; Weston-Hafer, Kathleen A; Whelan, Hilary M; Williamson, Kurt E; Willis, Angelica N; Wirtshafter, Hannah S; Wong, Theresa W; Wu, Phillip; Yang, Yun jeong; Yee, Brandon C; Zaidins, David A; Zhang, Bo; Zúniga, Melina Y; Hendrix, Roger W; Hatfull, Graham F
2011-01-27
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.
The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frese, Steven A.; Benson, Andrew K.; Tannock, Gerald W.
Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order tomore » differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.« less
Kim, Hyun Soo
2018-01-01
Aged population is increasing worldwide due to the aging process that is inevitable. Accordingly, longevity and healthy aging have been spotlighted to promote social contribution of aged population. Many studies in the past few decades have reported the process of aging and longevity, emphasizing the importance of maintaining genomic stability in exceptionally long-lived population. Underlying reason of longevity remains unclear due to its complexity involving multiple factors. With advances in sequencing technology and human genome-associated approaches, studies based on population-based genomic studies are increasing. In this review, we summarize recent longevity and healthy aging studies of human population focusing on DNA repair as a major factor in maintaining genome integrity. To keep pace with recent growth in genomic research, aging- and longevity-associated genomic databases are also briefly introduced. To suggest novel approaches to investigate longevity-associated genetic variants related to DNA repair using genomic databases, gene set analysis was conducted, focusing on DNA repair- and longevity-associated genes. Their biological networks were additionally analyzed to grasp major factors containing genetic variants of human longevity and healthy aging in DNA repair mechanisms. In summary, this review emphasizes DNA repair activity in human longevity and suggests approach to conduct DNA repair-associated genomic study on human healthy aging.
Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters.
Lemire, Astrid; Goudenège, David; Versigny, Typhaine; Petton, Bruno; Calteau, Alexandra; Labreuche, Yannick; Le Roux, Frédérique
2015-07-01
Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality.
Lindo, John; Rogers, Mary; Mallott, Elizabeth K; Petzelt, Barbara; Mitchell, Joycelynn; Archer, David; Cybulski, Jerome S; Malhi, Ripan S; DeGiorgio, Michael
2018-05-03
The effects of European colonization on the genomes of Native Americans may have produced excesses of potentially deleterious features, mainly due to the severe reductions in population size and corresponding losses of genetic diversity. This assumption, however, neither considers actual genomic patterns that existed before colonization nor does it adequately capture the effects of admixture. In this study, we analyze the whole-exome sequences of modern and ancient individuals from a Northwest Coast First Nation, with a demographic history similar to other indigenous populations from the Americas. We show that in approximately ten generations from initial European contact, the modern individuals exhibit reduced levels of novel and low-frequency variants, a lower proportion of potentially deleterious alleles, and decreased heterozygosity when compared to their ancestors. This pattern can be explained by a dramatic population decline, resulting in the loss of potentially damaging low-frequency variants, and subsequent admixture. We also find evidence that the indigenous population was on a steady decline in effective population size for several thousand years before contact, which emphasizes regional demography over the common conception of a uniform expansion after entry into the Americas. This study examines the genomic consequences of colonialism on an indigenous group and describes the continuing role of gene flow among modern populations. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters
Lemire, Astrid; Goudenège, David; Versigny, Typhaine; Petton, Bruno; Calteau, Alexandra; Labreuche, Yannick; Le Roux, Frédérique
2015-01-01
Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality. PMID:25489729
Martínez, Carlos Alberto; Khare, Kshitij; Banerjee, Arunava; Elzo, Mauricio A
2017-03-21
It is important to consider heterogeneity of marker effects and allelic frequencies in across population genome-wide prediction studies. Moreover, all regression models used in genome-wide prediction overlook randomness of genotypes. In this study, a family of hierarchical Bayesian models to perform across population genome-wide prediction modeling genotypes as random variables and allowing population-specific effects for each marker was developed. Models shared a common structure and differed in the priors used and the assumption about residual variances (homogeneous or heterogeneous). Randomness of genotypes was accounted for by deriving the joint probability mass function of marker genotypes conditional on allelic frequencies and pedigree information. As a consequence, these models incorporated kinship and genotypic information that not only permitted to account for heterogeneity of allelic frequencies, but also to include individuals with missing genotypes at some or all loci without the need for previous imputation. This was possible because the non-observed fraction of the design matrix was treated as an unknown model parameter. For each model, a simpler version ignoring population structure, but still accounting for randomness of genotypes was proposed. Implementation of these models and computation of some criteria for model comparison were illustrated using two simulated datasets. Theoretical and computational issues along with possible applications, extensions and refinements were discussed. Some features of the models developed in this study make them promising for genome-wide prediction, the use of information contained in the probability distribution of genotypes is perhaps the most appealing. Further studies to assess the performance of the models proposed here and also to compare them with conventional models used in genome-wide prediction are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Pyrenophora tritici-repentis is a necrotrophic fungal pathogen and causal agent of tan spot disease of wheat, which has increased significantly over the last few decades. Pathogenicity by this fungus is due to host-selective toxins. These toxins are recognized by their host plant in a genotype-speci...
Zhang, Jimmy F; James, Francis; Shukla, Anju; Girisha, Katta M; Paciorkowski, Alex R
2017-06-27
We built India Allele Finder, an online searchable database and command line tool, that gives researchers access to variant frequencies of Indian Telugu individuals, using publicly available fastq data from the 1000 Genomes Project. Access to appropriate population-based genomic variant annotation can accelerate the interpretation of genomic sequencing data. In particular, exome analysis of individuals of Indian descent will identify population variants not reflected in European exomes, complicating genomic analysis for such individuals. India Allele Finder offers improved ease-of-use to investigators seeking to identify and annotate sequencing data from Indian populations. We describe the use of India Allele Finder to identify common population variants in a disease quartet whole exome dataset, reducing the number of candidate single nucleotide variants from 84 to 7. India Allele Finder is freely available to investigators to annotate genomic sequencing data from Indian populations. Use of India Allele Finder allows efficient identification of population variants in genomic sequencing data, and is an example of a population-specific annotation tool that simplifies analysis and encourages international collaboration in genomics research.
The legacy of domestication: accumulation of deleterious mutations in the dog genome.
Cruz, Fernando; Vilà, Carles; Webster, Matthew T
2008-11-01
Dogs exhibit more phenotypic variation than any other mammal and are affected by a wide variety of genetic diseases. However, the origin and genetic basis of this variation is still poorly understood. We examined the effect of domestication on the dog genome by comparison with its wild ancestor, the gray wolf. We compared variation in dog and wolf genes using whole-genome single nucleotide polymorphism (SNP) data. The d(N)/d(S) ratio (omega) was around 50% greater for SNPs found in dogs than in wolves, indicating that a higher proportion of nonsynonymous alleles segregate in dogs compared with nonfunctional genetic variation. We suggest that the majority of these alleles are slightly deleterious and that two main factors may have contributed to their increase. The first is a relaxation of selective constraint due to a population bottleneck and altered breeding patterns accompanying domestication. The second is a reduction of effective population size at loci linked to those under positive selection due to Hill-Robertson interference. An increase in slightly deleterious genetic variation could contribute to the prevalence of disease in modern dog breeds.
An alternative covariance estimator to investigate genetic heterogeneity in populations.
Heslot, Nicolas; Jannink, Jean-Luc
2015-11-26
For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.
The Sinocyclocheilus cavefish genome provides insights into cave adaptation.
Yang, Junxing; Chen, Xiaoli; Bai, Jie; Fang, Dongming; Qiu, Ying; Jiang, Wansheng; Yuan, Hui; Bian, Chao; Lu, Jiang; He, Shiyang; Pan, Xiaofu; Zhang, Yaolei; Wang, Xiaoai; You, Xinxin; Wang, Yongsi; Sun, Ying; Mao, Danqing; Liu, Yong; Fan, Guangyi; Zhang, He; Chen, Xiaoyong; Zhang, Xinhui; Zheng, Lanping; Wang, Jintu; Cheng, Le; Chen, Jieming; Ruan, Zhiqiang; Li, Jia; Yu, Hui; Peng, Chao; Ma, Xingyu; Xu, Junmin; He, You; Xu, Zhengfeng; Xu, Pao; Wang, Jian; Yang, Huanming; Wang, Jun; Whitten, Tony; Xu, Xun; Shi, Qiong
2016-01-04
An emerging cavefish model, the cyprinid genus Sinocyclocheilus, is endemic to the massive southwestern karst area adjacent to the Qinghai-Tibetan Plateau of China. In order to understand whether orogeny influenced the evolution of these species, and how genomes change under isolation, especially in subterranean habitats, we performed whole-genome sequencing and comparative analyses of three species in this genus, S. grahami, S. rhinocerous and S. anshuiensis. These species are surface-dwelling, semi-cave-dwelling and cave-restricted, respectively. The assembled genome sizes of S. grahami, S. rhinocerous and S. anshuiensis are 1.75 Gb, 1.73 Gb and 1.68 Gb, respectively. Divergence time and population history analyses of these species reveal that their speciation and population dynamics are correlated with the different stages of uplifting of the Qinghai-Tibetan Plateau. We carried out comparative analyses of these genomes and found that many genetic changes, such as gene loss (e.g. opsin genes), pseudogenes (e.g. crystallin genes), mutations (e.g. melanogenesis-related genes), deletions (e.g. scale-related genes) and down-regulation (e.g. circadian rhythm pathway genes), are possibly associated with the regressive features (such as eye degeneration, albinism, rudimentary scales and lack of circadian rhythms), and that some gene expansion (e.g. taste-related transcription factor gene) may point to the constructive features (such as enhanced taste buds) which evolved in these cave fishes. As the first report on cavefish genomes among distinct species in Sinocyclocheilus, our work provides not only insights into genetic mechanisms of cave adaptation, but also represents a fundamental resource for a better understanding of cavefish biology.
Genome-Wide Analysis in Brazilian Xavante Indians Reveals Low Degree of Admixture
Kuhn, Patricia C.; Horimoto, Andréa R. V. Russo.; Sanches, José Maurício; Vieira Filho, João Paulo B.; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C.; Moises, Regina S
2012-01-01
Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise Fst statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders. PMID:22900041
Genome-wide analysis in Brazilian Xavante Indians reveals low degree of admixture.
Kuhn, Patricia C; Horimoto, Andréa R V Russo; Sanches, José Maurício; Vieira Filho, João Paulo B; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C; Moises, Regina S
2012-01-01
Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise F(st) statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders.
Draft genome of the gayal, Bos frontalis
Wang, Ming-Shan; Zeng, Yan; Wang, Xiao; Nie, Wen-Hui; Wang, Jin-Huan; Su, Wei-Ting; Xiong, Zi-Jun; Wang, Sheng; Qu, Kai-Xing; Yan, Shou-Qing; Yang, Min-Min; Wang, Wen; Dong, Yang; Zhang, Ya-Ping
2017-01-01
Abstract Gayal (Bos frontalis), also known as mithan or mithun, is a large endangered semi-domesticated bovine that has a limited geographical distribution in the hill-forests of China, Northeast India, Bangladesh, Myanmar, and Bhutan. Many questions about the gayal such as its origin, population history, and genetic basis of local adaptation remain largely unresolved. De novo sequencing and assembly of the whole gayal genome provides an opportunity to address these issues. We report a high-depth sequencing, de novo assembly, and annotation of a female Chinese gayal genome. Based on the Illumina genomic sequencing platform, we have generated 350.38 Gb of raw data from 16 different insert-size libraries. A total of 276.86 Gb of clean data is retained after quality control. The assembled genome is about 2.85 Gb with scaffold and contig N50 sizes of 2.74 Mb and 14.41 kb, respectively. Repetitive elements account for 48.13% of the genome. Gene annotation has yielded 26 667 protein-coding genes, of which 97.18% have been functionally annotated. BUSCO assessment shows that our assembly captures 93% (3183 of 4104) of the core eukaryotic genes and 83.1% of vertebrate universal single-copy orthologs. We provide the first comprehensive de novo genome of the gayal. This genetic resource is integral for investigating the origin of the gayal and performing comparative genomic studies to improve understanding of the speciation and divergence of bovine species. The assembled genome could be used as reference in future population genetic studies of gayal. PMID:29048483
Yamaguchi-Kabata, Yumi; Tsunoda, Tatsuhiko; Kumasaka, Natsuhiko; Takahashi, Atsushi; Hosono, Naoya; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki
2012-05-01
Although the Japanese population has a rather low genetic diversity, we recently confirmed the presence of two main clusters (the Hondo and Ryukyu clusters) through principal component analysis of genome-wide single-nucleotide polymorphism (SNP) genotypes. Understanding the genetic differences between the two main clusters requires further genome-wide analyses based on a dense SNP set and comparison of haplotype frequencies. In the present study, we determined haplotypes for the Hondo cluster of the Japanese population by detecting SNP homozygotes with 388,591 autosomal SNPs from 18,379 individuals and estimated the haplotype frequencies. Haplotypes for the Ryukyu cluster were inferred by a statistical approach using the genotype data from 504 individuals. We then compared the haplotype frequencies between the Hondo and Ryukyu clusters. In most genomic regions, the haplotype frequencies in the Hondo and Ryukyu clusters were very similar. However, in addition to the human leukocyte antigen region on chromosome 6, other genomic regions (chromosomes 3, 4, 5, 7, 10 and 12) showed dissimilarities in haplotype frequency. These regions were enriched for genes involved in the immune system, cell-cell adhesion and the intracellular signaling cascade. These differentiated genomic regions between the Hondo and Ryukyu clusters are of interest because they (1) should be examined carefully in association studies and (2) likely contain genes responsible for morphological or physiological differences between the two groups.
Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato
Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo
2014-01-01
Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669
Evolutionary Quantitative Genomics of Populus trichocarpa
McKown, Athena D.; La Mantia, Jonathan; Guy, Robert D.; Ingvarsson, Pär K.; Hamelin, Richard; Mansfield, Shawn D.; Ehlting, Jürgen; Douglas, Carl J.; El-Kassaby, Yousry A.
2015-01-01
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing Q ST -F ST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense Q ST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant Q ST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios. PMID:26599762
Empirical Validation of Pooled Whole Genome Population Re-Sequencing in Drosophila melanogaster
Zhu, Yuan; Bergland, Alan O.; González, Josefa; Petrov, Dmitri A.
2012-01-01
The sequencing of pooled non-barcoded individuals is an inexpensive and efficient means of assessing genome-wide population allele frequencies, yet its accuracy has not been thoroughly tested. We assessed the accuracy of this approach on whole, complex eukaryotic genomes by resequencing pools of largely isogenic, individually sequenced Drosophila melanogaster strains. We called SNPs in the pooled data and estimated false positive and false negative rates using the SNPs called in individual strain as a reference. We also estimated allele frequency of the SNPs using “pooled” data and compared them with “true” frequencies taken from the estimates in the individual strains. We demonstrate that pooled sequencing provides a faithful estimate of population allele frequency with the error well approximated by binomial sampling, and is a reliable means of novel SNP discovery with low false positive rates. However, a sufficient number of strains should be used in the pooling because variation in the amount of DNA derived from individual strains is a substantial source of noise when the number of pooled strains is low. Our results and analysis confirm that pooled sequencing is a very powerful and cost-effective technique for assessing of patterns of sequence variation in populations on genome-wide scales, and is applicable to any dataset where sequencing individuals or individual cells is impossible, difficult, time consuming, or expensive. PMID:22848651
Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds.
Sudrajad, P; Seo, D W; Choi, T J; Park, B H; Roh, S H; Jung, W Y; Lee, S S; Lee, J H; Kim, S; Lee, S H
2017-02-01
The routine collection and use of genomic data are useful for effectively managing breeding programs for endangered populations. Linkage disequilibrium (LD) using high-density DNA markers has been widely used to determine population structures and predict the genomic regions that are associated with economic traits in beef cattle. The extent of LD also provides information about historical events, including past effective population size (N e ), and it allows inferences on the genetic diversity of breeds. The objective of this study was to estimate the LD and N e in three Korean cattle breeds that are genetically similar but have different coat colors (Brown, Brindle and Jeju Black Hanwoo). Brindle and Jeju Black are endangered breeds with small populations, whereas Brown Hanwoo is the main breeding population in Korea. DNA samples from these cattle breeds were genotyped using the Illumina BovineSNP50 Bead Chip. We examined 13 cattle breeds, including European taurines, African taurines and indicines, and hybrids to compare their LD values. Brown Hanwoo consistently had the lowest mean LD compared to Jeju Black, Brindle and the other 13 cattle breeds (0.13, 0.19, 0.21 and 0.15-0.22 respectively). The high LD values of Brindle and Jeju Black contributed to small N e values (53 and 60 respectively), which were distinct from that of Brown Hanwoo (531) for 11 generations ago. The differences in LD and N e for each breed reflect the breeding strategy applied. The N e for these endangered cattle breeds remain low; thus, effort is needed to bring them back to a sustainable tract. © 2016 Stichting International Foundation for Animal Genetics.
Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D
2012-10-05
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Kidd, Jeffrey M.; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D.; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F.; Peckham, Heather E.; Omberg, Larsson; Bormann Chung, Christina A.; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G.; Russell, Archie; Reynolds, Andy; Clark, Andrew G.; Reese, Martin G.; Lincoln, Stephen E.; Butte, Atul J.; De La Vega, Francisco M.; Bustamante, Carlos D.
2012-01-01
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago. PMID:23040495
Characterising private and shared signatures of positive selection in 37 Asian populations.
Liu, Xuanyao; Lu, Dongsheng; Saw, Woei-Yuh; Shaw, Philip J; Wangkumhang, Pongsakorn; Ngamphiw, Chumpol; Fucharoen, Suthat; Lert-Itthiporn, Worachart; Chin-Inmanu, Kwanrutai; Chau, Tran Nguyen Bich; Anders, Katie; Kasturiratne, Anuradhani; de Silva, H Janaka; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Ohkubo, Takayoshi; Tabara, Yasuharu; Takeuchi, Fumihiko; Yamamoto, Ken; Yokota, Mitsuhiro; Mamatyusupu, Dolikun; Yang, Wenjun; Chung, Yeun-Jun; Jin, Li; Hoh, Boon-Peng; Wickremasinghe, Ananda R; Ong, RickTwee-Hee; Khor, Chiea-Chuen; Dunstan, Sarah J; Simmons, Cameron; Tongsima, Sissades; Suriyaphol, Prapat; Kato, Norihiro; Xu, Shuhua; Teo, Yik-Ying
2017-04-01
The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events.
