Sample records for comparative quantitative trait

  1. Comprehensive Comparison of Self-Administered Questionnaires for Measuring Quantitative Autistic Traits in Adults

    ERIC Educational Resources Information Center

    Nishiyama, Takeshi; Suzuki, Masako; Adachi, Katsunori; Sumi, Satoshi; Okada, Kensuke; Kishino, Hirohisa; Sakai, Saeko; Kamio, Yoko; Kojima, Masayo; Suzuki, Sadao; Kanne, Stephen M.

    2014-01-01

    We comprehensively compared all available questionnaires for measuring quantitative autistic traits (QATs) in terms of reliability and construct validity in 3,147 non-clinical and 60 clinical subjects with normal intelligence. We examined four full-length forms, the Subthreshold Autism Trait Questionnaire (SATQ), the Broader Autism Phenotype…

  2. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  3. Autism traits in the RASopathies.

    PubMed

    Adviento, Brigid; Corbin, Iris L; Widjaja, Felicia; Desachy, Guillaume; Enrique, Nicole; Rosser, Tena; Risi, Susan; Marco, Elysa J; Hendren, Robert L; Bearden, Carrie E; Rauen, Katherine A; Weiss, Lauren A

    2014-01-01

    Mutations in Ras/mitogen-activated protein kinase (Ras/MAPK) pathway genes lead to a class of disorders known as RASopathies, including neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Previous work has suggested potential genetic and phenotypic overlap between dysregulation of Ras/MAPK signalling and autism spectrum disorders (ASD). Although the literature offers conflicting evidence for association of NF1 and autism, there has been no systematic evaluation of autism traits in the RASopathies as a class to support a role for germline Ras/MAPK activation in ASDs. We examined the association of autism traits with NF1, NS, CS and CFC, comparing affected probands with unaffected sibling controls and subjects with idiopathic ASDs using the qualitative Social Communication Questionnaire (SCQ) and the quantitative Social Responsiveness Scale (SRS). Each of the four major RASopathies showed evidence for increased qualitative and quantitative autism traits compared with sibling controls. Further, each RASopathy exhibited a distinct distribution of quantitative social impairment. Levels of social responsiveness show some evidence of correlation between sibling pairs, and autism-like impairment showed a male bias similar to idiopathic ASDs. Higher prevalence and severity of autism traits in RASopathies compared to unaffected siblings suggests that dysregulation of Ras/MAPK signalling during development may be implicated in ASD risk. Evidence for sex bias and potential sibling correlation suggests that autism traits in the RASopathies share characteristics with autism traits in the general population and clinical ASD population and can shed light on idiopathic ASDs.

  4. QTLomics in Soybean: A Way Forward for Translational Genomics and Breeding

    PubMed Central

    Kumawat, Giriraj; Gupta, Sanjay; Ratnaparkhe, Milind B.; Maranna, Shivakumar; Satpute, Gyanesh K.

    2016-01-01

    Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a tedious and costly process, however, a large number of QTLs has been mapped in soybean for various traits albeit their utilization in breeding programmes is poorly reported. For their effective use in breeding programme it is imperative to narrow down the confidence interval of QTLs, to identify the underlying genes, and most importantly allelic characterization of these genes for identifying superior variants. In the field of functional genomics, especially in the identification and characterization of gene responsible for quantitative traits, soybean is far ahead from other legume crops. The availability of genic information about quantitative traits is more significant because it is easy and effective to identify homologs than identifying shared syntenic regions in other crop species. In soybean, genes underlying QTLs have been identified and functionally characterized for phosphorous efficiency, flowering and maturity, pod dehiscence, hard-seededness, α-Tocopherol content, soybean cyst nematode, sudden death syndrome, and salt tolerance. Candidate genes have also been identified for many other quantitative traits for which functional validation is required. Using the sequence information of identified genes from soybean, comparative genomic analysis of homologs in other legume crops could discover novel structural variants and useful alleles for functional marker development. The functional markers may be very useful for molecular breeding in soybean and harnessing benefit of translational research from soybean to other leguminous crops. Thus, soybean crop can act as a model crop for translational genomics and breeding of quantitative traits in legume crops. In this review, we summarize current status of identification and characterization of genes underlying QTLs for various quantitative traits in soybean and their significance in translational genomics and breeding of other legume crops. PMID:28066449

  5. Teacher Perception of Principals' Leadership Traits and Middle School Math and Science Teachers' Job Satisfaction: A Causal-Comparative and Correlational Study

    ERIC Educational Resources Information Center

    Cousar, Theresa Ann

    2017-01-01

    The purpose of this quantitative study was to examine middle school teachers' job satisfaction (low vs. high) and how teachers perceive principals' leadership traits. The study used a causal-comparative and correlational design. The teachers were divided into two job satisfaction level groups. Teacher perception of principal leadership traits for…

  6. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  7. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  8. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum interspecific populations and Gossypium hirsutum x Gossypium barbadense populations

    USDA-ARS?s Scientific Manuscript database

    Recent Meta-analysis of quantitative trait loci (QTL) in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of various trait QTL called clusters, and specific trait QTL called hotspots. The Meta-analysis included all population types of Gossypium mixing ...

  9. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  10. Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits.

    PubMed

    Scheper, Carsten; Wensch-Dorendorf, Monika; Yin, Tong; Dressel, Holger; Swalve, Herrmann; König, Sven

    2016-06-29

    Intensified selection of polled individuals has recently gained importance in predominantly horned dairy cattle breeds as an alternative to routine dehorning. The status quo of the current polled breeding pool of genetically-closely related artificial insemination sires with lower breeding values for performance traits raises questions regarding the effects of intensified selection based on this founder pool. We developed a stochastic simulation framework that combines the stochastic simulation software QMSim and a self-designed R program named QUALsim that acts as an external extension. Two traits were simulated in a dairy cattle population for 25 generations: one quantitative (QMSim) and one qualitative trait with Mendelian inheritance (i.e. polledness, QUALsim). The assignment scheme for qualitative trait genotypes initiated realistic initial breeding situations regarding allele frequencies, true breeding values for the quantitative trait and genetic relatedness. Intensified selection for polled cattle was achieved using an approach that weights estimated breeding values in the animal best linear unbiased prediction model for the quantitative trait depending on genotypes or phenotypes for the polled trait with a user-defined weighting factor. Selection response for the polled trait was highest in the selection scheme based on genotypes. Selection based on phenotypes led to significantly lower allele frequencies for polled. The male selection path played a significantly greater role for a fast dissemination of polled alleles compared to female selection strategies. Fixation of the polled allele implies selection based on polled genotypes among males. In comparison to a base breeding scenario that does not take polledness into account, intensive selection for polled substantially reduced genetic gain for this quantitative trait after 25 generations. Reducing selection intensity for polled males while maintaining strong selection intensity among females, simultaneously decreased losses in genetic gain and achieved a final allele frequency of 0.93 for polled. A fast transition to a completely polled population through intensified selection for polled was in contradiction to the preservation of high genetic gain for the quantitative trait. Selection on male polled genotypes with moderate weighting, and selection on female polled phenotypes with high weighting, could be a suitable compromise regarding all important breeding aspects.

  11. A genome scan for selection signatures comparing farmed Atlantic salmon with two wild populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait loci for production traits.

    PubMed

    Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace

    2017-03-01

    Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.

  12. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci.

    PubMed

    Burgess-Herbert, Sarah L; Cox, Allison; Tsaih, Shirng-Wern; Paigen, Beverly

    2008-12-01

    Dissecting the genes involved in complex traits can be confounded by multiple factors, including extensive epistatic interactions among genes, the involvement of epigenetic regulators, and the variable expressivity of traits. Although quantitative trait locus (QTL) analysis has been a powerful tool for localizing the chromosomal regions underlying complex traits, systematically identifying the causal genes remains challenging. Here, through its application to plasma levels of high-density lipoprotein cholesterol (HDL) in mice, we demonstrate a strategy for narrowing QTL that utilizes comparative genomics and bioinformatics techniques. We show how QTL detected in multiple crosses are subjected to both combined cross analysis and haplotype block analysis; how QTL from one species are mapped to the concordant regions in another species; and how genomewide scans associating haplotype groups with their phenotypes can be used to prioritize the narrowed regions. Then we illustrate how these individual methods for narrowing QTL can be systematically integrated for mouse chromosomes 12 and 15, resulting in a significantly reduced number of candidate genes, often from hundreds to <10. Finally, we give an example of how additional bioinformatics resources can be combined with experiments to determine the most likely quantitative trait genes.

  13. Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast

    PubMed Central

    Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora

    2006-01-01

    Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318

  14. Divergent selection along climatic gradients in a rare central European endemic species, Saxifraga sponhemica

    PubMed Central

    Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart

    2015-01-01

    Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats. PMID:25862244

  15. The effects of dominance, regular inbreeding and sampling design on Q(ST), an estimator of population differentiation for quantitative traits.

    PubMed

    Goudet, Jérôme; Büchi, Lucie

    2006-02-01

    To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.

  16. Distribution of lod scores in oligogenic linkage analysis.

    PubMed

    Williams, J T; North, K E; Martin, L J; Comuzzie, A G; Göring, H H; Blangero, J

    2001-01-01

    In variance component oligogenic linkage analysis it can happen that the residual additive genetic variance bounds to zero when estimating the effect of the ith quantitative trait locus. Using quantitative trait Q1 from the Genetic Analysis Workshop 12 simulated general population data, we compare the observed lod scores from oligogenic linkage analysis with the empirical lod score distribution under a null model of no linkage. We find that zero residual additive genetic variance in the null model alters the usual distribution of the likelihood-ratio statistic.

  17. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana

    PubMed Central

    Veltsos, P; Gregson, E; Morrissey, B; Slate, J; Hoikkala, A; Butlin, R K; Ritchie, M G

    2015-01-01

    We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power. PMID:26198076

  18. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  19. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  20. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  1. Mapping quantitative trait loci for traits defined as ratios.

    PubMed

    Yang, Runqing; Li, Jiahan; Xu, Shizhong

    2008-03-01

    Many traits are defined as ratios of two quantitative traits. Methods of QTL mapping for regular quantitative traits are not optimal when applied to ratios due to lack of normality for traits defined as ratios. We develop a new method of QTL mapping for traits defined as ratios. The new method uses a special linear combination of the two component traits, and thus takes advantage of the normal property of the new variable. Simulation study shows that the new method can substantially increase the statistical power of QTL detection relative to the method which treats ratios as regular quantitative traits. The new method also outperforms the method that uses Box-Cox transformed ratio as the phenotype. A real example of QTL mapping for relative growth rate in soybean demonstrates that the new method can detect more QTL than existing methods of QTL mapping for traits defined as ratios.

  2. A strategy to apply quantitative epistasis analysis on developmental traits.

    PubMed

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  3. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  4. Identification of Species, Quantitative Trait Loci (QTLs), and Hybrids Important for Low-Input Biomass Production and Hetersis in Semiarid Cold-Growing Environments

    USDA-ARS?s Scientific Manuscript database

    Interspecific hybrids of tall caespitose Leymus cinereus (Scribn. & Merr.) A. Love and strongly rhizomatous Leymus triticoides (Buckley) Pilg. display a heterotic combination of traits important for perennial grass biomass production. The objectives of this study were to: 1) compare seasonal biomas...

  5. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.

    PubMed

    Lan, T H; Paterson, A H

    2000-08-01

    The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eight curd-related traits in Brassica oleracea. The 86 QTL may reflect allelic variation in as few as 67 different genetic loci and 54 ancestral genes. Although the locations of QTL affecting a trait occasionally corresponded between different populations or between different homeologous Brassica chromosomes, our data supported other molecular and morphological data in suggesting that the Brassica genus is rapidly evolving. Comparative data enabled us to identify a number of candidate genes from Arabidopsis that warrant further investigation to determine if some of them might account for Brassica QTL. The Arabidopsis/Brassica system is an important example of both the challenges and opportunities associated with extrapolation of genomic information from facile models to large-genome taxa including major crops.

  6. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir

    Treesearch

    Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale

    2005-01-01

    Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...

  7. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.).

    PubMed

    Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue

    2008-08-27

    Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.

  8. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  9. Correlation between quantitative traits and correlation between corresponding LOD scores: detection of pleiotropic effects.

    PubMed

    Ulgen, Ayse; Han, Zhihua; Li, Wentian

    2003-12-31

    We address the question of whether statistical correlations among quantitative traits lead to correlation of linkage results of these traits. Five measured quantitative traits (total cholesterol, fasting glucose, HDL cholesterol, blood pressure, and triglycerides), and one derived quantitative trait (total cholesterol divided by the HDL cholesterol) are used for phenotype correlation studies. Four of them are used for linkage analysis. We show that although correlation among phenotypes partially reflects the correlation among linkage analysis results, the LOD-score correlations are on average low. The most significant peaks found by using different traits do not often overlap. Studying covariances at specific locations in LOD scores may provide clues for further bivariate linkage analyses.

  10. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  11. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  12. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  13. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  14. Adaptive Differentiation of Quantitative Traits in the Globally Distributed Weed, Wild Radish (Raphanus raphanistrum)

    PubMed Central

    Sahli, Heather F.; Conner, Jeffrey K.; Shaw, Frank H.; Howe, Stephen; Lale, Allison

    2008-01-01

    Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as FST) to differentiation of quantitative floral and phenological traits (measured as QST) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of QST and FST, we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time, and rosette formation have greatly diverged between the native and nonnative populations. Our results suggest the loss of a rosette and the evolution of early flowering time may have been the key adaptations enabling wild radish to become a major agricultural weed. Floral adaptation to different pollinators does not seem to have been as necessary for the success of wild radish in new environments. PMID:18854585

  15. Determination of quantitative trait variants by concordance via application of the a posteriori granddaughter design to the U.S. Holstein population

    USDA-ARS?s Scientific Manuscript database

    Experimental designs that exploit family information can provide substantial predictive power in quantitative trait variant discovery projects. Concordance between quantitative trait locus genotype as determined by the a posteriori granddaughter design and marker genotype was determined for 29 trai...

  16. Classification of cassava genotypes based on qualitative and quantitative data.

    PubMed

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  17. Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

    PubMed Central

    Pelgrom, K.; Stam, P.; Lindhout, P.

    2008-01-01

    In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits. PMID:18251002

  18. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.

    PubMed

    Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi

    2010-02-01

    In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.

  19. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants.

    PubMed

    Quenouille, J; Paulhiac, E; Moury, B; Palloix, A

    2014-06-01

    The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.

  20. Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients

    USGS Publications Warehouse

    Lamouroux, N.; Poff, N.L.; Angermeier, P.L.

    2002-01-01

    Community convergence across biogeographically distinct regions suggests the existence of key, repeated, evolutionary mechanisms relating community characteristics to the environment. However, convergence studies at the community level often involve only qualitative comparisons of the environment and may fail to identify which environmental variables drive community structure. We tested the hypothesis that the biological traits of fish communities on two continents (Europe and North America) are similarly related to environmental conditions. Specifically, from observations of individual fish made at the microhabitat scale (a few square meters) within French streams, we generated habitat preference models linking traits of fish species to local scale hydraulic conditions (Froude number), Using this information, we then predicted how hydraulics and geomorphology at the larger scale of stream reaches (several pool-riffle sequences) should quantitatively influence the trait composition of fish communities. Trait composition for fishes in stream reaches with low Froude number at low flow or high proportion of pools was predicted as nonbenthic, large, fecund, long-lived, nonstreamlined, and weak swimmers. We tested our predictions in contrasting stream reaches in France (n = 11) and Virginia, USA (n = 76), using analyses of covariance to quantify the relative influence of continent vs. physical habitat variables on fish traits. The reach-scale convergence analysis indicated that trait proportions in the communities differed between continents (up to 55% of the variance in each trait was explained by "continent"), partly due to distinct evolutionary histories. However, within continents, trait proportions were comparably related to the hydraulic and geomorphic variables (up to 54% of the variance within continents explained). In particular, a synthetic measure of fish traits in reaches was well explained (50% of its variance) by the Froude number independently of the continent. The effect of physical variables did not differ across continents for most traits, confirming our predictions qualitatively and quantitatively. Therefore, despite phylogenetic and historical differences between continents, fish communities of France and Virginia exhibit convergence in biological traits related to hydraulics and geomorphology. This convergence reflects morphological and behavioral adaptations to physical stress in streams. This study supports the existence of a habitat template for ecological strategies. Some key quantitative variables that define this habitat template can be identified by characterizing how individual organisms use their physical environment, and by using dimensionless physical variables that reveal common energetic properties in different systems. Overall, quantitative tests of community convergence are efficient tools to demonstrate that some community traits are predictable from environmental features.

  1. Quantitative differences detected in the histology of galls induced by the same aphid species in different varieties of the same host.

    PubMed

    Martinez, J-J I; Moreno-González, V; Jonas-Levi, A; Álvarez, R

    2018-05-01

    Plant galls are abnormal growths caused by an inducer that determines their morphology and anatomy. We qualitatively and quantitatively compared the histological anatomy of five aphid species (Paracletus cimiciformis, Forda marginata, Forda formicaria, Baizongia pistaciae and Geoica wertheimae) that induce galls in Pistacia terebinthus shrubs growing in Israel. We also quantitatively compared these galls to those that the aphids create on the same host in Spain. Histological study was conducted following methods described previously by the authors. Quantitative differences among the galls were found in five of 12 common anatomical traits: gall thickness, stomatal number in the epidermis-air, size of vascular bundles, distance of phloem ducts from the lumen and number of intraphloematic schizogenous ducts. Other structures were particular to one or some species: number of cracks in the epidermis-lumen, a sclereid layer, trichomes and microcrystal inclusions. Fisher's tests of combined probabilities showed that the galls induced in Israel were statistically different from those in Spain. In particular, the number of intraphloematic schizogenous ducts was higher in the galls induced in P. terebinthus in Israel. Such differences were also found in other traits related to defence of the gall inhabitant. In conclusion, while the gall shape and size are determined mainly by the cecidogenic insect, it seems that the host plant also plays an important role in determining the number/size of quantitative traits, in this case mainly protective structures. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  2. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  3. Comprehensive comparison of self-administered questionnaires for measuring quantitative autistic traits in adults.

    PubMed

    Nishiyama, Takeshi; Suzuki, Masako; Adachi, Katsunori; Sumi, Satoshi; Okada, Kensuke; Kishino, Hirohisa; Sakai, Saeko; Kamio, Yoko; Kojima, Masayo; Suzuki, Sadao; Kanne, Stephen M

    2014-05-01

    We comprehensively compared all available questionnaires for measuring quantitative autistic traits (QATs) in terms of reliability and construct validity in 3,147 non-clinical and 60 clinical subjects with normal intelligence. We examined four full-length forms, the Subthreshold Autism Trait Questionnaire (SATQ), the Broader Autism Phenotype Questionnaire, the Social Responsiveness Scale2-Adult Self report (SRS2-AS), and the Autism-Spectrum Quotient (AQ). The SRS2-AS and the AQ each had several short forms that we also examined, bringing the total to 11 forms. Though all QAT questionnaires showed acceptable levels of test-retest reliability, the AQ and SRS2-AS, including their short forms, exhibited poor internal consistency and discriminant validity, respectively. The SATQ excelled in terms of classical test theory and due to its short length.

  4. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F2:3 and RIL populations.

    PubMed

    Yi, Qiang; Liu, Yinghong; Zhang, Xiangge; Hou, Xianbin; Zhang, Junjie; Liu, Hanmei; Hu, Yufeng; Yu, Guowu; Huang, Yubi

    2018-03-01

    Tassel architecture is an important trait in maize breeding and hybrid seed production. In this study, we investigated total tassel length (TTL) and tassel branch number (TBN) in 266 F 2:3 families across six environments and in 301 recombinant inbred lines (RILs) across three environments, where all the plants were derived from a cross between 08-641 and Ye478. We compared the genetic architecture of the two traits across two generations through combined analysis. In total, 27 quantitative trait loci (QTLs) (15 in F 2:3 ; 16 in RIL), two QTL × environment interactions (both in F 2:3 ), 11 pairs of epistatic interactions (seven in F 2:3 ; four in RIL) and four stable QTLs in both the F 2:3 and RILs were detected. The RIL population had higher detection power than the F 2:3 population. Nevertheless, QTL × environment interactions and epistatic interactions could be more easily detected in the F 2:3 population than in the RILs. Overall, the QTL mapping results in the F 2:3 and RILs were greatly influenced by genetic generations and environments. Finally, fine mapping for a novel and major QTL, qTTL-2-3 (bin 2.07), which accounted for over 8.49% of the phenotypic variation across different environments and generations, could be useful in marker-assisted breeding.

  5. Small- and Large-Effect Quantitative Trait Locus Interactions Underlie Variation in Yeast Sporulation Efficiency

    PubMed Central

    Lorenz, Kim; Cohen, Barak A.

    2012-01-01

    Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125

  6. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III

    Treesearch

    Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale

    2003-01-01

    Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...

  7. Evolutionary Quantitative Genomics of Populus trichocarpa

    PubMed Central

    McKown, Athena D.; La Mantia, Jonathan; Guy, Robert D.; Ingvarsson, Pär K.; Hamelin, Richard; Mansfield, Shawn D.; Ehlting, Jürgen; Douglas, Carl J.; El-Kassaby, Yousry A.

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing Q ST -F ST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense Q ST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant Q ST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios. PMID:26599762

  8. How does cognition evolve? Phylogenetic comparative psychology

    PubMed Central

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  9. How does cognition evolve? Phylogenetic comparative psychology.

    PubMed

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  10. Joint analysis of binary and quantitative traits with data sharing and outcome-dependent sampling.

    PubMed

    Zheng, Gang; Wu, Colin O; Kwak, Minjung; Jiang, Wenhua; Joo, Jungnam; Lima, Joao A C

    2012-04-01

    We study the analysis of a joint association between a genetic marker with both binary (case-control) and quantitative (continuous) traits, where the quantitative trait values are only available for the cases due to data sharing and outcome-dependent sampling. Data sharing becomes common in genetic association studies, and the outcome-dependent sampling is the consequence of data sharing, under which a phenotype of interest is not measured for some subgroup. The trend test (or Pearson's test) and F-test are often, respectively, used to analyze the binary and quantitative traits. Because of the outcome-dependent sampling, the usual F-test can be applied using the subgroup with the observed quantitative traits. We propose a modified F-test by also incorporating the genotype frequencies of the subgroup whose traits are not observed. Further, a combination of this modified F-test and Pearson's test is proposed by Fisher's combination of their P-values as a joint analysis. Because of the correlation of the two analyses, we propose to use a Gamma (scaled chi-squared) distribution to fit the asymptotic null distribution for the joint analysis. The proposed modified F-test and the joint analysis can also be applied to test single trait association (either binary or quantitative trait). Through simulations, we identify the situations under which the proposed tests are more powerful than the existing ones. Application to a real dataset of rheumatoid arthritis is presented. © 2012 Wiley Periodicals, Inc.

  11. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...

  12. Genetic approaches in comparative and evolutionary physiology

    PubMed Central

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  13. Genetic approaches in comparative and evolutionary physiology.

    PubMed

    Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore

    2015-08-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.

  14. Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment.

    PubMed

    Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I

    2016-01-01

    Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.

    PubMed

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2017-05-01

    Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.

  16. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

    PubMed

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2014-01-01

    Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.

  17. Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus sylvestris.

    PubMed

    Waldmann, P; García-Gil, M R; Sillanpää, M J

    2005-06-01

    Comparison of the level of differentiation at neutral molecular markers (estimated as F(ST) or G(ST)) with the level of differentiation at quantitative traits (estimated as Q(ST)) has become a standard tool for inferring that there is differential selection between populations. We estimated Q(ST) of timing of bud set from a latitudinal cline of Pinus sylvestris with a Bayesian hierarchical variance component method utilizing the information on the pre-estimated population structure from neutral molecular markers. Unfortunately, the between-family variances differed substantially between populations that resulted in a bimodal posterior of Q(ST) that could not be compared in any sensible way with the unimodal posterior of the microsatellite F(ST). In order to avoid publishing studies with flawed Q(ST) estimates, we recommend that future studies should present heritability estimates for each trait and population. Moreover, to detect variance heterogeneity in frequentist methods (ANOVA and REML), it is of essential importance to check also that the residuals are normally distributed and do not follow any systematically deviating trends.

  18. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  19. Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae).

    PubMed

    Bessega, C; Pometti, C; Ewens, M; Saidman, B O; Vilardi, J C

    2015-02-01

    Signals of selection on quantitative traits can be detected by the comparison between the genetic differentiation of molecular (neutral) markers and quantitative traits, by multivariate extensions of the same model and by the observation of the additive covariance among relatives. We studied, by three different tests, signals of occurrence of selection in Prosopis alba populations over 15 quantitative traits: three economically important life history traits: height, basal diameter and biomass, 11 leaf morphology traits that may be related with heat-tolerance and physiological responses and spine length that is very important from silvicultural purposes. We analyzed 172 G1-generation trees growing in a common garden belonging to 32 open pollinated families from eight sampling sites in Argentina. The multivariate phenotypes differ significantly among origins, and the highest differentiation corresponded to foliar traits. Molecular genetic markers (SSR) exhibited significant differentiation and allowed us to provide convincing evidence that natural selection is responsible for the patterns of morphological differentiation. The heterogeneous selection over phenotypic traits observed suggested different optima in each population and has important implications for gene resource management. The results suggest that the adaptive significance of traits should be considered together with population provenance in breeding program as a crucial point prior to any selecting program, especially in Prosopis where the first steps are under development.

  20. Sexual selection and the evolution of genital shape and complexity in water striders.

    PubMed

    Rowe, Locke; Arnqvist, Göran

    2012-01-01

    Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  1. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    PubMed Central

    Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira

    2015-01-01

    A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620

  2. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  3. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data.

    PubMed Central

    Orr, H A

    1998-01-01

    Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061

  4. Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate.

    PubMed

    Jasinska, Anna J; Zelaya, Ivette; Service, Susan K; Peterson, Christine B; Cantor, Rita M; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A; Fears, Scott; Furterer, Allison E; Huang, Yu S; Ramensky, Vasily; Schmitt, Christopher A; Svardal, Hannes; Jorgensen, Matthew J; Kaplan, Jay R; Villar, Diego; Aken, Bronwen L; Flicek, Paul; Nag, Rishi; Wong, Emily S; Blangero, John; Dyer, Thomas D; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K; Jentsch, J David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P; Freimer, Nelson B

    2017-12-01

    By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.

  5. A Semiparametric Approach for Composite Functional Mapping of Dynamic Quantitative Traits

    PubMed Central

    Yang, Runqing; Gao, Huijiang; Wang, Xin; Zhang, Ji; Zeng, Zhao-Bang; Wu, Rongling

    2007-01-01

    Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age. PMID:17947431

  6. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs.

    PubMed

    Jenko, Janez; Gorjanc, Gregor; Cleveland, Matthew A; Varshney, Rajeev K; Whitelaw, C Bruce A; Woolliams, John A; Hickey, John M

    2015-07-02

    Genome editing (GE) is a method that enables specific nucleotides in the genome of an individual to be changed. To date, use of GE in livestock has focussed on simple traits that are controlled by a few quantitative trait nucleotides (QTN) with large effects. The aim of this study was to evaluate the potential of GE to improve quantitative traits that are controlled by many QTN, referred to here as promotion of alleles by genome editing (PAGE). Multiple scenarios were simulated to test alternative PAGE strategies for a quantitative trait. They differed in (i) the number of edits per sire (0 to 100), (ii) the number of edits per generation (0 to 500), and (iii) the extent of use of PAGE (i.e. editing all sires or only a proportion of them). The base line scenario involved selecting individuals on true breeding values (i.e., genomic selection only (GS only)-genomic selection with perfect accuracy) for several generations. Alternative scenarios complemented this base line scenario with PAGE (GS + PAGE). The effect of different PAGE strategies was quantified by comparing response to selection, changes in allele frequencies, the number of distinct QTN edited, the sum of absolute effects of the edited QTN per generation, and inbreeding. Response to selection after 20 generations was between 1.08 and 4.12 times higher with GS + PAGE than with GS only. Increases in response to selection were larger with more edits per sire and more sires edited. When the total resources for PAGE were limited, editing a few sires for many QTN resulted in greater response to selection and inbreeding compared to editing many sires for a few QTN. Between the scenarios GS only and GS + PAGE, there was little difference in the average change in QTN allele frequencies, but there was a major difference for the QTN with the largest effects. The sum of the effects of the edited QTN decreased across generations. This study showed that PAGE has great potential for application in livestock breeding programs, but inbreeding needs to be managed.

  7. Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

    PubMed

    Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve

    2008-04-15

    Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait networks if the edges can be anchored to genetic marker data. R software tutorials, data, and supplementary material can be downloaded from: http://www.genetics.ucla.edu/labs/horvath/aten/NEO.

  8. Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and mo...

  9. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  10. CSGRqtl: A Comparative Quantitative Trait Locus Database for Saccharinae Grasses.

    PubMed

    Zhang, Dong; Paterson, Andrew H

    2017-01-01

    Conventional biparental quantitative trait locus (QTL) mapping has led to some successes in the identification of causal genes in many organisms. QTL likelihood intervals not only provide "prior information" for finer-resolution approaches such as GWAS but also provide better statistical power than GWAS to detect variants with low/rare frequency in a natural population. Here, we describe a new element of an ongoing effort to provide online resources to facilitate study and improvement of the important Saccharinae clade. The primary goal of this new resource is the anchoring of published QTLs for this clade to the Sorghum genome. Genetic map alignments translate a wealth of genomic information from sorghum to Saccharum spp., Miscanthus spp., and other taxa. In addition, genome alignments facilitate comparison of the Saccharinae QTL sets to those of other taxa that enjoy comparable resources, exemplified herein by rice.

  11. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  12. Quantitative trait loci analysis for net ginning energy requirements in upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...

  13. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence.

    PubMed

    Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne

    2016-05-01

    Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.

  14. Bone Mineral Density Variation in Men is influenced by Sex-Specific and Non Sex-Specific Quantitative Trait Loci

    PubMed Central

    Peacock, Munro; Koller, Daniel L.; Lai, Dongbing; Hui, Siu; Foroud, Tatiana; Econs, Michael J.

    2009-01-01

    Introduction A major predictor of age-related osteoporotic fracture is peak areal bone mineral density (aBMD) which is a highly heritable trait. However, few linkage and association studies have been performed in men to identify the genes contributing to normal variation in aBMD. The aim of this study was to perform a genome wide scan in healthy men to identify quantitative trait loci (QTL) that were significantly linked to aBMD and to test whether any of these might be sex-specific. Methods aBMD at the spine and hip were measured in 515 pairs of brothers, aged 18-61 (405 white pairs, 110 black pairs). Linkage analysis in the brother sample was compared with results in a previously published sample of 774 sister pairs to identify sex-specific quantitative trait loci (QTL). Results A genome wide scan identified significant QTL (LOD>3.6) for aBMD on chromosomes 4q21 (hip), 7q34 (spine), 14q32 (hip), 19p13 (hip), 21q21 (hip), and 22q13 (hip). Analysis suggested that the QTL on chromosome 7q34, 14q32, and 21q21 were male-specific whereas the others were not sex-specific. Conclusions This study demonstrates that six QTL were significantly linked with aBMD in men. One was linked to spine and five were linked to hip. When compared to published data in women from the same geographical region, the QTL on chromosomes 7, 14 and 21 were male-specific. The occurrence of sex-specific genes in humans for aBMD has important implications for the pathogenesis and treatment of osteoporosis. PMID:19427925

  15. Quantitative and Qualitative Differences in Morphological Traits Revealed between Diploid Fragaria Species

    PubMed Central

    SARGENT, DANIEL J.; GEIBEL, M.; HAWKINS, J. A.; WILKINSON, M. J.; BATTEY, N. H.; SIMPSON, D. W.

    2004-01-01

    • Background and Aims The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. • Methods A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. • Key Results Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. • Conclusions Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group. PMID:15469944

  16. Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.

    PubMed

    Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G

    2006-02-01

    The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.

  17. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  18. Genetic variation and gene expression across multiple tissues and developmental stages in a non-human primate

    PubMed Central

    Jasinska, Anna J.; Zelaya, Ivette; Service, Susan K.; Peterson, Christine B.; Cantor, Rita M.; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A.; Fears, Scott; Furterer, Allison E.; Huang, Yu S.; Ramensky, Vasily; Schmitt, Christopher A.; Svardal, Hannes; Jorgensen, Matthew J.; Kaplan, Jay R.; Villar, Diego; Aken, Bronwen L.; Flicek, Paul; Nag, Rishi; Wong, Emily S.; Blangero, John; Dyer, Thomas D.; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M.; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K.; Jentsch, J. David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P.; Freimer, Nelson B.

    2017-01-01

    By analyzing multi-tissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalogue of expression quantitative trait loci (eQTLs) in a non-human primate model. This catalogue contains more genome-wide significant eQTLs, per sample, than comparable human resources, and reveals sex and age-related expression patterns. Findings include a master regulatory locus that likely plays a role in immune function, and a locus regulating hippocampal long non-coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders. PMID:29083405

  19. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  20. Genetics Home Reference: prostate cancer

    MedlinePlus

    ... prostate cancer Genetic Testing Registry: Prostate cancer aggressiveness quantitative trait locus on chromosome 19 Genetic Testing Registry: ... OMIM (25 links) PROSTATE CANCER PROSTATE CANCER AGGRESSIVENESS QUANTITATIVE TRAIT LOCUS ON CHROMOSOME 19 PROSTATE CANCER ANTIGEN ...

  1. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  2. A test for selection employing quantitative trait locus and mutation accumulation data.

    PubMed

    Rice, Daniel P; Townsend, Jeffrey P

    2012-04-01

    Evolutionary biologists attribute much of the phenotypic diversity observed in nature to the action of natural selection. However, for many phenotypic traits, especially quantitative phenotypic traits, it has been challenging to test for the historical action of selection. An important challenge for biologists studying quantitative traits, therefore, is to distinguish between traits that have evolved under the influence of strong selection and those that have evolved neutrally. Most existing tests for selection employ molecular data, but selection also leaves a mark on the genetic architecture underlying a trait. In particular, the distribution of quantitative trait locus (QTL) effect sizes and the distribution of mutational effects together provide information regarding the history of selection. Despite the increasing availability of QTL and mutation accumulation data, such data have not yet been effectively exploited for this purpose. We present a model of the evolution of QTL and employ it to formulate a test for historical selection. To provide a baseline for neutral evolution of the trait, we estimate the distribution of mutational effects from mutation accumulation experiments. We then apply a maximum-likelihood-based method of inference to estimate the range of selection strengths under which such a distribution of mutations could generate the observed QTL. Our test thus represents the first integration of population genetic theory and QTL data to measure the historical influence of selection.

  3. Uncovering the genetic signature of quantitative trait evolution with replicated time series data.

    PubMed

    Franssen, S U; Kofler, R; Schlötterer, C

    2017-01-01

    The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.

  4. Mapping quantitative trait loci for binary trait in the F2:3 design.

    PubMed

    Zhu, Chengsong; Zhang, Yuan-Ming; Guo, Zhigang

    2008-12-01

    In the analysis of inheritance of quantitative traits with low heritability, an F(2:3) design that genotypes plants in F(2) and phenotypes plants in F(2:3) progeny is often used in plant genetics. Although statistical approaches for mapping quantitative trait loci (QTL) in the F(2:3) design have been well developed, those for binary traits of biological interest and economic importance are seldom addressed. In this study, an attempt was made to map binary trait loci (BTL) in the F(2:3) design. The fundamental idea was: the F(2) plants were genotyped, all phenotypic values of each F(2:3) progeny were measured for binary trait, and these binary trait values and the marker genotype informations were used to detect BTL under the penetrance and liability models. The proposed method was verified by a series of Monte-Carlo simulation experiments. These results showed that maximum likelihood approaches under the penetrance and liability models provide accurate estimates for the effects and the locations of BTL with high statistical power, even under of low heritability. Moreover, the penetrance model is as efficient as the liability model, and the F(2:3) design is more efficient than classical F(2) design, even though only a single progeny is collected from each F(2:3) family. With the maximum likelihood approaches under the penetrance and the liability models developed in this study, we can map binary traits as we can do for quantitative trait in the F(2:3) design.

  5. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir.II. Spring and fall cold-hardiness

    Treesearch

    K.D. Jermstad; D.L. Bassoni; N.C. Wheeler; T.S. Anekonda; S.N. Aitken; W.T. Adams; D.B. Neale

    2001-01-01

    Abstract Quantitative trait loci (QTLs) affecting fall and spring cold-hardiness were identified in a three-generation outbred pedigree of coastal Douglas-fir [Pseudotsuga meniziesii (Mirb.) Franco var. menziesii]. Eleven QTLs controlling fall cold-hardiness were detected on four linkage groups, and 15 QTLs controlling spring cold-hardiness were detected on four...

  6. Variation in trait trade-offs allows differentiation among predefined plant functional types: implications for predictive ecology.

    PubMed

    Verheijen, Lieneke M; Aerts, Rien; Bönisch, Gerhard; Kattge, Jens; Van Bodegom, Peter M

    2016-01-01

    Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species' functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n-dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1-6 traits from a database with 18 different traits (total of 18 287 species) were tested. A variety of trait sets had approximately similar performance, and 4-5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Genetic Variants Associated With Quantitative Glucose Homeostasis Traits Translate to Type 2 Diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium.

    PubMed

    Palmer, Nicholette D; Goodarzi, Mark O; Langefeld, Carl D; Wang, Nan; Guo, Xiuqing; Taylor, Kent D; Fingerlin, Tasha E; Norris, Jill M; Buchanan, Thomas A; Xiang, Anny H; Haritunians, Talin; Ziegler, Julie T; Williams, Adrienne H; Stefanovski, Darko; Cui, Jinrui; Mackay, Adrienne W; Henkin, Leora F; Bergman, Richard N; Gao, Xiaoyi; Gauderman, James; Varma, Rohit; Hanis, Craig L; Cox, Nancy J; Highland, Heather M; Below, Jennifer E; Williams, Amy L; Burtt, Noel P; Aguilar-Salinas, Carlos A; Huerta-Chagoya, Alicia; Gonzalez-Villalpando, Clicerio; Orozco, Lorena; Haiman, Christopher A; Tsai, Michael Y; Johnson, W Craig; Yao, Jie; Rasmussen-Torvik, Laura; Pankow, James; Snively, Beverly; Jackson, Rebecca D; Liu, Simin; Nadler, Jerry L; Kandeel, Fouad; Chen, Yii-Der I; Bowden, Donald W; Rich, Stephen S; Raffel, Leslie J; Rotter, Jerome I; Watanabe, Richard M; Wagenknecht, Lynne E

    2015-05-01

    Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  9. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704

  10. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.

  11. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.

  12. solGS: a web-based tool for genomic selection

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, ana...

  13. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis.

    PubMed

    Bentsink, Leónie; Jowett, Jemma; Hanhart, Corrie J; Koornneef, Maarten

    2006-11-07

    Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.

  14. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes.

    PubMed

    Kakioka, Ryo; Kokita, Tomoyuki; Kumada, Hiroki; Watanabe, Katsutoshi; Okuda, Noboru

    2015-08-01

    Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake-stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system. © 2015 John Wiley & Sons Ltd.

  15. Quantitative trait loci for magnitude of the plasma cortisol response to confinement in rainbow trout.

    PubMed

    Quillet, E; Krieg, F; Dechamp, N; Hervet, C; Bérard, A; Le Roy, P; Guyomard, R; Prunet, P; Pottinger, T G

    2014-04-01

    Better understanding of the mechanisms underlying interindividual variation in stress responses and their links with production traits is a key issue for sustainable animal breeding. In this study, we searched for quantitative trait loci (QTL) controlling the magnitude of the plasma cortisol stress response and compared them to body size traits in five F2 full-sib families issued from two rainbow trout lines divergently selected for high or low post-confinement plasma cortisol level. Approximately 1000 F2 individuals were individually tagged and exposed to two successive acute confinement challenges (1 month interval). Post-stress plasma cortisol concentrations were determined for each fish. A medium density genome scan was carried out (268 markers, overall marker spacing less than 10 cM). QTL detection was performed using qtlmap software, based on an interval mapping method (http://www.inra.fr/qtlmap). Overall, QTL of medium individual effects on cortisol responsiveness (<10% of phenotypic variance) were detected on 18 chromosomes, strongly supporting the hypothesis that control of the trait is polygenic. Although a core array of QTL controlled cortisol concentrations at both challenges, several QTL seemed challenge specific, suggesting that responses to the first and to a subsequent exposure to the confinement stressor are distinct traits sharing only part of their genetic control. Chromosomal location of the steroidogenic acute regulatory protein (STAR) makes it a good potential candidate gene for one of the QTL. Finally, comparison of body size traits QTL (weight, length and body conformation) with cortisol-associated QTL did not support evidence for negative genetic relationships between the two types of traits. © 2014 Stichting International Foundation for Animal Genetics.

  16. A new method of linkage analysis using LOD scores for quantitative traits supports linkage of monoamine oxidase activity to D17S250 in the Collaborative Study on the Genetics of Alcoholism pedigrees.

    PubMed

    Curtis, David; Knight, Jo; Sham, Pak C

    2005-09-01

    Although LOD score methods have been applied to diseases with complex modes of inheritance, linkage analysis of quantitative traits has tended to rely on non-parametric methods based on regression or variance components analysis. Here, we describe a new method for LOD score analysis of quantitative traits which does not require specification of a mode of inheritance. The technique is derived from the MFLINK method for dichotomous traits. A range of plausible transmission models is constructed, constrained to yield the correct population mean and variance for the trait but differing with respect to the contribution to the variance due to the locus under consideration. Maximized LOD scores under homogeneity and admixture are calculated, as is a model-free LOD score which compares the maximized likelihoods under admixture assuming linkage and no linkage. These LOD scores have known asymptotic distributions and hence can be used to provide a statistical test for linkage. The method has been implemented in a program called QMFLINK. It was applied to data sets simulated using a variety of transmission models and to a measure of monoamine oxidase activity in 105 pedigrees from the Collaborative Study on the Genetics of Alcoholism. With the simulated data, the results showed that the new method could detect linkage well if the true allele frequency for the trait was close to that specified. However, it performed poorly on models in which the true allele frequency was much rarer. For the Collaborative Study on the Genetics of Alcoholism data set only a modest overlap was observed between the results obtained from the new method and those obtained when the same data were analysed previously using regression and variance components analysis. Of interest is that D17S250 produced a maximized LOD score under homogeneity and admixture of 2.6 but did not indicate linkage using the previous methods. However, this region did produce evidence for linkage in a separate data set, suggesting that QMFLINK may have been able to detect a true linkage which was not picked up by the other methods. The application of model-free LOD score analysis to quantitative traits is novel and deserves further evaluation of its merits and disadvantages relative to other methods.

  17. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush.

    Treesearch

    K.D. Jermstad; D.L. Bassoni; K.S. Jech; N.C. Wheeler; D.B. Neale

    2001-01-01

    Abstract Thirty three unique quantitative trait loci (QTLs) affecting the timing of spring bud flush have been identified in an intraspecific mapping population of coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii]. Both terminal and lateral bud flush were measured over a 4-year period on clonal replicates at two test sites, allowing for the...

  18. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  19. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  20. Maternal genetic effects on adaptive divergence between anadromous and resident brook charr during early life history.

    PubMed

    Perry, G M L; Audet, C; Bernatchez, L

    2005-09-01

    The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic architecture by age category and the sex of the parent used in estimation.

  1. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids.

    PubMed

    Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte

    2018-02-01

    This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.

  2. Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics.

    PubMed

    Chen, Wenan; McDonnell, Shannon K; Thibodeau, Stephen N; Tillmans, Lori S; Schaid, Daniel J

    2016-11-01

    Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities. Copyright © 2016 by the Genetics Society of America.

  3. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm.

    PubMed

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.

  4. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm

    PubMed Central

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570

  5. Quantitative trait loci for cell wall composition traits measured using near-infrared spectroscopy in the model C4 perennial grass Panicum hallii

    DOE PAGES

    Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.; ...

    2018-02-03

    Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less

  6. Quantitative trait loci for cell wall composition traits measured using near-infrared spectroscopy in the model C4 perennial grass Panicum hallii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.

    Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less

  7. Modelling the co-evolution of indirect genetic effects and inherited variability.

    PubMed

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.

  8. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    USDA-ARS?s Scientific Manuscript database

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  9. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    PubMed

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  10. The effect of induced mutations on quantitative traits in Arabidopsis thaliana: Natural versus artificial conditions.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2016-12-01

    Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness-related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.

  11. Missing heritability in the tails of quantitative traits? A simulation study on the impact of slightly altered true genetic models.

    PubMed

    Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André

    2011-01-01

    Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.

  12. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait

    PubMed Central

    Hernández-Serrano, Ana; Verdú, Miguel; Santos-del-Blanco, Luís; Climent, José; González-Martínez, Santiago C.; Pausas, Juli G.

    2014-01-01

    Background and Aims Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QST–FST comparison). Methods A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance. Key Results Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites. Conclusions Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits. PMID:25008363

  13. Sensation seeking and impulsive traits as personality endophenotypes for antisocial behavior: Evidence from two independent samples

    PubMed Central

    Mann, Frank D.; Engelhardt, Laura; Briley, Daniel A.; Grotzinger, Andrew D.; Patterson, Megan W.; Tackett, Jennifer L.; Strathan, Dixie B.; Heath, Andrew; Lynskey, Michael; Slutske, Wendy; Martin, Nicholas G.; Tucker-Drob, Elliot M.; Harden, K. Paige

    2017-01-01

    Sensation seeking and impulsivity are personality traits that are correlated with risk for antisocial behavior (ASB). This paper uses two independent samples of twins to (a) test the extent to which sensation seeking and impulsivity statistically mediate genetic influence on ASB, and (b) compare this to genetic influences accounted for by other personality traits. In Sample 1, delinquent behavior, as well as impulsivity, sensation seeking and Big Five personality traits, were measured in adolescent twins from the Texas Twin Project. In Sample 2, adult twins from the Australian Twin Registry responded to questionnaires that assessed individual differences in Eysenck's and Cloninger's personality dimensions, and a structured telephone interview that asked participants to retrospectively report DSM-defined symptoms of conduct disorder. Bivariate quantitative genetic models were used to identify genetic overlap between personality traits and ASB. Across both samples, novelty/sensation seeking and impulsive traits accounted for larger portions of genetic variance in ASB than other personality traits. We discuss whether sensation seeking and impulsive personality are causal endophenotypes for ASB, or merely index genetic liability for ASB. PMID:28824215

  14. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  15. Expression quantitative trait loci: replication, tissue- and sex-specificity in mice.

    PubMed

    van Nas, Atila; Ingram-Drake, Leslie; Sinsheimer, Janet S; Wang, Susanna S; Schadt, Eric E; Drake, Thomas; Lusis, Aldons J

    2010-07-01

    By treating the transcript abundance as a quantitative trait, gene expression can be mapped to local or distant genomic regions relative to the gene encoding the transcript. Local expression quantitative trait loci (eQTL) generally act in cis (that is, control the expression of only the contiguous structural gene), whereas distal eQTL act in trans. Distal eQTL are more difficult to identify with certainty due to the fact that significant thresholds are very high since all regions of the genome must be tested, and confounding factors such as batch effects can produce false positives. Here, we compare findings from two large genetic crosses between mouse strains C3H/HeJ and C57BL/6J to evaluate the reliability of distal eQTL detection, including "hotspots" influencing the expression of multiple genes in trans. We found that >63% of local eQTL and >18% of distal eQTL were replicable at a threshold of LOD > 4.3 between crosses and 76% of local and >24% of distal eQTL at a threshold of LOD > 6. Additionally, at LOD > 4.3 four tissues studied (adipose, brain, liver, and muscle) exhibited >50% preservation of local eQTL and >17% preservation of distal eQTL. We observed replicated distal eQTL hotspots between the crosses on chromosomes 9 and 17. Finally, >69% of local eQTL and >10% of distal eQTL were preserved in most tissues between sexes. We conclude that most local eQTL are highly replicable between mouse crosses, tissues, and sex as compared to distal eQTL, which exhibited modest replicability.

  16. How weeds emerge: a taxonomic and trait-based examination using United States data

    PubMed Central

    Kuester, Adam; Conner, Jeffrey K; Culley, Theresa; Baucom, Regina S

    2014-01-01

    Weeds can cause great economic and ecological harm to ecosystems. Despite their importance, comparisons of the taxonomy and traits of successful weeds often focus on a few specific comparisons – for example, introduced versus native weeds.We used publicly available inventories of US plant species to make comprehensive comparisons of the factors that underlie weediness. We quantitatively examined taxonomy to determine if certain genera are overrepresented by introduced, weedy or herbicide-resistant species, and we compared phenotypic traits of weeds to those of nonweeds, whether introduced or native.We uncovered genera that have more weeds and introduced species than expected by chance and plant families that have more herbicide-resistant species than expected by chance. Certain traits, generally related to fast reproduction, were more likely to be associated with weedy plants regardless of species’ origins. We also found stress tolerance traits associated with either native or introduced weeds compared with native or introduced nonweeds. Weeds and introduced species have significantly smaller genomes than nonweeds and native species.These results support trends for weedy plants reported from other floras, suggest that native and introduced weeds have different stress adaptations, and provide a comprehensive survey of trends across weeds within the USA. PMID:24494694

  17. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    PubMed Central

    Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.

    2017-01-01

    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401

  18. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL.

    PubMed

    Cavanagh, Colin R; Jonas, Elisabeth; Hobbs, Matthew; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W

    2010-09-16

    An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.

  19. Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population.

    PubMed

    Liu, Y H; Yi, Q; Hou, X B; Zhang, X G; Zhang, J J; Liu, H M; Hu, Y F; Huang, Y B

    2016-06-30

    Flowering-related traits in maize are affected by complex factors and are important for the improvement of cropping systems in the maize zone. Quantitative trait loci (QTLs) detected using different materials and methods usually vary. In the present study, 266 maize (Zea mays) F2:3 families and 301 recombinant inbred lines (RIL) derived from a cross between 08-641 (founding parent from southeast China) and Ye478 (founding parent from China) were evaluated for four flowering-related traits, including days to tasseling (DTT), days to pollen shedding (DPS), days to silking (DTS), and anthesis-silking interval. Sixty-six QTLs controlling the target traits were detected in the F2:3 and RIL populations via single environment analysis and joint analysis across all environments (JAAE). The QTLs explained 0.8-13.47% of the phenotypic variation, with 12 QTLs explaining more than 10%. The results of meta-QTL (MQTL) analysis indicated that 41 QTLs could be integrated into 14 MQTLs. One MQTL included 2.9 QTLs, ranging from two to ten QTLs for one to three traits. QTLs, including MQTL1-1 and MQTL9-1, were detected across the F2:3 and RIL populations via SAE and JAAE. Among the MQTLs, nine QTLs were integrated into MQTL9-1 and affected DTT, DPS, and DTS, with the favored allele being derived from 08-641. MQTL3-2 showed high phenotypic variation and was suitable for fine mapping to determine the genetic mechanisms of flowering. MQTL3-2 could be applied to improve inbred lines using marker-assisted selection.

  20. A quantitative trait locus mixture model that avoids spurious LOD score peaks.

    PubMed Central

    Feenstra, Bjarke; Skovgaard, Ib M

    2004-01-01

    In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented. PMID:15238544

  1. A quantitative trait locus mixture model that avoids spurious LOD score peaks.

    PubMed

    Feenstra, Bjarke; Skovgaard, Ib M

    2004-06-01

    In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented.

  2. EPS-LASSO: Test for High-Dimensional Regression Under Extreme Phenotype Sampling of Continuous Traits.

    PubMed

    Xu, Chao; Fang, Jian; Shen, Hui; Wang, Yu-Ping; Deng, Hong-Wen

    2018-01-25

    Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in extreme phenotypic samples, EPS can boost the association power compared to random sampling. Most existing statistical methods for EPS examine the genetic factors individually, despite many quantitative traits have multiple genetic factors underlying their variation. It is desirable to model the joint effects of genetic factors, which may increase the power and identify novel quantitative trait loci under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized techniques, e.g., the least absolute shrinkage and selection operator (LASSO). Although there are extensive research and application related to LASSO, the statistical inference and testing for the sparse model under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function. The comprehensive simulation shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-LASSO can provide a consistent power for both low- and high-dimensional situations compared with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is close to other low-dimensional methods when the causal effect sizes are small and is superior when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. The source code is available at https://github.com/xu1912/EPSLASSO. hdeng2@tulane.edu. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study.

    PubMed

    Du, Xiongming; Liu, Shouye; Sun, Junling; Zhang, Gengyun; Jia, Yinhua; Pan, Zhaoe; Xiang, Haitao; He, Shoupu; Xia, Qiuju; Xiao, Songhua; Shi, Weijun; Quan, Zhiwu; Liu, Jianguang; Ma, Jun; Pang, Baoyin; Wang, Liru; Sun, Gaofei; Gong, Wenfang; Jenkins, Johnie N; Lou, Xiangyang; Zhu, Jun; Xu, Haiming

    2018-06-13

    Cottonseed is one of the most important raw materials for plant protein, oil and alternative biofuel for diesel engines. Understanding the complex genetic basis of cottonseed traits is requisite for achieving efficient genetic improvement of the traits. However, it is not yet clear about their genetic architecture in genomic level. GWAS has been an effective way to explore genetic basis of quantitative traits in human and many crops. This study aims to dissect genetic mechanism seven cottonseed traits by a GWAS for genetic improvement. A genome-wide association study (GWAS) based on a full gene model with gene effects as fixed and gene-environment interaction as random, was conducted for protein, oil and 5 fatty acids using 316 accessions and ~ 390 K SNPs. Totally, 124 significant quantitative trait SNPs (QTSs), consisting of 16, 21, 87 for protein, oil and fatty acids (palmitic, linoleic, oleic, myristic, stearic), respectively, were identified and the broad-sense heritability was estimated from 71.62 to 93.43%; no QTS-environment interaction was detected for the protein, the palmitic and the oleic contents; the protein content was predominantly controlled by epistatic effects accounting for 65.18% of the total variation, but the oil content and the fatty acids except the palmitic were mainly determined by gene main effects and no epistasis was detected for the myristic and the stearic. Prediction of superior pure line and hybrid revealed the potential of the QTSs in the improvement of cottonseed traits, and the hybrid could achieve higher or lower genetic values compared with pure lines. This study revealed complex genetic architecture of seven cottonseed traits at whole genome-wide by mixed linear model approach; the identified genetic variants and estimated genetic component effects of gene, gene-gene and gene-environment interaction provide cotton geneticist or breeders new knowledge on the genetic mechanism of the traits and the potential molecular breeding design strategy.

  4. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  5. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    PubMed

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  6. Genetics of Species Differences in the Wild Annual Sunflowers, Helianthus annuus and H. petiolaris

    PubMed Central

    Lexer, Christian; Rosenthal, David M.; Raymond, Olivier; Donovan, Lisa A.; Rieseberg, Loren H.

    2005-01-01

    Much of our knowledge of speciation genetics stems from quantitative trait locus (QTL) studies. However, interpretations of the size and distribution of QTL underlying species differences are complicated by differences in the way QTL magnitudes are estimated. Also, many studies fail to exploit information about QTL directions or to compare inter- and intraspecific QTL variation. Here, we comprehensively analyze an extensive QTL data set for an interspecific backcross between two wild annual sunflowers, Helianthus annuus and H. petiolaris, interpret different estimates of QTL magnitudes, identify trait groups that have diverged through selection, and compare inter- and intraspecific QTL magnitudes. Our results indicate that even minor QTL (in terms of backcross variance) may be surprisingly large compared to levels of standing variation in the parental species or phenotypic differences between them. Morphological traits, particularly flower morphology, were more strongly or consistently selected than life history or physiological traits. Also, intraspecific QTL were generally smaller than interspecific ones, consistent with the prediction that larger QTL are more likely to spread to fixation across a subdivided population. Our results inform the genetics of species differences in Helianthus and suggest an approach for the simultaneous mapping of inter- and intraspecific QTL. PMID:15545657

  7. Sex-specific genetic variances in life-history and morphological traits of the seed beetle Callosobruchus maculatus.

    PubMed

    Hallsson, Lára R; Björklund, Mats

    2012-01-01

    Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.

  8. Sex-specific genetic variances in life-history and morphological traits of the seed beetle Callosobruchus maculatus

    PubMed Central

    Hallsson, Lára R; Björklund, Mats

    2012-01-01

    Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (rA) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (rMF) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire () compared to dam () variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution. PMID:22408731

  9. Quantitative trait loci associated with anthracnose resistance in sorghum

    USDA-ARS?s Scientific Manuscript database

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  10. Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley

    USDA-ARS?s Scientific Manuscript database

    In this study, the Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- alpha-, beta-, delta-, gamma-tocopherol and tocotrienol- were assayed. We found...

  11. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    PubMed

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  12. Effects of normalization on quantitative traits in association test

    PubMed Central

    2009-01-01

    Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414

  13. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    PubMed

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  14. Leaf epidermis images for robust identification of plants

    PubMed Central

    da Silva, Núbia Rosa; Oliveira, Marcos William da Silva; Filho, Humberto Antunes de Almeida; Pinheiro, Luiz Felipe Souza; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez

    2016-01-01

    This paper proposes a methodology for plant analysis and identification based on extracting texture features from microscopic images of leaf epidermis. All the experiments were carried out using 32 plant species with 309 epidermal samples captured by an optical microscope coupled to a digital camera. The results of the computational methods using texture features were compared to the conventional approach, where quantitative measurements of stomatal traits (density, length and width) were manually obtained. Epidermis image classification using texture has achieved a success rate of over 96%, while success rate was around 60% for quantitative measurements taken manually. Furthermore, we verified the robustness of our method accounting for natural phenotypic plasticity of stomata, analysing samples from the same species grown in different environments. Texture methods were robust even when considering phenotypic plasticity of stomatal traits with a decrease of 20% in the success rate, as quantitative measurements proved to be fully sensitive with a decrease of 77%. Results from the comparison between the computational approach and the conventional quantitative measurements lead us to discover how computational systems are advantageous and promising in terms of solving problems related to Botany, such as species identification. PMID:27217018

  15. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  16. Environmental quality and evolutionary potential: lessons from wild populations

    PubMed Central

    Charmantier, Anne; Garant, Dany

    2005-01-01

    An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution. PMID:16011915

  17. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Coates, B S; Alves, A P; Wang, H; Zhou, X; Nowatzki, T; Chen, H; Rangasamy, M; Robertson, H M; Whitfield, C W; Walden, K K; Kachman, S D; French, B W; Meinke, L J; Hawthorne, D; Abel, C A; Sappington, T W; Siegfried, B D; Miller, N J

    2016-02-01

    The western corn rootworm, Diabrotica virgifera virgifera, is an insect pest of corn and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency amongst D. v. virgifera populations, resulting in the reduced efficacy in many corn-growing regions of the USA. We used comparative functional genomic and quantitative trait locus (QTL) mapping approaches to investigate the genetic basis of D. v. virgifera resistance to the organophosphate methyl-parathion. RNA from adult methyl-parathion resistant and susceptible adults was hybridized to 8331 microarray probes. The results predicted that 11 transcripts were significantly up-regulated in resistant phenotypes, with the most significant (fold increases ≥ 2.43) being an α-esterase-like transcript. Differential expression was validated only for the α-esterase (ST020027A20C03), with 11- to 13-fold greater expression in methyl-parathion resistant adults (P < 0.05). Progeny with a segregating methyl-parathion resistance trait were obtained from a reciprocal backcross design. QTL analyses of high-throughput single nucleotide polymorphism genotype data predicted involvement of a single genome interval. These data suggest that a specific carboyxesterase may function in field-evolved corn rootworm resistance to organophosphates, even though direct linkage between the QTL and this locus could not be established. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Approaches for Assessing Olfaction in Children with Autism Spectrum Disorder.

    PubMed

    Kumazaki, Hirokazu; Okamoto, Masako; Kanzaki, Sho; Okada, Ken-Ichi; Mimura, Masaru; Minabe, Yoshio; Kikuchi, Mitsuru

    2018-01-01

    Olfactory traits in individuals with autism spectrum disorder (ASD) are considered the strongest predictors of social impairment. Compared to other sensory abnormalities, olfactory abnormalities in individuals with ASD are poorly understood. In this chapter, we provide an overview of the current assessment in individuals with ASD. Several confounding factors have to be considered when conducting research on olfaction in individuals with ASD. Qualitative measures of olfaction contain only limited information about the olfactory stimuli. In addition, little systematic information is available about individual's actual uses of olfaction in daily life. Only a limited number of experimental studies have performed quantitative measurements of olfactory abnormalities in ASD. Therefore, clarifying the relationship between olfactory traits and the influence of real-life situations in a laboratory setting is very difficult. Some new methodologies for measuring olfactory traits are gradually becoming available. New methods that reveal important links between ASD and olfactory traits should be developed in the future.

  19. Advances in QTL Mapping in Pigs

    PubMed Central

    Rothschild, Max F.; Hu, Zhi-liang; Jiang, Zhihua

    2007-01-01

    Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally, these studies continue to identify genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. A well developed QTL database called PigQTLdb is now as a valuable tool for summarizing and pinpointing in silico regions of interest to researchers. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve traits of economic performance. The long awaited sequencing efforts are also now beginning to provide sequence available for both comparative genomics and large scale single nucleotide polymorphism (SNP) association studies. While these advances are all positive, development of useful new trait families and measurement of new or underlying traits still limits future discoveries. A review of these developments is presented. PMID:17384738

  20. Integrating Genomic Analysis with the Genetic Basis of Gene Expression: Preliminary Evidence of the Identification of Causal Genes for Cardiovascular and Metabolic Traits Related to Nutrition in Mexicans123

    PubMed Central

    Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.

    2012-01-01

    Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999

  1. Exploring the interaction among EPHX1, GSTP1, SERPINE2, and TGFB1 contributing to the quantitative traits of chronic obstructive pulmonary disease in Chinese Han population.

    PubMed

    An, Li; Lin, Yingxiang; Yang, Ting; Hua, Lin

    2016-05-18

    Currently, the majority of genetic association studies on chronic obstructive pulmonary disease (COPD) risk focused on identifying the individual effects of single nucleotide polymorphisms (SNPs) as well as their interaction effects on the disease. However, conventional genetic studies often use binary disease status as the primary phenotype, but for COPD, many quantitative traits have the potential correlation with the disease status and closely reflect pathological changes. Here, we genotyped 44 SNPs from four genes (EPHX1, GSTP1, SERPINE2, and TGFB1) in 310 patients and 203 controls which belonged to the Chinese Han population to test the two-way and three-way genetic interactions with COPD-related quantitative traits using recently developed generalized multifactor dimensionality reduction (GMDR) and quantitative multifactor dimensionality reduction (QMDR) algorithms. Based on the 310 patients and the whole samples of 513 subjects, the best gene-gene interactions models were detected for four lung-function-related quantitative traits. For the forced expiratory volume in 1 s (FEV1), the best interaction was seen from EPHX1, SERPINE2, and GSTP1. For FEV1%pre, the forced vital capacity (FVC), and FEV1/FVC, the best interactions were seen from SERPINE2 and TGFB1. The results of this study provide further evidence for the genotype combinations at risk of developing COPD in Chinese Han population and improve the understanding on the genetic etiology of COPD and COPD-related quantitative traits.

  2. Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait.

    PubMed

    Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David

    2003-12-31

    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits.

  3. Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait

    PubMed Central

    Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David

    2003-01-01

    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits. PMID:14975142

  4. Genome-wide QTL analysis for anxiety trait in bipolar disorder type I.

    PubMed

    Contreras, J; Hare, E; Chavarría-Soley, G; Raventós, H

    2018-07-01

    Genetic studies have been consistent that bipolar disorder type I (BPI) runs in families and that this familial aggregation is strongly influenced by genes. In a preliminary study, we proved that anxiety trait meets endophenotype criteria for BPI. We assessed 619 individuals from the Central Valley of Costa Rica (CVCR) who have received evaluation for anxiety following the same methodological procedure used for the initial pilot study. Our goal was to conduct a multipoint quantitative trait linkage analysis to identify quantitative trait loci (QTLs) related to anxiety trait in subjects with BPI. We conducted the statistical analyses using Quantitative Trait Loci method (Variance-components models), implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR), using 5606 single nucleotide polymorphism (SNPs). We identified a suggestive linkage signal with a LOD score of 2.01 at chromosome 2 (2q13-q14). Since confounding factors such as substance abuse, medical illness and medication history were not assessed in our study, these conclusions should be taken as preliminary. We conclude that region 2q13-q14 may harbor a candidate gene(s) with an important role in the pathophysiology of BPI and anxiety. Published by Elsevier B.V.

  5. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.

  6. Comparative quantitative trait loci for silique length and seed weight in Brassica napus.

    PubMed

    Fu, Ying; Wei, Dayong; Dong, Hongli; He, Yajun; Cui, Yixin; Mei, Jiaqin; Wan, Huafang; Li, Jiana; Snowdon, Rod; Friedt, Wolfgang; Li, Xiaorong; Qian, Wei

    2015-09-23

    Silique length (SL) and seed weight (SW) are important yield-associated traits in rapeseed (Brassica napus). Although many quantitative trait loci (QTL) for SL and SW have been identified in B. napus, comparative analysis for those QTL is seldom performed. In the present study, 20 and 21 QTL for SL and SW were identified in doubled haploid (DH) and DH-derived reconstructed F2 populations in rapeseed, explaining 55.1-74.3% and 24.4-62.9% of the phenotypic variation across three years, respectively. Of which, 17 QTL with partially or completely overlapped confidence interval on chromosome A09, were homologous with two overlapped QTL on chromosome C08 by aligning QTL confidence intervals with the reference genomes of Brassica crops. By high density selective genotyping of DH lines with extreme phenotypes, using a Brassica single-nucleotide polymorphism (SNP) array, the QTL on chromosome A09 was narrowed, and aligned into 1.14-Mb region from 30.84 to 31.98 Mb on chromosome R09 of B. rapa and 1.05-Mb region from 27.21 to 28.26 Mb on chromosome A09 of B. napus. The alignment of QTL with Brassica reference genomes revealed homologous QTL on A09 and C08 for SL. The narrowed QTL region provides clues for gene cloning and breeding cultivars by marker-assisted selection.

  7. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  8. CBCL Pediatric Bipolar Disorder Profile and ADHD: Comorbidity and Quantitative Trait Loci Analysis

    ERIC Educational Resources Information Center

    McGough, James J.; Loo, Sandra K.; McCracken, James T.; Dang, Jeffery; Clark, Shaunna; Nelson, Stanley F.; Smalley, Susan L.

    2008-01-01

    The pediatric bipolar disorder profile of the Child Behavior checklist is used to differentiate patterns of comorbidity and to search for quantitative trait loci in multiple affected ADHD sibling pairs. The CBCL-PBD profiling identified 8 percent of individuals with severe psychopathology and increased rates of oppositional defiant, conduct and…

  9. Multi-ethnic meta-analysis identifies RAI1 as a possible obstructive sleep apnea related quantitative trait locus in men

    USDA-ARS?s Scientific Manuscript database

    Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single et...

  10. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  11. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize.

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...

  12. Confirmatory Factor Analytic Structure and Measurement Invariance of Quantitative Autistic Traits Measured by the Social Responsiveness Scale-2

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Ratliff, Kristin R.; Gruber, Chris; Zhang, Yi; Law, Paul A.; Constantino, John N.

    2014-01-01

    Understanding the factor structure of autistic symptomatology is critical to the discovery and interpretation of causal mechanisms in autism spectrum disorder. We applied confirmatory factor analysis and assessment of measurement invariance to a large ("N" = 9635) accumulated collection of reports on quantitative autistic traits using…

  13. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    PubMed

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability for ASD can accumulate in a given family in successive generations.

  14. Quantitative trait loci analyses and RNA-seq identify genes affecting stress response in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such trait is the response of rai...

  15. Improvement of baking quality traits through a diverse soft winter wheat population

    USDA-ARS?s Scientific Manuscript database

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  16. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder

    PubMed Central

    2013-01-01

    Objective Converging lines of evidence point to the existence of immune dysfunction in autism spectrum disorder (ASD), which could directly affect several key neurodevelopmental processes. Previous studies have shown higher cytokine levels in patients with autism compared with matched controls or subjects with other developmental disorders. In the current study, we used plasma-cytokine profiling for 25 discordant sibling pairs to evaluate whether these alterations occur within families with ASD. Methods Plasma-cytokine profiling was conducted using an array-based multiplex sandwich ELISA for simultaneous quantitative measurement of 40 unique targets. We also analyzed the correlations between cytokine levels and clinically relevant quantitative traits (Vineland Adaptive Behavior Scale in Autism (VABS) composite score, Social Responsiveness Scale (SRS) total T score, head circumference, and full intelligence quotient (IQ)). In addition, because of the high phenotypic heterogeneity of ASD, we defined four subgroups of subjects (those who were non-verbal, those with gastrointestinal issues, those with regressive autism, and those with a history of allergies), which encompass common and/or recurrent endophenotypes in ASD, and tested the cytokine levels in each group. Results None of the measured parameters showed significant differences between children with ASD and their related typically developing siblings. However, specific target levels did correlate with quantitative clinical traits, and these were significantly different when the ASD subgroups were analyzed. It is notable that these differences seem to be attributable to a predisposing immunogenetic background, as no other significant differences were noticed between discordant sibling pairs. Interleukin-1β appears to be the cytokine most involved in quantitative traits and clinical subgroups of ASD. Conclusions In the present study, we found a lack of significant differences in plasma-cytokine levels between children with ASD and in their related non-autistic siblings. Thus, our results support the evidence that the immune profiles of children with autism do not differ from their typically developing siblings. However, the significant association of cytokine levels with the quantitative traits and the clinical subgroups analyzed suggests that altered immune responses may affect core feature of ASD. PMID:23497090

  17. A traits-based approach for prioritizing species for monitoring and surrogacy selection

    DOE PAGES

    Pracheil, Brenda M.; McManamay, Ryan A.; Bevelhimer, Mark S.; ...

    2016-11-28

    The bar for justifying the use of vertebrate animals for study is being increasingly raised, thus requiring increased rigor for species selection and study design. Although we have power analyses to provide quantitative backing for the numbers of organisms used, quantitative backing for selection of study species is not frequently employed. This can be especially important when measuring the impacts of ecosystem alteration, when study species must be chosen that are both sensitive to the alteration and of sufficient abundance for study. Just as important is providing justification for designation of surrogate species for study, especially when the species ofmore » interest is rare or of conservation concern and selection of an appropriate surrogate can have legal implications. In this study, we use a combination of GIS, a fish traits database and multivariate statistical analyses to quantitatively prioritize species for study and to determine potential study surrogate species. We provide two case studies to illustrate our quantitative, traits-based approach for designating study species and surrogate species. In the first case study, we select broadly representative fish species to understand the effects of turbine passage on adult fishes based on traits that suggest sensitivity to turbine passage. In our second case study, we present a framework for selecting a surrogate species for an endangered species. Lastly, we suggest that our traits-based framework can provide quantitative backing and added justification to selection of study species while expanding the inference space of study results.« less

  18. A traits-based approach for prioritizing species for monitoring and surrogacy selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pracheil, Brenda M.; McManamay, Ryan A.; Bevelhimer, Mark S.

    The bar for justifying the use of vertebrate animals for study is being increasingly raised, thus requiring increased rigor for species selection and study design. Although we have power analyses to provide quantitative backing for the numbers of organisms used, quantitative backing for selection of study species is not frequently employed. This can be especially important when measuring the impacts of ecosystem alteration, when study species must be chosen that are both sensitive to the alteration and of sufficient abundance for study. Just as important is providing justification for designation of surrogate species for study, especially when the species ofmore » interest is rare or of conservation concern and selection of an appropriate surrogate can have legal implications. In this study, we use a combination of GIS, a fish traits database and multivariate statistical analyses to quantitatively prioritize species for study and to determine potential study surrogate species. We provide two case studies to illustrate our quantitative, traits-based approach for designating study species and surrogate species. In the first case study, we select broadly representative fish species to understand the effects of turbine passage on adult fishes based on traits that suggest sensitivity to turbine passage. In our second case study, we present a framework for selecting a surrogate species for an endangered species. Lastly, we suggest that our traits-based framework can provide quantitative backing and added justification to selection of study species while expanding the inference space of study results.« less

  19. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this population. PMID:20066049

  20. Novel Autism Subtype-Dependent Genetic Variants Are Revealed by Quantitative Trait and Subphenotype Association Analyses of Published GWAS Data

    PubMed Central

    Hu, Valerie W.; Addington, Anjene; Hyman, Alexander

    2011-01-01

    The heterogeneity of symptoms associated with autism spectrum disorders (ASDs) has presented a significant challenge to genetic analyses. Even when associations with genetic variants have been identified, it has been difficult to associate them with a specific trait or characteristic of autism. Here, we report that quantitative trait analyses of ASD symptoms combined with case-control association analyses using distinct ASD subphenotypes identified on the basis of symptomatic profiles result in the identification of highly significant associations with 18 novel single nucleotide polymorphisms (SNPs). The symptom categories included deficits in language usage, non-verbal communication, social development, and play skills, as well as insistence on sameness or ritualistic behaviors. Ten of the trait-associated SNPs, or quantitative trait loci (QTL), were associated with more than one subtype, providing partial replication of the identified QTL. Notably, none of the novel SNPs is located within an exonic region, suggesting that these hereditary components of ASDs are more likely related to gene regulatory processes (or gene expression) than to structural or functional changes in gene products. Seven of the QTL reside within intergenic chromosomal regions associated with rare copy number variants that have been previously reported in autistic samples. Pathway analyses of the genes associated with the QTL identified in this study implicate neurological functions and disorders associated with autism pathophysiology. This study underscores the advantage of incorporating both quantitative traits as well as subphenotypes into large-scale genome-wide analyses of complex disorders. PMID:21556359

  1. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  2. Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae.

    PubMed

    Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas

    2015-11-10

    Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.

  3. How weeds emerge: a taxonomic and trait-based examination using United States data.

    PubMed

    Kuester, Adam; Conner, Jeffrey K; Culley, Theresa; Baucom, Regina S

    2014-05-01

    Weeds can cause great economic and ecological harm to ecosystems. Despite their importance, comparisons of the taxonomy and traits of successful weeds often focus on a few specific comparisons - for example, introduced versus native weeds. We used publicly available inventories of US plant species to make comprehensive comparisons of the factors that underlie weediness. We quantitatively examined taxonomy to determine if certain genera are overrepresented by introduced, weedy or herbicide-resistant species, and we compared phenotypic traits of weeds to those of nonweeds, whether introduced or native. We uncovered genera that have more weeds and introduced species than expected by chance and plant families that have more herbicide-resistant species than expected by chance. Certain traits, generally related to fast reproduction, were more likely to be associated with weedy plants regardless of species' origins. We also found stress tolerance traits associated with either native or introduced weeds compared with native or introduced nonweeds. Weeds and introduced species have significantly smaller genomes than nonweeds and native species. These results support trends for weedy plants reported from other floras, suggest that native and introduced weeds have different stress adaptations, and provide a comprehensive survey of trends across weeds within the USA. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Ascertainment bias from imputation methods evaluation in wheat.

    PubMed

    Brandariz, Sofía P; González Reymúndez, Agustín; Lado, Bettina; Malosetti, Marcos; Garcia, Antonio Augusto Franco; Quincke, Martín; von Zitzewitz, Jarislav; Castro, Marina; Matus, Iván; Del Pozo, Alejandro; Castro, Ariel J; Gutiérrez, Lucía

    2016-10-04

    Whole-genome genotyping techniques like Genotyping-by-sequencing (GBS) are being used for genetic studies such as Genome-Wide Association (GWAS) and Genomewide Selection (GS), where different strategies for imputation have been developed. Nevertheless, imputation error may lead to poor performance (i.e. smaller power or higher false positive rate) when complete data is not required as it is for GWAS, and each marker is taken at a time. The aim of this study was to compare the performance of GWAS analysis for Quantitative Trait Loci (QTL) of major and minor effect using different imputation methods when no reference panel is available in a wheat GBS panel. In this study, we compared the power and false positive rate of dissecting quantitative traits for imputed and not-imputed marker score matrices in: (1) a complete molecular marker barley panel array, and (2) a GBS wheat panel with missing data. We found that there is an ascertainment bias in imputation method comparisons. Simulating over a complete matrix and creating missing data at random proved that imputation methods have a poorer performance. Furthermore, we found that when QTL were simulated with imputed data, the imputation methods performed better than the not-imputed ones. On the other hand, when QTL were simulated with not-imputed data, the not-imputed method and one of the imputation methods performed better for dissecting quantitative traits. Moreover, larger differences between imputation methods were detected for QTL of major effect than QTL of minor effect. We also compared the different marker score matrices for GWAS analysis in a real wheat phenotype dataset, and we found minimal differences indicating that imputation did not improve the GWAS performance when a reference panel was not available. Poorer performance was found in GWAS analysis when an imputed marker score matrix was used, no reference panel is available, in a wheat GBS panel.

  5. Genetic analysis of root morphological traits in wheat.

    PubMed

    Petrarulo, Maria; Marone, Daniela; Ferragonio, Pina; Cattivelli, Luigi; Rubiales, Diego; De Vita, Pasquale; Mastrangelo, Anna Maria

    2015-06-01

    Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.

  6. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III.

    PubMed

    Li, Hongjian; Yang, Qingsong; Fan, Nannan; Zhang, Ming; Zhai, Huijie; Ni, Zhongfu; Zhang, Yirong

    2017-04-17

    Plant height (PH) and ear height (EH) are two important agronomic traits in maize selection breeding. F 1 hybrid exhibit significant heterosis for PH and EH as compared to their parental inbred lines. To understand the genetic basis of heterosis controlling PH and EH, we conducted quantitative trait locus (QTL) analysis using a recombinant inbreed line (RIL) based design III population derived from the elite maize hybrid Zhengdan 958 in five environments. A total of 14 environmentally stable QTLs were identified, and the number of QTLs for Z 1 and Z 2 populations was six and eight, respectively. Notably, all the eight environmentally stable QTLs for Z 2 were characterized by overdominance effect (OD), suggesting that overdominant QTLs were the most important contributors to heterosis for PH and EH. Furthermore, 14 environmentally stable QTLs were anchored on six genomic regions, among which four are trait-specific QTLs, suggesting that the genetic basis for PH and EH is partially different. Additionally, qPH.A-1.3, modifying about 10 centimeters of PH, was further validated in backcross populations. The genetic basis for PH and EH is partially different, and overdominant QTLs are important factors for heterosis of PH and EH. A major QTL qPH.A-1.3 may be a desired target for genetic improvement of maize plant height.

  7. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    PubMed

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.

  8. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    PubMed

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  9. Validation of a major quantitative trait locus associated with host response to experimental infection with Porcine Reproductive and Respiratory Syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Infectious diseases are costly to the swine industry and porcine reproductive and respiratory syndrome virus (PRRSV) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRSV was identified on Sus scrofa chromosome 4 (SSC4) using ~560 exp...

  10. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    USDA-ARS?s Scientific Manuscript database

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  11. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  12. The IQ Quantitative Trait Loci Project: A Critique.

    ERIC Educational Resources Information Center

    King, David

    1998-01-01

    Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)

  13. Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain

    USDA-ARS?s Scientific Manuscript database

    In this study, quantitative trait loci (QTLs) affecting the concentrations of 16 elements in whole, unmilled rice (Oryza sativa L.) grain were identified. Two rice mapping populations, the ‘Lemont’ x ‘TeQing’ recombinant inbred lines (LT-RILs), and the TeQing-into-Lemont backcross introgression lin...

  14. Validation and Estimation of Additive Genetic Variation Associated with DNA Tests for Quantitative Beef Cattle Traits

    USDA-ARS?s Scientific Manuscript database

    The U.S. National Beef Cattle Evaluation Consortium (NBCEC) has been involved in the validation of commercial DNA tests for quantitative beef quality traits since their first appearance on the U.S. market in the early 2000s. The NBCEC Advisory Council initially requested that the NBCEC set up a syst...

  15. Quantitative trait loci for seed isoflavones contents in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....

  16. Identification of quantitative trait loci (QTL) controlling protein, oil, and five major fatty acids’ contents in soybean

    USDA-ARS?s Scientific Manuscript database

    Improved seed composition in soybean (Glycine max L. Merr.) for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soy...

  17. Mapping complex traits as a dynamic system

    PubMed Central

    Sun, Lidan; Wu, Rongling

    2017-01-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476

  18. Testing for biases in selection on avian reproductive traits and partitioning direct and indirect selection using quantitative genetic models.

    PubMed

    Reed, Thomas E; Gienapp, Phillip; Visser, Marcel E

    2016-10-01

    Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  19. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-01-01

    Deep rooting is a very important trait for plants’ drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. PMID:26022253

  20. Novel Applications of Multi-task Learning and Multiple Output Regression to Multiple Genetic Trait Prediction

    USDA-ARS?s Scientific Manuscript database

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait predicti...

  1. Detection of linkage between a quantitative trait and a marker locus by the lod score method: sample size and sampling considerations.

    PubMed

    Demenais, F; Lathrop, G M; Lalouel, J M

    1988-07-01

    A simulation study is here conducted to measure the power of the lod score method to detect linkage between a quantitative trait and a marker locus in various situations. The number of families necessary to detect such linkage with 80% power is assessed for different sets of parameters at the trait locus and different values of the recombination fraction. The effects of varying the mode of sampling families and the sibship size are also evaluated.

  2. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for ecological changes related to global warming.

  3. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  4. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  5. Different clades and traits yield similar grassland functional responses

    PubMed Central

    Forrestel, Elisabeth J.; Donoghue, Michael J.; Edwards, Erika J.; Jetz, Walter; du Toit, Justin C. O.; Smith, Melinda D.

    2017-01-01

    Plant functional traits are viewed as key to predicting important ecosystem and community properties across resource gradients within and among biogeographic regions. Vegetation dynamics and ecosystem processes, such as aboveground net primary productivity (ANPP), are increasingly being modeled as a function of the quantitative traits of species, which are used as proxies for photosynthetic rates and nutrient and water-use efficiency. These approaches rely on an assumption that a certain trait value consistently confers a specific function or response under given environmental conditions. Here, we provide a critical test of this idea and evaluate whether the functional traits that drive the well-known relationship between precipitation and ANPP differ between systems with distinct biogeographic histories and species assemblages. Specifically, we compared grasslands spanning a broad precipitation gradient (∼200–1,000 mm/y) in North America and South Africa that differ in the relative representation and abundance of grass phylogenetic lineages. We found no significant difference between the regions in the positive relationship between annual precipitation and ANPP, yet the trait values underlying this relationship differed dramatically. Our results challenge the trait-based approach to predicting ecosystem function by demonstrating that different combinations of functional traits can act to maximize ANPP in a given environmental setting. Further, we show the importance of incorporating biogeographic and phylogenetic history in predicting community and ecosystem properties using traits. PMID:28074042

  6. Quantitative trait loci for live animal and carcass composition traits in Jersey and Limousin back-cross cattle finished on pasture or feedlot.

    PubMed

    Morris, C A; Pitchford, W S; Cullen, N G; Esmailizadeh, A K; Hickey, S M; Hyndman, D; Dodds, K G; Afolayan, R A; Crawford, A M; Bottema, C D K

    2009-10-01

    A quantitative trait locus (QTL) study was carried out in two countries, recording live animal and carcass composition traits. Back-cross calves (385 heifers and 398 steers) were generated, with Jersey and Limousin breed backgrounds. The New Zealand cattle were reared on pasture to carcass weights averaging 229 kg, whilst the Australian cattle were reared on grass and finished on grain (for at least 180 days) to carcass weights averaging 335 kg. From 11 live animal traits and 31 carcass composition traits respectively, 5 and 22 QTL were detected in combined-sire analyses, which were significant (P < 0.05) on a genome-wise basis. Fourteen significant traits for carcass composition QTL were on chromosome 2 and these were traits associated with muscling and fatness. This chromosome carried a variant myostatin allele (F94L), segregating from the Limousin ancestry. Despite very different cattle management systems between the two countries, the two populations had a large number of QTL in common. Of the 18 traits which were common to both countries, and which had significant QTL at the genome-wise level, eight were significant in both countries.

  7. Comparative genetic analysis of lint yield and fiber quality among single, three-way, and double crosses in upland cotton

    USDA-ARS?s Scientific Manuscript database

    Decisions on the appropriate crossing systems to employ for genetic improvement of quantitative traits are critical in cotton breeding. Determination of genetic variance for lint yield and fiber quality in three different crossing schemes, i.e., single cross (SC), three-way cross (TWC), and double ...

  8. On normality, ethnicity, and missing values in quantitative trait locus mapping

    PubMed Central

    Labbe, Aurélie; Wormald, Hanna

    2005-01-01

    Background This paper deals with the detection of significant linkage for quantitative traits using a variance components approach. Microsatellite markers were obtained for the Genetic Analysis Workshop 14 Collaborative Study on the Genetics of Alcoholism data. Ethnic heterogeneity, highly skewed quantitative measures, and a high rate of missing values are all present in this dataset and well known to impact upon linkage analysis. This makes it a good candidate for investigation. Results As expected, we observed a number of changes in LOD scores, especially for chromosomes 1, 7, and 18, along with the three factors studied. A dramatic example of such changes can be found in chromosome 7. Highly significant linkage to one of the quantitative traits became insignificant when a proper normalizing transformation of the trait was used and when analysis was carried out on an ethnically homogeneous subset of the original pedigrees. Conclusion In agreement with existing literature, transforming a trait to ensure normality using a Box-Cox transformation is highly recommended in order to avoid false-positive linkages. Furthermore, pedigrees should be sorted by ethnic groups and analyses should be carried out separately. Finally, one should be aware that the inclusion of covariates with a high rate of missing values reduces considerably the number of subjects included in the model. In such a case, the loss in power may be large. Imputation methods are then recommended. PMID:16451664

  9. Genetic analysis of safflower domestication

    PubMed Central

    2014-01-01

    Background Safflower (Carthamus tinctorius L.) is an oilseed crop in the Compositae (a.k.a. Asteraceae) that is valued for its oils rich in unsaturated fatty acids. Here, we present an analysis of the genetic architecture of safflower domestication and compare our findings to those from sunflower (Helianthus annuus L.), an independently domesticated oilseed crop within the same family. We mapped quantitative trait loci (QTL) underlying 24 domestication-related traits in progeny from a cross between safflower and its wild progenitor, Carthamus palaestinus Eig. Also, we compared QTL positions in safflower against those that have been previously identified in cultivated x wild sunflower crosses to identify instances of colocalization. Results We mapped 61 QTL, the vast majority of which (59) exhibited minor or moderate phenotypic effects. The two large-effect QTL corresponded to one each for flower color and leaf spininess. A total of 14 safflower QTL colocalized with previously reported sunflower QTL for the same traits. Of these, QTL for three traits (days to flower, achene length, and number of selfed seed) had cultivar alleles that conferred effects in the same direction in both species. Conclusions As has been observed in sunflower, and unlike many other crops, our results suggest that the genetics of safflower domestication is quite complex. Moreover, our comparative mapping results indicate that safflower and sunflower exhibit numerous instances of QTL colocalization, suggesting that parallel trait transitions during domestication may have been driven, at least in part, by parallel genotypic evolution at some of the same underlying genes. PMID:24502326

  10. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    PubMed

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis

    PubMed Central

    2017-01-01

    Induced mutagenesis was employed to create genetic variation in the lentil cultivars for yield improvement. The assessments were made on genetic variability, character association, and genetic divergence among the twelve mutagenized populations and one parent population of each of the two lentil cultivars, developed by single and combination treatments with gamma rays and hydrazine hydrates. Analysis of variance revealed significant inter-population differences for the observed quantitative phenotypic traits. The sample mean of six treatment populations in each of the cultivar exhibited highly superior quantitative phenotypic traits compared to their parent cultivars. The higher values of heritability and genetic advance with a high genotypic coefficient of variation for most of the yield attributing traits confirmed the possibilities of lentil yield improvement through phenotypic selection. The number of pods and seeds per plant appeared to be priority traits in selection for higher yield due to their strong direct association with yield. The cluster analysis divided the total populations into three divergent groups in each lentil cultivar with parent genotypes in an independent group showing the high efficacy of the mutagens. Considering the highest contribution of yield trait to the genetic divergence among the clustered population, it was confirmed that the mutagenic treatments created a wide heritable variation for the trait in the mutant populations. The selection of high yielding mutants from the mutant populations of DPL 62 (100 Gy) and Pant L 406 (100Gy + 0.1% HZ) in the subsequent generation is expected to give elite lentil cultivars. Also, hybridization between members of the divergent group would produce diverse segregants for crop improvement. Apart from this, the induced mutations at loci controlling economically important traits in the selected high yielding mutants have successfully contributed in diversifying the accessible lentil genetic base and will definitely be of immense value to the future lentil breeding programmes in India. PMID:28922405

  12. Comparative genomics of Toll-like receptor signalling in five species

    PubMed Central

    Jann, Oliver C; King, Annemarie; Corrales, Nestor Lopez; Anderson, Susan I; Jensen, Kirsty; Ait-ali, Tahar; Tang, Haizhou; Wu, Chunhua; Cockett, Noelle E; Archibald, Alan L; Glass, Elizabeth J

    2009-01-01

    Background Over the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. Results We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. Conclusion This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes. PMID:19432955

  13. Identification of quantitative trait loci affecting resistance to gastro-intestinal parasites in a double backcross population of Red Maasai and Dorper sheep

    USDA-ARS?s Scientific Manuscript database

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal (GI) nematode resistance was completed using a double backcross sheep population derived from Red Maasai and Dorper ewes bred to F1 rams. These breeds were chosen, because Red Maasai sheep are known to be more tolerant ...

  14. Quantitative Autism Traits in First Degree Relatives: Evidence for the Broader Autism Phenotype in Fathers, but Not in Mothers and Siblings

    ERIC Educational Resources Information Center

    De la Marche, Wouter; Noens, Ilse; Luts, Jan; Scholte, Evert; Van Huffel, Sabine; Steyaert, Jean

    2012-01-01

    Autism spectrum disorder (ASD) symptoms are present in unaffected relatives and individuals from the general population. Results are inconclusive, however, on whether unaffected relatives have higher levels of quantitative autism traits (QAT) or not. This might be due to differences in research populations, because behavioral data and molecular…

  15. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine

    Treesearch

    A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale

    1994-01-01

    We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...

  16. Quantitative traits and diversification.

    PubMed

    FitzJohn, Richard G

    2010-12-01

    Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.

  17. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  18. Quantitative Trait Loci Differentiating the Outbreeding Mimulus Guttatus from the Inbreeding M. Platycalyx

    PubMed Central

    Lin, J. Z.; Ritland, K.

    1997-01-01

    Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912

  19. Replication of linkage to quantitative trait loci: variation in location and magnitude of the lod score.

    PubMed

    Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D

    2001-01-01

    Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.

  20. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  1. Ensemble learning of QTL models improves prediction of complex traits

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...

  2. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits.

    PubMed

    Knoll, A T; Jiang, K; Levitt, P

    2018-06-01

    Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  3. Molecular Dissection of a Major Gene Effect on a Quantitative Trait: The Level of Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Stam, L. F.; Laurie, C. C.

    1996-01-01

    A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles'' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect. PMID:8978044

  4. Current and future developments in patents for quantitative trait loci in dairy cattle.

    PubMed

    Weller, Joel I

    2007-01-01

    Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.

  5. Limited plasticity in the phenotypic variance-covariance matrix for male advertisement calls in the black field cricket, Teleogryllus commodus

    PubMed Central

    Pitchers, W. R.; Brooks, R.; Jennions, M. D.; Tregenza, T.; Dworkin, I.; Hunt, J.

    2013-01-01

    Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders’ equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent work, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability is sparse, and largely focused on morphological traits. Here we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit. PMID:23530814

  6. Generation time, life history and the substitution rate of neutral mutations.

    PubMed

    Lehtonen, Jussi; Lanfear, Robert

    2014-11-01

    Our understanding of molecular evolution is hampered by a lack of quantitative predictions about how life-history (LH) traits should correlate with substitution rates. Comparative studies have shown that neutral substitution rates vary substantially between species, and evidence shows that much of this diversity is associated with variation in LH traits. However, while these studies often agree, some unexplained and contradictory results have emerged. Explaining these results is difficult without a clear theoretical understanding of the problem. In this study, we derive predictions for the relationships between LH traits and substitution rates in iteroparous species by using demographic theory to relate commonly measured life-history traits to genetic generation time, and by implication to neutral substitution rates. This provides some surprisingly simple explanations for otherwise confusing patterns, such as the association between fecundity and substitution rates. The same framework can be applied to more complex life histories if full life-tables are available. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster

    PubMed Central

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.

    2015-01-01

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032

  8. Multiple-Line Inference of Selection on Quantitative Traits

    PubMed Central

    Riedel, Nico; Khatri, Bhavin S.; Lässig, Michael; Berg, Johannes

    2015-01-01

    Trait differences between species may be attributable to natural selection. However, quantifying the strength of evidence for selection acting on a particular trait is a difficult task. Here we develop a population genetics test for selection acting on a quantitative trait that is based on multiple-line crosses. We show that using multiple lines increases both the power and the scope of selection inferences. First, a test based on three or more lines detects selection with strongly increased statistical significance, and we show explicitly how the sensitivity of the test depends on the number of lines. Second, a multiple-line test can distinguish between different lineage-specific selection scenarios. Our analytical results are complemented by extensive numerical simulations. We then apply the multiple-line test to QTL data on floral character traits in plant species of the Mimulus genus and on photoperiodic traits in different maize strains, where we find a signature of lineage-specific selection not seen in two-line tests. PMID:26139839

  9. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    PubMed Central

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  11. Allelic-based gene-gene interaction associated with quantitative traits.

    PubMed

    Jung, Jeesun; Sun, Bin; Kwon, Deukwoo; Koller, Daniel L; Foroud, Tatiana M

    2009-05-01

    Recent studies have shown that quantitative phenotypes may be influenced not only by multiple single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method assigns a score to unrelated subjects according to their allelic combination inferred from observed genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with a quantitative trait. To investigate the statistical properties of the proposed method, we performed a simulation study to estimate type I error rates and power and demonstrated that this allelic approach achieves greater power than the more commonly used genotypic approach to test for gene-gene interaction. As an example, the proposed method was applied to data obtained as part of a candidate gene study of sodium retention by the kidney. We found that this method detects an interaction between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.

  12. A journey from a SSR-based low density map to a SNP-based high density map for identification of disease resistance quantitative trait loci in peanut

    USDA-ARS?s Scientific Manuscript database

    Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...

  13. Mapping quantitative trait loci controlling early growth in a (longleaf pine × slash pine) × slash pine BC1 family

    Treesearch

    C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine

    2002-01-01

    Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. × P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine × slash pine...

  14. Comparison of Maximum Likelihood Estimation Approach and Regression Approach in Detecting Quantitative Trait Lco Using RAPD Markers

    Treesearch

    Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine

    1999-01-01

    Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...

  15. Phylogenetic comparative methods on phylogenetic networks with reticulations.

    PubMed

    Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile

    2018-04-25

    The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.

  16. Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.

    PubMed

    Kronholm, Ilkka; Picó, F Xavier; Alonso-Blanco, Carlos; Goudet, Jérôme; de Meaux, Juliette

    2012-07-01

    Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation. © 2012 The Author(s).

  17. Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds.

    PubMed

    van den Berg, Irene; Boichard, Didier; Lund, Mogens Sandø

    2016-11-01

    The objective of this study was to compare mapping precision and power of within-breed and multibreed genome-wide association studies (GWAS) and to compare the results obtained by the multibreed GWAS with 3 meta-analysis methods. The multibreed GWAS was expected to improve mapping precision compared with a within-breed GWAS because linkage disequilibrium is conserved over shorter distances across breeds than within breeds. The multibreed GWAS was also expected to increase detection power for quantitative trait loci (QTL) segregating across breeds. GWAS were performed for production traits in dairy cattle, using imputed full genome sequences of 16,031 bulls, originating from 6 French and Danish dairy cattle populations. Our results show that a multibreed GWAS can be a valuable tool for the detection and fine mapping of quantitative trait loci. The number of QTL detected with the multibreed GWAS was larger than the number detected by the within-breed GWAS, indicating an increase in power, especially when the 2 Holstein populations were combined. The largest number of QTL was detected when all populations were combined. The analysis combining all breeds was, however, dominated by Holstein, and QTL segregating in other breeds but not in Holstein were sometimes overshadowed by larger QTL segregating in Holstein. Therefore, the GWAS combining all breeds except Holstein was useful to detect such peaks. Combining all breeds except Holstein resulted in smaller QTL intervals on average, but this outcome was not the case when the Holstein populations were included in the analysis. Although no decrease in the average QTL size was observed, mapping precision did improve for several QTL. Out of 3 different multibreed meta-analysis methods, the weighted z-scores model resulted in the most similar results to the full multibreed GWAS and can be useful as an alternative to a full multibreed GWAS. Differences between the multibreed GWAS and the meta-analyses were larger when different breeds were combined than when the 2 Holstein populations were combined. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Grammar and Lexicon in Individuals with Autism: A Quantitative Analysis of a Large Italian Corpus

    ERIC Educational Resources Information Center

    Tuzzi, Arjuna

    2009-01-01

    Statistical and linguistic procedures were implemented to analyze a large corpus of texts written by 37 individuals with autism and 92 facilitators (without disabilities), producing written conversations by means of PCs. Such texts were compared and contrasted to identify the specific traits of the lexis of the group of individuals with autism and…

  19. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.

    PubMed

    Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C

    2018-06-01

    Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.

  20. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  1. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica).

    PubMed

    Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

    2014-01-01

    Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.

  2. Variants in TTC25 affect autistic trait in patients with autism spectrum disorder and general population.

    PubMed

    Vojinovic, Dina; Brison, Nathalie; Ahmad, Shahzad; Noens, Ilse; Pappa, Irene; Karssen, Lennart C; Tiemeier, Henning; van Duijn, Cornelia M; Peeters, Hilde; Amin, Najaf

    2017-08-01

    Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder with a complex genetic architecture. To identify genetic variants underlying ASD, we performed single-variant and gene-based genome-wide association studies using a dense genotyping array containing over 2.3 million single-nucleotide variants in a discovery sample of 160 families with at least one child affected with non-syndromic ASD using a binary (ASD yes/no) phenotype and a quantitative autistic trait. Replication of the top findings was performed in Psychiatric Genomics Consortium and Erasmus Rucphen Family (ERF) cohort study. Significant association of quantitative autistic trait was observed with the TTC25 gene at 17q21.2 (effect size=10.2, P-value=3.4 × 10 -7 ) in the gene-based analysis. The gene also showed nominally significant association in the cohort-based ERF study (effect=1.75, P-value=0.05). Meta-analysis of discovery and replication improved the association signal (P-value meta =1.5 × 10 -8 ). No genome-wide significant signal was observed in the single-variant analysis of either the binary ASD phenotype or the quantitative autistic trait. Our study has identified a novel gene TTC25 to be associated with quantitative autistic trait in patients with ASD. The replication of association in a cohort-based study and the effect estimate suggest that variants in TTC25 may also be relevant for broader ASD phenotype in the general population. TTC25 is overexpressed in frontal cortex and testis and is known to be involved in cilium movement and thus an interesting candidate gene for autistic trait.

  3. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  4. Dahl (S × R) rat congenic strain analysis confirms and defines a chromosome 17 spatial navigation quantitative trait locus to <10 Mbp.

    PubMed

    Herrera, Victoria L; Pasion, Khristine A; Tan, Glaiza A; Ruiz-Opazo, Nelson

    2013-01-01

    A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02-74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats.

  5. Two-phase designs for joint quantitative-trait-dependent and genotype-dependent sampling in post-GWAS regional sequencing.

    PubMed

    Espin-Garcia, Osvaldo; Craiu, Radu V; Bull, Shelley B

    2018-02-01

    We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT-SNP-dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields significant power improvements compared to marginal QT- or SNP-based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. © 2017 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.

  6. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.).

    PubMed

    Zong, Guo; Wang, Ahong; Wang, Lu; Liang, Guohua; Gu, Minghong; Sang, Tao; Han, Bin

    2012-07-20

    1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding. Copyright © 2012. Published by Elsevier Ltd.

  7. Genotype-phenotype association study via new multi-task learning model

    PubMed Central

    Huo, Zhouyuan; Shen, Dinggang

    2018-01-01

    Research on the associations between genetic variations and imaging phenotypes is developing with the advance in high-throughput genotype and brain image techniques. Regression analysis of single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g. ℓ2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not enough for representing the correlation between multiple tasks and ℓ2,1-norm regularization is not robust either. In this paper, we propose a new multi-task learning model to analyze the associations between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the correlation between genetic variations and imaging phenotypes. Finally, we conduct regression analysis of SNPs and QTs. Experimental results show that our model is more accurate in prediction than compared methods and presents new insights of SNPs. PMID:29218896

  8. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  9. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is an insect pest of corn, and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency among WCR populations, resulting in...

  10. Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old.

    PubMed

    Sun, Liang; Hu, Caiyou; Yang, Ruiyue; Lv, Yuan; Yuan, Huiping; Liang, Qinghua; He, Benjin; Pang, Guofang; Jiang, Menghua; Dong, Jun; Yang, Ze

    2017-10-24

    Branched-chain amino acids (BCAAs) are promising for their potential anti-aging effects. However, findings in adults suggest that circulating BCAAs are associated with cardiometabolic risk. Moreover, little information is available about how BCAAs influence clustered cardiometabolic traits in the oldest-old (>85 years), which are the fastest-growing segment of the population in developed countries. Here, we applied a targeted metabolomics approach to measure serum BCAAs in Chinese participants (aged 21-110 years) based on a longevity cohort. The differences of quantitative and dichotomous cardiometabolic traits were compared across BCAAs tertiles. A generalized additive model (GAM) was used to explore the dose-response relationship between BCAAs and the risk of metabolic syndrome (MetS). Overall, BCAAs were correlated with most of the examined cardiometabolic traits. The odds ratios for MetS across the increasing BCAA tertiles were 3.22 (1.70 - 6.12) and 5.27 (2.88 - 9.94, referenced to tertile 1) after adjusting for age and gender ( P trend < 0.001). The association still existed after further controlling for lifestyle factors and inflammation factors. However, the correlations between circulating BCAAs and quantitative traits were weakened in the oldest-old, except for lipids, the levels of which were distinctly different from those in adults. The stratified analysis also suggested that the risky BCAAs-MetS association was more pronounced in adults than in the oldest-old. Moreover, generalized additive model (GAM)-based curve-fitting suggested that only when BCAAs exceeded a threshold (approximately 450 μmol/L) was the BCAAs-MetS association significant. The relationship might be aging-dependent and was more pronounced in adults than in the oldest-old.

  11. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  12. Quantitative genetic models of sexual selection by male choice.

    PubMed

    Nakahashi, Wataru

    2008-09-01

    There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.

  13. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    NASA Astrophysics Data System (ADS)

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for differentiating PFT than biochemical traits.

  14. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change.

    PubMed

    Ensslin, Andreas; Fischer, Markus

    2015-08-01

    • Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.

  15. Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust (Puccinia Striiformis f. sp. tritici) in a Hard Red Winter Wheat Germplasm IDO444

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...

  16. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    PubMed

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the Tumbesian dry forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.

  17. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice.

    PubMed

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-08-01

    Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Quantitative dermatoglyphic asymmetry: a comparative study between schizophrenic patients and control groups of West Bengal, India.

    PubMed

    Karmakar, B; Sengupta, M

    2012-01-01

    Quantitative Fluctuating (FA) and Directional asymmetry (DA) of dermatoglyphics on digito-palmar complex were analyzed in a group of 111 patients (males: 61, females: 50) with schizophrenia (SZ), and compared to an ethnically matched phenotypically healthy control (males: 60, females: 60) through MANOVA, ANOVA and canonical Discriminant analyses. With few exceptions, asymmetries are higher among patients, and this is more prominent in FA than DA. Statistically significant differences were observed between patient and control groups, especially in males. In both sexes, FA of combined dermatoglyphic traits (e.g. total finger ridge count, total palmar pattern ridge count) are found to be a strong discriminator between the two groups with a correct classification of over 83% probability.

  19. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors.

    PubMed

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.

  20. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors

    PubMed Central

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus. PMID:18466597

  1. Ascertainment correction for Markov chain Monte Carlo segregation and linkage analysis of a quantitative trait.

    PubMed

    Ma, Jianzhong; Amos, Christopher I; Warwick Daw, E

    2007-09-01

    Although extended pedigrees are often sampled through probands with extreme levels of a quantitative trait, Markov chain Monte Carlo (MCMC) methods for segregation and linkage analysis have not been able to perform ascertainment corrections. Further, the extent to which ascertainment of pedigrees leads to biases in the estimation of segregation and linkage parameters has not been previously studied for MCMC procedures. In this paper, we studied these issues with a Bayesian MCMC approach for joint segregation and linkage analysis, as implemented in the package Loki. We first simulated pedigrees ascertained through individuals with extreme values of a quantitative trait in spirit of the sequential sampling theory of Cannings and Thompson [Cannings and Thompson [1977] Clin. Genet. 12:208-212]. Using our simulated data, we detected no bias in estimates of the trait locus location. However, in addition to allele frequencies, when the ascertainment threshold was higher than or close to the true value of the highest genotypic mean, bias was also found in the estimation of this parameter. When there were multiple trait loci, this bias destroyed the additivity of the effects of the trait loci, and caused biases in the estimation all genotypic means when a purely additive model was used for analyzing the data. To account for pedigree ascertainment with sequential sampling, we developed a Bayesian ascertainment approach and implemented Metropolis-Hastings updates in the MCMC samplers used in Loki. Ascertainment correction greatly reduced biases in parameter estimates. Our method is designed for multiple, but a fixed number of trait loci. Copyright (c) 2007 Wiley-Liss, Inc.

  2. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    PubMed

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  3. The Power to Detect Linkage Disequilibrium with Quantitative Traits in Selected Samples

    PubMed Central

    Abecasis, Gonçalo R.; Cookson, William O. C.; Cardon, Lon R.

    2001-01-01

    Results from power studies for linkage detection have led to many ongoing and planned collections of phenotypically extreme nuclear families. Given the great expense of collecting these families and the imminent availability of a dense diallelic marker map, the families are likely to be used in allelic-association as well as linkage studies. However, optimal selection strategies for linkage may not be equally powerful for association. We examine the power to detect linkage disequilibrium for quantitative traits after phenotypic selection. The results encompass six selection strategies that are in widespread use, including single selection (two designs), affected sib pairs, concordant and discordant pairs, and the extreme-concordant and -discordant design. Selection of sibships on the basis of one extreme proband with high or low trait scores provides as much power as discordant sib pairs but requires the screening and phenotyping of substantially fewer initial families from which to select. Analysis of the role of allele frequencies within each selection design indicates that common trait alleles generally offer the most power, but similarities between the marker- and trait-allele frequencies are much more important than the trait-locus frequency alone. Some of the most widespread selection designs, such as single selection, yield power gains only when both the marker and quantitative trait loci (QTL) are relatively rare in the population. In contrast, discordant pairs and the extreme-proband design provide power for the broadest range of QTL–marker-allele frequency differences. Overall, proband selection from either tail provides the best balance of power, robustness, and simplicity of ascertainment for family-based association analysis. PMID:11349228

  4. Plant Comparative and Functional Genomics

    DOE PAGES

    Yang, Xiaohan; Leebens-Mack, Jim; Chen, Feng; ...

    2015-01-01

    Plants form the foundation for our global ecosystem and are essential for environmental and human health. An increasing number of available plant genomes and tractable experimental systems, comparative and functional plant genomics research is greatly expanding our knowledge of the molecular basis of economically and nutritionally important traits in crop plants. Inferences drawn from comparative genomics are motivating experimental investigations of gene function and gene interactions. In this special issue aims to highlight recent advances made in comparative and functional genomics research in plants. Nine original research articles in this special issue cover five important topics: (1) transcription factor genemore » families relevant to abiotic stress tolerance; (2) plant secondary metabolism; (3) transcriptomebased markers for quantitative trait locus; (4) epigenetic modifications in plant-microbe interactions; and (5) computational prediction of protein-protein interactions. Finally, we studied the plant species in these articles which include model species as well as nonmodel plant species of economic importance (e.g., food crops and medicinal plants).« less

  5. Plant Comparative and Functional Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Leebens-Mack, Jim; Chen, Feng

    Plants form the foundation for our global ecosystem and are essential for environmental and human health. An increasing number of available plant genomes and tractable experimental systems, comparative and functional plant genomics research is greatly expanding our knowledge of the molecular basis of economically and nutritionally important traits in crop plants. Inferences drawn from comparative genomics are motivating experimental investigations of gene function and gene interactions. In this special issue aims to highlight recent advances made in comparative and functional genomics research in plants. Nine original research articles in this special issue cover five important topics: (1) transcription factor genemore » families relevant to abiotic stress tolerance; (2) plant secondary metabolism; (3) transcriptomebased markers for quantitative trait locus; (4) epigenetic modifications in plant-microbe interactions; and (5) computational prediction of protein-protein interactions. Finally, we studied the plant species in these articles which include model species as well as nonmodel plant species of economic importance (e.g., food crops and medicinal plants).« less

  6. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts

    NASA Astrophysics Data System (ADS)

    Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.

    2015-09-01

    Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.

  7. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.

    PubMed

    Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon

    2017-01-01

    Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.

  8. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth.

    PubMed

    Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia

    2018-02-01

    We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.

  9. Genomics meets ethology: a new route to understanding domestication, behavior, and sustainability in animal breeding.

    PubMed

    Jensen, Per; Andersson, Leif

    2005-06-01

    Animal behavior is a central part of animal welfare, a keystone in sustainable animal breeding. During domestication, animals have adapted with respect to behavior and an array of other traits. We compared the behavior of junglefowl and White Leghorn layers, selected for egg production (and indirectly for growth). Jungle-fowl had a more active behavior in social, exploratory, anti-predatory, and feeding tests. A genome scan for Quantitative Trait Loci (QTLs) in a junglefowl x White Leghorn intercross revealed several significant or suggestive QTLs for different traits. Some production QTLs coincided with QTLs for behavior, suggesting that pleiotropic effects may be important for the development of domestication phenotypes. One gene has been located, which has a strong effect on the risk of being a victim of feather pecking, a detrimental behavior disorder. Modern genomics paired with analysis of behavior may help in designing more sustainable and robust breeding in the future.

  10. Linkage disequilibrium interval mapping of quantitative trait loci.

    PubMed

    Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte

    2006-03-16

    For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.

  11. The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis

    PubMed Central

    Kongjaimun, Alisa; Kaga, Akito; Tomooka, Norihiko; Somta, Prakit; Vaughan, Duncan A.; Srinives, Peerasak

    2012-01-01

    Background and Aims The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna. Methods Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf. Key Results Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions. Conclusions This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna. PMID:22419763

  12. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype.

    PubMed

    Coneva, Viktoriya; Chitwood, Daniel H

    2018-01-01

    Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.

  13. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype

    PubMed Central

    Coneva, Viktoriya; Chitwood, Daniel H.

    2018-01-01

    Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait. PMID:29593772

  14. Similar traits, different genes? Examining convergent evolution in related weedy rice populations.

    PubMed

    Thurber, Carrie S; Jia, Melissa H; Jia, Yulin; Caicedo, Ana L

    2013-02-01

    Convergent phenotypic evolution may or may not be associated with convergent genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of convergent evolution. Here, we identify QTL underlying weedy traits and compare their genetic architecture to assess the potential for convergent genetic evolution in two distinct populations of weedy rice. F(2) offspring from crosses between an indica cultivar and two individuals from genetically differentiated U.S. weedy rice populations were used to map QTL for four quantitative (heading date, seed shattering, plant height and growth rate) and two qualitative traits. We identified QTL on nine of the twelve rice chromosomes, yet most QTL locations do not overlap between the two populations. Shared QTL among weed groups were only seen for heading date, a trait for which weedy groups have diverged from their cultivated ancestors and from each other. Sharing of some QTL with wild rice also suggests a possible role in weed evolution for genes under selection during domestication. The lack of overlapping QTL for the remaining traits suggests that, despite a close evolutionary relationship, weedy rice groups have adapted to the same agricultural environment through different genetic mechanisms. © 2012 Blackwell Publishing Ltd.

  15. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  16. In-Silico Genomic Approaches To Understanding Lactation, Mammary Development, And Breast Cancer

    USDA-ARS?s Scientific Manuscript database

    Lactation-related traits are influenced by genetics. From a quantitative standpoint, these traits have been well studied in dairy species, but there has also been work on the genetics of lactation in humans and mice. In addition, there is evidence to support the notion that other mammary gland trait...

  17. Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis

    USDA-ARS?s Scientific Manuscript database

    Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...

  18. Harvesting the Pea Genome: Association Mapping of the Pisum Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Yield per se is a difficult trait to improve due to the quantitative nature and low heritability of this trait. Nevertheless, yield is the most important trait for crop improvement. Development of higher yielding pea cultivars will depend on harvesting allelic diversity harbored in ex situ germpla...

  19. Quantitative trait loci affecting response to crowding stress in an F2 generation of rainbow trout produced through phenotypic selection

    USDA-ARS?s Scientific Manuscript database

    Selective breeding programs for salmonids typically aim to improve traits associated with growth and disease resistance. It has been established that stressors common to production environments can adversely affect these and other traits which are important to producers and consumers. Previously,...

  20. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  1. Functional Multi-Locus QTL Mapping of Temporal Trends in Scots Pine Wood Traits

    PubMed Central

    Li, Zitong; Hallingbäck, Henrik R.; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J.; García-Gil, M. Rosario

    2014-01-01

    Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. PMID:25305041

  2. Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits.

    PubMed

    Li, Zitong; Hallingbäck, Henrik R; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J; García-Gil, M Rosario

    2014-10-09

    Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. Copyright © 2014 Li et al.

  3. The evolution of trade-offs under directional and correlational selection.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2012-08-01

    Using quantitative genetic theory, we develop predictions for the evolution of trade-offs in response to directional and correlational selection. We predict that directional selection favoring an increase in one trait in a trade-off will result in change in the intercept but not the slope of the trade-off function, with the mean value of the selected trait increasing and that of the correlated trait decreasing. Natural selection will generally favor an increase in some combination of trait values, which can be represented as directional selection on an index value. Such selection induces both directional and correlational selection on the component traits. Theory predicts that selection on an index value will also change the intercept but not the slope of the trade-off function but because of correlational selection, the direction of change in component traits may be in the same or opposite directions. We test these predictions using artificial selection on the well-established trade-off between fecundity and flight capability in the cricket, Gryllus firmus and compare the empirical results with a priori predictions made using genetic parameters from a separate half-sibling experiment. Our results support the predictions and illustrate the complexity of trade-off evolution when component traits are subject to both directional and correlational selection. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle.

    PubMed

    Fan, Huizhong; Wu, Yang; Zhou, Xiaojing; Xia, Jiangwei; Zhang, Wengang; Song, Yuxin; Liu, Fei; Chen, Yan; Zhang, Lupei; Gao, Xue; Gao, Huijiang; Li, Junya

    2015-12-17

    Most single nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS), explain only a small fraction of phenotypic variation. Pathway-based GWAS were proposed to improve the proportion of genes for some human complex traits that could be explained by enriching a mass of SNPs within genetic groups. However, few attempts have been made to describe the quantitative traits in domestic animals. In this study, we used a dataset with approximately 7,700,000 SNPs from 807 Simmental cattle and analyzed live weight and longissimus muscle area using a modified pathway-based GWAS method to orthogonalise the highly linked SNPs within each gene using principal component analysis (PCA). As a result, of the 262 biological pathways of cattle collected from the KEGG database, the gamma aminobutyric acid (GABA)ergic synapse pathway and the non-alcoholic fatty liver disease (NAFLD) pathway were significantly associated with the two traits analyzed. The GABAergic synapse pathway was biologically applicable to the traits analyzed because of its roles in feed intake and weight gain. The proposed method had high statistical power and a low false discovery rate, compared to those of the smallest P-value and SNP set enrichment analysis methods.

  5. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis.

    PubMed

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-10-17

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.

  6. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis

    PubMed Central

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-01-01

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation. PMID:27748458

  7. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  8. Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean1[W][OA

    PubMed Central

    Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary

    2011-01-01

    Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820

  9. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes

    PubMed Central

    Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella

    2008-01-01

    Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They provide a basis for performing marker-assisted selection and testing the role of specific genes in trait variation. PMID:18419811

  10. Genetic Changes Accompanying the Domestication of Pisum sativum: Is there a Common Genetic Basis to the ‘Domestication Syndrome’ for Legumes?

    PubMed Central

    Weeden, Norman F.

    2007-01-01

    Background and Aims The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. Methods Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. Key Results A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. Conclusions Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to ‘domestication syndrome’ in the Fabaceae. PMID:17660515

  11. Impacts of Population Structure and Analytical Models in Genome-Wide Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus

    PubMed Central

    Garcia, Martín N.; Acuña, Cintia; Borralho, Nuno M. G.; Grattapaglia, Dario; Marcucci Poltri, Susana N.

    2013-01-01

    The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus. PMID:24282578

  12. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle

    PubMed Central

    Ron, Micha; Israeli, Galit; Seroussi, Eyal; Weller, Joel I; Gregg, Jeffrey P; Shani, Moshe; Medrano, Juan F

    2007-01-01

    Background Many studies have found segregating quantitative trait loci (QTL) for milk production traits in different dairy cattle populations. However, even for relatively large effects with a saturated marker map the confidence interval for QTL location by linkage analysis spans tens of map units, or hundreds of genes. Combining mapping and arraying has been suggested as an approach to identify candidate genes. Thus, gene expression analysis in the mammary gland of genes positioned in the confidence interval of the QTL can bridge the gap between fine mapping and quantitative trait nucleotide (QTN) determination. Results We hybridized Affymetrix microarray (MG-U74v2), containing 12,488 murine probes, with RNA derived from mammary gland of virgin, pregnant, lactating and involuting C57BL/6J mice in a total of nine biological replicates. We combined microarray data from two additional studies that used the same design in mice with a total of 75 biological replicates. The same filtering and normalization was applied to each microarray data using GeneSpring software. Analysis of variance identified 249 differentially expressed probe sets common to the three experiments along the four developmental stages of puberty, pregnancy, lactation and involution. 212 genes were assigned to their bovine map positions through comparative mapping, and thus form a list of candidate genes for previously identified QTLs for milk production traits. A total of 82 of the genes showed mammary gland-specific expression with at least 3-fold expression over the median representing all tissues tested in GeneAtlas. Conclusion This work presents a web tool for candidate genes for QTL (cgQTL) that allows navigation between the map of bovine milk production QTL, potential candidate genes and their level of expression in mammary gland arrays and in GeneAtlas. Three out of four confirmed genes that affect QTL in livestock (ABCG2, DGAT1, GDF8, IGF2) were over expressed in the target organ. Thus, cgQTL can be used to determine priority of candidate genes for QTN analysis based on differential expression in the target organ. PMID:17584498

  13. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survival analysis with analysis on affected/resistant data

    PubMed Central

    Moen, Thomas; Sonesson, Anna K; Hayes, Ben; Lien, Sigbjørn; Munck, Hege; Meuwissen, Theo HE

    2007-01-01

    Background Infectious Salmon Anaemia (ISA) is a viral disease affecting farmed Atlantic salmon (Salmo salar) worldwide. The identification of Quantitative Trait Loci (QTL) affecting resistance to the disease could improve our understanding of the genetics underlying the trait and provide a means for Marker-Assisted Selection. We previously performed a genome scan on commercial Atlantic salmon families challenge tested for ISA resistance, identifying several putative QTL. In the present study, we set out to validate the strongest of these QTL in a larger family material coming from the same challenge test, and to determine the position of the QTL by interval mapping. We also wanted to explore different ways of performing QTL analysis within a survival analysis framework (i.e. using time-to-event data), and to compare results using survival analysis with results from analysis on the dichotomous trait 'affected/resistant'. Results The QTL, located on Atlantic salmon linkage group 8 (following SALMAP notation), was confirmed in the new data set. Its most likely position was at a marker cluster containing markers BHMS130, BHMS170 and BHMS553. Significant segregation distortion was observed in the same region, but was shown to be unrelated to the QTL. A maximum likelihood procedure for identifying QTL, based on the Cox proportional hazard model, was developed. QTL mapping was also done using the Haley-Knott method (affected/resistant data), and within a variance-component framework (affected/resistant data and time-to-event data). In all cases, analysis using affected/resistant data gave stronger evidence for a QTL than did analysis using time-to-event data. Conclusion A QTL for resistance to Infectious Salmon Anaemia in Atlantic salmon was validated in this study, and its more precise location on linkage group eight was determined. The QTL explained 6% of the phenotypic variation in resistance to the disease. The linkage group also displayed significant segregation distortion. Survival models proved in this case not to be more suitable than models based on the dichotomous trait 'affected/resistant' for analysing the data. PMID:17697344

  14. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.

    PubMed

    Ehsani, A; Janss, L; Pomp, D; Sørensen, P

    2016-04-01

    A commonly used procedure in genome-wide association (GWA), genome-wide expression (GWE) and expression quantitative trait locus (eQTL) analyses is based on a bottom-up experimental approach that attempts to individually associate molecular variants with complex traits. Top-down modeling of the entire set of genomic data and partitioning of the overall variance into subcomponents may provide further insight into the genetic basis of complex traits. To test this approach, we performed a whole-genome variance components analysis and partitioned the genomic variance using information from GWA, GWE and eQTL analyses of growth-related traits in a mouse F2 population. We characterized the mouse trait genetic architecture by ordering single nucleotide polymorphisms (SNPs) based on their P-values and studying the areas under the curve (AUCs). The observed traits were found to have a genomic variance profile that differed significantly from that expected of a trait under an infinitesimal model. This situation was particularly true for both body weight and body fat, for which the AUCs were much higher compared with that of glucose. In addition, SNPs with a high degree of trait-specific regulatory potential (SNPs associated with subset of transcripts that significantly associated with a specific trait) explained a larger proportion of the genomic variance than did SNPs with high overall regulatory potential (SNPs associated with transcripts using traditional eQTL analysis). We introduced AUC measures of genomic variance profiles that can be used to quantify relative importance of SNPs as well as degree of deviation of a trait's inheritance from an infinitesimal model. The shape of the curve aids global understanding of traits: The steeper the left-hand side of the curve, the fewer the number of SNPs controlling most of the phenotypic variance. © 2015 Stichting International Foundation for Animal Genetics.

  15. The quantitative LOD score: test statistic and sample size for exclusion and linkage of quantitative traits in human sibships.

    PubMed

    Page, G P; Amos, C I; Boerwinkle, E

    1998-04-01

    We present a test statistic, the quantitative LOD (QLOD) score, for the testing of both linkage and exclusion of quantitative-trait loci in randomly selected human sibships. As with the traditional LOD score, the boundary values of 3, for linkage, and -2, for exclusion, can be used for the QLOD score. We investigated the sample sizes required for inferring exclusion and linkage, for various combinations of linked genetic variance, total heritability, recombination distance, and sibship size, using fixed-size sampling. The sample sizes required for both linkage and exclusion were not qualitatively different and depended on the percentage of variance being linked or excluded and on the total genetic variance. Information regarding linkage and exclusion in sibships larger than size 2 increased as approximately all possible pairs n(n-1)/2 up to sibships of size 6. Increasing the recombination (theta) distance between the marker and the trait loci reduced empirically the power for both linkage and exclusion, as a function of approximately (1-2theta)4.

  16. Ensemble Learning of QTL Models Improves Prediction of Complex Traits

    PubMed Central

    Bian, Yang; Holland, James B.

    2015-01-01

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability but are less useful for genetic prediction because of the difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage between markers introduces near collinearity among marker genotypes, complicating the detection of QTL and estimation of QTL effects in linkage mapping, and this problem is exacerbated by very high density linkage maps. Here we developed a thinning and aggregating (TAGGING) method as a new ensemble learning approach to QTL mapping. TAGGING reduces collinearity problems by thinning dense linkage maps, maintains aspects of marker selection that characterize standard QTL mapping, and by ensembling, incorporates information from many more markers-trait associations than traditional QTL mapping. The objective of TAGGING was to improve prediction power compared with QTL mapping while also providing more specific insights into genetic architecture than genome-wide prediction models. TAGGING was compared with standard QTL mapping using cross validation of empirical data from the maize (Zea mays L.) nested association mapping population. TAGGING-assisted QTL mapping substantially improved prediction ability for both biparental and multifamily populations by reducing both the variance and bias in prediction. Furthermore, an ensemble model combining predictions from TAGGING-assisted QTL and infinitesimal models improved prediction abilities over the component models, indicating some complementarity between model assumptions and suggesting that some trait genetic architectures involve a mixture of a few major QTL and polygenic effects. PMID:26276383

  17. Integrating Milk Metabolite Profile Information for the Prediction of Traditional Milk Traits Based on SNP Information for Holstein Cows

    PubMed Central

    Melzer, Nina; Wittenburg, Dörte; Repsilber, Dirk

    2013-01-01

    In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype). PMID:23990900

  18. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction.

    PubMed

    Brøndum, R F; Su, G; Janss, L; Sahana, G; Guldbrandtsen, B; Boichard, D; Lund, M S

    2015-06-01

    This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected with the aim of augmenting the custom low-density Illumina BovineLD SNP chip (San Diego, CA) used in the Nordic countries. The single-marker analysis was done breed-wise on all 16 index traits included in the breeding goals for Nordic Holstein, Danish Jersey, and Nordic Red cattle plus the total merit index itself. Depending on the trait's economic weight, 15, 10, or 5 quantitative trait loci (QTL) were selected per trait per breed and 3 to 5 markers were selected to tag each QTL. After removing duplicate markers (same marker selected for more than one trait or breed) and filtering for high pairwise linkage disequilibrium and assaying performance on the array, a total of 1,623 QTL markers were selected for inclusion on the custom chip. Genomic prediction analyses were performed for Nordic and French Holstein and Nordic Red animals using either a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model including the QTL markers in the analysis, reliability was increased by up to 4 percentage points for production traits in Nordic Holstein animals, up to 3 percentage points for Nordic Reds, and up to 5 percentage points for French Holstein. Smaller gains of up to 1 percentage point was observed for mastitis, but only a 0.5 percentage point increase was seen for fertility. When using a Bayesian model accuracies were generally higher with only 54k data compared with the genomic BLUP approach, but increases in reliability were relatively smaller when QTL markers were included. Results from this study indicate that the reliability of genomic prediction can be increased by including markers significant in genome-wide association studies on whole genome sequence data alongside the 54k SNP set. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Models of Cultural Niche Construction with Selection and Assortative Mating

    PubMed Central

    Feldman, Marcus W.

    2012-01-01

    Niche construction is a process through which organisms modify their environment and, as a result, alter the selection pressures on themselves and other species. In cultural niche construction, one or more cultural traits can influence the evolution of other cultural or biological traits by affecting the social environment in which the latter traits may evolve. Cultural niche construction may include either gene-culture or culture-culture interactions. Here we develop a model of this process and suggest some applications of this model. We examine the interactions between cultural transmission, selection, and assorting, paying particular attention to the complexities that arise when selection and assorting are both present, in which case stable polymorphisms of all cultural phenotypes are possible. We compare our model to a recent model for the joint evolution of religion and fertility and discuss other potential applications of cultural niche construction theory, including the evolution and maintenance of large-scale human conflict and the relationship between sex ratio bias and marriage customs. The evolutionary framework we introduce begins to address complexities that arise in the quantitative analysis of multiple interacting cultural traits. PMID:22905167

  20. Behavioral profiles of dog breeds.

    PubMed

    Hart, B L; Miller, M F

    1985-06-01

    Breed behavior profiles were obtained by a method that was quantitative and free of personal biases. The profiles concerned 13 traits, eg, excitability, snapping at children, watchdog barking, and affection demand, which are of interest to people wanting dogs as pets. Authorities for the development of the profiles were 48 small animal veterinarians and 48 obedience judges, randomly selected from directories so as to represent equally men and women, and eastern, central, and western geographic regions of the United States. Each authority was asked to rank on each of the behavioral traits a list of 7 breeds chosen randomly from a list of 56 breeds. The data were analyzed in a custom-designed computer program that pooled the data and then ranked all 56 breeds on the basis of the 13 traits. The results indicated that some behavioral traits discriminate between breeds better than others. An examination of sample profiles indicated the feasibility of developing a statistically meaningful behavioral profile that integrates comparative rankings of several authorities balanced as to representation of geographic location, sex, and type of experience with dogs.

  1. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).

    PubMed

    Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam

    2012-09-01

    Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.

  2. QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio).

    PubMed

    Lv, Weihua; Zheng, Xianhu; Kuang, Youyi; Cao, Dingchen; Yan, Yunqin; Sun, Xiaowen

    2016-05-05

    Comparing QTL analyses of multiple pair-mating families can provide a better understanding of important allelic variations and distributions. However, most QTL mapping studies in common carp have been based on analyses of individual families. In order to improve our understanding of heredity and variation of QTLs in different families and identify important QTLs, we performed QTL analysis of growth-related traits in multiple segregating families. We completed a genome scan for QTLs that affect body weight (BW), total length (TL), and body thickness (BT) of 522 individuals from eight full-sib families using 250 microsatellites evenly distributed across 50 chromosomes. Sib-pair and half-sib model mapping identified 165 QTLs on 30 linkage groups. Among them, 10 (genome-wide P <0.01 or P < 0.05) and 28 (chromosome-wide P < 0.01) QTLs exhibited significant evidence of linkage, while the remaining 127 exhibited a suggestive effect on the above three traits at a chromosome-wide (P < 0.05) level. Multiple QTLs obtained from different families affect BW, TL, and BT and locate at close or identical positions. It suggests that same genetic factors may control variability in these traits. Furthermore, the results of the comparative QTL analysis of multiple families showed that one QTL was common in four of the eight families, nine QTLs were detected in three of the eight families, and 26 QTLs were found common to two of the eight families. These common QTLs are valuable candidates in marker-assisted selection. A large number of QTLs were detected in the common carp genome and associated with growth-related traits. Some of the QTLs of different growth-related traits were identified at similar chromosomal regions, suggesting a role for pleiotropy and/or tight linkage and demonstrating a common genetic basis of growth trait variations. The results have set up an example for comparing QTLs in common carp and provided insights into variations in the identified QTLs affecting body growth. Discovery of these common QTLs between families and growth-related traits represents an important step towards understanding of quantitative genetic variation in common carp.

  3. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection). PMID:21797998

  4. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.).

    PubMed

    Diaz, Aurora; Fergany, Mohamed; Formisano, Gelsomina; Ziarsolo, Peio; Blanca, José; Fei, Zhanjun; Staub, Jack E; Zalapa, Juan E; Cuevas, Hugo E; Dace, Gayle; Oliver, Marc; Boissot, Nathalie; Dogimont, Catherine; Pitrat, Michel; Hofstede, René; van Koert, Paul; Harel-Beja, Rotem; Tzuri, Galil; Portnoy, Vitaly; Cohen, Shahar; Schaffer, Arthur; Katzir, Nurit; Xu, Yong; Zhang, Haiying; Fukino, Nobuko; Matsumoto, Satoru; Garcia-Mas, Jordi; Monforte, Antonio J

    2011-07-28

    A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).

  5. Are quantitative trait-dependent sampling designs cost-effective for analysis of rare and common variants?

    PubMed

    Yilmaz, Yildiz E; Bull, Shelley B

    2011-11-29

    Use of trait-dependent sampling designs in whole-genome association studies of sequence data can reduce total sequencing costs with modest losses of statistical efficiency. In a quantitative trait (QT) analysis of data from the Genetic Analysis Workshop 17 mini-exome for unrelated individuals in the Asian subpopulation, we investigate alternative designs that sequence only 50% of the entire cohort. In addition to a simple random sampling design, we consider extreme-phenotype designs that are of increasing interest in genetic association analysis of QTs, especially in studies concerned with the detection of rare genetic variants. We also evaluate a novel sampling design in which all individuals have a nonzero probability of being selected into the sample but in which individuals with extreme phenotypes have a proportionately larger probability. We take differential sampling of individuals with informative trait values into account by inverse probability weighting using standard survey methods which thus generalizes to the source population. In replicate 1 data, we applied the designs in association analysis of Q1 with both rare and common variants in the FLT1 gene, based on knowledge of the generating model. Using all 200 replicate data sets, we similarly analyzed Q1 and Q4 (which is known to be free of association with FLT1) to evaluate relative efficiency, type I error, and power. Simulation study results suggest that the QT-dependent selection designs generally yield greater than 50% relative efficiency compared to using the entire cohort, implying cost-effectiveness of 50% sample selection and worthwhile reduction of sequencing costs.

  6. Relevance of genetic relationship in GWAS and genomic prediction.

    PubMed

    Pereira, Helcio Duarte; Soriano Viana, José Marcelo; Andrade, Andréa Carla Bastos; Fonseca E Silva, Fabyano; Paes, Geísa Pinheiro

    2018-02-01

    The objective of this study was to analyze the relevance of relationship information on the identification of low heritability quantitative trait loci (QTLs) from a genome-wide association study (GWAS) and on the genomic prediction of complex traits in human, animal and cross-pollinating populations. The simulation-based data sets included 50 samples of 1000 individuals of seven populations derived from a common population with linkage disequilibrium. The populations had non-inbred and inbred progeny structure (50 to 200) with varying number of members (5 to 20). The individuals were genotyped for 10,000 single nucleotide polymorphisms (SNPs) and phenotyped for a quantitative trait controlled by 10 QTLs and 90 minor genes showing dominance. The SNP density was 0.1 cM and the narrow sense heritability was 25%. The QTL heritabilities ranged from 1.1 to 2.9%. We applied mixed model approaches for both GWAS and genomic prediction using pedigree-based and genomic relationship matrices. For GWAS, the observed false discovery rate was kept below the significance level of 5%, the power of detection for the low heritability QTLs ranged from 14 to 50%, and the average bias between significant SNPs and a QTL ranged from less than 0.01 to 0.23 cM. The QTL detection power was consistently higher using genomic relationship matrix. Regardless of population and training set size, genomic prediction provided higher prediction accuracy of complex trait when compared to pedigree-based prediction. The accuracy of genomic prediction when there is relatedness between individuals in the training set and the reference population is much higher than the value for unrelated individuals.

  7. A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes.

    PubMed

    Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard

    2011-04-01

    Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype-phenotype model, we present here a three-dimensional functional-structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed.

  8. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.

    PubMed

    Croll, Daniel; McDonald, Bruce A

    2017-04-01

    Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.

  9. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.

    PubMed

    Morrissey, Catherine; Grieve, Ian C; Heinig, Matthias; Atanur, Santosh; Petretto, Enrico; Pravenec, Michal; Hubner, Norbert; Aitman, Timothy J

    2011-11-07

    The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with "physiological" QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.

  10. A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes

    PubMed Central

    Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard

    2011-01-01

    Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. Methods The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Key Results Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. Conclusions We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed. PMID:21247905

  11. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.

    PubMed

    Zhang, Qianqian; Guldbrandtsen, Bernt; Calus, Mario P L; Lund, Mogens Sandø; Sahana, Goutam

    2016-08-17

    There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle. We observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000. We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared to LMM. Therefore, it is recommended to use rare variant association mapping methods to map rare genetic variants that affect quantitative traits in livestock, such as bovine populations.

  12. P Element Transposition Contributes Substantial New Variation for a Quantitative Trait in Drosophila Melanogaster

    PubMed Central

    Torkamanzehi, A.; Moran, C.; Nicholas, F. W.

    1992-01-01

    The P-M system of transposition in Drosophila melanogaster is a powerful mutator for many visible and lethal loci. Experiments using crosses between unrelated P and M stocks to assess the importance of transposition-mediated mutations affecting quantitative loci and reponse to selection have yielded unrepeatable or ambiguous results. In a different approach, we have used a P stock produced by microinjection of the ry(506) M stock. Selection responses were compared between transposition lines that were initiated by crossing M strain females with males from the ``co-isogenic'' P strain, and ry(506) M control lines. Unlike previous attempts to quantify the effects of P element transposition, there is no possibility of P transposition in the controls. During 10 generations of selection for the quantitative trait abdominal bristle number, none of the four control lines showed any response to selection, indicative of isogenicity for those loci affecting abdominal bristle number. In contrast, three of the four transposition lines showed substantial response, with regression of cumulative response on cumulative selection differential ranging from 15% to 25%. Transposition of P elements has produced new additive genetic variance at a rate which is more than 30 times greater than the rate expected from spontaneous mutation. PMID:1317317

  13. Population- and individual-specific regulatory variation in Sardinia.

    PubMed

    Pala, Mauro; Zappala, Zachary; Marongiu, Mara; Li, Xin; Davis, Joe R; Cusano, Roberto; Crobu, Francesca; Kukurba, Kimberly R; Gloudemans, Michael J; Reinier, Frederic; Berutti, Riccardo; Piras, Maria G; Mulas, Antonella; Zoledziewska, Magdalena; Marongiu, Michele; Sorokin, Elena P; Hess, Gaelen T; Smith, Kevin S; Busonero, Fabio; Maschio, Andrea; Steri, Maristella; Sidore, Carlo; Sanna, Serena; Fiorillo, Edoardo; Bassik, Michael C; Sawcer, Stephen J; Battle, Alexis; Novembre, John; Jones, Chris; Angius, Andrea; Abecasis, Gonçalo R; Schlessinger, David; Cucca, Francesco; Montgomery, Stephen B

    2017-05-01

    Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.

  14. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  15. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  16. Genetic divergence in northern Benin sorghum (Sorghum bicolor L. Moench) landraces as revealed by agromorphological traits and selection of candidate genotypes.

    PubMed

    Dossou-Aminon, Innocent; Loko, Laura Yêyinou; Adjatin, Arlette; Ewédjè, Eben-Ezer B K; Dansi, Alexandre; Rakshit, Sujay; Cissé, Ndiaga; Patil, Jagannath Vishnu; Agbangla, Clément; Sanni, Ambaliou; Akoègninou, Akpovi; Akpagana, Koffi

    2015-01-01

    Sorghum [Sorghum bicolor (L.) Moench] is an important staple food crop in northern Benin. In order to assess its diversity in Benin, 142 accessions of landraces collected from Northern Benin were grown in Central Benin and characterised using 10 qualitative and 14 quantitative agromorphological traits. High variability among both qualitative and quantitative traits was observed. Grain yield (0.72-10.57 tons/ha), panicle weight (15-215.95 g), days to 50% flowering (57-200 days), and plant height (153.27-636.5 cm) were among traits that exhibited broader variability. Correlations between quantitative traits were determined. Grain yield for instance exhibited highly positive association with panicle weight (r = 0.901, P = 0.000) and 100 seed weight (r = 0.247, P = 0.000). UPGMA cluster analysis classified the 142 accessions into 89 morphotypes. Based on multivariate analysis, twenty promising sorghum genotypes were selected. Among them, AT41, AT14, and AT29 showed early maturity (57 to 66 days to 50% flowering), high grain yields (4.85 to 7.85 tons/ha), and shorter plant height (153.27 to 180.37 cm). The results obtained will help enhancing sorghum production and diversity and developing new varieties that will be better adapted to the current soil and climate conditions in Benin.

  17. Quantitative genetics of immunity and life history under different photoperiods.

    PubMed

    Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J

    2012-05-01

    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.

  18. Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior

    PubMed Central

    Hunt, G. J.; Page-Jr., R. E.; Fondrk, M. K.; Dullum, C. J.

    1995-01-01

    We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads. PMID:8601492

  19. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.

    PubMed

    Markunas, Christina A; Johnson, Eric O; Hancock, Dana B

    2017-07-01

    Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10 -8 ) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits. SNPs were annotated using HaploReg for the eight functional elements across any tissue: DNase sites, expression quantitative trait loci (eQTL), sequence conservation, enhancers, promoters, missense variants, sequence motifs, and protein binding sites. In addition, tissue-specific annotations were considered for brain vs. blood. Disease/trait SNPs were compared to a control set of 4809 SNPs matched to the GWAS SNPs (N = 1639) on allele frequency, gene density, distance to nearest gene, and linkage disequilibrium at ~3:1 ratio. Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference  = 1.28 × 10 -6 vs. enhancers P TissueDifference  = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.

  20. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System.

    PubMed

    Liu, Zhigang; Gao, Kun; Shan, Shengchen; Gu, Riling; Wang, Zhangkui; Craft, Eric J; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2017-01-01

    Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency ( r = 0.17-0.31) and Phosphorus (PupE) uptake efficiency ( r = 0.22-0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index to accelerate the selection of high N and P efficient genotypes for maize breeding programs.

  1. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System

    PubMed Central

    Liu, Zhigang; Gao, Kun; Shan, Shengchen; Gu, Riling; Wang, Zhangkui; Craft, Eric J.; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2017-01-01

    Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency (r = 0.17–0.31) and Phosphorus (PupE) uptake efficiency (r = 0.22–0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index to accelerate the selection of high N and P efficient genotypes for maize breeding programs. PMID:28424719

  2. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. A simple genetic architecture underlies morphological variation in dogs.

    PubMed

    Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A

    2010-08-10

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  4. A Simple Genetic Architecture Underlies Morphological Variation in Dogs

    PubMed Central

    Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.

    2010-01-01

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490

  5. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

    PubMed

    Edwards, Christine E; Ewers, Brent E; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2012-05-01

    Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  6. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group.

    PubMed

    Vďačný, Peter; Rajter, Ľubomír; Shazib, Shahed Uddin Ahmed; Jang, Seok Won; Shin, Mann Kyoon

    2017-08-30

    Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope's rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.

  7. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster

    PubMed Central

    Edwards, Stefan M.; Sørensen, Izel F.; Sarup, Pernille; Mackay, Trudy F. C.; Sørensen, Peter

    2016-01-01

    Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits. PMID:27235308

  8. Callous-Unemotional (CU) Traits in Adolescent Boys and Response to Teacher Reward and Discipline Strategies

    ERIC Educational Resources Information Center

    Allen, Jennifer L.; Morris, Amy; Chhoa, Celine Y.

    2016-01-01

    The aim of this study was to investigate the relationship between callous-unemotional (CU) traits and response to rewards and discipline in adolescent boys using a mixed-methods approach. Participants comprised 39 boys aged between 12 and 13 years and 8 teachers. Quantitative findings showed that CU traits were significantly related to punishment…

  9. Quantitative trait loci affecting oil content, oil composition, and other agronomically important traits in Oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Groat oil content and composition are important determinants of oat quality. We investigated these traits in a population of 146 recombinant inbred lines from a cross between 'Dal' (high oil) and 'Exeter' (low oil). A linkage map consisting of 475 DArT markers spanning 1271.8 cM across 40 linkage gr...

  10. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary x non-supernumerary spikelet genotypes

    USDA-ARS?s Scientific Manuscript database

    Identifying new quantitative trait loci (QTLs) and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a population of recombinant inbred lines (RILs) developed from a cross between an elite wheat line (WCB414) and an exotic genotype wi...

  11. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population.

    PubMed

    Sabatti, Chiara; Service, Susan K; Hartikainen, Anna-Liisa; Pouta, Anneli; Ripatti, Samuli; Brodsky, Jae; Jones, Chris G; Zaitlen, Noah A; Varilo, Teppo; Kaakinen, Marika; Sovio, Ulla; Ruokonen, Aimo; Laitinen, Jaana; Jakkula, Eveliina; Coin, Lachlan; Hoggart, Clive; Collins, Andrew; Turunen, Hannu; Gabriel, Stacey; Elliot, Paul; McCarthy, Mark I; Daly, Mark J; Järvelin, Marjo-Riitta; Freimer, Nelson B; Peltonen, Leena

    2009-01-01

    Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.

  12. Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.

    PubMed

    Adriaens, M E; Bezzina, C R

    2018-06-22

    Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.

  13. Distributions of Mutational Effects and the Estimation of Directional Selection in Divergent Lineages of Arabidopsis thaliana.

    PubMed

    Park, Briton; Rutter, Matthew T; Fenster, Charles B; Symonds, V Vaughan; Ungerer, Mark C; Townsend, Jeffrey P

    2017-08-01

    Mutations are crucial to evolution, providing the ultimate source of variation on which natural selection acts. Due to their key role, the distribution of mutational effects on quantitative traits is a key component to any inference regarding historical selection on phenotypic traits. In this paper, we expand on a previously developed test for selection that could be conducted assuming a Gaussian mutation effect distribution by developing approaches to also incorporate any of a family of heavy-tailed Laplace distributions of mutational effects. We apply the test to detect directional natural selection on five traits along the divergence of Columbia and Landsberg lineages of Arabidopsis thaliana , constituting the first test for natural selection in any organism using quantitative trait locus and mutation accumulation data to quantify the intensity of directional selection on a phenotypic trait. We demonstrate that the results of the test for selection can depend on the mutation effect distribution specified. Using the distributions exhibiting the best fit to mutation accumulation data, we infer that natural directional selection caused divergence in the rosette diameter and trichome density traits of the Columbia and Landsberg lineages. Copyright © 2017 by the Genetics Society of America.

  14. Analysis of Sequence Data Under Multivariate Trait-Dependent Sampling.

    PubMed

    Tao, Ran; Zeng, Donglin; Franceschini, Nora; North, Kari E; Boerwinkle, Eric; Lin, Dan-Yu

    2015-06-01

    High-throughput DNA sequencing allows for the genotyping of common and rare variants for genetic association studies. At the present time and for the foreseeable future, it is not economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to sequence those individuals with extreme values of a quantitative trait. We consider the design under which the sampling depends on multiple quantitative traits. Under such trait-dependent sampling, standard linear regression analysis can result in bias of parameter estimation, inflation of type I error, and loss of power. We construct a likelihood function that properly reflects the sampling mechanism and utilizes all available data. We implement a computationally efficient EM algorithm and establish the theoretical properties of the resulting maximum likelihood estimators. Our methods can be used to perform separate inference on each trait or simultaneous inference on multiple traits. We pay special attention to gene-level association tests for rare variants. We demonstrate the superiority of the proposed methods over standard linear regression through extensive simulation studies. We provide applications to the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung, and Blood Institute Exome Sequencing Project.

  15. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.

    PubMed

    Mägi, Reedik; Suleimanov, Yury V; Clarke, Geraldine M; Kaakinen, Marika; Fischer, Krista; Prokopenko, Inga; Morris, Andrew P

    2017-01-11

    Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) have been successful in identifying loci contributing genetic effects to a wide range of complex human diseases and quantitative traits. The traditional approach to GWAS analysis is to consider each phenotype separately, despite the fact that many diseases and quantitative traits are correlated with each other, and often measured in the same sample of individuals. Multivariate analyses of correlated phenotypes have been demonstrated, by simulation, to increase power to detect association with SNPs, and thus may enable improved detection of novel loci contributing to diseases and quantitative traits. We have developed the SCOPA software to enable GWAS analysis of multiple correlated phenotypes. The software implements "reverse regression" methodology, which treats the genotype of an individual at a SNP as the outcome and the phenotypes as predictors in a general linear model. SCOPA can be applied to quantitative traits and categorical phenotypes, and can accommodate imputed genotypes under a dosage model. The accompanying META-SCOPA software enables meta-analysis of association summary statistics from SCOPA across GWAS. Application of SCOPA to two GWAS of high-and low-density lipoprotein cholesterol, triglycerides and body mass index, and subsequent meta-analysis with META-SCOPA, highlighted stronger association signals than univariate phenotype analysis at established lipid and obesity loci. The META-SCOPA meta-analysis also revealed a novel signal of association at genome-wide significance for triglycerides mapping to GPC5 (lead SNP rs71427535, p = 1.1x10 -8 ), which has not been reported in previous large-scale GWAS of lipid traits. The SCOPA and META-SCOPA software enable discovery and dissection of multiple phenotype association signals through implementation of a powerful reverse regression approach.

  16. Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.).

    PubMed

    Tharanya, Murugesan; Kholova, Jana; Sivasakthi, Kaliamoorthy; Seghal, Deepmala; Hash, Charles Tom; Raj, Basker; Srivastava, Rakesh Kumar; Baddam, Rekha; Thirunalasundari, Thiyagarajan; Yadav, Rattan; Vadez, Vincent

    2018-04-21

    Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes. Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.

  17. Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss

    PubMed Central

    Nielsen, Merlyn K.; Thorn, Stephanie R.; Valdar, William; Pomp, Daniel

    2014-01-01

    Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity. PMID:24918027

  18. Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping.

    PubMed

    Lad, Heena V; Liu, Lin; Payá-Cano, José L; Fernandes, Cathy; Schalkwyk, Leonard C

    2007-07-01

    Immobility in the tail suspension test (TST) is considered a model of despair in a stressful situation, and acute treatment with antidepressants reduces immobility. Inbred strains of mouse exhibit widely differing baseline levels of immobility in the TST and several quantitative trait loci (QTLs) have been nominated. The labor of manual scoring and various scoring criteria make obtaining robust data and comparisons across different laboratories problematic. Several studies have validated strain gauge and video analysis methods by comparison with manual scoring. We set out to find objective criteria for automated scoring parameters that maximize the biological information obtained, using a video tracking system on tapes of tail suspension tests of 24 lines of the BXD recombinant inbred panel and the progenitor strains C57BL/6J and DBA/2J. The maximum genetic effect size is captured using the highest time resolution and a low mobility threshold. Dissecting the trait further by comparing genetic association of multiple measures reveals good evidence for loci involved in immobility on chromosomes 4 and 15. These are best seen when using a high threshold for immobility, despite the overall better heritability at the lower threshold. A second trial of the test has greater duration of immobility and a completely different genetic profile. Frequency of mobility is also an independent phenotype, with a distal chromosome 1 locus.

  19. DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits.

    PubMed

    Karhunen, M; Merilä, J; Leinonen, T; Cano, J M; Ovaskainen, O

    2013-07-01

    Approaches and tools to differentiate between natural selection and genetic drift as causes of population differentiation are of frequent demand in evolutionary biology. Based on the approach of Ovaskainen et al. (2011), we have developed an R package (DRIFTSEL) that can be used to differentiate between stabilizing selection, diversifying selection and random genetic drift as causes of population differentiation in quantitative traits when neutral marker and quantitative genetic data are available. Apart from illustrating the use of this method and the interpretation of results using simulated data, we apply the package on data from three-spined sticklebacks (Gasterosteus aculeatus) to highlight its virtues. DRIFTSEL can also be used to perform usual quantitative genetic analyses in common-garden study designs. © 2013 John Wiley & Sons Ltd.

  20. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.

    PubMed

    Tiezzi, Francesco; Maltecca, Christian

    2015-04-02

    Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation. Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy. Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.

  1. Quantitative genetic correlation between trait and preference supports a sexually selected sperm process

    PubMed Central

    Simmons, Leigh W.; Kotiaho, Janne S.

    2007-01-01

    Sperm show patterns of rapid and divergent evolution that are characteristic of sexual selection. Sperm competition has been proposed as an important selective agent in the evolution of sperm morphology. However, several comparative analyses have revealed evolutionary associations between sperm length and female reproductive tract morphology that suggest patterns of male–female coevolution. In the dung beetle Onthophagus taurus, males with short sperm have a fertilization advantage that depends on the size of the female's sperm storage organ, the spermatheca; large spermathecae select for short sperm. Sperm length is heritable and is genetically correlated with male condition. Here we report significant additive genetic variation and heritability for spermatheca size and genetic covariance between spermatheca size and sperm length predicted by both the “good-sperm” and “sexy-sperm” models of postcopulatory female preference. Our data thus provide quantitative genetic support for the role of a sexually selected sperm process in the evolutionary divergence of sperm morphology, in much the same manner as precopulatory female preferences drive the evolutionary divergence of male secondary sexual traits. PMID:17921254

  2. Dahl (S × R) Rat Congenic Strain Analysis Confirms and Defines a Chromosome 17 Spatial Navigation Quantitative Trait Locus to <10 Mbp

    PubMed Central

    Herrera, Victoria L.; Pasion, Khristine A.; Tan, Glaiza A.; Ruiz-Opazo, Nelson

    2013-01-01

    A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02–74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats. PMID:23469157

  3. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton

    PubMed Central

    Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A. Elizabete; Gazave, Elodie; French, Andrew N.; Heun, John; Hunsaker, Douglas J.; Lipka, Alexander E.; Setter, Tim L.; Strand, Robert J.; Thorp, Kelly R.; Wang, Sam; White, Jeffrey W.; Gore, Michael A.

    2016-01-01

    The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010–2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. PMID:26818078

  4. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds.

    PubMed

    Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong

    2016-01-01

    Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.

  5. Comparative analysis of genetic architectures for nine developmental traits of rye.

    PubMed

    Masojć, Piotr; Milczarski, P; Kruszona, P

    2017-08-01

    Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.

  6. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits.

    PubMed

    Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G

    2017-12-05

    Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in prediction reliability compared to the univariate versions. Substantial improvement in prediction reliability was possible for most of the traits related to milk protein composition using our novel BayesAS models. Grouping adjacent SNPs into segments provided enhanced information to estimate parameters and allowing the segments to have different (co)variances helped disentangle heterogeneous (co)variances across the genome.

  7. Data Sources for Trait Databases: Comparing the Phenomic Content of Monographs and Evolutionary Matrices.

    PubMed

    Dececchi, T Alex; Mabee, Paula M; Blackburn, David C

    2016-01-01

    Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications ('monographs') and those used in phylogenetic analyses ('matrices'). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life.

  8. Data Sources for Trait Databases: Comparing the Phenomic Content of Monographs and Evolutionary Matrices

    PubMed Central

    Dececchi, T. Alex; Mabee, Paula M.; Blackburn, David C.

    2016-01-01

    Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications (‘monographs’) and those used in phylogenetic analyses (‘matrices’). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life. PMID:27191170

  9. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  10. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  11. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site.

    PubMed

    Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu

    2011-01-01

    A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.

  12. Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.

    PubMed

    Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P

    2017-03-17

    Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.

  13. Quantitative trait loci controlling leaf venation in Arabidopsis.

    PubMed

    Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten

    2017-08-01

    Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.

  14. The efficiency of close inbreeding to reduce genetic adaptation to captivity

    PubMed Central

    Theodorou, K; Couvet, D

    2015-01-01

    Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs. PMID:25052417

  15. Evolution of Fitness in Experimental Populations of Vesicular Stomatitis Virus

    PubMed Central

    Elena, S. F.; Gonzalez-Candelas, F.; Novella, I. S.; Duarte, E. A.; Clarke, D. K.; Domingo, E.; Holland, J. J.; Moya, A.

    1996-01-01

    The evolution of fitness in experimental clonal populations of vesicular stomatitis virus (VSV) has been compared under different genetic (fitness of initial clone) and demographic (population dynamics) regimes. In spite of the high genetic heterogeneity among replicates within experiments, there is a clear effect of population dynamics on the evolution of fitness. Those populations that went through strong periodic bottlenecks showed a decreased fitness in competition experiments with wild type. Conversely, mutant populations that were transferred under the dynamics of continuous population expansions increased their fitness when compared with the same wild type. The magnitude of the observed effect depended on the fitness of the original viral clone. Thus, high fitness clones showed a larger reduction in fitness than low fitness clones under dynamics with included periodic bottleneck. In contrast, the gain in fitness was larger the lower the initial fitness of the viral clone. The quantitative genetic analysis of the trait ``fitness'' in the resulting populations shows that genetic variation for the trait is positively correlated with the magnitude of the change in the same trait. The results are interpreted in terms of the operation of MULLER's ratchet and genetic drift as opposed to the appearance of beneficial mutations. PMID:8849878

  16. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  17. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  18. Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping

    PubMed Central

    Chen, Lin; An, Yixin; Li, Yong-xiang; Li, Chunhui; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Wang, Tianyu; Li, Yu

    2017-01-01

    Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci. PMID:29312420

  19. kruX: matrix-based non-parametric eQTL discovery.

    PubMed

    Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom

    2014-01-14

    The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.

  20. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    PubMed Central

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. PMID:23805232

  1. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection.

    PubMed

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G; Holbrook, C C; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum ) is a major fungal disease of cultivated peanut ( Arachis hypogaea ). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  2. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

    PubMed Central

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G.; Holbrook, C. C.; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping. PMID:29459876

  3. The opposite end of the attention deficit hyperactivity disorder continuum: genetic and environmental aetiologies of extremely low ADHD traits.

    PubMed

    Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K

    2016-04-01

    Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  4. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.

    PubMed

    Calus, M P L; de Haas, Y; Veerkamp, R F

    2013-10-01

    Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. An Analytic Solution to the Computation of Power and Sample Size for Genetic Association Studies under a Pleiotropic Mode of Inheritance.

    PubMed

    Gordon, Derek; Londono, Douglas; Patel, Payal; Kim, Wonkuk; Finch, Stephen J; Heiman, Gary A

    2016-01-01

    Our motivation here is to calculate the power of 3 statistical tests used when there are genetic traits that operate under a pleiotropic mode of inheritance and when qualitative phenotypes are defined by use of thresholds for the multiple quantitative phenotypes. Specifically, we formulate a multivariate function that provides the probability that an individual has a vector of specific quantitative trait values conditional on having a risk locus genotype, and we apply thresholds to define qualitative phenotypes (affected, unaffected) and compute penetrances and conditional genotype frequencies based on the multivariate function. We extend the analytic power and minimum-sample-size-necessary (MSSN) formulas for 2 categorical data-based tests (genotype, linear trend test [LTT]) of genetic association to the pleiotropic model. We further compare the MSSN of the genotype test and the LTT with that of a multivariate ANOVA (Pillai). We approximate the MSSN for statistics by linear models using a factorial design and ANOVA. With ANOVA decomposition, we determine which factors most significantly change the power/MSSN for all statistics. Finally, we determine which test statistics have the smallest MSSN. In this work, MSSN calculations are for 2 traits (bivariate distributions) only (for illustrative purposes). We note that the calculations may be extended to address any number of traits. Our key findings are that the genotype test usually has lower MSSN requirements than the LTT. More inclusive thresholds (top/bottom 25% vs. top/bottom 10%) have higher sample size requirements. The Pillai test has a much larger MSSN than both the genotype test and the LTT, as a result of sample selection. With these formulas, researchers can specify how many subjects they must collect to localize genes for pleiotropic phenotypes. © 2017 S. Karger AG, Basel.

  6. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  7. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  8. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Growth-Related Traits in Litopenaeus vannamei for Selective Breeding Applications

    PubMed Central

    Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao

    2013-01-01

    Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei , based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L . vannamei and Penaeus japonicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L . vannamei . PMID:24086466

  9. Linkage Analysis of a Model Quantitative Trait in Humans: Finger Ridge Count Shows Significant Multivariate Linkage to 5q14.1

    PubMed Central

    Medland, Sarah E; Loesch, Danuta Z; Mdzewski, Bogdan; Zhu, Gu; Montgomery, Grant W; Martin, Nicholas G

    2007-01-01

    The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. PMID:17907812

  10. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  11. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  12. Quantitative genetics of disease traits.

    PubMed

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.

  13. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii

    Treesearch

    Chak Han Im; Young-Hoon Park; Kenneth E. Hammel; Bokyung Park; Soon Wook Kwon; Hojin Ryu; Jae-San Ryu

    2016-01-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type...

  14. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    PubMed Central

    Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain

    2011-01-01

    Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST

  15. Cracking the genomic piggy bank: identifying secrets of the pig genome.

    PubMed

    Mote, B E; Rothschild, M F

    2006-01-01

    Though researchers are uncovering valuable information about the pig genome at unprecedented speed, the porcine genome community is barely scratching the surface as to understanding interactions of the biological code. The pig genetic linkage map has nearly 5,000 loci comprised of genes, microsatellites, and amplified fragment length polymorphism markers. Likewise, the physical map is becoming denser with nearly 6,000 markers. The long awaited sequencing efforts are providing multidimensional benefits with sequence available for comparative genomics and identifying single nucleotide polymorphisms for use in linkage and trait association studies. Scientists are using exotic and commercial breeds for quantitative trait loci scans. Additionally, candidate gene studies continue to identify chromosomal regions or genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve said traits. Researchers are utilizing novel tools including pig microarrays along with advanced bioinformatics to identify new candidate genes, understand gene function, and piece together gene networks involved in important biological processes. Advances in pig genomics and implications to the pork industry as well as human health are reviewed.

  16. Genetic Mapping of Quantitative Trait Loci Controlling Growth and Wood Quality Traits in Eucalyptus Grandis Using a Maternal Half-Sib Family and Rapd Markers

    PubMed Central

    Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.

    1996-01-01

    Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761

  17. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  18. Genetic constraints predict evolutionary divergence in Dalechampia blossoms.

    PubMed

    Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott

    2014-08-19

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.

  19. The effects of stabilizing and directional selection on phenotypic and genotypic variation in a population of RNA enzymes.

    PubMed

    Hayden, Eric J; Bratulic, Sinisa; Koenig, Iwo; Ferrada, Evandro; Wagner, Andreas

    2014-02-01

    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.

  20. Adaptive potential of northernmost tree populations to climate change, with emphasis on Scots pine (Pinus sylvestris L.).

    PubMed

    Savolainen, Outi; Kujala, Sonja T; Sokol, Catherina; Pyhäjärvi, Tanja; Avia, Komlan; Knürr, Timo; Kärkkäinen, Katri; Hicks, Sheila

    2011-01-01

    The adaptive potential of the northernmost Pinus sylvestris L. (and other northern tree) populations is considered by examining first the current patterns of quantitative genetic adaptive traits, which show high population differentiation and clines. We then consider the postglacial history of the populations using both paleobiological and genetic data. The current patterns of diversity at nuclear genes suggest that the traces of admixture are mostly visible in mitochondrial DNA variation patterns. There is little evidence of increased diversity due to admixture between an eastern and western colonization lineage, but no signal of reduced diversity (due to sequential bottlenecks) either. Quantitative trait variation in the north is not associated with the colonizing lineages. The current clines arose rapidly and may be based on standing genetic variation. The initial phenotypic response of Scots pine in the north is predicted to be increased survival and growth. The genetic responses are examined based on quantitative genetic predictions of sustained selection response and compared with earlier simulation results that have aimed at more ecological realism. The phenotypic responses of increased growth and survival reduce the opportunity for selection and delay the evolutionary responses. The lengthening of the thermal growing period also causes selection on the critical photoperiod in the different populations. Future studies should aim at including multiple ecological and genetic factors in evaluating potential responses.

  1. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle.

    PubMed

    Bolormaa, S; Pryce, J E; Kemper, K; Savin, K; Hayes, B J; Barendse, W; Zhang, Y; Reich, C M; Mason, B A; Bunch, R J; Harrison, B E; Reverter, A; Herd, R M; Tier, B; Graser, H-U; Goddard, M E

    2013-07-01

    The aim of this study was to assess the accuracy of genomic predictions for 19 traits including feed efficiency, growth, and carcass and meat quality traits in beef cattle. The 10,181 cattle in our study had real or imputed genotypes for 729,068 SNP although not all cattle were measured for all traits. Animals included Bos taurus, Brahman, composite, and crossbred animals. Genomic EBV (GEBV) were calculated using 2 methods of genomic prediction [BayesR and genomic BLUP (GBLUP)] either using a common training dataset for all breeds or using a training dataset comprising only animals of the same breed. Accuracies of GEBV were assessed using 5-fold cross-validation. The accuracy of genomic prediction varied by trait and by method. Traits with a large number of recorded and genotyped animals and with high heritability gave the greatest accuracy of GEBV. Using GBLUP, the average accuracy was 0.27 across traits and breeds, but the accuracies between breeds and between traits varied widely. When the training population was restricted to animals from the same breed as the validation population, GBLUP accuracies declined by an average of 0.04. The greatest decline in accuracy was found for the 4 composite breeds. The BayesR accuracies were greater by an average of 0.03 than GBLUP accuracies, particularly for traits with known genes of moderate to large effect mutations segregating. The accuracies of 0.43 to 0.48 for IGF-I traits were among the greatest in the study. Although accuracies are low compared with those observed in dairy cattle, genomic selection would still be beneficial for traits that are hard to improve by conventional selection, such as tenderness and residual feed intake. BayesR identified many of the same quantitative trait loci as a genomewide association study but appeared to map them more precisely. All traits appear to be highly polygenic with thousands of SNP independently associated with each trait.

  2. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus)

    PubMed Central

    2014-01-01

    Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection. PMID:24443961

  3. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information.

    PubMed

    Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino

    2016-09-10

    Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source code, along with the manual and the example files can be downloaded at http://lissp.irb.hr/software/magellan-1-0/ and https://github.com/sristov/magellan .

  4. Identification of Multiple QTL Hotspots in Sockeye Salmon (Oncorhynchus nerka) Using Genotyping-by-Sequencing and a Dense Linkage Map.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Limborg, Morten T; Everett, Meredith V; Seeb, Lisa W; Seeb, James E

    2016-03-01

    Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness

    PubMed Central

    Bink, Marco CAM; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe

    2016-01-01

    Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program. PMID:27806077

  6. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness.

    PubMed

    Bartholomé, Jérôme; Bink, Marco Cam; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe

    2016-01-01

    Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.

  7. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.

    PubMed

    Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi

    2015-02-09

    Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.

  8. Genome wide association mapping for grain shape traits in indica rice.

    PubMed

    Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2016-10-01

    Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.

  9. Genetic data analysis for plant and animal breeding

    USDA-ARS?s Scientific Manuscript database

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  10. Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...

  11. [INVITED] Non-intrusive optical imaging of face to probe physiological traits in Autism Spectrum Disorder

    NASA Astrophysics Data System (ADS)

    Samad, Manar D.; Bobzien, Jonna L.; Harrington, John W.; Iftekharuddin, Khan M.

    2016-03-01

    Autism Spectrum Disorders (ASD) can impair non-verbal communication including the variety and extent of facial expressions in social and interpersonal communication. These impairments may appear as differential traits in the physiology of facial muscles of an individual with ASD when compared to a typically developing individual. The differential traits in the facial expressions as shown by facial muscle-specific changes (also known as 'facial oddity' for subjects with ASD) may be measured visually. However, this mode of measurement may not discern the subtlety in facial oddity distinctive to ASD. Earlier studies have used intrusive electrophysiological sensors on the facial skin to gauge facial muscle actions from quantitative physiological data. This study demonstrates, for the first time in the literature, novel quantitative measures for facial oddity recognition using non-intrusive facial imaging sensors such as video and 3D optical cameras. An Institutional Review Board (IRB) approved that pilot study has been conducted on a group of individuals consisting of eight participants with ASD and eight typically developing participants in a control group to capture their facial images in response to visual stimuli. The proposed computational techniques and statistical analyses reveal higher mean of actions in the facial muscles of the ASD group versus the control group. The facial muscle-specific evaluation reveals intense yet asymmetric facial responses as facial oddity in participants with ASD. This finding about the facial oddity may objectively define measurable differential markers in the facial expressions of individuals with ASD.

  12. Identification of positive selection signatures in pigs by comparing linkage disequilibrium variances.

    PubMed

    Li, X; Yang, S; Dong, K; Tang, Z; Li, K; Fan, B; Wang, Z; Liu, B

    2017-10-01

    Selection affects the patterns of linkage disequilibrium (LD) around the site of a beneficial allele with an increase in LD among the hitchhiking alleles. Comparing the differences in regional LD between pig populations could help to identify putative genomic regions with potential adaptations for economic traits. In this study, using Illumina Porcine SNP60K BeadChip genotyping data from 207 Chinese indigenous, 117 South American village and 408 Large White pigs, we estimated the variation of genome-wide LD between populations using the varld program. The top 0.1% standardized VarLD scores were used as a criterion for all comparisons, and compared with LD blocks, a total of four selection signatures on Sus scrofa chromosome (SSC) 7, 9, 13 and 14 were identified in all populations. These signatures overlapped with quantitative trait loci for linoleic acid content, age at puberty, number of muscle fibers per unit area, hip structure and body weight traits in pigs. Among them, one of the signatures (56.5-56.6 Mb on SSC7) in Large White pigs harbored the ADAMTSL3 gene, which is known to affect body length. The findings of this study seem to point toward recent selection in different pig populations. Further investigations are encouraged to confirm the selection signatures detected by varld in the present study. © 2017 Stichting International Foundation for Animal Genetics.

  13. The genetic architecture of photosynthesis and plant growth-related traits in tomato.

    PubMed

    de Oliveira Silva, Franklin Magnum; Lichtenstein, Gabriel; Alseekh, Saleh; Rosado-Souza, Laise; Conte, Mariana; Suguiyama, Vanessa Fuentes; Lira, Bruno Silvestre; Fanourakis, Dimitrios; Usadel, Björn; Bhering, Leonardo Lopes; DaMatta, Fábio M; Sulpice, Ronan; Araújo, Wagner L; Rossi, Magdalena; de Setta, Nathalia; Fernie, Alisdair R; Carrari, Fernando; Nunes-Nesi, Adriano

    2018-02-01

    To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement. © 2017 John Wiley & Sons Ltd.

  14. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2

    PubMed Central

    Takahashi, Yuji; Shomura, Ayahiko; Sasaki, Takuji; Yano, Masahiro

    2001-01-01

    Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype. PMID:11416158

  15. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  16. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

    PubMed Central

    Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota

    2015-01-01

    Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975

  17. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.

    PubMed

    Mendes-Moreira, Pedro; Alves, Mara L; Satovic, Zlatko; Dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E; Hallauer, Arnel R; Vaz Patto, Maria Carlota

    2015-01-01

    Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.

  18. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-05-01

    Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.

  19. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

    PubMed

    Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P

    2017-10-01

    In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.

  20. Application of Genome Wide Association and Genomic Prediction for Improvement of Cacao Productivity and Resistance to Black and Frosty Pod Diseases

    PubMed Central

    Romero Navarro, J. Alberto; Phillips-Mora, Wilbert; Arciniegas-Leal, Adriana; Mata-Quirós, Allan; Haiminen, Niina; Mustiga, Guiliana; Livingstone III, Donald; van Bakel, Harm; Kuhn, David N.; Parida, Laxmi; Kasarskis, Andrew; Motamayor, Juan C.

    2017-01-01

    Chocolate is a highly valued and palatable confectionery product. Chocolate is primarily made from the processed seeds of the tree species Theobroma cacao. Cacao cultivation is highly relevant for small-holder farmers throughout the tropics, yet its productivity remains limited by low yields and widespread pathogens. A panel of 148 improved cacao clones was assembled based on productivity and disease resistance, and phenotypic single-tree replicated clonal evaluation was performed for 8 years. Using high-density markers, the diversity of clones was expressed relative to 10 known ancestral cacao populations, and significant effects of ancestry were observed in productivity and disease resistance. Genome-wide association (GWA) was performed, and six markers were significantly associated with frosty pod disease resistance. In addition, genomic selection was performed, and consistent with the observed extensive linkage disequilibrium, high predictive ability was observed at low marker densities for all traits. Finally, quantitative trait locus mapping and differential expression analysis of two cultivars with contrasting disease phenotypes were performed to identify genes underlying frosty pod disease resistance, identifying a significant quantitative trait locus and 35 differentially expressed genes using two independent differential expression analyses. These results indicate that in breeding populations of heterozygous and recently admixed individuals, mapping approaches can be used for low complexity traits like pod color cacao, or in other species single gene disease resistance, however genomic selection for quantitative traits remains highly effective relative to mapping. Our results can help guide the breeding process for sustainable improved cacao productivity. PMID:29184558

  1. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  2. Analysis and implications of mutational variation.

    PubMed

    Keightley, Peter D; Halligan, Daniel L

    2009-06-01

    Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.

  3. A powerful test of parent-of-origin effects for quantitative traits using haplotypes

    USDA-ARS?s Scientific Manuscript database

    Imprinting is an epigenetic phenomenon where the same alleles have unequal transcriptions and thus contribute differently to a trait depending on their parent of origin. This mechanism has been found to affect a variety of human disorders. Although various methods for testing parent-of-origin effect...

  4. Identification of quantitative trait loci for popping traits and kernel characteristics in sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Popped grain sorghum has developed a niche among specialty snack-food consumers. In contrast to popcorn, sorghum has not benefited from persistent selective breeding for popping efficiency and kernel expansion ratio. While recent studies have already demonstrated that popping characteristics are h...

  5. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach [Prunus persica (L.) Batsch

    USDA-ARS?s Scientific Manuscript database

    Chilling requirement (CR), together with heat requirement (HR), determines blooming date (BD) and climatic distribution of genotypes of temperate tree species. However, information on the genetic components underlying these important traits remains unknown or fragmentary. Here the identification o...

  6. Development of low temperature germinability markers for evaluation of rice (Oryza sativa L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    Low temperature germinability (LTG) is an important trait for breeding of varieties for use in direct-seeding rice production systems. Although rice (Oryza sativa L.) is generally sensitive to low temperatures, genetic variation for LTG exists and several quantitative trait loci (QTLs) have been rep...

  7. Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...

  8. Genome-wide association mapping of qualitatively inherited traits in a germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting the genomic locations of major genes governing categorically defined phenotype variants that exist fo...

  9. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs.

    PubMed

    Assanga, Silvano O; Fuentealba, Maria; Zhang, Guorong; Tan, ChorTee; Dhakal, Smit; Rudd, Jackie C; Ibrahim, Amir M H; Xue, Qingwu; Haley, Scott; Chen, Jianli; Chao, Shiaoman; Baker, Jason; Jessup, Kirk; Liu, Shuyu

    2017-01-01

    Stable quantitative trait loci (QTL) are important for deployment in marker assisted selection in wheat (Triticum aestivum L.) and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE) by the QTL on 2B.1 ranged from 3.3-25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading) and yield related traits (test weight, thousand kernel weight, harvest index). The QTL on 5B at 211 cM had PVE range of 1.8-9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8-8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6-12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7-19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive) at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4-244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1, and UDP-glucose 6-dehydrogenase 1-like isoform X1. The stable QTL could be important for further validation, high throughput SNP development, and marker-assisted selection (MAS) in wheat.

  10. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  11. Investigation of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat quality traits in Large White pigs.

    PubMed

    Han, Xuelei; Jiang, Tengfei; Yang, Huawei; Zhang, Qingde; Wang, Weimin; Fan, Bin; Liu, Bang

    2012-06-01

    Meat quality traits are economically important traits of swine, and are controlled by multiple genes as complex quantitative traits. In the present study four genes, H-FABP (heart fatty acid-binding protein), MASTR (MEF2 activating motif and SAP domain containing transcriptional regulator), UCP3 (uncoupling protein 3) and MYOD1 (myogenic differentiation 1) were researched in Large White pigs. The polymorphisms H-FABP T/C of 5'UTR, MYOD1 g.257 A>C, UCP3 g.1406 G>A in exon 3 and MASTR c.187 C>T have been reported to be associated with meat quality traits in pigs. The aim of this study was to analyze the effect of single and multiple markers for single traits in Large White pigs. The single marker association analysis showed that the H-FABP and MASTR genes were associated with IMF (intramuscular fat content) (P < 0.05), and that the g.257 A>C of MYOD1 gene was most significantly related to muscle pH value (P < 0.01). The multiple markers for IMF were analyzed by combining the markers and quantitative trait modes into the linear regression. The results revealed that H-FABP and MASTR integrate gene networks for IMF. Thus, our study results suggested that H-FABP and MASTR polymorphisms could be used as genetic markers in the marker-assisted selection towards the improvement of IMF in Large White pigs.

  12. Neuroanatomical profiles of personality change in frontotemporal lobar degeneration.

    PubMed

    Mahoney, Colin J; Rohrer, Jonathan D; Omar, Rohani; Rossor, Martin N; Warren, Jason D

    2011-05-01

    The neurobiological basis of personality is poorly understood. Frontotemporal lobar degeneration (FTLD) frequently presents with complex behavioural changes, and therefore potentially provides a disease model in which to investigate brain substrates of personality. To assess neuroanatomical correlates of personality change in a cohort of individuals with FTLD using voxel-based morphometry (VBM). Thirty consecutive individuals fulfilling consensus criteria for FTLD were assessed. Each participant's carer completed a Big Five Inventory (BFI) questionnaire on five key personality traits; for each trait, a change score was derived based on current compared with estimated premorbid characteristics. All participants underwent volumetric brain magnetic resonance imaging. A VBM analysis was implemented regressing change score for each trait against regional grey matter volume across the FTLD group. The FTLD group showed a significant decline in extraversion, agreeableness, conscientiousness and openness and an increase in neuroticism. Change in particular personality traits was associated with overlapping profiles of grey matter loss in more anterior cortical areas and relative preservation of grey matter in more posterior areas; the most robust neuroanatomical correlate was identified for reduced conscientiousness in the region of the posterior superior temporal gyrus. Quantitative measures of personality change in FTLD can be correlated with changes in regional grey matter. The neuroanatomical profiles for particular personality traits overlap brain circuits previously implicated in aspects of social cognition and suggest that dysfunction at the level of distributed cortical networks underpins personality change in FTLD.

  13. Joint Analysis of Strain and Parent-of-Origin Effects for Recombinant Inbred Intercrosses Generated from Multiparent Populations with the Collaborative Cross as an Example.

    PubMed

    Liu, Yanyan; Xiong, Sican; Sun, Wei; Zou, Fei

    2018-02-02

    Multiparent populations (MPP) have become popular resources for complex trait mapping because of their wider allelic diversity and larger population size compared with traditional two-way recombinant inbred (RI) strains. In mice, the collaborative cross (CC) is one of the most popular MPP and is derived from eight genetically diverse inbred founder strains. The strategy of generating RI intercrosses (RIX) from MPP in general and from the CC in particular can produce a large number of completely reproducible heterozygote genomes that better represent the (outbred) human population. Since both maternal and paternal haplotypes of each RIX are readily available, RIX is a powerful resource for studying both standing genetic and epigenetic variations of complex traits, in particular, the parent-of-origin (PoO) effects, which are important contributors to many complex traits. Furthermore, most complex traits are affected by >1 genes, where multiple quantitative trait locus mapping could be more advantageous. In this paper, for MPP-RIX data but taking CC-RIX as a working example, we propose a general Bayesian variable selection procedure to simultaneously search for multiple genes with founder allelic effects and PoO effects. The proposed model respects the complex relationship among RIX samples, and the performance of the proposed method is examined by extensive simulations. Copyright © 2018 Liu et al.

  14. kruX: matrix-based non-parametric eQTL discovery

    PubMed Central

    2014-01-01

    Background The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. Results We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. Conclusion kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com. PMID:24423115

  15. The genetic and developmental basis of an exaggerated craniofacial trait in East African cichlids.

    PubMed

    Concannon, Moira R; Albertson, R Craig

    2015-12-01

    The evolution of an exaggerated trait can lead to a novel morphology that allows organisms to exploit new niches. The molecular bases of such phenotypes can reveal insights into the evolution of unique traits. Here, we investigate a rare morphological innovation in modern haplochromine cichlids, a flap of fibrous tissue that causes a pronounced projection of the snout, which is limited to a single genus (Labeotropheus) of Lake Malawi cichlids. We compare flap size in our focal species L. fuelleborni (LF) to homologous landmarks in other closely related cichlid species that show a range of ecological overlap with LF, and demonstrate that variation in flap size is discontinuous among Malawi cichlid species. We demonstrate further that flap development in LF begins at early juvenile stages, and scales allometrically with body size. We then used an F2 hybrid mapping population, derived via crossing LF to a close ecological competitor that lacks this trait, Tropheops "red cheek" (TRC), to identify quantitative trait loci (QTL) that underlie flap development. In all, we identified four loci associated with variation in flap size, and for each the LF allele contributed to a larger flap. We next cross-referenced our QTL map with population genomic data, comparing natural populations of LF and TRC, to identify divergent polymorphisms within each QTL interval. Candidate genes for flap development are discussed. Together, these data indicate a relatively simple and tractable genetic basis for this morphological innovation, which is consistent with its apparently sudden and saltatory evolutionary history. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 662-670, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Lack of effect of lactose digestion status on baseline fecal microflora

    PubMed Central

    Szilagyi, Andrew; Shrier, Ian; Chong, George; Je, Jung Sung; Park, Sunghoon; Heilpern, Debra; Lalonde, Catherine; Cote, Louis-Francois; Lee, Byong

    2009-01-01

    BACKGROUND: The genetics of intestinal lactase divide the world’s population into two phenotypes: the ability (a dominant trait) or inability (a recessive trait) to digest lactose. A prebiotic effect of lactose may impact the colonic flora of these phenotypes differently. OBJECTIVE: To detect and evaluate the effects of lactose on subjects divided according to their ability to digest lactose. METHODS: A total of 57 healthy maldigesters (n=30) and digesters (n=27) completed diet questionnaires, genetic and breath hydrogen testing, and quantitative stool analysis for species of bacteria. Log10 transformation of bacterial counts was compared with lactose intake in both groups using multiple regression analysis. RESULTS: There was a significant relationship between genetic and breath hydrogen tests. Daily lactose intake was marginally lower in lactose maldigesters (median [interquartile range] 12.2 g [31 g] versus 15 g [29.6 g], respectively). There was no relationship between lactose intake and breath hydrogen tests in either group. There were no differences in bacterial counts between the two groups, nor was there a relationship between bacterial counts and lactose intake in either group. CONCLUSION: The differential bacterial effects of lactose were not quantitatively detected in stool samples taken in the present study. PMID:19893771

  17. Case-Deletion Diagnostics for Maximum Likelihood Multipoint Quantitative Trait Locus Linkage Analysis

    PubMed Central

    Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.

    2009-01-01

    Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086

  18. Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study.

    PubMed

    Herrera-Díaz, Adianes; Mendoza-Quiñones, Raúl; Melie-Garcia, Lester; Martínez-Montes, Eduardo; Sanabria-Diaz, Gretel; Romero-Quintana, Yuniel; Salazar-Guerra, Iraklys; Carballoso-Acosta, Mario; Caballero-Moreno, Antonio

    2016-05-01

    This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior.

  19. A note on the efficiencies of sampling strategies in two-stage Bayesian regional fine mapping of a quantitative trait.

    PubMed

    Chen, Zhijian; Craiu, Radu V; Bull, Shelley B

    2014-11-01

    In focused studies designed to follow up associations detected in a genome-wide association study (GWAS), investigators can proceed to fine-map a genomic region by targeted sequencing or dense genotyping of all variants in the region, aiming to identify a functional sequence variant. For the analysis of a quantitative trait, we consider a Bayesian approach to fine-mapping study design that incorporates stratification according to a promising GWAS tag SNP in the same region. Improved cost-efficiency can be achieved when the fine-mapping phase incorporates a two-stage design, with identification of a smaller set of more promising variants in a subsample taken in stage 1, followed by their evaluation in an independent stage 2 subsample. To avoid the potential negative impact of genetic model misspecification on inference we incorporate genetic model selection based on posterior probabilities for each competing model. Our simulation study shows that, compared to simple random sampling that ignores genetic information from GWAS, tag-SNP-based stratified sample allocation methods reduce the number of variants continuing to stage 2 and are more likely to promote the functional sequence variant into confirmation studies. © 2014 WILEY PERIODICALS, INC.

  20. Mapping of quantitative trait loci using the skew-normal distribution.

    PubMed

    Fernandes, Elisabete; Pacheco, António; Penha-Gonçalves, Carlos

    2007-11-01

    In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.

  1. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. A genome-wide linkage scan for quantitative trait loci underlying obesity related phenotypes in 434 Caucasian families.

    PubMed

    Zhao, Lan-Juan; Xiao, Peng; Liu, Yong-Jun; Xiong, Dong-Hai; Shen, Hui; Recker, Robert R; Deng, Hong-Wen

    2007-03-01

    To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.

  3. Comparative map and trait viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments.

    PubMed

    Sawkins, M C; Farmer, A D; Hoisington, D; Sullivan, J; