Sample records for comparative proteome analysis

  1. Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.

  2. Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.

    PubMed

    Holland, Ashling

    2018-01-01

    Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.

  3. Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling.

    PubMed

    Li, Ming; Gray, William; Zhang, Haixia; Chung, Christine H; Billheimer, Dean; Yarbrough, Wendell G; Liebler, Daniel C; Shyr, Yu; Slebos, Robbert J C

    2010-08-06

    Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher's Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples.

  4. Comparative Shotgun Proteomics Using Spectral Count Data and Quasi-Likelihood Modeling

    PubMed Central

    2010-01-01

    Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography−tandem mass spectrometry (LC−MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher’s Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography−multiple reaction monitoring mass spectrometry (LC−MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples. PMID:20586475

  5. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and Comparing Multiple Large Mass Spectrometry Proteomics Data Sets.

    PubMed

    Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo

    2018-04-06

    Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .

  6. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49.

    PubMed

    Tang, Xin; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Song, Yuanda; Chen, Wei

    2017-06-21

    Mucor circinelloides is one of few oleaginous fungi that produces a useful oil rich in γ-linolenic acid, but it usually only produces <25% total lipid. Nevertheless, we isolated a new strain WJ11 that can produce up to 36% lipid of cell dry weight. In this study, we have systematically analyzed the global changes in protein levels between the high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 (15%, lipid/cell dry weight) at lipid accumulation phase through comparative proteome analysis. Proteome analysis demonstrated that the branched-chain amino acid and lysine metabolism, glycolytic pathway, and pentose phosphate pathway in WJ11 were up-regulated, while the activities of tricarboxylic acid cycle and branch point enzyme for synthesis of isoprenoids were retarded compared with CBS 277.49. The coordinated regulation at proteome level indicate that more acetyl-CoA and NADPH are provided for fatty acid biosynthesis in WJ11 compared with CBS 277.49.

  7. Evaluation of different multidimensional LC-MS/MS pipelines for iTRAQ-based proteomic analysis of potato tubers in response to cold storage

    USDA-ARS?s Scientific Manuscript database

    Cold-induced sweetening in potato tubers is a costly problem for food industry. To systematically identify the proteins associated with this process, we employed a comparative proteomics approach using isobaric, stable isotope coded labels to compare the proteomes of potato tubers after 0 and 5 mont...

  8. Michael T. Guarnieri | NREL

    Science.gov Websites

    accumulation," J. Proteomics (2013) "Comparative Proteomics Lends Insight into Genotype-Specific Pathogenicity," J. Proteomics (2013) "De Novo Transcriptomic Analysis of Hydrogen Production in the amino acid changes in the small envelope protein and rescued by a novel glycosolation site," J

  9. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  10. Using Public Data for Comparative Proteome Analysis in Precision Medicine Programs.

    PubMed

    Hughes, Christopher S; Morin, Gregg B

    2018-03-01

    Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718.

    PubMed

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for promoting the application of proteogenomics in the life sciences.

  12. Quantitative proteomics analysis using 2D-PAGE to investigate the effects of cigarette smoke and aerosol of a prototypic modified risk tobacco product on the lung proteome in C57BL/6 mice.

    PubMed

    Elamin, Ashraf; Titz, Bjoern; Dijon, Sophie; Merg, Celine; Geertz, Marcel; Schneider, Thomas; Martin, Florian; Schlage, Walter K; Frentzel, Stefan; Talamo, Fabio; Phillips, Blaine; Veljkovic, Emilija; Ivanov, Nikolai V; Vanscheeuwijck, Patrick; Peitsch, Manuel C; Hoeng, Julia

    2016-08-11

    Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP). Selected differentially expressed proteins identified by both LC-MS/MS and 2D-PAGE approaches were further verified using reverse-phase protein microarrays. LC-MS/MS captured the effects of cigarette smoke (CS) on the lung proteome more comprehensively than 2D-PAGE. However, an integrated analysis of both proteomics data sets showed that 2D-PAGE data complement the LC-MS/MS results by supporting the overall trend of lower effects of pMRTP aerosol than CS on the lung proteome. Biological effects of CS exposure supported by both methods included increases in immune-related, surfactant metabolism, proteasome, and actin cytoskeleton protein clusters. Overall, while 2D-PAGE has its value, especially as a complementary method for the analysis of effects on intact proteins, LC-MS/MS approaches will likely be the method of choice for proteome analysis in systems toxicology investigations. Quantitative proteomics is anticipated to play a growing role within systems toxicology assessment frameworks in the future. To further understand how different proteomics technologies can contribute to toxicity assessment, we conducted a quantitative proteomics analysis using 2D-PAGE and isobaric tag-based LC-MS/MS approaches and compared the results produced from the 2 approaches. Using a prototypic modified risk tobacco product (pMRTP) as our test item, we show compared with cigarette smoke, how 2D-PAGE results can complement and support LC-MS/MS data, demonstrating the much lower effects of pMRTP aerosol than cigarette smoke on the mouse lung proteome. The combined analysis of 2D-PAGE and LC-MS/MS data identified an effect of cigarette smoke on the proteasome and actin cytoskeleton in the lung. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Comparative Proteome Analysis in Schizosaccharomyces pombe Identifies Metabolic Targets to Improve Protein Production and Secretion*

    PubMed Central

    Hung, Chien-Wen; Klein, Tobias; Cassidy, Liam; Linke, Dennis; Lange, Sabrina; Anders, Uwe; Bureik, Matthias; Heinzle, Elmar; Schneider, Konstantin; Tholey, Andreas

    2016-01-01

    Protein secretion in yeast is a complex process and its efficiency depends on a variety of parameters. We performed a comparative proteome analysis of a set of Schizosaccharomyces pombe strains producing the α-glucosidase maltase in increasing amounts to investigate the overall proteomic response of the cell to the burden of protein production along the various steps of protein production and secretion. Proteome analysis of these strains, utilizing an isobaric labeling/two dimensional LC-MALDI MS approach, revealed complex changes, from chaperones and secretory transport machinery to proteins controlling transcription and translation. We also found an unexpectedly high amount of changes in enzyme levels of the central carbon metabolism and a significant up-regulation of several amino acid biosyntheses. These amino acids were partially underrepresented in the cellular protein compared with the composition of the model protein. Additional feeding of these amino acids resulted in a 1.5-fold increase in protein secretion. Membrane fluidity was identified as a second bottleneck for high-level protein secretion and addition of fluconazole to the culture caused a significant decrease in ergosterol levels, whereas protein secretion could be further increased by a factor of 2.1. In summary, we show that high level protein secretion causes global changes of protein expression levels in the cell and that precursor availability and membrane composition limit protein secretion in this yeast. In this respect, comparative proteome analysis is a powerful tool to identify targets for an efficient increase of protein production and secretion in S. pombe. Data are available via ProteomeXchange with identifiers PXD002693 and PXD003016. PMID:27477394

  14. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty response

    USDA-ARS?s Scientific Manuscript database

    In the present study we used 2D-DIGE technique to document the Rhododendron proteome during the seasonal development of cold hardiness. We selected two genotypes with different cold hardiness levels. This enabled us to perform comparative analysis of their proteome profiles and screen differentially...

  15. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    USDA-ARS?s Scientific Manuscript database

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, we performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and...

  16. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.

    PubMed

    Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi

    2016-09-01

    Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.

  17. An effect size filter improves the reproducibility in spectral counting-based comparative proteomics.

    PubMed

    Gregori, Josep; Villarreal, Laura; Sánchez, Alex; Baselga, José; Villanueva, Josep

    2013-12-16

    The microarray community has shown that the low reproducibility observed in gene expression-based biomarker discovery studies is partially due to relying solely on p-values to get the lists of differentially expressed genes. Their conclusions recommended complementing the p-value cutoff with the use of effect-size criteria. The aim of this work was to evaluate the influence of such an effect-size filter on spectral counting-based comparative proteomic analysis. The results proved that the filter increased the number of true positives and decreased the number of false positives and the false discovery rate of the dataset. These results were confirmed by simulation experiments where the effect size filter was used to evaluate systematically variable fractions of differentially expressed proteins. Our results suggest that relaxing the p-value cut-off followed by a post-test filter based on effect size and signal level thresholds can increase the reproducibility of statistical results obtained in comparative proteomic analysis. Based on our work, we recommend using a filter consisting of a minimum absolute log2 fold change of 0.8 and a minimum signal of 2-4 SpC on the most abundant condition for the general practice of comparative proteomics. The implementation of feature filtering approaches could improve proteomic biomarker discovery initiatives by increasing the reproducibility of the results obtained among independent laboratories and MS platforms. Quality control analysis of microarray-based gene expression studies pointed out that the low reproducibility observed in the lists of differentially expressed genes could be partially attributed to the fact that these lists are generated relying solely on p-values. Our study has established that the implementation of an effect size post-test filter improves the statistical results of spectral count-based quantitative proteomics. The results proved that the filter increased the number of true positives whereas decreased the false positives and the false discovery rate of the datasets. The results presented here prove that a post-test filter applying a reasonable effect size and signal level thresholds helps to increase the reproducibility of statistical results in comparative proteomic analysis. Furthermore, the implementation of feature filtering approaches could improve proteomic biomarker discovery initiatives by increasing the reproducibility of results obtained among independent laboratories and MS platforms. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines

    PubMed Central

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J.; Li, Ming

    2013-01-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables. PMID:22552787

  19. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines.

    PubMed

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J; Li, Ming; Tabb, David L

    2012-09-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables.

  20. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-03

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.

  1. Protein identification and quantification from riverbank grape, Vitis riparia: Comparing SDS-PAGE and FASP-GPF techniques for shotgun proteomic analysis.

    PubMed

    George, Iniga S; Fennell, Anne Y; Haynes, Paul A

    2015-09-01

    Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in-gel digestion and in-solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS-PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP-GPF was used. FASP-GPF is more reproducible, less expensive and a better method than SDS-PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 (http://proteomecentral.proteomexchange.org/dataset/PXD001399). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison of the Membrane Proteome of Virulent Mycobacterium tuberculosis and the Attenuated Mycobacterium bovis BCG Vaccine Strain by Label-free Quantitative Proteomics

    PubMed Central

    Gunawardena, Harsha P.; Feltcher, Meghan E.; Wrobel, John A.; Gu, Sheng; Braunstein, Miriam; Chen, Xian

    2015-01-01

    The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge we have generated the first comprehensive and high coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen. PMID:24093440

  3. Proteomics Analysis of the Causative Agent of Typhoid Fever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansong, Charles; Yoon, Hyunjin; Norbeck, Angela D.

    2008-02-01

    Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. typhi). S. typhi infection is a complex process that involves numerous bacterially-encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study we used a liquid chromatography-mass spectrometry (LC-MS) based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/low magnesium (MgM) S. typhi cultures. This represents the first large scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins.more » In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions (Adkins J.N. et al (2006) Mol Cell Prot). Comparative proteomic analysis of S. typhi (strain Ty2) and S. typhimurium (strains LT2 and 14028) revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and a conserved protein encoded by t1476. The differential expression of selected proteins was confirmed by Western blot analysis. Taken together with the current literature, our observations suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity. In addition, we observed products of the biotin (bio) operon displayed a higher abundance in the more virulent strains S. typhi-Ty2 and S. typhimurium-14028 compared to the virulence attenuated S. typhimurium strain LT2, suggesting bio proteins may contribute to Salmonella pathogenesis.« less

  4. Statistical Methods for Proteomic Biomarker Discovery based on Feature Extraction or Functional Modeling Approaches.

    PubMed

    Morris, Jeffrey S

    2012-01-01

    In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods presented are applied to two specific proteomic technologies, MALDI-TOF and 2D gel electrophoresis, these methods and the other principles discussed in the paper apply much more broadly to other expression proteomics technologies.

  5. 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells.

    PubMed

    Lanquar, Viviane; Kuhn, Lauriane; Lelièvre, Françoise; Khafif, Mehdi; Espagne, Christelle; Bruley, Christophe; Barbier-Brygoo, Hélène; Garin, Jérôme; Thomine, Sébastien

    2007-03-01

    An important goal for proteomic studies is the global comparison of proteomes from different genotypes, tissues, or physiological conditions. This has so far been mostly achieved by densitometric comparison of spot intensities after protein separation by 2-DE. However, the physicochemical properties of membrane proteins preclude the use of 2-DE. Here, we describe the use of in vivo labeling by the stable isotope 15N as an alternative approach for comparative membrane proteomic studies in plant cells. We confirm that 15N-metabolic labeling of proteins is possible and efficient in Arabidopsis suspension cells. Quantification of 14N versus 15N MS signals reflects the relative abundance of 14N and 15N proteins in the sample analyzed. We describe the use of 15N-metabolic labeling to perform a partial comparative analysis of Arabidopsis cells following cadmium exposure. By focusing our attention on plasma membrane proteins, we were able to confidently identify proteins showing up to 5-fold regulation compared to unexposed cells. This study provides a proof of principle that 15N-metabolic labeling is a useful technique for comparative membrane proteome studies.

  6. Clinical proteomic analysis of scrub typhus infection.

    PubMed

    Park, Edmond Changkyun; Lee, Sang-Yeop; Yun, Sung Ho; Choi, Chi-Won; Lee, Hayoung; Song, Hyun Seok; Jun, Sangmi; Kim, Gun-Hwa; Lee, Chang-Seop; Kim, Seung Il

    2018-01-01

    Scrub typhus is an acute and febrile infectious disease caused by the Gram-negative α-proteobacterium Orientia tsutsugamushi from the family Rickettsiaceae that is widely distributed in Northern, Southern and Eastern Asia. In the present study, we analysed the serum proteome of scrub typhus patients to investigate specific clinical protein patterns in an attempt to explain pathophysiology and discover potential biomarkers of infection. Serum samples were collected from three patients (before and after treatment with antibiotics) and three healthy subjects. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry was performed to identify differentially abundant proteins using quantitative proteomic approaches. Bioinformatic analysis was then performed using Ingenuity Pathway Analysis. Proteomic analysis identified 236 serum proteins, of which 32 were differentially expressed in normal subjects, naive scrub typhus patients and patients treated with antibiotics. Comparative bioinformatic analysis of the identified proteins revealed up-regulation of proteins involved in immune responses, especially complement system, following infection with O. tsutsugamushi , and normal expression was largely rescued by antibiotic treatment. This is the first proteomic study of clinical serum samples from scrub typhus patients. Proteomic analysis identified changes in protein expression upon infection with O. tsutsugamushi and following antibiotic treatment. Our results provide valuable information for further investigation of scrub typhus therapy and diagnosis.

  7. Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis.

    PubMed

    Kamita, Masahiro; Mori, Taiki; Sakai, Yoshihito; Ito, Sadayuki; Gomi, Masahiro; Miyamoto, Yuko; Harada, Atsushi; Niida, Shumpei; Yamada, Tesshi; Watanabe, Ken; Ono, Masaya

    2015-05-01

    Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age-related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation.

    PubMed

    Gong, Chun Yan; Li, Qi; Yu, Hua Tao; Wang, Zizhang; Wang, Tai

    2012-05-04

    The potential of unintended effects caused by transgenic events is a key issue in the commercialization of genetically modified (GM) crops. To investigate whether transgenic events cause unintended effects, we used comparative proteomics approaches to evaluate proteome differences in seeds from 2 sets of GM indica rice, herbicide-resistant Bar68-1 carrying bar and insect-resistant 2036-1a carrying cry1Ac/sck, and their respective controls D68 and MH86, as well as indica variety MH63, a parental line for breeding MH86, and japonica variety ZH10. This experimental design allowed for comparing proteome difference caused by transgenes, conventional genetic breeding, and natural genetic variation. Proteomics analysis revealed the maximum numbers of differentially expressed proteins between indica and japonica cultivars, second among indica varieties with relative small difference between MH86 and MH63, and the minimum between GM rice and respective control, thus indicating GM events do not substantially alter proteome profiles as compared with conventional genetic breeding and natural genetic variation. Mass spectrometry analysis revealed 234 proteins differentially expressed in the 6 materials, and these proteins were involved in different cellular and metabolic processes with a prominent skew toward metabolism (31.2%), protein synthesis and destination (25.2%), and defense response (22.4%). In these seed proteomes, proteins implicated in the 3 prominent biological processes showed significantly different composite expression patterns and were major factors differentiating japonica and indica cultivars, as well as indica varieties. Thus, metabolism, protein synthesis and destination, and defense response in seeds are important in differentiating rice cultivars and varieties.

  9. Comparative analysis of cerebrospinal fluid from the meningo-encephalitic stage of T. b. gambiense and rhodesiense sleeping sickness patients using TMT quantitative proteomics.

    PubMed

    Tiberti, Natalia; Sanchez, Jean-Charles

    2015-09-01

    The quantitative proteomics data here reported are part of a research article entitled "Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense", published by Tiberti et al., 2015. Transl. Proteomics 6, 1-9. Sleeping sickness (human African trypanosomiasis - HAT) is a deadly neglected tropical disease affecting mainly rural communities in sub-Saharan Africa. This parasitic disease is caused by the Trypanosoma brucei (T. b.) parasite, which is transmitted to the human host through the bite of the tse-tse fly. Two parasite sub-species, T. b. rhodesiense and T. b. gambiense, are responsible for two clinically different and geographically separated forms of sleeping sickness. The objective of the present study was to characterise and compare the cerebrospinal fluid (CSF) proteome of stage 2 (meningo-encephalitic stage) HAT patients suffering from T. b. gambiense or T. b. rhodesiense disease using high-throughput quantitative proteomics and the Tandem Mass Tag (TMT(®)) isobaric labelling. In order to evaluate the CSF proteome in the context of HAT pathophysiology, the protein dataset was then submitted to gene ontology and pathway analysis. Two significantly differentially expressed proteins (C-reactive protein and orosomucoid 1) were further verified on a larger population of patients (n=185) by ELISA, confirming the mass spectrometry results. By showing a predominant involvement of the acute immune response in rhodesiense HAT, the proteomics results obtained in this work will contribute to further understand the mechanisms of pathology occurring in HAT and to propose new biomarkers of potential clinical utility. The mass spectrometry raw data are available in the Pride Archive via ProteomeXchange through the identifier PXD001082.

  10. Proteomic and Bioinformatic Profile of Primary Human Oral Epithelial Cells

    PubMed Central

    Ghosh, Santosh K.; Yohannes, Elizabeth; Bebek, Gurkan; Weinberg, Aaron; Jiang, Bin; Willard, Belinda; Chance, Mark R.; Kinter, Michael T.; McCormick, Thomas S.

    2012-01-01

    Wounding of the oral mucosa occurs frequently in a highly septic environment. Remarkably, these wounds heal quickly and the oral cavity, for the most part, remains healthy. Deciphering the normal human oral epithelial cell (NHOEC) proteome is critical for understanding the mechanism(s) of protection elicited when the mucosal barrier is intact, as well as when it is breached. Combining 2D gel electrophoresis with shotgun proteomics resulted in identification of 1662 NHOEC proteins. Proteome annotations were performed based on protein classes, molecular functions, disease association and membership in canonical and metabolic signaling pathways. Comparing the NHOEC proteome with a database of innate immunity-relevant interactions (InnateDB) identified 64 common proteins associated with innate immunity. Comparison with published salivary proteomes revealed that 738/1662 NHOEC proteins were common, suggesting that significant numbers of salivary proteins are of epithelial origin. Gene ontology analysis showed similarities in the distributions of NHOEC and saliva proteomes with regard to biological processes, and molecular functions. We also assessed the inter-individual variability of the NHOEC proteome and observed it to be comparable with other primary cells. The baseline proteome described in this study should serve as a resource for proteome studies of the oral mucosa, especially in relation to disease processes. PMID:23035736

  11. Saliva Proteomics Analysis Offers Insights on Type 1 Diabetes Pathology in a Pediatric Population

    PubMed Central

    Pappa, Eftychia; Vastardis, Heleni; Mermelekas, George; Gerasimidi-Vazeou, Andriani; Zoidakis, Jerome; Vougas, Konstantinos

    2018-01-01

    The composition of the salivary proteome is affected by pathological conditions. We analyzed by high resolution mass spectrometry approaches saliva samples collected from children and adolescents with type 1 diabetes and healthy controls. The list of more than 2000 high confidence protein identifications constitutes a comprehensive characterization of the salivary proteome. Patients with good glycemic regulation and healthy individuals have comparable proteomic profiles. In contrast, a significant number of differentially expressed proteins were identified in the saliva of patients with poor glycemic regulation compared to patients with good glycemic control and healthy children. These proteins are involved in biological processes relevant to diabetic pathology such as endothelial damage and inflammation. Moreover, a putative preventive therapeutic approach was identified based on bioinformatic analysis of the deregulated salivary proteins. Thus, thorough characterization of saliva proteins in diabetic pediatric patients established a connection between molecular changes and disease pathology. This proteomic and bioinformatic approach highlights the potential of salivary diagnostics in diabetes pathology and opens the way for preventive treatment of the disease. PMID:29755368

  12. Plant proteome analysis: a 2006 update.

    PubMed

    Jorrín, Jesús V; Maldonado, Ana M; Castillejo, Ma Angeles

    2007-08-01

    This 2006 'Plant Proteomics Update' is a continuation of the two previously published in 'Proteomics' by 2004 (Canovas et al., Proteomics 2004, 4, 285-298) and 2006 (Rossignol et al., Proteomics 2006, 6, 5529-5548) and it aims to bring up-to-date the contribution of proteomics to plant biology on the basis of the original research papers published throughout 2006, with references to those appearing last year. According to the published papers and topics addressed, we can conclude that, as observed for the three previous years, there has been a quantitative, but not qualitative leap in plant proteomics. The full potential of proteomics is far from being exploited in plant biology research, especially if compared to other organisms, mainly yeast and humans, and a number of challenges, mainly technological, remain to be tackled. The original papers published last year numbered nearly 100 and deal with the proteome of at least 26 plant species, with a high percentage for Arabidopsis thaliana (28) and rice (11). Scientific objectives ranged from proteomic analysis of organs/tissues/cell suspensions (57) or subcellular fractions (29), to the study of plant development (12), the effect of hormones and signalling molecules (8) and response to symbionts (4) and stresses (27). A small number of contributions have covered PTMs (8) and protein interactions (4). 2-DE (specifically IEF-SDS-PAGE) coupled to MS still constitutes the almost unique platform utilized in plant proteome analysis. The application of gel-free protein separation methods and 'second generation' proteomic techniques such as multidimensional protein identification technology (MudPIT), and those for quantitative proteomics including DIGE, isotope-coded affinity tags (ICAT), iTRAQ and stable isotope labelling by amino acids in cell culture (SILAC) still remains anecdotal. This review is divided into seven sections: Introduction, Methodology, Subcellular proteomes, Development, Responses to biotic and abiotic stresses, PTMs and Protein interactions. Section 8 summarizes the major pitfalls and challenges of plant proteomics.

  13. Comparative and Quantitative Global Proteomics Approaches: An Overview

    PubMed Central

    Deracinois, Barbara; Flahaut, Christophe; Duban-Deweer, Sophie; Karamanos, Yannis

    2013-01-01

    Proteomics became a key tool for the study of biological systems. The comparison between two different physiological states allows unravelling the cellular and molecular mechanisms involved in a biological process. Proteomics can confirm the presence of proteins suggested by their mRNA content and provides a direct measure of the quantity present in a cell. Global and targeted proteomics strategies can be applied. Targeted proteomics strategies limit the number of features that will be monitored and then optimise the methods to obtain the highest sensitivity and throughput for a huge amount of samples. The advantage of global proteomics strategies is that no hypothesis is required, other than a measurable difference in one or more protein species between the samples. Global proteomics methods attempt to separate quantify and identify all the proteins from a given sample. This review highlights only the different techniques of separation and quantification of proteins and peptides, in view of a comparative and quantitative global proteomics analysis. The in-gel and off-gel quantification of proteins will be discussed as well as the corresponding mass spectrometry technology. The overview is focused on the widespread techniques while keeping in mind that each approach is modular and often recovers the other. PMID:28250403

  14. Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells.

    PubMed

    Wimmer, Helge; Gundacker, Nina C; Griss, Johannes; Haudek, Verena J; Stättner, Stefan; Mohr, Thomas; Zwickl, Hannes; Paulitschke, Verena; Baron, David M; Trittner, Wolfgang; Kubicek, Markus; Bayer, Editha; Slany, Astrid; Gerner, Christopher

    2009-06-01

    Interpretation of proteome data with a focus on biomarker discovery largely relies on comparative proteome analyses. Here, we introduce a database-assisted interpretation strategy based on proteome profiles of primary cells. Both 2-D-PAGE and shotgun proteomics are applied. We obtain high data concordance with these two different techniques. When applying mass analysis of tryptic spot digests from 2-D gels of cytoplasmic fractions, we typically identify several hundred proteins. Using the same protein fractions, we usually identify more than thousand proteins by shotgun proteomics. The data consistency obtained when comparing these independent data sets exceeds 99% of the proteins identified in the 2-D gels. Many characteristic differences in protein expression of different cells can thus be independently confirmed. Our self-designed SQL database (CPL/MUW - database of the Clinical Proteomics Laboratories at the Medical University of Vienna accessible via www.meduniwien.ac.at/proteomics/database) facilitates (i) quality management of protein identification data, which are based on MS, (ii) the detection of cell type-specific proteins and (iii) of molecular signatures of specific functional cell states. Here, we demonstrate, how the interpretation of proteome profiles obtained from human liver tissue and hepatocellular carcinoma tissue is assisted by the Clinical Proteomics Laboratories at the Medical University of Vienna-database. Therefore, we suggest that the use of reference experiments supported by a tailored database may substantially facilitate data interpretation of proteome profiling experiments.

  15. Recent advances in proteomics of cereals.

    PubMed

    Bansal, Monika; Sharma, Madhu; Kanwar, Priyanka; Goyal, Aakash

    Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.

  16. Comparative proteomic analysis of lung tissue from guinea pigs with Leptospiral Pulmonary Haemorrhage Syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization

    USDA-ARS?s Scientific Manuscript database

    The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, a 2-D guinea pig proteome lung map was used to investigate the pathogenic mechanisms of ...

  17. Comprehensive Analysis of Temporal Alterations in Cellular Proteome of Bacillus subtilis under Curcumin Treatment

    PubMed Central

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956

  18. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    PubMed

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J; Chatterjee, Aditi; Prasad, T S Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  19. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.

    PubMed

    Jiang, Xiao-Sheng; Dai, Jie; Sheng, Quan-Hu; Zhang, Lei; Xia, Qi-Chang; Wu, Jia-Rui; Zeng, Rong

    2005-01-01

    Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.

  20. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes

    PubMed Central

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-01-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)1 not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. PMID:27215607

  1. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.

    PubMed

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-08-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  3. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    PubMed

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.

  4. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  5. Birth of plant proteomics in India: a new horizon.

    PubMed

    Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra

    2015-09-08

    In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. YPED: An Integrated Bioinformatics Suite and Database for Mass Spectrometry-based Proteomics Research

    PubMed Central

    Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.

    2015-01-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262

  7. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    PubMed

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research.

    PubMed

    Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R

    2015-02-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  9. Derivative component analysis for mass spectral serum proteomic profiles.

    PubMed

    Han, Henry

    2014-01-01

    As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based diagnosis. Our findings demonstrate the feasibility and power of the proposed DCA-based profile biomarker diagnosis in achieving high sensitivity and conquering the data reproducibility issue in serum proteomics. Furthermore, our proposed derivative component analysis suggests the subtle data characteristics gleaning and de-noising are essential in separating true signals from red herrings for high-dimensional proteomic profiles, which can be more important than the conventional feature selection or dimension reduction. In particular, our profile biomarker diagnosis can be generalized to other omics data for derivative component analysis (DCA)'s nature of generic data analysis.

  10. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation.

    PubMed

    Zhou, Chun-Xue; Zhu, Xing-Quan; Elsheikha, Hany M; He, Shuai; Li, Qian; Zhou, Dong-Hui; Suo, Xun

    2016-10-04

    Toxoplasma gondii is a medically and economically important protozoan parasite. However, the molecular mechanisms of its sporulation remain largely unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the proteomic expression profile of T. gondii oocysts during sporulation. Of the 2095 non-redundant proteins identified, 587 were identified as differentially expressed proteins (DEPs). Based on Gene Ontology enrichment and KEGG pathway analyses the majority of these DEPs were found related to the metabolism of amino acids, carbon and energy. Protein interaction network analysis generated by STRING identified ATP-citrate lyase (ACL), GMP synthase, IMP dehydrogenase (IMPDH), poly (ADP-ribose) glycohydrolase (PARG), and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) as the top five hubs. We also identified 25 parasite virulence factors that were expressed at relatively high levels in sporulated oocysts compared to non-sporulated oocysts, which might contribute to the infectivity of mature oocysts. Considering the importance of oocysts in the dissemination of toxoplasmosis these findings may help in the search of protein targets with a key role in infectiousness and ecological success of oocysts, creating new opportunities for the development of better means for disease prevention. The development of new preventative interventions against T. gondii infection relies on an improved understanding of the proteome and chemical pathways of this parasite. To identify proteins required for the development of environmentally resistant and infective T. gondii oocysts, we compared the proteome of non-sporulated (immature) oocysts with the proteome of sporulated (mature, infective) oocysts. iTRAQ 2D-LC-MS/MS analysis revealed proteomic changes that distinguish non-sporulated from sporulated oocysts. Many of the differentially expressed proteins were involved in metabolic pathways and 25 virulence factors were identified upregulated in the sporulated oocysts. This work provides the first quantitative characterization of the proteomic variations that occur in T. gondii oocyst stage during sporulation. Copyright © 2016. Published by Elsevier B.V.

  11. Abundant storage protein depletion from tuber proteins using ethanol precipitation method: Suitability to proteomics study.

    PubMed

    Lee, Hye Min; Gupta, Ravi; Kim, Sun Hyung; Wang, Yiming; Rakwal, Randeep; Agrawal, Ganesh Kumar; Kim, Sun Tae

    2015-05-01

    High-abundance proteins (HAPs) hamper in-depth proteome study necessitating development of a HAPs depletion method. Here, we report a novel ethanol precipitation method (EPM) for HAPs depletion from total tuber proteins. Ethanol showed a dose-dependent effect on depletion of sporamin from sweet potato and patatin from potato tubers, respectively. The 50% ethanol was an optimal concentration. 2DE analysis of EPM-prepared sweet potato proteins also revealed enrichment of storage proteins (SPs) in ethanol supernatant (ES) resulting in detection of new low-abundance proteins in ethanol pellet (EP), compared to total fraction. The ES fraction showed even higher trypsin inhibitor activity than total proteins, further showing the efficacy of EPM in enrichment of sporamin in ES fraction. Application of this method was demonstrated for comparative proteomics of two sweet potato cultivars (Hwang-geum and Ho-bac) and purification of SP (sporamin) in its native form, as examples. Comparative proteomics identified many cultivar specific protein spots and selected spots were confidently assigned for their protein identity using MALDI-TOF-TOF analysis. Overall, the EPM is simple, reproducible, and economical for depletion of SPs and is suitable for downstream proteomics study. This study opens a door for its potential application to other tuber crops or fruits rich in carbohydrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Proteomic Profiling of Bladders from Mice Exposed with Sodium Arsenite

    EPA Science Inventory

    Arsenic, an environmental contaminant, has been linked with cancer of the bladder in humans. To study the mode of action of arsenic, female CH3 mice were exposed to 85 ppm sodium arsenite in their drinking water for 30 days. Following the exposure a comparative proteomic analysis...

  13. To label or not to label: applications of quantitative proteomics in neuroscience research.

    PubMed

    Filiou, Michaela D; Martins-de-Souza, Daniel; Guest, Paul C; Bahn, Sabine; Turck, Christoph W

    2012-02-01

    Proteomics has provided researchers with a sophisticated toolbox of labeling-based and label-free quantitative methods. These are now being applied in neuroscience research where they have already contributed to the elucidation of fundamental mechanisms and the discovery of candidate biomarkers. In this review, we evaluate and compare labeling-based and label-free quantitative proteomic techniques for applications in neuroscience research. We discuss the considerations required for the analysis of brain and central nervous system specimens, the experimental design of quantitative proteomic workflows as well as the feasibility, advantages, and disadvantages of the available techniques for neuroscience-oriented questions. Furthermore, we assess the use of labeled standards as internal controls for comparative studies in humans and review applications of labeling-based and label-free mass spectrometry approaches in relevant model organisms and human subjects. Providing a comprehensive guide of feasible and meaningful quantitative proteomic methodologies for neuroscience research is crucial not only for overcoming current limitations but also for gaining useful insights into brain function and translating proteomics from bench to bedside. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    PubMed Central

    Whigham, Arlene; Clarke, Rosemary; Brenes-Murillo, Alejandro J; Estes, Brett; Madhessian, Diana; Lundberg, Emma; Wadsworth, Patricia

    2017-01-01

    The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase. PMID:29052541

  15. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.

    PubMed

    Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi

    2010-09-01

    Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.

  16. Bovine Milk Comparative Proteome Analysis from Early, Mid, and Late Lactation in the Cattle Breed, Malnad Gidda (Bos indicus).

    PubMed

    Mol, Praseeda; Kannegundla, Uday; Dey, Gourav; Gopalakrishnan, Lathika; Dammalli, Manjunath; Kumar, Manish; Patil, Arun H; Basavaraju, Marappa; Rao, Akhila; Ramesha, Kerekoppa P; Prasad, Thottethodi Subrahmanya Keshava

    2018-03-01

    Bovine milk is important for both veterinary medicine and human nutrition. Understanding the bovine milk proteome at different stages of lactation has therefore broad significance for integrative biology and clinical medicine as well. Indeed, different lactation stages have marked influence on the milk yield, milk constituents, and nourishment of the neonates. We performed a comparative proteome analysis of the bovine milk obtained at different stages of lactation from the Indian indigenous cattle Malnad Gidda (Bos indicus), a widely available breed. The milk differential proteome during the lactation stages in B. indicus has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins at early, mid, and late lactation stages, we identified a total of 564 proteins, out of which 403 proteins were found to be differentially abundant at different lactation stages. As is expected of any body fluid proteome, 51% of the proteins identified in the milk were found to have signal peptides. Gene ontology analyses were carried out to categorize proteins altered across different lactation stages based on biological process and molecular function, which enabled us to correlate their significance in each lactation stage. We also investigated the potential pathways enriched in different lactation stages using bioinformatics pathway analysis tools. To the best of our knowledge, this study represents the first and largest inventory of milk proteins identified to date for an Indian cattle breed. We believe that the current study broadly informs both veterinary omics research and the emerging field of nutriproteomics during lactation stages.

  17. Proteomic Analysis of Serum from Patients with Major Depressive Disorder to Compare Their Depressive and Remission Statuses

    PubMed Central

    Lee, Jiyeong; Joo, Eun-Jeong; Lim, Hee-Joung; Park, Jong-Moon; Lee, Kyu Young; Park, Arum; Seok, AeEun

    2015-01-01

    Objective Currently, there are a few biological markers to aid in the diagnosis and treatment of depression. However, it is not sufficient for diagnosis. We attempted to identify differentially expressed proteins during depressive moods as putative diagnostic biomarkers by using quantitative proteomic analysis of serum. Methods Blood samples were collected twice from five patients with major depressive disorder (MDD) at depressive status before treatment and at remission status during treatment. Samples were individually analyzed by liquid chromatography-tandem mass spectrometry for protein profiling. Differentially expressed proteins were analyzed by label-free quantification. Enzyme-linked immunosorbent assay (ELISA) results and receiver-operating characteristic (ROC) curves were used to validate the differentially expressed proteins. For validation, 8 patients with MDD including 3 additional patients and 8 matched normal controls were analyzed. Results The quantitative proteomic studies identified 10 proteins that were consistently upregulated or downregulated in 5 MDD patients. ELISA yielded results consistent with the proteomic analysis for 3 proteins. Expression levels were significantly different between normal controls and MDD patients. The 3 proteins were ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4 and complement component 1qC, which were upregulated during the depressive status. The depressive status could be distinguished from the euthymic status from the ROC curves for these proteins, and this discrimination was enhanced when all 3 proteins were analyzed together. Conclusion This is the first proteomic study in MDD patients to compare intra-individual differences dependent on mood. This technique could be a useful approach to identify MDD biomarkers, but requires additional proteomic studies for validation. PMID:25866527

  18. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans.

    PubMed

    Shen, Peiyi; Kershaw, Jonathan C; Yue, Yiren; Wang, Ou; Kim, Kee-Hong; McClements, D Julian; Park, Yeonhwa

    2018-05-30

    Conjugated linoleic acid (CLA) has been reported to reduce fat storage in cell culture and animal models. In the current study, the effects of CLA on the fat accumulation, activities, and proteomics were investigated using Caenorhabditis elegans. 100 µM CLA-TG nanoemulsion significantly reduced fat accumulation by 29% compared to linoleic acid (LA)-TG treatment via sir-2.1 (the ortholog of Sirtuin 1), without altering the worm size, growth rate, and pumping rate of C. elegans. CLA significantly increased moving speed and amplitude (the average centroid displacement over the entire track) of wild type worms compared to the LA group and these effects were dependent on aak-2 (AMPKα ortholog) and sir-2.1. Proteomics analysis showed CLA treatment influences various proteins associated in reproduction and development, translation, metabolic processes, and catabolism and proteolysis, in C. elegans. We have also confirmed the proteomics data that CLA reduced the fat accumulation via abs-1 (ATP Synthase B homolog). However, there were no significant effects of CLA on brood size, progeny numbers, and hatchability compared to LA treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Hair-bundle proteomes of avian and mammalian inner-ear utricles

    PubMed Central

    Wilmarth, Phillip A.; Krey, Jocelyn F.; Shin, Jung-Bum; Choi, Dongseok; David, Larry L.; Barr-Gillespie, Peter G.

    2015-01-01

    Examination of multiple proteomics datasets within or between species increases the reliability of protein identification. We report here proteomes of inner-ear hair bundles from three species (chick, mouse, and rat), which were collected on LTQ or LTQ Velos ion-trap mass spectrometers; the constituent proteins were quantified using MS2 intensities, which are the summed intensities of all peptide fragmentation spectra matched to a protein. The data are available via ProteomeXchange with identifiers PXD002410 (chick LTQ), PXD002414 (chick Velos), PXD002415 (mouse Velos), and PXD002416 (rat LTQ). The two chick bundle datasets compared favourably to a third, already-described chick bundle dataset, which was quantified using MS1 peak intensities, the summed intensities of peptides identified by high-resolution mass spectrometry (PXD000104; updated analysis in PXD002445). The mouse bundle dataset described here was comparable to a different mouse bundle dataset quantified using MS1 intensities (PXD002167). These six datasets will be useful for identifying the core proteome of vestibular hair bundles. PMID:26645194

  20. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis

    PubMed Central

    Padula, Matthew P.; Berry, Iain J.; O′Rourke, Matthew B.; Raymond, Benjamin B.A.; Santos, Jerran; Djordjevic, Steven P.

    2017-01-01

    Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O′Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single ‘spots’ in a polyacrylamide gel, allowing the quantitation of changes in a proteoform′s abundance to ascertain changes in an organism′s phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the ‘Top-Down’. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O’Farrell’s paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism′s proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer. PMID:28387712

  1. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis.

    PubMed

    Padula, Matthew P; Berry, Iain J; O Rourke, Matthew B; Raymond, Benjamin B A; Santos, Jerran; Djordjevic, Steven P

    2017-04-07

    Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O'Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single 'spots' in a polyacrylamide gel, allowing the quantitation of changes in a proteoform's abundance to ascertain changes in an organism's phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the 'Top-Down'. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O'Farrell's paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism's proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer.

  2. Prestroke Proteomic Changes in Cerebral Microvessels in Stroke-Prone, Transgenic[hCETP]-Hyperlipidemic, Dahl Salt-Sensitive Hypertensive Rats

    PubMed Central

    Bergerat, Agnes; Decano, Julius; Wu, Chang-Jiun; Choi, Hyungwon; Nesvizhskii, Alexey I; Moran, Ann Marie; Ruiz-Opazo, Nelson; Steffen, Martin; Herrera, Victoria LM

    2011-01-01

    Stroke is the third leading cause of death in the United States with high rates of morbidity among survivors. The search to fill the unequivocal need for new therapeutic approaches would benefit from unbiased proteomic analyses of animal models of spontaneous stroke in the prestroke stage. Since brain microvessels play key roles in neurovascular coupling, we investigated prestroke microvascular proteome changes. Proteomic analysis of cerebral cortical microvessels (cMVs) was done by tandem mass spectrometry comparing two prestroke time points. Metaprotein-pathway analyses of proteomic spectral count data were done to identify risk factor–induced changes, followed by QSPEC-analyses of individual protein changes associated with increased stroke susceptibility. We report 26 cMV proteome profiles from male and female stroke-prone and non–stroke-prone rats at 2 months and 4.5 months of age prior to overt stroke events. We identified 1,934 proteins by two or more peptides. Metaprotein pathway analysis detected age-associated changes in energy metabolism and cell-to-microenvironment interactions, as well as sex-specific changes in energy metabolism and endothelial leukocyte transmigration pathways. Stroke susceptibility was associated independently with multiple protein changes associated with ischemia, angiogenesis or involved in blood brain barrier (BBB) integrity. Immunohistochemical analysis confirmed aquaporin-4 and laminin-α1 induction in cMVs, representative of proteomic changes with >65 Bayes factor (BF), associated with stroke susceptibility. Altogether, proteomic analysis demonstrates significant molecular changes in ischemic cerebral microvasculature in the prestroke stage, which could contribute to the observed model phenotype of microhemorrhages and postischemic hemorrhagic transformation. These pathways comprise putative targets for translational research of much needed novel diagnostic and therapeutic approaches for stroke. PMID:21519634

  3. Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity☆

    PubMed Central

    Marzano, Valeria; Santini, Simonetta; Rossi, Claudia; Zucchelli, Mirco; D'Alessandro, Annamaria; Marchetti, Carlo; Mingardi, Michele; Stagni, Venturina; Barilà, Daniela; Urbani, Andrea

    2012-01-01

    Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics. PMID:22641158

  4. Proteome Analysis of Peroxisomes from Etiolated Arabidopsis Seedlings Identifies a Peroxisomal Protease Involved in β-Oxidation and Development1[C][W][OPEN

    PubMed Central

    Quan, Sheng; Yang, Pingfang; Cassin-Ross, Gaëlle; Kaur, Navneet; Switzenberg, Robert; Aung, Kyaw; Li, Jiying; Hu, Jianping

    2013-01-01

    Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment. PMID:24130194

  5. A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia

    PubMed Central

    Perrot, Aurore; Pionneau, Cédric; Nadaud, Sophie; Davi, Frédéric; Leblond, Véronique; Jacob, Frédéric; Merle-Béral, Hélène; Herbrecht, Raoul; Béné, Marie-Christine; Gribben, John G.; Vallat, Laurent

    2011-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70− and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70+ and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70−) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease. PMID:21602524

  6. Completed | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Prior to the current Clinical Proteomic Tumor Analysis Consortium (CPTAC), previously funded initiatives associated with clinical proteomics research included: Clinical Proteomic Tumor Analysis Consortium (CPTAC 2.0) Clinical Proteomic Technologies for Cancer Initiative (CPTC) Mouse Proteomic Technologies Initiative

  7. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis

    PubMed Central

    2012-01-01

    Background Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis. Methods Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots. Results A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein). Conclusions A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC. PMID:22726388

  8. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    PubMed

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  9. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Guanhui; University of Chinese Academy of Sciences, Beijing; Dong, Hongjun

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work,more » we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.« less

  10. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    PubMed Central

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  11. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.

    PubMed

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L

    2015-02-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Proteomic Analysis of Acetaminophen-Induced Changes in Mitochondrial Protein Expression Using Spectral Counting

    PubMed Central

    Stamper, Brendan D.; Mohar, Isaac; Kavanagh, Terrance J.; Nelson, Sidney D.

    2011-01-01

    Comparative proteomic analysis following treatment with acetaminophen (APAP) was performed on two different models of APAP-mediated hepatocellular injury in order to both identify common targets for adduct formation and track drug-induced changes in protein expression. Male C57BL/6 mice were used as a model for APAP-mediated liver injury in vivo and TAMH cells were used as a model for APAP-mediated cytotoxicity in vitro. SEQUEST was unable to identify the precise location of sites of adduction following treatment with APAP in either system. However, semiquantitative analysis of the proteomic datasets using spectral counting revealed a downregulation of P450 isoforms associated with APAP bioactivation, and an upregulation of proteins related to the electron transport chain by APAP compared to control. Both mechanisms are likely compensatory in nature as decreased P450 expression is likely to attenuate toxicity associated with N-acetyl-p-quinoneimine (NAPQI) formation, whereas APAP-induced electron transport chain component upregulation may be an attempt to promote cellular bioenergetics. PMID:21329376

  13. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    PubMed

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets

    PubMed Central

    2015-01-01

    Background Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. Methods We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. Results Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. Conclusions Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis. PMID:26040285

  15. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets.

    PubMed

    Cordeiro, Ana Paula; Silva Pereira, Rosiane Aparecida; Chapeaurouge, Alex; Coimbra, Clarice Semião; Perales, Jonas; Oliveira, Guilherme; Sanchez Candiani, Talitah Michel; Coimbra, Roney Santos

    2015-01-01

    Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis.

  16. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    PubMed

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized between moderately divergent proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial proteins in evolutionary contexts.

  17. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila.

    PubMed

    Di, Guilan; Li, Hui; Zhang, Chao; Zhao, Yanjing; Zhou, Chuanjiang; Naeem, Sajid; Li, Li; Kong, Xianghui

    2017-07-01

    Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 10 8  CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparative Proteomics of Human and Macaque Milk Reveals Species-Specific Nutrition during Postnatal Development.

    PubMed

    Beck, Kristen L; Weber, Darren; Phinney, Brett S; Smilowitz, Jennifer T; Hinde, Katie; Lönnerdal, Bo; Korf, Ian; Lemay, Danielle G

    2015-05-01

    Milk has been well established as the optimal nutrition source for infants, yet there is still much to be understood about its molecular composition. Therefore, our objective was to develop and compare comprehensive milk proteomes for human and rhesus macaques to highlight differences in neonatal nutrition. We developed a milk proteomics technique that overcomes previous technical barriers including pervasive post-translational modifications and limited sample volume. We identified 1606 and 518 proteins in human and macaque milk, respectively. During analysis of detected protein orthologs, we identified 88 differentially abundant proteins. Of these, 93% exhibited increased abundance in human milk relative to macaque and include lactoferrin, polymeric immunoglobulin receptor, alpha-1 antichymotrypsin, vitamin D-binding protein, and haptocorrin. Furthermore, proteins more abundant in human milk compared with macaque are associated with development of the gastrointestinal tract, the immune system, and the brain. Overall, our novel proteomics method reveals the first comprehensive macaque milk proteome and 524 newly identified human milk proteins. The differentially abundant proteins observed are consistent with the perspective that human infants, compared with nonhuman primates, are born at a slightly earlier stage of somatic development and require additional support through higher quantities of specific proteins to nurture human infant maturation.

  19. Proteomic Analysis of Synovial Fluid Obtained From a Dog Diagnosed With Idiopathic Immune-Mediated Polyarthritis.

    PubMed

    Tan, Wei Miao; Lau, Seng Fong; Ajat, Mokrish; Mansor, Rozaihan; Abd Rani, Puteri Azaziah Megat; Rahmad, Norasfaliza Binti

    2017-03-01

    This case study is to report the proteins detected by proteomic analysis of synovial fluid from a dog diagnosed with idiopathic immune-mediated polyarthritis, and to compare it with healthy dogs. Synovial fluid was collected via arthrocentesis from a dog diagnosed with immune-mediated polyarthritis. Protein precipitation was performed on the synovial fluid, followed by isoelectric focusing and 2-dimensional gel electrophoresis. The spots on the 2-dimensional gels were analyzed using MALDI-TOF/MS. The results were then analyzed against the MASCOT database. The results from the proteomic analysis revealed an abundance of several types of immunoglobulins together with the presence of complement C4b-binding protein alpha chain. Actin and keratin were also among the proteins detected. Proteomic studies, facilitate a better understanding of the different levels of proteins expressed during disease activity. Potential disease biomarkers can aid in the diagnosis of disease, as well as help in monitoring treatment efficacy and providing prognosis for the patient. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri.

    PubMed

    Facincani, Agda P; Moreira, Leandro M; Soares, Márcia R; Ferreira, Cristiano B; Ferreira, Rafael M; Ferro, Maria I T; Ferro, Jesus A; Gozzo, Fabio C; de Oliveira, Julio C F

    2014-03-01

    The bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area. An arsenal of bacterial pathogenicity- and virulence-related proteins is expressed to ensure a successful infection process. At the post-genomic stage of Xac, we used a proteomic approach to analyze the proteins that are displayed differentially over time when the pathogen attacks the host plant. Protein extracts were prepared from infectious Xac grown in inducing medium (XAM1) for 24 h or from host citrus plants for 3 or 5 days after infection, detached times to evaluate the adaptation and virulence of the pathogen. The protein extracts were proteolyzed, and the peptides derived from tryptic digestion were investigated using liquid chromatography and tandem mass spectrometry. Changes in the protein expression profile were compared with the Xac genome and the proteome recently described under non-infectious conditions. An analysis of the proteome of Xac under infectious conditions revealed proteins directly involved in virulence such as the type III secretion system (T3SS) and effector proteins (T3SS-e), the type IV pilus (Tfp), and xanthan gum biosynthesis. Moreover, four new mutants related to proteins detected in the proteome and with different functions exhibited reduced virulence relative to the wild-type proteins. The results of the proteome analysis of infectious Xac define the processes of adaptation to the host and demonstrate the induction of the virulence factors of Xac involved in plant-pathogen interactions.

  1. A Proteomics Approach to Discover Drought Tolerance Proteins in Wheat Pollen Grain at Meiosis Stage.

    PubMed

    Fotovat, Reza; Alikhani, Mehdi; Valizadeh, Mostafa; Mirzaei, Mehdi; Salekdeh, Ghasem H

    2017-01-01

    Plants reproductive phase, when grain yield and consequently farmers' investment is most in jeopardy, is considered as the most sensitive stage to drought stress. In this study, we aimed to explore the proteomic response of wheat anther at meiosis stage in a drought tolerant, Darab, and susceptible, Shiraz, wheat genotypes. Wheat plants were exposed to drought stress at meiosis stage for four days under controlled environmental conditions. Then, anthers from both genotypes were sampled, and their proteomes were examined via quantitative proteomics analysis. Our results demonstrated that short-term stress at meiosis stage reduced plant seed-setting compared to well-watered plants. This reduction was more pronounced in the susceptible genotype, Shiraz, by 51%, compared to the drought tolerant Darab by 14.3%. Proteome analysis revealed that 60 protein spots were drought responsive, out of which 44 were identified using a mass spectrometer. We observed a dramatic up-regulation of several heat shock proteins, as well as induction of Bet v I allergen family proteins, peroxiredoxin-5, and glutathione transferase with similar abundance in both genotypes. However, the abundance of proteins such as several stress response related proteins, including glutaredoxin, proteasome subunit alpha type 5, and ribosomal proteins showed a different response to drought stress in two genotypes. The differential abundance of proteins in two genotypes may suggest mechanisms by which tolerant genotype cope with drought stress. To the best of our knowledge, this is the first proteome analysis of plant reproductive tissue response to drought stress in wheat and could broaden our insight into plant adaptation to drought stress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011

    PubMed Central

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with 15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti. PMID:23119037

  3. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011.

    PubMed

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with (15)N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti.

  4. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of fivemore » proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.« less

  5. Proteomics Analysis of Bladder Cancer Exosomes*

    PubMed Central

    Welton, Joanne L.; Khanna, Sanjay; Giles, Peter J.; Brennan, Paul; Brewis, Ian A.; Staffurth, John; Mason, Malcolm D.; Clayton, Aled

    2010-01-01

    Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the exosome proteomics data set presented is of unrivaled quality. The data will aid in the development of urine exosome-based clinical tools for monitoring disease and will inform follow-up studies into varied aspects of exosome manufacture and function. PMID:20224111

  6. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    PubMed

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  7. Simplifying the human serum proteome for discriminating patients with bipolar disorder of other psychiatry conditions.

    PubMed

    de Jesus, Jemmyson Romário; Galazzi, Rodrigo Moretto; de Lima, Tatiani Brenelli; Banzato, Cláudio Eduardo Muller; de Almeida Lima E Silva, Luiz Fernando; de Rosalmeida Dantas, Clarissa; Gozzo, Fábio Cézar; Arruda, Marco Aurélio Zezzi

    2017-12-01

    An exploratory analysis using proteomic strategies in blood serum of patients with bipolar disorder (BD), and with other psychiatric conditions such as Schizophrenia (SCZ), can provide a better understanding of this disorder, as well as their discrimination based on their proteomic profile. The proteomic profile of blood serum samples obtained from patients with BD using lithium or other drugs (N=14), healthy controls, including non-family (HCNF; N=3) and family (HCF; N=9), patients with schizophrenia (SCZ; N=23), and patients using lithium for other psychiatric conditions (OD; N=4) were compared. Four methods for simplifying the serum samples proteome were evaluated for both removing the most abundant proteins and for enriching those of lower-abundance: protein depletion with acetonitrile (ACN), dithiothreitol (DTT), sequential depletion using DTT and ACN, and protein equalization using commercial ProteoMiner® kit (PM). For proteomic evaluation, 2-D DIGE and nanoLC-MS/MS analysis were employed. PM method was the best strategy for removing proteins of high abundance. Through 2-D DIGE gel image comparison, 37 protein spots were found differentially abundant (p<0.05, Student's t-test), which exhibited ≥2.0-fold change of the average value of normalized spot intensities in the serum of SCZ, BD and OD patients compared to subject controls (HCF and HCNF). From these spots detected, 13 different proteins were identified: ApoA1, ApoE, ApoC3, ApoA4, Samp, SerpinA1, TTR, IgK, Alb, VTN, TR, C4A and C4B. Proteomic analysis allowed the discrimination of patients with BD from patients with other mental disorders, such as SCZ. The findings in this exploratory study may also contribute for better understanding the pathophysiology of these disorders and finding potential serum biomarkers for these conditions. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Global analysis of the rat and human platelet proteome – the molecular blueprint for illustrating multi-functional platelets and cross-species function evolution

    PubMed Central

    Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian

    2013-01-01

    Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome. PMID:20443191

  9. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling.

    PubMed

    Huang, Xin; Tolmachev, Aleksey V; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A; Smith, Richard D; Chan, Wing C; Hinrichs, Steven H; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.

  10. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  11. Comparative evaluation of saliva collection methods for proteome analysis.

    PubMed

    Golatowski, Claas; Salazar, Manuela Gesell; Dhople, Vishnu Mukund; Hammer, Elke; Kocher, Thomas; Jehmlich, Nico; Völker, Uwe

    2013-04-18

    Saliva collection devices are widely used for large-scale screening approaches. This study was designed to compare the suitability of three different whole-saliva collection approaches for subsequent proteome analyses. From 9 young healthy volunteers (4 women and 5 men) saliva samples were collected either unstimulated by passive drooling or stimulated using a paraffin gum or Salivette® (cotton swab). Saliva volume, protein concentration and salivary protein patterns were analyzed comparatively. Samples collected using paraffin gum showed the highest saliva volume (4.1±1.5 ml) followed by Salivette® collection (1.8±0.4 ml) and drooling (1.0±0.4 ml). Saliva protein concentrations (average 1145 μg/ml) showed no significant differences between the three sampling schemes. Each collection approach facilitated the identification of about 160 proteins (≥2 distinct peptides) per subject, but collection-method dependent variations in protein composition were observed. Passive drooling, paraffin gum and Salivette® each allows similar coverage of the whole saliva proteome, but the specific proteins observed depended on the collection approach. Thus, only one type of collection device should be used for quantitative proteome analysis in one experiment, especially when performing large-scale cross-sectional or multi-centric studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Proteomic Cinderella: Customized analysis of bulky MS/MS data in one night.

    PubMed

    Kiseleva, Olga; Poverennaya, Ekaterina; Shargunov, Alexander; Lisitsa, Andrey

    2018-02-01

    Proteomic challenges, stirred up by the advent of high-throughput technologies, produce large amount of MS data. Nowadays, the routine manual search does not satisfy the "speed" of modern science any longer. In our work, the necessity of single-thread analysis of bulky data emerged during interpretation of HepG2 proteome profiling results for proteoforms searching. We compared the contribution of each of the eight search engines (X!Tandem, MS-GF[Formula: see text], MS Amanda, MyriMatch, Comet, Tide, Andromeda, and OMSSA) integrated in an open-source graphical user interface SearchGUI ( http://searchgui.googlecode.com ) into total result of proteoforms identification and optimized set of engines working simultaneously. We also compared the results of our search combination with Mascot results using protein kit UPS2, containing 48 human proteins. We selected combination of X!Tandem, MS-GF[Formula: see text] and OMMSA as the most time-efficient and productive combination of search. We added homemade java-script to automatize pipeline from file picking to report generation. These settings resulted in rise of the efficiency of our customized pipeline unobtainable by manual scouting: the analysis of 192 files searched against human proteome (42153 entries) downloaded from UniProt took 11[Formula: see text]h.

  13. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes.

    PubMed

    Lo, Andy; Weiner, Joel H; Li, Liang

    2013-09-17

    Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Pandey, Sona

    2014-03-07

    Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.

  15. Molecular Diagnosis and Biomarker Identification on SELDI proteomics data by ADTBoost method.

    PubMed

    Wang, Lu-Yong; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    Clinical proteomics is an emerging field that will have great impact on molecular diagnosis, identification of disease biomarkers, drug discovery and clinical trials in the post-genomic era. Protein profiling in tissues and fluids in disease and pathological control and other proteomics techniques will play an important role in molecular diagnosis with therapeutics and personalized healthcare. We introduced a new robust diagnostic method based on ADTboost algorithm, a novel algorithm in proteomics data analysis to improve classification accuracy. It generates classification rules, which are often smaller and easier to interpret. This method often gives most discriminative features, which can be utilized as biomarkers for diagnostic purpose. Also, it has a nice feature of providing a measure of prediction confidence. We carried out this method in amyotrophic lateral sclerosis (ALS) disease data acquired by surface enhanced laser-desorption/ionization-time-of-flight mass spectrometry (SELDI-TOF MS) experiments. Our method is shown to have outstanding prediction capacity through the cross-validation, ROC analysis results and comparative study. Our molecular diagnosis method provides an efficient way to distinguish ALS disease from neurological controls. The results are expressed in a simple and straightforward alternating decision tree format or conditional format. We identified most discriminative peaks in proteomic data, which can be utilized as biomarkers for diagnosis. It will have broad application in molecular diagnosis through proteomics data analysis and personalized medicine in this post-genomic era.

  16. Proteomic analyses of host and pathogen responses during bovine mastitis.

    PubMed

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  17. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes.

    PubMed

    Miao, Jun; Chen, Zhao; Wang, Zenglei; Shrestha, Sony; Li, Xiaolian; Li, Runze; Cui, Liwang

    2017-04-01

    The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum , which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes *

    PubMed Central

    Miao, Jun; Chen, Zhao; Wang, Zenglei; Shrestha, Sony; Li, Xiaolian; Li, Runze; Cui, Liwang

    2017-01-01

    The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium. The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote. PMID:28126901

  19. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    PubMed

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis.

  20. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    PubMed Central

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis. PMID:22982374

  1. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics.

    PubMed

    Hoehenwarter, Wolfgang; Chen, Yanmei; Recuenco-Munoz, Luis; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.

  2. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B

    2011-01-01

    Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylosemore » substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.« less

  3. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    PubMed

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  4. A Comparison of Protein Extraction Methods Suitable for Gel-Based Proteomic Studies of Aphid Proteins

    PubMed Central

    Cilia, M.; Fish, T.; Yang, X.; Mclaughlin, M.; Thannhauser, T. W.

    2009-01-01

    Protein extraction methods can vary widely in reproducibility and in representation of the total proteome, yet there are limited data comparing protein isolation methods. The methodical comparison of protein isolation methods is the first critical step for proteomic studies. To address this, we compared three methods for isolation, purification, and solubilization of insect proteins. The aphid Schizaphis graminum, an agricultural pest, was the source of insect tissue. Proteins were extracted using TCA in acetone (TCA-acetone), phenol, or multi-detergents in a chaotrope solution. Extracted proteins were solubilized in a multiple chaotrope solution and examined using 1-D and 2-D electrophoresis and compared directly using 2-D Difference Gel Electrophoresis (2-D DIGE). Mass spectrometry was used to identify proteins from each extraction type. We were unable to ascribe the differences in the proteins extracted to particular physical characteristics, cell location, or biological function. The TCA-acetone extraction yielded the greatest amount of protein from aphid tissues. Each extraction method isolated a unique subset of the aphid proteome. The TCA-acetone method was explored further for its quantitative reliability using 2-D DIGE. Principal component analysis showed that little of the variation in the data was a result of technical issues, thus demonstrating that the TCA-acetone extraction is a reliable method for preparing aphid proteins for a quantitative proteomics experiment. These data suggest that although the TCA-acetone method is a suitable method for quantitative aphid proteomics, a combination of extraction approaches is recommended for increasing proteome coverage when using gel-based separation techniques. PMID:19721822

  5. Bioinformatics strategies in life sciences: from data processing and data warehousing to biological knowledge extraction.

    PubMed

    Thiele, Herbert; Glandorf, Jörg; Hufnagel, Peter

    2010-05-27

    With the large variety of Proteomics workflows, as well as the large variety of instruments and data-analysis software available, researchers today face major challenges validating and comparing their Proteomics data. Here we present a new generation of the ProteinScape bioinformatics platform, now enabling researchers to manage Proteomics data from the generation and data warehousing to a central data repository with a strong focus on the improved accuracy, reproducibility and comparability demanded by many researchers in the field. It addresses scientists; current needs in proteomics identification, quantification and validation. But producing large protein lists is not the end point in Proteomics, where one ultimately aims to answer specific questions about the biological condition or disease model of the analyzed sample. In this context, a new tool has been developed at the Spanish Centro Nacional de Biotecnologia Proteomics Facility termed PIKE (Protein information and Knowledge Extractor) that allows researchers to control, filter and access specific information from genomics and proteomic databases, to understand the role and relationships of the proteins identified in the experiments. Additionally, an EU funded project, ProDac, has coordinated systematic data collection in public standards-compliant repositories like PRIDE. This will cover all aspects from generating MS data in the laboratory, assembling the whole annotation information and storing it together with identifications in a standardised format.

  6. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    PubMed Central

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  7. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state.

    PubMed

    Schokraie, Elham; Warnken, Uwe; Hotz-Wagenblatt, Agnes; Grohme, Markus A; Hengherr, Steffen; Förster, Frank; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas; Schnölzer, Martina

    2012-01-01

    Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.

  8. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state

    PubMed Central

    Schokraie, Elham; Warnken, Uwe; Hotz-Wagenblatt, Agnes; Grohme, Markus A.; Hengherr, Steffen; Förster, Frank; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas; Schnölzer, Martina

    2012-01-01

    Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state. PMID:23029181

  9. Polyphemus, Odysseus and the ovine milk proteome.

    PubMed

    Cunsolo, Vincenzo; Fasoli, Elisa; Di Francesco, Antonella; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Righetti, Pier Giorgio; Foti, Salvatore

    2017-01-30

    In the last years the amount of ovine milk production, mainly used to formulate a wide range of different and exclusive dairy products often categorized as gourmet food, has been progressively increasing. Taking also into account that sheep milk (SM) also appears to be potentially less allergenic than cow's one, an in-depth information about its protein composition is essential to improve the comprehension of its potential benefits for human consumption. The present work reports the results of an in-depth characterization of SM whey proteome, carried out by coupling the CPLL technology with SDS-PAGE and high resolution UPLC-nESI MS/MS analysis. This approach allowed the identification of 718 different protein components, 644 of which are from unique genes. Particularly, this identification has expanded literature data about sheep whey proteome by 193 novel proteins previously undetected, many of which are involved in the defence/immunity mechanisms or in the nutrient delivery system. A comparative analysis of SM proteome known to date with cow's milk proteome, evidenced that while about 29% of SM proteins are also present in CM, 71% of the identified components appear to be unique of SM proteome and include a heterogeneous group of components which seem to have health-promoting benefits. The data have been deposited to the ProteomeXchange with identifier . Copyright © 2016 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xing; Xu, Yanli; Meng, Qian

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP andmore » NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.« less

  11. Comparative proteomics and protein profile related to phenolic compounds and antioxidant activity in germinated Oryza sativa 'KDML105' and Thai brown rice 'Mali Daeng' for better nutritional value.

    PubMed

    Maksup, Sarunyaporn; Pongpakpian, Sarintip; Roytrakul, Sittiruk; Cha-Um, Suriyan; Supaibulwatana, Kanyaratt

    2018-01-01

    Brown rice (BR) and germinated brown rice (GBR) are considered as prime sources of carbohydrate and bioactive compounds for more than half of the populations worldwide. Several studies have reported on the proteomics of BR and GBR; however, the proteomic profiles related to the synthesis of bioactive compounds are less well documented. In the present study, BR and GBR were used in a comparative analysis of the proteomic and bioactive compound profiles for two famous Thai rice varieties: Khao Dawk Mali 105 (KDML) and Mali Daeng (MD). The proteomes of KDML and MD revealed differences in the expression patterns of proteins after germination. Total phenolic compound content, anthocyanin contents and antioxidant activity of red rice MD was approximately 2.6-, 2.2- and 9.2-fold higher, respectively, compared to that of the white rice KDML. Moreover, GBR of MD showed higher total anthocyanin content and greater antioxidant activity, which is consistent with the increase expression of several proteins involved in the biosynthesis of phenolic compounds and protection against oxidative stress. Red rice MD exhibits higher nutrient values compared to white rice KDML and the appropriate germination of brown rice could represent a method for improving health-related benefits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Exploring the Arabidopsis proteome: influence of protein solubilization buffers on proteome coverage.

    PubMed

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  13. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    PubMed Central

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins. PMID:25561235

  14. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components*

    PubMed Central

    van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.

    2016-01-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. PMID:27601599

  15. Differential expression profiling of serum proteins and metabolites for biomarker discovery

    NASA Astrophysics Data System (ADS)

    Roy, Sushmita Mimi; Anderle, Markus; Lin, Hua; Becker, Christopher H.

    2004-11-01

    A liquid chromatography-mass spectrometry (LC-MS) proteomics and metabolomics platform is presented for quantitative differential expression analysis. Proteome profiles obtained from 1.5 [mu]L of human serum show ~5000 de-isotoped and quantifiable molecular ions. Approximately 1500 metabolites are observed from 100 [mu]L of serum. Quantification is based on reproducible sample preparation and linear signal intensity as a function of concentration. The platform is validated using human serum, but is generally applicable to all biological fluids and tissues. The median coefficient of variation (CV) for ~5000 proteomic and ~1500 metabolomic molecular ions is approximately 25%. For the case of C-reactive protein, results agree with quantification by immunoassay. The independent contributions of two sources of variance, namely sample preparation and LC-MS analysis, are respectively quantified as 20.4 and 15.1% for the proteome, and 19.5 and 13.5% for the metabolome, for median CV values. Furthermore, biological diversity for ~20 healthy individuals is estimated by measuring the variance of ~6500 proteomic and metabolomic molecular ions in sera for each sample; the median CV is 22.3% for the proteome and 16.7% for the metabolome. Finally, quantitative differential expression profiling is applied to a clinical study comparing healthy individuals and rheumatoid arthritis (RA) patients.

  16. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy.

    PubMed

    Barbé, Caroline; Bray, Fabrice; Gueugneau, Marine; Devassine, Stéphanie; Lause, Pascale; Tokarski, Caroline; Rolando, Christian; Thissen, Jean-Paul

    2017-10-06

    Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.

  17. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  18. Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring cry1AcF and cry2Aa Genes and Their Nontransgenic Counterparts.

    PubMed

    Mishra, Pragya; Singh, Shweta; Rathinam, Maniraj; Nandiganti, Muralimohan; Ram Kumar, Nikhil; Thangaraj, Arulprakash; Thimmegowda, Vinutha; Krishnan, Veda; Mishra, Vagish; Jain, Neha; Rai, Vandna; Pattanayak, Debasis; Sreevathsa, Rohini

    2017-02-22

    Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.

  19. Proteomics analysis identified peroxiredoxin 2 involved in early-phase left ventricular impairment in hamsters with cardiomyopathy.

    PubMed

    Kuzuya, Kentaro; Ichihara, Sahoko; Suzuki, Yuka; Inoue, Chisa; Ichihara, Gaku; Kurimoto, Syota; Oikawa, Shinji

    2018-01-01

    Given the hypothesis that inflammation plays a critical role in the progression of cardiovascular diseases, the aim of the present study was to identify new diagnostic and prognostic biomarkers of myocardial proteins involved in early-phase cardiac impairment, using proteomics analysis. Using the two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF tandem mass spectrometry, we compared differences in the expression of proteins in the whole left ventricles between control hamsters, dilated cardiomyopathic hamsters (TO-2), and hypertrophy cardiomyopathic hamsters (Bio14.6) at 6 weeks of age (n = 6, each group). Proteomic analysis identified 10 protein spots with significant alterations, with 7 up-regulated and 3 down-regulated proteins in the left ventricles of both TO-2 and Bio 14.6 hamsters, compared with control hamsters. Of the total alterations, peroxiredoxin 2 (PRDX2) showed significant upregulation in the left ventricles of TO-2 and Bio 14.6 hamsters. Our data suggest that PRDX2, a redox regulating molecule, is involved in early-phase left ventricular impairment in hamsters with cardiomyopathy.

  20. MS Data Miner: a web-based software tool to analyze, compare, and share mass spectrometry protein identifications.

    PubMed

    Dyrlund, Thomas F; Poulsen, Ebbe T; Scavenius, Carsten; Sanggaard, Kristian W; Enghild, Jan J

    2012-09-01

    Data processing and analysis of proteomics data are challenging and time consuming. In this paper, we present MS Data Miner (MDM) (http://sourceforge.net/p/msdataminer), a freely available web-based software solution aimed at minimizing the time required for the analysis, validation, data comparison, and presentation of data files generated in MS software, including Mascot (Matrix Science), Mascot Distiller (Matrix Science), and ProteinPilot (AB Sciex). The program was developed to significantly decrease the time required to process large proteomic data sets for publication. This open sourced system includes a spectra validation system and an automatic screenshot generation tool for Mascot-assigned spectra. In addition, a Gene Ontology term analysis function and a tool for generating comparative Excel data reports are included. We illustrate the benefits of MDM during a proteomics study comprised of more than 200 LC-MS/MS analyses recorded on an AB Sciex TripleTOF 5600, identifying more than 3000 unique proteins and 3.5 million peptides. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling.

    PubMed

    Ji, Xiaoyu; Liu, Xiaoqiang; Peng, Yuanxia; Zhan, Ruoting; Xu, Hui; Ge, Xijin

    2017-12-09

    Emodin has a strong antibacterial activity, including methicillin-resistant Staphylococcus aureus (MRSA). However, the mechanism by which emodin induces growth inhibition against MRSA remains unclear. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach was used to investigate the modes of action of emodin on a MRSA isolate and methicillin-sensitive S. aureus ATCC29213(MSSA). Proteomic analysis showed that expression levels of 145 and 122 proteins were changed significantly in MRSA and MSSA, respectively, after emodin treatment. Comparative analysis of the functions of differentially expressed proteins between the two strains was performed via bioinformatics tools blast2go and STRING database. Proteins related to pyruvate pathway imbalance induction, protein synthesis inhibition, and DNA synthesis suppression were found in both methicillin-sensitive and resistant strains. Moreover, Interference proteins related to membrane damage mechanism were also observed in MRSA. Our findings indicate that emodin is a potential antibacterial agent targeting MRSA via multiple mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparative proteomics analysis of placenta from pregnant women with intrahepatic cholestasis of pregnancy.

    PubMed

    Zhang, Ting; Guo, Yueshuai; Guo, Xuejiang; Zhou, Tao; Chen, Daozhen; Xiang, Jingying; Zhou, Zuomin

    2013-01-01

    Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the third trimester and associated with increased risks in fetal complications. Currently, the exact cause of this disease is unknown. In this study we aim to investigate the potential proteins in placenta, which may participate in the molecular mechanisms of ICP-related fetal complications using iTRAQ-based proteomics approach. The iTRAQ analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to separate differentially expressed placental proteins from 4 pregnant women with ICP and 4 healthy pregnant women. Bioinformatics analysis was used to find the relative processes that these differentially expressed proteins were involved in. Three apoptosis related proteins ERp29, PRDX6 and MPO that resulted from iTRAQ-based proteomics were further verified in placenta by Western blotting and immunohistochemistry. Placental apoptosis was also detected by TUNEL assay. Proteomics results showed there were 38 differentially expressed proteins from pregnant women with ICP and healthy pregnant women, 29 were upregulated and 9 were downregulated in placenta from pregnant women with ICP. Bioinformatics analysis showed most of the identified proteins was functionally related to specific cell processes, including apoptosis, oxidative stress, lipid metabolism. The expression levels of ERp29, PRDX6 and MPO were consistent with the proteomics data. The apoptosis index in placenta from ICP patients was significantly increased. This preliminary work provides a better understanding of the proteomic alterations of placenta from pregnant women with ICP and may provide us some new insights into the pathophysiology and potential novel treatment targets for ICP.

  3. Optimization of quantitative proteomic analysis of clots generated from plasma of patients with venous thromboembolism.

    PubMed

    Stachowicz, Aneta; Siudut, Jakub; Suski, Maciej; Olszanecki, Rafał; Korbut, Ryszard; Undas, Anetta; Wiśniewski, Jacek R

    2017-01-01

    It is well known that fibrin network binds a large variety of proteins, including inhibitors and activators of fibrinolysis, which may affect clot properties, such as stability and susceptibility to fibrinolysis. Specific plasma clot composition differs between individuals and may change in disease states. However, the plasma clot proteome has not yet been in-depth analyzed, mainly due to technical difficulty related to the presence of a highly abundant protein-fibrinogen and fibrin that forms a plasma clot. The aim of our study was to optimize quantitative proteomic analysis of fibrin clots prepared ex vivo from citrated plasma of the peripheral blood drawn from patients with prior venous thromboembolism (VTE). We used a multiple enzyme digestion filter aided sample preparation, a multienzyme digestion (MED) FASP method combined with LC-MS/MS analysis performed on a Proxeon Easy-nLC System coupled to the Q Exactive HF mass spectrometer. We also evaluated the impact of peptide fractionation with pipet-tip strong anion exchange (SAX) method on the obtained results. Our proteomic approach revealed 476 proteins repeatedly identified in the plasma fibrin clots from patients with VTE including extracellular vesicle-derived proteins, lipoproteins, fibrinolysis inhibitors, and proteins involved in immune responses. The MED FASP method using three different enzymes: LysC, trypsin and chymotrypsin increased the number of identified peptides and proteins and their sequence coverage as compared to a single step digestion. Peptide fractionation with a pipet-tip strong anion exchange (SAX) protocol increased the depth of proteomic analyses, but also extended the time needed for sample analysis with LC-MS/MS. The MED FASP method combined with a label-free quantification is an excellent proteomic approach for the analysis of fibrin clots prepared ex vivo from citrated plasma of patients with prior VTE.

  4. Mass Spectrometry Data Collection in Parallel at Multiple Core Facilities Operating TripleTOF 5600 and Orbitrap Elite/Velos Pro/Q Exactive Mass Spectrometers

    PubMed Central

    Jones, K.; Kim, K.; Patel, B.; Kelsen, S.; Braverman, A.; Swinton, D.; Gafken, P.; Jones, L.; Lane, W.; Neveu, J.; Leung, H.; Shaffer, S.; Leszyk, J.; Stanley, B.; Fox, T.; Stanley, A.; Yeung, Anthony

    2013-01-01

    Proteomic research can benefit from simultaneous access to multiple cutting-edge mass spectrometers. 18 core facilities responded to our investigators seeking service through the ABRF Discussion Forum. Five of the facilities selected completed four plasma proteomics experiments as routine fee-for-service. Each biological experiment entailed an iTRAQ 4-plex proteome comparison of immunodepleted plasma provided as 30 labeled-peptide fractions. Identical samples were analyzed by two AB SCIEX TripleTOF 5600 and three Thermo Orbitrap (Elite/Velos Pro/Q Exactive) instruments. 480 LC-MS/MS runs delivered >250 GB of data over two months. We compare herein routine service analyses of three peptide fractions of different peptide abundance. Data files from each instrument were studied to develop optimal analysis parameters to compare with default parameters in Mascot Distiller 2.4, ProteinPilot 4.5 beta, AB Sciex MS Data Converter 1.3 beta, and Proteome Discover 1.3. Peak-picking for TripleTOFs was best by ProteinPilot 4.5 beta while Mascot Distiller and Proteome Discoverer were comparable for the Orbitraps. We compared protein identification and quantitation in SwissProt 2012_07 database by Mascot Server 2.4.01 versus ProteinPilot. By all search methods, more proteins, up to two fold, were identified using the Q Exactive than others. Q Exactive excelled also at the number of unique significant peptide ion sequences. However, software-dependent impact on subsequent interpretation, due to peptide modifications, can be critical. These findings may have special implications for iTRAQ plasma proteomics. For the low abundance peptide ions, the slope of the dynamic range drop-off in the plasma proteome is uniquely sharp compared with cell lysates. Our study provides data for testable improvements in the operation of these mass spectrometers. More importantly, we have demonstrated a new affordable expedient workflow for investigators to perform proteomic experiments through the ABRF infrastructure. (We acknowledge John Cottrell for optimizing the peak-picking parameters for Mascot Distiller).

  5. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach.

    PubMed

    Bilić, Petra; Guillemin, Nicolas; Kovačević, Alan; Beer Ljubić, Blanka; Jović, Ines; Galan, Asier; Eckersall, Peter David; Burchmore, Richard; Mrljak, Vladimir

    2018-05-15

    Idiopathic dilated cardiomyopathy (iDCM) is a primary myocardial disorder with an unknown aetiology, characterized by reduced contractility and ventricular dilation of the left or both ventricles. Naturally occurring canine iDCM was used herein to identify serum proteomic signature of the disease compared to the healthy state, providing an insight into underlying mechanisms and revealing proteins with biomarker potential. To achieve this, we used high-throughput label-based quantitative LC-MS/MS proteomics approach and bioinformatics analysis of the in silico inferred interactome protein network created from the initial list of differential proteins. To complement the proteomic analysis, serum biochemical parameters and levels of know biomarkers of cardiac function were measured. Several proteins with biomarker potential were identified, such as inter-alpha-trypsin inhibitor heavy chain H4, microfibril-associated glycoprotein 4 and apolipoprotein A-IV, which were validated using an independent method (Western blotting) and showed high specificity and sensitivity according to the receiver operating characteristic curve analysis. Bioinformatics analysis revealed involvement of different pathways in iDCM, such as complement cascade activation, lipoprotein particles dynamics, elastic fibre formation, GPCR signalling and respiratory electron transport chain. Idiopathic dilated cardiomyopathy is a severe primary myocardial disease of unknown cause, affecting both humans and dogs. This study is a contribution to the canine heart disease research by means of proteomic and bioinformatic state of the art analyses, following similar approach in human iDCM research. Importantly, we used serum as non-invasive and easily accessible biological source of information and contributed to the scarce data on biofluid proteome research on this topic. Bioinformatics analysis revealed biological pathways modulated in canine iDCM with potential of further targeted research. Also, several proteins with biomarker potential have been identified and successfully validated. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optimizing of MALDI-ToF-based low-molecular-weight serum proteome pattern analysis in detection of breast cancer patients; the effect of albumin removal on classification performance.

    PubMed

    Pietrowska, M; Marczak, L; Polanska, J; Nowicka, E; Behrent, K; Tarnawski, R; Stobiecki, M; Polanski, A; Widlak, P

    2010-01-01

    Mass spectrometry-based analysis of the serum proteome allows identifying multi-peptide patterns/signatures specific for blood of cancer patients, thus having high potential value for cancer diagnostics. However, because of problems with optimization and standardization of experimental and computational design, none of identified proteome patterns/signatures was approved for diagnostics in clinical practice as yet. Here we compared two methods of serum sample preparation for mass spectrometry-based proteome pattern analysis aimed to identify biomarkers that could be used in early detection of breast cancer patients. Blood samples were collected in a group of 92 patients diagnosed at early (I and II) stages of the disease before the start of therapy, and in a group of age-matched healthy controls (104 women). Serum specimens were purified and analyzed using MALDI-ToF spectrometry, either directly or after membrane filtration (50 kDa cut-off) to remove albumin and other large serum proteins. Mass spectra of the low-molecular-weight fraction (2-10 kDa) of the serum proteome were resolved using the Gaussian mixture decomposition, and identified spectral components were used to build classifiers that differentiated samples from breast cancer patients and healthy persons. Mass spectra of complete serum and membrane-filtered albumin-depleted samples have apparently different structure and peaks specific for both types of samples could be identified. The optimal classifier built for the complete serum specimens consisted of 8 spectral components, and had 81% specificity and 72% sensitivity, while that built for the membrane-filtered samples consisted of 4 components, and had 80% specificity and 81% sensitivity. We concluded that pre-processing of samples to remove albumin might be recommended before MALDI-ToF mass spectrometric analysis of the low-molecular-weight components of human serum Keywords: albumin removal; breast cancer; clinical proteomics; mass spectrometry; pattern analysis; serum proteome.

  7. A comprehensive and scalable database search system for metaproteomics.

    PubMed

    Chatterjee, Sandip; Stupp, Gregory S; Park, Sung Kyu Robin; Ducom, Jean-Christophe; Yates, John R; Su, Andrew I; Wolan, Dennis W

    2016-08-16

    Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.

  8. A systematic evaluation of normalization methods in quantitative label-free proteomics.

    PubMed

    Välikangas, Tommi; Suomi, Tomi; Elo, Laura L

    2018-01-01

    To date, mass spectrometry (MS) data remain inherently biased as a result of reasons ranging from sample handling to differences caused by the instrumentation. Normalization is the process that aims to account for the bias and make samples more comparable. The selection of a proper normalization method is a pivotal task for the reliability of the downstream analysis and results. Many normalization methods commonly used in proteomics have been adapted from the DNA microarray techniques. Previous studies comparing normalization methods in proteomics have focused mainly on intragroup variation. In this study, several popular and widely used normalization methods representing different strategies in normalization are evaluated using three spike-in and one experimental mouse label-free proteomic data sets. The normalization methods are evaluated in terms of their ability to reduce variation between technical replicates, their effect on differential expression analysis and their effect on the estimation of logarithmic fold changes. Additionally, we examined whether normalizing the whole data globally or in segments for the differential expression analysis has an effect on the performance of the normalization methods. We found that variance stabilization normalization (Vsn) reduced variation the most between technical replicates in all examined data sets. Vsn also performed consistently well in the differential expression analysis. Linear regression normalization and local regression normalization performed also systematically well. Finally, we discuss the choice of a normalization method and some qualities of a suitable normalization method in the light of the results of our evaluation. © The Author 2016. Published by Oxford University Press.

  9. Comparative proteomic analysis reveals alterations in development and photosynthesis-related proteins in diploid and triploid rice.

    PubMed

    Wang, Shuzhen; Chen, Wenyue; Yang, Changdeng; Yao, Jian; Xiao, Wenfei; Xin, Ya; Qiu, Jieren; Hu, Weimin; Yao, Haigen; Ying, Wu; Fu, Yaping; Tong, Jianxin; Chen, Zhongzhong; Ruan, Songlin; Ma, Huasheng

    2016-09-13

    Polyploidy has pivotal influences on rice (Oryza sativa L.) morphology and physiology, and is very important for understanding rice domestication and improving agricultural traits. Diploid (DP) and triploid (TP) rice shows differences in morphological parameters, such as plant height, leaf length, leaf width and the physiological index of chlorophyll content. However, the underlying mechanisms determining these morphological differences are remain to be defined. To better understand the proteomic changes between DP and TP, tandem mass tags (TMT) mass spectrometry (MS)/MS was used to detect the significant changes to protein expression between DP and TP. Results indicated that both photosynthesis and metabolic pathways were highly significantly associated with proteomic alteration between DP and TP based on biological process and pathway enrichment analysis, and 13 higher abundance chloroplast proteins involving in these two pathways were identified in TP. Quantitative real-time PCR analysis demonstrated that 5 of the 13 chloroplast proteins ATPF, PSAA, PSAB, PSBB and RBL in TP were higher abundance compared with those in DP. This study integrates morphology, physiology and proteomic profiling alteration of DP and TP to address their underlying different molecular mechanisms. Our finding revealed that ATPF, PSAA, PSAB, PSBB and RBL can induce considerable expression changes in TP and may affect the development and growth of rice through photosynthesis and metabolic pathways.

  10. Plasma proteomic changes during hypothermic and normothermic cardiopulmonary bypass in aortic surgeries

    PubMed Central

    ODA, TEIJI; YAMAGUCHI, AKANE; YOKOYAMA, MASAO; SHIMIZU, KOJI; TOYOTA, KOSAKU; NIKAI, TETSURO; MATSUMOTO, KEN-ICHI

    2014-01-01

    Deep hypothermic circulatory arrest (DHCA) is a protective method against brain ischemia in aortic surgery. However, the possible effects of DHCA on the plasma proteins remain to be determined. In the present study, we used novel high-throughput technology to compare the plasma proteomes during DHCA (22°C) with selective cerebral perfusion (SCP, n=7) to those during normothermic cardiopulmonary bypass (CPB, n=7). Three plasma samples per patient were obtained during CPB: T1, prior to cooling; T2, during hypothermia; T3, after rewarming for the DHCA group and three corresponding points for the normothermic group. A proteomic analysis was performed using isobaric tag for relative and absolute quantification (iTRAQ) labeling tandem mass spectrometry to assess quantitative protein changes. In total, the analysis identified 262 proteins. The bioinformatics analysis revealed a significant upregulation of complement activation at T2 in normothermic CPB, which was suppressed in DHCA. These findings were confirmed by the changes of the terminal complement complex (SC5b-9) levels. At T3, however, the level of SC5b-9 showed a greater increase in DHCA compared to normothermic CPB, while 48 proteins were significantly downregulated in DHCA. The results demonstrated that DHCA and rewarming potentially exert a significant effect on the plasma proteome in patients undergoing aortic surgery. PMID:25050567

  11. Application of proteomics to ecology and population biology.

    PubMed

    Karr, T L

    2008-02-01

    Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.

  12. Mechanism of Arachidonic Acid Accumulation during Aging in Mortierella alpina: A Large-Scale Label-Free Comparative Proteomics Study.

    PubMed

    Yu, Yadong; Li, Tao; Wu, Na; Ren, Lujing; Jiang, Ling; Ji, Xiaojun; Huang, He

    2016-11-30

    Arachidonic acid (ARA) is an important polyunsaturated fatty acid having various beneficial physiological effects on the human body. The aging of Mortierella alpina has long been known to significantly improve ARA yield, but the exact mechanism is still elusive. Herein, multiple approaches including large-scale label-free comparative proteomics were employed to systematically investigate the mechanism mentioned above. Upon ultrastructural observation, abnormal mitochondria were found to aggregate around shrunken lipid droplets. Proteomics analysis revealed a total of 171 proteins with significant alterations of expression during aging. Pathway analysis suggested that reactive oxygen species (ROS) were accumulated and stimulated the activation of the malate/pyruvate cycle and isocitrate dehydrogenase, which might provide additional NADPH for ARA synthesis. EC 4.2.1.17-hydratase might be a key player in ARA accumulation during aging. These findings provide a valuable resource for efforts to further improve the ARA content in the oil produced by aging M. alpina.

  13. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe.

    PubMed

    Maddison, Jessie W; Rickard, Jessica P; Bernecic, Naomi C; Tsikis, Guillaume; Soleilhavoup, Clement; Labas, Valerie; Combes-Soia, Lucie; Harichaux, Gregoire; Druart, Xavier; Leahy, Tamara; de Graaf, Simon P

    2017-02-23

    Although essential for artificial insemination (AI) and MOET (multiple ovulation and embryo transfer), oestrus synchronisation and superovulation are associated with increased female reproductive tract mucus production and altered sperm transport. The effects of such breeding practices on the ovine cervicovaginal (CV) mucus proteome have not been detailed. The aim of this study was to qualitatively and quantitatively investigate the Merino CV mucus proteome in naturally cycling (NAT) ewes at oestrus and mid-luteal phase, and quantitatively compare CV oestrus mucus proteomes of NAT, progesterone synchronised (P4) and superovulated (SOV) ewes. Quantitative analysis revealed 60 proteins were more abundant during oestrus and 127 were more abundant during the luteal phase, with 27 oestrus specific and 40 luteal specific proteins identified. The oestrus proteins most disparate in abundance compared to mid-luteal phase were ceruloplasmin (CP), chitinase-3-like protein 1 (CHI3L1), clusterin (CLU), alkaline phosphatase (ALPL) and mucin-16 (MUC16). Exogenous hormones greatly altered the proteome with 51 and 32 proteins more abundant and 98 and 53 proteins less abundant, in P4 and SOV mucus, respectively when compared to NAT mucus. Investigation of the impact of these proteomic changes on sperm motility and longevity within mucus may help improve sperm transport and fertility following cervical AI. This manuscript is the first to detail the proteome of ovine cervicovaginal mucus using qualitative and quantitative proteomic methods over the oestrous cycle in naturally cycling ewes, and also after application of common oestrus synchronisation and superovulation practices. The investigation of the mucus proteome throughout both the follicular and luteal periods of the oestrous cycle, and also after oestrous synchronisation and superovulation provides information about the endocrine control and the effects that exogenous hormones have on protein expression in the female reproductive tract. This information contributes to the field by providing important information on the changes that occur to the cervicovaginal mucus proteome after use of exogenous hormones in controlled breeding programs, which are commonly used on farm and also in a research setting. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of sample preparation techniques and data analysis for the LC-MS/MS-based identification of proteins in human follicular fluid.

    PubMed

    Lehmann, Roland; Schmidt, André; Pastuschek, Jana; Müller, Mario M; Fritzsche, Andreas; Dieterle, Stefan; Greb, Robert R; Markert, Udo R; Slevogt, Hortense

    2018-06-25

    The proteomic analysis of complex body fluids by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis requires the selection of suitable sample preparation techniques and optimal parameter settings in data analysis software packages to obtain reliable results. Proteomic analysis of follicular fluid, as a representative of a complex body fluid similar to serum or plasma, is difficult as it contains a vast amount of high abundant proteins and a variety of proteins with different concentrations. However, the accessibility of this complex body fluid for LC-MS/MS analysis is an opportunity to gain insights into the status, the composition of fertility-relevant proteins including immunological factors or for the discovery of new diagnostic and prognostic markers for, for example, the treatment of infertility. In this study, we compared different sample preparation methods (FASP, eFASP and in-solution digestion) and three different data analysis software packages (Proteome Discoverer with SEQUEST, Mascot and MaxQuant with Andromeda) combined with semi- and full-tryptic databank search options to obtain a maximum coverage of the follicular fluid proteome. We found that the most comprehensive proteome coverage is achieved by the eFASP sample preparation method using SDS in the initial denaturing step and the SEQUEST-based semi-tryptic data analysis. In conclusion, we have developed a fractionation-free methodical workflow for in depth LC-MS/MS-based analysis for the standardized investigation of human follicle fluid as an important representative of a complex body fluid. Taken together, we were able to identify a total of 1392 proteins in follicular fluid. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Identification of Novel STAT6-Regulated Proteins in Mouse B Cells by Comparative Transcriptome and Proteome Analysis.

    PubMed

    Mokada-Gopal, Lavanya; Boeser, Alexander; Lehmann, Christian H K; Drepper, Friedel; Dudziak, Diana; Warscheid, Bettina; Voehringer, David

    2017-05-01

    The transcription factor STAT6 plays a key role in mediating signaling downstream of the receptors for IL-4 and IL-13. In B cells, STAT6 is required for class switch recombination to IgE and for germinal center formation during type 2 immune responses directed against allergens or helminths. In this study, we compared the transcriptomes and proteomes of primary mouse B cells from wild-type and STAT6-deficient mice cultured for 4 d in the presence or absence of IL-4. Microarray analysis revealed that 214 mRNAs were upregulated and 149 were downregulated >3-fold by IL-4 in a STAT6-dependent manner. Across all samples, ∼5000 proteins were identified by label-free quantitative liquid chromatography/mass spectrometry. A total of 149 proteins was found to be differentially expressed >3-fold between IL-4-stimulated wild-type and STAT6 -/- B cells (75 upregulated and 74 downregulated). Comparative analysis of the proteome and transcriptome revealed that expression of these proteins was mainly regulated at the transcriptional level, which argues against a major role for posttranscriptional mechanisms that modulate the STAT6-dependent proteome. Nine proteins were selected for confirmation by flow cytometry or Western blot. We show that CD30, CD79b, SLP-76, DEC205, IL-5Rα, STAT5, and Thy1 are induced by IL-4 in a STAT6-dependent manner. In contrast, Syk and Fc receptor-like 1 were downregulated. This dataset provides a framework for further functional analysis of newly identified IL-4-regulated proteins in B cells that may contribute to germinal center formation and IgE switching in type 2 immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    PubMed

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  17. Expanding the bovine milk proteome through extensive fractionation.

    PubMed

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the different fractions reduced the number to 376 unique proteins in 2 replicates. In addition, 366 proteins were detected by this process in 1 replicate. Hence, by applying different fractionation techniques to milk, we expanded the milk proteome. The milk proteome map may serve as a reference for scientists working in the dairy sector. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil.

    PubMed

    Wang, Jun; Liu, Huanhuan; Huang, Di; Jin, Lina; Wang, Cheng; Wen, Jianping

    2017-03-01

    FK506 (tacrolimus) is a 23-membered polyketide macrolide that possesses powerful immunosuppressant activity. In this study, feeding soybean oil into the fermentation culture of Streptomyces tsukubaensis improved FK506 production by 88.8%. To decipher the overproduction mechanism, comparative proteomic and metabolomic analysis was carried out. A total of 72 protein spots with differential expression in the two-dimensional gel electrophoresis (2-DE) were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS), and 66 intracellular metabolites were measured by gas chromatography-mass spectrometer (GC-MS). The analysis of proteome and metabolome indicated that feeding soybean oil as a supplementary carbon source could not only strengthen the FK506 precursor metabolism and energy metabolism but also tune the pathways related to transcriptional regulation, translation, and stress response, suggesting a better intracellular metabolic environment for the synthesis of FK506. Based on these analyses, 20 key metabolites and precursors of FK506 were supplemented into the soybean oil medium. Among them, lysine, citric acid, shikimic acid, and malonic acid performed excellently for promoting the FK506 production and biomass. Especially, the addition of malonic acid achieved the highest FK506 production, which was 1.56-fold of that in soybean oil medium and 3.05-fold of that in initial medium. This report represented the first comprehensive study on the comparative proteomics and metabolomics applied in S. tsukubaensis, and it would be a rational guidance to further strengthen the FK506 production.

  19. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1.

    PubMed

    Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il

    2017-01-01

    Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.

  20. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in three fenoxaprop-P-ethyl-resistant Beckmannia syzigachne biotypes with differing ACCase mutations.

    PubMed

    Pan, Lang; Zhang, Jian; Wang, Junzhi; Yu, Qin; Bai, Lianyang; Dong, Liyao

    2017-05-08

    American sloughgrass (Beckmannia syzigachne Steud.) is a weed widely distributed in wheat fields of China. In recent years, the evolution of herbicide (fenoxaprop-P-ethyl)-resistant populations has decreased the susceptibility of B. syzigachne. This study compared 4 B. syzigachne populations (3 resistant and 1 susceptible) using iTRAQ to characterize fenoxaprop-P-ethyl resistance in B. syzigachne at the proteomic level. Through searching the UniProt database, 3104 protein species were identified from 13,335 unique peptides. Approximately 2834 protein species were assigned to 23 functional classifications provided by the COG database. Among these, 2299 protein species were assigned to 125 predicted pathways. The resistant biotype contained 8 protein species that changed in abundance relative to the susceptible biotype; they were involved in photosynthesis, oxidative phosphorylation, and fatty acid biosynthesis pathways. In contrast to previous studies comparing only 1 resistant and 1 susceptible population, our use of 3 fenoxaprop-resistant B. syzigachne populations with different genetic backgrounds minimized irrelevant differential expression and eliminated false positives. Therefore, we could more confidently link the differentially expressed proteins to herbicide resistance. Proteomic analysis demonstrated that fenoxaprop-P-ethyl resistance is associated with photosynthetic capacity, a connection that might be related to the target-site mutations in resistant B. syzigachne. This is the first large-scale proteomics study examining herbicide stress responses in different B. syzigachne biotypes. This study has biological relevance because it is the first to employ proteomic analysis for understanding the mechanisms underlying Beckmannia syzigachne herbicide resistance. The plant is a major weed in China and negatively affects crop yield, but has developed considerable resistance to the most common herbicide, fenoxaprop-P-ethyl. Through comparisons of resistant and sensitive biotypes, our study identified multiple proteins (involved in photosynthesis, oxidative phosphorylation, and fatty acid biosynthesis) that are putatively linked to B. syzigachne herbicide response. This large-scale proteomics study, sorely lacking in weed science, contributes valuable data that can be applied to more fine-tuned analyses on the functions of specific proteins in herbicide resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome?

    PubMed

    Zhan, Xianquan; Yang, Haiyan; Peng, Fang; Li, Jianglin; Mu, Yun; Long, Ying; Cheng, Tingting; Huang, Yuda; Li, Zhao; Lu, Miaolong; Li, Na; Li, Maoyu; Liu, Jianping; Jungblut, Peter R

    2018-04-01

    Two-dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI-MS, LC-Q-TOF MS and LC-Orbitrap Velos MS for the identification of proteins within one spot. With LC-Orbitrap Velos MS each Coomassie Blue-stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large-scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low-abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE-MS to separate at the protein species level. Therefore, 2DE coupled with high-sensitivity LC-MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom-up LC-MS investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots

    PubMed Central

    Reis, Ricardo S.; Heringer, Angelo S.; Rangel, Patricia L.; Santa-Catarina, Claudete; Grativol, Clícia; Veiga, Carlos F. M.; Souza-Filho, Gonçalo A.

    2017-01-01

    Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress. PMID:28419154

  3. Proteomic analysis to investigate color changes of chilled beef longissimus steaks held under carbon monoxide and high oxygen packaging.

    PubMed

    Yang, Xiaoyin; Wu, Shuang; Hopkins, David L; Liang, Rongrong; Zhu, Lixian; Zhang, Yimin; Luo, Xin

    2018-08-01

    This study investigated the proteome basis for color stability variations in beef steaks packaged under two modified atmosphere packaging (MAP) methods: HiOx-MAP (80% O 2 /20% CO 2 ) and CO-MAP (0.4% CO/30% CO 2 /69.6% N 2 ) during 15 days of storage. The color stability, pH, and sarcoplasmic proteome analysis of steaks were evaluated on days 0, 5, 10 and 15 of storage. Proteomic results revealed that the differential expression of the sarcoplasmic proteome during storage contributed to the variations in meat color stability between the two MAP methods. Compared with HiOx-MAP steaks, some glycolytic and energy metabolic enzymes important in NADH regeneration and antioxidant processes, antioxidant peroxiredoxins (thioredoxin-dependent peroxide reductase, peroxiredoxin-2, peroxiredoxin-6) and protein DJ-1 were more abundant in CO-MAP steaks. The over-expression of these proteins could induce CO-MAP steaks to maintain high levels of metmyoglobin reducing activity and oxygen consumption rate, resulting in CO-MAP steaks exhibiting better color stability than HiOx-MAP steaks during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Identifier mapping performance for integrating transcriptomics and proteomics experimental results

    PubMed Central

    2011-01-01

    Background Studies integrating transcriptomic data with proteomic data can illuminate the proteome more clearly than either separately. Integromic studies can deepen understanding of the dynamic complex regulatory relationship between the transcriptome and the proteome. Integrating these data dictates a reliable mapping between the identifier nomenclature resultant from the two high-throughput platforms. However, this kind of analysis is well known to be hampered by lack of standardization of identifier nomenclature among proteins, genes, and microarray probe sets. Therefore data integration may also play a role in critiquing the fallible gene identifications that both platforms emit. Results We compared three freely available internet-based identifier mapping resources for mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, EnVision, and NetAffx. Liquid chromatography-tandem mass spectrometry analyses of 91 endometrial cancer and 7 noncancer samples generated 11,879 distinct ACCs. For each ACC, we compared the retrieval sets of probeset IDs from each mapping resource. We confirmed a high level of discrepancy among the mapping resources. On the same samples, mRNA expression was available. Therefore, to evaluate the quality of each ACC-to-probeset match, we calculated proteome-transcriptome correlations, and compared the resources presuming that better mapping of identifiers should generate a higher proportion of mapped pairs with strong inter-platform correlations. A mixture model for the correlations fitted well and supported regression analysis, providing a window into the performance of the mapping resources. The resources have added and dropped matches over two years, but their overall performance has not changed. Conclusions The methods presented here serve to achieve concrete context-specific insight, to support well-informed decisions in choosing an ID mapping strategy for "omic" data merging. PMID:21619611

  5. Image analysis tools and emerging algorithms for expression proteomics

    PubMed Central

    English, Jane A.; Lisacek, Frederique; Morris, Jeffrey S.; Yang, Guang-Zhong; Dunn, Michael J.

    2012-01-01

    Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2-D Gel Electrophoresis (2-DE) technique of protein separation, and by first covering signal analysis for Mass Spectrometry (MS), we also explain the current image analysis workflow for the emerging high-throughput ‘shotgun’ proteomics platform of Liquid Chromatography coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whilst existing commercial and academic packages and their workflows are described from both a user’s and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot-centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image-based alignment and differential analysis in 2-DE, Bayesian peak mixture models and functional mixed modelling in MS, and group-wise consensus alignment methods for LC/MS. PMID:21046614

  6. Secretome profiles of immortalized dental follicle cells using iTRAQ-based proteomic analysis.

    PubMed

    Dou, Lei; Wu, Yan; Yan, Qifang; Wang, Jinhua; Zhang, Yan; Ji, Ping

    2017-08-04

    Secretomes produced by mesenchymal stromal cells (MSCs) were considered to be therapeutic potential. However, harvesting enough primary MSCs from tissue was time-consuming and costly, which impeded the application of MSCs secretomes. This study was to immortalize MSCs and compare the secretomes profile of immortalized and original MSCs. Human dental follicle cells (DFCs) were isolated and immortalized using pMPH86. The secretome profile of immortalized DFCs (iDFCs) was investigated and compared using iTRAQ labeling combined with mass spectrometry (MS) quantitative proteomics. The MS data was analyzed using ProteinPilotTM software, and then bioinformatic analysis of identified proteins was done. A total of 2092 secreted proteins were detected in conditioned media of iDFCs. Compared with primary DFCs, 253 differently expressed proteins were found in iDFCs secretome (142 up-regulated and 111 down-regulated). Intensive bioinformatic analysis revealed that the majority of secreted proteins were involved in cellular process, metabolic process, biological regulation, cellular component organization or biogenesis, immune system process, developmental process, response to stimulus and signaling. Proteomic profile of cell secretome wasn't largely affected after immortalization converted by this piggyBac immortalization system. The secretome of iDFCs may be a good candidate of primary DFCs for regenerative medicine.

  7. Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging*

    PubMed Central

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers. PMID:24217021

  8. Label-free quantitative protein profiling of vastus lateralis muscle during human aging.

    PubMed

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.

  9. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

    PubMed

    Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong

    2014-07-01

    Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates*

    PubMed Central

    Shteynberg, David; Deutsch, Eric W.; Lam, Henry; Eng, Jimmy K.; Sun, Zhi; Tasman, Natalie; Mendoza, Luis; Moritz, Robert L.; Aebersold, Ruedi; Nesvizhskii, Alexey I.

    2011-01-01

    The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments more representative of organism-specific composite data sets. PMID:21876204

  11. The State of the Human Proteome in 2013 as viewed through PeptideAtlas: Comparing the Kidney, Urine, and Plasma Proteomes for the Biology and Disease-driven Human Proteome Project

    PubMed Central

    Farrah, Terry; Deutsch, Eric W.; Omenn, Gilbert S.; Sun, Zhi; Watts, Julian D.; Yamamoto, Tadashi; Shteynberg, David; Harris, Micheleen M.; Moritz, Robert L.

    2014-01-01

    The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste products are filtered from the plasma by the kidney and excreted via the urine, while kidney proteins may be secreted into the circulation or released into the urine. Shotgun proteomics datasets derived from human kidney, urine, and plasma samples were collated and processed using a uniform software pipeline, and relative protein abundances were estimated by spectral counting. The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR for the kidney, urine, and plasma proteomes, respectively—for kidney and plasma, the largest high-confidence protein sets to date. The same pipeline applied to all available human data yielded a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one peptide for each of ~14,000 Swiss-Prot entries, an increase over 2012 of ~7.5% of the predicted human proteome. We demonstrate that abundances are correlated between plasma and urine, examine the most abundant urine proteins not derived from either plasma or kidney, and consider the biomarker potential of proteins associated with renal decline. This analysis forms part of the Biology and Disease-driven Human Proteome Project (B/D-HPP) and a contribution to the Chromosome-centric Human Proteome Project (C-HPP) special issue. PMID:24261998

  12. Analysis of Pacific oyster larval proteome and its response to high-CO2.

    PubMed

    Dineshram, R; Wong, Kelvin K W; Xiao, Shu; Yu, Ziniu; Qian, Pei Yuan; Thiyagarajan, Vengatesen

    2012-10-01

    Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Involvement of GABA Transporters in Atropine-Treated Myopic Retina As Revealed by iTRAQ Quantitative Proteomics

    PubMed Central

    2015-01-01

    Atropine, a muscarinic antagonist, is known to inhibit myopia progression in several animal models and humans. However, the mode of action is not established yet. In this study, we compared quantitative iTRAQ proteomic analysis in the retinas collected from control and lens-induced myopic (LIM) mouse eyes treated with atropine. The myopic group received a (−15D) spectacle lens over the right eye on postnatal day 10 with or without atropine eye drops starting on postnatal day 24. Axial length was measured by optical low coherence interferometry (OLCI), AC-Master, and refraction was measured by automated infrared photorefractor at postnatal 24, 38, and 52 days. Retinal tissue samples were pooled from six eyes for each group. The experiments were repeated twice, and technical replicates were also performed for liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. MetaCore was used to perform protein profiling for pathway analysis. We identified a total of 3882 unique proteins with <1% FDR by analyzing the samples in replicates for two independent experiments. This is the largest number of mouse retina proteome reported to date. Thirty proteins were found to be up-regulated (ratio for myopia/control > global mean ratio + 1 standard deviation), and 28 proteins were down-regulated (ratio for myopia/control < global mean ratio - 1 standard deviation) in myopic eyes as compared with control retinas. Pathway analysis using MetaCore revealed regulation of γ-aminobutyric acid (GABA) levels in the myopic eyes. Detailed analysis of the quantitative proteomics data showed that the levels of GABA transporter 1 (GAT-1) were elevated in myopic retina and significantly reduced after atropine treatment. These results were further validated with immunohistochemistry and Western blot analysis. In conclusion, this study provides a comprehensive quantitative proteomic analysis of atropine-treated mouse retina and suggests the involvement of GABAergic signaling in the antimyopic effects of atropine in mouse eyes. The GABAergic transmission in the neural retina plays a pivotal role in the maintenance of axial eye growth in mammals. PMID:25211393

  14. The Application of SILAC Mouse in Human Body Fluid Proteomics Analysis Reveals Protein Patterns Associated with IgA Nephropathy.

    PubMed

    Zhao, Shilin; Li, Rongxia; Cai, Xiaofan; Chen, Wanjia; Li, Qingrun; Xing, Tao; Zhu, Wenjie; Chen, Y Eugene; Zeng, Rong; Deng, Yueyi

    2013-01-01

    Body fluid proteome is the most informative proteome from a medical viewpoint. But the lack of accurate quantitation method for complicated body fluid limited its application in disease research and biomarker discovery. To address this problem, we introduced a novel strategy, in which SILAC-labeled mouse serum was used as internal standard for human serum and urine proteome analysis. The SILAC-labeled mouse serum was mixed with human serum and urine, and multidimensional separation coupled with tandem mass spectrometry (IEF-LC-MS/MS) analysis was performed. The shared peptides between two species were quantified by their SILAC pairs, and the human-only peptides were quantified by mouse peptides with coelution. The comparison for the results from two replicate experiments indicated the high repeatability of our strategy. Then the urine from Immunoglobulin A nephropathy patients treated and untreated was compared by this quantitation strategy. Fifty-three peptides were found to be significantly changed between two groups, including both known diagnostic markers for IgAN and novel candidates, such as Complement C3, Albumin, VDBP, ApoA,1 and IGFBP7. In conclusion, we have developed a practical and accurate quantitation strategy for comparison of complicated human body fluid proteome. The results from such strategy could provide potential disease-related biomarkers for evaluation of treatment.

  15. Combined analysis of transcriptome and proteome data as a tool for the identification of candidate biomarkers in renal cell carcinoma

    PubMed Central

    Seliger, Barbara; Dressler, Sven P.; Wang, Ena; Kellner, Roland; Recktenwald, Christian V.; Lottspeich, Friedrich; Marincola, Francesco M.; Baumgärtner, Maja; Atkins, Derek; Lichtenfels, Rudolf

    2012-01-01

    Results obtained from expression profilings of renal cell carcinoma using different “ome”-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to upregulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%) and cell motility/structural molecules (10%). Candidate biomarkers defined by proteomics and PROTEOMEX are frequently shared, whereas the sharing rate between cDNA microarray and proteome-based profilings is limited. Putative candidate biomarkers provide insights into their cellular (dys)function and their diagnostic/prognostic value but still warrant further validation in larger patient numbers. Based on the fact that merely 3 candidate biomarkers were shared by all applied technologies, namely annexin A4, tubulin alpha-1A chain and ubiquitin carboxyl-terminal hydrolase L1 the analysis at a single hierarchical level of biological regulation seems to provide only limited results thus emphasizing the importance and benefit of performing rather combinatorial screenings which can complement the standard clinical predictors. PMID:19235166

  16. Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma.

    PubMed

    Taleb, Raghda Saad Zaghloul; Moez, Pacint; Younan, Doreen; Eisenacher, Martin; Tenbusch, Matthias; Sitek, Barbara; Bracht, Thilo

    2017-12-01

    Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. Cirrhosis induced by hepatitis-C virus (HCV) infection is the most critical risk factor for HCC. However, the mechanism of HCV-induced carcinogenesis is not fully understood. Plasma microparticles (PMP) contribute to numerous physiological and pathological processes and contain proteins whose composition correlates to the respective pathophysiological conditions. We analyzed PMP from 22 HCV-induced cirrhosis patients, 16 HCV-positive HCC patients with underlying cirrhosis and 18 healthy controls. PMP were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS. We identified 840 protein groups and quantified 507 proteins. 159 proteins were found differentially abundant between the three experimental groups. PMP in both disease entities displayed remarkable differences in the proteome composition compared to healthy controls. Conversely, the proteome difference between both diseases was minimal. GO analysis revealed that PMP isolated from both diseases were significantly enriched in proteins involved in complement activation, while endopeptidase activity was downregulated exclusively in HCC patients. This study reports for the first time a quantitative proteome analysis for PMP from patients with HCV-induced cirrhosis and HCC. Data are available via ProteomeXchange with identifier PXD005777. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proteomics of drug resistance in Candida glabrata biofilms.

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P

    2010-04-01

    Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.

  18. Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining.

    PubMed

    Witzel, Katja; Surabhi, Giridara-Kumar; Jyothsnakumari, Gottimukkala; Sudhakar, Chinta; Matros, Andrea; Mock, Hans-Peter

    2007-04-01

    This paper describes the application of the recently introduced fluorescence stain Ruthenium(II)-tris-(bathophenanthroline-disulphonate) (RuBP) on a comparative proteome analysis of two phenotypically different barley lines. We carried out an analysis of protein patterns from 2-D gels of the parental lines of the Oregon Wolfe Barley mapping population DOM and REC and stained with either the conventional colloidal Coomassie Brilliant Blue (cCBB) or with the novel RuBP solution. We wished to experimentally verify the usefulness of such a stain in evaluating the complex pattern of a seed proteome, in comparison to the previously used cCBB staining technique. To validate the efficiency of visualization by both stains, we first compared the overall number of detected protein spots. On average, 790 spots were visible by cCBB staining and 1200 spots by RuBP staining. Then, the intensity of a set of spots was assessed, and changes in relative abundance were determined using image analysis software. As expected, staining with RuBP performed better in quantitation in terms of sensitivity and dynamic range. Furthermore, spots from a cultivar-specific region in the protein map were chosen for identification to asses the gain of biological information due to the staining procedure. From this particular region, eight spots were visualized exclusively by RuBP and identification was successful for all spots, proving the ability to identify even very low abundant proteins. Performance in MS analysis was comparable for both protein stains. Proteins were identified by MALDI-TOF MS peptide mass fingerprinting. This approach was not successful for all spots, due to the restricted entry number for barley in the database. Therefore, we subsequently used LC-ESI-Q-TOF MS/MS and de novo sequencing for identification. Because only an insufficient number of proteins from barley is annotated, an EST-based identification strategy was chosen for our experiment. We wished to test whether under these limitations the application of a more sensitive stain would lead to a more advanced proteome approach. In summary, we demonstrate here that the application of RuBP as an economical but reliable and sensitive fluorescence stain is highly suitable for quantitative proteome analysis of plant seeds.

  19. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    PubMed

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  20. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data*

    PubMed Central

    Rigbolt, Kristoffer T. G.; Vanselow, Jens T.; Blagoev, Blagoy

    2011-01-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)1. The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net. PMID:21602510

  1. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Wu, Xinwei; Xia, Xingzhou; Xiao, Xinglong; Wu, Hui

    2017-10-01

    Cronobacter sakazakii is a foodborne pathogen throughout the world and survives extremely desiccation stress. However, the molecular basis involved in desiccation resistance of C. sakazakii is still unknown. In this study, the potential desiccation resistance factors of C. sakazakii ATCC 29544 were determined using iTRAQ-based quantitative proteomic analysis. A total of 2775 proteins were identified by iTRAQ, of which 233 showed a different protein expression between control group and desiccation stress group. Among these 233 proteins identified as desiccation resistance proteins, there were 146 proteins downregulated and 87 proteins upregulated. According to the comprehensive proteome coverage analysis, C. sakazakii increased its resistance to desiccation by reducing the gene involved with unnecessary survival functions such as those used for virulence, adhesion, invasion and flagella assembly, while increasing gene expression of genes used in withstanding osmotic stress such as those genes involved in trehalose and betaine uptake. However, the mechanism involved in amino acid metabolism in an osmotic stress response, including the producing of γ-aminobutyric acid in C. sakazakii is still uncertain. This is the first report to determine the potential desiccation resistant factors of C. sakazakii at the proteomic levels. Copyright © 2017. Published by Elsevier Ltd.

  2. Informed-Proteomics: open-source software package for top-down proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungkap; Piehowski, Paul D.; Wilkins, Christopher

    Top-down proteomics involves the analysis of intact proteins. This approach is very attractive as it allows for analyzing proteins in their endogenous form without proteolysis, preserving valuable information about post-translation modifications, isoforms, proteolytic processing or their combinations collectively called proteoforms. Moreover, the quality of the top-down LC-MS/MS datasets is rapidly increasing due to advances in the liquid chromatography and mass spectrometry instrumentation and sample processing protocols. However, the top-down mass spectra are substantially more complex compare to the more conventional bottom-up data. To take full advantage of the increasing quality of the top-down LC-MS/MS datasets there is an urgent needmore » to develop algorithms and software tools for confident proteoform identification and quantification. In this study we present a new open source software suite for top-down proteomics analysis consisting of an LC-MS feature finding algorithm, a database search algorithm, and an interactive results viewer. The presented tool along with several other popular tools were evaluated using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.« less

  3. Comparative Proteomic Analysis of Light-Induced Mycelial Brown Film Formation in Lentinula edodes.

    PubMed

    Tang, Li Hua; Tan, Qi; Bao, Da Peng; Zhang, Xue Hong; Jian, Hua Hua; Li, Yan; Yang, Rui Heng; Wang, Ying

    2016-01-01

    Light-induced brown film (BF) formation by the vegetative mycelium of Lentinula edodes is important for ensuring the quantity and quality of this edible mushroom. Nevertheless, the molecular mechanism underlying this phenotype is still unclear. In this study, a comparative proteomic analysis of mycelial BF formation in L. edodes was performed. Seventy-three protein spots with at least a twofold difference in abundance on two-dimensional electrophoresis (2DE) maps were observed, and 52 of them were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF/MS). These proteins were classified into the following functional categories: small molecule metabolic processes (39%), response to oxidative stress (5%), and organic substance catabolic processes (5%), followed by oxidation-reduction processes (3%), single-organism catabolic processes (3%), positive regulation of protein complex assembly (3%), and protein metabolic processes (3%). Interestingly, four of the proteins that were upregulated in response to light exposure were nucleoside diphosphate kinases. To our knowledge, this is the first proteomic analysis of the mechanism of BF formation in L. edodes . Our data will provide a foundation for future detailed investigations of the proteins linked to BF formation.

  4. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    PubMed

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  5. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    PubMed Central

    Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M.; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J.

    2015-01-01

    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases. PMID:26694367

  6. Proteome changes in rat plasma in response to sibutramine.

    PubMed

    Choi, Jung-Won; Joo, Jeong In; Kim, Dong Hyun; Wang, Xia; Oh, Tae Seok; Choi, Duk Kwon; Yun, Jong Won

    2011-04-01

    Sibutramine is an anti-obesity agent that induces weight loss by selective inhibition of neuronal reuptake of serotonin and norepinephrine; however, it is associated with the risk of cardiovascular diseases (CVD), including heart attack and stroke. Here, we analyzed global protein expression patterns in plasma of control and sibutramine-treated rats using proteomic analysis for a better understanding of the two conflicting functions of this drug, appetite regulation, and cardiovascular risk. The control (n=6) and sibutramine-treated groups (n=6) were injected by vehicle and sibutramine, respectively, and 2-DE combined with MALDI-TOF/MS were performed. Compared to control rats, sibutramine-administered rats gained approximately 18% less body weight and consumed about 13% less food. Plasma leptin and insulin levels also showed a significant decrease in sibutramine-treated rats. As a result of proteomic analysis, 23 differentially regulated proteins were discovered and were reconfirmed by immunoblot analysis. Changed proteins were classified into appetite regulation and cardiovascular risk, according to their regulation pattern. Because the differential levels of proteins that have been well recognized as predictors of CVD risk were not well matched with the results of our proteomic analysis, this study does not conclusively prove that sibutramine has an effect on CVD risk. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    PubMed

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Notice of Pre-Application Webinar (RFA-CA-15-021, RFA-CA-15-022, RFA-CA-15-023) | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute will hold a public pre-application webinar on Friday, December 11 at 12:00 p.m. (EST) for the Funding Opportunity Announcements (FOAs) RFA-CA-15-021 entitled “Proteome Characterization Centers for Clinical Proteomic Tumor Analysis Consortium (U24), RFA-CA-15-022 entitled “Proteogenomic Translational Research Centers for Clinical Proteomic Tumor Analysis Consortium (U01)”, and RFA-CA-15-023 entitled “Proteogenomic Data Analysis Centers for Clinical Proteomic Tumor Analysis Consortium (U24)”.

  9. Proteogenomic characterization of human colon and rectal cancer

    PubMed Central

    Zhang, Bing; Wang, Jing; Wang, Xiaojing; Zhu, Jing; Liu, Qi; Shi, Zhiao; Chambers, Matthew C.; Zimmerman, Lisa J.; Shaddox, Kent F.; Kim, Sangtae; Davies, Sherri R.; Wang, Sean; Wang, Pei; Kinsinger, Christopher R.; Rivers, Robert C.; Rodriguez, Henry; Townsend, R. Reid; Ellis, Matthew J.C.; Carr, Steven A.; Tabb, David L.; Coffey, Robert J.; Slebos, Robbert J.C.; Liebler, Daniel C.

    2014-01-01

    Summary We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. mRNA transcript abundance did not reliably predict protein abundance differences between tumors. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA “MSI/CIMP” transcriptomic subtype, but had distinct mutation, methylation, and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates including HNF4A, TOMM34 and SRC. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology. PMID:25043054

  10. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples

    PubMed Central

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-01-01

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine. PMID:28248241

  11. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples.

    PubMed

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-10-17

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.

  12. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress

    PubMed Central

    Carella, Philip; Wilson, Daniel C.; Kempthorne, Christine J.; Cameron, Robin K.

    2016-01-01

    The plant vascular system, composed of the xylem and phloem, is important for the transport of water, mineral nutrients, and photosynthate throughout the plant body. The vasculature is also the primary means by which developmental and stress signals move from one organ to another. Due to practical and technological limitations, proteomics analysis of xylem and phloem sap has been understudied in comparison to accessible sample types such as leaves and roots. However, recent advances in sample collection techniques and mass spectrometry technology are making it possible to comprehensively analyze vascular sap proteomes. In this mini-review, we discuss the emerging field of vascular sap proteomics, with a focus on recent comparative studies to identify vascular proteins that may play roles in long-distance signaling and other processes during stress responses in plants. PMID:27242852

  13. Comparison of Collisional and Electron-Based Dissociation Modes for Middle-Down Analysis of Multiply Glycosylated Peptides

    NASA Astrophysics Data System (ADS)

    Khatri, Kshitij; Pu, Yi; Klein, Joshua A.; Wei, Juan; Costello, Catherine E.; Lin, Cheng; Zaia, Joseph

    2018-04-01

    Analysis of singly glycosylated peptides has evolved to a point where large-scale LC-MS analyses can be performed at almost the same scale as proteomics experiments. While collisionally activated dissociation (CAD) remains the mainstay of bottom-up analyses, it performs poorly for the middle-down analysis of multiply glycosylated peptides. With improvements in instrumentation, electron-activated dissociation (ExD) modes are becoming increasingly prevalent for proteomics experiments and for the analysis of fragile modifications such as glycosylation. While these methods have been applied for glycopeptide analysis in isolated studies, an organized effort to compare their efficiencies, particularly for analysis of multiply glycosylated peptides (termed here middle-down glycoproteomics), has not been made. We therefore compared the performance of different ExD modes for middle-down glycopeptide analyses. We identified key features among the different dissociation modes and show that increased electron energy and supplemental activation provide the most useful data for middle-down glycopeptide analysis. [Figure not available: see fulltext.

  14. Short infusion of paclitaxel imbalances plasmatic lipid metabolism and correlates with cardiac markers of acute damage in patients with breast cancer.

    PubMed

    Panis, C; Binato, R; Correa, S; Victorino, V J; Dias-Alves, V; Herrera, A C S A; Cecchini, R; Simão, A N C; Barbosa, D S; Pizzatti, L; Abdelhay, E

    2017-09-01

    Although paclitaxel-based chemotherapy is widely used for treating breast cancer, paclitaxel therapy has been associated with several adverse effects. Such adverse effects have primarily been associated with long-term regimens, but some acute effects are being increasingly reported in the literature. In this context, the present study analyzed the systemic proteomic profiles of women diagnosed with breast cancer at the first cycle of short paclitaxel infusion (n = 30). Proteomic profiles thus obtained were compared with those of breast cancer patients without chemotherapy (n = 50), as well as with those of healthy controls (n = 40). Plasma samples were evaluated by label-free LC-MS to obtain systemic proteomic profiles. Putative dysregulated pathways were identified and validated by in silico analysis of proteomic profiles. Our results identified 188 proteins that were differentially expressed in patients who received a single short paclitaxel infusion when compared to patients who did not receive the infusion. Gene ontology analysis indicated that the cholesterol pathway may be dysregulated by paclitaxel in these patients. Validation analysis showed that paclitaxel treatment significantly reduced plasma high-density lipoprotein levels and increased plasma hydroperoxide levels when compared to breast cancer patients without chemotherapy. Furthermore, augmented C-reactive protein and creatine kinase fraction MB were found to be significantly higher in paclitaxel-treated patients in comparison with healthy controls. Taken together, these data suggest that a single dose of short paclitaxel infusion is sufficient to trigger significant alterations in lipid metabolism, which puts breast cancer patients at risk for increased incidence of cardiovascular disease.

  15. Comparative Proteomic Analysis of Liver Steatosis and Fibrosis after Oral Hepatotoxicant Administration in Sprague-Dawley Rats.

    PubMed

    McDyre, B Claire; AbdulHameed, Mohamed Diwan M; Permenter, Matthew G; Dennis, William E; Baer, Christine E; Koontz, Jason M; Boyle, Molly H; Wallqvist, Anders; Lewis, John A; Ippolito, Danielle L

    2018-02-01

    The past decade has seen an increase in the development and clinical use of biomarkers associated with histological features of liver disease. Here, we conduct a comparative histological and global proteomics analysis to identify coregulated modules of proteins in the progression of hepatic steatosis or fibrosis. We orally administered the reference chemicals bromobenzene (BB) or 4,4'-methylenedianiline (4,4'-MDA) to male Sprague-Dawley rats for either 1 single administration or 5 consecutive daily doses. Livers were preserved for histopathology and global proteomics assessment. Analysis of liver sections confirmed a dose- and time-dependent increase in frequency and severity of histopathological features indicative of lipid accumulation after BB or fibrosis after 4,4'-MDA. BB administration resulted in a dose-dependent increase in the frequency and severity of inflammation and vacuolation. 4,4'-MDA administration resulted in a dose-dependent increase in the frequency and severity of periportal collagen accumulation and inflammation. Pathway analysis identified a time-dependent enrichment of biological processes associated with steatogenic or fibrogenic initiating events, cellular functions, and toxicological states. Differentially expressed protein modules were consistent with the observed histology, placing physiologically linked protein networks into context of the disease process. This study demonstrates the potential for protein modules to provide mechanistic links between initiating events and histopathological outcomes.

  16. Differentially abundant proteins associated with heterosis in the primary roots of popcorn.

    PubMed

    Rockenbach, Mathias F; Corrêa, Caio C G; Heringer, Angelo S; Freitas, Ismael L J; Santa-Catarina, Claudete; do Amaral-Júnior, Antônio T; Silveira, Vanildo

    2018-01-01

    Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier "PXD009436". A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (- -), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism.

  17. SILAC-Based Comparative Proteomic Analysis of Lysosomes from Mammalian Cells Using LC-MS/MS.

    PubMed

    Thelen, Melanie; Winter, Dominic; Braulke, Thomas; Gieselmann, Volkmar

    2017-01-01

    Mass spectrometry-based proteomics of lysosomal proteins has led to significant advances in understanding lysosomal function and pathology. The ever-increasing sensitivity and resolution of mass spectrometry in combination with labeling procedures which allow comparative quantitative proteomics can be applied to shed more light on the steadily increasing range of lysosomal functions. In addition, investigation of alterations in lysosomal protein composition in the many lysosomal storage diseases may yield further insights into the molecular pathology of these disorders. Here, we describe a protocol which allows to determine quantitative differences in the lysosomal proteome of cells which are genetically and/or biochemically different or have been exposed to certain stimuli. The method is based on stable isotope labeling of amino acids in cell culture (SILAC). Cells are exposed to superparamagnetic iron oxide particles which are endocytosed and delivered to lysosomes. After homogenization of cells, intact lysosomes are rapidly enriched by passing the cell homogenates over a magnetic column. Lysosomes are eluted after withdrawal of the magnetic field and subjected to mass spectrometry.

  18. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains.

    PubMed

    Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K

    2017-04-16

    An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.

  19. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects.

    PubMed

    Catalán, Úrsula; Rubió, Laura; López de Las Hazas, Maria-Carmen; Herrero, Pol; Nadal, Pedro; Canela, Núria; Pedret, Anna; Motilva, Maria-José; Solà, Rosa

    2016-10-01

    Hydroxytyrosol (HT) is the major phenolic compound in virgin olive oil (VOO) in both free and complex forms (secoiridoids; SEC). Proteomics of cardiovascular tissues such as aorta or heart represents a promising tool to uncover the mechanisms of action of phenolic compounds in healthy animals. Twelve female Wistar rats were separated into three groups: a standard diet and two diets supplemented in phenolic compounds (HT and SEC) adjusted to 5 mg/kg/day during 21 days. Proteomic analyses of aorta and heart tissues were performed by nano-LC and MS. Ingenuity Pathway Analysis was used to generate interaction networks. HT or SEC modulated aorta and heart proteome compared to the standard diet. The top-scored networks were related to Cardiovascular System. HT and SEC downregulated proteins related to proliferation and migration of endothelial cells and occlusion of blood vessels in aorta and proteins related to heart failure in heart tissue. SEC showed higher fold change values compared to HT, attributed to higher concentration of HT detected in heart tissue. Changes at proteomic level in cardiovascular tissues may partially account for the underlying mechanisms of VOO phenols cardiovascular protection being the SEC effects higher than free HT. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In-Depth Characterization of Sheep (Ovis aries) Milk Whey Proteome and Comparison with Cow (Bos taurus)

    PubMed Central

    Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan

    2015-01-01

    An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763

  1. PeptideDepot: flexible relational database for visual analysis of quantitative proteomic data and integration of existing protein information.

    PubMed

    Yu, Kebing; Salomon, Arthur R

    2009-12-01

    Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post-acquisition analysis of proteomic data.

  2. Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications

    PubMed Central

    Hegedűs, Tamás; Chaubey, Pururawa Mayank; Várady, György; Szabó, Edit; Sarankó, Hajnalka; Hofstetter, Lia; Roschitzki, Bernd; Sarkadi, Balázs

    2015-01-01

    Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies—the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics. Database URL: http://rbcc.hegelab.org PMID:26078478

  3. Alterations in brain cerebral cortex proteome of rabies-infected cat.

    PubMed

    Kasempimolporn, Songsri; Lumlertdacha, Boonlert; Chulasugandha, Pannipa; Boonchang, Supatsorn; Sitprija, Visith

    2014-07-01

    Comparative proteome analysis using brain cerebral cortex tissues from cats and dogs infected with/without rabies virus were conducted using both two-dimensional gel-electrophoresis (2-DE) and 2-D fluorescence difference gel- electrophoresis (2D-DIGE) methods. The 2-DE gel images of all samples revealed >1,000 protein spots in each gel. Quantitative intensity analysis revealed the same overall protein pattern in certain regions of the gel, but the rabies-infected brains exhibited more protein spots than the non-infected controls. From approximately 880 protein spots detected by 2D-DIGE, 65 protein spots were increased and 46 were decreased. Eight of these protein spots were randomly selected and annotated by reference to previous known proteome data of rabid dog brains. They were similarly altered in both of the rabies-infected cats and dogs. A more detailed comparison of changes in proteomic profiles of brains between rabid cats and dogs should shed some light on the pathophysiological mechanism of rabies in domestic animals, as most rabies cases have been traceable to or believed to have originated from rabid dogs.

  4. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    PubMed

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative Proteome Analysis of Brucella melitensis Vaccine Strain Rev 1 and a Virulent Strain, 16M

    PubMed Central

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A.; Kraycer, Jo Ann; Mujer, Cesar V.; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G.

    2002-01-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1. PMID:12193611

  6. Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M.

    PubMed

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G

    2002-09-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1.

  7. Consistency of the Proteome in Primary Human Keratinocytes With Respect to Gender, Age, and Skin Localization*

    PubMed Central

    Sprenger, Adrian; Weber, Sebastian; Zarai, Mostafa; Engelke, Rudolf; Nascimento, Juliana M.; Gretzmeier, Christine; Hilpert, Martin; Boerries, Melanie; Has, Cristina; Busch, Hauke; Bruckner-Tuderman, Leena; Dengjel, Jörn

    2013-01-01

    Keratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies. However, comparability of these cell systems is not known. Cell lines may undergo phenotypic shifts and may differ from the in vivo situation in important aspects. Primary cells, on the other hand, may vary in biological functions depending on gender and age of the donor and localization of the biopsy specimen. Here we employed metabolic labeling in combination with quantitative mass spectrometry-based proteomics to assess A431 and HaCaT cell lines for their suitability as model systems. Compared with cell lines, comprehensive profiling of the primary human keratinocyte proteome with respect to gender, age, and skin localization identified an unexpected high proteomic consistency. The data were analyzed by an improved ontology enrichment analysis workflow designed for the study of global proteomics experiments. It enables a quick, comprehensive and unbiased overview of altered biological phenomena and links experimental data to literature. We guide through our workflow, point out its advantages compared with other methods and apply it to visualize differences of cell lines compared with primary human keratinocytes. PMID:23722187

  8. Extracellular proteome analysis of Leptospira interrogans serovar Lai.

    PubMed

    Zeng, Lingbing; Zhang, Yunyi; Zhu, Yongzhang; Yin, Haidi; Zhuang, Xuran; Zhu, Weinan; Guo, Xiaokui; Qin, Jinhong

    2013-10-01

    Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.

  9. Find Pairs: The Module for Protein Quantification of the PeakQuant Software Suite

    PubMed Central

    Eisenacher, Martin; Kohl, Michael; Wiese, Sebastian; Hebeler, Romano; Meyer, Helmut E.

    2012-01-01

    Abstract Accurate quantification of proteins is one of the major tasks in current proteomics research. To address this issue, a wide range of stable isotope labeling techniques have been developed, allowing one to quantitatively study thousands of proteins by means of mass spectrometry. In this article, the FindPairs module of the PeakQuant software suite is detailed. It facilitates the automatic determination of protein abundance ratios based on the automated analysis of stable isotope-coded mass spectrometric data. Furthermore, it implements statistical methods to determine outliers due to biological as well as technical variance of proteome data obtained in replicate experiments. This provides an important means to evaluate the significance in obtained protein expression data. For demonstrating the high applicability of FindPairs, we focused on the quantitative analysis of proteome data acquired in 14N/15N labeling experiments. We further provide a comprehensive overview of the features of the FindPairs software, and compare these with existing quantification packages. The software presented here supports a wide range of proteomics applications, allowing one to quantitatively assess data derived from different stable isotope labeling approaches, such as 14N/15N labeling, SILAC, and iTRAQ. The software is publicly available at http://www.medizinisches-proteom-center.de/software and free for academic use. PMID:22909347

  10. Differential proteome analysis of serum proteins associated with the development of type 2 diabetes mellitus in the KK-A(y) mouse model using the iTRAQ technique.

    PubMed

    Takahashi, Eri; Okumura, Akinori; Unoki-Kubota, Hiroyuki; Hirano, Hisashi; Kasuga, Masato; Kaburagi, Yasushi

    2013-06-12

    To identify candidate serum molecules associated with the progression of type 2 diabetes mellitus (T2DM), we carried out differential proteomic analysis using the KK-A(y) mouse, an animal model of T2DM with obesity. We employed an iTRAQ-based quantitative proteomic approach to analyze the proteomic changes in the sera collected from a pair of 4-week-old KK-A(y) versus C57BL/6 mice. Among the 227 proteins identified, a total of 45 proteins were differentially expressed in KK-A(y) versus C57BL/6 mice. We comparatively analyzed a series of the sera collected at 4 and 12weeks of age from KK-A(y) and C57BL/6 mice for the target protein using multiple reaction monitoring analysis, and identified 8 differentially expressed proteins between the sera of these mice at both time points. Among them, serine (or cysteine) peptidase inhibitor, clade A, member 3K (SERPINA3K) levels were elevated significantly in the sera of KK-A(y) mice compared to C57BL/6 mice. An in vitro assay revealed that the human homologue SERPINA3 increased the transendothelial permeability of retinal microvascular endothelial cells, which may be involved in the pathogenesis of diabetes and/or diabetic retinopathy. With the identified proteins, our proteomics study could provide valuable clues for a better understanding of the underlying mechanisms associated with T2DM. In this paper, we investigated the serum proteome of KK-A(y) mice in a pre-diabetic state compared to that of wild type controls in an attempt to uncover early diagnostic markers of diabetes that are maintained through a diabetic phenotype. We used iTRAQ-based two-dimensional LC-MS/MS serum profiling, and identified several differentially expressed proteins at the pre-diabetic stage. The differential expression was confirmed by multiple reaction monitoring assay, which is fast gaining ground as a sensitive, specific, and cost-effective methodology for relative quantification of the candidate proteins. Using these techniques, we have identified eight candidate proteins of interest including SERPINA3K, which may be important in the pathology of T2DM and/or diabetic retinopathy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Global analysis of Brucella melitensis proteomes.

    PubMed

    Mujer, Cesar V; Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy; Kraycer, Jo Ann; Redkar, Rajendra; Hagius, Sue; Elzer, Philip; Delvecchio, Vito G

    2002-10-01

    Brucella melitensis is a facultative, intracellular, gram-negative cocco-bacillus that causes Malta fever in humans and brucellosis in animals. There are at least six species in the genus, and the disease is classified as zoonotic because several species infect humans. Using 2-D gel electrophoresis and mass spectrometry, we have initiated (i) a comprehensive mapping and identification of all the expressed proteins of B. melitensis virulent strain 16M, and (ii) a comparative study of its proteome with the attentuated vaccinal strain Rev 1. Comprehensive proteome maps of all six Brucella species will be generated in order to obtain vital information for vaccine development, identification of pathogenicity islands, and establishment of host specificity and evolutionary relatedness.

  12. Evaluation of the salivary proteome as a surrogate tissue for systems biology approaches to understanding appetite.

    PubMed

    Harden, Charlotte J; Perez-Carrion, Kristine; Babakordi, Zara; Plummer, Sue F; Hepburn, Natalie; Barker, Margo E; Wright, Phillip C; Evans, Caroline A; Corfe, Bernard M

    2012-06-06

    Current measurement of appetite depends upon tools that are either subjective (visual analogue scales), or invasive (blood). Saliva is increasingly recognised as a valuable resource for biomarker analysis. Proteomics workflows may provide alternative means for the assessment of appetitive response. The study aimed to assess the potential value of the salivary proteome to detect novel biomarkers of appetite using an iTRAQ-based workflow. Diurnal variation of salivary protein concentrations was assessed. A randomised, controlled, crossover study examined the effects on the salivary proteome of isocaloric doses of various long chain fatty acid (LCFA) oil emulsions compared to no treatment (NT). Fasted males provided saliva samples before and following NT or dosing with LCFA emulsions. The oil component of the DHA emulsion contained predominantly docosahexaenoic acid and the oil component of OA contained predominantly oleic acid. Several proteins were present in significantly (p<0.05) different quantities in saliva samples taken following treatments compared to fasting samples. DHA caused alterations in thioredoxin and serpin B4 relative to OA and NT. A further study evaluated energy intake (EI) in response to LCFA in conjunction with subjective appetite scoring. DHA was associated with significantly lower EI relative to NT and OA (p=0.039). The collective data suggest investigation of salivary proteome may be of value in appetitive response. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection.

    PubMed

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina

    2017-07-06

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.

  14. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection

    PubMed Central

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie

    2017-01-01

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it. PMID:28684682

  15. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study.

    PubMed

    Soman, Kizhake V; Stafford, Susan J; Pazdrak, Konrad; Wu, Zheng; Luo, Xuemei; White, Wendy I; Wiktorowicz, John E; Calhoun, William J; Kurosky, Alexander

    2017-08-04

    Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.

  16. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and  phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  17. Simple, effective protein extraction method and proteomics analysis from polyunsaturated fatty acids-producing micro-organisms.

    PubMed

    Ling, Xueping; Guo, Jing; Zheng, Chuqiang; Ye, Chiming; Lu, Yinghua; Pan, Xueshan; Chen, Zhengqi; Ng, I-Son

    2015-12-01

    Polyunsaturated fatty acids (PUFAs) are valuable ingredients in the food and pharmaceutical products due to their beneficial influence on human health. Most studies paid attention on the production of PUFAs from oleaginous micro-organisms but seldom on the comparative proteomics of cells. In the study, three methods (i.e., cold shock, acetone precipitation and ethanol precipitation) for lipid removal from crude protein extracts were applied in different PUFAs-producing micro-organisms. Among the selective strains, Schizochytrium was used as an oleaginous strain with high lipid of 60.3 (w/w%) in biomass. The Mortierella alpina and Cunninghamella echinulata were chosen as the low-lipid-content strains with 25.8 (w/w%) and 21.8 (w/w%) of lipid in biomass, respectively. The cold shock resulted as the most effective method for lipid removed, thus obtained higher protein amount for Schizochytrium. Moreover, from the comparative proteomics for the three PUFAs-producing strains, it showed more significant proteins of up or down-regulation were explored under cold shock treatment. Therefore, the essential proteins (i.e., polyunsaturated fatty acid synthase) and regulating proteins were observed. In conclusion, this study provides a valuable and practical approach for analysis of high PUFAs-producing strains at the proteomics level, and would further accelerate the understanding of the metabolic flux in oleaginous micro-organisms.

  18. Improved metabolites of pharmaceutical ingredient grade Ginkgo biloba and the correlated proteomics analysis.

    PubMed

    Zheng, Wen; Li, Ximin; Zhang, Lin; Zhang, Yanzhen; Lu, Xiaoping; Tian, Jingkui

    2015-06-01

    Ginkgo biloba is an attractive and traditional medicinal plant, and has been widely used as a phytomedicine in the prevention and treatment of cardiovascular and cerebrovascular diseases. Flavonoids and terpene lactones are the major bioactive components of Ginkgo, whereas the ginkgolic acids (GAs) with strong allergenic properties are strictly controlled. In this study, we tested the content of flavonoids and GAs under ultraviolet-B (UV-B) treatment and performed comparative proteomic analyses to determine the differential proteins that occur upon UV-B radiation. That might play a crucial role in producing flavonoids and GAs. Our phytochemical analyses demonstrated that UV-B irradiation significantly increased the content of active flavonoids, and decreased the content of toxic GAs. We conducted comparative proteomic analysis of both whole leaf and chloroplasts proteins. In total, 27 differential proteins in the whole leaf and 43 differential proteins in the chloroplast were positively identified and functionally annotated. The proteomic data suggested that enhanced UV-B radiation exposure activated antioxidants and stress-responsive proteins as well as reduced the rate of photosynthesis. We demonstrate that UV-B irradiation pharmaceutically improved the metabolic ingredients of Ginkgo, particularly in terms of reducing GAs. With high UV absorption properties, and antioxidant activities, the flavonoids were likely highly induced as protective molecules following UV-B irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp.

    PubMed

    Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman

    2016-04-01

    Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.

  20. Difference gel electrophoresis (DiGE) identifies differentially expressed proteins in endoscopically-collected pancreatic fluid

    PubMed Central

    Paulo, Joao A.; Lee, Linda S.; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis may offer insights into the development and progression of the disease. The endoscopic pancreas function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DiGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe chronic pancreatitis and three chronic abdominal pain controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DiGE and LC-MS/MS, were compared. This DiGE-LC-MS/MS analysis reveals proteins that are differentially expressed in chronic pancreatitis compared to chronic abdominal pain controls. Proteins with higher abundance in pancreatic fluid from chronic pancreatitis individuals include: actin, desmoplankin, alpha-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, alpha-1-antichymotrypsin, alpha-2-macroglobulin, Arp2/3 subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DiGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis, however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  1. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  2. Comparison of Grain Proteome Profiles of Four Brazilian Common Bean (Phaseolus vulgaris L.) Cultivars.

    PubMed

    Rossi, Gabriela Barbosa; Valentim-Neto, Pedro Alexandre; Blank, Martina; Faria, Josias Correa de; Arisi, Ana Carolina Maisonnave

    2017-08-30

    Common bean (Phaseolus vulgaris L.) is a source of proteins for about one billion people worldwide. In Brazil, 'BRS Sublime', 'BRS Vereda', 'BRS Esteio', and 'BRS Estilo' cultivars were developed by Embrapa to offer high yield to farmers and excellent quality to final consumers. In this work, grain proteomes of these common bean cultivars were compared based on two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS). Principal component analysis (PCA) was applied to compare 349 matched spots in these cultivars proteomes, and all cultivars were clearly separated in PCA plot. Thirty-two differentially accumulated proteins were identified by MS. Storage proteins such as phaseolins, legumins, and lectins were the most abundant, and novel proteins were also identified. We have built a useful platform that could be used to analyze other Brazilian cultivars and genotypes of common beans.

  3. Comparative Proteome Analysis of the Tuberous Roots of Six Cassava (Manihot esculenta) Varieties Reveals Proteins Related to Phenotypic Traits.

    PubMed

    Schmitz, Gabriela Justamante Händel; de Magalhães Andrade, Jonathan; Valle, Teresa Losada; Labate, Carlos Alberto; do Nascimento, João Roberto Oliveira

    2016-04-27

    Cassava (Manihot esculenta Crantz) is a staple food and an important source of starch, and the attributes of its tuberous root largely depend on the variety. The proteome of cassava has been investigated; however, to date, no study has focused on varieties that reveal the molecular basis of phenotypical characteristics. Therefore, we aimed to compare the proteome of the tuberous roots of six cassava varieties that differed in carbohydrates, carotenoids, and resistance to diseases, among other attributes. Two-dimensional gels showed 146 differential spots between the varieties, and the functional roles of some differential proteins were correlated to phenotypic characteristics of the varieties, such as the amount of carbohydrates or carotenoids and the resistance to biotic or abiotic stresses. The results obtained here highlight elements that might help to direct the improvement of new cultivars of cassava, which is an economically and socially relevant crop worldwide.

  4. Comparative analysis between endometrial proteomes of pregnant and non-pregnant ewes during the peri-implantation period.

    PubMed

    Zhao, Haichao; Sui, Linlin; Miao, Kai; An, Lei; Wang, Dong; Hou, Zhuocheng; Wang, Rui; Guo, Min; Wang, Zhilong; Xu, Jiqiang; Wu, Zhonghong; Tian, Jianhui

    2015-01-01

    Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(s) remains unclear. Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy. Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss. In this study, using well-managed recipient ewes that received embryo transfer as model, we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period. After embryo transfer, recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy. By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes, we identified 94 and 257 differentially expressed proteins (DEPs) in the endometrial caruncular and intercaruncular areas, respectively. Functional analysis showed that the DEPs were mainly associated with immune response, nutrient transport and utilization, as well as proteasome-mediated proteolysis. These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss. In addition, many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes. These proteins, as potential candidates, may contribute to early pregnancy loss.

  5. Validation of a robust proteomic analysis carried out on formalin-fixed paraffin-embedded tissues of the pancreas obtained from mouse and human.

    PubMed

    Kojima, Kyoko; Bowersock, Gregory J; Kojima, Chinatsu; Klug, Christopher A; Grizzle, William E; Mobley, James A

    2012-11-01

    A number of reports have recently emerged with focus on extraction of proteins from formalin-fixed paraffin-embedded (FFPE) tissues for MS analysis; however, reproducibility and robustness as compared to flash frozen controls is generally overlooked. The goal of this study was to identify and validate a practical and highly robust approach for the proteomics analysis of FFPE tissues. FFPE and matched frozen pancreatic tissues obtained from mice (n = 8) were analyzed using 1D-nanoLC-MS(MS)(2) following work up with commercially available kits. The chosen approach for FFPE tissues was found to be highly comparable to that of frozen. In addition, the total number of unique peptides identified between the two groups was highly similar, with 958 identified for FFPE and 1070 identified for frozen, with protein identifications that corresponded by approximately 80%. This approach was then applied to archived human FFPE pancreatic cancer specimens (n = 11) as compared to uninvolved tissues (n = 8), where 47 potential pancreatic ductal adenocarcinoma markers were identified as significantly increased, of which 28 were previously reported. Further, these proteins share strongly overlapping pathway associations to pancreatic cancer that include estrogen receptor α. Together, these data support the validation of an approach for the proteomic analysis of FFPE tissues that is straightforward and highly robust, which can also be effectively applied toward translational studies of disease. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CPTAC Releases Largest-Ever Ovarian Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).  This is one of the largest public datasets covering the proteome, phosphoproteome and glycoproteome with complementary deep genomic sequencing data on the same tumor.

  7. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker.

    PubMed

    He, Dan; Xie, Xiao; Yang, Fan; Zhang, Heng; Su, Haomiao; Ge, Yun; Song, Haiping; Chen, Peng R

    2017-11-13

    A genetically encoded, multifunctional photocrosslinker was developed for quantitative and comparative proteomics. By bearing a bioorthogonal handle and a releasable linker in addition to its photoaffinity warhead, this probe enables the enrichment of transient and low-abundance prey proteins after intracellular photocrosslinking and prey-bait separation, which can be subject to stable isotope dimethyl labeling and mass spectrometry analysis. This quantitative strategy (termed isoCAPP) allowed a comparative proteomic approach to be adopted to identify the proteolytic substrates of an E. coli protease-chaperone dual machinery DegP. Two newly identified substrates were subsequently confirmed by proteolysis experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A peptide resource for the analysis of Staphylococcus aureus in host pathogen interaction studies

    PubMed Central

    Depke, Maren; Michalik, Stephan; Rabe, Alexander; Surmann, Kristin; Brinkmann, Lars; Jehmlich, Nico; Bernhardt, Jörg; Hecker, Michael; Wollscheid, Bernd; Sun, Zhi; Moritz, Robert L.; Völker, Uwe; Schmidt, Frank

    2016-01-01

    Staphylococcus aureus is an opportunistic human pathogen, which can cause life-threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS–driven, proteome-wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide-centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus-typic peptides in highly complex host–pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus-specific host–pathogen interaction studies through comprehensive proteome analysis. The S. aureus-specific spectra resource developed here also represents an important spectral repository for SRM or for data-independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 (http://proteomecentral.proteomexchange.org/dataset/PXD000702). PMID:26224020

  9. A peptide resource for the analysis of Staphylococcus aureus in host-pathogen interaction studies.

    PubMed

    Depke, Maren; Michalik, Stephan; Rabe, Alexander; Surmann, Kristin; Brinkmann, Lars; Jehmlich, Nico; Bernhardt, Jörg; Hecker, Michael; Wollscheid, Bernd; Sun, Zhi; Moritz, Robert L; Völker, Uwe; Schmidt, Frank

    2015-11-01

    Staphylococcus aureus is an opportunistic human pathogen, which can cause life-threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS-driven, proteome-wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide-centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus-typic peptides in highly complex host-pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus-specific host-pathogen interaction studies through comprehensive proteome analysis. The S. aureus-specific spectra resource developed here also represents an important spectral repository for SRM or for data-independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 (http://proteomecentral.proteomexchange.org/dataset/PXD000702). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    PubMed

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-04-21

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA 2 s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA 2 s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not efficiently neutralized by Bothrops antivenom. Thus, using a functional proteomic approach, we highlighted intraspecific differences in B. atrox venom that could impact both in the ecology of snakes but also in the treatment of snake bite patients in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  12. Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells.

    PubMed

    Liu, Zhangguo; Song, Lingzi; Lu, Lizhi; Zhang, Xianfu; Zhang, Fuming; Wang, Kehua; Linhardt, Robert J

    2017-09-07

    Eggshell matrix can be dissociated into three matrix fractions: acid-insoluble matrix (M1), water-insoluble matrix (M2) and acid-water facultative-soluble matrix (M3). Matrix fractions from pimpled and normal eggshells were compared using label-free proteomic method to understand the differences among three matrix fractions and the proteins involved with eggshell quality. A total of 738 and 600 proteins were identified in the pimpled and normal calcified eggshells, respectively. Both eggshells showed a combined proteomic inventory of 769 proteins. In the same type of eggshell, a high similarity was present in the proteomes of three matrix fractions. These triply overlapped common proteins formed the predominant contributor to proteomic abundance in the matrix fractions. In each matrix fraction and between both eggshell models, normal and pimpled eggshells, a majority of the proteomes of the fractions were commonly observed. Forty-two common major proteins (iBAQ-derived abundance ≥0.095% of proteomic abundance) were identified throughout the three matrix fractions and these proteins might act as backbone constituents in chicken eggshell matrix. Finally, using 1.75-fold as up-regulated and using 0.57-fold as down-regulated cutoff values, twenty-five differential major proteins were screened and they all negatively influence and none showed any effect on eggshell quality. Overall, we uncovered the characteristics of proteomics of three eggshell matrix fractions and identified candidate proteins influencing eggshell quality. The next research on differential proteins will uncover the potential mechanisms underlying how proteins affect eggshell quality. It was reported that the proteins in an eggshell can be divided into insoluble and soluble proteins. The insoluble proteins are thought to be an inter-mineral matrix and acts as a structural framework, while the soluble proteins are thought as intra-mineral matrix that are embedded within the crystal during calcification. However, the difference between matrix fractions is unknown. Cross-analysis of proteomic data of three matrix fractions from the same type of eggshell, uncovered triply overlapped common proteins formed the predominant contributor to proteomic abundance of any matrix fraction, and we suggested that abundance variance of some common proteins between the three matrix fractions might be an important cause of their solubility differences. Moreover, eggshell is formed in hen's uterus, and uterus tend to be considered as unique organ determining eggshell quality. By cross-analysis on proteomic data of three matrix fractions between two eggshell models, normal and pimpled eggshells, the differential proteins were screened as candidates influencing eggshell quality. And we suggested that the liver and spleen or lymphocytes might be the major organs influencing eggshell quality, because the most promising candidates are almost blood and non-collagenous proteins, and originated from above organs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Proteomics of exhaled breath: methodological nuances and pitfalls.

    PubMed

    Kurova, Viktoria S; Anaev, Eldar C; Kononikhin, Alexey S; Fedorchenko, Kristina Yu; Popov, Igor A; Kalupov, Timothey L; Bratanov, Dmitriy O; Nikolaev, Eugenie N; Varfolomeev, Sergey D

    2009-01-01

    The analysis of exhaled breath condensate (EBC) can be an alternative to traditional endoscopic sampling of lower respiratory tract secretions. This is a simple non-invasive method of diagnosing respiratory diseases, in particular, respiratory inflammatory processes. Samples were collected with a special device-condenser (ECoScreen, VIASYS Healthcare, Germany), then treated with trypsin according to the proteomics protocol for standard protein mixtures and analyzed by nanoflow high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) with a 7-Tesla Finnigan LTQ-FT mass spectrometer (Thermo Electron, Germany). Mascot software (Matrixscience) was used for screening the database NCBInr for proteins corresponding to the peptide maps that were obtained. EBCs from 17 young healthy non-smoking donors were collected. Different methods for concentrating protein were compared in order to optimize EBC preparations for proteomic analysis. The procedure that was chosen allowed identification of proteins exhaled by healthy people. The major proteins in the condensates were cytoskeletal keratins. Another 12 proteins were identified in EBC from healthy non-smokers. Some keratins were found in the ambient air and may be considered exogenous components of exhaled air. Knowledge of the normal proteome of exhaled breath allows one to look for biomarkers of different disease states in EBC. Proteins in ambient air can be identified in the respiratory tract and should be excluded from the analysis of the proteome of EBC. The results obtained allowed us to choose the most effective procedure of sample preparation when working with samples containing very low protein concentrations.

  14. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin.

    PubMed

    Kim, Sang Woo; Choi, Jae Heon; Mukherjee, Rajib; Hwang, Ki-Chul; Yun, Jong Won

    2016-04-01

    We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).

  15. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    PubMed

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  16. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein expression patterns in the muscle subtypes from mdx mice may be due to dissimilar downstream events, including differences in muscle structure or compensatory mechanisms that counteract pathophysiological processes. The interosseus muscle from mdx mice possibly represents a naturally protected phenotype.

  17. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy

    PubMed Central

    CARBERRY, STEVEN; BRINKMEIER, HEINRICH; ZHANG, YAXIN; WINKLER, CLAUDIA K.; OHLENDIECK, KAY

    2013-01-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20–25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein expression patterns in the muscle subtypes from mdx mice may be due to dissimilar downstream events, including differences in muscle structure or compensatory mechanisms that counteract pathophysiological processes. The interosseus muscle from mdx mice possibly represents a naturally protected phenotype. PMID:23828267

  18. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    PubMed Central

    Ghatak, Arindam; Chaturvedi, Palak; Weckwerth, Wolfram

    2017-01-01

    Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet. PMID:28626463

  19. Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000.

    PubMed

    Zhang, Tong; Meng, Li; Kong, Wenwen; Yin, Zepeng; Wang, Yang; Schneider, Jacqueline D; Chen, Sixue

    2018-03-20

    Jasmonate ZIM-domain (JAZ) proteins are key transcriptional repressors regulating various biological processes. Although many studies have studied JAZ proteins by genetic and biochemical analyses, little is known about JAZ7-associated global protein networks and how JAZ7 contributes to bacterial pathogen defense. In this study, we aim to fill this knowledge gap by conducting unbiased large-scale quantitative proteomics using tandem mass tags (TMT). We compared the proteomes of a JAZ7 knock-out line, a JAZ7 overexpression line, as well as the wild type Arabidopsis plants in the presence and absence of Pseudomonas syringae DC3000 infection. Both pairwise comparison and multi-factor analysis of variance reveal that differential proteins are enriched in biological processes such as primary and secondary metabolism, redox regulation, and response to stress. The differential regulation in these pathways may account for the alterations in plant size, redox homeostasis and accumulation of glucosinolates. In addition, possible interplay between genotype and environment is suggested as the abundance of seven proteins is influenced by the interaction of the two factors. Collectively, we demonstrate a role of JAZ7 in pathogen defense and provide a list of proteins that are uniquely responsive to genetic disruption, pathogen infection, or the interaction between genotypes and environmental factors. We report proteomic changes as a result of genetic perturbation of JAZ7, and the contribution of JAZ7 in plant immunity. Specifically, the similarity between the proteomes of a JAZ7 knockout mutant and the wild type plants confirmed the functional redundancy of JAZs. In contrast, JAZ7 overexpression plants were much different, and proteomic analysis of the JAZ7 overexpression plants under Pst DC3000 infection revealed that JAZ7 may regulate plant immunity via ROS modulation, energy balance and glucosinolate biosynthesis. Multiple variate analysis for this two-factor proteomics experiment suggests that protein abundance is determined by genotype, environment and the interaction between them. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms

    PubMed Central

    Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.

    2009-01-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578

  1. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    PubMed

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  2. PeptideDepot: Flexible Relational Database for Visual Analysis of Quantitative Proteomic Data and Integration of Existing Protein Information

    PubMed Central

    Yu, Kebing; Salomon, Arthur R.

    2010-01-01

    Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through tandem mass spectrometry (MS/MS). Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to a variety of experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our High Throughput Autonomous Proteomic Pipeline (HTAPP) used in the automated acquisition and post-acquisition analysis of proteomic data. PMID:19834895

  3. Mining the human plasma proteome with three-dimensional strategies by high-resolution Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Zhao, Yan; Chang, Cheng; Qin, Peibin; Cao, Qichen; Tian, Fang; Jiang, Jing; Li, Xianyu; Yu, Wenfeng; Zhu, Yunping; He, Fuchu; Ying, Wantao; Qian, Xiaohong

    2016-01-21

    Human plasma is a readily available clinical sample that reflects the status of the body in normal physiological and disease states. Although the wide dynamic range and immense complexity of plasma proteins are obstacles, comprehensive proteomic analysis of human plasma is necessary for biomarker discovery and further verification. Various methods such as immunodepletion, protein equalization and hyper fractionation have been applied to reduce the influence of high-abundance proteins (HAPs) and to reduce the high level of complexity. However, the depth at which the human plasma proteome has been explored in a relatively short time frame has been limited, which impedes the transfer of proteomic techniques to clinical research. Development of an optimal strategy is expected to improve the efficiency of human plasma proteome profiling. Here, five three-dimensional strategies combining HAP depletion (the 1st dimension) and protein fractionation (the 2nd dimension), followed by LC-MS/MS analysis (the 3rd dimension) were developed and compared for human plasma proteome profiling. Pros and cons of the five strategies are discussed for two issues: HAP depletion and complexity reduction. Strategies A and B used proteome equalization and tandem Seppro IgY14 immunodepletion, respectively, as the first dimension. Proteome equalization (strategy A) was biased toward the enrichment of basic and low-molecular weight proteins and had limited ability to enrich low-abundance proteins. By tandem removal of HAPs (strategy B), the efficiency of HAP depletion was significantly increased, whereas more off-target proteins were subtracted simultaneously. In the comparison of complexity reduction, strategy D involved a deglycosylation step before high-pH RPLC separation. However, the increase in sequence coverage did not increase the protein number as expected. Strategy E introduced SDS-PAGE separation of proteins, and the results showed oversampling of HAPs and identification of fewer proteins. Strategy C combined single Seppro IgY14 immunodepletion, high-pH RPLC fractionation and LC-MS/MS analysis. It generated the largest dataset, containing 1544 plasma protein groups and 258 newly identified proteins in a 30-h-machine-time analysis, making it the optimum three-dimensional strategy in our study. Further analysis of the integrated data from the five strategies showed identical distribution patterns in terms of sequence features and GO functional analysis with the 1929-plasma-protein dataset, further supporting the reliability of our plasma protein identifications. The characterization of 20 cytokines in the concentration range from sub-nanograms/milliliter to micrograms/milliliter demonstrated the sensitivity of the current strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. New Funding Opportunity Announcements (FOAs): Reissuance of Clinical Proteomic Tumor Analysis Consortium (CPTAC) | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute is soliciting applications for the reissuance of its Clinical Proteomic Tumor Analysis Consortium (CPTAC) program.   CPTAC will support broad efforts focused on several cancer types to explore further the complexities of cancer proteomes and their connections to abnormalities in cancer genomes.

  5. Comparative proteomics lends insight into genotype-specific pathogenicity.

    PubMed

    Guarnieri, Michael T

    2013-09-01

    Comparative proteomic analyses have emerged as a powerful tool for the identification of unique biomarkers and mechanisms of pathogenesis. In this issue of Proteomics, Murugaiyan et al. utilize difference gel electrophoresis (DIGE) to examine differential protein expression between nonpathogenic and pathogenic genotypes of Prototheca zopfii, a causative agent in bovine enteritis and mastitis. Their findings provide insights into molecular mechanisms of infection and evolutionary adaptation of pathogenic genotypes, demonstrating the power of comparative proteomic analyses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.

    PubMed

    Keller, Lani C; Romijn, Edwin P; Zamora, Ivan; Yates, John R; Marshall, Wallace F

    2005-06-21

    The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.

  7. Impact of cryopreservation on bull () semen proteome.

    PubMed

    Westfalewicz, B; Dietrich, M A; Ciereszko, A

    2015-11-01

    Cryopreservation of bull spermatozoa is a well-established technique, allowing artificial insemination of cattle on a commercial scale. However, the extent of proteome changes in seminal plasma and spermatozoa during cryopreservation are not yet fully known. The objective of this study was to compare the proteomes of fresh, equilibrated, and cryopreserved bull semen (spermatozoa and seminal plasma) to establish the changes in semen proteins during the cryopreservation process. Semen was collected from 6 mature Holstein Friesian bulls. After sample processing, comparative analysis and identification of proteins was performed using 2-dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. Analysis of spermatozoa extracts revealed that 25 identified protein spots, representing 16 proteins, underwent significant ( < 0.05) changes in abundance due to equilibration and cryopreservation. Eighteen protein spots decreased in abundance, 5 protein spots increased in abundance, and 2 protein spots showed different, specific patterns of abundance changes. Analysis of seminal fluid containing seminal plasma showed that 6 identified protein spots, representing 4 proteins, underwent significant ( < 0.05) changes in abundance due to equilibration and cryopreservation. Two protein spots increased in abundance and 4 decreased in abundance. Semen extending and equilibration seems to be responsible for a significant portion of the proteome changes related to cryopreservation technology. Most sperm proteins affected by equilibration and cryopreservation are membrane bound, and loss of those proteins may reduce natural spermatozoa coating. Further research is needed to unravel the mechanisms of the particular protein changes described in this study and establish the relationship between those changes and sperm quality.

  8. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.

    PubMed

    Cheng, Lixiang; Wang, Yuping; He, Qiang; Li, Huijun; Zhang, Xiaojing; Zhang, Feng

    2016-08-31

    Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.

  9. Proteomic features of delayed ocular symptoms caused by exposure to sulfur mustard: As studied by protein profiling of corneal epithelium.

    PubMed

    Pajoohesh, Maryam; Naderi, Mostafa; Naderi-Manesh, Hossein

    2017-11-01

    Exposure to mustard gas can lead to variations in the proteome of corneal epithelium cells and after a latency period produces delayed symptoms in the eyes of chemical victims. Hence, a comparative proteome analysis was conducted between the corneal epithelial cells of chemical victims from Iran-Iraq war (1980-1988) and healthy donors. To this end, corneal epithelium samples from victims and healthy individuals were collected, and the proteome of these samples were prepared for two-dimensional electrophoresis and the analysis of spots by statistical software. Selected spots were further analyzed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Twenty four proteins were identified of which eighteen proteins showed downregulation while six proteins were upregulated in the victims in comparison to the normal individuals. Also, six protein spots were confirmed by western-blot analysis. In conclusion, all the twenty-four identified proteins are involved in pathways which their up- or down-regulation leads to the accumulation of undesired substrates, cell death and apoptosis. Bioinformatics' tools indicated that these identified proteins were involved in various metabolic processes, DNA damage response, immune response and etc. The present study provides a suitable platform for further clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua

    2010-01-01

    Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864

  11. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells.

    PubMed

    Nylund, Reetta; Kuster, Niels; Leszczynski, Dariusz

    2010-10-18

    Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.

  12. Differentially abundant proteins associated with heterosis in the primary roots of popcorn

    PubMed Central

    Heringer, Angelo S.; Freitas, Ismael L. J.; Santa-Catarina, Claudete; do Amaral-Júnior, Antônio T.

    2018-01-01

    Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier “PXD009436”. A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (− −), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism. PMID:29758068

  13. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy.

    PubMed

    Manousopoulou, A; Gatherer, M; Smith, C; Nicoll, J A R; Woelk, C H; Johnson, M; Kalaria, R; Attems, J; Garbis, S D; Carare, R O

    2017-10-01

    Amyloid beta (Aβ) accumulation in the walls of leptomeningeal arteries as cerebral amyloid angiopathy (CAA) is a major feature of Alzheimer's disease. In this study, we used global quantitative proteomic analysis to examine the hypothesis that the leptomeningeal arteries derived from patients with CAA have a distinct endophenotypic profile compared to those from young and elderly controls. Freshly dissected leptomeningeal arteries from the Newcastle Brain Tissue Resource and Edinburgh Sudden Death Brain Bank from seven elderly (82.9 ± 7.5 years) females with severe capillary and arterial CAA, as well as seven elderly (88.3 ± 8.6 years) and five young (45.4 ± 3.9 years) females without CAA were used in this study. Arteries from four patients with CAA, two young and two elderly controls were individually analysed using quantitative proteomics. Key proteomic findings were then validated using immunohistochemistry. Bioinformatics interpretation of the results showed a significant enrichment of the immune response/classical complement and extracellular matrix remodelling pathways (P < 0.05) in arteries affected by CAA vs. those from young and elderly controls. Clusterin (apolipoprotein J) and tissue inhibitor of metalloproteinases-3 (TIMP3), validated using immunohistochemistry, were shown to co-localize with Aβ and to be up-regulated in leptomeningeal arteries from CAA patients compared to young and elderly controls. Global proteomic profiling of brain leptomeningeal arteries revealed that clusterin and TIMP3 increase in leptomeningeal arteries affected by CAA. We propose that clusterin and TIMP3 could facilitate perivascular clearance and may serve as novel candidate therapeutic targets for CAA. © 2016 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  14. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.

    PubMed

    Peng, Wenjing; Zhang, Yu; Zhu, Rui; Mechref, Yehia

    2017-09-01

    Breast cancer is the leading type of cancer in women. Breast cancer brain metastasis is currently considered an issue of concern among breast cancer patients. Membrane proteins play important roles in breast cancer brain metastasis, involving cell adhesion and penetration of blood-brain barrier. To understand the mechanism of breast cancer brain metastasis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in conjunction with enrichment of membrane proteins to analyze the proteomes from five different breast cancer and a brain cancer cell lines. Quantitative proteomic data of all cell lines were compared with MDA-MB-231BR which is a brain seeking breast cancer cell line, thus representing brain metastasis characteristics. Label-free proteomics of the six cell lines facilitates the identification of 1238 proteins and the quantification of 899 proteins of which more than 70% were membrane proteins. Unsupervised principal component analysis (PCA) of the label-free proteomics data resulted in a distinct clustering of cell lines, suggesting quantitative differences in the expression of several proteins among the different cell lines. Unique protein expressions in 231BR were observed for 28 proteins. The up-regulation of STAU1, AT1B3, NPM1, hnRNP Q, and hnRNP K and the down-regulation of TUBB4B and TUBB5 were noted in 231BR relative to 231 (precursor cell lines from which 231BR is derived). These proteins might contribute to the breast cancer brain metastasis. Ingenuity pathway analysis (IPA) supported the great brain metastatic propensity of 231BR and suggested the importance of the up-regulation of integrin proteins and down-regulation of EPHA2 in brain metastasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparative iTRAQ-Based Quantitative Proteomic Analysis of Pelteobagrus vachelli Liver under Acute Hypoxia: Implications in Metabolic Responses.

    PubMed

    Zhang, Guosong; Zhang, Jiajia; Wen, Xin; Zhao, Cheng; Zhang, Hongye; Li, Xinru; Yin, Shaowu

    2017-09-01

    More and more frequently these days, aquatic ecosystems are being stressed by nutrient enrichment, pollutants, and global warming, leading to a serious depletion in oxygen concentrations. Although a sudden, significant lack of oxygen will result in mortality, fishes can have an acute behavior (e.g., an increase in breathing rate, reduction in swimming frequency) and physiology responses (e.g., increase in oxygen delivery, and reduction in oxygen consumption) to hypoxia, which allows them to maintain normal physical activity. Therefore, in order to shed further light on the molecular mechanisms of hypoxia adaptation in fishes, the authors conduct comparative quantitative proteomics on Pelteobagrus vachelli livers using iTRAQ. The research identifies 511 acute hypoxia-responsive proteins in P. vachelli. Furthermore, comparison of several of the diverse key pathways studied (e.g., peroxisome pathway, PPAR signaling pathway, lipid metabolism, glycolysis/gluco-neogenesis, and amino acid metabolism) help to articulate the different mechanisms involved in the hypoxia response of P. vachelli. Data from proteome analysis shows that P. vachelli can have an acute reaction to hypoxia, including detoxification of metabolic by-products and oxidative stress in light of continued metabolic activity (e.g., peroxisomes), an activation in the capacity of catabolism to get more energy (e.g., lipolysis and amino acid catabolism), a depression in the capacity of biosynthesis to reduce energy consumption (e.g., biosynthesis of amino acids and lipids), and a shift in the aerobic and anaerobic contributions to total metabolism. The observed hypoxia-related changes in the liver proteome of the fish can help to understand or can be related to the hypoxia-related response that takes place in similar conditions in the liver or other proteomes of mammals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication.

    PubMed

    Pichereaux, Carole; Hernández-Domínguez, Eric E; Santos-Diaz, Maria Del Socorro; Reyes-Agüero, Antonio; Astello-García, Marizel; Guéraud, Françoise; Negre-Salvayre, Anne; Schiltz, Odile; Rossignol, Michel; Barba de la Rosa, Ana Paulina

    2016-06-30

    The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under evolution and domestication of Opuntia and will provide a platform for basic biology research and gene discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells.

    PubMed

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-03-17

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.

  18. Comparative proteomic analysis of two pathogenic Tritrichomonas foetus genotypes: there is more to the proteome than meets the eye.

    PubMed

    Stroud, Leah J; Šlapeta, Jan; Padula, Matthew P; Druery, Dylan; Tsiotsioras, George; Coorssen, Jens R; Stack, Colin M

    2017-03-01

    Certain clinical isolates of Tritrichomonas foetus infect the urogenital tract of cattle while others infect the gastrointestinal tract of cats. Previous studies have identified subtle genetic differences between these isolates with the term "genotype" adopted to reflect host origin. The aim of this work was to seek evidence of host-specific adaptation and to clarify the relationship between T. foetus genotypes. To do this we characterised the proteomes of both genotypes using two-dimensional gel electrophoresis (2DE) coupled with LC-MS/MS. Our comparative analysis of the data revealed that both genotypes exhibited largely similar proteoform profiles; however differentiation was possible with 24 spots identified as having a four-fold or greater change. Deeper analysis using 2DE zymography and protease-specific fluorogenic substrates revealed marked differences in cysteine protease (CP) expression profiles between the two genotypes. These variances in CP activities could also account for the pathogenic and histopathological differences previously observed between T. foetus genotypes in cross-infection studies. Our findings highlight the importance of CPs as major determinants of parasite virulence and provide a foundation for future host-parasite interaction studies, with direct implications for the development of vaccines or drugs targeting T. foetus. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  19. CPTAC | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis, or proteogenomics.

  20. Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees.

    PubMed

    Zlatic, Stephanie A; Vrailas-Mortimer, Alysia; Gokhale, Avanti; Carey, Lucas J; Scott, Elizabeth; Burch, Reid; McCall, Morgan M; Rudin-Rush, Samantha; Davis, John Bowen; Hartwig, Cortnie; Werner, Erica; Li, Lian; Petris, Michael; Faundez, Victor

    2018-03-28

    Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A -/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. [PROTEOMIC ANALYSIS OF ADAPTIVE MECHANISMS TO SALINITY STRESS IN MARINE GASTROPODS LITTORINA SAXATILIS].

    PubMed

    Muraeva, O A; Maltseva, A L; Mikhailova, N A; Granovitch, A I

    2015-01-01

    Salinity is one of the most important abiotic environmental factors affecting marine animals. If salinity deviate from optimum, adaptive mechanisms switch on to maintain organism's physiological activity. In this study, the reaction of the snails Littorina saxatilis from natural habitats and in response to experimental salinity decreasing was analyzed on proteomic level. The isolation of all snails inside their shells and gradually declining mortality was observed under acute experimental salinity decrease (down to 10 per hundred). Proteomic changes were evaluated in the surviving experimental mollusks compared to control individual using differential 2D gel-electrophoresis (DIGE) and subsequent LC-MS/MS-identification of proteins. Approximately 10% of analyzed proteins underwent up- or down regulation during the experiment. Proteins of folding, antioxidant response, intercellular matrix, cell adhesion, cell signaling and metabolic enzymes were identified among them. Proteome changes observed in experimental hypoosmotic stress partially reproduced in the proteomes of mollusks that live in conditions of natural freshening (estuaries). Possible mechanisms involved in the adaptation process of L. saxatilis individuals to hypo-osmotic stress are discussed.

  2. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    PubMed

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  3. Comparative Proteomic Analysis of Whole-Gut Lavage Fluid and Pancreatic Juice Reveals a Less Invasive Method of Sampling Pancreatic Secretions

    PubMed Central

    Rocker, Jana M; Tan, Marcus C; Thompson, Lee W; Contreras, Carlo M; DiPalma, Jack A; Pannell, Lewis K

    2016-01-01

    OBJECTIVES: There are currently no reliable, non-invasive screening tests for pancreatic ductal adenocarcinoma. The fluid secreted from the pancreatic ductal system (“pancreatic juice”) has been well-studied as a potential source of cancer biomarkers. However, it is invasive to collect. We recently observed that the proteomic profile of intestinal effluent from the bowel in response to administration of an oral bowel preparation solution (also known as whole-gut lavage fluid, WGLF) contains large amounts of pancreas-derived proteins. We therefore hypothesized that the proteomic profile is similar to that of pancreatic juice. In this study, we compared the proteomic profiles of 77 patients undergoing routine colonoscopy with the profiles of 19 samples of pure pancreatic juice collected during surgery. METHODS: WGLF was collected from patients undergoing routine colonoscopy, and pancreatic juice was collected from patients undergoing pancreatic surgery. Protein was isolated from both samples using an optimized method and analyzed by LC-MS/MS. Identified proteins were compared between samples and groups to determine similarity of the two fluids. We then compared our results with literature reports of pancreatic juice-based studies to determine similarity. RESULTS: We found 104 proteins in our pancreatic juice samples, of which 90% were also found in our WGLF samples. The majority (67%) of the total proteins found in the WGLF were common to pancreatic juice, with intestine-specific proteins making up a smaller proportion. CONCLUSIONS: WGLF and pancreatic juice appear to have similar proteomic profiles. This supports the notion that WGLF is a non-invasive, surrogate bio-fluid for pancreatic juice. Further studies are required to further elucidate its role in the diagnosis of pancreatic cancer. PMID:27228405

  4. Proteomics and bioinformatics analysis of altered protein expression in the placental villous tissue from early recurrent miscarriage patients.

    PubMed

    Pan, Hai-Tao; Ding, Hai-Gang; Fang, Min; Yu, Bin; Cheng, Yi; Tan, Ya-Jing; Fu, Qi-Qin; Lu, Bo; Cai, Hong-Guang; Jin, Xin; Xia, Xian-Qing; Zhang, Tao

    2018-01-01

    Recurrent miscarriage (RM) affects 5% of women, it has an adverse emotional impact on women. Because of the complexities of early development, the mechanism of recurrent miscarriage is still unclear. We hypothesized that abnormal placenta leads to early recurrent miscarriage (ERM). The aim of this study was to identify ERM associated factors in human placenta villous tissue using proteomics. Investigation of these differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying recurrent miscarriage (RM). To gain more insight into mechanisms of recurrent miscarriage (RM), a comparative proteome profile of the human placenta villous tissue in normal and RM pregnancies was analyzed using iTRAQ technology and bioinformatics analysis used by Ingenuity Pathway Analysis (IPA) software. In this study, we employed an iTRAQ based proteomics analysis of four placental villous tissues from patients with early recurrent miscarriage (ERM) and four from normal pregnant women. Finally, we identified 2805 proteins and 79,998 peptides between patients with RM and normal matched group. Further analysis identified 314 differentially expressed proteins in placental villous tissue (≥1.3-fold, Student's t-test, p < 0.05); 209 proteins showed the increased expression while 105 proteins showed decreased expression. These 314 proteins were analyzed by Ingenuity Pathway Analysis (IPA) and were found to play important roles in the growth of embryo. Furthermore, network analysis show that Angiotensinogen (AGT), MAPK14 and Prothrombin (F2) are core factors in early embryonic development. We used another 8 independent samples (4 cases and 4 controls) to cross validation of the proteomic data. This study has identified several proteins that are associated with early development, these results may supply new insight into mechanisms behind recurrent miscarriage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extractionmore » improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.« less

  6. Comparative Proteomics Analysis of Gastric Cancer Stem Cells

    PubMed Central

    Morisaki, Tamami; Yashiro, Masakazu; Kakehashi, Anna; Inagaki, Azusa; Kinoshita, Haruhito; Fukuoka, Tatsunari; Kasashima, Hiroaki; Masuda, Go; Sakurai, Katsunobu; Kubo, Naoshi; Muguruma, Kazuya; Ohira, Masaichi; Wanibuchi, Hideki; Hirakawa, Kosei

    2014-01-01

    Cancer stem cells (CSCs) are responsible for cancer progression, metastasis, and recurrence. To date, the specific markers of CSCs remain undiscovered. The aim of this study was to identify novel biomarkers of gastric CSCs for clinical diagnosis using proteomics technology. CSC-like SP cells, OCUM-12/SP cells, OCUM-2MD3/SP cells, and their parent OCUM-12 cells and OCUM-2MD3 cells were used in this study. Protein lysates from each cell line were analyzed using QSTAR Elite Liquid Chromatography with Tandem Mass Spectrometry, coupled with isobaric tags for relative and absolute quantitation technology. Candidate proteins detected by proteomics technology were validated by immunohistochemical analysis of 300 gastric cancers. Based on the results of LC-MS/MS, eight proteins, including RBBP6, GLG1, VPS13A, DCTPP1, HSPA9, HSPA4, ALDOA, and KRT18, were up-regulated in both OCUM-12/SP cells and OCUM-2MD3/SP cells when compared to their corresponding parent cells. RT-PCR analysis indicated that the expression level of RBBP6, HSPA4, DCTPP1, HSPA9, VPS13A, ALDOA, GLG1, and CK18 was high in OCUM-12/SP and OCUM-2MD3/SP, in compared with the control of parent OCUM-12 and OCUM-2MD3. These proteins were significantly associated with advanced invasion depth, lymph node metastasis, distant metastasis, or advanced clinical stage. RBBP6, DCTPP1, HSPA4, and ALDOA expression in particular were significantly associated with a poor prognosis in the 300 gastric cancer patients. RBBP6 was determined to be an independent prognostic factor. The motility-stimulating ability of OCUM-12/SP cells and OCUM-2MD3/SP cells was inhibited by RBBP6 siRNA. These findings might suggest that the eight proteins, RBBP6, GLG1, VPS13A, DCTPP1, HSPA9, HSPA4, ALDOA, and KRT18, utilizing comparative proteomics analysis, were perceived to be potential CSC markers of gastric cancer. Of the eight candidate proteins, RBBP6 was suggested to be a promising prognostic biomarker and a therapeutic target for gastric cancer. PMID:25379943

  7. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  8. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  9. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    PubMed Central

    Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Jonghyun; Kim, Soo Jung; Kang, Sung Gyun; Lee, Jung-Hyun; Kim, Seung Il; Chung, Young-Ho

    2015-01-01

    The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments. PMID:25915030

  10. Beneficial effects of omega-3 fatty acids in the proteome of high-density lipoprotein proteome

    PubMed Central

    2012-01-01

    Background Omega-3 poly-unsaturated fatty acids (ω-3 PUFAs) have demonstrated to be beneficial in the prevention of cardiovascular disease, however, the mechanisms by which they perform their cardiovascular protection have not been clarified. Intriguingly, some of these protective effects have also been linked to HDL. The hypothesis of this study was that ω-3 PUFAs could modify the protein cargo of HDL particle in a triglyceride non-dependent mode. The objective of the study was to compare the proteome of HDL before and after ω-3 PUFAs supplemented diet. Methods A comparative proteomic analysis in 6 smoker subjects HDL before and after a 5 weeks ω-3 PUFAs enriched diet has been performed. Results Among the altered proteins, clusterin, paraoxonase, and apoAI were found to increase, while fibronectin, α-1-antitrypsin, complement C1r subcomponent and complement factor H decreased after diet supplementation with ω-3 PUFAs. Immunodetection assays confirmed these results. The up-regulated proteins are related to anti-oxidant, anti-inflammatory and anti-atherosclerotic properties of HDL, while the down-regulated proteins are related to regulation of complement activation and acute phase response. Conclusions Despite the low number of subjects included in the study, our findings demonstrate that ω-3 PUFAs supplementation modifies lipoprotein containing apoAI (LpAI) proteome and suggest that these protein changes improve the functionality of the particle. PMID:22978374

  11. [MALDI-TOF and SELDI-TOF analysis: "tandem" techniques to identify potential biomarker in fibromyalgia].

    PubMed

    Giacomelli, C; Bazzichi, L; Giusti, L; Ciregia, F; Baldini, C; Da Valle, Y; De Feo, F; Sernissi, F; Rossi, A; Bombardieri, S; Lucacchini, A

    2011-11-09

    Fibromyalgia (FM) is characterized by the presence of chronic widespread pain throughout the musculoskeletal system and diffuse tenderness. Unfortunately, no laboratory tests have been appropriately validated for FM and correlated with the subsets and activity. The aim of this study was to apply a proteomic technique in saliva of FM patients: the Surface Enhance Laser Desorption/Ionization Time-of-Flight (SELDI-TOF). For this study, 57 FM patients and 35 HC patients were enrolled. The proteomic analysis of saliva was carried out using SELDI-TOF. The analysis was performed using different chip arrays with different characteristics of binding. The statistical analysis was performed using cluster analysis and the difference between two groups was underlined using Student’s t-test. Spectra analysis highlighted the presence of several peaks differently expressed in FM patients compared with controls. The preliminary results obtained by SELDI-TOF analysis were compared with those obtained in our previous study performed on whole saliva of FM patients by using electrophoresis. The m/z of two peaks, increased in FM patients, seem to overlap well with the molecular weight of calgranulin A and C and Rho GDP-dissociation inhibitor 2, which we had found up-regulated in our previous study. These preliminary results showed the possibility of identifying potential salivary biomarker through salivary proteomic analysis with MALDI-TOF and SELDI-TOF in FM patients. The peaks observed allow us to focus on some of the particular pathogenic aspects of FM, the oxidative stress which contradistinguishes this condition, the involvement of proteins related to the cytoskeletal arrangements, and central sensibilization.

  12. Human body fluid proteome analysis

    PubMed Central

    Hu, Shen; Loo, Joseph A.; Wong, David T.

    2010-01-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142

  13. Human body fluid proteome analysis.

    PubMed

    Hu, Shen; Loo, Joseph A; Wong, David T

    2006-12-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.

  14. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.

    PubMed

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I

    2016-02-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of a proteomic approach to monitor protein synthesis in mycotoxin producing moulds.

    PubMed

    Milles, J; Krämer, J; Prange, A

    2007-12-01

    In general, proteome studies compare different states of metabolism to investigate external or internal influences on protein expression. In the context of mycotoxin production the method could open another view on this complex and could be helpful to gain knowledge about proteins which are involved in metabolism (enzymes, transporters). In this short technical report, we describe a new protocol suitable for protein preparation for whole proteome analysis ofFusarium graminearum. Cell lysis was performed by grinding the mycelium with liquid nitrogen. Proteins were extracted with TCA/acetone and then cleaned; the isolated proteins were separated in a 2D-gel electrophoresis system (BioRad) using different pH gradients. The protocol established seems also generally applicable for other mycotoxin producing fungi.

  16. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant.

    PubMed

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

  17. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    PubMed Central

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F.; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum. PMID:26460745

  18. The Hemolymph Proteome of Fed and Starved Drosophila Larvae

    PubMed Central

    Goetze, Sandra; Ahrens, Christian H.; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F.

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics. PMID:23840627

  19. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches.

    PubMed

    Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2010-05-01

    To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel-based and a LC MS/MS-based proteomics method. Two-day-old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two-phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel-based proteomics, four and eight protein spots were identified as up- and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up- and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low-abundance proteins could be identified by the LC MS/MS-based method. Three homologues of plasma membrane H(+)-ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H(+)-ATPase protein.

  20. An object model and database for functional genomics.

    PubMed

    Jones, Andrew; Hunt, Ela; Wastling, Jonathan M; Pizarro, Angel; Stoeckert, Christian J

    2004-07-10

    Large-scale functional genomics analysis is now feasible and presents significant challenges in data analysis, storage and querying. Data standards are required to enable the development of public data repositories and to improve data sharing. There is an established data format for microarrays (microarray gene expression markup language, MAGE-ML) and a draft standard for proteomics (PEDRo). We believe that all types of functional genomics experiments should be annotated in a consistent manner, and we hope to open up new ways of comparing multiple datasets used in functional genomics. We have created a functional genomics experiment object model (FGE-OM), developed from the microarray model, MAGE-OM and two models for proteomics, PEDRo and our own model (Gla-PSI-Glasgow Proposal for the Proteomics Standards Initiative). FGE-OM comprises three namespaces representing (i) the parts of the model common to all functional genomics experiments; (ii) microarray-specific components; and (iii) proteomics-specific components. We believe that FGE-OM should initiate discussion about the contents and structure of the next version of MAGE and the future of proteomics standards. A prototype database called RNA And Protein Abundance Database (RAPAD), based on FGE-OM, has been implemented and populated with data from microbial pathogenesis. FGE-OM and the RAPAD schema are available from http://www.gusdb.org/fge.html, along with a set of more detailed diagrams. RAPAD can be accessed by registration at the site.

  1. The hemolymph proteome of fed and starved Drosophila larvae.

    PubMed

    Handke, Björn; Poernbacher, Ingrid; Goetze, Sandra; Ahrens, Christian H; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  2. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber.

    PubMed

    Hoehenwarter, Wolfgang; Larhlimi, Abdelhalim; Hummel, Jan; Egelhofer, Volker; Selbig, Joachim; van Dongen, Joost T; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Mass Accuracy Precursor Alignment is a fast and flexible method for comparative proteome analysis that allows the comparison of unprecedented numbers of shotgun proteomics analyses on a personal computer in a matter of hours. We compared 183 LC-MS analyses and more than 2 million MS/MS spectra and could define and separate the proteomic phenotypes of field grown tubers of 12 tetraploid cultivars of the crop plant Solanum tuberosum. Protein isoforms of patatin as well as other major gene families such as lipoxygenase and cysteine protease inhibitor that regulate tuber development were found to be the primary source of variability between the cultivars. This suggests that differentially expressed protein isoforms modulate genotype specific tuber development and the plant phenotype. We properly assigned the measured abundance of tryptic peptides to different protein isoforms that share extensive stretches of primary structure and thus inferred their abundance. Peptides unique to different protein isoforms were used to classify the remaining peptides assigned to the entire subset of isoforms based on a common abundance profile using multivariate statistical procedures. We identified nearly 4000 proteins which we used for quantitative functional annotation making this the most extensive study of the tuber proteome to date.

  3. Effect of Rocket (Eruca sativa) Extract on MRSA Growth and Proteome: Metabolic Adjustments in Plant-Based Media

    PubMed Central

    Doulgeraki, Agapi I.; Efthimiou, Georgios; Paramithiotis, Spiros; Pappas, Katherine M.; Typas, Milton A.; Nychas, George-John

    2017-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) in food has provoked a great concern about the presence of MRSA in associated foodstuff. Although MRSA is often detected in various retailed meat products, it seems that food handlers are more strongly associated with this type of food contamination. Thus, it can be easily postulated that any food could be contaminated with this pathogen in an industrial environment or in household and cause food poisoning. To this direction, the effect of rocket (Eruca sativa) extract on MRSA growth and proteome was examined in the present study. This goal was achieved with the comparative study of the MRSA strain COL proteome, cultivated in rocket extract versus the standard Luria-Bertani growth medium. The obtained results showed that MRSA was able to grow in rocket extract. In addition, proteome analysis using 2-DE method showed that MRSA strain COL is taking advantage of the sugar-, lipid-, and vitamin-rich substrate in the liquid rocket extract, although its growth was delayed in rocket extract compared to Luria–Bertani medium. This work could initiate further research about bacterial metabolism in plant-based media and defense mechanisms against plant-derived antibacterials. PMID:28529502

  4. Effect of Rocket (Eruca sativa) Extract on MRSA Growth and Proteome: Metabolic Adjustments in Plant-Based Media.

    PubMed

    Doulgeraki, Agapi I; Efthimiou, Georgios; Paramithiotis, Spiros; Pappas, Katherine M; Typas, Milton A; Nychas, George-John

    2017-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) in food has provoked a great concern about the presence of MRSA in associated foodstuff. Although MRSA is often detected in various retailed meat products, it seems that food handlers are more strongly associated with this type of food contamination. Thus, it can be easily postulated that any food could be contaminated with this pathogen in an industrial environment or in household and cause food poisoning. To this direction, the effect of rocket (Eruca sativa ) extract on MRSA growth and proteome was examined in the present study. This goal was achieved with the comparative study of the MRSA strain COL proteome, cultivated in rocket extract versus the standard Luria-Bertani growth medium. The obtained results showed that MRSA was able to grow in rocket extract. In addition, proteome analysis using 2-DE method showed that MRSA strain COL is taking advantage of the sugar-, lipid-, and vitamin-rich substrate in the liquid rocket extract, although its growth was delayed in rocket extract compared to Luria-Bertani medium. This work could initiate further research about bacterial metabolism in plant-based media and defense mechanisms against plant-derived antibacterials.

  5. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress.

    PubMed

    Chen, Shuisen; Ding, Guangda; Wang, Zhenhua; Cai, Hongmei; Xu, Fangsen

    2015-03-18

    Given low solubility and immobility in many soils of the world, phosphorus (P) may be the most widely studied macronutrient for plants. In an attempt to gain an insight into the adaptability of Brassica napus to P deficiency, proteome alterations of roots and leaves in two B. napus contrasting genotypes, P-efficient 'Eyou Changjia' and P-inefficient 'B104-2', under long-term low P stress and short-term P-free starvation conditions were investigated, and proteomic combined with comparative genomic analyses were conducted to interpret the interrelation of differential abundance protein species (DAPs) responding to P deficiency with quantitative trait loci (QTLs) for P deficiency tolerance. P-efficient 'Eyou Changjia' had higher dry weight and P content, and showed high tolerance to low P stress compared with P-inefficient 'B104-2'. A total of 146 DAPs were successfully identified by MALDI TOF/TOF MS, which were categorized into several groups including defense and stress response, carbohydrate and energy metabolism, signaling and regulation, amino acid and fatty acid metabolism, protein process, biogenesis and cellular component, and function unknown. 94 of 146 DAPs were mapped to a linkage map constructed by a B. napus population derived from a cross between the two genotypes, and 72 DAPs were located in the confidence intervals of QTLs for P efficiency related traits. We conclude that the identification of these DAPs and the co-location of DAPs with QTLs in the B. napus linkage genetic map provide us novel information in understanding the adaptability of B. napus to P deficiency, and helpful to isolate P-efficient genes in B. napus. Low P seriously limits the production and quality of B. napus. Proteomics and genetic linkage map were widely used to study the adaptive strategies of B. napus response to P deficiency, proteomic combined with comparative genetic analysis to investigate the correlations between DAPs and QTLs are scarce. Thus, we herein investigated proteome alteration of the roots and leaves in two B. napus genotypes, with different P-deficient tolerances, in response to long-term low P stress and short-term P-free starvation by 2-DE. And comparative genomic was conducted to map the DAPs to the linkage map of B. napus by sequence alignment. The present study offers new insights into adaptability mechanism of B. napus to P deficiency and provides novel information in map-based cloning to isolate the genes in B. napus and scientific improvement of P-efficient in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Comparative Quantitative Proteomic Study Identifies New Proteins Relevant for Sulfur Oxidation in the Purple Sulfur Bacterium Allochromatium vinosum

    PubMed Central

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena

    2014-01-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515). PMID:24487535

  7. Proteome regulation during Olea europaea fruit development.

    PubMed

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  8. MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data

    PubMed Central

    Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko

    2007-01-01

    Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892

  9. A Comprehensive Proteomics Analysis Reveals a Secretory Path- and Status-Dependent Signature of Exosomes Released from Tumor-Associated Macrophages.

    PubMed

    Zhu, Yinghui; Chen, Xianwei; Pan, Qingfei; Wang, Yang; Su, Siyuan; Jiang, Cuicui; Li, Yang; Xu, Ningzhi; Wu, Lin; Lou, Xiaomin; Liu, Siqi

    2015-10-02

    Exosomes are 30-120 nm-sized membrane vesicles of endocytic origin that are released into the extracellular environment and play roles in cell-cell communication. Tumor-associated macrophages (TAMs) are important constituents of the tumor microenvironment; thus, it is critical to study the features and complex biological functions of TAM-derived exosomes. Here, we constructed a TAM cell model from a mouse macrophage cell line, Ana-1, and performed comparative proteomics on exosomes, exosome-free media, and cells between TAMs and Ana-1. Proteomic analysis between exosome and exosome-free fractions indicated that the functions of exosome dominant proteins were mainly enriched in RNA processing and proteolysis. TAM status dramatically affected the abundances of 20S proteasome subunits and ribosomal proteins in their exosomes. The 20S proteasome activity assay strongly indicated that TAM exosomes possessed higher proteolytic activity. In addition, Ana-1- and TAM-derived exosomes have different RNA profiles, which may result from differential RNA processing proteins. Taken together, our comprehensive proteomics study provides novel views for understanding the complicated roles of macrophage-derived exosomes in the tumor microenvironment.

  10. Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells

    PubMed Central

    Lam, Yun W.; Evans, Vanessa C.; Heesom, Kate J.; Lamond, Angus I.; Matthews, David A.

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. PMID:19812395

  11. Proteomics analysis of the nucleolus in adenovirus-infected cells.

    PubMed

    Lam, Yun W; Evans, Vanessa C; Heesom, Kate J; Lamond, Angus I; Matthews, David A

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined.

  12. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  13. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings.

    PubMed

    Sang, Ting; Shan, Xi; Li, Bin; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-08-01

    Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings. Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.

  14. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) in orthodontic treatment: first pilot study.

    PubMed

    Ciavarella, Domenico; Mastrovincenzo, Mario; D'Onofrio, Valentina; Chimenti, Claudio; Parziale, Vincenzo; Barbato, Ersilia; Lo Muzio, Lorenzo

    2011-11-01

    SELDI-TOF-MS (Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) allows the generation of an accurate protein profile from minimal amounts of biological samples and may executes proteomic profile of saliva. The aim of this work is to compare the proteomic profile of saliva of patients in orthodontic treatment to the beginning of treatment and after three months by using the surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology. Saliva was collected from 14 patients, between the 11 and 17 years, to the beginning of the orthodontic treatment and after three months. Specimens were centrifuged (10 min, 13000 x g); the Q10 ProteinChips were prepared according to the manufacturer's instructions and were loaded with the supernatants. A saturated solution of sinapinic acid was used as energy-absorbing matrix. The analysis was performed in a m/z range from 2500 to 25000 Da, and the proteomic profiles were compared by a specific data analysis software. Saliva (5 mL) was collected by spitting directly into a clean 15 mL conical tube. The samples were then aliquotted and stored at -80°C until use. Profile of saliva of patients before orthodontic treatment present a number of peaks different respect profile of saliva after three months of treatment. The average intensities of peaks at m/z 3372, 5232, 4045 and 10128 were significantly higher after three months then at beginning of treatment in the same patients and among these one. The Roc Plot has demonstrated high sensitivity and specificity. Many differences were noted in salivary proteomic profile obtained using the SELDI-TOF-MS technology in patients in orthodontic treatment to beginning and after three months. These data suggest that the proteomic analysis of saliva is a promising new tool for a non-invasive study of oral mucosa and bone changes. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  15. Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development

    PubMed Central

    Li, Wenjia; Jiang, Yaqing; Song, Shiwei; Li, Yan; Chen, Riyuan

    2017-01-01

    Heterostyly is a common floral polymorphism, but the proteomic basis of this trait is still largely unexplored. In this study, self- and cross-pollination of L-morph and S-morph flowers and comparison of embryo sac development in eggplant (Solanum melongena L.) suggested that lower fruit set from S-morph flowers results from stigma-pollen incompatibility. To explore the molecular mechanism underlying heterostyly development, we conducted isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis of eggplant pistils for L- and S-morph flowers. A total of 5,259 distinct proteins were identified during heterostyly development. Compared S-morph flowers with L-morph, we discovered 57 and 184 differentially expressed proteins (DEPs) during flower development and maturity, respectively. Quantitative real time polymerase chain reactions were used for nine genes to verify DEPs from the iTRAQ approach. During flower development, DEPs were mainly involved in morphogenesis, biosynthetic processes, and metabolic pathways. At flower maturity, DEPs primarily participated in biosynthetic processes, metabolic pathways, and the formation of ribosomes and proteasomes. Additionally, some proteins associated with senescence and programmed cell death were found to be upregulated in S-morph pistils, which may lead to the lower fruit set in S-morph flowers. Although the exact roles of these related proteins are not yet known, this was the first attempt to use an iTRAQ approach to analyze proteomes of heterostylous eggplant flowers, and these results will provide insights into biochemical events taking place during the development of heterostyly. PMID:28586360

  16. Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

    PubMed

    Shi, Jian; Wang, Xinwen; Lyu, Lingyun; Jiang, Hui; Zhu, Hao-Jie

    2018-04-01

    Human hepatic cell lines are widely used as an in vitro model for the study of drug metabolism and liver toxicity. However, the validity of this model is still a subject of debate because the expressions of various proteins in the cell lines, including drug-metabolizing enzymes (DMEs), can differ significantly from those in human livers. In the present study, we first conducted an untargeted proteomics analysis of the microsomes of the cell lines HepG2, Hep3B, and Huh7, and compared them to human livers using a sequential window acquisition of all theoretical mass spectra (SWATH) method. Furthermore, high-resolution multiple reaction monitoring (MRM-HR), a targeted proteomic approach, was utilized to compare the expressions of pre-selected DMEs between human livers and the cell lines. In general, the SWATH quantifications were in good agreement with the MRM-HR analysis. Over 3000 protein groups were quantified in the cells and human livers, and the proteome profiles of human livers significantly differed from the cell lines. Among the 101 DMEs quantified with MRM-HR, most were expressed at substantially lower levels in the cell lines. Thus, appropriate caution must be exercised when using these cell lines for the study of hepatic drug metabolism and toxicity. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. Characterization of the Mouse Pancreatic Islet Proteome and Comparative Analysis with Other Mouse Tissues

    PubMed Central

    Petyuk, Vladislav A.; Qian, Wei-Jun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2009-01-01

    The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of type 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2,612 proteins having at least two unique peptides per protein. The dataset also identified ~60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at http://ncrr.pnl.gov, provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields. PMID:18570455

  18. Comparative Proteome Analysis of Wheat Flag Leaves and Developing Grains Under Water Deficit

    PubMed Central

    Deng, Xiong; Liu, Yue; Xu, Xuexin; Liu, Dongmiao; Zhu, Genrui; Yan, Xing; Wang, Zhimin; Yan, Yueming

    2018-01-01

    In this study, we performed the first comparative proteomic analysis of wheat flag leaves and developing grains in response to drought stress. Drought stress caused a significant decrease in several important physiological and biochemical parameters and grain yield traits, particularly those related to photosynthesis and starch biosynthesis. In contrast, some key indicators related to drought stress were significantly increased, including malondialdehyde, soluble sugar, proline, glycine betaine, abscisic acid content, and peroxidase activity. Two-dimensional difference gel electrophoresis (2D-DIGE) identified 87 and 132 differentially accumulated protein (DAP) spots representing 66 and 105 unique proteins following exposure to drought stress in flag leaves and developing grains, respectively. The proteomes of the two organs varied markedly, and most DAPS were related to the oxidative stress response, photosynthesis and energy metabolism, and starch biosynthesis. In particular, DAPs in flag leaves mainly participated in photosynthesis while those in developing grains were primarily involved in carbon metabolism and the drought stress response. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) further validated some key DAPs such as rubisco large subunit (RBSCL), ADP glucose pyrophosphorylase (AGPase), chaperonin 60 subunit alpha (CPN-60 alpha) and oxalate oxidase 2 (OxO 2). The potential functions of the identified DAPs revealed that a complex network synergistically regulates drought resistance during grain development. Our results from proteome perspective provide new insight into the molecular regulatory mechanisms used by different wheat organs to respond to drought stress. PMID:29692790

  19. A novel algorithm for validating peptide identification from a shotgun proteomics search engine.

    PubMed

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J

    2013-03-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.

  20. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.

    PubMed

    Vester, Diana; Rapp, Erdmann; Gade, Dörte; Genzel, Yvonne; Reichl, Udo

    2009-06-01

    Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.

  1. Comprehensive Analysis of Proteomic Differences between Escherichia coli K-12 and B Strains Using Multiplexed Isobaric Tandem Mass Tag (TMT) Labeling.

    PubMed

    Han, Mee-Jung

    2017-11-28

    The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.

  2. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics

    PubMed Central

    Röst, Hannes L.; Liu, Yansheng; D’Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C.; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi

    2016-01-01

    Large scale, quantitative proteomic studies have become essential for the analysis of clinical cohorts, large perturbation experiments and systems biology studies. While next-generation mass spectrometric techniques such as SWATH-MS have substantially increased throughput and reproducibility, ensuring consistent quantification of thousands of peptide analytes across multiple LC-MS/MS runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we have developed the TRIC software which utilizes fragment ion data to perform cross-run alignment, consistent peak-picking and quantification for high throughput targeted proteomics. TRIC uses a graph-based alignment strategy based on non-linear retention time correction to integrate peak elution information from all LC-MS/MS runs acquired in a study. When compared to state-of-the-art SWATH-MS data analysis, the algorithm was able to reduce the identification error by more than 3-fold at constant recall, while correcting for highly non-linear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem (iPS) cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups and substantially increased the quantitative completeness and biological information in the data, providing insights into protein dynamics of iPS cells. Overall, this study demonstrates the importance of consistent quantification in highly challenging experimental setups, and proposes an algorithm to automate this task, constituting the last missing piece in a pipeline for automated analysis of massively parallel targeted proteomics datasets. PMID:27479329

  3. Physiological and Comparative Proteomic Analysis Reveals Different Drought Responses in Roots and Leaves of Drought-Tolerant Wild Wheat (Triticum boeoticum)

    PubMed Central

    Liu, Hui; Sultan, Muhammad Abdul Rab Faisal; Liu, Xiang li; Zhang, Jin; Yu, Fei; Zhao, Hui xian

    2015-01-01

    To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum), physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control), 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA) level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs) (corresponding to 87 and 80 unique proteins, respectively) in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism was down-regulated in the roots, but enhanced in the leaves. These results will contribute to the existing knowledge on the complexity of root and leaf protein changes that occur in response to drought, and also provide a framework for further functional studies on the identified proteins. PMID:25859656

  4. Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost.

    PubMed

    Luebker, Stephen A; Wojtkiewicz, Melinda; Koepsell, Scott A

    2015-11-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparative proteomics analysis of Bacillus amyloliquefaciens SQR9 revealed the key proteins involved in in situ root colonization.

    PubMed

    Qiu, Meihua; Xu, Zhihui; Li, Xingxing; Li, Qing; Zhang, Nan; Shen, Qirong; Zhang, Ruifu

    2014-12-05

    Bacillus Amyloliquefaciens SQR9 is a well-investigated plant growth-promoting rhizobacteria with strong root colonization capability. To identify the key proteins involved in in situ root colonization and biofilm formation, the proteomic profiles of planktonic and root colonized SQR9 cells were compared. A total of 755 proteins were identified, of which 78 and 95 proteins were significantly increased and deceased, respectively, when SQR9 was colonized on the root. The proteins that were closely affiliated with the root colonization belonged to the functional categories of biocontrol, detoxification, biofilm formation, cell motility and chemotaxis, transport, and degradation of plant polysaccharides. A two-component system protein ResE was increased 100-fold when compared to the planktonic status; impairment of the resE gene postponed the formation of cell biofilm and decreased the root colonization capability, which may be regulated through the spo0A-sinI-yqxM pathway. The SQR9 proteomic data provide valuable clues for screening key proteins in the plant-rhizobacteria interaction.

  6. CPTAC Releases Cancer Proteome Confirmatory Colon Study Data | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory colon study data. The goal of the study is to analyze the proteomes of approximately 100 confirmatory colon tumor patients, which includes tumor and adjacent normal samples, with liquid chromatography-tandem mass spectrometry (LC-MS/MS) global proteomic and phosphoproteomic profiling.

  7. CPTAC Proteomics Data on UCSC Genome Browser | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data via the UCSC Genome Browser. This effort extends accessibility of the CPTAC data to more researchers and provides an additional level of analysis to assist the cancer biology community.

  8. An orthology-based analysis of pathogenic protozoa impacting global health: an improved comparative genomics approach with prokaryotes and model eukaryote orthologs.

    PubMed

    Cuadrat, Rafael R C; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M; Mattoso, Marta; Dávila, Alberto M R

    2014-08-01

    A key focus in 21(st) century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools.

  9. An Orthology-Based Analysis of Pathogenic Protozoa Impacting Global Health: An Improved Comparative Genomics Approach with Prokaryotes and Model Eukaryote Orthologs

    PubMed Central

    Cuadrat, Rafael R. C.; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M.; Mattoso, Marta

    2014-01-01

    Abstract A key focus in 21st century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools. PMID:24960463

  10. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  11. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    PubMed

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-09-23

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.

  12. Differential proteomic analysis to identify proteins associated with quality traits of frozen mud shrimp (Solenocera melantho) using an iTRAQ-based strategy.

    PubMed

    Shi, Jing; Zhang, Longteng; Lei, Yutian; Shen, Huixing; Yu, Xunpei; Luo, Yongkang

    2018-06-15

    An iTRAQ-based strategy was applied to investigate proteome changes in mud shrimp during long-term frozen storage under different conditions. A total of 226 proteins was identified as differential abundance proteins (DAPs) in mud shrimp from two frozen treatment groups (-20 °C and -40 °C) compared with the fresh control group. The proteome changes in mud shrimp muscle stored under -20 °C was much greater than that under -40 °C. Correlation analysis between DAPs and quality traits of mud shrimp muscle showed that 12 proteins were correlated closely with color (L ∗ , a ∗ , and b ∗ value) and texture (hardness, elasticity, and chewiness). Bioinformatic analysis revealed that most of these proteins were involved in protein structure, metabolic enzymes, and protein turnover. Among them, several proteins might be potential protein markers for color, and some proteins are good candidate predictors for textural properties of mud shrimp muscle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Recent advances in methods for the analysis of protein o-glycosylation at proteome level.

    PubMed

    You, Xin; Qin, Hongqiang; Ye, Mingliang

    2018-01-01

    O-Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post-translational modifications. Compared with N-linked glycosylation, O-glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O-glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O-glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O-glycosylation, i.e. O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O-glycosylation. For the large-scale analysis of mucin-type glycosylation, the glycan simplification strategies including the ''SimpleCell'' technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata

    PubMed Central

    Drake, Jeana L.; Mass, Tali; Haramaty, Liti; Zelzion, Ehud; Bhattacharya, Debashish; Falkowski, Paul G.

    2013-01-01

    It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization “toolkit,” an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure. PMID:23431140

  15. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain.

    PubMed

    Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β.

    PubMed

    Mitra, Arkadeep; Basak, Trayambak; Ahmad, Shadab; Datta, Kaberi; Datta, Ritwik; Sengupta, Shantanu; Sarkar, Sagartirtha

    2015-06-05

    Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves.

    PubMed

    Kraner, Max E; Müller, Carmen; Sonnewald, Uwe

    2017-11-01

    In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  18. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.

    Current proteomics approaches are comprised of both broad discovery measurements as well as more quantitative targeted measurements. These two different measurement types are used to initially identify potentially important proteins (e.g., candidate biomarkers) and then enable improved quantification for a limited number of selected proteins. However, both approaches suffer from limitations, particularly the lower sensitivity, accuracy, and quantitation precision for discovery approaches compared to targeted approaches, and the limited proteome coverage provided by targeted approaches. Herein, we describe a new proteomics approach that allows both discovery and targeted monitoring (DTM) in a single analysis using liquid chromatography, ion mobility spectrometrymore » and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled peptides for target ions are spiked into tryptic digests and both the labeled and unlabeled peptides are broadly detected using LC-IMS-MS instrumentation, allowing the benefits of discovery and targeted approaches. To understand the possible improvement of the DTM approach, it was compared to LC-MS broad measurements using an accurate mass and time tag database and selected reaction monitoring (SRM) targeted measurements. The DTM results yielded greater peptide/protein coverage and a significant improvement in the detection of lower abundance species compared to LC-MS discovery measurements. DTM was also observed to have similar detection limits as SRM for the targeted measurements indicating its potential for combining the discovery and targeted approaches.« less

  19. CPTAC researchers report first large-scale integrated proteomic and genomic analysis of a human cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, provides a more comprehensive view of the biological features that drive cancer than genomic analysis alone and may help identify the most important targets for cancer detection and intervention.

  20. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data.

    PubMed

    Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O

    2015-08-25

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.

  1. Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance*

    PubMed Central

    Paulovich, Amanda G.; Billheimer, Dean; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo; Rudnick, Paul A.; Tabb, David L.; Wang, Pei; Blackman, Ronald K.; Bunk, David M.; Cardasis, Helene L.; Clauser, Karl R.; Kinsinger, Christopher R.; Schilling, Birgit; Tegeler, Tony J.; Variyath, Asokan Mulayath; Wang, Mu; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Fenyo, David; Carr, Steven A.; Fisher, Susan J.; Gibson, Bradford W.; Mesri, Mehdi; Neubert, Thomas A.; Regnier, Fred E.; Rodriguez, Henry; Spiegelman, Cliff; Stein, Stephen E.; Tempst, Paul; Liebler, Daniel C.

    2010-01-01

    Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize preanalytical and analytical variation in comparative proteomics experiments. PMID:19858499

  2. Comparative proteomic analysis of Bombyx mori hemolymph and fat body after calorie restriction.

    PubMed

    Chen, Huiqing; Li, Yijia; Chen, Keping; Yao, Qin; Li, Guohui; Wang, Lin

    2010-01-01

    Calorie restriction (CR) is known to extend life span from yeast to mammals. To gain an insight into the effects of CR on growth and development of the silkworm Bombyx mori at protein level, we employed comparative proteomic approach to investigate proteomic differences of hemolymph and fat body of the silkworm larvae subjected to CR. Thirty-nine differentially expressed proteins were identified by MALDI TOF/TOF MS. Among them, 19 were from the hemolymph and 20 from the fat body. The hemolymph of the CR group contained two down-regulated and 17 up-regulated proteins, whereas the fat body contained 15 down-regulated and five up-regulated ones. These proteins belonged to those functioning in immune system, in signal transduction and apoptosis, in regulation of growth and development, and in energy metabolism. Our results suggest that CR can alter the expression of proteins related to the above four aspects, implying that these proteins may regulate life span of the silkworm through CR.

  3. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  4. Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry.

    PubMed

    Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre

    2016-12-02

    Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.

  5. A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration

    PubMed Central

    Tezel, Gülgün

    2013-01-01

    Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers. PMID:23396249

  6. Proteomic profiling of early degenerative retina of RCS rats.

    PubMed

    Zhu, Zhi-Hong; Fu, Yan; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2017-01-01

    To identify the underlying cellular and molecular changes in retinitis pigmentosa (RP). Label-free quantification-based proteomics analysis, with its advantages of being more economic and consisting of simpler procedures, has been used with increasing frequency in modern biological research. Dystrophic RCS rats, the first laboratory animal model for the study of RP, possess a similar pathological course as human beings with the diseases. Thus, we employed a comparative proteomics analysis approach for in-depth proteome profiling of retinas from dystrophic RCS rats and non-dystrophic congenic controls through Linear Trap Quadrupole - orbitrap MS/MS, to identify the significant differentially expressed proteins (DEPs). Bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation and upstream regulatory analysis, were then performed on these retina proteins. Finally, a Western blotting experiment was carried out to verify the difference in the abundance of transcript factor E2F1. In this study, we identified a total of 2375 protein groups from the retinal protein samples of RCS rats and non-dystrophic congenic controls. Four hundred thirty-four significantly DEPs were selected by Student's t -test. Based on the results of the bioinformatics analysis, we identified mitochondrial dysfunction and transcription factor E2F1 as the key initiation factors in early retinal degenerative process. We showed that the mitochondrial dysfunction and the transcription factor E2F1 substantially contribute to the disease etiology of RP. The results provide a new potential therapeutic approach for this retinal degenerative disease.

  7. Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate.

    PubMed

    Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha'on, Ubon

    2014-01-01

    Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at -75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake.

  8. Proteomic Analysis of Kidney in Rats Chronically Exposed to Monosodium Glutamate

    PubMed Central

    Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha’on, Ubon

    2014-01-01

    Background Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Methods Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at –75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. Results The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. Conclusion The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake. PMID:25551610

  9. Monitoring Peptidase Activities in Complex Proteomes by MALDI-TOF Mass Spectrometry

    PubMed Central

    Villanueva, Josep; Nazarian, Arpi; Lawlor, Kevin; Tempst, Paul

    2009-01-01

    Measuring enzymatic activities in biological fluids is a form of activity-based proteomics and may be utilized as a means of developing disease biomarkers. Activity-based assays allow amplification of output signals, thus potentially visualizing low-abundant enzymes on a virtually transparent whole-proteome background. The protocol presented here describes a semi-quantitative in vitro assay of proteolytic activities in complex proteomes by monitoring breakdown of designer peptide-substrates using robotic extraction and a MALDI-TOF mass spectrometric read-out. Relative quantitation of the peptide metabolites is done by comparison with spiked internal standards, followed by statistical analysis of the resulting mini-peptidome. Partial automation provides reproducibility and throughput essential for comparing large sample sets. The approach may be employed for diagnostic or predictive purposes and enables profiling of 96 samples in 30 hours. It could be tailored to many diagnostic and pharmaco-dynamic purposes, as a read-out of catalytic and metabolic activities in body fluids or tissues. PMID:19617888

  10. Comparative proteome analysis reveals pathogen specific outer membrane proteins of Leptospira.

    PubMed

    Dhandapani, Gunasekaran; Sikha, Thoduvayil; Rana, Aarti; Brahma, Rahul; Akhter, Yusuf; Gopalakrishnan Madanan, Madathiparambil

    2018-04-10

    Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies. © 2018 Wiley Periodicals, Inc.

  11. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    PubMed

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine thesemore » mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.« less

  13. Novel Phage Group Infecting Lactobacillus delbrueckii subsp. lactis, as Revealed by Genomic and Proteomic Analysis of Bacteriophage Ldl1

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species. PMID:25501478

  14. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi.

    PubMed

    Zhao, Xiangna; Wu, Weili; Qi, Zhizhen; Cui, Yujun; Yan, Yanfeng; Guo, Zhaobiao; Wang, Zuyun; Wang, Hu; Deng, Haijun; Xue, Yan; Chen, Weijun; Wang, Xiaoyi; Yang, Ruifu

    2011-01-01

    Yep-phi, a lytic phage of Yersinia pestis, was isolated in China and is routinely used as a diagnostic phage for the identification of the plague pathogen. Yep-phi has an isometric hexagonal head containing dsDNA and a short non-contractile conical tail. In this study, we sequenced the Yep-phi genome (GenBank accession no. HQ333270) and performed proteomics analysis. The genome consists of 38 ,616 bp of DNA, including direct terminal repeats of 222 bp, and is predicted to contain 45 ORFs. Most structural proteins were identified by proteomics analysis. Compared with the three available genome sequences of lytic phages for Y. pestis, the phages could be divided into two subgroups. Yep-phi displays marked homology to the bacteriophages Berlin (GenBank accession no. AM183667) and Yepe2 (GenBank accession no. EU734170), and these comprise one subgroup. The other subgroup is represented by bacteriophage ΦA1122 (GenBank accession no. AY247822). Potential recombination was detected among the Yep-phi subgroup.

  15. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts.

    PubMed

    Siddique, Muhammad Asim; Grossmann, Jonas; Gruissem, Wilhelm; Baginsky, Sacha

    2006-12-01

    We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.

  16. Proteomics analysis of a long-term survival strain of Escherichia coli K-12 exhibiting a growth advantage in stationary-phase (GASP) phenotype.

    PubMed

    Gagliardi, Assunta; Lamboglia, Egidio; Bianchi, Laura; Landi, Claudia; Armini, Alessandro; Ciolfi, Silvia; Bini, Luca; Marri, Laura

    2016-03-01

    The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl(+) /10, isolated from a batch culture of an Escherichia coli K-12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co-culture with the wild-type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression-changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the "metabolism" group (72%) for the GASP mutant, and to "chaperones and stress responsive proteins" group for the parental strain (48%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon.

    PubMed

    Bourchookarn, Apichai; Havanapan, Phattara-Orn; Thongboonkerd, Visith; Krittanai, Chartchai

    2008-03-01

    A comparative proteomic analysis was employed to identify altered proteins in the yellow head virus (YHV) infected lymphoid organ (LO) of Penaeus monodon. At 24 h post-infection, the infected shrimps showed obvious signs of infection, while the control shrimps remained healthy. Two-dimensional electrophoresis of proteins extracted from the LO revealed significant alterations in abundance of several proteins in the infected group. Protein identification by MALDI-TOF MS and nanoLC-ESI-MS/MS revealed significant increase of transglutaminase, protein disulfide isomerase, ATP synthase beta subunit, V-ATPase subunit A, and hemocyanin fragments. A significant decrease was also identified for Rab GDP-dissociation inhibitor, 6-phosphogluconate dehydrogenase, actin, fast tropomyosin isoform, and hemolymph clottable protein. Some of these altered proteins were further investigated at the mRNA level using real-time RT-PCR, which confirmed the proteomic data. Identification of these altered proteins in the YHV-infected shrimps may provide novel insights into the molecular responses of P. monodon to YHV infection.

  18. Limited proteolysis in proteomics using protease-immobilized microreactors.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2012-01-01

    Proteolysis is the key step for proteomic studies integrated with MS analysis. Compared with the conventional method of in-solution digestion, proteolysis by a protease-immobilized microreactor has a number of advantages for proteomic analysis; i.e., rapid and efficient digestion, elimination of a purification step of the digests prior to MS, and high stability against a chemical or thermal denaturant. This chapter describes the preparation of the protease-immobilized microreactors and proteolysis performance of these microreactors. Immobilization of proteases by the formation of a polymeric membrane consisting solely of protease-proteins on the inner wall of the microchannel is performed. This was realized either by a cross-linking reaction in a laminar flow between lysine residues sufficiently present on the protein surfaces themselves or in the case of acidic proteins by mixing them with poly-lysine prior to the crosslink-reaction. The present procedure is simple and widely useful not only for proteases but also for several other enzymes.

  19. FunRich proteomics software analysis, let the fun begin!

    PubMed

    Benito-Martin, Alberto; Peinado, Héctor

    2015-08-01

    Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparative proteomic analysis of virulent and rifampicin attenuated Flavobacterium psychrophilum

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease and rainbow trout fry syndrome. In this study we compared a wild-type strain (CSF 259.93) with a rifampicin resistant and virulence attenuated strain of F. psychrophilum (CSF 259.93B.17). The attenuated strain harbour...

  1. Proteomic analysis associated with coronary artery dilatation caused by Kawasaki disease using serum exosomes.

    PubMed

    Zhang, Li; Wang, Wei; Bai, Jun; Xu, Yu-Fen; Li, Lai-Qing; Hua, Liang; Deng, Li; Jia, Hong-Ling

    2016-05-01

    The aim of this study was to investigate the serum exosome proteome profile of coronary artery dilatation (CAD) caused by Kawasaki disease (KD). Two-dimensional electrophoresis was implemented on proteins of serum exosomes obtained from children with CAD caused by KD and from healthy controls. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis. We identified 38 differentially expressed proteins (13 up-regulated and 25 down-regulated) from serum exosomes of patients with CAD caused by KD compared with healthy controls. Expression levels of three differentially expressed proteins (leucine-rich alpha-2-glycoprotein, sex hormone-binding globulin, and serotransferrin) were validated using western blot analysis. Classification and protein-protein network analysis showed that they are associated with multiple functional groups involved in the acute inflammatory response, defense response, complement activation, humoral immune response, and response to wounding. The majority of the proteins are involved in the inflammation and coagulation cascades. These findings establish a comprehensive proteome profile of CAD caused by KD and increase our knowledge of scientific insight into its mechanisms. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  2. Proteomic identification of rhythmic proteins in rice seedlings.

    PubMed

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  3. Proteomic analysis of human dental cementum and alveolar bone

    PubMed Central

    Salmon, Cristiane R.; Tomazela, Daniela M.; Ruiz, Karina Gonzales Silvério; Foster, Brian L.; Leme, Adriana Franco Paes; Sallum, Enilson Antonio; Somerman, Martha J.; Nociti, Francisco H.

    2013-01-01

    Dental cementum (DC) is a bone-like tissue covering the tooth root and responsible for attaching the tooth to the alveolar bone (AB) via the periodontal ligament (PDL). Studies have unsuccessfully tried to identify factors specific to DC versus AB, in an effort to better understand DC development and regeneration. The present study aimed to use matched human DC and AB samples (n=7) to generate their proteomes for comparative analysis. Bone samples were harvested from tooth extraction sites, whereas DC samples were obtained from the apical root portion of extracted third molars. Samples were denatured, followed by protein extraction reduction, alkylation and digestion for analysis by nanoAcquity HPLC system and LTQ-FT Ultra. Data analysis demonstrated that a total of 318 proteins were identified in AB and DC. In addition to shared proteins between these tissues, 105 and 83 proteins exclusive to AB or DC were identified, respectively. This is the first report analyzing the proteomic composition of human DC matrix and identifying putative unique and enriched proteins in comparison to alveolar bone. These findings may provide novel insights into developmental differences between DC and AB, and identify candidate biomarkers that may lead to more efficient and predictable therapies for periodontal regeneration. PMID:24007660

  4. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.

    PubMed

    Tholey, Andreas; Becker, Alexander

    2017-11-01

    Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.

    PubMed

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.

  6. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication*

    PubMed Central

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history. PMID:26560065

  7. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.

    PubMed

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    PubMed Central

    Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei

    2014-01-01

    ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661

  9. Comparative proteomic analysis provides insight into the biological role of protein phosphatase inhibitor-2 from Arabidopsis.

    PubMed

    Ahsan, Nagib; Chen, Mingjie; Salvato, Fernanda; Wilson, Rashaun S; Shyama Prasad Rao, R; Thelen, Jay J

    2017-08-08

    Protein phosphatase inhibitor-2 (PPI-2) is a conserved eukaryotic effector protein that inhibits type one protein phosphatases (TOPP). A transfer-DNA knockdown of AtPPI-2 resulted in stunted growth in both vegetative and reproductive phases of Arabidopsis development. At the cellular level, AtPPI-2 knockdown had 35 to 40% smaller cells in developing roots and leaves. This developmental phenotype was rescued by transgenic expression of the AtPPI-2 cDNA behind a constitutive promoter. Comparative proteomics of developing leaves of wild type (WT) and AtPPI-2 mutant revealed reduced levels of proteins associated with chloroplast development, ribosome biogenesis, transport, and cell cycle regulation processes. Decreased abundance of several ribosomal proteins, a DEAD box RNA helicase family protein (AtRH3), Clp protease (ClpP3) and proteins associated with cell division suggests a bottleneck in chloroplast ribosomal biogenesis and cell cycle regulation in AtPPI-2 mutant plants. In contrast, eight out of nine Arabidopsis TOPP isoforms were increased at the transcript level in AtPPI-2 leaves compared to WT. A protein-protein interaction network revealed that >75% of the differentially accumulated proteins have at least secondary and/or tertiary connections with AtPPI-2. Collectively, these data reveal a potential basis for the growth defects of AtPPI-2 and support the presumed role of AtPPI-2 as a master regulator for TOPPs, which regulate diverse growth and developmental processes. Comparative label-free proteomics was used to characterize an AtPPI-2T-DNA knockdown mutant. The complex, reduced growth phenotype supports the notion that AtPPI-2 is a global regulator of TOPPs, and possibly other proteins. Comparative proteomics revealed a range of differences in protein abundance from various cellular processes such as chloroplast development, ribosome biogenesis, and transporter activity in the AtPPI-2 mutant relative to WT Arabidopsis. Collectively the results of proteomic analysis and the protein-protein network suggest that AtPPI-2 is involved in a wide range of biological processes either directly or indirectly including plastid biogenesis, translational mechanisms, and cell cycle regulation. The proposed protein interaction network comprises a testable model underlying changes in protein abundance in the AtPPI-2 mutant, and provides a better framework for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    PubMed

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  11. Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents.

    PubMed

    Rabani, Vahideh; Davani, Siamak; Gambert-Nicot, Ségolène; Meneveau, Nicolas; Montange, Damien

    2016-11-01

    Lipid rafts play a pivotal role in physiological functions of platelets. Their isolation using nonionic mild detergents is considered as the gold standard method, but there is no consensual detergent for lipid raft studies. We aimed to investigate which detergent is the most suitable for lipid raft isolation from platelet membrane, based on lipidomics and proteomics analysis. Platelets were obtained from healthy donors. Twelve sucrose fractions were extracted by three different detergents, namely Brij 35, Lubrol WX, and Triton X100, at 0.05% and 1%. After lipidomics analysis and determination of fractions enriched in cholesterol (Ch) and sphingomyelin (SM), proteomics analysis was performed. Lipid rafts were mainly observed in 1-4 fractions, and non-rafts were distributed on 5-12 fractions. Considering the concentration of Ch and SM, Lubrol WX 1% and Triton X100 1% were more suitable detergents as they were able to isolate lipid raft fractions that were more enriched than non-raft fractions. By proteomics analysis, overall, 822 proteins were identified in platelet membrane. Lipid raft fractions isolated with Lubrol WX 0.05% and Triton X100 1% contained mainly plasma membrane proteins. However, only Lubrol WX 0.05 and 1% and Triton X100 1% were able to extract non-denaturing proteins with more than 10 transmembrane domains. Our results suggest that Triton X100 1% is the most suitable detergent for global lipid and protein studies on platelet plasma membrane. However, the detergent should be adapted if investigation of an association between specific proteins and lipid rafts is planned.

  12. Proteomic analysis of enterotoxigenic Escherichia coli (ETEC) in neutral and alkaline conditions.

    PubMed

    Gonzales-Siles, Lucia; Karlsson, Roger; Kenny, Diarmuid; Karlsson, Anders; Sjöling, Åsa

    2017-01-07

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to endemic areas. Secretion of the heat labile AB 5 toxin (LT) is induced by alkaline conditions. In this study, we determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions (pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a 2D-LCMS approach. Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer membrane protein proteins such as OmpA and the β-Barrel Assembly Machinery (BAM) complex were up-regulated. ETEC exposed to alkaline environments express a specific proteome profile characterized by up-regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.

  13. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates.

    PubMed

    Schwämmle, Veit; León, Ileana Rodríguez; Jensen, Ole Nørregaard

    2013-09-06

    Large-scale quantitative analyses of biological systems are often performed with few replicate experiments, leading to multiple nonidentical data sets due to missing values. For example, mass spectrometry driven proteomics experiments are frequently performed with few biological or technical replicates due to sample-scarcity or due to duty-cycle or sensitivity constraints, or limited capacity of the available instrumentation, leading to incomplete results where detection of significant feature changes becomes a challenge. This problem is further exacerbated for the detection of significant changes on the peptide level, for example, in phospho-proteomics experiments. In order to assess the extent of this problem and the implications for large-scale proteome analysis, we investigated and optimized the performance of three statistical approaches by using simulated and experimental data sets with varying numbers of missing values. We applied three tools, including standard t test, moderated t test, also known as limma, and rank products for the detection of significantly changing features in simulated and experimental proteomics data sets with missing values. The rank product method was improved to work with data sets containing missing values. Extensive analysis of simulated and experimental data sets revealed that the performance of the statistical analysis tools depended on simple properties of the data sets. High-confidence results were obtained by using the limma and rank products methods for analyses of triplicate data sets that exhibited more than 1000 features and more than 50% missing values. The maximum number of differentially represented features was identified by using limma and rank products methods in a complementary manner. We therefore recommend combined usage of these methods as a novel and optimal way to detect significantly changing features in these data sets. This approach is suitable for large quantitative data sets from stable isotope labeling and mass spectrometry experiments and should be applicable to large data sets of any type. An R script that implements the improved rank products algorithm and the combined analysis is available.

  14. Comparative Proteomic Analysis of Methanothermobacter themautotrophicus ΔH in Pure Culture and in Co-Culture with a Butyrate-Oxidizing Bacterium

    PubMed Central

    Enoki, Miho; Shinzato, Naoya; Sato, Hiroaki; Nakamura, Kohei; Kamagata, Yoichi

    2011-01-01

    To understand the physiological basis of methanogenic archaea living on interspecies H2 transfer, the protein expression of a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH, was investigated in both pure culture and syntrophic coculture with an anaerobic butyrate oxidizer Syntrophothermus lipocalidus strain TGB-C1 as an H2 supplier. Comparative proteomic analysis showed that global protein expression of methanogen cells in the model coculture was substantially different from that of pure cultured cells. In brief, in syntrophic coculture, although methanogenesis-driven energy generation appeared to be maintained by shifting the pathway to the alternative methyl coenzyme M reductase isozyme I and cofactor F420-dependent process, the machinery proteins involved in carbon fixation, amino acid synthesis, and RNA/DNA metabolisms tended to be down-regulated, indicating restrained cell growth rather than vigorous proliferation. In addition, our proteome analysis revealed that α subunits of proteasome were differentially acetylated between the two culture conditions. Since the relevant modification has been suspected to regulate proteolytic activity of the proteasome, the global protein turnover rate could be controlled under syntrophic growth conditions. To our knowledge, the present study is the first report on N-acetylation of proteasome subunits in methanogenic archaea. These results clearly indicated that physiological adaptation of hydrogenotrophic methanogens to syntrophic growth is more complicated than that of hitherto proposed. PMID:21904627

  15. Comparative analysis of 2,4,6-trinitrotoluene (TNT)-induced cellular responses and proteomes in Pseudomonas sp. HK-6 in two types of media.

    PubMed

    Cho, Yun-Seok; Lee, Bheong-Uk; Kahng, Hyung-Yeel; Oh, Kye-Heon

    2009-04-01

    TNT-induced cellular responses and proteomes in Pseudomonas sp. HK-6 were comparatively analyzed in two different media: basal salts (BS) and Luria broth (LB). HK-6 cells could not degrade more than 0.5 mM TNT with BS medium, while in LB medium, they exhibited the enhanced capability to degrade as much as 3.0 mM TNT. Analysis of total cellular fatty acids in HK-6 cells suggested that the relative abundance of several saturated or unsaturated fatty acids is altered under TNT-mediated stress conditions. Scanning electron microscopy showed the presence of perforations, irregular rod formations, and wrinkled extracellular surfaces in cells under TNT stress. Proteomic analysis of soluble protein fractions from HK-6 cultures grown with TNT as a substrate revealed 11 protein spots induced by TNT. Among these, seven proteins (including Alg8, AlgB, NirB, and the AhpC/Tsa family) were detected only in LB medium containing TNT. The proteins AspS, Tsf, and assimilatory nitrate reductase were increasingly expressed only in BS medium containing TNT. The protein dGTPase was found to be induced and expressed when cells were grown in either type of TNT-containing media. These results provide a better understanding of the cytotoxicity and survival mechanism used by Pseudomonas sp. HK-6 when placed under TNT stress conditions.

  16. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE PAGES

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; ...

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. Here in this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identifiedmore » 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. In conclusion, the data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  17. Comparative analysis of the alveolar macrophage proteome in ALI/ARDS patients between the exudative phase and recovery phase

    PubMed Central

    2013-01-01

    Background Despite decades of extensive studies, the morbidity and mortality for acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remained high. Particularly, biomarkers essential for its early diagnosis and prognosis are lacking. Methods Recent studies suggest that alveolar macrophages (AMs) at the exudative phase of ALI/ARDS initiate, amplify and perpetuate inflammatory responses, while they resolve inflammation in the recovery phase to prevent further tissue injury and perpetuated inflammation in the lung. Therefore, proteins relevant to this functional switch could be valuable biomarkers for ALI/ARDS diagnosis and prognosis. We thus conducted comparative analysis of the AM proteome to assess its dynamic proteomic changes during ALI/ARDS progression and recovery. Results 135 proteins were characterized to be differentially expressed between AMs at the exudative and recovery phase. MALDI-TOF-MS and peptide mass fingerprint (PMF) analysis characterized 27 informative proteins, in which 17 proteins were found with a marked increase at the recovery phase, while the rest of 10 proteins were manifested by the significantly higher levels of expression at the exudative phase. Conclusions Given the role of above identified proteins played in the regulation of inflammatory responses, cell skeleton organization, oxidative stress, apoptosis and metabolism, they have the potential to serve as biomarkers for early diagnosis and prognosis in the setting of patients with ALI/ARDS. PMID:23773529

  18. Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Kimura, Kosei; Wada, Akira; Ueta, Masami; Ogata, Akihiko; Tanaka, Satoru; Sakai, Akiko; Yoshida, Hideji; Fushitani, Hideo; Miyamoto, Akiko; Fukushima, Masakazu; Uchiumi, Toshio; Tanigawa, Nobuhiko

    2010-11-01

    Many auxiliary functions of ribosomal proteins (r-proteins) have received considerable attention in recent years. However, human r-proteins have hardly been examined by proteomic analysis. In this study, we isolated ribosomal particles and subsequently compared the proteome of r-proteins between the DLD-1 human colon cancer cell line and its 5-fluorouracil (5-FU)-resistant sub-line, DLD-1/5-FU, using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis, which has a superior ability to separate basic proteins, and we discuss the role of r-proteins in 5-FU resistance. Densitometric analysis was performed to quantify modulated proteins, and protein spots showing significant changes were identified by employing matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Three basic proteins (L15, L37 and prohibitin) which were significantly modulated between DLD-1 and DLD-1/5-FU were identified. Two proteins, L15 and L37, showed down-regulated expression in DLD-1/5-FU in comparison to DLD-1. Prohibitin, which is not an r-protein and is known to be localized in the mitochondria, showed up-regulated expression in DLD-1/5-FU. These 3 proteins may be related to 5-FU resistance.

  19. Proteome Regulation during Olea europaea Fruit Development

    PubMed Central

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Background Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. Methodology/Principal Findings In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. Conclusions/Significance This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process. PMID:23349718

  20. Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature.

    PubMed

    Gu, Xianbin; Gao, Zhihong; Zhuang, Weibing; Qiao, Yushan; Wang, Xiuyun; Mi, Lin; Zhang, Zhen; Lin, Zhilin

    2013-05-01

    Low-temperature stress is one of the major abiotic stresses in plants worldwide, and the dehydration responsive element binding protein (DREB) transcription factor induces expression of genes involved in environmental stress tolerance in plants. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) and subsequent mass spectrometric identification was used to study the changes in the leaf proteome profiles of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low-temperature conditions. By comparing the proteomic profiles, we located 21 protein spots that were reproducibly up- or down-regulated by more than twofold between transgenic and non-transgenic strawberries. Eight identified proteins function in energy and metabolism, four in biosynthetic processes, four were stress and defense related, three spots were identified as cold-stress related expressed sequence tags (ESTs), and two were unknown proteins. The change patterns of low-temperature tolerance proteins, including photosynthetic proteins (RuBisCO large subunit and RuBisCO activase), cytoplasmic Cu/Zn-superoxide dismutase (Cu/Zn-SOD), late embryogenesis abundant protein 14-A (Lea14-A), eukaryotic translation initiation factor 5A (eIF5A), and cold-stress related ESTs, were differentially regulated between non-transgenic and rd29A:RdreB1BI transgenic strawberries. They are likely important gene products in the regulatory network of the RdreB1BI gene. Consequently, this study provides the first characterization of the transgenic strawberry proteome and the predicted target proteins of the RdreB1BI gene by using proteomic approaches. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Perturbations in the Urinary Exosome in Transplant Rejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigdel, Tara K.; NG, Yolanda; Lee, Sangho

    Background: Urine exosomes, vesicles exocytosed into urine by all renal epithelial cell types, occur under normal physiologic and disease states. Exosome contents may mirror disease-specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed and for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Methods: Urine exosomes were isolated by centrifugal filtration from mid-stream, second morning void, urine samples collected from kidney transplant recipients with and without biopsy matched acute rejection. The proteomes of unfractionated whole urine (Uw) and urine exosomes (Uexo) underwent mass spectrometry-based quantitative proteomics analysis. Themore » proteome data were analyzed for significant differential protein abundances in acute rejection (AR). Results: Identifications of 1018 and 349 proteins, Uw and Uexo fractions, respectively, demonstrated a 279 protein overlap between the two urinary compartments with 25%(70) of overlapping proteins unique to Uexoand represented membrane bound proteins (p=9.31e-7). Of 349 urine exosomal proteins identified in transplant patients 220 were not previously identified in the normal urine exosomal fraction. Uexo proteins (11), functioning in the inflammatory / stress response, were more abundant in patients with biopsy-confirmed acute rejection, 3 of which were exclusive to Uexo. Uexo AR-specific biomarkers (8) were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. Conclusions: A rapid urinary exosome isolation method and quantitative measurement of enriched Uexo proteins was applied. Urine proteins specific to the exosomal fraction were detected either in unfractionated urine (at low abundances) or by Uexo fraction analysis. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were specific to inflammatory responses, and were not observed in the Uexo fraction from normal healthy subjects. Uexo specific protein alterations in renal disease provide potential mechanistic insights and offer a unique panel of sensitive biomarkers for monitoring for acute transplant rejection.« less

  2. Assembling proteomics data as a prerequisite for the analysis of large scale experiments

    PubMed Central

    Schmidt, Frank; Schmid, Monika; Thiede, Bernd; Pleißner, Klaus-Peter; Böhme, Martina; Jungblut, Peter R

    2009-01-01

    Background Despite the complete determination of the genome sequence of a huge number of bacteria, their proteomes remain relatively poorly defined. Beside new methods to increase the number of identified proteins new database applications are necessary to store and present results of large- scale proteomics experiments. Results In the present study, a database concept has been developed to address these issues and to offer complete information via a web interface. In our concept, the Oracle based data repository system SQL-LIMS plays the central role in the proteomics workflow and was applied to the proteomes of Mycobacterium tuberculosis, Helicobacter pylori, Salmonella typhimurium and protein complexes such as 20S proteasome. Technical operations of our proteomics labs were used as the standard for SQL-LIMS template creation. By means of a Java based data parser, post-processed data of different approaches, such as LC/ESI-MS, MALDI-MS and 2-D gel electrophoresis (2-DE), were stored in SQL-LIMS. A minimum set of the proteomics data were transferred in our public 2D-PAGE database using a Java based interface (Data Transfer Tool) with the requirements of the PEDRo standardization. Furthermore, the stored proteomics data were extractable out of SQL-LIMS via XML. Conclusion The Oracle based data repository system SQL-LIMS played the central role in the proteomics workflow concept. Technical operations of our proteomics labs were used as standards for SQL-LIMS templates. Using a Java based parser, post-processed data of different approaches such as LC/ESI-MS, MALDI-MS and 1-DE and 2-DE were stored in SQL-LIMS. Thus, unique data formats of different instruments were unified and stored in SQL-LIMS tables. Moreover, a unique submission identifier allowed fast access to all experimental data. This was the main advantage compared to multi software solutions, especially if personnel fluctuations are high. Moreover, large scale and high-throughput experiments must be managed in a comprehensive repository system such as SQL-LIMS, to query results in a systematic manner. On the other hand, these database systems are expensive and require at least one full time administrator and specialized lab manager. Moreover, the high technical dynamics in proteomics may cause problems to adjust new data formats. To summarize, SQL-LIMS met the requirements of proteomics data handling especially in skilled processes such as gel-electrophoresis or mass spectrometry and fulfilled the PSI standardization criteria. The data transfer into a public domain via DTT facilitated validation of proteomics data. Additionally, evaluation of mass spectra by post-processing using MS-Screener improved the reliability of mass analysis and prevented storage of data junk. PMID:19166578

  3. Reproducible Tissue Homogenization and Protein Extraction for Quantitative Proteomics Using MicroPestle-Assisted Pressure-Cycling Technology.

    PubMed

    Shao, Shiying; Guo, Tiannan; Gross, Vera; Lazarev, Alexander; Koh, Ching Chiek; Gillessen, Silke; Joerger, Markus; Jochum, Wolfram; Aebersold, Ruedi

    2016-06-03

    The reproducible and efficient extraction of proteins from biopsy samples for quantitative analysis is a critical step in biomarker and translational research. Recently, we described a method consisting of pressure-cycling technology (PCT) and sequential windowed acquisition of all theoretical fragment ions-mass spectrometry (SWATH-MS) for the rapid quantification of thousands of proteins from biopsy-size tissue samples. As an improvement of the method, we have incorporated the PCT-MicroPestle into the PCT-SWATH workflow. The PCT-MicroPestle is a novel, miniaturized, disposable mechanical tissue homogenizer that fits directly into the microTube sample container. We optimized the pressure-cycling conditions for tissue lysis with the PCT-MicroPestle and benchmarked the performance of the system against the conventional PCT-MicroCap method using mouse liver, heart, brain, and human kidney tissues as test samples. The data indicate that the digestion of the PCT-MicroPestle-extracted proteins yielded 20-40% more MS-ready peptide mass from all tissues tested with a comparable reproducibility when compared to the conventional PCT method. Subsequent SWATH-MS analysis identified a higher number of biologically informative proteins from a given sample. In conclusion, we have developed a new device that can be seamlessly integrated into the PCT-SWATH workflow, leading to increased sample throughput and improved reproducibility at both the protein extraction and proteomic analysis levels when applied to the quantitative proteomic analysis of biopsy-level samples.

  4. Facile preparation of salivary extracellular vesicles for cancer proteomics

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Xia, Zhijun; Shang, Zhi; Sun, Kaibo; Niu, Xiaomin; Qian, Liqiang; Fan, Liu-Yin; Cao, Cheng-Xi; Xiao, Hua

    2016-04-01

    Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

  5. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabb, David L.; Wang, Xia; Carr, Steven A.

    2016-03-04

    The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC-MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilarmore » workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation. From these assessments we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61-93% of the time. When comparing across different instruments and quantitative technologies, differential genes were reproduced by other data sets from 67-99% of the time. Projecting gene differences to biological pathways and networks increased the similarities. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation.« less

  6. Unraveling the resistance of microbial biofilms: has proteomics been helpful?

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Wong, Sarah S W; Herath, Thanuja D K; Samaranayake, Lakshman P

    2012-02-01

    Biofilms are surface-attached, matrix-encased, structured microbial communities which display phenotypic features that are dramatically different from those of their free-floating, or planktonic, counterparts. Biofilms seem to be the preferred mode of growth of microorganisms in nature, and at least 65% of all human infections are associated with biofilms. The most notable and clinically relevant property of biofilms is their greater resistance to antimicrobials compared with their planktonic counterparts. Although both bacterial and fungal biofilms display this phenotypic feature, the exact mechanisms underlying their increased drug resistance are yet to be determined. Advances in proteomics techniques during the past decade have facilitated in-depth analysis of the possible mechanisms underpinning increased drug resistance in biofilms. These studies have demonstrated the ability of proteomics techniques to unravel new targets for combating microbial biofilms. In this review, we discuss the putative drug resistance mechanisms of microbial biofilms that have been uncovered by proteomics and critically evaluate the possible contribution of the new knowledge to future development in the field. We also summarize strategic uses of novel proteomics technologies in studies related to drug resistance mechanisms of microbial biofilms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparative evaluation of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and high-pH reversed phase (Hp-RP) chromatography in profiling of rat kidney proteome.

    PubMed

    Hao, Piliang; Ren, Yan; Dutta, Bamaprasad; Sze, Siu Kwan

    2013-04-26

    ERLIC and high-pH RP (Hp-RP) have been reported to be promising alternatives to strong cation exchange (SCX) in proteome fractionation. Here we compared the performance of ERLIC, concatenated ERLIC and concatenated Hp-RP in proteome profiling. The protein identification is comparable in these three strategies, but significantly more unique peptides are identified by the two concatenation methods, resulting in a significant increase of the average protein sequence coverage. The pooling of fractions from spaced intervals results in more uniform distribution of peptides in each fraction compared with the chromatogram-based pooling of adjacent fractions. ERLIC fractionates peptides according to their pI and GRAVY values. These properties remains but becomes less remarkable in concatenated ERLIC. In contrast, the average pI and GRAVY values of the peptides are comparable in each fraction in concatenated Hp-RP. ERLIC performs the best in identifying peptides with pI>9 among the three strategies, while concatenated Hp-RP is good at identifying peptides with pI<4. These advantages are useful when either basic or acidic peptides/proteins are analytical targets. The power of ERLIC in identification of basic peptides seems to be due to their efficient separation from acidic peptides. This study facilitates the choice of proper fractionation strategies based on specific objectives. For in-depth proteomic analysis of a cell, tissue and plasma, multidimensional liquid chromatography (MDLC) is still necessary to reduce sample complexity for improving analytical dynamic range and proteome coverage. This work conducts a direct comparison of three promising first-dimensional proteome fractionation methods. They are comparable in identifying proteins, but concatenated ERLIC and concatenated Hp-RP identify significantly more unique peptides than ERLIC. ERLIC is good at analyzing basic peptides, while concatenated Hp-RP performs the best in analyzing acidic peptides with pI<4. This will facilitate the choice of the proper peptide fractionation strategy based on a specific need. A combination of different fractionation strategies can be used to increase the sequence coverage and number of protein identification due to the complementary effect between different methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.

    PubMed

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2018-01-16

    Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  10. ProteoSign: an end-user online differential proteomics statistical analysis platform.

    PubMed

    Efstathiou, Georgios; Antonakis, Andreas N; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Divanach, Peter; Trudgian, David C; Thomas, Benjamin; Papanikolaou, Nikolas; Aivaliotis, Michalis; Acuto, Oreste; Iliopoulos, Ioannis

    2017-07-03

    Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation.

    PubMed

    Tatsukami, Yohei; Nambu, Mami; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-07-31

    Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts. We identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition. The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia might provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions.

  12. Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation

    PubMed Central

    2013-01-01

    Background Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts. Result We identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition. Conclusion The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia might provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions. PMID:23898917

  13. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry.

    PubMed

    Fagerquist, Clifton K; Zaragoza, William J; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B; Mandrell, Robert E

    2014-05-01

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.

  14. Comparative Evaluation of Small Molecular Additives and Their Effects on Peptide/Protein Identification.

    PubMed

    Gao, Jing; Zhong, Shaoyun; Zhou, Yanting; He, Han; Peng, Shuying; Zhu, Zhenyun; Liu, Xing; Zheng, Jing; Xu, Bin; Zhou, Hu

    2017-06-06

    Detergents and salts are widely used in lysis buffers to enhance protein extraction from biological samples, facilitating in-depth proteomic analysis. However, these detergents and salt additives must be efficiently removed from the digested samples prior to LC-MS/MS analysis to obtain high-quality mass spectra. Although filter-aided sample preparation (FASP), acetone precipitation (AP), followed by in-solution digestion, and strong cation exchange-based centrifugal proteomic reactors (CPRs) are commonly used for proteomic sample processing, little is known about their efficiencies at removing detergents and salt additives. In this study, we (i) developed an integrative workflow for the quantification of small molecular additives in proteomic samples, developing a multiple reaction monitoring (MRM)-based LC-MS approach for the quantification of six additives (i.e., Tris, urea, CHAPS, SDS, SDC, and Triton X-100) and (ii) systematically evaluated the relationships between the level of additive remaining in samples following sample processing and the number of peptides/proteins identified by mass spectrometry. Although FASP outperformed the other two methods, the results were complementary in terms of peptide/protein identification, as well as the GRAVY index and amino acid distributions. This is the first systematic and quantitative study of the effect of detergents and salt additives on protein identification. This MRM-based approach can be used for an unbiased evaluation of the performance of new sample preparation methods. Data are available via ProteomeXchange under identifier PXD005405.

  15. Top-Down Proteomic Identification of Shiga Toxin 2 Subtypes from Shiga Toxin-Producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization–Tandem Time of Flight Mass Spectrometry

    PubMed Central

    Zaragoza, William J.; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B.; Mandrell, Robert E.

    2014-01-01

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)–tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes. PMID:24584253

  16. Serum proteomic analysis of extracorporeal shock wave therapy-enhanced diabetic wound healing in a streptozotocin-induced diabetes model.

    PubMed

    Yang, Ming-Yu; Chiang, Yuan-Cheng; Huang, Yu-Ting; Chen, Chien-Chang; Wang, Feng-Sheng; Wang, Ching-Jen; Kuo, Yur-Ren

    2014-01-01

    Previous studies have demonstrated that extracorporeal shock wave therapy has a significant positive effect on accelerating diabetic wound healing. However, the systemic effect after therapy is still unclear. This study investigated the plasma protein expression in the extracorporeal shock wave therapy group and diabetic controls using proteomic study. A dorsal skin defect (6 × 5 cm) in a streptozotocin-induced diabetic Wistar rat model was used. Diabetic rats receiving either no therapy or extracorporeal shock wave therapy after wounding were analyzed. The spots of interest were subjected to in-gel trypsin digestion and matrix-assisted laser desorption ionization time-of-flight mass spectrometry to elucidate the peptide mass fingerprints. The mass spectrometric characteristics of the identified proteins, including their theoretical isoelectric points, molecular weights, sequence coverage, and Mascot score, were analyzed. Protein expression was validated using immunohistochemical analysis of topical periwounding tissues. The proteomic study revealed that at days 3 and 10 after therapy rats had significantly higher abundance of haptoglobin and significantly lower levels of the vitamin D-binding protein precursor as compared with the diabetic controls. Immunohistochemical staining of topical periwounding tissue also revealed significant upregulation of haptoglobin and downregulation of vitamin D-binding protein expression in the extracorporeal shock wave therapy group, which was consistent with the systemic proteome study. Proteome analyses demonstrated an upregulation of haptoglobin and a downregulation of vitamin D-binding protein in extracorporeal shock wave therapy-enhanced diabetic wound healing.

  17. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  18. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.

    PubMed

    Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan

    2018-03-01

    Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    PubMed Central

    Wörheide, Gert; Jackson, Daniel John

    2015-01-01

    The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia’s aragonitic calcium carbonate skeleton into “head” and “stalk” regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify. PMID:26536128

  20. Tumor Cold Ischemia | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a recently published manuscript in the journal of Molecular and Cellular Proteomics, researchers from the National Cancer Institutes (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigated the effect of cold ischemia on the proteome of fresh frozen tumors.

  1. Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.

    PubMed

    Zauber, Henrik; Schulze, Waltraud X

    2012-11-02

    The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.

  2. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China.

    PubMed

    Shan, Lin-Lin; Gao, Jian-Fang; Zhang, Yan-Xia; Shen, Shan-Shan; He, Ying; Wang, Jin; Ma, Xiao-Mei; Ji, Xiang

    2016-04-14

    Bungarus multicinctus (many-banded krait) and Naja atra (Chinese cobra) are widely distributed and medically important venomous snakes in China; however, their venom proteomic profiles have not been fully compared. Here, we fractionated crude venoms and analyzed them using a combination of proteomic techniques. Three-finger toxins (3-FTx) and phospholipase A2 (PLA2) were most abundant in both species, respectively accounting for 32.6% and 66.4% of total B. multicinctus venom, and 84.3% and 12.2% of total N. atra venom. Venoms from these two species contained one common protein family and six less abundant species-specific protein families. The proteomic profiles of B. multicinctus and N. atra venoms and analysis of toxicological activity in mice suggested that 3-FTx and PLA2 are the major contributors to clinical symptoms caused by envenomation. The venoms differed in enzymatic activity, likely the result of inter-specific variation in the amount of related venom components. Antivenomics assessment revealed that a small number of venom components (3-FTxs and PLA2s in B. multicinctus, and 3-FTxs in N. atra) could not be immunocaptured completely, suggesting that we should pay attention to enhancing the immune response of these components in designing commercial antivenoms for B. multicinctus and N. atra. The proteomic profiles of venoms from two medically important snake species - B. multicinctus and N. atra - have been explored. Quantitative and qualitative differences are evident in both venoms when proteomic profiles and transcriptomic results are compared; this is a reminder that combined approaches are needed to explore the precise composition of snake venom. Two protein families (3-FTx and PLA2) of high abundance in these snake venoms are major players in the biochemical and pharmacological effects of envenomation. Elucidation of the proteomic profiles of these snake venoms is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparative proteomic analysis of hemolymph from uninfected and Candidatus Liberibacter asiaticus-infected Diaphorina citri.

    PubMed

    Gill, T A; Chu, C; Pelz-Stelinski, K S

    2017-02-01

    Hemolymph was characterized from Diaphorina citri adults infected with the phytopathogen, Candidatus Liberibacter asiaticus (CLas), and compared with that from uninfected psyllids. This study identified 5531 and 3220 peptides within infected and uninfected hemolymph using nano-LC-MS/MS. A reduced number of proteins were detected for D. citri and all known endosymbionts within infected hemolymph as compared to uninfected hemolymph. A large number of immune defense proteins were absent from D. citri hemolymph; however, a single recognition protein (PGRP), two serine protease inhibitors, three prophenoloxidase (proPO) enzymes, and a single serine protease in an uninfected D. citri were detected. The hemolymph is nearly devoid of nutrient storage proteins. This is the first proteomic analysis of D. citri hemolymph that also analyses the components contributed by all the endosymbionts. By comparing the contribution of each endosymbiont (CCR, CPA, and WB) in the presence and absence of CLas infection, this study offers initial insights regarding the hemolymph response to microbial community shifts associated with D. citri infection status. Our data also present potential protein targets for analysis and disruption of CLas transmission that may facilitate management of huanglongbing (HLB) caused by CLas in citrus.

  4. Building ProteomeTools based on a complete synthetic human proteome

    PubMed Central

    Zolg, Daniel P.; Wilhelm, Mathias; Schnatbaum, Karsten; Zerweck, Johannes; Knaute, Tobias; Delanghe, Bernard; Bailey, Derek J.; Gessulat, Siegfried; Ehrlich, Hans-Christian; Weininger, Maximilian; Yu, Peng; Schlegl, Judith; Kramer, Karl; Schmidt, Tobias; Kusebauch, Ulrike; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Wenschuh, Holger; Moehring, Thomas; Aiche, Stephan; Huhmer, Andreas; Reimer, Ulf; Kuster, Bernhard

    2018-01-01

    The ProteomeTools project builds molecular and digital tools from the human proteome to facilitate biomedical and life science research. Here, we report the generation and multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products and exemplify the utility of this data. The resource will be extended to >1 million peptides and all data will be shared with the community via ProteomicsDB and proteomeXchange. PMID:28135259

  5. Proteomic analysis of the dorsal and ventral hippocampus of rats maintained on a high fat and refined sugar diet.

    PubMed

    Francis, Heather M; Mirzaei, Mehdi; Pardey, Margery C; Haynes, Paul A; Cornish, Jennifer L

    2013-10-01

    The typical Western diet, rich in high saturated fat and refined sugar (HFS), has been shown to increase cognitive decline with aging and Alzheimer's disease, and to affect cognitive functions that are dependent on the hippocampus, including memory processes and reversal learning. To investigate neurophysiological changes underlying these impairments, we employed a proteomic approach to identify differentially expressed proteins in the rat dorsal and ventral hippocampus following maintenance on an HFS diet. Rats maintained on the HFS diet for 8 weeks were impaired on a novel object recognition task that assesses memory and on a Morris Water Maze task assessing reversal learning. Quantitative label-free shotgun proteomic analysis was conducted on biological triplicates for each group. For the dorsal hippocampus, 59 proteins were upregulated and 36 downregulated in the HFS group compared to controls. Pathway ana-lysis revealed changes to proteins involved in molecular transport and cellular and molecular signaling, and changes to signaling pathways including calcium signaling, citrate cycle, and oxidative phosphorylation. For the ventral hippocampus, 25 proteins were upregulated and 27 downregulated in HFS fed rats. Differentially expressed proteins were involved in cell-to-cell signaling and interaction, and cellular and molecular function. Changes to signaling pathways included protein ubiquitination, ubiquinone biosynthesis, oxidative phosphorylation, and mitochondrial dysfunction. This is the first shotgun proteomics study to examine protein changes in the hippocampus following long-term consumption of a HFS diet, identifying changes to a large number of proteins including those involved in synaptic plasticity and energy metabolism. All MS data have been deposited in the ProteomeXchange with identifier PXD000028. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Jun; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing; Chongqing Key Laboratory of Neurobiology, Chongqing

    Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology andmore » proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of ApoB gives insights into the pathogenesis of TBM.« less

  7. Characterization of individual mouse cerebrospinal fluid proteomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less

  8. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  9. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.

    PubMed

    Kelstrup, Christian D; Bekker-Jensen, Dorte B; Arrey, Tabiwang N; Hogrebe, Alexander; Harder, Alexander; Olsen, Jesper V

    2018-01-05

    Progress in proteomics is mainly driven by advances in mass spectrometric (MS) technologies. Here we benchmarked the performance of the latest MS instrument in the benchtop Orbitrap series, the Q Exactive HF-X, against its predecessor for proteomics applications. A new peak-picking algorithm, a brighter ion source, and optimized ion transfers enable productive MS/MS acquisition above 40 Hz at 7500 resolution. The hardware and software improvements collectively resulted in improved peptide and protein identifications across all comparable conditions, with an increase of up to 50 percent at short LC-MS gradients, yielding identification rates of more than 1000 unique peptides per minute. Alternatively, the Q Exactive HF-X is capable of achieving the same proteome coverage as its predecessor in approximately half the gradient time or at 10-fold lower sample loads. The Q Exactive HF-X also enables rapid phosphoproteomics with routine analysis of more than 5000 phosphopeptides with short single-shot 15 min LC-MS/MS measurements, or 16 700 phosphopeptides quantified across ten conditions in six gradient hours using TMT10-plex and offline peptide fractionation. Finally, exciting perspectives for data-independent acquisition are highlighted with reproducible identification of 55 000 unique peptides covering 5900 proteins in half an hour of MS analysis.

  10. Comparative proteomic analysis of outer membrane protein 43 (omp43)-deficient Bartonella henselae.

    PubMed

    Kang, Jun-Gu; Lee, Hee-Woo; Ko, Sungjin; Chae, Joon-Seok

    2018-01-31

    Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae -derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δ omp 43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae . To study the differences in proteomic expression between WT and Δ omp 43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tld D, efp, ntr X, pdh A, pur B, and ATPA mRNA expression and decreases in Rho and yfe A mRNA expression were confirmed in Δ omp 43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.

  11. Fungal proteomics: from identification to function.

    PubMed

    Doyle, Sean

    2011-08-01

    Some fungi cause disease in humans and plants, while others have demonstrable potential for the control of insect pests. In addition, fungi are also a rich reservoir of therapeutic metabolites and industrially useful enzymes. Detailed analysis of fungal biochemistry is now enabled by multiple technologies including protein mass spectrometry, genome and transcriptome sequencing and advances in bioinformatics. Yet, the assignment of function to fungal proteins, encoded either by in silico annotated, or unannotated genes, remains problematic. The purpose of this review is to describe the strategies used by many researchers to reveal protein function in fungi, and more importantly, to consolidate the nomenclature of 'unknown function protein' as opposed to 'hypothetical protein' - once any protein has been identified by protein mass spectrometry. A combination of approaches including comparative proteomics, pathogen-induced protein expression and immunoproteomics are outlined, which, when used in combination with a variety of other techniques (e.g. functional genomics, microarray analysis, immunochemical and infection model systems), appear to yield comprehensive and definitive information on protein function in fungi. The relative advantages of proteomic, as opposed to transcriptomic-only, analyses are also described. In the future, combined high-throughput, quantitative proteomics, allied to transcriptomic sequencing, are set to reveal much about protein function in fungi. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Toxicogenomic analysis of N-nitrosomorpholine induced changes in rat liver: Comparison of genomic and proteomic responses and anchoring to histopathological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberemm, A., E-mail: axel.oberemm@bfr.bund.d; Ahr, H.-J.; Bannasch, P.

    2009-12-01

    A common animal model of chemical hepatocarcinogenesis was used to examine the utility of transcriptomic and proteomic data to identify early biomarkers related to chemically induced carcinogenesis. N-nitrosomorpholine, a frequently used genotoxic model carcinogen, was applied via drinking water at 120 mg/L to male Wistar rats for 7 weeks followed by an exposure-free period of 43 weeks. Seven specimens of each treatment group (untreated control and 120 mg/L N-nitrosomorpholine in drinking water) were sacrificed at nine time points during and after N-nitrosomorpholine treatment. Individual samples from the liver were prepared for histological and toxicogenomic analyses. For histological detection of preneoplasticmore » and neoplastic tissue areas, sections were stained using antibodies against the placental form of glutathione-S-transferase (GST-P). Gene and protein expression profiles of liver tissue homogenates were analyzed using RG-U34A Affymetrix rat gene chips and two-dimensional gel electrophoresis-based proteomics, respectively. In order to compare results obtained by histopathology, transcriptomics and proteomics, GST-P-stained liver sections were evaluated morphometrically, which revealed a parallel time course of the area fraction of preneoplastic lesions and gene plus protein expression patterns. On the transcriptional level, an increase of hepatic GST-P expression was detectable as early as 3 weeks after study onset. Comparing deregulated genes and proteins, eight species were identified which showed a corresponding expression profile on both expression levels. Functional analysis suggests that these genes and corresponding proteins may be useful as biomarkers of early hepatocarcinogenesis.« less

  14. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    PubMed

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular mechanism of wheat in response to Bgt. The proteomic analysis can significantly narrow the field of potential defense-related protein-species, and is conducive to recognize the critical or effector protein under Bgt infection more precisely. Taken together, large amounts of high-throughput data provide a powerful platform for further exploration of the molecular mechanism on wheat-Bgt interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1.

    PubMed

    Senachak, Jittisak; Cheevadhanarak, Supapon; Hongsthong, Apiradee

    2015-07-29

    Spirulina (Arthrospira) platensis is the only cyanobacterium that in addition to being studied at the molecular level and subjected to gene manipulation, can also be mass cultivated in outdoor ponds for commercial use as a food supplement. Thus, encountering environmental changes, including temperature stresses, is common during the mass production of Spirulina. The use of cyanobacteria as an experimental platform, especially for photosynthetic gene manipulation in plants and bacteria, is becoming increasingly important. Understanding the mechanisms and protein-protein interaction networks that underlie low- and high-temperature responses is relevant to Spirulina mass production. To accomplish this goal, high-throughput techniques such as OMICs analyses are used. Thus, large datasets must be collected, managed and subjected to information extraction. Therefore, databases including (i) proteomic analysis and protein-protein interaction (PPI) data and (ii) domain/motif visualization tools are required for potential use in temperature response models for plant chloroplasts and photosynthetic bacteria. A web-based repository was developed including an embedded database, SpirPro, and tools for network visualization. Proteome data were analyzed integrated with protein-protein interactions and/or metabolic pathways from KEGG. The repository provides various information, ranging from raw data (2D-gel images) to associated results, such as data from interaction and/or pathway analyses. This integration allows in silico analyses of protein-protein interactions affected at the metabolic level and, particularly, analyses of interactions between and within the affected metabolic pathways under temperature stresses for comparative proteomic analysis. The developed tool, which is coded in HTML with CSS/JavaScript and depicted in Scalable Vector Graphics (SVG), is designed for interactive analysis and exploration of the constructed network. SpirPro is publicly available on the web at http://spirpro.sbi.kmutt.ac.th . SpirPro is an analysis platform containing an integrated proteome and PPI database that provides the most comprehensive data on this cyanobacterium at the systematic level. As an integrated database, SpirPro can be applied in various analyses, such as temperature stress response networking analysis in cyanobacterial models and interacting domain-domain analysis between proteins of interest.

  16. Advances in targeted proteomics and applications to biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Song, Ehwang; Nie, Song

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications inmore » human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.« less

  17. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    PubMed

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  18. Analyzing large-scale proteomics projects with latent semantic indexing.

    PubMed

    Klie, Sebastian; Martens, Lennart; Vizcaíno, Juan Antonio; Côté, Richard; Jones, Phil; Apweiler, Rolf; Hinneburg, Alexander; Hermjakob, Henning

    2008-01-01

    Since the advent of public data repositories for proteomics data, readily accessible results from high-throughput experiments have been accumulating steadily. Several large-scale projects in particular have contributed substantially to the amount of identifications available to the community. Despite the considerable body of information amassed, very few successful analyses have been performed and published on this data, leveling off the ultimate value of these projects far below their potential. A prominent reason published proteomics data is seldom reanalyzed lies in the heterogeneous nature of the original sample collection and the subsequent data recording and processing. To illustrate that at least part of this heterogeneity can be compensated for, we here apply a latent semantic analysis to the data contributed by the Human Proteome Organization's Plasma Proteome Project (HUPO PPP). Interestingly, despite the broad spectrum of instruments and methodologies applied in the HUPO PPP, our analysis reveals several obvious patterns that can be used to formulate concrete recommendations for optimizing proteomics project planning as well as the choice of technologies used in future experiments. It is clear from these results that the analysis of large bodies of publicly available proteomics data by noise-tolerant algorithms such as the latent semantic analysis holds great promise and is currently underexploited.

  19. Evolution of Clinical Proteomics and its Role in Medicine | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    NCI's Office of Cancer Clinical Proteomics Research authored a review of the current state of clinical proteomics in the peer-reviewed Journal of Proteome Research. The review highlights outcomes from the CPTC program and also provides a thorough overview of the different technologies that have pushed the field forward. Additionally, the review provides a vision for moving the field forward through linking advances in genomic and proteomic analysis to develop new, molecularly targeted interventions.

  20. Proteomics characterization of different bran proteins between aromatic and nonaromatic rice (Oryza sativa L. ssp. indica).

    PubMed

    Trisiriroj, Arunee; Jeyachok, Narumon; Chen, Shui-Tein

    2004-07-01

    Proteomic approach is applied for the analysis of seed brans of 14 rice varieties (Oryza sativa L. ssp. indica) which can classify to five aromatic rice and nine nonaromatic rice. The two-dimensional electrophoresis (2-DE) protein patterns for 14 rice varieties were similar within pH ranges of 3-10 and 4-7. To characterize aromatic group-specific proteins, we compared 2-D gels of aromatic rice to nonaromatic rice using PDQUEST image analysis. Four out of six differential spots were identified as hypothetical proteins, but one (SSP 7003) was identified by matrix assisted laser desoption/ionization-quardrupole-time of fight (MALDI-Q-TOF) as prolamin with three matching peptides based on NCBI database. Prolamin is a class of storage proteins with three different polypeptides of 10, 13, and 16 kDa. Spot SSP7003 was identified as a 13 kDa polypeptide of prolamin by combination of mass spectroscopy and N-terminal sequence analyses. In contrast, one sulfur-rich 16 kDa polypeptide of prolamin was found in extremely high intensity in brans of deep-water rice compared to nondeep-water rice. Our results suggest that proteomics is a powerful step to open the way for the identification of rice varieties.

  1. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance.

    PubMed

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-09-01

    Drought (water-deficit) stress is a serious environmental problem in plant growth and cultivation. As one of widely cultivated warm-season turfgrass, bermudagrass (Cynodon dactylon (L). Pers.) exhibits drastic natural variation in the drought stress resistance in leaves and stems of different varieties. In this study, proteomic analysis was performed to identify drought-responsive proteins in both leaves and stems of two bermudagrass varieties contrasting in drought stress resistance, including drought sensitive variety (Yukon) and drought tolerant variety (Tifgreen). Through comparative proteomic analysis, 39 proteins with significantly changed abundance were identified, including 3 commonly increased and 2 decreased proteins by drought stress in leaves and stems of Yukon and Tifgreen varieties, 2 differentially regulated proteins in leaves and stems of two varieties after drought treatment, 23 proteins increased by drought stress in Yukon variety and constitutively expressed in Tifgreen variety, and other 3 differentially expressed proteins under control and drought stress conditions. Among them, proteins involved in photosynthesis (PS), glycolysis, N-metabolism, tricarboxylicacid (TCA) and redox pathways were largely enriched, which might be contributed to the natural variation of drought resistance between Yukon and Tifgreen varieties. These studies provide new insights to understand the molecular mechanism underlying bermudagrass response to drought stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. In Planta Proteomics and Proteogenomics of the Biotrophic Barley Fungal Pathogen Blumeria graminis f. sp. hordei*

    PubMed Central

    Bindschedler, Laurence V.; Burgis, Timothy A.; Mills, Davinia J. S.; Ho, Jenny T. C.; Cramer, Rainer; Spanu, Pietro D.

    2009-01-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. PMID:19602707

  3. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility.

    PubMed

    Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan

    2008-02-22

    Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.

  4. The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus

    PubMed Central

    Pradel, Nathalie; Ji, Boyang; Gimenez, Grégory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Régine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valérie; Ollivier, Bernard; Dolla, Alain

    2013-01-01

    Desulfovibrio piezophilus strain C1TLV30T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle. PMID:23383081

  5. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure.

    PubMed

    Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per

    2015-08-07

    Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.

  6. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility

    PubMed Central

    Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan

    2008-01-01

    Background Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Results Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. Conclusion This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype. PMID:18294385

  7. Growth and proteomic analysis of tomato fruit under partial root-zone drying.

    PubMed

    Marjanović, Milena; Stikić, Radmila; Vucelić-Radović, Biljana; Savić, Sladjana; Jovanović, Zorica; Bertin, Nadia; Faurobert, Mireille

    2012-06-01

    The effects of partial root-zone drying (PRD) on tomato fruit growth and proteome in the pericarp of cultivar Ailsa Craig were investigated. The PRD treatment was 70% of water applied to fully irrigated (FI) plants. PRD reduced the fruit number and slightly increased the fruit diameter, whereas the total fruit fresh weight (FW) and dry weight (DW) per plant did not change. Although the growth rate was higher in FI than in PRD fruits, the longer period of cell expansion resulted in bigger PRD fruits. Proteins were extracted from pericarp tissue at two fruit growth stages (15 and 30 days post-anthesis [dpa]), and submitted to proteomic analysis including two-dimensional gel electrophoresis and mass spectrometry for identification. Proteins related to carbon and amino acid metabolism indicated that slower metabolic flux in PRD fruits may be the cause of a slower growth rate compared to FI fruits. The increase in expression of the proteins related to cell wall, energy, and stress defense could allow PRD fruits to increase the duration of fruit growth compared to FI fruits. Upregulation of some of the antioxidative enzymes during the cell expansion phase of PRD fruits appears to be related to their role in protecting fruits against the mild stress induced by PRD.

  8. ApoptoProteomics, an integrated database for analysis of proteomics data obtained from apoptotic cells.

    PubMed

    Arntzen, Magnus Ø; Thiede, Bernd

    2012-02-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.

  9. ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells*

    PubMed Central

    Arntzen, Magnus Ø.; Thiede, Bernd

    2012-01-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no. PMID:22067098

  10. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation

    PubMed Central

    Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan

    2017-01-01

    Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and therapeutic targets. PMID:28077793

  11. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    PubMed

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Protein profile of mouse ovarian follicles grown in vitro.

    PubMed

    Anastácio, Amandine; Rodriguez-Wallberg, Kenny A; Chardonnet, Solenne; Pionneau, Cédric; Fédérici, Christian; Almeida Santos, Teresa; Poirot, Catherine

    2017-12-01

    Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to emphasize proteins with different expression profiles between the three follicular stages. Supplementary western blot analysis (using new biological replicates) was performed to confirm the expression variations of three proteins during follicle development in vitro. It was found that 609 out of 1401 identified proteins were common to the three follicle developmental stages investigated. Some proteins were identified uniquely at one stage: 71 of the 775 identified proteins in SF, 181 of 1092 in SMR and 192 of 1100 in AF. Additional qualitative and quantitative analysis highlighted 44 biological processes over-represented in our samples compared to the Mus musculus gene database. In particular, it was possible to identify proteins implicated in the cell cycle, calcium ion binding and glycolysis, with specific expressions and abundance, throughout in vitro follicle development. Data are available via ProteomeXchange with identifier PXD006227. The proteome analyses described in this study were performed after in vitro development. Despite fractionation of the samples before LC-MS/MS, proteomic approaches are not exhaustive, thus proteins that are not identified in a group are not necessarily absent from that group, although they are likely to be less abundant. This study allowed a general view of proteins implicated in follicle development in vitro and it represents the most complete catalog of the whole follicle proteome available so far. Not only were well known proteins of the oocyte identified but also proteins that are probably expressed only in granulosa cells. This study was supported by the Portuguese Foundation for Science and Technology, FCT (PhD fellowship SFRH/BD/65299/2009 to A.A.), the Swedish Childhood Cancer Foundation (PR 2014-0144 to K.A.R-.W.) and Stockholm County Council to K.A.R-.W. The authors of the study have no conflict of interest to report. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  13. Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

    PubMed Central

    Arora, Shalini; Kosalai, K.; Namane, Abdelkader; Pym, Alex S.; Cole, Stewart T.

    2002-01-01

    The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium. PMID:18629250

  14. Proteomic profiling of early degenerative retina of RCS rats

    PubMed Central

    Zhu, Zhi-Hong; Fu, Yan; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2017-01-01

    AIM To identify the underlying cellular and molecular changes in retinitis pigmentosa (RP). METHODS Label-free quantification-based proteomics analysis, with its advantages of being more economic and consisting of simpler procedures, has been used with increasing frequency in modern biological research. Dystrophic RCS rats, the first laboratory animal model for the study of RP, possess a similar pathological course as human beings with the diseases. Thus, we employed a comparative proteomics analysis approach for in-depth proteome profiling of retinas from dystrophic RCS rats and non-dystrophic congenic controls through Linear Trap Quadrupole - orbitrap MS/MS, to identify the significant differentially expressed proteins (DEPs). Bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation and upstream regulatory analysis, were then performed on these retina proteins. Finally, a Western blotting experiment was carried out to verify the difference in the abundance of transcript factor E2F1. RESULTS In this study, we identified a total of 2375 protein groups from the retinal protein samples of RCS rats and non-dystrophic congenic controls. Four hundred thirty-four significantly DEPs were selected by Student's t-test. Based on the results of the bioinformatics analysis, we identified mitochondrial dysfunction and transcription factor E2F1 as the key initiation factors in early retinal degenerative process. CONCLUSION We showed that the mitochondrial dysfunction and the transcription factor E2F1 substantially contribute to the disease etiology of RP. The results provide a new potential therapeutic approach for this retinal degenerative disease. PMID:28730077

  15. Marine proteomics: a critical assessment of an emerging technology.

    PubMed

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  16. Preprocessing and Analysis of LC-MS-Based Proteomic Data

    PubMed Central

    Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W.

    2016-01-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed. PMID:26519169

  17. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level, ground simulation method could be utilized to simu-late the space radiation biological effects and such a comparative proteomic work might explain both energy and dose effects of space radiation environment.

  18. Identifying the missing proteins in human proteome by biological language model.

    PubMed

    Dong, Qiwen; Wang, Kai; Liu, Xuan

    2016-12-23

    With the rapid development of high-throughput sequencing technology, the proteomics research becomes a trendy field in the post genomics era. It is necessary to identify all the native-encoding protein sequences for further function and pathway analysis. Toward that end, the Human Proteome Organization lunched the Human Protein Project in 2011. However many proteins are hard to be detected by experiment methods, which becomes one of the bottleneck in Human Proteome Project. In consideration of the complicatedness of detecting these missing proteins by using wet-experiment approach, here we use bioinformatics method to pre-filter the missing proteins. Since there are analogy between the biological sequences and natural language, the n-gram models from Natural Language Processing field has been used to filter the missing proteins. The dataset used in this study contains 616 missing proteins from the "uncertain" category of the neXtProt database. There are 102 proteins deduced by the n-gram model, which have high probability to be native human proteins. We perform a detail analysis on the predicted structure and function of these missing proteins and also compare the high probability proteins with other mass spectrum datasets. The evaluation shows that the results reported here are in good agreement with those obtained by other well-established databases. The analysis shows that 102 proteins may be native gene-coding proteins and some of the missing proteins are membrane or natively disordered proteins which are hard to be detected by experiment methods.

  19. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity

    PubMed Central

    Li, Erfeng; Ling, Jian; Wang, Gang; Xiao, Jiling; Yang, Yuhong; Mao, Zhenchuan; Wang, Xuchu; Xie, Bingyan

    2015-01-01

    Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557−TM, R1), race 2 (58385−TM, R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2’s stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease. PMID:26333982

  20. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes.

    PubMed

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko

    2014-10-01

    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dual-color Proteomic Profiling of Complex Samples with a Microarray of 810 Cancer-related Antibodies*

    PubMed Central

    Schröder, Christoph; Jacob, Anette; Tonack, Sarah; Radon, Tomasz P.; Sill, Martin; Zucknick, Manuela; Rüffer, Sven; Costello, Eithne; Neoptolemos, John P.; Crnogorac-Jurcevic, Tatjana; Bauer, Andrea; Fellenberg, Kurt; Hoheisel, Jörg D.

    2010-01-01

    Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses. PMID:20164060

  2. A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates.

    PubMed

    Bengtsson, Oskar; Arntzen, Magnus Ø; Mathiesen, Geir; Skaugen, Morten; Eijsink, Vincent G H

    2016-01-10

    Analysis of the secretomes of filamentous fungi growing on insoluble lignocellulosic substrates is of major current interest because of the industrial potential of secreted fungal enzymes. Importantly, such studies can help identifying key enzymes from a large arsenal of bioinformatically detected candidates in fungal genomes. We describe a simple, plate-based method to analyze the secretome of Hypocrea jecorina growing on insoluble substrates that allows harsh sample preparation methods promoting desorption, and subsequent identification, of substrate-bound proteins, while minimizing contamination with non-secreted proteins from leaking or lysed cells. The validity of the method was demonstrated by comparative secretome analysis of wild-type H.jecorina strain QM6a growing on bagasse, birch wood, spruce wood or pure cellulose, using label-fee quantification. The proteomic data thus obtained were consistent with existing data from transcriptomics and proteomics studies and revealed clear differences in the responses to complex lignocellulosic substrates and the response to pure cellulose. This easy method is likely to be generally applicable to filamentous fungi and to other microorganisms growing on insoluble substrates. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Proteomic analysis of Populus × euramericana (clone I-214) roots to identify key factors involved in zinc stress response.

    PubMed

    Romeo, Stefania; Trupiano, Dalila; Ariani, Andrea; Renzone, Giovanni; Scippa, Gabriella S; Scaloni, Andrea; Sebastiani, Luca

    2014-07-15

    Contamination of soil and water by heavy metals has become a widespread problem; environmental pollution by high zinc (Zn) concentration occurs frequently. Although poplar (Populus spp.) has been identified as suitable for phytoremediation approaches, its response to high Zn concentrations are still not clearly understood. For this reason, we investigated the effects of Zn in Populus×euramericana clone I-214 roots by proteomic analysis. Comparative experiments were conducted on rooted woody cuttings grown in nutrient solutions containing 1mM (treatment) or 1μM (control) Zn concentrations. A gel-based proteomic approach coupled with morphological and chemical analysis was used to identify differentially represented proteins in treated roots and to investigate the effect of Zn treatment on the poplar root system. Data shows that Zn was accumulated preferentially in roots, that the antioxidant system, the carbohydrate/energy and amino acid metabolisms were the main pathways modulated by Zn excess, and that mitochondria and vacuoles were the cellular organelles predominately affected by Zn stress. A coordination between cell death and proliferation/growth seems to occur under this condition to counteract the Zn-induced damage. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. NCI's Proteome Characterization Centers Announced | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), part of the National Institutes of Health, announces the launch of a Clinical Proteomic Tumor Analysis Consortium (CPTAC). CPTAC is a comprehensive, coordinated team effort to accelerate the understanding of the molecular basis of cancer through the application of robust, quantitative, proteomic technologies and workflows.

  5. Proteomics in medical microbiology.

    PubMed

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  6. Transcription Factor TBX1 Overexpression Induces Downregulation of Proteins Involved in Retinoic Acid Metabolism: A Comparative Proteomic Analysis

    PubMed Central

    Caterino, Marianna; Ruoppolo, Margherita; Fulcoli, Gabriella; Huynth, Tuong; Orrù, Stefania; Baldini, Antonio; Salvatore, Francesco

    2009-01-01

    TBX1 haploinsufficiency is considered a major contributor to the del22q11.2/DiGeorge syndrome (DGS) phenotype. We have used proteomic tools to look at all the major proteins involved in the TBX1-mediated pathways in an attempt to better understand the molecular interactions instrumental to its cellular functions. We found more than 90 proteins that could be targeted by TBX1 through different mechanisms. The most interesting observation is that overexpression of TBX1 results in down-regulation of two proteins involved in retinoic acid metabolism. PMID:19178302

  7. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    PubMed Central

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  8. Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide.

    PubMed

    Silva, Wanderson M; Carvalho, Rodrigo D; Soares, Siomar C; Bastos, Isabela Fs; Folador, Edson L; Souza, Gustavo Hmf; Le Loir, Yves; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-12-04

    Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.

  9. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals

    PubMed Central

    Knoll-Gellida, Anja; André, Michèle; Gattegno, Tamar; Forgue, Jean; Admon, Arie; Babin, Patrick J

    2006-01-01

    Background The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. Results Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. Conclusion This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development. PMID:16526958

  10. CPTAC Prospective Biospecimen Collection Solicitation | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A new funding opportunity in support of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) seeks to prospectively procure tumor samples, collected for proteomics investigation.

  11. Proteomics: a new approach to the study of disease.

    PubMed

    Chambers, G; Lawrie, L; Cash, P; Murray, G I

    2000-11-01

    The global analysis of cellular proteins has recently been termed proteomics and is a key area of research that is developing in the post-genome era. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing, and bio-informatics to resolve comprehensively, to quantify, and to characterize proteins. The application of proteomics provides major opportunities to elucidate disease mechanisms and to identify new diagnostic markers and therapeutic targets. This review aims to explain briefly the background to proteomics and then to outline proteomic techniques. Applications to the study of human disease conditions ranging from cancer to infectious diseases are reviewed. Finally, possible future advances are briefly considered, especially those which may lead to faster sample throughput and increased sensitivity for the detection of individual proteins. Copyright 2000 John Wiley & Sons, Ltd.

  12. A complete mass spectrometric map for the analysis of the yeast proteome and its application to quantitative trait analysis

    PubMed Central

    Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi

    2013-01-01

    Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424

  13. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers.

    PubMed

    Antoniassi, Mariana Pereira; Intasqui, Paula; Camargo, Mariana; Zylbersztejn, Daniel Suslik; Carvalho, Valdemir Melechco; Cardozo, Karina H M; Bertolla, Ricardo Pimenta

    2016-11-01

    To evaluate the effect of smoking on sperm functional quality and seminal plasma proteomic profile. Sperm functional tests were performed in 20 non-smoking men with normal semen quality, according to the World Health Organization (2010) and in 20 smoking patients. These included: evaluation of DNA fragmentation by alkaline Comet assay; analysis of mitochondrial activity using DAB staining; and acrosomal integrity evaluation by PNA binding. The remaining semen was centrifuged and seminal plasma was used for proteomic analysis (liquid chromatography-tandem mass spectrometry). The quantified proteins were used for Venn diagram construction in Cytoscape 3.2.1 software, using the PINA4MS plug-in. Then, differentially expressed proteins were used for functional enrichment analysis of Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes and Reactome, using Cytoscape software and the ClueGO 2.2.0 plug-in. Smokers had a higher percentage of sperm DNA damage (Comet classes III and IV; P < 0.01), partially and fully inactive mitochondria (DAB classes III and IV; P = 0.001 and P = 0.006, respectively) and non-intact acrosomes (P < 0.01) when compared with the control group. With respect to proteomic analysis, 422 proteins were identified and quantified, of which one protein was absent, 27 proteins were under-represented and six proteins were over-represented in smokers. Functional enrichment analysis showed the enrichment of antigen processing and presentation, positive regulation of prostaglandin secretion involved in immune response, protein kinase A signalling and arachidonic acid secretion, complement activation, regulation of the cytokine-mediated signalling pathway and regulation of acute inflammatory response in the study group (smokers). In conclusion, cigarette smoking was associated with an inflammatory state in the accessory glands and in the testis, as shown by enriched proteomic pathways. This state causes an alteration in sperm functional quality, which is characterized by decreased acrosome integrity and mitochondrial activity, as well as by increased nuclear DNA fragmentation. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  14. Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato.

    PubMed

    Zhang, Yi; Zhang, Hao; Zou, Zhi-Rong; Liu, Yi; Hu, Xiao-Hui

    2015-02-01

    In this research, the protective effect of spermidine (Spd) in mitigating saline-alkaline stress in tomato (Solanum lycopersicum L.) at physiological and proteomic levels were examined. The results showed that saline-alkaline stress induced accumulation of H2O2 and O2(-*), and increased the activities of antioxidase (SOD, CAT, and POD). Spermidine efficiently alleviated the inhibitory role of saline-alkaline on plant growth and inhibited saline-alkaline stress-induced H2O2 and O2(-*) accumulation. Proteomics investigations of the leaves of tomato seedlings, responding to a 75 mM saline-alkaline solution and 0.25 mM Spd, were performed. Maps of the proteome of leaf extracts were obtained by two-dimensional gel electrophoresis. An average of 49, 47 and 34 spots, which appeared repeatedly and that significantly altered the relative amounts of polypeptides by more than twofold, were detected for seedlings treated with saline-alkaline solution (S) compared to normal solution (CK), saline-alkaline plus spermidine (MS) compared to CK, or S versus MS, respectively. Thirty-nine of these proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and were classified into five functional categories, including energy and metabolism, signal transduction, amino acid metabolism, protein metabolism, and stress-defense response. Proteomics analysis coupled with bioinformatics indicated that Spd treatment helps tomato seedlings combat saline-alkaline stress by modulating the defense mechanism of plants and activating cellular detoxification, which protect plants from oxidative damage induced by saline-alkaline stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Differential Denaturation of Serum Proteome Reveals a Significant Amount of Hidden Information in Complex Mixtures of Proteins

    PubMed Central

    Polci, Maria Letizia; Rossi, Stefania; Cordella, Martina; Carlucci, Giuseppe; Marchetti, Paolo; Antonini-Cappellini, Giancarlo; Facchiano, Antonio; D'Arcangelo, Daniela; Facchiano, Francesco

    2013-01-01

    Recently developed proteomic technologies allow to profile thousands of proteins within a high-throughput approach towards biomarker discovery, although results are not as satisfactory as expected. In the present study we demonstrate that serum proteome denaturation is a key underestimated feature; in fact, a new differential denaturation protocol better discriminates serum proteins according to their electrophoretic mobility as compared to single-denaturation protocols. Sixty nine different denaturation treatments were tested and the 3 most discriminating ones were selected (TRIDENT analysis) and applied to human sera, showing a significant improvement of serum protein discrimination as confirmed by MALDI-TOF/MS and LC-MS/MS identification, depending on the type of denaturation applied. Thereafter sera from mice and patients carrying cutaneous melanoma were analyzed through TRIDENT. Nine and 8 protein bands were found differentially expressed in mice and human melanoma sera, compared to healthy controls (p<0.05); three of them were found, for the first time, significantly modulated: α2macroglobulin (down-regulated in melanoma, p<0.001), Apolipoprotein-E and Apolipoprotein-A1 (both up-regulated in melanoma, p<0.04), both in mice and humans. The modulation was confirmed by immunological methods. Other less abundant proteins (e.g. gelsolin) were found significantly modulated (p<0.05). Conclusions: i) serum proteome contains a large amount of information, still neglected, related to proteins folding; ii) a careful serum denaturation may significantly improve analytical procedures involving complex protein mixtures; iii) serum differential denaturation protocol highlights interesting proteomic differences between cancer and healthy sera. PMID:23533572

  16. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.

    PubMed

    Müller, Jonas E N; Litsanov, Boris; Bortfeld-Miller, Miriam; Trachsel, Christian; Grossmann, Jonas; Brautaset, Trygve; Vorholt, Julia A

    2014-03-01

    Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram-positive bacterium possesses a soluble NAD(+) -dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label-free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 (http://proteomecentral.proteomexchange.org/dataset/PXD000637, http://proteomecentral.proteomexchange.org/dataset/PXD000638). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. NCI Launches Proteomics Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass spectrometry (MRM-MS) assays.  This community web-based repository for well-characterized quantitative proteomic assays currently consists of 456 unique peptide assays to 282 unique proteins and ser

  18. CPTAC Releases Largest-Ever Colorectal Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    On September 4, 2013, NCI’s Clinical Proteomics Tumor Analysis Consortium (CPTAC) publicly released proteomic data produced from colorectal tumor samples previously analyzed by The Cancer Genome Atlas (TCGA).  This is the initial release of proteomic tumor data designed to complement genomic data on the same tumors. The data is publicly available at the CPTAC data portal.

  19. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses.

    PubMed

    Gao, Yanpan; Chen, Yanyu; Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-31

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.

  20. A Simple Method for Rapid Depletion of Rubisco from Soybean (Glycine max) Leaf for Proteomic Analysis of Lower Abundance Proteins

    USDA-ARS?s Scientific Manuscript database

    2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30 – 50% of the CO2 fixation enzyme Rubisco. Resolution can be improved t...

  1. Sex-Related Differences in Rat Choroid Plexus and Cerebrospinal Fluid: A cDNA Microarray and Proteomic Analysis.

    PubMed

    Quintela, T; Marcelino, H; Deery, M J; Feret, R; Howard, J; Lilley, K S; Albuquerque, T; Gonçalves, I; Duarte, A C; Santos, C R A

    2016-01-01

    The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood and the cerebrospinal fluid (CSF), which is mostly produced by the CP itself. Because the CP transcriptome is regulated by the sex hormone background, the present study compared gene/protein expression profiles in the CP and CSF from male and female rats aiming to better understand sex-related differences in CP functions and brain physiology. We used data previously obtained by cDNA microarrays to compare the CP transcriptome between male and female rats, and complemented these data with the proteomic analysis of the CSF of castrated and sham-operated males and females. Microarray analysis showed that 17 128 and 17 002 genes are expressed in the male and female CP, which allowed the functional annotation of 141 and 134 pathways, respectively. Among the most expressed genes, canonical pathways associated with mitochondrial dysfunctions and oxidative phosphorylation were the most prominent, whereas the most relevant molecular and cellular functions annotated were protein synthesis, cellular growth and proliferation, cell death and survival, molecular transport, and protein trafficking. No significant differences were found between males and females regarding these pathways. Seminal functions of the CP differentially regulated between sexes were circadian rhythm signalling, as well as several canonical pathways related to stem cell differentiation, metabolism and the barrier function of the CP. The proteomic analysis identified five down-regulated proteins in the CSF samples from male rats compared to females and seven proteins exhibiting marked variation in the CSF of gonadectomised males compared to sham animals, whereas no differences were found between sham and ovariectomised females. These data clearly show sex-related differences in CP gene expression and CSF protein composition that may impact upon neurological diseases. © 2015 British Society for Neuroendocrinology.

  2. Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice.

    PubMed

    Rossi, Claudia; Marzano, Valeria; Consalvo, Ada; Zucchelli, Mirco; Levi Mortera, Stefano; Casagrande, Viviana; Mavilio, Maria; Sacchetta, Paolo; Federici, Massimo; Menghini, Rossella; Urbani, Andrea; Ciavardelli, Domenico

    2018-02-01

    The tissue inhibitor of metalloproteinase TIMP3 is a stromal protein that restrains the activity of both protease and receptor in the extracellular matrix and has been found to be down-regulated in diabetic nephropathy (DN), the leading cause of end-stage renal disease in developed countries. In order to gain deeper insights on the association of loss of TIMP3 and DN, we performed differential proteomic analysis of kidney and blood metabolic profiling of wild-type and Timp3-knockout mice before and after streptozotocin (STZ) treatment, widely used to induce insulin deficiency and hyperglycemia. Kidney proteomic data and blood metabolic profiles suggest significant alterations of peroxisomal and mitochondrial fatty acids β-oxidation in Timp3-knockout mice compared to wild-type mice under basal condition. These alterations were exacerbated in response to STZ treatment. Proteomic and metabolomic approaches showed that loss of TIMP3 alone or in combination with STZ treatment results in significant alterations of kidney lipid metabolism and peripheral acylcarnitine levels, supporting the idea that loss of TIMP3 may generate a phenotype more prone to DN.

  3. A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer's disease.

    PubMed

    Skillbäck, Tobias; Mattsson, Niklas; Hansson, Karl; Mirgorodskaya, Ekaterina; Dahlén, Rahil; van der Flier, Wiesje; Scheltens, Philip; Duits, Floor; Hansson, Oskar; Teunissen, Charlotte; Blennow, Kaj; Zetterberg, Henrik; Gobom, Johan

    2017-10-17

    We present a new, quantification-driven proteomic approach to identifying biomarkers. In contrast to the identification-driven approach, limited in scope to peptides that are identified by database searching in the first step, all MS data are considered to select biomarker candidates. The endopeptidome of cerebrospinal fluid from 40 Alzheimer's disease (AD) patients, 40 subjects with mild cognitive impairment, and 40 controls with subjective cognitive decline was analyzed using multiplex isobaric labeling. Spectral clustering was used to match MS/MS spectra. The top biomarker candidate cluster (215% higher in AD compared to controls, area under ROC curve = 0.96) was identified as a fragment of pleiotrophin located near the protein's C-terminus. Analysis of another cohort (n = 60 over four clinical groups) verified that the biomarker was increased in AD patients while no change in controls, Parkinson's disease or progressive supranuclear palsy was observed. The identification of the novel biomarker pleiotrophin 151-166 demonstrates that our quantification-driven proteomic approach is a promising method for biomarker discovery, which may be universally applicable in clinical proteomics.

  4. PROTICdb: a web-based application to store, track, query, and compare plant proteome data.

    PubMed

    Ferry-Dumazet, Hélène; Houel, Gwenn; Montalent, Pierre; Moreau, Luc; Langella, Olivier; Negroni, Luc; Vincent, Delphine; Lalanne, Céline; de Daruvar, Antoine; Plomion, Christophe; Zivy, Michel; Joets, Johann

    2005-05-01

    PROTICdb is a web-based application, mainly designed to store and analyze plant proteome data obtained by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry (MS). The purposes of PROTICdb are (i) to store, track, and query information related to proteomic experiments, i.e., from tissue sampling to protein identification and quantitative measurements, and (ii) to integrate information from the user's own expertise and other sources into a knowledge base, used to support data interpretation (e.g., for the determination of allelic variants or products of post-translational modifications). Data insertion into the relational database of PROTICdb is achieved either by uploading outputs of image analysis and MS identification software, or by filling web forms. 2-D PAGE annotated maps can be displayed, queried, and compared through a graphical interface. Links to external databases are also available. Quantitative data can be easily exported in a tabulated format for statistical analyses. PROTICdb is based on the Oracle or the PostgreSQL Database Management System and is freely available upon request at the following URL: http://moulon.inra.fr/ bioinfo/PROTICdb.

  5. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria.

    PubMed

    Jaimes-Becerra, Adrian; Chung, Ray; Morandini, André C; Weston, Andrew J; Padilla, Gabriel; Gacesa, Ranko; Ward, Malcolm; Long, Paul F; Marques, Antonio C

    2017-10-01

    Cnidarians are probably the oldest group of animals to be venomous, yet our current picture of cnidarian venom evolution is highly imbalanced due to limited taxon sampling. High-throughput tandem mass spectrometry was used to determine venom composition of the scyphozoan Chrysaora lactea and two cubozoans Tamoya haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then compared against 5 other cnidarian venom proteomes taken from the literature. A total of 28 putative toxin protein families were identified, many for the first time in Cnidaria. Character mapping analysis revealed that 17 toxin protein families with predominantly cytolytic biological activities were likely recruited into the cnidarian venom proteome before the lineage split between Anthozoa and Medusozoa. Thereafter, venoms of Medusozoa and Anthozoa differed during subsequent divergence of cnidarian classes. Recruitment and loss of toxin protein families did not correlate with accepted phylogenetic patterns of Cnidaria. Selective pressures that drive toxin diversification independent of taxonomic positioning have yet to be identified in Cnidaria and now warrant experimental consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessment of SRM, MRM(3) , and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer.

    PubMed

    Schmidlin, Thierry; Garrigues, Luc; Lane, Catherine S; Mulder, T Celine; van Doorn, Sander; Post, Harm; de Graaf, Erik L; Lemeer, Simone; Heck, Albert J R; Altelaar, A F Maarten

    2016-08-01

    Hypothesis-driven MS-based targeted proteomics has gained great popularity in a relatively short timespan. Next to the widely established selected reaction monitoring (SRM) workflow, data-independent acquisition (DIA), also referred to as sequential window acquisition of all theoretical spectra (SWATH) was introduced as a high-throughput targeted proteomics method. DIA facilitates increased proteome coverage, however, does not yet reach the sensitivity obtained with SRM. Therefore, a well-informed method selection is crucial for designing a successful targeted proteomics experiment. This is especially the case when targeting less conventional peptides such as those that contain PTMs, as these peptides do not always adhere to the optimal fragmentation considerations for targeted assays. Here, we provide insight into the performance of DIA, SRM, and MRM cubed (MRM(3) ) in the analysis of phosphorylation dynamics throughout the phosphoinositide 3-kinase mechanistic target of rapamycin (PI3K-mTOR) and mitogen-activated protein kinase (MAPK) signaling network. We observe indeed that DIA is less sensitive when compared to SRM, however demonstrates increased flexibility, by postanalysis selection of alternative phosphopeptide precursors. Additionally, we demonstrate the added benefit of MRM(3) , allowing the quantification of two poorly accessible phosphosites. In total, targeted proteomics enabled the quantification of 42 PI3K-mTOR and MAPK phosphosites, gaining a so far unachieved in-depth view mTOR signaling events linked to tyrosine kinase inhibitor resistance in non-small cell lung cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress

    PubMed Central

    Dai, Dao-Fu; Hsieh, Edward J.; Liu, Yonggang; Chen, Tony; Beyer, Richard P.; Chin, Michael T.; MacCoss, Michael J.; Rabinovitch, Peter S.

    2012-01-01

    Aims We investigate the role of mitochondrial oxidative stress in mitochondrial proteome remodelling using mouse models of heart failure induced by pressure overload. Methods and results We demonstrate that mice overexpressing catalase targeted to mitochondria (mCAT) attenuate pressure overload-induced heart failure. An improved method of label-free unbiased analysis of the mitochondrial proteome was applied to the mouse model of heart failure induced by transverse aortic constriction (TAC). A total of 425 mitochondrial proteins were compared between wild-type and mCAT mice receiving TAC or sham surgery. The changes in the mitochondrial proteome in heart failure included decreased abundance of proteins involved in fatty acid metabolism, an increased abundance of proteins in glycolysis, apoptosis, mitochondrial unfolded protein response and proteolysis, transcription and translational control, and developmental processes as well as responses to stimuli. Overexpression of mCAT better preserved proteins involved in fatty acid metabolism and attenuated the increases in apoptotic and proteolytic enzymes. Interestingly, gene ontology analysis also showed that monosaccharide metabolic processes and protein folding/proteolysis were only overrepresented in mCAT but not in wild-type mice in response to TAC. Conclusion This is the first study to demonstrate that scavenging mitochondrial reactive oxygen species (ROS) by mCAT not only attenuates most of the mitochondrial proteome changes in heart failure, but also induces a subset of unique alterations. These changes represent processes that are adaptive to the increased work and metabolic requirements of pressure overload, but which are normally inhibited by overproduction of mitochondrial ROS. PMID:22012956

  8. Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells.

    PubMed

    Gschwandtner, M; Paulitschke, V; Mildner, M; Brunner, P M; Hacker, S; Eisenwort, G; Sperr, W R; Valent, P; Gerner, C; Tschachler, E

    2017-01-01

    The function of skin mast cells has been well documented in IgE-mediated allergic reactions, whereas other mast cell functions are poorly defined. This study aimed at identifying novel mast cell proteins by proteome analysis of primary human skin mast cells. The proteome of skin mast cells was compared to other cell types and analyzed using bioinformatics. The expression and function of two proteins hitherto not described in skin mast cells was investigated in isolated mast cells as well as in mast cells in situ. Within the mast cell proteome, we identified 49 highly expressed proteins previously not described in mast cells; 21 of these proteins were found to be selectively expressed in mast cells. Two proteins, the neural cell adhesion molecule L1 and dipeptidyl peptidase 4, were further studied. L1 was found to be highly expressed in mast cells in normal, psoriasis, and mastocytosis skin. Dipeptidyl peptidase 4 was found to be expressed in mast cells in normal, psoriasis, and mastocytosis skin as well as in bone marrow mast cells in patients with systemic mastocytosis. In normal skin, mast cells were identified as a major source of dipeptidyl peptidase 4 and we also found that skin mast cells and fibroblasts secrete an active form of this enzyme. In a systematic proteomics approach we identified two novel mast cell proteins potentially relevant to skin homeostasis: neural cell adhesion molecule L1 and dipeptidyl peptidase 4. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Xylem sap proteomics.

    PubMed

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  10. Proteomic analysis allows for early detection of potential markers of metabolic impairment in very young obese children

    PubMed Central

    2014-01-01

    Background Early diagnosis of initial metabolic derangements in young obese children could influence their management; however, this impairment is frequently not overt, but subtle and undetectable by routinely used clinical assays. Our aim was to evaluate the ability of serum proteomic analysis to detect these incipient metabolic alterations in comparison to standard clinical methods and to identify new candidate biomarkers. Methods A cross-sectional study of fasting serum samples from twenty-two prepubertal, Caucasian obese (OB; 9.22 ± 1.93 years; 3.43 ± 1.08 BMI-SDS) and twenty-one lean controls (C; 8.50 ± 1.98 years; -0.48 ± 0.81 BMI-SDS) and a prospective study of fasting serum samples from twenty prepubertal, Caucasian obese children (11 insulin resistant [IR]) before (4.77 ± 1.30 BMI-SDS) and after weight reduction (2.57 ± 1.29 BMI-SDS) by conservative treatment in a reference hospital (Pros-OB) was performed. Proteomic analysis (two-dimension-eletrophoresis + mass spectrometry analysis) of serum and comparative evaluation of the sensitivity of routinely used assays in the clinics to detect the observed differences in protein expression level, as well as their relationship with anthropometric features, insulin resistance indexes, lipid profile and adipokine levels were carried out. Results Study of the intensity data from proteomic analysis showed a decrease of several isoforms of apolipoprotein-A1, apo-J/clusterin, vitamin D binding protein, transthyretin in OBvs. C, with some changes in these proteins being enhanced by IR and partially reversed after weight loss. Expression of low molecular weight isoforms of haptoglobin was increased in OB, enhanced in IR and again decreased after weight loss, being positively correlated with serum interleukin-6 and NAMPT/visfatin levels. After statistical correction for multiple comparisons, significance remained for a single isoform of low MW haptoglobin (OB vs. C and IR vs. non-IR) and Apo A1 (IR vs. non-IR). Assays routinely used in the clinical setting (ELISA/kinetic nephelometry), only partially confirmed the changes observed by proteomic analysis (ApoA1 and haptoglobin). Conclusion Proteomic analysis can allow for the identification of potential new candidate biomarkers as a complement to routinely used assays to detect initial changes in serum markers of inflammation and lipid metabolism impairment in young obese children. PMID:24949022

  11. The Use of Ammonium Formate as a Mobile-Phase Modifier for LC-MS/MS Analysis of Tryptic Digests

    PubMed Central

    Johnson, Darryl; Boyes, Barry; Orlando, Ron

    2013-01-01

    A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage. PMID:24294112

  12. The use of ammonium formate as a mobile-phase modifier for LC-MS/MS analysis of tryptic digests.

    PubMed

    Johnson, Darryl; Boyes, Barry; Orlando, Ron

    2013-12-01

    A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage.

  13. Comparative Network-Based Recovery Analysis and Proteomic Profiling of Neurological Changes in Valproic Acid-Treated Mice

    PubMed Central

    2013-01-01

    Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376

  14. Proteomic Analysis Reveals Differences in Tolerance to Acid Rain in Two Broad-Leaf Tree Species, Liquidambar formosana and Schima superba

    PubMed Central

    Wang, Chao; Liu, Ting-Wu; Chalifour, Annie; Chen, Juan; Shen, Zhi-Jun; Liu, Xiang; Wang, Wen-Hua; Zheng, Hai-Lei

    2014-01-01

    Acid rain (AR) is a serious environmental issue inducing harmful impacts on plant growth and development. It has been reported that Liquidambar formosana, considered as an AR-sensitive tree species, was largely injured by AR, compared with Schima superba, an AR-tolerant tree species. To clarify the different responses of these two species to AR, a comparative proteomic analysis was conducted in this study. More than 1000 protein spots were reproducibly detected on two-dimensional electrophoresis gels. Among them, 74 protein spots from L. formosana gels and 34 protein spots from S. superba gels showed significant changes in their abundances under AR stress. In both L. formosana and S. superba, the majority proteins with more than 2 fold changes were involved in photosynthesis and energy production, followed by material metabolism, stress and defense, transcription, post-translational and modification, and signal transduction. In contrast with L. formosana, no hormone response-related protein was found in S. superba. Moreover, the changes of proteins involved in photosynthesis, starch synthesis, and translation were distinctly different between L. formosana and S. superba. Protein expression analysis of three proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, ascorbate peroxidase and glutathione-S-transferase) by Western blot was well correlated with the results of proteomics. In conclusion, our study provides new insights into AR stress responses in woody plants and clarifies the differences in strategies to cope with AR between L. formosana and S. superba. PMID:25025692

  15. A Statistical Selection Strategy for Normalization Procedures in LC-MS Proteomics Experiments through Dataset Dependent Ranking of Normalization Scaling Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Jacobs, Jon M.

    2011-12-01

    Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across a LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected . Current normalization procedures for LC-MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If theymore » are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, which will affect downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, where a normalization strategy includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between-group variance structure in order to identify candidate normalization strategies that improve the structure of the data without introducing bias into the normalized peak intensities.« less

  16. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  17. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE PAGES

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.; ...

    2015-02-16

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  18. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. An effective protein extraction method for two-dimensional electrophoresis in the anticancer herb Andrographis paniculata Nees.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Puad, Mohd Abdullah

    2013-01-01

    Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  20. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    PubMed Central

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  1. Prohibitin as an oxidative stress biomarker in the eye

    PubMed Central

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Hunt, Richard C.; Hrushesky, William J. M.; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2016-01-01

    Identification of biomarker proteins in the retina and the retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and the RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes. PMID:20832420

  2. Prohibitin as an oxidative stress biomarker in the eye.

    PubMed

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Bartoli, Manuela; Hunt, Richard C; Hrushesky, William J M; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2010-12-01

    Identification of biomarker proteins in the retina and retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Design and analysis issues in quantitative proteomics studies.

    PubMed

    Karp, Natasha A; Lilley, Kathryn S

    2007-09-01

    Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.

  4. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  5. Comparative salivary proteomics analysis of children with and without dental caries using the iTRAQ/MRM approach.

    PubMed

    Wang, Kun; Wang, Yufei; Wang, Xiuqing; Ren, Qian; Han, Sili; Ding, Longjiang; Li, Zhongcheng; Zhou, Xuedong; Li, Wei; Zhang, Linglin

    2018-01-19

    Dental caries is a major worldwide oral disease afflicting a large proportion of children. As an important host factor of caries susceptibility, saliva plays a significant role in the occurrence and development of caries. The aim of the present study was to characterize the healthy and cariogenic salivary proteome and determine the changes in salivary protein expression of children with varying degrees of active caries, also to establish salivary proteome profiles with a potential therapeutic use against dental caries. In this study, unstimulated saliva samples were collected from 30 children (age 10-12 years) with no dental caries (NDC, n = 10), low dental caries (LDC, n = 10), and high dental caries (HDC, n = 10). Salivary proteins were extracted, reduced, alkylated, trypsin digested and labeled with isobaric tags for relative and absolute quantitation, and then they were analyzed with GO annotation, biological pathway analysis, hierarchical clustering analysis, and protein-protein interaction analysis. Targeted verifications were then performed using multiple reaction monitoring mass spectrometry. A total of 244 differentially expressed proteins annotated with GO annotation in biological processes, cellular component and molecular function were identified in comparisons among children with varying degrees of active caries. A number of caries-related proteins as well as pathways were identified in this study. As compared with caries-free children, the most significantly enriched pathways involved by the up-regulated proteins in LDC and HDC were the ubiquitin mediated proteolysis pathway and African trypanosomiasis pathway, respectively. Subsequently, we selected 53 target proteins with differential expression in different comparisons, including mucin 7, mucin 5B, histatin 1, cystatin S and cystatin SN, basic salivary proline rich protein 2, for further verification using MRM assays. Protein-protein interaction analysis of these proteins revealed complex protein interaction networks, indicating synergistic action of salivary proteins in caries resistance or cariogenicity. Overall, our results afford new insight into the salivary proteome of children with dental caries. These findings might have bright prospect in future in developing novel biomimetic peptides with preventive and therapeutic benefits for childhood caries.

  6. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  7. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  8. Systems Proteomics for Translational Network Medicine

    PubMed Central

    Arrell, D. Kent; Terzic, Andre

    2012-01-01

    Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016

  9. HTAPP: High-Throughput Autonomous Proteomic Pipeline

    PubMed Central

    Yu, Kebing; Salomon, Arthur R.

    2011-01-01

    Recent advances in the speed and sensitivity of mass spectrometers and in analytical methods, the exponential acceleration of computer processing speeds, and the availability of genomic databases from an array of species and protein information databases have led to a deluge of proteomic data. The development of a lab-based automated proteomic software platform for the automated collection, processing, storage, and visualization of expansive proteomic datasets is critically important. The high-throughput autonomous proteomic pipeline (HTAPP) described here is designed from the ground up to provide critically important flexibility for diverse proteomic workflows and to streamline the total analysis of a complex proteomic sample. This tool is comprised of software that controls the acquisition of mass spectral data along with automation of post-acquisition tasks such as peptide quantification, clustered MS/MS spectral database searching, statistical validation, and data exploration within a user-configurable lab-based relational database. The software design of HTAPP focuses on accommodating diverse workflows and providing missing software functionality to a wide range of proteomic researchers to accelerate the extraction of biological meaning from immense proteomic data sets. Although individual software modules in our integrated technology platform may have some similarities to existing tools, the true novelty of the approach described here is in the synergistic and flexible combination of these tools to provide an integrated and efficient analysis of proteomic samples. PMID:20336676

  10. Achievements and perspectives of top-down proteomics.

    PubMed

    Armirotti, Andrea; Damonte, Gianluca

    2010-10-01

    Over the last years, top-down (TD) MS has gained a remarkable space in proteomics, rapidly trespassing the limit between a promising approach and a solid, established technique. Several research groups worldwide have implemented TD analysis in their routine work on proteomics, deriving structural information on proteins with the level of accuracy that is impossible to achieve with classical bottom-up approaches. Complete maps of PTMs and assessment of single aminoacid polymorphisms are only a few of the results that can be obtained with this technique. Despite some existing technical and economical limitations, TD analysis is at present the most powerful instrument for MS-based proteomics and its implementation in routine workflow is a rapidly approaching turning point in proteomics. In this review article, the state-of-the-art of TD approach is described along with its major advantages and drawbacks and the most recent trends in TD analysis are discussed. References for all the covered topics are reported in the text, with the aim to support both newcomers and mass spectrometrists already introduced to TD proteomics.

  11. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    PubMed

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Changes in the leaf proteome profile of Withania somnifera (L.) Dunal in response to Alternaria alternata infection

    PubMed Central

    Singh, Varinder; Singh, Baldev; Joshi, Robin; Jaju, Puneet

    2017-01-01

    Withania somnifera is a high value medicinal plant which is used against large number of ailments. The medicinal properties of the plant attributes to a wide array of important secondary metabolites. The plant is predominantly infected with leaf spot pathogen Alternaria alternata, which leads to substantial biodeterioration of pharmaceutically important metabolites. To develop an effective strategy to combat this disease, proteomics based approach could be useful. Hence, in the present study, three different protein extraction methods tris-buffer based, phenol based and trichloroacetic acid-acetone (TCA-acetone) based method were comparatively evaluated for two-dimensional electrophoresis (2-DE) analysis of W. somnifera. TCA-acetone method was found to be most effective and was further used to identify differentially expressed proteins in response to fungal infection. Thirty-eight differentially expressed proteins were identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry (MALDI TOF/TOF MS/MS). The known proteins were categorized into eight different groups based on their function and maximum proteins belonged to energy and metabolism, cell structure, stress and defense and RNA/DNA categories. Differential expression of some key proteins were also crosschecked at transcriptomic level by using qRT-PCR and were found to be consistent with the 2-DE data. These outcomes enable us to evaluate modifications that take place at the proteomic level during a compatible host pathogen interaction. The comparative proteome analysis conducted in this paper revealed the involvement of many key proteins in the process of pathogenesis and further investigation of these identified proteins could assist in the discovery of new strategies for the development of pathogen resistance in the plant. PMID:28575108

  13. Anopheles salivary gland proteomes from major malaria vectors

    PubMed Central

    2012-01-01

    Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density) and qualitative (mosquito species) immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes) from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus) and Nyssorhynchus subgenus (An. albimanus and An. darlingi) displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus) indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their common pharmacological activities. The involvement of these proteins as antigenic candidates for genus-, subgenus- or species-specific immunological evaluation of individual exposure to Anopheles bites is discussed. PMID:23148599

  14. The cardiac proteome in patients with congenital ventricular septal defect: A comparative study between right atria and right ventricles.

    PubMed

    Bond, A R; Iacobazzi, D; Abdul-Ghani, S; Ghorbel, M T; Heesom, K J; George, S J; Caputo, M; Suleiman, M-S; Tulloh, R M

    2018-03-20

    Right ventricle (RV) remodelling occurs in neonatal patients born with ventricular septal defect (VSD). The presence of a defect between the two ventricles allows for shunting of blood from the left to right side. The resulting RV hypertrophy leads to molecular remodelling which has thus far been largely investigated using right atrial (RA) tissue. In this study we used proteomic and phosphoproteomic analysis in order to determine any difference between the proteomes for RA and RV. Samples were therefore taken from the RA and RV of five infants (0.34 ± 0.05 years, mean ± SEM) with VSD who were undergoing cardiac surgery to repair the defect. Significant differences in protein expression between RV and RA were seen. 150 protein accession numbers were identified which were significantly lower in the atria, whereas none were significantly higher in the atria compared to the ventricle. 19 phosphorylation sites (representing 19 phosphoproteins) were also lower in RA. This work has identified differences in the proteome between RA and RV which reflect differences in contractile activity and metabolism. As such, caution should be used when drawing conclusions based on analysis of the RA and extrapolating to the hypertrophied RV. RV hypertrophy occurs in neonatal patients born with VSD. Very little is known about how the atria responds to RV hypertrophy, especially at the protein level. Access to tissue from age-matched groups of patients is very rare, and we are in the unique position of being able to get tissue from both the atria and ventricle during reparative surgery of these infants. Our findings will be beneficial to future research into heart chamber malformations in congenital heart defects. Copyright © 2018. Published by Elsevier B.V.

  15. A liquid chromatography-tandem mass spectrometry-based targeted proteomics assay for monitoring P-glycoprotein levels in human breast tissue.

    PubMed

    Yang, Ting; Chen, Fei; Xu, Feifei; Wang, Fengliang; Xu, Qingqing; Chen, Yun

    2014-09-25

    P-glycoprotein (P-gp) can efflux drugs from cancer cells, and its overexpression is commonly associated with multi-drug resistance (MDR). Thus, the accurate quantification of P-gp would help predict the response to chemotherapy and for prognosis of breast cancer patients. An advanced liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based targeted proteomics assay was developed and validated for monitoring P-gp levels in breast tissue. Tryptic peptide 368IIDNKPSIDSYSK380 was selected as a surrogate analyte for quantification, and immuno-depleted tissue extract was used as a surrogate matrix. Matched pairs of breast tissue samples from 60 patients who were suspected to have drug resistance were subject to analysis. The levels of P-gp were quantified. Using data from normal tissue, we suggested a P-gp reference interval. The experimental values of tumor tissue samples were compared with those obtained from Western blotting and immunohistochemistry (IHC). The result indicated that the targeted proteomics approach was comparable to IHC but provided a lower limit of quantification (LOQ) and could afford more reliable results at low concentrations than the other two methods. LC/MS/MS-based targeted proteomics may allow the quantification of P-gp in breast tissue in a more accurate manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Human duodenal proteome modulations by glutamine and antioxidants.

    PubMed

    Thébault, Sandrine; Deniel, Nicolas; Galland, Alexandra; Lecleire, Stéphane; Charlionet, Roland; Coëffier, Moïse; Tron, François; Vaudry, David; Déchelotte, Pierre

    2010-03-01

    Glutamine (Gln) has protective, anti-inflammatory effects in animal models and humans. Antioxidant nutrients may exert synergistic effects on intestinal functions. Therefore, these combined nutrients may have a therapeutic potential during intestinal inflammation. This study was designed to investigate in humans the effects of a supplement composed of Gln and high-dosed antioxidant micronutrients compared to isomolar Gln only, on duodenal proteome. Enteral perfusion of Gln (0.8  mmol  x  kg(-1) x  h(-1)) or supplement was performed in two groups of six healthy volunteers during 5  h before taking endoscopic duodenal biopsies. Protein expression was analyzed by 2-DE and the relevant proteins identified by MS/MS. About 1500 protein spots were revealed in both supplement and Gln conditions. Comparative proteomics analysis indicated that 11 proteins were differentially and significantly (p≤0.05) expressed in response to the supplement. These proteins were essentially implicated in metabolism pathways, e.g. fatty acid binding protein-1 and 40S ribosomal protein SA expressions were downregulated while manganese superoxide dismutase and retinal dehydrogenase-1 expressions were upregulated. This study provides new information on human duodenal proteome and its nutritional modulation, and supports further clinical investigations designed to evaluate the effects of Gln plus antioxidants during intestinal inflammation and cancer. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative.

    PubMed

    Alberio, Tiziana; Pieroni, Luisa; Ronci, Maurizio; Banfi, Cristina; Bongarzone, Italia; Bottoni, Patrizia; Brioschi, Maura; Caterino, Marianna; Chinello, Clizia; Cormio, Antonella; Cozzolino, Flora; Cunsolo, Vincenzo; Fontana, Simona; Garavaglia, Barbara; Giusti, Laura; Greco, Viviana; Lucacchini, Antonio; Maffioli, Elisa; Magni, Fulvio; Monteleone, Francesca; Monti, Maria; Monti, Valentina; Musicco, Clara; Petrosillo, Giuseppe; Porcelli, Vito; Saletti, Rosaria; Scatena, Roberto; Soggiu, Alessio; Tedeschi, Gabriella; Zilocchi, Mara; Roncada, Paola; Urbani, Andrea; Fasano, Mauro

    2017-12-01

    The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.

  18. Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).

    PubMed

    Arntzen, Magnus O; Koehler, Christian J; Treumann, Achim; Thiede, Bernd

    2011-01-01

    The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.

  19. Proteogenomic characterization of human colon and rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing; Wang, Jing; Wang, Xiaojing

    2014-09-18

    We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less

  20. Isolation and Preparation of Extracellular Proteins from Lignocellulose Degrading Fungi for Comparative Proteomic Studies Using Mass Spectrometry.

    PubMed

    Gruninger, Robert J; Tsang, Adrian; McAllister, Tim A

    2017-01-01

    Fungi utilize a unique mechanism of nutrient acquisition involving extracellular digestion. To understand the biology of these microbes, it is important to identify and characterize the function of proteins that are secreted and involved in this process. Mass spectrometry-based proteomics is a powerful tool to study complex mixtures of proteins and understand how the proteins produced by an organism change in response to different conditions. Many fungi are efficient decomposers of plant cell wall, and anaerobic fungi are well recognized for their ability to digest lignocellulose. Here, we outline a protocol for the enrichment and isolation of proteins secreted by anaerobic fungi after growth on simple (glucose) and complex (straw and alfalfa hay) carbon sources. We provide detailed instruction on generating protein fragments and preparing these for proteomic analysis using reversed phase chromatography and mass spectrometry.

  1. Directed Shotgun Proteomics Guided by Saturated RNA-seq Identifies a Complete Expressed Prokaryotic Proteome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.

    2013-11-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, wemore » could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.« less

  2. Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome

    PubMed Central

    Omasits, Ulrich; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.

    2013-01-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ∼90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor. PMID:23878158

  3. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.

    PubMed

    Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin

    2014-12-04

    In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

  4. Mapping and comparative proteomic analysis of the starch biosynthetic pathway in rice by 2D PAGE/MS.

    PubMed

    Chang, Tao-Shan; Liu, Chih-Wei; Lin, Yu-Ling; Li, Chao-Yi; Wang, Arthur Z; Chien, Min-Wei; Wang, Chang-Sheng; Lai, Chien-Chen

    2017-11-01

    Our results not only provide a comprehensive overview of the starch biosynthetic pathway in the developing endosperm but also reveal some important protein markers that regulate the synthesis of starch. In human diets, rice (Oryza sativa L.) is an important source of starch, a substantial amount of which is accumulated in developing endosperm. A better understanding of the complicated pathways involved in starch biosynthesis is needed to improve the yield and quality of rice and other cereal crops through breeding. One pure line rice mutant, SA0419, was induced from a wild-type rice, TNG67, by sodium azide mutagenesis; therefore, TNG67 and SA0419 share the same genetic background. SA0419 is, however, a unique glutinous rice with a lower amylose content (8%) than that of TNG67 (20%), and the grains of SA0419 develop earlier and faster than those of TNG67. In this study, we used a comparative proteomic analysis to identify the differentially expressed proteins that may explain the differences in starch biosynthesis and the characteristics of TNG67 and SA0419. A gel-based proteomic approach was applied to profile the expressed proteome in the developing endosperm of these two rice varieties by nano-LC/MS/MS. Several over-expressed proteins were found in SA0419, such as plastidial ADP-glucose pyrophosphorylase (AGPase), phosphoglucomutase (PGM), pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP), 6-phosphofructokinase (PFK), pyruvate phosphate dikinase (PPDK), starch branching enzymes (SBE) and starch debranching enzyme (SDBE), with those proteins mainly being involved in the pathways of starch metabolism and PPDK-mediated gluconeogenesis. Those over-expressed enzymes may contribute to the relatively early development, similar starch accumulation and rapid grain filling of SA0419 as compared with TNG67. This study provides a detailed biochemical description of starch biosynthesis and related information regarding a unique starch mutant that may assist future research efforts to improve the yield and quality of grain and starch in rice through breeding.

  5. Large-scale Proteomics Analysis of the Human Kinome

    PubMed Central

    Oppermann, Felix S.; Gnad, Florian; Olsen, Jesper V.; Hornberger, Renate; Greff, Zoltán; Kéri, György; Mann, Matthias; Daub, Henrik

    2009-01-01

    Members of the human protein kinase superfamily are the major regulatory enzymes involved in the activity control of eukaryotic signal transduction pathways. As protein kinases reside at the nodes of phosphorylation-based signal transmission, comprehensive analysis of their cellular expression and site-specific phosphorylation can provide important insights into the architecture and functionality of signaling networks. However, in global proteome studies, low cellular abundance of protein kinases often results in rather minor peptide species that are occluded by a vast excess of peptides from other cellular proteins. These analytical limitations create a rationale for kinome-wide enrichment of protein kinases prior to mass spectrometry analysis. Here, we employed stable isotope labeling by amino acids in cell culture (SILAC) to compare the binding characteristics of three kinase-selective affinity resins by quantitative mass spectrometry. The evaluated pre-fractionation tools possessed pyrido[2,3-d]pyrimidine-based kinase inhibitors as immobilized capture ligands and retained considerable subsets of the human kinome. Based on these results, an affinity resin displaying the broadly selective kinase ligand VI16832 was employed to quantify the relative expression of more than 170 protein kinases across three different, SILAC-encoded cancer cell lines. These experiments demonstrated the feasibility of comparative kinome profiling in a compact experimental format. Interestingly, we found high levels of cytoplasmic and low levels of receptor tyrosine kinases in MV4–11 leukemia cells compared with the adherent cancer lines HCT116 and MDA-MB-435S. The VI16832 resin was further exploited to pre-fractionate kinases for targeted phosphoproteomics analysis, which revealed about 1200 distinct phosphorylation sites on more than 200 protein kinases. This hitherto largest survey of site-specific phosphorylation across the kinome significantly expands the basis for functional follow-up studies on protein kinase regulation. In conclusion, the straightforward experimental procedures described here enable different implementations of kinase-selective proteomics with considerable potential for future signal transduction and kinase drug target analysis. PMID:19369195

  6. Optimizing Algorithm Choice for Metaproteomics: Comparing X!Tandem and Proteome Discoverer for Soil Proteomes

    NASA Astrophysics Data System (ADS)

    Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.

    2014-12-01

    The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.

  7. SwissPalm: Protein Palmitoylation database.

    PubMed

    Blanc, Mathieu; David, Fabrice; Abrami, Laurence; Migliozzi, Daniel; Armand, Florence; Bürgi, Jérôme; van der Goot, Françoise Gisou

    2015-01-01

    Protein S-palmitoylation is a reversible post-translational modification that regulates many key biological processes, although the full extent and functions of protein S-palmitoylation remain largely unexplored. Recent developments of new chemical methods have allowed the establishment of palmitoyl-proteomes of a variety of cell lines and tissues from different species.  As the amount of information generated by these high-throughput studies is increasing, the field requires centralization and comparison of this information. Here we present SwissPalm ( http://swisspalm.epfl.ch), our open, comprehensive, manually curated resource to study protein S-palmitoylation. It currently encompasses more than 5000 S-palmitoylated protein hits from seven species, and contains more than 500 specific sites of S-palmitoylation. SwissPalm also provides curated information and filters that increase the confidence in true positive hits, and integrates predictions of S-palmitoylated cysteine scores, orthologs and isoform multiple alignments. Systems analysis of the palmitoyl-proteome screens indicate that 10% or more of the human proteome is susceptible to S-palmitoylation. Moreover, ontology and pathway analyses of the human palmitoyl-proteome reveal that key biological functions involve this reversible lipid modification. Comparative analysis finally shows a strong crosstalk between S-palmitoylation and other post-translational modifications. Through the compilation of data and continuous updates, SwissPalm will provide a powerful tool to unravel the global importance of protein S-palmitoylation.

  8. SwissPalm: Protein Palmitoylation database

    PubMed Central

    Abrami, Laurence; Migliozzi, Daniel; Armand, Florence; Bürgi, Jérôme; van der Goot, Françoise Gisou

    2015-01-01

    Protein S-palmitoylation is a reversible post-translational modification that regulates many key biological processes, although the full extent and functions of protein S-palmitoylation remain largely unexplored. Recent developments of new chemical methods have allowed the establishment of palmitoyl-proteomes of a variety of cell lines and tissues from different species.  As the amount of information generated by these high-throughput studies is increasing, the field requires centralization and comparison of this information. Here we present SwissPalm ( http://swisspalm.epfl.ch), our open, comprehensive, manually curated resource to study protein S-palmitoylation. It currently encompasses more than 5000 S-palmitoylated protein hits from seven species, and contains more than 500 specific sites of S-palmitoylation. SwissPalm also provides curated information and filters that increase the confidence in true positive hits, and integrates predictions of S-palmitoylated cysteine scores, orthologs and isoform multiple alignments. Systems analysis of the palmitoyl-proteome screens indicate that 10% or more of the human proteome is susceptible to S-palmitoylation. Moreover, ontology and pathway analyses of the human palmitoyl-proteome reveal that key biological functions involve this reversible lipid modification. Comparative analysis finally shows a strong crosstalk between S-palmitoylation and other post-translational modifications. Through the compilation of data and continuous updates, SwissPalm will provide a powerful tool to unravel the global importance of protein S-palmitoylation. PMID:26339475

  9. A Proteomic Analysis of Eccrine Sweat: Implications for the Discovery of Schizophrenia Biomarker Proteins

    PubMed Central

    Raiszadeh, Michelle M.; Ross, Mark M.; Russo, Paul S.; Schaepper, Mary Ann H.; Zhou, Weidong; Deng, Jianghong; Ng, Daniel; Dickson, April; Dickson, Cindy; Strom, Monica; Osorio, Carolina; Soeprono, Thomas; Wulfkuhle, Julia D.; Kabbani, Nadine; Petricoin, Emanuel F.; Liotta, Lance A.; Kirsch, Wolff M.

    2012-01-01

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate, and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately two-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers. PMID:22256890

  10. Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation

    PubMed Central

    Crouzet, Marc; Claverol, Stéphane; Lomenech, Anne-Marie; Le Sénéchal, Caroline; Costaglioli, Patricia; Barthe, Christophe; Garbay, Bertrand; Bonneu, Marc

    2017-01-01

    Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface. PMID:28678862

  11. Multidimensional proteomics for cell biology.

    PubMed

    Larance, Mark; Lamond, Angus I

    2015-05-01

    The proteome is a dynamic system in which each protein has interconnected properties - dimensions - that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.

  12. CPTAC Releases Cancer Proteome Confirmatory Ovarian Study Data | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying diagnostics and therapies that will improve patients’ lives. Because a comprehensive molecular view of cancer is important for ultimately guiding treatment, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) has released the cancer proteome confirmatory ovarian study data sets.

  13. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-02

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.

  14. Advances of Proteomic Sciences in Dentistry.

    PubMed

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-05-13

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.

  15. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    PubMed

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  16. Systematic Evaluation of the Use of Human Plasma and Serum for Mass-Spectrometry-Based Shotgun Proteomics.

    PubMed

    Lan, Jiayi; Núñez Galindo, Antonio; Doecke, James; Fowler, Christopher; Martins, Ralph N; Rainey-Smith, Stephanie R; Cominetti, Ornella; Dayon, Loïc

    2018-04-06

    Over the last two decades, EDTA-plasma has been used as the preferred sample matrix for human blood proteomic profiling. Serum has also been employed widely. Only a few studies have assessed the difference and relevance of the proteome profiles obtained from plasma samples, such as EDTA-plasma or lithium-heparin-plasma, and serum. A more complete evaluation of the use of EDTA-plasma, heparin-plasma, and serum would greatly expand the comprehensiveness of shotgun proteomics of blood samples. In this study, we evaluated the use of heparin-plasma with respect to EDTA-plasma and serum to profile blood proteomes using a scalable automated proteomic pipeline (ASAP 2 ). The use of plasma and serum for mass-spectrometry-based shotgun proteomics was first tested with commercial pooled samples. The proteome coverage consistency and the quantitative performance were compared. Furthermore, protein measurements in EDTA-plasma and heparin-plasma samples were comparatively studied using matched sample pairs from 20 individuals from the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study. We identified 442 proteins in common between EDTA-plasma and heparin-plasma samples. Overall agreement of the relative protein quantification between the sample pairs demonstrated that shotgun proteomics using workflows such as the ASAP 2 is suitable in analyzing heparin-plasma and that such sample type may be considered in large-scale clinical research studies. Moreover, the partial proteome coverage overlaps (e.g., ∼70%) showed that measures from heparin-plasma could be complementary to those obtained from EDTA-plasma.

  17. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts.

    PubMed

    Balsamo, Geisi M; Valentim-Neto, Pedro A; Mello, Carla S; Arisi, Ana C M

    2015-12-09

    The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.

  18. How to use and integrate bioinformatics tools to compare proteomic data from distinct conditions? A tutorial using the pathological similarities between Aortic Valve Stenosis and Coronary Artery Disease as a case-study.

    PubMed

    Trindade, Fábio; Ferreira, Rita; Magalhães, Beatriz; Leite-Moreira, Adelino; Falcão-Pires, Inês; Vitorino, Rui

    2018-01-16

    Nowadays we are surrounded by a plethora of bioinformatics tools, powerful enough to deal with the large amounts of data arising from proteomic studies, but whose application is sometimes hard to find. Therefore, we used a specific clinical problem - to discriminate pathophysiology and potential biomarkers between two similar cardiovascular diseases, aortic valve stenosis (AVS) and coronary artery disease (CAD) - to make a step-by-step guide through four bioinformatics tools: STRING, DisGeNET, Cytoscape and ClueGO. Proteome data was collected from articles available on PubMed centered on proteomic studies enrolling subjects with AVS or CAD. Through the analysis of gene ontology provided by STRING and ClueGO we could find specific biological phenomena associated with AVS, such as down-regulation of elastic fiber assembly, and with CAD, such as up-regulation of plasminogen activation. Moreover, through Cytoscape and DisGeNET we could pinpoint surrogate markers either for AVS (e.g. popeye domain containing protein 2 and 28S ribosomal protein S36, mitochondrial) or for CAD (e.g. ankyrin repeat and SOCS box protein 7) which deserve future validation. Data recycling and integration as well as research orientation are among the main advantages of resorting to bioinformatics analysis, hence these tutorials can be of great convenience for proteomics investigators. As we saw for aortic valve stenosis and coronary artery disease, it can be of great relevance to perform preliminary bioinformatics analysis with already published proteomics data. It not only saves us time in the lab (avoiding work duplication) as it points out new hypothesis to explain the phenotypical presentation of the diseases as well as new surrogate markers with clinical relevance, deserving future scrutiny. These essential steps can be easily overcome if one follows the steps proposed in our tutorial for STRING, DisGeNET, Cytoscape and ClueGO utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Recent insights into plant-virus interactions through proteomic analysis.

    PubMed

    Di Carli, Mariasole; Benvenuto, Eugenio; Donini, Marcello

    2012-10-05

    Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.

  20. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  1. CPTAC Releases Cancer Proteome Confirmatory Breast Study Data | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.

  2. Proteomic analysis of bovine nucleolus.

    PubMed

    Patel, Amrutlal K; Olson, Doug; Tikoo, Suresh K

    2010-09-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eukaryotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells, we analyzed the proteomic composition of the bovine nucleoli. The nucleoli were isolated from Madin Darby bovine kidney cells and subjected to proteomic analysis by LC-MS/MS after fractionation by SDS-PAGE and strong cation exchange chromatography. Analysis of the data using the Mascot database search and the GPM database search identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in the proteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggested that the bovine nucleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional, translational and post-translational regulation, transport, and structural organization. Copyright © 2010 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

  3. Protein differences between human trapezius and vastus lateralis muscles determined with a proteomic approach.

    PubMed

    Hadrévi, Jenny; Hellström, Fredrik; Kieselbach, Thomas; Malm, Christer; Pedrosa-Domellöf, Fatima

    2011-08-10

    The trapezius muscle is a neck muscle that is susceptible to chronic pain conditions associated with repetitive tasks, commonly referred to as chronic work-related myalgia, hence making the trapezius a muscle of clinical interest. To provide a basis for further investigations of the proteomic traits of the trapezius muscle in disease, two-dimensional difference gel electrophoresis (2D-DIGE) was performed on the healthy trapezius using vastus lateralis as a reference. To obtain as much information as possible from the vast proteomic data set, both one-way ANOVA, with and without false discovery rate (FDR) correlation, and partial least square projection to latent structures with discriminant analysis (PLS-DA) were combined to compare the outcome of the analysis. The trapezius and vastus lateralis showed significant differences in metabolic, contractile and regulatory proteins, with different results depending on choice of statistical approach and pre-processing technique. Using the standard method, FDR correlated one-way ANOVA, 42 protein spots differed significantly in abundance between the two muscles. Complementary analysis using immunohistochemistry and western blot confirmed the results from the 2D-DIGE analysis. The proteomic approach used in the present study combining 2D-DIGE and multivariate modelling provided a more comprehensive comparison of the protein profiles of the human trapezius and vastus lateralis muscle, than previously possible to obtain with immunohistochemistry or SDS-PAGE alone. Although 2D-DIGE has inherent limitations it is particularly useful to comprehensively screen for important structural and metabolic proteins, and appears to be a promising tool for future studies of patients suffering from chronic work related myalgia or other muscle diseases.

  4. Urine proteome analysis in Dent's disease shows high selective changes potentially involved in chronic renal damage.

    PubMed

    Santucci, Laura; Candiano, Giovanni; Anglani, Franca; Bruschi, Maurizio; Tosetto, Enrica; Cremasco, Daniela; Murer, Luisa; D'Ambrosio, Chiara; Scaloni, Andrea; Petretto, Andrea; Caridi, Gianluca; Rossi, Roberta; Bonanni, Alice; Ghiggeri, Gian Marco

    2016-01-01

    Definition of the urinary protein composition would represent a potential tool for diagnosis in many clinical conditions. The use of new proteomic technologies allows detection of genetic and post-trasductional variants that increase sensitivity of the approach but complicates comparison within a heterogeneous patient population. Overall, this limits research of urinary biomarkers. Studying monogenic diseases are useful models to address this issue since genetic variability is reduced among first- and second-degree relatives of the same family. We applied this concept to Dent's disease, a monogenic condition characterised by low-molecular-weight proteinuria that is inherited following an X-linked trait. Results are presented here on a combined proteomic approach (LC-mass spectrometry, Western blot and zymograms for proteases and inhibitors) to characterise urine proteins in a large family (18 members, 6 hemizygous patients, 6 carrier females, and 6 normals) with Dent's diseases due to the 1070G>T mutation of the CLCN5. Gene ontology analysis on more than 1000 proteins showed that several clusters of proteins characterised urine of affected patients compared to carrier females and normal subjects: proteins involved in extracellular matrix remodelling were the major group. Specific analysis on metalloproteases and their inhibitors underscored unexpected mechanisms potentially involved in renal fibrosis. Studying with new-generation techniques for proteomic analysis of the members of a large family with Dent's disease sharing the same molecular defect allowed highly repetitive results that justify conclusions. Identification in urine of proteins actively involved in interstitial matrix remodelling poses the question of active anti-fibrotic drugs in Dent's patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism

    PubMed Central

    Ma, Xiqing; Xu, Qian; Meyer, William A.; Huang, Bingru

    2016-01-01

    Background and Aims Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. Methods A rhizomatous genotype of tall fescue (‘BR’) plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3. Key Results BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3. Conclusions Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3. The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue. PMID:27443301

  6. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway.

    PubMed

    Yue, Rongcai; Li, Xia; Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong

    2015-01-01

    Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations.

  7. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria

    PubMed Central

    Murphy, Andrew R. J.; Scanlan, David J.; Bending, Gary D.; Jones, Alexandra M. E.; Moore, Jonathan D.; Goodall, Andrew; Hammond, John P.; Wellington, Elizabeth M. H.

    2016-01-01

    Summary Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD‐1 (BIRD‐1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole‐cell proteomic analysis of BIRD‐1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well‐characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD‐1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO‐dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P. PMID:27233093

  8. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    PubMed

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  9. Cellular metabolic responses of the marine diatom Pseudo-nitzschia multiseries associated with cell wall formation.

    PubMed

    Xu, Bin; Luo, Chun-Shan; Liang, Jun-Rong; Chen, Dan-Dan; Zhuo, Wen-Hao; Gao, Ya-Hui; Chen, Chang-Ping; Song, Si-Si

    2014-08-01

    In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method. Approximately 75% of cells were arrested at the G2+M phase of the cell cycle after 48 h of silicate starvation. The majority of cells progressed to new valve synthesis within 5h of silicon replenishment. We compared the proteome of P. multiseries at 0, 4, 5, and 6h of synchronization progress upon silicon replenishment using two-dimensional gel electrophoresis. Forty-eight differentially expressed protein spots were identified in abundance (greater than two-fold change; P<0.005), some of which are predicted to be involved in intracellular trafficking, cytoskeleton, photosynthesis, lipid metabolism, and protein biosynthesis. Cytoskeleton proteins and clathrin coat components were also hypothesized to play potential roles in cell wall formation. The proteomic profile analysis suggests that P. multiseries most likely employs multiple synergistic biochemical mechanisms for cell wall formation. These results improve our understanding of the molecular mechanisms underlying silicon cell wall formation and enhance our understanding of the important role played by diatoms in silicon biogeochemical cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. dbHiMo: a web-based epigenomics platform for histone-modifying enzymes

    PubMed Central

    Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O.; Jeon, Junhyun; Lee, Yong-Hwan

    2015-01-01

    Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11 576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. Database URL: http://hme.riceblast.snu.ac.kr/ PMID:26055100

  11. dbHiMo: a web-based epigenomics platform for histone-modifying enzymes.

    PubMed

    Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O; Jeon, Junhyun; Lee, Yong-Hwan

    2015-01-01

    Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11,576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. © The Author(s) 2015. Published by Oxford University Press.

  12. Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M.

    PubMed

    Eschenbrenner, Michel; Horn, Troy A; Wagner, Mary Ann; Mujer, Cesar V; Miller-Scandle, Tabbi L; DelVecchio, Vito G

    2006-07-01

    Brucella species are pathogenic agents that cause brucellosis, a debilitating zoonotic disease that affects a large variety of domesticated animals and humans. Brucella melitensis and Brucella abortus are considered major health threats because of their highly infectious nature and worldwide occurrence. The availability of the annotated genomes for these two species has allowed a comparative proteomics study of laboratory grown B. melitensis 16M and B. abortus 2308 by two-dimensional (2-D) gel electrophoresis and peptide mass fingerprinting. Computer-assisted analysis of the different 2-D gel images of strains 16M and 2308 revealed significant quantitative and qualitative differences in their protein expression patterns. Proteins involved in membrane transport, particularly the high affinity amino acids binding proteins, and those involved in Sec-dependent secretion systems related to type IV and type V secretion systems, were differentially expressed. Differential expression of these proteins may be responsible for conferring specific host preference in the two strains 2308 and 16M.

  13. Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study

    PubMed Central

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K.; Bhattacharya, Sanjoy K.; Parel, Jean-Marie A

    2009-01-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and non-treated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to non-lasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to non-lasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty. PMID:19432485

  14. Laser trabeculoplasty induces changes in the trabecular meshwork glycoproteome: a pilot study.

    PubMed

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K; Bhattacharya, Sanjoy K; Parel, Jean-Marie A

    2009-07-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. With the use of cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and nontreated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to nonlasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to nonlasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty.

  15. Combined comparative and chemical proteomics on the mechanisms of levo-tetrahydropalmatine-induced antinociception in the formalin test.

    PubMed

    Wang, Chen; Zhou, Jiangrui; Wang, Shuowen; Ye, Mingliang; Jiang, Chunlei; Fan, Guorong; Zou, Hanfa

    2010-06-04

    This study investigated the mechanisms involved in the antinociceptive action induced by levo-tetrahydropalmatine (l-THP) in the formalin test by combined comparative and chemical proteomics. Rats were pretreated with l-THP by the oral route (40 mg/kg) 1 h before formalin injection. The antinociceptive effect of l-THP was shown in the first and second phases of the formalin test. To address the mechanisms by which l-THP inhibits formalin-induced nociception in rats, the combined comparative and chemical proteomics were applied. A novel high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS was applied to simultaneously evaluate the deregulated proteins involved in the response of l-THP treatment in formalin-induced pain rats. Thousands of proteins were identified, among which 17 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (Neurabin-1 and Calcium-dependent secretion activator 1) were randomly selected, and their expression levels were further confirmed by Western Blots. The results matched well with those of proteomics. In the present study, we also described the development and application of l-THP immobilized beads to bind the targets. Following incubation with cellular lysates, the proteome interacting with the fixed l-THP was identified. The results of comparative and chemical proteomics were quite complementary. Although the precise roles of these identified moleculars in l-THP-induced antinociception need further study, the combined results indicated that proteins associated with signal transduction, vesicular trafficking and neurotransmitter release, energy metabolism, and ion transport play important roles in l-THP-induced antinociception in the formalin test.

  16. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  17. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    PubMed Central

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  18. [Techniques for rapid production of monoclonal antibodies for use with antibody technology].

    PubMed

    Kamada, Haruhiko

    2012-01-01

    A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.

  19. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  20. The Functional Network of the Arabidopsis Plastoglobule Proteome Based on Quantitative Proteomics and Genome-Wide Coexpression Analysis1[C][W][OA

    PubMed Central

    Lundquist, Peter K.; Poliakov, Anton; Bhuiyan, Nazmul H.; Zybailov, Boris; Sun, Qi; van Wijk, Klaas J.

    2012-01-01

    Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions. PMID:22274653

Top