Characterising private and shared signatures of positive selection in 37 Asian populations
Liu, Xuanyao; Lu, Dongsheng; Saw, Woei-Yuh; Shaw, Philip J; Wangkumhang, Pongsakorn; Ngamphiw, Chumpol; Fucharoen, Suthat; Lert-itthiporn, Worachart; Chin-inmanu, Kwanrutai; Chau, Tran Nguyen Bich; Anders, Katie; Kasturiratne, Anuradhani; de Silva, H Janaka; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Ohkubo, Takayoshi; Tabara, Yasuharu; Takeuchi, Fumihiko; Yamamoto, Ken; Yokota, Mitsuhiro; Mamatyusupu, Dolikun; Yang, Wenjun; Chung, Yeun-Jun; Jin, Li; Hoh, Boon-Peng; Wickremasinghe, Ananda R; Ong, RickTwee-Hee; Khor, Chiea-Chuen; Dunstan, Sarah J; Simmons, Cameron; Tongsima, Sissades; Suriyaphol, Prapat; Kato, Norihiro; Xu, Shuhua; Teo, Yik-Ying
2017-01-01
The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events. PMID:28098149
Palacios, Julia A; Minin, Vladimir N
2013-03-01
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.
Suenaga, Hikaru; Fujihara, Hidehiko; Kimura, Nobutada; Hirose, Jun; Watanabe, Takahito; Futagami, Taiki; Goto, Masatoshi; Shimodaira, Jun; Furukawa, Kensuke
2017-10-01
Pseudomonas putida KF715 exhibits unique properties in both catabolic activity and genome plasticity. Our previous studies revealed that the DNA region containing biphenyl and salycilate metabolism gene clusters (termed the bph-sal element) was frequently deleted and transferred by conjugation to closely related P. putida strains. In this study, we first determined the complete nucleotide sequence of the KF715 genome. Next, to determine the underlying cause of genome plasticity in KF715, we compared the KF715 genome with the genomes of one KF715 defective mutant, two transconjugants, and several P. putida strains available from public databases. The gapless KF715 genome sequence revealed five replicons: one circular chromosome, and four plasmids. Southern blot analysis indicated that most of the KF715 cell population carries the bph-sal element on the chromosome whereas a small number carry it on a huge plasmid, pKF715A. Moreover, the bph-sal element is present stably on the plasmid and did not integrate into the chromosome of its transconjugants. Comparative genome analysis and experiments showed that a number of diverse putative genetic elements are present in KF715 and are likely involved in genome rearrangement. These data provide insights into the genetic plasticity and adaptability of microorganisms for survival in various ecological niches. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Li, Jian; Harris, R. Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A.; White, Lisa D.; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A. Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R.; Milosavljevic, Aleksandar
2012-01-01
The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease. PMID:22615578
Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine
2010-03-01
Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.
Mycobacterium leprae: genes, pseudogenes and genetic diversity
Singh, Pushpendra; Cole, Stewart T
2011-01-01
Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636
Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium
Machado, Henrique; Gram, Lone
2017-01-01
Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms. PMID:28706512
Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.
Machado, Henrique; Gram, Lone
2017-01-01
Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.
Pardo, Luba M; Piras, Giovanna; Asproni, Rosanna; van der Gaag, Kristiaan J; Gabbas, Attilio; Ruiz-Linares, Andres; de Knijff, Peter; Monne, Maria; Rizzu, Patrizia; Heutink, Peter
2012-09-01
Sardinia has been used for genetic studies because of its historical isolation, genetic homogeneity and increased prevalence of certain rare diseases. Controversy remains concerning the genetic substructure and the extent of genetic homogeneity, which has implications for the design of genome-wide association studies (GWAS). We revisited this issue by examining the genetic make-up of a sample from North-East Sardinia using a dense set of autosomal, Y chromosome and mitochondrial markers to assess the potential of the sample for GWAS and fine mapping studies. We genotyped individuals for 500K single-nucleotide polymorphisms, Y chromosome markers and sequenced the mitochondrial hypervariable (HVI-HVII) regions. We identified major haplogroups and compared these with other populations. We estimated linkage disequilibrium (LD) and haplotype diversity across autosomal markers, and compared these with other populations. Our results show that within Sardinia there is no major population substructure and thus it can be considered a genetically homogenous population. We did not find substantial differences in the extent of LD in Sardinians compared with other populations. However, we showed that at least 9% of genomic regions in Sardinians differed in LD structure, which is helpful for identifying functional variants using fine mapping. We concluded that Sardinia is a powerful setting for genetic studies including GWAS and other mapping approaches.
2011-01-01
Background The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders. Results The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT-rich motifs. Conclusions The new genome shares many features with known neuropteran genomes but differs in its low A+T content. Comparative analysis of neuropterid mitochondrial genes showed that they experienced distinct evolutionary patterns. Both tRNA families and ribosomal RNAs show composite substitution pathways. The neuropterid mitochondrial genome is characterized by a complex evolutionary history. PMID:21569260
Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease
Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.
2014-01-01
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772
Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing
Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.
2013-01-01
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859
Efficient Breeding by Genomic Mating.
Akdemir, Deniz; Sánchez, Julio I
2016-01-01
Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.
Mann, Rachel A.; Smits, Theo H. M.; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E.; Plummer, Kim M.; Beer, Steven V.; Luck, Joanne; Duffy, Brion; Rodoni, Brendan
2013-01-01
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains. PMID:23409014
Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan
2013-01-01
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.
Nelson, Sarah C.; Stilp, Adrienne M.; Papanicolaou, George J.; Taylor, Kent D.; Rotter, Jerome I.; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos. Our assessments included calculating the correlation between imputed and observed allelic dosage in a subset of samples genotyped on a supplemental array. We observed that the Phase 3 reference yielded higher accuracy at rare variants, but that the two reference panels were comparable at common variants. At a sample level, the Phase 3 reference improved imputation accuracy in Hispanic/Latino samples from the Caribbean more than for Mainland samples, which we attribute primarily to the additional reference panel samples available in Phase 3. We conclude that a 1000 Genomes Project Phase 3 reference panel can yield improved imputation accuracy compared with Phase 1, particularly for rare variants and for samples of certain genetic ancestry compositions. Our findings can inform imputation design for other genome-wide association studies of participants with diverse ancestries, especially as larger and more diverse reference panels continue to become available. PMID:27346520
David, Lior; Rosenberg, Noah A; Lavi, Uri; Feldman, Marcus W; Hillel, Jossi
2007-01-01
Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication.
David, Lior; Rosenberg, Noah A; Lavi, Uri; Feldman, Marcus W; Hillel, Jossi
2007-01-01
Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication. PMID:17433244
Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster
Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea
2014-01-01
Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674
The genomic landscape of rapid repeated evolutionary ...
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch
Qu, Yanhua; Tian, Shilin; Han, Naijian; Zhao, Hongwei; Gao, Bin; Fu, Jun; Cheng, Yalin; Song, Gang; Ericson, Per G. P.; Zhang, Yong E.; Wang, Dawei; Quan, Qing; Jiang, Zhi; Li, Ruiqiang; Lei, Fumin
2015-01-01
Species that undertake altitudinal migrations are exposed to a considerable seasonal variation in oxygen levels and temperature. How they cope with this was studied in a population of great tit (Parus major) that breeds at high elevations and winters at lower elevations in the eastern Himalayas. Comparison of population genomics of high altitudinal great tits and those living in lowlands revealed an accelerated genetic selection for carbohydrate energy metabolism (amino sugar, nucleotide sugar metabolism and insulin signaling pathways) and hypoxia response (PI3K-akt, mTOR and MAPK signaling pathways) in the high altitudinal population. The PI3K-akt, mTOR and MAPK pathways modulate the hypoxia-inducible factors, HIF-1α and VEGF protein expression thus indirectly regulate hypoxia induced angiogenesis, erythropoiesis and vasodilatation. The strategies observed in high altitudinal great tits differ from those described in a closely related species on the Tibetan Plateau, the sedentary ground tit (Parus humilis). This species has enhanced selection in lipid-specific metabolic pathways and hypoxia-inducible factor pathway (HIF-1). Comparative population genomics also revealed selection for larger body size in high altitudinal great tits. PMID:26404527
Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure
Diez Benavente, Ernest; Ward, Zoe; Chan, Wilson; Mohareb, Fady R.; Sutherland, Colin J.; Roper, Cally; Campino, Susana
2017-01-01
Background Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. Results We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. Conclusions This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications. PMID:28493919
Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure.
Diez Benavente, Ernest; Ward, Zoe; Chan, Wilson; Mohareb, Fady R; Sutherland, Colin J; Roper, Cally; Campino, Susana; Clark, Taane G
2017-01-01
Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.
Lasserre, Moira; Fresia, Pablo; Greif, Gonzalo; Iraola, Gregorio; Castro-Ramos, Miguel; Juambeltz, Arturo; Nuñez, Álvaro; Naya, Hugo; Robello, Carlos; Berná, Luisa
2018-01-02
Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this pathogen, evidencing the existence of greater genetic variability among strains than previously contemplated.
PopHuman: the human population genomics browser
Mulet, Roger; Villegas-Mirón, Pablo; Hervas, Sergi; Sanz, Esteve; Velasco, Daniel; Bertranpetit, Jaume; Laayouni, Hafid
2018-01-01
Abstract The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat. PMID:29059408
Campos, José L.; Halligan, Daniel L.; Haddrill, Penelope R.; Charlesworth, Brian
2014-01-01
Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill–Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect. PMID:24489114
VCGDB: a dynamic genome database of the Chinese population
2014-01-01
Background The data released by the 1000 Genomes Project contain an increasing number of genome sequences from different nations and populations with a large number of genetic variations. As a result, the focus of human genome studies is changing from single and static to complex and dynamic. The currently available human reference genome (GRCh37) is based on sequencing data from 13 anonymous Caucasian volunteers, which might limit the scope of genomics, transcriptomics, epigenetics, and genome wide association studies. Description We used the massive amount of sequencing data published by the 1000 Genomes Project Consortium to construct the Virtual Chinese Genome Database (VCGDB), a dynamic genome database of the Chinese population based on the whole genome sequencing data of 194 individuals. VCGDB provides dynamic genomic information, which contains 35 million single nucleotide variations (SNVs), 0.5 million insertions/deletions (indels), and 29 million rare variations, together with genomic annotation information. VCGDB also provides a highly interactive user-friendly virtual Chinese genome browser (VCGBrowser) with functions like seamless zooming and real-time searching. In addition, we have established three population-specific consensus Chinese reference genomes that are compatible with mainstream alignment software. Conclusions VCGDB offers a feasible strategy for processing big data to keep pace with the biological data explosion by providing a robust resource for genomics studies; in particular, studies aimed at finding regions of the genome associated with diseases. PMID:24708222
Fangmann, A; Sharifi, R A; Heinkel, J; Danowski, K; Schrade, H; Erbe, M; Simianer, H
2017-04-01
Currently used multi-step methods to incorporate genomic information in the prediction of breeding values (BV) implicitly involve many assumptions which, if violated, may result in loss of information, inaccuracies and bias. To overcome this, single-step genomic best linear unbiased prediction (ssGBLUP) was proposed combining pedigree, phenotype and genotype of all individuals for genetic evaluation. Our objective was to implement ssGBLUP for genomic predictions in pigs and to compare the accuracy of ssGBLUP with that of multi-step methods with empirical data of moderately sized pig breeding populations. Different predictions were performed: conventional parent average (PA), direct genomic value (DGV) calculated with genomic BLUP (GBLUP), a GEBV obtained by blending the DGV with PA, and ssGBLUP. Data comprised individuals from a German Landrace (LR) and Large White (LW) population. The trait 'number of piglets born alive' (NBA) was available for 182,054 litters of 41,090 LR sows and 15,750 litters from 4534 LW sows. The pedigree contained 174,021 animals, of which 147,461 (26,560) animals were LR (LW) animals. In total, 526 LR and 455 LW animals were genotyped with the Illumina PorcineSNP60 BeadChip. After quality control and imputation, 495 LR (424 LW) animals with 44,368 (43,678) SNP on 18 autosomes remained for the analysis. Predictive abilities, i.e., correlations between de-regressed proofs and genomic BV, were calculated with a five-fold cross validation and with a forward prediction for young genotyped validation animals born after 2011. Generally, predictive abilities for LR were rather small (0.08 for GBLUP, 0.19 for GEBV and 0.18 for ssGBLUP). For LW, ssGBLUP had the greatest predictive ability (0.45). For both breeds, assessment of reliabilities for young genotyped animals indicated that genomic prediction outperforms PA with ssGBLUP providing greater reliabilities (0.40 for LR and 0.32 for LW) than GEBV (0.35 for LR and 0.29 for LW). Grouping of animals according to information sources revealed that genomic prediction had the highest potential benefit for genotyped animals without their own phenotype. Although, ssGBLUP did not generally outperform GBLUP or GEBV, the results suggest that ssGBLUP can be a useful and conceptually convincing approach for practical genomic prediction of NBA in moderately sized LR and LW populations.
Gao, Guangtu; Nome, Torfinn; Pearse, Devon E; Moen, Thomas; Naish, Kerry A; Thorgaard, Gary H; Lien, Sigbjørn; Palti, Yniv
2018-01-01
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout ( Oncorhynchus mykiss ), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup , followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.
Stolpovsky, Yu A; Kol, N V; Evsyukov, A N; Nesteruk, L V; Dorzhu, Ch M; Tsendsuren, Ts; Sulimova, G E
2014-10-01
The genetic variability in seven yak populations from the Sayan-Altai region and in F1 hybrids between yak and cattle (khainags) was investigated with the help of a technique that involves the use of inter simple sequence repeat (ISSR) markers generated with PCR primers (AG)9C and (GA)9C. Samples for the analysis were collected in Mongolia, Tuva, and Altai from 2008 through 2012. The examined yak populations differed in in the presence/absence of ISSR fragments, as well as in their frequency. In total, 46 ISSR fragments were identified using two marker systems; the proportion of polymorphic loci constituted 76% and 90% for the AG-ISSR and GA-ISSR markers, respectively. For the total sample of yaks, total genetic diversity (Ht), within-population diversity (Hs), and interpopulation diversity (Gst) constituted 0.081, 0.044, and 0.459 for the AG-ISSR and 0.137, 0.057, and 0.582 for the GA-ISSR markers, respectively. Based on ISSR finger printing, species- and breed-specific DNA patterns were described for the three groups of animals (yaks, cattle, khainags). For the domestic yak, the species-specific profile was represented by eight ISSR fragments. Genetic relationships between the yak populations, cattle breeds, and khainags were examined with the help of four different approaches used in the analysis of population structure: estimation of phylogenetic similarity, multidimensional scaling, principal component analysis, and cluster analysis. Clear evidence on the differentiation of the populations examined at the interspecific, as well as at intraspecific, level were obtained. Similar (relative); as well as remote (isolated), yak populations were identified. Khainags occupy an intermediate position between yak and cattle. However, the data on the ISSR-PCR marker polymorphism (genome polymorphism, population structure).indicate that part of the analyzed khainag genome was more similar to the yak genome than to the cattle genome.
Linkage disequilibrium compared between five populations of domestic sheep.
Meadows, Jennifer R S; Chan, Eva K F; Kijas, James W
2008-09-30
The success of genome-wide scans depends on the strength and magnitude of linkage disequilibrium (LD) present within the populations under investigation. High density SNP arrays are currently in development for the sheep genome, however little is known about the behaviour of LD in this livestock species. This study examined the behaviour of LD within five sheep populations using two LD metrics, D' and x2'. Four economically important Australian sheep flocks, three pure breeds (White Faced Suffolk, Poll Dorset, Merino) and a crossbred population (Merino x Border Leicester), along with an inbred Australian Merino museum flock were analysed. Short range LD (0 - 5 cM) was observed in all five populations, however the persistence with increasing distance and magnitude of LD varied considerably between populations. Average LD (x2') for markers spaced up to 20 cM exceeded the non-syntenic average within the White Faced Suffolk, Poll Dorset and Macarthur Merino. LD decayed faster within the Merino and Merino x Border Leicester, with LD below or consistent with observed background levels. Using marker-marker LD as a guide to the behaviour of marker-QTL LD, estimates of minimum marker spacing were made. For a 95% probability of detecting QTL, a microsatellite marker would be required every 0.1 - 2.5 centimorgans, depending on the population used. Sheep populations were selected which were inbred (Macarthur Merino), highly heterogeneous (Merino) or intermediate between these two extremes. This facilitated analysis and comparison of LD (x2') between populations. The strength and magnitude of LD was found to differ markedly between breeds and aligned closely with both observed levels of genetic diversity and expectations based on breed history. This confirmed that breed specific information is likely to be important for genome wide selection and during the design of successful genome scans where tens of thousands of markers will be required.
Conley, Andrew B; Rishishwar, Lavanya; Norris, Emily T; Valderrama-Aguirre, Augusto; Mariño-Ramírez, Leonardo; Medina-Rivas, Miguel A; Jordan, I King
2017-10-05
At least 20% of Colombians identify as having African ancestry, yielding the second largest population of Afro-descendants in Latin America. To date, there have been relatively few studies focused on the genetic ancestry of Afro-Latino populations. We report a comparative analysis of the genetic ancestry of Chocó, a state located on Colombia's Pacific coast with a population that is >80% Afro-Colombian. We compared genome-wide patterns of genetic ancestry and admixture for Chocó to six other admixed American populations, with an emphasis on a Mestizo population from the nearby Colombian city of Medellín. One hundred sample donors from Chocó were genotyped across 610,545 genomic sites and compared with 94 publicly available whole genome sequences from Medellín. At the continental level, Chocó shows mostly African genetic ancestry (76%) with a nearly even split between European (13%) and Native American (11%) fractions, whereas Medellín has primarily European ancestry (75%), followed by Native American (18%) and African (7%). Sample donors from Chocó self-identify as having more African ancestry, and conversely less European and Native American ancestry, than can be genetically inferred, as opposed to what we previously found for Medellín, where individuals tend to overestimate levels of European ancestry. We developed a novel approach for subcontinental ancestry assignment, which allowed us to characterize subcontinental source populations for each of the three distinct continental ancestry fractions separately. Despite the clear differences between Chocó and Medellín at the level of continental ancestry, the two populations show overall patterns of subcontinental ancestry that are highly similar. Their African subcontinental ancestries are only slightly different, with Chocó showing more exclusive shared ancestry with the modern Yoruba (Nigerian) population, and Medellín having relatively more shared ancestry with West African populations in Sierra Leone and Gambia. Both populations show very similar Spanish ancestry within Europe and virtually identical patterns of Native American ancestry, with main contributions from the Embera and Waunana tribes. When the three subcontinental ancestry components are considered jointly, the populations of Chocó and Medellín are shown to be most closely related, to the exclusion of the other admixed American populations that we analyzed. We consider the implications of the existence of shared subcontinental ancestries for Colombian populations that appear, at first glance, to be clearly distinct with respect to competing notions of national identity that emphasize ethnic mixing ( mestizaje ) vs. group-specific identities (multiculturalism). Copyright © 2017 Conley et al.
Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers.
Pan, Jin; Wang, Baosheng; Pei, Zhi-Yong; Zhao, Wei; Gao, Jie; Mao, Jian-Feng; Wang, Xiao-Ru
2015-07-01
Flexibility and low cost make genotyping-by-sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI-MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference-free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000-11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking. © 2014 John Wiley & Sons Ltd.
Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
Jerison, Elizabeth R; Desai, Michael M
2015-12-01
Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei
2016-01-01
Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. PMID:26823447
Population genomics of fungal and oomycete pathogens
USDA-ARS?s Scientific Manuscript database
We are entering a new era in plant pathology where whole-genome sequences of many individuals of a pathogen species are becoming readily available. This era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. Population gen...
2013-01-01
Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle
It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in themore » L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.« less
Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas
2014-04-24
With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.
Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R
2014-08-16
Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.
Hay, Jennifer L; Berwick, Marianne; Zielaskowski, Kate; White, Kirsten Am; Rodríguez, Vivian M; Robers, Erika; Guest, Dolores D; Sussman, Andrew; Talamantes, Yvonne; Schwartz, Matthew R; Greb, Jennie; Bigney, Jessica; Kaphingst, Kimberly A; Hunley, Keith; Buller, David B
2017-04-25
Limited translational genomic research currently exists to guide the availability, comprehension, and appropriate use of personalized genomics in diverse general population subgroups. Melanoma skin cancers are preventable, curable, common in the general population, and disproportionately increasing in Hispanics. Variants in the melanocortin-1 receptor (MC1R) gene are present in approximately 50% of the population, are major factors in determining sun sensitivity, and confer a 2-to-3-fold increase in melanoma risk in the general population, even in populations with darker skin. Therefore, feedback regarding MC1R risk status may raise risk awareness and protective behavior in the general population. We are conducting a randomized controlled trial examining Internet presentation of the risks and benefits of personalized genomic testing for MC1R gene variants that are associated with increased melanoma risk. We will enroll a total of 885 participants (462 participants are currently enrolled), who will be randomized 6:1 to personalized genomic testing for melanoma risk versus waiting list control. Control participants will be offered testing after outcome assessments. Participants will be balanced across self-reported Hispanic versus non-Hispanic ethnicity (n=750 in personalized genomic testing for melanoma risk arm; n=135 in control arm), and will be recruited from a general population cohort in Albuquerque, New Mexico, which is subject to year-round sun exposure. Baseline surveys will be completed in-person with study staff and follow-up measures will be completed via telephone. Aim 1 of the trial will examine the personal utility of personalized genomic testing for melanoma risk in terms of short-term (3-month) sun protection and skin screening behaviors, family and physician communication, and melanoma threat and control beliefs (ie, putative mediators of behavior change). We will also examine potential unintended consequences of testing among those who receive average-risk personalized genomic testing for melanoma risk findings, and examine predictors of sun protection at 3 months as the outcome. These findings will be used to develop messages for groups that receive average-risk feedback. Aim 2 will compare rates of test consideration in Hispanics versus non-Hispanics, including consideration of testing pros and cons and registration of a decision to either accept or decline testing. Aim 3 will examine personalized genomic testing for melanoma risk feedback comprehension, recall, satisfaction, and cancer-related distress in those who undergo testing, and whether these outcomes differ by ethnicity (Hispanic vs non-Hispanic), or sociocultural or demographic factors. Final outcome data collection is anticipated to be complete by October 2017, at which point data analysis will commence. This study has important implications for personalized genomics in the context of melanoma risk, and may be broadly applicable as a model for delivery of personalized genomic feedback for other health conditions. ©Jennifer L Hay, Marianne Berwick, Kate Zielaskowski, Kirsten AM White, Vivian M Rodríguez, Erika Robers, Dolores D Guest, Andrew Sussman, Yvonne Talamantes, Matthew R Schwartz, Jennie Greb, Jessica Bigney, Kimberly A Kaphingst, Keith Hunley, David B Buller. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.
Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N
2016-12-03
Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.
Can males contribute to the genetic improvement of a species?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardes, A.T.
1997-01-01
In the time evolution of finite populations, the accumulation of harmful mutations in further generations might have lead to a temporal decay in the mean fitness of the whole population. This, in turn, would reduce the population size and so lead to its extinction. The production of genetically diverse offspring, through recombination, is a powerful mechanism in order to avoid this catastrophic route. From a selfish point of view, meiotic parthenogenesis can ensure the maintenance of better genomes, while sexual reproduction presents the risk of genome dilution. In this paper, by using Monte Carlo simulations of age-structured populations, through themore » Penna model, I compare the evolution of populations with different reproductive regimes. It is shown that sexual reproduction with male competition can produce better results than meiotic parthenogenesis. This contradicts results recently published, but agrees with the strong evidence that nature chose sexual reproduction instead of partenogenesis for most of the higher species.« less
Taye, Mengistie; Lee, Wonseok; Caetano-Anolles, Kelsey; Dessie, Tadelle; Hanotte, Olivier; Mwai, Okeyo Ally; Kemp, Stephen; Cho, Seoae; Oh, Sung Jong; Lee, Hak-Kyo; Kim, Heebal
2017-12-01
As African indigenous cattle evolved in a hot tropical climate, they have developed an inherent thermotolerance; survival mechanisms include a light-colored and shiny coat, increased sweating, and cellular and molecular mechanisms to cope with high environmental temperature. Here, we report the positive selection signature of genes in African cattle breeds which contribute for their heat tolerance mechanisms. We compared the genomes of five indigenous African cattle breeds with the genomes of four commercial cattle breeds using cross-population composite likelihood ratio (XP-CLR) and cross-population extended haplotype homozygosity (XP-EHH) statistical methods. We identified 296 (XP-EHH) and 327 (XP-CLR) positively selected genes. Gene ontology analysis resulted in 41 biological process terms and six Kyoto Encyclopedia of Genes and Genomes pathways. Several genes and pathways were found to be involved in oxidative stress response, osmotic stress response, heat shock response, hair and skin properties, sweat gland development and sweating, feed intake and metabolism, and reproduction functions. The genes and pathways identified directly or indirectly contribute to the superior heat tolerance mechanisms in African cattle populations. The result will improve our understanding of the biological mechanisms of heat tolerance in African cattle breeds and opens an avenue for further study. © 2017 Japanese Society of Animal Science.
Warner, Jeremy L; Rioth, Matthew J; Mandl, Kenneth D; Mandel, Joshua C; Kreda, David A; Kohane, Isaac S; Carbone, Daniel; Oreto, Ross; Wang, Lucy; Zhu, Shilin; Yao, Heming; Alterovitz, Gil
2016-07-01
Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical interpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations. Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)® PCM, visualizes genomic information in real time, comparing a patient's diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the Health Level Seven® Fast Healthcare Interoperability Resources (FHIR)® standard; otherwise, the prototype is a normal SMART on FHIR app. The PCM prototype can rapidly present a visualization that compares a patient's somatic genomic alterations against a distribution built from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important feedback about the prototype's strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to include cancer specimens with multiple mutations. PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel with external knowledge bases. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effective normalization for copy number variation detection from whole genome sequencing.
Janevski, Angel; Varadan, Vinay; Kamalakaran, Sitharthan; Banerjee, Nilanjana; Dimitrova, Nevenka
2012-01-01
Whole genome sequencing enables a high resolution view of the human genome and provides unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools, while validated, also include a number of parameters that are configurable to genome data being analyzed. These algorithms allow for normalization to account for individual and population-specific effects on individual genome CNV estimates but the impact of these changes on the estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four populations. We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple configurations corresponding to different read-count normalization methodologies in FREEC, and statistically characterize the concordance of the CNV calls between FREEC configurations and the analogous output from CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome. We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions. The GC content normalization methodology generates the highest number of altered copy number regions. Both mappability and control genome normalization reduce the total number and length of copy number regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and substantial agreement in variable gene and CNV region calls. Choice of read-count normalization methodology has a substantial effect on CNV calls and the use of genomic mappability or an appropriately chosen control genome can optimize the output of CNV analysis.
Learning about human population history from ancient and modern genomes.
Stoneking, Mark; Krause, Johannes
2011-08-18
Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.
Pool, John E.; Corbett-Detig, Russell B.; Sugino, Ryuichi P.; Stevens, Kristian A.; Cardeno, Charis M.; Crepeau, Marc W.; Duchen, Pablo; Emerson, J. J.; Saelao, Perot; Begun, David J.; Langley, Charles H.
2012-01-01
Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations. PMID:23284287
All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance.
Doležálková-Kaštánková, Marie; Pruvost, Nicolas B M; Plötner, Jörg; Reyer, Heinz-Ulrich; Janko, Karel; Choleva, Lukáš
2018-04-02
Sexual parasites offer unique insights into the reproduction of unisexual and sexual populations. Because unisexuality is almost exclusively linked to the female sex, most studies addressed host-parasite dynamics in populations where sperm-dependent females dominate. Pelophylax water frogs from Central Europe include hybrids of both sexes, collectively named P. esculentus. They live syntopically with their parental species P. lessonae and/or P. ridibundus. Some hybrid lineages consist of all males providing a chance to understand the origin and perpetuation of a host-parasite (egg-dependent) system compared to sperm-dependent parthenogenesis. We focused on P. ridibundus-P. esculentus populations where P. ridibundus of both sexes lives together with only diploid P. esculentus males. Based on 17 microsatellite markers and six allozyme loci, we analyzed (i) the variability of individual genomes, (ii) the reproductive mode(s) of all-male hybrids, and (iii) the genealogical relationships between the hybrid and parental genomes. Our microsatellite data revealed that P. esculentus males bear Mendelian-inherited ridibundus genomes while the lessonae genome represents a single clone. Our data indicate that this clone did not recently originate from adjacent P. lessonae populations, suggesting an older in situ or ex situ origin. Our results confirm that also males can perpetuate over many generations as the unisexual lineage and successfully compete with P. ridibundus males for eggs provided by P. ridibundus females. Natural persistence of such sex-specific hybrid populations allows to studying the similarities and differences between male and female reproductive parasitism in many biological settings.
Phenotypic and genomic analysis of a fast neutron mutant population resource in soybean
USDA-ARS?s Scientific Manuscript database
Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. We utilized fast neutron radiation to induce deletion mutations in the soybean genome and phenotypically screened the resulting population. We exposed approxim...
A continuous genome assembly of the corkwing wrasse (Symphodus melops).
Mattingsdal, Morten; Jentoft, Sissel; Tørresen, Ole K; Knutsen, Halvor; Hansen, Michael M; Robalo, Joana I; Zagrodzka, Zuzanna; André, Carl; Gonzalez, Enrique Blanco
2018-04-14
The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50 = 461,652 bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Wenqian; Meehan, Joe; Su, Zhenqiang; Ng, Hui Wen; Shu, Mao; Luo, Heng; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao
2014-01-01
Due to a significant decline in the costs associated with next-generation sequencing, it has become possible to decipher the genetic architecture of a population by sequencing a large number of individuals to a deep coverage. The Korean Personal Genomes Project (KPGP) recently sequenced 35 Korean genomes at high coverage using the Illumina Hiseq platform and made the deep sequencing data publicly available, providing the scientific community opportunities to decipher the genetic architecture of the Korean population. In this study, we used two single nucleotide variant (SNV) calling pipelines: mapping the raw reads obtained from whole genome sequencing of 35 Korean individuals in KPGP using BWA and SOAP2 followed by SNV calling using SAMtools and SOAPsnp, respectively. The consensus SNVs obtained from the two SNV pipelines were used to represent the SNVs of the Korean population. We compared these SNVs to those from 17 other populations provided by the HapMap consortium and the 1000 Genomes Project (1KGP) and identified SNVs that were only present in the Korean population. We studied the mutation spectrum and analyzed the genes of non-synonymous SNVs only detected in the Korean population. We detected a total of 8,555,726 SNVs in the 35 Korean individuals and identified 1,213,613 SNVs detected in at least one Korean individual (SNV-1) and 12,640 in all of 35 Korean individuals (SNV-35) but not in 17 other populations. In contrast with the SNVs common to other populations in HapMap and 1KGP, the Korean only SNVs had high percentages of non-silent variants, emphasizing the unique roles of these Korean only SNVs in the Korean population. Specifically, we identified 8,361 non-synonymous Korean only SNVs, of which 58 SNVs existed in all 35 Korean individuals. The 5,754 genes of non-synonymous Korean only SNVs were highly enriched in some metabolic pathways. We found adhesion is the top disease term associated with SNV-1 and Nelson syndrome is the only disease term associated with SNV-35. We found that a significant number of Korean only SNVs are in genes that are associated with the drug term of adenosine. We identified the SNVs that were found in the Korean population but not seen in other populations, and explored the corresponding genes and pathways as well as the associated disease terms and drug terms. The results expand our knowledge of the genetic architecture of the Korean population, which will benefit the implementation of personalized medicine for the Korean population.
Oh, Seungdae; Yap, Gaik Chin; Hong, Pei-Ying; Huang, Chiung-Hui; Aw, Marion M; Shek, Lynette Pei-Chi; Liu, Wen-Tso; Lee, Bee Wah
2017-01-01
Gut microbiota play an important role in human immunological processes, potentially affecting allergic diseases such as eczema. The diversity and structure of gut microbiota in infants with eczema have been previously documented. This study aims to evaluate by comparative metagenomics differences in genetic content in gut microbiota of infants with eczema and their matched controls. Stools were collected at the age of one month old from twelve infants from an at risk birth cohort in a case control manner. Clinical follow up for atopic outcomes were carried out at the age of 12 and 24 months. Microbial genomic DNA were extracted from stool samples and used for shotgun sequencing. Comparative metagenomic analysis showed that immune-regulatory TCAAGCTTGA motifs were significantly enriched in the six healthy controls (C) communities compared to the six eczema subjects (E), with many encoded by Bifidobacterium (38% of the total motifs in the C communities). Draft genomes of five Bifidobacterium species populations (B. longum, B. bifidum, B. breve, B. dentium, and B. pseudocatenulatum) were recovered from metagenomic datasets. The B. longum BFN-121-2 genome encoded more TCAAGCTTGA motifs (4.2 copies per one million genome sequence) than other Bifidobacterium genomes. Additionally, the communities in the stool of controls (C) were also significantly enriched in functions associated with tetrapyrrole biosynthesis compared to those of eczema (E). Our results show distinct immune-modulatory genomic properties of gut microbiota in infants associated with eczema and provide new insights into potential role of gut microbiota in affecting human immune homeostasis.
Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema
Oh, Seungdae; Yap, Gaik Chin; Hong, Pei-Ying; Huang, Chiung-Hui; Aw, Marion M.; Shek, Lynette Pei-Chi; Liu, Wen-Tso; Lee, Bee Wah
2017-01-01
Gut microbiota play an important role in human immunological processes, potentially affecting allergic diseases such as eczema. The diversity and structure of gut microbiota in infants with eczema have been previously documented. This study aims to evaluate by comparative metagenomics differences in genetic content in gut microbiota of infants with eczema and their matched controls. Stools were collected at the age of one month old from twelve infants from an at risk birth cohort in a case control manner. Clinical follow up for atopic outcomes were carried out at the age of 12 and 24 months. Microbial genomic DNA were extracted from stool samples and used for shotgun sequencing. Comparative metagenomic analysis showed that immune-regulatory TCAAGCTTGA motifs were significantly enriched in the six healthy controls (C) communities compared to the six eczema subjects (E), with many encoded by Bifidobacterium (38% of the total motifs in the C communities). Draft genomes of five Bifidobacterium species populations (B. longum, B. bifidum, B. breve, B. dentium, and B. pseudocatenulatum) were recovered from metagenomic datasets. The B. longum BFN-121-2 genome encoded more TCAAGCTTGA motifs (4.2 copies per one million genome sequence) than other Bifidobacterium genomes. Additionally, the communities in the stool of controls (C) were also significantly enriched in functions associated with tetrapyrrole biosynthesis compared to those of eczema (E). Our results show distinct immune-modulatory genomic properties of gut microbiota in infants associated with eczema and provide new insights into potential role of gut microbiota in affecting human immune homeostasis. PMID:29049378
Li, Shengbin; Li, Bo; Cheng, Cheng; Xiong, Zijun; Liu, Qingbo; Lai, Jianghua; Carey, Hannah V; Zhang, Qiong; Zheng, Haibo; Wei, Shuguang; Zhang, Hongbo; Chang, Liao; Liu, Shiping; Zhang, Shanxin; Yu, Bing; Zeng, Xiaofan; Hou, Yong; Nie, Wenhui; Guo, Youmin; Chen, Teng; Han, Jiuqiang; Wang, Jian; Wang, Jun; Chen, Chen; Liu, Jiankang; Stambrook, Peter J; Xu, Ming; Zhang, Guojie; Gilbert, M Thomas P; Yang, Huanming; Jarvis, Erich D; Yu, Jun; Yan, Jianqun
2014-01-01
Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies. Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species. These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.
Eimeria genomics: Where are we now and where are we going?
Blake, Damer P
2015-08-15
The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Genomic Admixture in Uyghur and Its Implication in Mapping Strategy
Xu, Shuhua; Huang, Wei; Qian, Ji; Jin, Li
2008-01-01
The Uyghur (UIG) population, settled in Xinjiang, China, is a population presenting a typical admixture of Eastern and Western anthropometric traits. We dissected its genomic structure at population level, individual level, and chromosome level by using 20,177 SNPs spanning nearly the entire chromosome 21. Our results showed that UIG was formed by two-way admixture, with 60% European ancestry and 40% East Asian ancestry. Overall linkage disequilibrium (LD) in UIG was similar to that in its parental populations represented in East Asia and Europe with regard to common alleles, and UIG manifested elevation of LD only within 500 kb and at a level of 0.1 < r2 < 0.8 when ancestry-informative markers (AIMs) were used. The size of chromosomal segments that were derived from East Asian and European ancestries averaged 2.4 cM and 4.1 cM, respectively. Both the magnitude of LD and fragmentary ancestral chromosome segments indicated a long history of Uyghur. Under the assumption of a hybrid isolation (HI) model, we estimated that the admixture event of UIG occurred about 126 [107∼146] generations ago, or 2520 [2140∼2920] years ago assuming 20 years per generation. In spite of the long history and short LD of Uyghur compared with recent admixture populations such as the African-American population, we suggest that mapping by admixture LD (MALD) is still applicable in the Uyghur population but ∼10-fold AIMs are necessary for a whole-genome scan. PMID:18355773
Public health genomics and personalized prevention: lessons from the COGS project.
Pashayan, N; Hall, A; Chowdhury, S; Dent, T; Pharoah, P D P; Burton, H
2013-11-01
Using the principles of public health genomics, we examined the opportunities and challenges of implementing personalized prevention programmes for cancer at the population level. Our model-based estimates indicate that polygenic risk stratification can potentially improve the effectiveness and cost-effectiveness of screening programmes. However, compared with 'one-size-fits-all' screening programmes, personalized screening adds further layers of complexity to the organization of screening services and raises ethical, legal and social challenges. Before polygenic inheritance is translated into population screening strategy, evidence from empirical research and engagement with and education of the public and the health professionals are needed. © 2013 The Association for the Publication of the Journal of Internal Medicine.
Investigation of Genetic Variation Underlying Central Obesity amongst South Asians.
Scott, William R; Zhang, Weihua; Loh, Marie; Tan, Sian-Tsung; Lehne, Benjamin; Afzal, Uzma; Peralta, Juan; Saxena, Richa; Ralhan, Sarju; Wander, Gurpreet S; Bozaoglu, Kiymet; Sanghera, Dharambir K; Elliott, Paul; Scott, James; Chambers, John C; Kooner, Jaspal S
2016-01-01
South Asians are 1/4 of the world's population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10-6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans.
Investigation of Genetic Variation Underlying Central Obesity amongst South Asians
Scott, William R.; Zhang, Weihua; Loh, Marie; Tan, Sian-Tsung; Lehne, Benjamin; Afzal, Uzma; Peralta, Juan; Saxena, Richa; Ralhan, Sarju; Wander, Gurpreet S.; Bozaoglu, Kiymet; Sanghera, Dharambir K.; Elliott, Paul; Scott, James; Chambers, John C.; Kooner, Jaspal S.
2016-01-01
South Asians are 1/4 of the world’s population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10−6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans. PMID:27195708
Effect of genotyped cows in the reference population on the genomic evaluation of Holstein cattle.
Uemoto, Y; Osawa, T; Saburi, J
2017-03-01
This study evaluated the dependence of reliability and prediction bias on the prediction method, the contribution of including animals (bulls or cows), and the genetic relatedness, when including genotyped cows in the progeny-tested bull reference population. We performed genomic evaluation using a Japanese Holstein population, and assessed the accuracy of genomic enhanced breeding value (GEBV) for three production traits and 13 linear conformation traits. A total of 4564 animals for production traits and 4172 animals for conformation traits were genotyped using Illumina BovineSNP50 array. Single- and multi-step methods were compared for predicting GEBV in genotyped bull-only and genotyped bull-cow reference populations. No large differences in realized reliability and regression coefficient were found between the two reference populations; however, a slight difference was found between the two methods for production traits. The accuracy of GEBV determined by single-step method increased slightly when genotyped cows were included in the bull reference population, but decreased slightly by multi-step method. A validation study was used to evaluate the accuracy of GEBV when 800 additional genotyped bulls (POPbull) or cows (POPcow) were included in the base reference population composed of 2000 genotyped bulls. The realized reliabilities of POPbull were higher than those of POPcow for all traits. For the gain of realized reliability over the base reference population, the average ratios of POPbull gain to POPcow gain for production traits and conformation traits were 2.6 and 7.2, respectively, and the ratios depended on heritabilities of the traits. For regression coefficient, no large differences were found between the results for POPbull and POPcow. Another validation study was performed to investigate the effect of genetic relatedness between cows and bulls in the reference and test populations. The effect of genetic relationship among bulls in the reference population was also assessed. The results showed that it is important to account for relatedness among bulls in the reference population. Our studies indicate that the prediction method, the contribution ratio of including animals, and genetic relatedness could affect the prediction accuracy in genomic evaluation of Holstein cattle, when including genotyped cows in the reference population.
Szczałuba, Krzysztof; Nowakowska, Beata; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Klapecki, Jakub; Kutkowska-Kaźmierczak, Anna; Śmigiel, Robert; Bocian, Ewa; Radkowski, Marek; Demkow, Urszula
2016-01-01
Major congenital anomalies are detectable in 2-3 % of the newborn population. Some of their genetic causes are attributable to copy number variations identified by array comparative genomic hybridization (aCGH). The value of aCGH screening as a first-tier test in children with multiple congenital anomalies has been studied and consensus adopted. However, array resolution has not been agreed upon, specifically in the newborn or infant population. Moreover, most array studies have been focused on mixed populations of intellectual disability/developmental delay with or without multiple congenital anomalies, making it difficult to assess the value of microarrays in newborns. The aim of the study was to determine the optimal quality and clinical sensitivity of high-resolution array comparative genomic hybridization in neonates with multiple congenital anomalies. We investigated a group of 54 newborns with multiple congenital anomalies defined as two or more birth defects from more than one organ system. Cytogenetic studies were performed using OGT CytoSure 8 × 60 K microarray. We found ten rearrangements in ten newborns. Of these, one recurrent syndromic microduplication was observed, whereas all other changes were unique. Six rearrangements were definitely pathogenic, including one submicroscopic and five that could be seen on routine karyotype analysis. Four other copy number variants were likely pathogenic. The candidate genes that may explain the phenotype were discussed. In conclusion, high-resolution array comparative hybridization can be applied successfully in newborns with multiple congenital anomalies as the method detects a significant number of pathogenic changes, resulting in early diagnoses. We hypothesize that small changes previously considered benign or even inherited rearrangements should be classified as potentially pathogenic at least until a subsequent clinical assessment would exclude a developmental delay or dysmorphism.
Yao, Chen; Zhu, Xiaojin; Weigel, Kent A
2016-11-07
Genomic prediction for novel traits, which can be costly and labor-intensive to measure, is often hampered by low accuracy due to the limited size of the reference population. As an option to improve prediction accuracy, we introduced a semi-supervised learning strategy known as the self-training model, and applied this method to genomic prediction of residual feed intake (RFI) in dairy cattle. We describe a self-training model that is wrapped around a support vector machine (SVM) algorithm, which enables it to use data from animals with and without measured phenotypes. Initially, a SVM model was trained using data from 792 animals with measured RFI phenotypes. Then, the resulting SVM was used to generate self-trained phenotypes for 3000 animals for which RFI measurements were not available. Finally, the SVM model was re-trained using data from up to 3792 animals, including those with measured and self-trained RFI phenotypes. Incorporation of additional animals with self-trained phenotypes enhanced the accuracy of genomic predictions compared to that of predictions that were derived from the subset of animals with measured phenotypes. The optimal ratio of animals with self-trained phenotypes to animals with measured phenotypes (2.5, 2.0, and 1.8) and the maximum increase achieved in prediction accuracy measured as the correlation between predicted and actual RFI phenotypes (5.9, 4.1, and 2.4%) decreased as the size of the initial training set (300, 400, and 500 animals with measured phenotypes) increased. The optimal number of animals with self-trained phenotypes may be smaller when prediction accuracy is measured as the mean squared error rather than the correlation between predicted and actual RFI phenotypes. Our results demonstrate that semi-supervised learning models that incorporate self-trained phenotypes can achieve genomic prediction accuracies that are comparable to those obtained with models using larger training sets that include only animals with measured phenotypes. Semi-supervised learning can be helpful for genomic prediction of novel traits, such as RFI, for which the size of reference population is limited, in particular, when the animals to be predicted and the animals in the reference population originate from the same herd-environment.
Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies
Lasitschka, Bärbel; Jones, David; Northcott, Paul; Hutter, Barbara; Jäger, Natalie; Kool, Marcel; Taylor, Michael; Lichter, Peter; Pfister, Stefan; Wolf, Stephan; Brors, Benedikt; Eils, Roland
2013-01-01
The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify the proper sequencing platform for whole genome studies with different application scopes. PMID:23776689
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.
PopHuman: the human population genomics browser.
Casillas, Sònia; Mulet, Roger; Villegas-Mirón, Pablo; Hervas, Sergi; Sanz, Esteve; Velasco, Daniel; Bertranpetit, Jaume; Laayouni, Hafid; Barbadilla, Antonio
2018-01-04
The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2018-01-01
The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi. PMID:29584736
Evidence-based medicine and big genomic data.
Ioannidis, John P A; Khoury, Muin J
2018-05-01
Genomic and other related big data (Big Genomic Data, BGD for short) are ushering a new era of precision medicine. This overview discusses whether principles of evidence-based medicine hold true for BGD and how they should be operationalized in the current era. Major evidence-based medicine principles include the systematic identification, description and analysis of the validity and utility of BGD, the combination of individual clinical expertise with individual patient needs and preferences, and the focus on obtaining experimental evidence, whenever possible. BGD emphasize information of single patients with an overemphasis on N-of-1 trials to personalize treatment. However, large-scale comparative population data remain indispensable for meaningful translation of BGD personalized information. The impact of BGD on population health depends on its ability to affect large segments of the population. While several frameworks have been proposed to facilitate and standardize decision making for use of genomic tests, there are new caveats that arise from BGD that extend beyond the limitations that were applicable for more simple genetic tests. Non-evidence-based use of BGD may be harmful and result in major waste of healthcare resources. Randomized controlled trials will continue to be the strongest arbitrator for the clinical utility of genomic technologies, including BGD. Research on BGD needs to focus not only on finding robust predictive associations (clinical validity) but also more importantly on evaluating the balance of health benefits and potential harms (clinical utility), as well as implementation challenges. Appropriate features of such useful research on BGD are discussed.
Faucon, Frederic; Gaude, Thierry; Dusfour, Isabelle; Navratil, Vincent; Corbel, Vincent; Juntarajumnong, Waraporn; Girod, Romain; Poupardin, Rodolphe; Boyer, Frederic; Reynaud, Stephane; David, Jean-Philippe
2017-04-01
The capacity of Aedes mosquitoes to resist chemical insecticides threatens the control of major arbovirus diseases worldwide. Until alternative control tools are widely deployed, monitoring insecticide resistance levels and identifying resistance mechanisms in field mosquito populations is crucial for implementing appropriate management strategies. Metabolic resistance to pyrethroids is common in Aedes aegypti but the monitoring of the dynamics of resistant alleles is impeded by the lack of robust genomic markers. In an attempt to identify the genomic bases of metabolic resistance to deltamethrin, multiple resistant and susceptible populations originating from various continents were compared using both RNA-seq and a targeted DNA-seq approach focused on the upstream regions of detoxification genes. Multiple detoxification enzymes were over transcribed in resistant populations, frequently associated with an increase in their gene copy number. Targeted sequencing identified potential promoter variations associated with their over transcription. Non-synonymous variations affecting detoxification enzymes were also identified in resistant populations. This study not only confirmed the role of gene copy number variations as a frequent cause of the over expression of detoxification enzymes associated with insecticide resistance in Aedes aegypti but also identified novel genomic resistance markers potentially associated with their cis-regulation and modifications of their protein structure conformation. As for gene transcription data, polymorphism patterns were frequently conserved within regions but differed among continents confirming the selection of different resistance factors worldwide. Overall, this study paves the way of the identification of a comprehensive set of genomic markers for monitoring the spatio-temporal dynamics of the variety of insecticide resistance mechanisms in Aedes aegypti.
Liabeuf, Debora; Sim, Sung-Chur; Francis, David M
2018-03-01
Bacterial spot affects tomato crops (Solanum lycopersicum) grown under humid conditions. Major genes and quantitative trait loci (QTL) for resistance have been described, and multiple loci from diverse sources need to be combined to improve disease control. We investigated genomic selection (GS) prediction models for resistance to Xanthomonas euvesicatoria and experimentally evaluated the accuracy of these models. The training population consisted of 109 families combining resistance from four sources and directionally selected from a population of 1,100 individuals. The families were evaluated on a plot basis in replicated inoculated trials and genotyped with single nucleotide polymorphisms (SNP). We compared the prediction ability of models developed with 14 to 387 SNP. Genomic estimated breeding values (GEBV) were derived using Bayesian least absolute shrinkage and selection operator regression (BL) and ridge regression (RR). Evaluations were based on leave-one-out cross validation and on empirical observations in replicated field trials using the next generation of inbred progeny and a hybrid population resulting from selections in the training population. Prediction ability was evaluated based on correlations between GEBV and phenotypes (r g ), percentage of coselection between genomic and phenotypic selection, and relative efficiency of selection (r g /r p ). Results were similar with BL and RR models. Models using only markers previously identified as significantly associated with resistance but weighted based on GEBV and mixed models with markers associated with resistance treated as fixed effects and markers distributed in the genome treated as random effects offered greater accuracy and a high percentage of coselection. The accuracy of these models to predict the performance of progeny and hybrids exceeded the accuracy of phenotypic selection.
Wragg, David; Techer, Maéva Angélique; Canale-Tabet, Kamila; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Clémencet, Johanna; Delatte, Hélène
2018-01-01
Abstract The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion, compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee population to be composed on an average of 53.2 ± 5.9% A. m. unicolor nuclear genomic background, the rest being mainly composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations. PMID:29202174
2011-01-01
Background The Sorbs are an ethnic minority in Germany with putative genetic isolation, making the population interesting for disease mapping. A sample of N = 977 Sorbs is currently analysed in several genome-wide meta-analyses. Since genetic differences between populations are a major confounding factor in genetic meta-analyses, we compare the Sorbs with the German outbred population of the KORA F3 study (N = 1644) and other publically available European HapMap populations by population genetic means. We also aim to separate effects of over-sampling of families in the Sorbs sample from effects of genetic isolation and compare the power of genetic association studies between the samples. Results The degree of relatedness was significantly higher in the Sorbs. Principal components analysis revealed a west to east clustering of KORA individuals born in Germany, KORA individuals born in Poland or Czech Republic, Half-Sorbs (less than four Sorbian grandparents) and Full-Sorbs. The Sorbs cluster is nearest to the cluster of KORA individuals born in Poland. The number of rare SNPs is significantly higher in the Sorbs sample. FST between KORA and Sorbs is an order of magnitude higher than between different regions in Germany. Compared to the other populations, Sorbs show a higher proportion of individuals with runs of homozygosity between 2.5 Mb and 5 Mb. Linkage disequilibrium (LD) at longer range is also slightly increased but this has no effect on the power of association studies. Oversampling of families in the Sorbs sample causes detectable bias regarding higher FST values and higher LD but the effect is an order of magnitude smaller than the observed differences between KORA and Sorbs. Relatedness in the Sorbs also influenced the power of uncorrected association analyses. Conclusions Sorbs show signs of genetic isolation which cannot be explained by over-sampling of relatives, but the effects are moderate in size. The Slavonic origin of the Sorbs is still genetically detectable. Regarding LD structure, a clear advantage for genome-wide association studies cannot be deduced. The significant amount of cryptic relatedness in the Sorbs sample results in inflated variances of Beta-estimators which should be considered in genetic association analyses. PMID:21798003
Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data
Martin, John; Abubucker, Sahar; Heizer, Esley; Taylor, Christina M.; Mitreva, Makedonka
2012-01-01
Nematode.net (http://nematode.net) has been a publicly available resource for studying nematodes for over a decade. In the past 3 years, we reorganized Nematode.net to provide more user-friendly navigation through the site, a necessity due to the explosion of data from next-generation sequencing platforms. Organism-centric portals containing dynamically generated data are available for over 56 different nematode species. Next-generation data has been added to the various data-mining portals hosted, including NemaBLAST and NemaBrowse. The NemaPath metabolic pathway viewer builds associations using KOs, rather than ECs to provide more accurate and fine-grained descriptions of proteins. Two new features for data analysis and comparative genomics have been added to the site. NemaSNP enables the user to perform population genetics studies in various nematode populations using next-generation sequencing data. HelmCoP (Helminth Control and Prevention) as an independent component of Nematode.net provides an integrated resource for storage, annotation and comparative genomics of helminth genomes to aid in learning more about nematode genomes, as well as drug, pesticide, vaccine and drug target discovery. With this update, Nematode.net will continue to realize its original goal to disseminate diverse bioinformatic data sets and provide analysis tools to the broad scientific community in a useful and user-friendly manner. PMID:22139919
Translational bioinformatics in the cloud: an affordable alternative
2010-01-01
With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073
The full mitochondrial genome sequence of Raillietina tetragona from chicken (Cestoda: Davaineidae).
Liang, Jian-Ying; Lin, Rui-Qing
2016-11-01
In the present study, the complete mitochondrial DNA (mtDNA) sequence of Raillietina tetragona was sequenced and its gene contents and genome organizations was compared with that of other tapeworm. The complete mt genome sequence of R. tetragona is 14,444 bp in length. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding region. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A + T of the complete mt genome are 71.4% for R. tetragona. The R. tetragona mt genome sequence provides novel mtDNA marker for studying the molecular epidemiology and population genetics of Raillietina and has implications for the molecular diagnosis of chicken cestodosis caused by Raillietina.
Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J
2016-03-22
The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.
Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph; Aury, Jean-Marc
2017-02-01
Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. © The Author 2017. Published by Oxford University Press.
Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph
2017-01-01
Abstract Background: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Results: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Conclusion: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. PMID:28369459
Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J
2012-02-09
The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.
Van Belleghem, Steven M; Baquero, Margarita; Papa, Riccardo; Salazar, Camilo; McMillan, W Owen; Counterman, Brian A; Jiggins, Chris D; Martin, Simon H
2018-03-22
Sex chromosomes are disproportionately involved in reproductive isolation and adaptation. In support of such a "large-X" effect, genome scans between recently diverged populations and species pairs often identify distinct patterns of divergence on the sex chromosome compared to autosomes. When measures of divergence between populations are higher on the sex chromosome compared to autosomes, such patterns could be interpreted as evidence for faster divergence on the sex chromosome, that is "faster-X", barriers to gene flow on the sex chromosome. However, demographic changes can strongly skew divergence estimates and are not always taken into consideration. We used 224 whole-genome sequences representing 36 populations from two Heliconius butterfly clades (H. erato and H. melpomene) to explore patterns of Z chromosome divergence. We show that increased divergence compared to equilibrium expectations can in many cases be explained by demographic change. Among Heliconius erato populations, for instance, population size increase in the ancestral population can explain increased absolute divergence measures on the Z chromosome compared to the autosomes, as a result of increased ancestral Z chromosome genetic diversity. Nonetheless, we do identify increased divergence on the Z chromosome relative to the autosomes in parapatric or sympatric species comparisons that imply postzygotic reproductive barriers. Using simulations, we show that this is consistent with reduced gene flow on the Z chromosome, perhaps due to greater accumulation of incompatibilities. Our work demonstrates the importance of taking demography into account to interpret patterns of divergence on the Z chromosome, but nonetheless provides evidence to support the Z chromosome as a strong barrier to gene flow in incipient Heliconius butterfly species. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Tachibana, Shin-Ichiro; Sullivan, Steven A; Kawai, Satoru; Nakamura, Shota; Kim, Hyunjae R; Goto, Naohisa; Arisue, Nobuko; Palacpac, Nirianne M Q; Honma, Hajime; Yagi, Masanori; Tougan, Takahiro; Katakai, Yuko; Kaneko, Osamu; Mita, Toshihiro; Kita, Kiyoshi; Yasutomi, Yasuhiro; Sutton, Patrick L; Shakhbatyan, Rimma; Horii, Toshihiro; Yasunaga, Teruo; Barnwell, John W; Escalante, Ananias A; Carlton, Jane M; Tanabe, Kazuyuki
2012-09-01
P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax.
Pecon-Slattery, Jill; McCracken, Carrie L; Troyer, Jennifer L; VandeWoude, Sue; Roelke, Melody; Sondgeroth, Kerry; Winterbach, Christiaan; Winterbach, Hanlie; O'Brien, Stephen J
2008-01-01
Background Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. Results In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca, Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIVPle subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. Conclusion This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in wild populations of endangered species. PMID:18251995
Anagnostou, Paolo; Dominici, Valentina; Battaggia, Cinzia; Pagani, Luca; Vilar, Miguel; Wells, R. Spencer; Pettener, Davide; Sarno, Stefania; Boattini, Alessio; Francalacci, Paolo; Colonna, Vincenza; Vona, Giuseppe; Calò, Carla; Destro Bisol, Giovanni; Tofanelli, Sergio
2017-01-01
Human populations are often dichotomized into “isolated” and “open” categories using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and inter-population variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary considerably more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations were found to be distributed along a continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated groups fails to capture the actual relations among their genomic features. PMID:28145502
Unlocking Triticeae genomics to sustainably feed the future
Mochida, Keiichi; Shinozaki, Kazuo
2013-01-01
The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species—barley, wheat, Tausch’s goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)—have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae. PMID:24204022
Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups
Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique
2014-01-01
Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126
Scanning the human genome at kilobase resolution.
Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming
2008-05-01
Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.
Cao, Ke; Zheng, Zhijun; Wang, Lirong; Liu, Xin; Zhu, Gengrui; Fang, Weichao; Cheng, Shifeng; Zeng, Peng; Chen, Changwen; Wang, Xinwei; Xie, Min; Zhong, Xiao; Wang, Xiaoli; Zhao, Pei; Bian, Chao; Zhu, Yinling; Zhang, Jiahui; Ma, Guosheng; Chen, Chengxuan; Li, Yanjun; Hao, Fengge; Li, Yong; Huang, Guodong; Li, Yuxiang; Li, Haiyan; Guo, Jian; Xu, Xun; Wang, Jun
2014-07-31
Recently, many studies utilizing next generation sequencing have investigated plant evolution and domestication in annual crops. Peach, Prunus persica, is a typical perennial fruit crop that has ornamental and edible varieties. Unlike other fruit crops, cultivated peach includes a large number of phenotypes but few polymorphisms. In this study, we explore the genetic basis of domestication in peach and the influence of humans on its evolution. We perform large-scale resequencing of 10 wild and 74 cultivated peach varieties, including 9 ornamental, 23 breeding, and 42 landrace lines. We identify 4.6 million SNPs, a large number of which could explain the phenotypic variation in cultivated peach. Population analysis shows a single domestication event, the speciation of P. persica from wild peach. Ornamental and edible peach both belong to P. persica, along with another geographically separated subgroup, Prunus ferganensis. Our analyses enhance our knowledge of the domestication history of perennial fruit crops, and the dataset we generated could be useful for future research on comparative population genomics.
Producing genome structure populations with the dynamic and automated PGS software.
Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank
2018-05-01
Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.
Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.
2012-01-01
Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed disparity in T2D incidence rates across ethnic populations. PMID:22511877
George, Phillip; Jensen, Silke; Pogorelcnik, Romain; Lee, Jiyoung; Xing, Yi; Brasset, Emilie; Vaury, Chantal; Sharakhov, Igor V
2015-01-01
Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.
Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers
Im, Kate M.; Kirchhoff, Tomas; Wang, Xianshu; Green, Todd; Chow, Clement Y.; Vijai, Joseph; Korn, Joshua; Gaudet, Mia M.; Fredericksen, Zachary; Pankratz, V. Shane; Guiducci, Candace; Crenshaw, Andrew; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M.; Mai, Phuong L.; Greene, Mark H.; Piedmonte, Marion; Rubinstein, Wendy S.; Hogervorst, Frans B.; Rookus, Matti A.; Collée, J. Margriet; Hoogerbrugge, Nicoline; van Asperen, Christi J.; Meijers-Heijboer, Hanne E. J.; Van Roozendaal, Cees E.; Caldes, Trinidad; Perez-Segura, Pedro; Jakubowska, Anna; Lubinski, Jan; Huzarski, Tomasz; Blecharz, Paweł; Nevanlinna, Heli; Aittomäki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Barkardottir, Rosa B.; Montagna, Marco; D'Andrea, Emma; Devilee, Peter; Olopade, Olufunmilayo I.; Neuhausen, Susan L.; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Singer, Christian F.; Rennert, Gad; Lejbkowicz, Flavio; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda Ewart; Caligo, Maria Adelaide; Beattie, Mary S.; Chan, Salina; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Phelan, Catherine; Narod, Steven; John, Esther M.; Hopper, John L.; Buys, Saundra S.; Daly, Mary B.; Southey, Melissa C.; Terry, Mary-Beth; Tung, Nadine; Hansen, Thomas v. O.; Osorio, Ana; Benitez, Javier; Durán, Mercedes; Weitzel, Jeffrey N.; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare T.; Frost, Debra; Platte, Radka; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Paterson, Joan; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary; Walker, Lisa; Rogers, Mark T.; Side, Lucy E.; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Laitman, Yael; Meindl, Alfons; Deissler, Helmut; Varon-Mateeva, Raymonda; Preisler-Adams, Sabine; Kast, Karin; Venat-Bouvet, Laurence; Stoppa-Lyonnet, Dominique; Chenevix-Trench, Georgia; Easton, Douglas F.; Klein, Robert J.; Daly, Mark J.; Friedman, Eitan; Dean, Michael; Clark, Andrew G.; Altshuler, David M.; Antoniou, Antonis C.; Couch, Fergus J.; Offit, Kenneth; Gold, Bert
2011-01-01
Abstract Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage dis-equilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews. PMID:21597964
Insights into social insects from the genome of the honeybee Apis mellifera
2007-01-01
Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement. PMID:17073008
Harr, Bettina; Karakoc, Emre; Neme, Rafik; Teschke, Meike; Pfeifle, Christine; Pezer, Željka; Babiker, Hiba; Linnenbrink, Miriam; Montero, Inka; Scavetta, Rick; Abai, Mohammad Reza; Molins, Marta Puente; Schlegel, Mathias; Ulrich, Rainer G.; Altmüller, Janine; Franitza, Marek; Büntge, Anna; Künzel, Sven; Tautz, Diethard
2016-01-01
Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory. PMID:27622383
Roth, Andrew; Khattra, Jaswinder; Ho, Julie; Yap, Damian; Prentice, Leah M.; Melnyk, Nataliya; McPherson, Andrew; Bashashati, Ali; Laks, Emma; Biele, Justina; Ding, Jiarui; Le, Alan; Rosner, Jamie; Shumansky, Karey; Marra, Marco A.; Gilks, C. Blake; Huntsman, David G.; McAlpine, Jessica N.; Aparicio, Samuel
2014-01-01
The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN. PMID:25060187
Howard, Jeremy T; Pryce, Jennie E; Baes, Christine; Maltecca, Christian
2017-08-01
Traditionally, pedigree-based relationship coefficients have been used to manage the inbreeding and degree of inbreeding depression that exists within a population. The widespread incorporation of genomic information in dairy cattle genetic evaluations allows for the opportunity to develop and implement methods to manage populations at the genomic level. As a result, the realized proportion of the genome that 2 individuals share can be more accurately estimated instead of using pedigree information to estimate the expected proportion of shared alleles. Furthermore, genomic information allows genome-wide relationship or inbreeding estimates to be augmented to characterize relationships for specific regions of the genome. Region-specific stretches can be used to more effectively manage areas of low genetic diversity or areas that, when homozygous, result in reduced performance across economically important traits. The use of region-specific metrics should allow breeders to more precisely manage the trade-off between the genetic value of the progeny and undesirable side effects associated with inbreeding. Methods tailored toward more effectively identifying regions affected by inbreeding and their associated use to manage the genome at the herd level, however, still need to be developed. We have reviewed topics related to inbreeding, measures of relatedness, genetic diversity and methods to manage populations at the genomic level, and we discuss future challenges related to managing populations through implementing genomic methods at the herd and population levels. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pintus, M A; Gaspa, G; Nicolazzi, E L; Vicario, D; Rossoni, A; Ajmone-Marsan, P; Nardone, A; Dimauro, C; Macciotta, N P P
2012-06-01
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genome-wide signatures of population bottlenecks and diversifying selection in European wolves
Pilot, M; Greco, C; vonHoldt, B M; Jędrzejewska, B; Randi, E; Jędrzejewski, W; Sidorovich, V E; Ostrander, E A; Wayne, R K
2014-01-01
Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability. PMID:24346500
Castagnone-Sereno, Philippe; Danchin, Etienne G J; Deleury, Emeline; Guillemaud, Thomas; Malausa, Thibaut; Abad, Pierre
2010-10-25
Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms. Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (Brugia malayi, Caenorhabditis elegans, M. hapla, M. incognita, Pristionchus pacificus) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)n, (AG)n and (CT)n were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in P. pacificus, all the most frequent trinucleotide motifs were AT-rich, with (AAT)n and (ATT)n being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species M. incognita. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms. Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related Meloidogyne species. 2,245 di- to hexanucleotide loci were identified in the genome of M. incognita, providing adequate material for the future development of a wide range of microsatellite markers in this major plant parasite.
New Regions of the Human Genome Linked to Skin Color Variation in Some African Populations
In the first study of its kind, an international team of genomics researchers has identified new regions of the human genome that are associated with skin color variation in some African populations, opening new avenues for research on skin diseases and cancer in all populations.
USDA-ARS?s Scientific Manuscript database
Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such as the Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing the size of the reference population for Danish Jerseys. The first ap...
USDA-ARS?s Scientific Manuscript database
Background Several studies have examined the accuracy of genomic selection both within and across purebred beef or dairy populations. However, the accuracy of direct genomic breeding values (DGVs) has been less well studied in crossbred or admixed cattle populations. We used a population of 3,240 cr...
Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.
2016-01-01
Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461
Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng
2009-11-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T.H.; Tan, Adrian K.S.; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S.; Ku, Chee-Seng; Lee, Edmund J.D.; Seielstad, Mark; Chia, Kee-Seng
2009-01-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser. PMID:19700652
Li, X; Yang, S; Dong, K; Tang, Z; Li, K; Fan, B; Wang, Z; Liu, B
2017-10-01
Selection affects the patterns of linkage disequilibrium (LD) around the site of a beneficial allele with an increase in LD among the hitchhiking alleles. Comparing the differences in regional LD between pig populations could help to identify putative genomic regions with potential adaptations for economic traits. In this study, using Illumina Porcine SNP60K BeadChip genotyping data from 207 Chinese indigenous, 117 South American village and 408 Large White pigs, we estimated the variation of genome-wide LD between populations using the varld program. The top 0.1% standardized VarLD scores were used as a criterion for all comparisons, and compared with LD blocks, a total of four selection signatures on Sus scrofa chromosome (SSC) 7, 9, 13 and 14 were identified in all populations. These signatures overlapped with quantitative trait loci for linoleic acid content, age at puberty, number of muscle fibers per unit area, hip structure and body weight traits in pigs. Among them, one of the signatures (56.5-56.6 Mb on SSC7) in Large White pigs harbored the ADAMTSL3 gene, which is known to affect body length. The findings of this study seem to point toward recent selection in different pig populations. Further investigations are encouraged to confirm the selection signatures detected by varld in the present study. © 2017 Stichting International Foundation for Animal Genetics.
Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
Haque, Effi; Taniguchi, Hiroaki; Hassan, Md. Mahmudul; Bhowmik, Pankaj; Karim, M. Rezaul; Śmiech, Magdalena; Zhao, Kaijun; Rahman, Mahfuzur; Islam, Tofazzal
2018-01-01
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Haque, Effi; Taniguchi, Hiroaki; Hassan, Md Mahmudul; Bhowmik, Pankaj; Karim, M Rezaul; Śmiech, Magdalena; Zhao, Kaijun; Rahman, Mahfuzur; Islam, Tofazzal
2018-01-01
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria
Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.
2009-01-01
Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814
The genomes of two key bumblebee species with primitive eusocial organization.
Sadd, Ben M; Barribeau, Seth M; Bloch, Guy; de Graaf, Dirk C; Dearden, Peter; Elsik, Christine G; Gadau, Jürgen; Grimmelikhuijzen, Cornelis J P; Hasselmann, Martin; Lozier, Jeffrey D; Robertson, Hugh M; Smagghe, Guy; Stolle, Eckart; Van Vaerenbergh, Matthias; Waterhouse, Robert M; Bornberg-Bauer, Erich; Klasberg, Steffen; Bennett, Anna K; Câmara, Francisco; Guigó, Roderic; Hoff, Katharina; Mariotti, Marco; Munoz-Torres, Monica; Murphy, Terence; Santesmasses, Didac; Amdam, Gro V; Beckers, Matthew; Beye, Martin; Biewer, Matthias; Bitondi, Márcia M G; Blaxter, Mark L; Bourke, Andrew F G; Brown, Mark J F; Buechel, Severine D; Cameron, Rossanah; Cappelle, Kaat; Carolan, James C; Christiaens, Olivier; Ciborowski, Kate L; Clarke, David F; Colgan, Thomas J; Collins, David H; Cridge, Andrew G; Dalmay, Tamas; Dreier, Stephanie; du Plessis, Louis; Duncan, Elizabeth; Erler, Silvio; Evans, Jay; Falcon, Tiago; Flores, Kevin; Freitas, Flávia C P; Fuchikawa, Taro; Gempe, Tanja; Hartfelder, Klaus; Hauser, Frank; Helbing, Sophie; Humann, Fernanda C; Irvine, Frano; Jermiin, Lars S; Johnson, Claire E; Johnson, Reed M; Jones, Andrew K; Kadowaki, Tatsuhiko; Kidner, Jonathan H; Koch, Vasco; Köhler, Arian; Kraus, F Bernhard; Lattorff, H Michael G; Leask, Megan; Lockett, Gabrielle A; Mallon, Eamonn B; Antonio, David S Marco; Marxer, Monika; Meeus, Ivan; Moritz, Robin F A; Nair, Ajay; Näpflin, Kathrin; Nissen, Inga; Niu, Jinzhi; Nunes, Francis M F; Oakeshott, John G; Osborne, Amy; Otte, Marianne; Pinheiro, Daniel G; Rossié, Nina; Rueppell, Olav; Santos, Carolina G; Schmid-Hempel, Regula; Schmitt, Björn D; Schulte, Christina; Simões, Zilá L P; Soares, Michelle P M; Swevers, Luc; Winnebeck, Eva C; Wolschin, Florian; Yu, Na; Zdobnov, Evgeny M; Aqrawi, Peshtewani K; Blankenburg, Kerstin P; Coyle, Marcus; Francisco, Liezl; Hernandez, Alvaro G; Holder, Michael; Hudson, Matthew E; Jackson, LaRonda; Jayaseelan, Joy; Joshi, Vandita; Kovar, Christie; Lee, Sandra L; Mata, Robert; Mathew, Tittu; Newsham, Irene F; Ngo, Robin; Okwuonu, Geoffrey; Pham, Christopher; Pu, Ling-Ling; Saada, Nehad; Santibanez, Jireh; Simmons, DeNard; Thornton, Rebecca; Venkat, Aarti; Walden, Kimberly K O; Wu, Yuan-Qing; Debyser, Griet; Devreese, Bart; Asher, Claire; Blommaert, Julie; Chipman, Ariel D; Chittka, Lars; Fouks, Bertrand; Liu, Jisheng; O'Neill, Meaghan P; Sumner, Seirian; Puiu, Daniela; Qu, Jiaxin; Salzberg, Steven L; Scherer, Steven E; Muzny, Donna M; Richards, Stephen; Robinson, Gene E; Gibbs, Richard A; Schmid-Hempel, Paul; Worley, Kim C
2015-04-24
The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S. Qasim; Thomas, Mark G.; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J.; Tyler-Smith, Chris
2012-01-01
Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified “African” and “non-African” haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ∼3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ∼60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. PMID:22726845
HLA imputation in an admixed population: An assessment of the 1000 Genomes data as a training set.
Nunes, Kelly; Zheng, Xiuwen; Torres, Margareth; Moraes, Maria Elisa; Piovezan, Bruno Z; Pontes, Gerlandia N; Kimura, Lilian; Carnavalli, Juliana E P; Mingroni Netto, Regina C; Meyer, Diogo
2016-03-01
Methods to impute HLA alleles based on dense single nucleotide polymorphism (SNP) data provide a valuable resource to association studies and evolutionary investigation of the MHC region. The availability of appropriate training sets is critical to the accuracy of HLA imputation, and the inclusion of samples with various ancestries is an important pre-requisite in studies of admixed populations. We assess the accuracy of HLA imputation using 1000 Genomes Project data as a training set, applying it to a highly admixed Brazilian population, the Quilombos from the state of São Paulo. To assess accuracy, we compared imputed and experimentally determined genotypes for 146 samples at 4 HLA classical loci. We found imputation accuracies of 82.9%, 81.8%, 94.8% and 86.6% for HLA-A, -B, -C and -DRB1 respectively (two-field resolution). Accuracies were improved when we included a subset of Quilombo individuals in the training set. We conclude that the 1000 Genomes data is a valuable resource for construction of training sets due to the diversity of ancestries and the potential for a large overlap of SNPs with the target population. We also show that tailoring training sets to features of the target population substantially enhances imputation accuracy. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Genome organization of epidemic Acinetobacter baumannii strains.
Di Nocera, Pier Paolo; Rocco, Francesco; Giannouli, Maria; Triassi, Maria; Zarrilli, Raffaele
2011-10-10
Acinetobacter baumannii is an opportunistic pathogen responsible for hospital-acquired infections. A. baumannii epidemics described world-wide were caused by few genotypic clusters of strains. The occurrence of epidemics caused by multi-drug resistant strains assigned to novel genotypes have been reported over the last few years. In the present study, we compared whole genome sequences of three A. baumannii strains assigned to genotypes ST2, ST25 and ST78, representative of the most frequent genotypes responsible for epidemics in several Mediterranean hospitals, and four complete genome sequences of A. baumannii strains assigned to genotypes ST1, ST2 and ST77. Comparative genome analysis showed extensive synteny and identified 3068 coding regions which are conserved, at the same chromosomal position, in all A. baumannii genomes. Genome alignments also identified 63 DNA regions, ranging in size from 4 o 126 kb, all defined as genomic islands, which were present in some genomes, but were either missing or replaced by non-homologous DNA sequences in others. Some islands are involved in resistance to drugs and metals, others carry genes encoding surface proteins or enzymes involved in specific metabolic pathways, and others correspond to prophage-like elements. Accessory DNA regions encode 12 to 19% of the potential gene products of the analyzed strains. The analysis of a collection of epidemic A. baumannii strains showed that some islands were restricted to specific genotypes. The definition of the genome components of A. baumannii provides a scaffold to rapidly evaluate the genomic organization of novel clinical A. baumannii isolates. Changes in island profiling will be useful in genomic epidemiology of A. baumannii population.
LAMP detection assays for boxwood blight pathogens: A comparative genomics approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel
Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less
Kumar, Narender; Mariappan, Vanitha; Baddam, Ramani; Lankapalli, Aditya K.; Shaik, Sabiha; Goh, Khean-Lee; Loke, Mun Fai; Perkins, Tim; Benghezal, Mohammed; Hasnain, Seyed E.; Vadivelu, Jamuna; Marshall, Barry J.; Ahmed, Niyaz
2015-01-01
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host–pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner. PMID:25452339
LAMP detection assays for boxwood blight pathogens: A comparative genomics approach
Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; ...
2016-05-20
Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less
Insights into hominid evolution from the gorilla genome sequence
Scally, Aylwyn; Dutheil, Julien Y.; Hillier, LaDeana W.; Jordan, Greg E.; Goodhead, Ian; Herrero, Javier; Hobolth, Asger; Lappalainen, Tuuli; Mailund, Thomas; Marques-Bonet, Tomas; McCarthy, Shane; Montgomery, Stephen H.; Schwalie, Petra C.; Tang, Y. Amy; Ward, Michelle C.; Xue, Yali; Yngvadottir, Bryndis; Alkan, Can; Andersen, Lars N.; Ayub, Qasim; Ball, Edward V.; Beal, Kathryn; Bradley, Brenda J.; Chen, Yuan; Clee, Chris M.; Fitzgerald, Stephen; Graves, Tina A.; Gu, Yong; Heath, Paul; Heger, Andreas; Karakoc, Emre; Kolb-Kokocinski, Anja; Laird, Gavin K.; Lunter, Gerton; Meader, Stephen; Mort, Matthew; Mullikin, James C.; Munch, Kasper; O’Connor, Timothy D.; Phillips, Andrew D.; Prado-Martinez, Javier; Rogers, Anthony S.; Sajjadian, Saba; Schmidt, Dominic; Shaw, Katy; Simpson, Jared T.; Stenson, Peter D.; Turner, Daniel J.; Vigilant, Linda; Vilella, Albert J.; Whitener, Weldon; Zhu, Baoli; Cooper, David N.; de Jong, Pieter; Dermitzakis, Emmanouil T.; Eichler, Evan E.; Flicek, Paul; Goldman, Nick; Mundy, Nicholas I.; Ning, Zemin; Odom, Duncan T.; Ponting, Chris P.; Quail, Michael A.; Ryder, Oliver A.; Searle, Stephen M.; Warren, Wesley C.; Wilson, Richard K.; Schierup, Mikkel H.; Rogers, Jane; Tyler-Smith, Chris; Durbin, Richard
2012-01-01
Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. PMID:22398555
Lee, Kevin C; Stott, Matthew B; Dunfield, Peter F; Huttenhower, Curtis; McDonald, Ian R; Morgan, Xochitl C
2016-06-15
Chthonomonas calidirosea T49(T) is a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that the C. calidirosea genome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of four C. calidirosea isolates obtained from four separate geothermal fields in the Taupō Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation in C. calidirosea relative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of the C. calidirosea isolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms of C. calidirosea distribution. This dispersal and extinction mechanism is likely not limited to C. calidirosea but may shape the populations and genomes of many other low-abundance free-living taxa. This study compares the genomic sequence variations and metabolisms of four strains of Chthonomonas calidirosea, a rare thermophilic bacterium from the phylum Armatimonadetes It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the four C. calidirosea strains were isolated. C. calidirosea was previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, the C. calidirosea genome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting that C. calidirosea genotypes are not primarily determined by adaptive evolution. Instead, the presence of C. calidirosea may be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa. Copyright © 2016 Lee et al.
Lee, Kevin C.; Stott, Matthew B.; Dunfield, Peter F.; Huttenhower, Curtis; McDonald, Ian R.
2016-01-01
ABSTRACT Chthonomonas calidirosea T49T is a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that the C. calidirosea genome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of four C. calidirosea isolates obtained from four separate geothermal fields in the Taupō Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation in C. calidirosea relative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of the C. calidirosea isolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms of C. calidirosea distribution. This dispersal and extinction mechanism is likely not limited to C. calidirosea but may shape the populations and genomes of many other low-abundance free-living taxa. IMPORTANCE This study compares the genomic sequence variations and metabolisms of four strains of Chthonomonas calidirosea, a rare thermophilic bacterium from the phylum Armatimonadetes. It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the four C. calidirosea strains were isolated. C. calidirosea was previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, the C. calidirosea genome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting that C. calidirosea genotypes are not primarily determined by adaptive evolution. Instead, the presence of C. calidirosea may be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa. PMID:27060125
A 1000 Arab genome project to study the Emirati population.
Al-Ali, Mariam; Osman, Wael; Tay, Guan K; AlSafar, Habiba S
2018-04-01
Discoveries from the human genome, HapMap, and 1000 genome projects have collectively contributed toward the creation of a catalog of human genetic variations that has improved our understanding of human diversity. Despite the collegial nature of many of these genome study consortiums, which has led to the cataloging of genetic variations of different ethnic groups from around the world, genome data on the Arab population remains overwhelmingly underrepresented. The National Arab Genome project in the United Arab Emirates (UAE) aims to address this deficiency by using Next Generation Sequencing (NGS) technology to provide data to improve our understanding of the Arab genome and catalog variants that are unique to the Arab population of the UAE. The project was conceived to shed light on the similarities and differences between the Arab genome and those of the other ethnic groups.
Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.
Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea
2014-06-01
Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei
2016-05-01
Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan
2011-09-01
To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.
Settepani, V; Schou, M F; Greve, M; Grinsted, L; Bechsgaard, J; Bilde, T
2017-08-01
Across several animal taxa, the evolution of sociality involves a suite of characteristics, a "social syndrome," that includes cooperative breeding, reproductive skew, primary female-biased sex ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short-term benefits but come with long-term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD-sequencing approach to estimate genomewide diversity in spider species that differ in level of sociality, reproductive skew and mating system. We analysed multiple populations of three independent sister-species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within-population diversity were sixfold to 10-fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species-wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species-wide genetic diversity of social species was 5-8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genomewide diversity, likely to limit their evolutionary potential. © 2017 John Wiley & Sons Ltd.
Optimization of a genomic breeding program for a moderately sized dairy cattle population.
Reiner-Benaim, A; Ezra, E; Weller, J I
2017-04-01
Although it now standard practice to genotype thousands of female calves, genotyping of bull calves is generally limited to progeny of elite cows. In addition to genotyping costs, increasing the pool of candidate sires requires purchase, isolation, and identification of calves until selection decisions are made. We economically optimized via simulation a genomic breeding program for a population of approximately 120,000 milk-recorded cows, corresponding to the Israeli Holstein population. All 30,000 heifers and 60,000 older cows of parities 1 to 3 were potential bull dams. Animals were assumed to have genetic evaluations for a trait with heritability of 0.25 derived by an animal model evaluation of the population. Only bull calves were assumed to be genotyped. A pseudo-phenotype corresponding to each animal's genetic evaluation was generated, consisting of the animal's genetic value plus a residual with variance set to obtain the assumed reliability for each group of animals. Between 4 and 15 bulls and between 200 and 27,000 cows with the highest pseudo-phenotypes were selected as candidate bull parents. For all progeny of the founder animals, genetic values were simulated as the mean of the parental values plus a Mendelian sampling effect with variance of 0.5. A probability of 0.3 for a healthy bull calf per mating, and a genomic reliability of 0.43 were assumed. The 40 bull calves with the highest genomic evaluations were selected for general service for 1 yr. Costs included genotyping of candidate bulls and their dams, purchase of the calves from the farmers, and identification. Costs of raising culled calves were partially recovered by resale for beef. Annual costs were estimated as $10,922 + $305 × candidate bulls. Nominal profit per cow per genetic standard deviation was $106. Economic optimum with a discount rate of 5%, first returns after 4 yr, and a profit horizon of 15 yr were obtained with genotyping 1,620 to 1,750 calves for all numbers of bull sires. However, 95% of the optimal profit can be achieved with only 240 to 300 calves. The higher reliabilities achieved through addition of genomic information to the selection process contribute not only in obtaining higher genetic gain, but also in obtaining higher absolute profits. In addition, the optimal profits are obtained for a lower number of calves born in each generation. Inbreeding, as allowed within genomic selection for the Israeli herd, had virtually no effect on genetic gain or on profits, when compared with the case of exclusion of all matings that generate inbreeding. Annual response to selection ranged from 0.35 to 0.4 genetic standard deviation for 4 to 15 bull sires, as compared with 0.25 to 0.3 for a comparable half-sib design without genomic selection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Self-domestication in Homo sapiens: Insights from comparative genomics.
Theofanopoulou, Constantina; Gastaldon, Simone; O'Rourke, Thomas; Samuels, Bridget D; Messner, Angela; Martins, Pedro Tiago; Delogu, Francesco; Alamri, Saleh; Boeckx, Cedric
2017-01-01
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Yap, Kien-Pong; Gan, Han Ming; Teh, Cindy Shuan Ju; Chai, Lay Ching; Thong, Kwai Lin
2014-11-20
Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection. A comparative genomics analysis combined with a phylogenomic analysis revealed that the strains from the outbreak and carrier were closely related with microvariations and possibly derived from a common ancestor. Additionally, the comparative genomics analysis with all of the other completely sequenced S. Typhi genomes revealed that strains BL196 and CR0044 exhibit unusual genomic variations despite S. Typhi being generally regarded as highly clonal. The two genomes shared distinct chromosomal architectures and uncommon genome features; notably, the presence of a ~10 kb novel genomic island containing uncharacterised virulence-related genes, and zot in particular. Variations were also detected in the T6SS system and genes that were related to SPI-10, insertion sequences, CRISPRs and nsSNPs among the studied genomes. Interestingly, the carrier strain CR0044 harboured far more genetic polymorphisms (83% mutant nsSNPs) compared with the closely related BL196 outbreak strain. Notably, the two highly related virulence-determinant genes, rpoS and tviE, were mutated in strains BL196 and CR0044, respectively, which revealed that the mutation in rpoS is stabilising, while that in tviE is destabilising. These microvariations provide novel insight into the optimisation of genes by the pathogens. However, the sporadic strain was found to be far more conserved compared with the others. The uncommon genomic variations in the two closely related BL196 and CR0044 strains suggests that S. Typhi is more diverse than previously thought. Our study has demonstrated that the pathogen is continually acquiring new genes through horizontal gene transfer in the process of host adaptation, providing novel insight into its unusual genomic dynamics. The understanding of these strains and virulence factors, and particularly the strain that is associated with the large outbreak and the less studied asymptomatic Typhi carrier in the population, will have important impact on disease control.
Supervised Machine Learning for Population Genetics: A New Paradigm
Schrider, Daniel R.; Kern, Andrew D.
2018-01-01
As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490
Pagani, Luca; Schiffels, Stephan; Gurdasani, Deepti; Danecek, Petr; Scally, Aylwyn; Chen, Yuan; Xue, Yali; Haber, Marc; Ekong, Rosemary; Oljira, Tamiru; Mekonnen, Ephrem; Luiselli, Donata; Bradman, Neil; Bekele, Endashaw; Zalloua, Pierre; Durbin, Richard; Kivisild, Toomas; Tyler-Smith, Chris
2015-06-04
The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult. We generated 225 whole-genome sequences (225 at 8× depth, of which 8 were increased to 30×; Illumina HiSeq 2000) from six modern Northeast African populations (100 Egyptians and five Ethiopian populations each represented by 25 individuals). West Eurasian components were masked out, and the remaining African haplotypes were compared with a panel of sub-Saharan African and non-African genomes. We showed that masked Northeast African haplotypes overall were more similar to non-African haplotypes and more frequently present outside Africa than were any sets of haplotypes derived from a West African population. Furthermore, the masked Egyptian haplotypes showed these properties more markedly than the masked Ethiopian haplotypes, pointing to Egypt as the more likely gateway in the exodus to the rest of the world. Using five Ethiopian and three Egyptian high-coverage masked genomes and the multiple sequentially Markovian coalescent (MSMC) approach, we estimated the genetic split times of Egyptians and Ethiopians from non-African populations at 55,000 and 65,000 years ago, respectively, whereas that of West Africans was estimated to be 75,000 years ago. Both the haplotype and MSMC analyses thus suggest a predominant northern route out of Africa via Egypt. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Corbi, Jonathan; Baack, Eric J; Dechaine, Jennifer M; Seiler, Gerald; Burke, John M
2018-01-01
Crop-wild hybridization occurs in numerous plant species and could alter the genetic structure and evolutionary dynamics of wild populations. Studying crop-derived alleles in wild populations is also relevant to assessing/mitigating the risks associated with transgene escape. To date, crop-wild hybridization has generally been examined via short-term studies, typically within a single generation, focusing on few traits or genetic markers. Little is known about patterns of selection on crop-derived alleles over multiple generations, particularly at a genome-wide scale. Here, we documented patterns of natural selection in an experimental crop × wild sunflower population that was allowed to evolve under natural conditions for two generations at two locations. Allele frequencies at a genome-wide collection of SNPs were tracked across generations, and a common garden experiment was conducted to compare trait means between generations. These data allowed us to identify instances of selection on crop-derived alleles/traits and, in concert with QTL mapping results, test for congruence between our genotypic and phenotypic results. We found that natural selection overwhelmingly favours wild alleles and phenotypes. However, crop alleles in certain genomic regions can be favoured, and these changes often occurred in parallel across locations. We did not, however, consistently observe close agreement between our genotypic and phenotypic results. For example, when a trait evolved towards the wild phenotype, wild QTL alleles associated with that trait did not consistently increase in frequency. We discuss these results in the context of crop allele introgression into wild populations and implications for the management of GM crops. © 2017 John Wiley & Sons Ltd.
Gómez-Carballa, Alberto; Amigo, Jorge; Martinón-Torres, Federico
2014-01-01
Background The origin of the Etruscan civilization (Etruria, Central Italy) is a long-standing subject of debate among scholars from different disciplines. The bulk of the information has been reconstructed from ancient texts and archaeological findings and, in the last few years, through the analysis of uniparental genetic markers. Methods By meta-analyzing genome-wide data from The 1000 Genomes Project and the literature, we were able to compare the genomic patterns (>540,000 SNPs) of present day Tuscans (N = 98) with other population groups from the main hypothetical source populations, namely, Europe and the Middle East. Results Admixture analysis indicates the presence of 25–34% of Middle Eastern component in modern Tuscans. Different analyses have been carried out using identity-by-state (IBS) values and genetic distances point to Eastern Anatolia/Southern Caucasus as the most likely geographic origin of the main Middle Eastern genetic component observed in the genome of modern Tuscans. Conclusions The data indicate that the admixture event between local Tuscans and Middle Easterners could have occurred in Central Italy about 2,600–3,100 years ago (y.a.). On the whole, the results validate the theory of the ancient historian Herodotus on the origin of Etruscans. PMID:25230205
Reitzel, A M; Herrera, S; Layden, M J; Martindale, M Q; Shank, T M
2013-06-01
Characterization of large numbers of single-nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. The results from analyses with and without a reference genome supported similar conclusions, further highlighting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals and jellyfishes, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection. © 2013 John Wiley & Sons Ltd.
Kjærner-Semb, Erik; Ayllon, Fernando; Furmanek, Tomasz; Wennevik, Vidar; Dahle, Geir; Niemelä, Eero; Ozerov, Mikhail; Vähä, Juha-Pekka; Glover, Kevin A; Rubin, Carl J; Wargelius, Anna; Edvardsen, Rolf B
2016-08-11
Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13-15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation.
Reitzel, A.M.; Herrera, S.; Layden, M.J.; Martindale, M.Q.; Shank, T.M.
2013-01-01
Characterization of large numbers of single nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. Results from analyses with and without a reference genome supported similar conclusions, further supporting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection. PMID:23473066
Becraft, Eric D.; Dodsworth, Jeremy A.; Murugapiran, Senthil K.; Ohlsson, J. Ingemar; Briggs, Brandon R.; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R.; Dong, Hailiang; Hedlund, Brian P.
2015-01-01
The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This “microbial dark matter” represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum “Calescamantes” (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. PMID:26637598
Yáñez, J M; Naswa, S; López, M E; Bassini, L; Correa, K; Gilbey, J; Bernatchez, L; Norris, A; Neira, R; Lhorente, J P; Schnable, P S; Newman, S; Mileham, A; Deeb, N; Di Genova, A; Maass, A
2016-07-01
A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype-phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole-genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom(®) myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high-density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high-resolution genomewide information. © 2016 John Wiley & Sons Ltd.
Speciation in the Derrida-Higgs model with finite genomes and spatial populations
NASA Astrophysics Data System (ADS)
de Aguiar, Marcus A. M.
2017-02-01
The speciation model proposed by Derrida and Higgs demonstrated that a sexually reproducing population can split into different species in the absence of natural selection or any type of geographic isolation, provided that mating is assortative and the number of genes involved in the process is infinite. Here we revisit this model and simulate it for finite genomes, focusing on the question of how many genes it actually takes to trigger neutral sympatric speciation. We find that, for typical parameters used in the original model, it takes the order of 105 genes. We compare the results with a similar spatially explicit model where about 100 genes suffice for speciation. We show that when the number of genes is small the species that emerge are strongly segregated in space. For a larger number of genes, on the other hand, the spatial structure of the population is less important and the species distribution overlap considerably.
Dehnavi, E; Mahyari, S Ansari; Schenkel, F S; Sargolzaei, M
2018-06-01
Using cow data in the training population is attractive as a way to mitigate bias due to highly selected training bulls and to implement genomic selection for countries with no or limited proven bull data. However, one potential issue with cow data is a bias due to the preferential treatment. The objectives of this study were to (1) investigate the effect of including cow genotype and phenotype data into the training population on accuracy and bias of genomic predictions and (2) assess the effect of preferential treatment for different proportions of elite cows. First, a 4-pathway Holstein dairy cattle population was simulated for 2 traits with low (0.05) and moderate (0.3) heritability. Then different numbers of cows (0, 2,500, 5,000, 10,000, 15,000, or 20,000) were randomly selected and added to the training group composed of different numbers of top bulls (0, 2,500, 5,000, 10,000, or 15,000). Reliability levels of de-regressed estimated breeding values for training cows and bulls were 30 and 75% for traits with low heritability and were 60 and 90% for traits with moderate heritability, respectively. Preferential treatment was simulated by introducing upward bias equal to 35% of phenotypic variance to 5, 10, and 20% of elite bull dams in each scenario. Two different validation data sets were considered: (1) all animals in the last generation of both elite and commercial tiers (n = 42,000) and (2) only animals in the last generation of the elite tier (n = 12,000). Adding cow data into the training population led to an increase in accuracy (r) and decrease in bias of genomic predictions in all considered scenarios without preferential treatment. The gain in r was higher for the low heritable trait (from 0.004 to 0.166 r points) compared with the moderate heritable trait (from 0.004 to 0.116 r points). The gain in accuracy in scenarios with a lower number of training bulls was relatively higher (from 0.093 to 0.166 r points) than with a higher number of training bulls (from 0.004 to 0.09 r points). In this study, as expected, the bull-only reference population resulted in higher accuracy compared with the cow-only reference population of the same size. However, the cow reference population might be an option for countries with a small-scale progeny testing scheme or for minor breeds in large counties, and for traits measured only on a small fraction of the population. The inclusion of preferential treatment to 5 to 20% of the elite cows led to an adverse effect on both accuracy and bias of predictions. When preferential treatment was present, random selection of cows did not reduce the effect of preferential treatment. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Poland, Jesse
2015-04-01
The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Willi, Yvonne
2013-06-01
Outcrossing creates a venue for parental conflict. When one sex provides parental care to offspring fertilized by several partners, the nonproviding sex is under selection to maximally exploit the caring sex. The caring sex may counteradapt, and a coevolutionary arms race ensues. Genetic models of this conflict include the kinship theory of genomic imprinting (parent-of-origin-specific expression of maternal-care effectors) and interlocus conflict evolution (interaction between male selfish signals and female abatement). Predictions were tested by measuring the sizes of seeds produced by within-population crosses (diallel design) and between-population crosses in outcrossing and selfing populations of Arabidopsis lyrata. Within-population diallel crosses revealed substantial maternal variance in seed size in most populations. The comparison of between- and within-population crosses showed that seeds were larger when pollen came from another outcrossing population than when pollen came from a selfing or the same population, supporting interlocus contest evolution between male selfish genes and female recognition genes. Evidence for kinship genomic imprinting came from complementary trait means of seed size in reciprocal between-population crosses independent of whether populations were predominantly selfing or outcrossing. Hence, both kinship genomic imprinting and interlocus contest are supported in outcrossing Arabidopsis, whereas only kinship genomic imprinting is important in selfing populations.
Convergent genomic signatures of domestication in sheep and goats.
Alberto, Florian J; Boyer, Frédéric; Orozco-terWengel, Pablo; Streeter, Ian; Servin, Bertrand; de Villemereuil, Pierre; Benjelloun, Badr; Librado, Pablo; Biscarini, Filippo; Colli, Licia; Barbato, Mario; Zamani, Wahid; Alberti, Adriana; Engelen, Stefan; Stella, Alessandra; Joost, Stéphane; Ajmone-Marsan, Paolo; Negrini, Riccardo; Orlando, Ludovic; Rezaei, Hamid Reza; Naderi, Saeid; Clarke, Laura; Flicek, Paul; Wincker, Patrick; Coissac, Eric; Kijas, James; Tosser-Klopp, Gwenola; Chikhi, Abdelkader; Bruford, Michael W; Taberlet, Pierre; Pompanon, François
2018-03-06
The evolutionary basis of domestication has been a longstanding question and its genetic architecture is becoming more tractable as more domestic species become genome-enabled. Before becoming established worldwide, sheep and goats were domesticated in the fertile crescent 10,500 years before present (YBP) where their wild relatives remain. Here we sequence the genomes of wild Asiatic mouflon and Bezoar ibex in the sheep and goat domestication center and compare their genomes with that of domestics from local, traditional, and improved breeds. Among the genomic regions carrying selective sweeps differentiating domestic breeds from wild populations, which are associated among others to genes involved in nervous system, immunity and productivity traits, 20 are common to Capra and Ovis. The patterns of selection vary between species, suggesting that while common targets of selection related to domestication and improvement exist, different solutions have arisen to achieve similar phenotypic end-points within these closely related livestock species.
Coverage and efficiency in current SNP chips
Ha, Ngoc-Thuy; Freytag, Saskia; Bickeboeller, Heike
2014-01-01
To answer the question as to which commercial high-density SNP chip covers most of the human genome given a fixed budget, we compared the performance of 12 chips of different sizes released by Affymetrix and Illumina for the European, Asian, and African populations. These include Affymetrix' relatively new population-optimized arrays, whose SNP sets are each tailored toward a specific ethnicity. Our evaluation of the chips included the use of two measures, efficiency and cost–benefit ratio, which we developed as supplements to genetic coverage. Unlike coverage, these measures factor in the price of a chip or its substitute size (number of SNPs on chip), allowing comparisons to be drawn between differently priced chips. In this fashion, we identified the Affymetrix population-optimized arrays as offering the most cost-effective coverage for the Asian and African population. For the European population, we established the Illumina Human Omni 2.5-8 as the preferred choice. Interestingly, the Affymetrix chip tailored toward an Eastern Asian subpopulation performed well for all three populations investigated. However, our coverage estimates calculated for all chips proved much lower than those advertised by the producers. All our analyses were based on the 1000 Genome Project as reference population. PMID:24448550
Simultaneous gene finding in multiple genomes.
König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario
2016-11-15
As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Ann C.; Solonenko, Sergei A.; Ignacio-Espinoza, J. Cesar
Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Here in this study we explore the role of recombination in both maintainingmore » and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Lastly, these findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.« less
Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer
Gregory, Ann C.; Solonenko, Sergei A.; Ignacio-Espinoza, J. Cesar; ...
2016-11-16
Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Here in this study we explore the role of recombination in both maintainingmore » and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Lastly, these findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.« less
Mobile elements reveal small population size in the ancient ancestors of Homo sapiens.
Huff, Chad D; Xing, Jinchuan; Rogers, Alan R; Witherspoon, David; Jorde, Lynn B
2010-02-02
The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10(-30)), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.
Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system.
Hsu, Li-Yang; Harris, Simon R; Chlebowicz, Monika A; Lindsay, Jodi A; Koh, Tse-Hsien; Krishnan, Prabha; Tan, Thean-Yen; Hon, Pei-Yun; Grubb, Warren B; Bentley, Stephen D; Parkhill, Julian; Peacock, Sharon J; Holden, Matthew T G
2015-04-23
In the past decade, several countries have seen gradual replacement of endemic multi-resistant healthcare-associated methicillin-resistant Staphylococcus aureus (MRSA) with clones that are more susceptible to antibiotic treatment. One example is Singapore, where MRSA ST239, the dominant clone since molecular profiling of MRSA began in the mid-1980s, has been replaced by ST22 isolates belonging to EMRSA-15, a recently emerged pandemic lineage originating from Europe. We investigated the population structure of MRSA in Singaporean hospitals spanning three decades, using whole genome sequencing. Applying Bayesian phylogenetic methods we report that prior to the introduction of ST22, the ST239 MRSA population in Singapore originated from multiple introductions from the surrounding region; it was frequently transferred within the healthcare system resulting in a heterogeneous hospital population. Following the introduction of ST22 around the beginning of the millennium, this clone spread rapidly through Singaporean hospitals, supplanting the endemic ST239 population. Coalescent analysis revealed that although the genetic diversity of ST239 initially decreased as ST22 became more dominant, from 2007 onwards the genetic diversity of ST239 began to increase once more, which was not associated with the emergence of a sub-clone of ST239. Comparative genomic analysis of the accessory genome of the extant ST239 population identified that the Arginine Catabolic Mobile Element arose multiple times, thereby introducing genes associated with enhanced skin colonization into this population. Our results clearly demonstrate that, alongside clinical practice and antibiotic usage, competition between clones also has an important role in driving the evolution of nosocomial pathogen populations.
Buschiazzo, Emmanuel; Ritland, Carol; Bohlmann, Jörg; Ritland, Kermit
2012-01-20
Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10(-9) synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.
Genome-wide evidence for divergent selection between populations of a major agricultural pathogen.
Hartmann, Fanny E; McDonald, Bruce A; Croll, Daniel
2018-06-01
The genetic and environmental homogeneity in agricultural ecosystems is thought to impose strong and uniform selection pressures. However, the impact of this selection on plant pathogen genomes remains largely unknown. We aimed to identify the proportion of the genome and the specific gene functions under positive selection in populations of the fungal wheat pathogen Zymoseptoria tritici. First, we performed genome scans in four field populations that were sampled from different continents and on distinct wheat cultivars to test which genomic regions are under recent selection. Based on extended haplotype homozygosity and composite likelihood ratio tests, we identified 384 and 81 selective sweeps affecting 4% and 0.5% of the 35 Mb core genome, respectively. We found differences both in the number and the position of selective sweeps across the genome between populations. Using a XtX-based outlier detection approach, we identified 51 extremely divergent genomic regions between the allopatric populations, suggesting that divergent selection led to locally adapted pathogen populations. We performed an outlier detection analysis between two sympatric populations infecting two different wheat cultivars to identify evidence for host-driven selection. Selective sweep regions harboured genes that are likely to play a role in successfully establishing host infections. We also identified secondary metabolite gene clusters and an enrichment in genes encoding transporter and protein localization functions. The latter gene functions mediate responses to environmental stress, including interactions with the host. The distinct gene functions under selection indicate that both local host genotypes and abiotic factors contributed to local adaptation. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
A map of human genome variation from population-scale sequencing.
Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A
2010-10-28
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.
Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.
Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204
Ha, Gavin; Roth, Andrew; Khattra, Jaswinder; Ho, Julie; Yap, Damian; Prentice, Leah M; Melnyk, Nataliya; McPherson, Andrew; Bashashati, Ali; Laks, Emma; Biele, Justina; Ding, Jiarui; Le, Alan; Rosner, Jamie; Shumansky, Karey; Marra, Marco A; Gilks, C Blake; Huntsman, David G; McAlpine, Jessica N; Aparicio, Samuel; Shah, Sohrab P
2014-11-01
The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN. © 2014 Ha et al.; Published by Cold Spring Harbor Laboratory Press.
An initial comparative map of copy number variations in the goat (Capra hircus) genome
2010-01-01
Background The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P < 0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals. Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats. PMID:21083884
Leichty, Aaron R; Brisson, Dustin
2014-10-01
Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.
EDELIST, CÉCILE; LEXER, CHRISTIAN; DILLMANN, CHRISTINE; SICARD, DELPHINE; RIESEBERG, LOREN H.
2008-01-01
The hybrid sunflower species Helianthus paradoxus inhabits sporadic salt marshes in New Mexico and southwest Texas, USA, whereas its parental species, Helianthus annuus and Helianthus petiolaris, are salt sensitive. Previous studies identified three genomic regions — survivorship quantitative trait loci (QTLs) — that were under strong selection in experimental hybrids transplanted into the natural habitat of H. paradoxus. Here we ask whether these same genomic regions experienced significant selection during the origin and evolution of the natural hybrid, H. paradoxus. This was accomplished by comparing the variability of microsatellites linked to the three survivorship QTLs with those from genomic regions that were neutral in the experimental hybrids. As predicted if one or more selective sweeps had occurred in these regions, microsatellites linked to the survivorship QTLs exhibited a significant reduction in diversity in populations of the natural hybrid species. In contrast, no difference in diversity levels was observed between the two microsatellite classes in parental populations. PMID:17107488
The emergence of human-evolutionary medical genomics
Crespi, Bernard J
2011-01-01
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the ‘genes that make us human’ also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles. PMID:25567974
Estimates of Continental Ancestry Vary Widely among Individuals with the Same mtDNA Haplogroup
Emery, Leslie S.; Magnaye, Kevin M.; Bigham, Abigail W.; Akey, Joshua M.; Bamshad, Michael J.
2015-01-01
The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual’s mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. PMID:25620206
2017-01-01
The consequences of selection at linked sites are multiple and widespread across the genomes of most species. Here, I first review the main concepts behind models of selection and linkage in recombining genomes, present the difficulty in parametrizing these models simply as a reduction in effective population size (Ne) and discuss the predicted impact of recombination rates on levels of diversity across genomes. Arguments are then put forward in favour of using a model of selection and linkage with neutral and deleterious mutations (i.e. the background selection model, BGS) as a sensible null hypothesis for investigating the presence of other forms of selection, such as balancing or positive. I also describe and compare two studies that have generated high-resolution landscapes of the predicted consequences of selection at linked sites in Drosophila melanogaster. Both studies show that BGS can explain a very large fraction of the observed variation in diversity across the whole genome, thus supporting its use as null model. Finally, I identify and discuss a number of caveats and challenges in studies of genetic hitchhiking that have been often overlooked, with several of them sharing a potential bias towards overestimating the evidence supporting recent selective sweeps to the detriment of a BGS explanation. One potential source of bias is the analysis of non-equilibrium populations: it is precisely because models of selection and linkage predict variation in Ne across chromosomes that demographic dynamics are not expected to be equivalent chromosome- or genome-wide. Other challenges include the use of incomplete genome annotations, the assumption of temporally stable recombination landscapes, the presence of genes under balancing selection and the consequences of ignoring non-crossover (gene conversion) recombination events. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109230
Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv
2018-06-05
Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2 ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.
Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.
Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D
2016-05-01
A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. Copyright © 2016 by the Genetics Society of America.
The genome landscape of indigenous African cattle.
Kim, Jaemin; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Bashir, Salim; Diallo, Boubacar; Agaba, Morris; Kim, Kwondo; Kwak, Woori; Sung, Samsun; Seo, Minseok; Jeong, Hyeonsoo; Kwon, Taehyung; Taye, Mengistie; Song, Ki-Duk; Lim, Dajeong; Cho, Seoae; Lee, Hyun-Jeong; Yoon, Duhak; Oh, Sung Jong; Kemp, Stephen; Lee, Hak-Kyo; Kim, Heebal
2017-02-20
The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.
An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca)
Feldmeyer, Barbara; Schmidt, Hanno; Greshake, Bastian; Tills, Oliver; Truebano, Manuela; Rundle, Simon D.; Paule, Juraj; Ebersberger, Ingo; Pfenninger, Markus
2017-01-01
Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72×. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ∼690 Mb compared with the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70% mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum. PMID:28204581
Kuo, Wen-Hua
2011-10-01
This paper compares the development of genomics as a form of state project in Japan and Taiwan. Broadening the concepts of genomic sovereignty and bionationalism, I argue that the establishment and use of genomic databases vary according to techno-political context. While both Japan and Taiwan hold population-based databases to be necessary for scientific advance and competitiveness, they differ in how they have attempted to transform the information produced by databases into regulatory schemes for drug approval. The effectiveness of Taiwan's biobank is severely limited by the IRB reviewing process. By contrast, while updating its regulations for drug approval, Japan, is using pharmacogenomics to deal with matters relating to ethnic identity. By analysing genomic initiatives in the political context that nurtures them, this paper seeks to capture how global science and local societies interact and offers insight into the assessment of state-sponsored science in East Asia as they become transnational. Copyright © 2011 Elsevier Ltd. All rights reserved.
Extensive genome-wide autozygosity in the population isolates of Daghestan.
Karafet, Tatiana M; Bulayeva, Kazima B; Bulayev, Oleg A; Gurgenova, Farida; Omarova, Jamilia; Yepiskoposyan, Levon; Savina, Olga V; Veeramah, Krishna R; Hammer, Michael F
2015-10-01
Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages. The ND-speaking populations showed greatly elevated coefficients of inbreeding, very high numbers and long lengths of Runs of Homozygosity, and elevated linkage disequilibrium compared with surrounding groups from the Caucasus, the Near East, Europe, Central and South Asia. These results are consistent with the hypothesis that most ND-speaking groups descend from a common ancestral population that fragmented into a series of genetic isolates in the Daghestanian highlands. They have subsequently maintained a long-term small effective population size as a result of constant inbreeding and very low levels of gene flow. Given these findings, Daghestanian population isolates are likely to be useful for mapping genes associated with complex diseases.
Jinam, Timothy; Nishida, Nao; Hirai, Momoki; Kawamura, Shoji; Oota, Hiroki; Umetsu, Kazuo; Kimura, Ryosuke; Ohashi, Jun; Tajima, Atsushi; Yamamoto, Toshimichi; Tanabe, Hideyuki; Mano, Shuhei; Suto, Yumiko; Kaname, Tadashi; Naritomi, Kenji; Yanagi, Kumiko; Niikawa, Norio; Omoto, Keiichi; Tokunaga, Katsushi; Saitou, Naruya
2012-12-01
The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to >30 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved.
Rosenberg, Noah A; Mahajan, Saurabh; Gonzalez-Quevedo, Catalina; Blum, Michael G B; Nino-Rosales, Laura; Ninis, Vasiliki; Das, Parimal; Hegde, Madhuri; Molinari, Laura; Zapata, Gladys; Weber, James L; Belmont, John W; Patel, Pragna I
2006-12-01
Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States-sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.
Chromosomal Evolution and Patterns of Introgression in Helianthus
Barb, Jessica G.; Bowers, John E.; Renaut, Sebastien; Rey, Juan I.; Knapp, Steven J.; Rieseberg, Loren H.; Burke, John M.
2014-01-01
Knowledge of the nature and extent of karyotypic differences between species provides insight into the evolutionary history of the genomes in question and, in the case of closely related species, the potential for genetic exchange between taxa. We constructed high-density genetic maps of the silverleaf sunflower (Helianthus argophyllus) and Algodones Dune sunflower (H. niveus ssp. tephrodes) genomes and compared them to a consensus map of cultivated sunflower (H. annuus) to identify chromosomal rearrangements between species. The genetic maps of H. argophyllus and H. niveus ssp. tephrodes included 17 linkage groups each and spanned 1337 and 1478 cM, respectively. Comparative analyses revealed greater divergence between H. annuus and H. niveus ssp. tephrodes (13 inverted segments, 18 translocated segments) than between H. annuus and H. argophyllus (10 inverted segments, 8 translocated segments), consistent with their known phylogenetic relationships. Marker order was conserved across much of the genome, with 83 and 64% of the H. argophyllus and H. niveus ssp. tephrodes genomes, respectively, being syntenic with H. annuus. Population genomic analyses between H. annuus and H. argophyllus, which are sympatric across a portion of the natural range of H. annuus, revealed significantly elevated genetic structure in rearranged portions of the genome, indicating that such rearrangements are associated with restricted gene flow between these two species. PMID:24770331
Wang, Pei; Song, Fan; Cai, Wanzhi
2014-01-01
Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409
Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids
2005-09-01
surfclams , Spisula solidissima, in the western North Atlantic based on mitochondrial and nuclear DNA sequences. Marine Biology, 146: 707-716. Hayden BP...Science 1930 and Engineering DOCTORAL DISSERTATION Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids by Robert M...Jennings September 2005 MITIWHOI 2005-15 Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids by Robert M. Jennings
Overview of genomic selection in dairy cattle populations
USDA-ARS?s Scientific Manuscript database
Genomic selection is most successful for traits recorded over many years in large populations. Holstein breeders have reference populations >10,000 proven bulls via cooperation among major countries, and countries with smaller Holstein populations can contribute additional bulls. Scandinavian red da...
CSGRqtl: A Comparative Quantitative Trait Locus Database for Saccharinae Grasses.
Zhang, Dong; Paterson, Andrew H
2017-01-01
Conventional biparental quantitative trait locus (QTL) mapping has led to some successes in the identification of causal genes in many organisms. QTL likelihood intervals not only provide "prior information" for finer-resolution approaches such as GWAS but also provide better statistical power than GWAS to detect variants with low/rare frequency in a natural population. Here, we describe a new element of an ongoing effort to provide online resources to facilitate study and improvement of the important Saccharinae clade. The primary goal of this new resource is the anchoring of published QTLs for this clade to the Sorghum genome. Genetic map alignments translate a wealth of genomic information from sorghum to Saccharum spp., Miscanthus spp., and other taxa. In addition, genome alignments facilitate comparison of the Saccharinae QTL sets to those of other taxa that enjoy comparable resources, exemplified herein by rice.
Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Deutsch, Joseph; Salazar, Walter; Hernandez-Ochoa, Miguel; Grygleski, Edward; Steffan, Shawn; Iorizzo, Massimo; Polashock, James; Vorsa, Nicholi; Zalapa, Juan
2016-06-13
The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping. We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species. GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).
2014-01-01
Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272
Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora
Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio
2017-01-01
Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization. PMID:29111566
Haberland, A M; Pimentel, E C G; Ytournel, F; Erbe, M; Simianer, H
2013-12-01
The availability of genomic information demands proper evaluation on how the kind (phenotypic versus genomic) and the amount of information influences the interplay of heritability (h(2)), genetic correlation (r(GiGj)) and economic weighting of traits with regard to the standard deviation of the index (σI). As σI is directly proportional to response to selection, it was the chosen parameter for comparing the indices. Three selection indices incorporating conventional and genomic information for a two trait (i and j) breeding goal were compared. Information sources were chosen corresponding to pig breeding applications. Index I incorporating an own performance in trait j served as reference scenario. In index II, additional information in both traits was contributed by a varying number of full-sibs (2, 7, 50). In index III, the conventional own performance in trait j was combined with genomic information for both traits. The number of animals in the reference population (NP = 1000, 5000, 10,000) and thus the accuracy of GBVs were varied. With more information included in the index, σI became more independent of r(GiGj), h(j)(2) and relative economic weighting. This applied for index II (more full-sibs) and for index III (more accurate GBVs). Standard deviations of index II with seven full-sibs and index III with NP = 1000 were similar when both traits had the same heritability. If the heritability of trait j was reduced (h(j)(2) = 0.1), σI of index III with NP = 1000 was clearly higher than for index II with seven full-sibs. When enhancing the relative economic weight of trait j, the decrease in σI of the conventional full-sib index was much stronger than for index III. Our results imply that NP = 1000 can be considered a minimum size for a reference population in pig breeding. These conclusions also hold for comparing the accuracies of the indices. © 2013 Blackwell Verlag GmbH.
Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis.
Wright, Elli A; Di Lorenzo, Valeria; Trappetti, Claudia; Liciardi, Manuele; Orru, Germano; Viti, Carlo; Bronowski, Christina; Hall, Amanda J; Darby, Alistair C; Oggioni, Marco R; Winstanley, Craig
2015-01-30
Bacterial infections causing mastitis in sheep can result in severe economic losses for farmers. A large survey of milk samples from ewes with mastitis in Sardinia, Italy, indicated an increasing prevalence of Pseudomonas aeruginosa infections. It has been shown previously that during chronic, biofilm-associated infections P. aeruginosa populations diversify. We report the phenotypic and genomic characterisation of two clonal P. aeruginosa isolates (PSE305 and PSE306) from a mastitis infection outbreak, representing distinct colony morphology variants. In addition to pigment production, PSE305 and PSE306 differed in phenotypic characteristics including biofilm formation, utilisation of various carbon and nitrogen sources, twitching motility. We found higher levels of expression of genes associated with biofilm formation (pelB) and twitching motility (flgD) in PSE305, compared to the biofilm and twitching-defective PSE306. Comparative genomics analysis revealed single nucleotide polymorphisms (SNPs) and minor insertion/deletion variations between PSE305 and PSE306, including a SNP mutation in the pilP gene of PSE306. By introducing a wild-type pilP gene we were able to partially complement the defective twitching motility of PSE306. There were also three larger regions of difference between the two genomes, indicating genomic instability. Hence, we have demonstrated that P. aeruginosa population divergence can occur during an outbreak of mastitis, leading to significant variations in phenotype and genotype, and resembling the behaviour of P. aeruginosa during chronic biofilm-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.
Genome sequence of the progenitor of wheat A subgenome Triticum urartu.
Ling, Hong-Qing; Ma, Bin; Shi, Xiaoli; Liu, Hui; Dong, Lingli; Sun, Hua; Cao, Yinghao; Gao, Qiang; Zheng, Shusong; Li, Ye; Yu, Ying; Du, Huilong; Qi, Ming; Li, Yan; Lu, Hongwei; Yu, Hua; Cui, Yan; Wang, Ning; Chen, Chunlin; Wu, Huilan; Zhao, Yan; Zhang, Juncheng; Li, Yiwen; Zhou, Wenjuan; Zhang, Bairu; Hu, Weijuan; van Eijk, Michiel J T; Tang, Jifeng; Witsenboer, Hanneke M A; Zhao, Shancen; Li, Zhensheng; Zhang, Aimin; Wang, Daowen; Liang, Chengzhi
2018-05-09
Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat 1,2 . Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping 4,5 . We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.
Draft genome sequence of the silver pomfret fish, Pampus argenteus.
AlMomin, Sabah; Kumar, Vinod; Al-Amad, Sami; Al-Hussaini, Mohsen; Dashti, Talal; Al-Enezi, Khaznah; Akbar, Abrar
2016-01-01
Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.
2012-01-01
Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. Methods The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. Results Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods. Conclusions The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix. PMID:22455934
Genome sequence and genetic diversity of European ash trees.
Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J; Sambles, Christine M; Ramirez-Gonzalez, Ricardo H; Swarbreck, David; Kaithakottil, Gemy; Cooper, Endymion D; Uauy, Cristobal; Havlickova, Lenka; Worswick, Gemma; Studholme, David J; Zohren, Jasmin; Salmon, Deborah L; Clavijo, Bernardo J; Li, Yi; He, Zhesi; Fellgett, Alison; McKinney, Lea Vig; Nielsen, Lene Rostgaard; Douglas, Gerry C; Kjær, Erik Dahl; Downie, J Allan; Boshier, David; Lee, Steve; Clark, Jo; Grant, Murray; Bancroft, Ian; Caccamo, Mario; Buggs, Richard J A
2017-01-12
Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.
Senier, Laura; Tan, Catherine; Smollin, Leandra; Lee, Rachael
2018-06-12
State health agencies (SHAs) have developed public health genomics (PHG) programs that play an instrumental role in advancing precision public health, but there is limited research on their approaches. This study examines how PHG programs attempt to mitigate or forestall health disparities and inequities in the utilization of genomic medicine. We compared PHG programs in three states: Connecticut, Michigan, and Utah. We analyzed 85 in-depth interviews with SHA internal and external collaborators and program documents. We employed a qualitative coding process to capture themes relating to health disparities and inequities. Each SHA implemented population-level approaches to identify individuals who carry genetic variants that increase risk of hereditary cancers. However, each SHA developed a unique strategy-which we label public health action repertoires-to reach specific subgroups who faced barriers in accessing genetic services. These strategies varied across states given demographics of the state population, state-level partnerships, and availability of healthcare services. Our findings illustrate the imperative of tailoring PHG programs to local demographic characteristics and existing community resources. Furthermore, our study highlights how integrating genomics into precision public health will require multilevel, multisector collaboration to optimize efficacy and equity.
Linkage disequilibrium between STRPs and SNPs across the human genome.
Payseur, Bret A; Place, Michael; Weber, James L
2008-05-01
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.
Walkowiak, Sean; Rowland, Owen; Rodrigue, Nicolas; Subramaniam, Rajagopal
2016-12-09
The Fusarium graminearum species complex is composed of many distinct fungal species that cause several diseases in economically important crops, including Fusarium Head Blight of wheat. Despite being closely related, these species and individuals within species have distinct phenotypic differences in toxin production and pathogenicity, with some isolates reported as non-pathogenic on certain hosts. In this report, we compare genomes and gene content of six new isolates from the species complex, including the first available genomes of F. asiaticum and F. meridionale, with four other genomes reported in previous studies. A comparison of genome structure and gene content revealed a 93-99% overlap across all ten genomes. We identified more than 700 k base pairs (kb) of single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) within common regions of the genome, which validated the species and genetic populations reported within species. We constructed a non-redundant pan gene list containing 15,297 genes from the ten genomes and among them 1827 genes or 12% were absent in at least one genome. These genes were co-localized in telomeric regions and select regions within chromosomes with a corresponding increase in SNPs and indels. Many are also predicted to encode for proteins involved in secondary metabolism and other functions associated with disease. Genes that were common between isolates contained high levels of nucleotide variation and may be pseudogenes, allelic, or under diversifying selection. The genomic resources we have contributed will be useful for the identification of genes that contribute to the phenotypic variation and niche specialization that have been reported among members of the F. graminearum species complex.
The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.
Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo
2018-02-01
The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.
Comparison of Prevalence and Types of Mutations in Lung Cancers Among Black and White Populations.
Campbell, Joshua D; Lathan, Christopher; Sholl, Lynette; Ducar, Matthew; Vega, Mikenah; Sunkavalli, Ashwini; Lin, Ling; Hanna, Megan; Schubert, Laura; Thorner, Aaron; Faris, Nicholas; Williams, David R; Osarogiagbon, Raymond U; van Hummelen, Paul; Meyerson, Matthew; MacConaill, Laura
2017-06-01
Lung cancer is the leading cause of cancer death in the United States in all ethnic and racial groups. The overall death rate from lung cancer is higher in black patients than in white patients. To compare the prevalence and types of somatic alterations between lung cancers from black patients and white patients. Differences in mutational frequencies could illuminate differences in prognosis and lead to the reduction of outcome disparities by more precisely targeting patients' treatment. Tumor specimens were collected from Baptist Cancer Center (Memphis, Tennessee) over the course of 9 years (January 2004-December 2012). Genomic analysis by massively parallel sequencing of 504 cancer genes was performed at Dana-Farber Cancer Institute (Boston, Massachusetts). Overall, 509 lung cancer tumors specimens (319 adenocarcinomas; 142 squamous cell carcinomas) were profiled from 245 black patients and 264 white patients. The frequencies of genomic alterations were compared between tumors from black and white populations. Overall, 509 lung cancers were collected and analyzed (273 women [129 black patients; 144 white patients] and 236 men [116 black patients; 120 white patients]). Using 313 adenocarcinomas and 138 squamous cell carcinomas with genetically supported ancestry, overall mutational frequencies and copy number changes were not significantly different between black and white populations in either tumor type after correcting for multiple hypothesis testing. Furthermore, specific activating alterations in members of the receptor tyrosine kinase/Ras/Raf pathway including EGFR and KRAS were not significantly different between populations in lung adenocarcinoma. These results demonstrate that lung cancers from black patients are similar to cancers from white patients with respect to clinically actionable genomic alterations and suggest that clinical trials of targeted therapies could significantly benefit patients in both groups.
Comparison of Prevalence and Types of Mutations in Lung Cancers Among Black and White Populations
Campbell, Joshua D.; Lathan, Christopher; Sholl, Lynette; Ducar, Matthew; Vega, Mikenah; Sunkavalli, Ashwini; Lin, Ling; Hanna, Megan; Schubert, Laura; Thorner, Aaron; Faris, Nicholas; Williams, David R.; Osarogiagbon, Raymond U.; van Hummelen, Paul; Meyerson, Matthew; MacConaill, Laura
2017-01-01
IMPORTANCE Lung cancer is the leading cause of cancer death in the United States in all ethnic and racial groups. The overall death rate from lung cancer is higher in black patients than in white patients. OBJECTIVE To compare the prevalence and types of somatic alterations between lung cancers from black patients and white patients. Differences in mutational frequencies could illuminate differences in prognosis and lead to the reduction of outcome disparities by more precisely targeting patients’ treatment. DESIGN, SETTING, AND PARTICIPANTS Tumor specimens were collected from Baptist Cancer Center (Memphis, Tennessee) over the course of 9 years (January 2004-December 2012). Genomic analysis by massively parallel sequencing of 504 cancer genes was performed at Dana-Farber Cancer Institute (Boston, Massachusetts). Overall, 509 lung cancer tumors specimens (319 adenocarcinomas; 142 squamous cell carcinomas) were profiled from 245 black patients and 264 white patients. MAIN OUTCOMES AND MEASURES The frequencies of genomic alterations were compared between tumors from black and white populations. RESULTS Overall, 509 lung cancers were collected and analyzed (273 women [129 black patients; 144 white patients] and 236 men [116 black patients; 120 white patients]). Using 313 adenocarcinomas and 138 squamous cell carcinomas with genetically supported ancestry, overall mutational frequencies and copy number changes were not significantly different between black and white populations in either tumor type after correcting for multiple hypothesis testing. Furthermore, specific activating alterations in members of the receptor tyrosine kinase/Ras/Raf pathway including EGFR and KRAS were not significantly different between populations in lung adenocarcinoma. CONCLUSIONS AND RELEVANCE These results demonstrate that lung cancers from black patients are similar to cancers from white patients with respect to clinically actionable genomic alterations and suggest that clinical trials of targeted therapies could significantly benefit patients in both groups. PMID:28114446
Intricacies in arrangement of SNP haplotypes suggest "Great Admixture" that created modern humans.
Dutta, Rajib; Mainsah, Joseph; Yatskiv, Yuriy; Chakrabortty, Sharmistha; Brennan, Patrick; Khuder, Basil; Qiu, Shuhao; Fedorova, Larisa; Fedorov, Alexei
2017-06-05
Inferring history from genomic sequences is challenging and problematic because chromosomes are mosaics of thousands of small Identicalby-descent (IBD) fragments, each of them having their own unique story. However, the main events in recent evolution might be deciphered from comparative analysis of numerous loci. A paradox of why humans, whose effective population size is only 10 4 , have nearly three million frequent SNPs is formulated and examined. We studied 5398 loci evenly covering all human autosomes. Common haplotypes built from frequent SNPs that are present in people from various populations have been examined. We demonstrated highly non-random arrangement of alleles in common haplotypes. Abundance of mutually exclusive pairs of common haplotypes that have different alleles at every polymorphic position (so-called Yin/Yang haplotypes) was found in 56% of loci. A novel widely spread category of common haplotypes named Mosaic has been described. Mosaic consists of numerous pieces of Yin/Yang haplotypes and represents an ancestral stage of one of them. Scenarios of possible appearance of large number of frequent human SNPs and their habitual arrangement in Yin/Yang common haplotypes have been evaluated with an advanced genomic simulation algorithm. Computer modeling demonstrated that the observed arrangement of 2.9 million frequent SNPs could not originate from a sole stand-alone population. A "Great Admixture" event has been proposed that can explain peculiarities with frequent SNP distributions. This Great Admixture presumably occurred 100-300 thousand years ago between two ancestral populations that had been separated from each other about a million years ago. Our programs and algorithms can be applied to other species to perform evolutionary and comparative genomics.
Cow genotyping strategies for genomic selection in a small dairy cattle population.
Jenko, J; Wiggans, G R; Cooper, T A; Eaglen, S A E; Luff, W G de L; Bichard, M; Pong-Wong, R; Woolliams, J A
2017-01-01
This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds, few sires have progeny records, and genotyping cows can improve the accuracy of genomic EBV. The Guernsey breed is a small dairy cattle breed with approximately 14,000 recorded individuals worldwide. Predictions of phenotypes of milk yield, fat yield, protein yield, and calving interval were made for Guernsey cows from England and Guernsey Island using genomic EBV, with training sets including 197 de-regressed proofs of genotyped bulls, with cows selected from among 1,440 genotyped cows using different genotyping strategies. Accuracies of predictions were tested using 10-fold cross-validation among the cows. Genomic EBV were predicted using 4 different methods: (1) pedigree BLUP, (2) genomic BLUP using only bulls, (3) univariate genomic BLUP using bulls and cows, and (4) bivariate genomic BLUP. Genotyping cows with phenotypes and using their data for the prediction of single nucleotide polymorphism effects increased the correlation between genomic EBV and phenotypes compared with using only bulls by 0.163±0.022 for milk yield, 0.111±0.021 for fat yield, and 0.113±0.018 for protein yield; a decrease of 0.014±0.010 for calving interval from a low base was the only exception. Genetic correlation between phenotypes from bulls and cows were approximately 0.6 for all yield traits and significantly different from 1. Only a very small change occurred in correlation between genomic EBV and phenotypes when using the bivariate model. It was always better to genotype all the cows, but when only half of the cows were genotyped, a divergent selection strategy was better compared with the random or directional selection approach. Divergent selection of 30% of the cows remained superior for the yield traits in 8 of 10 folds. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.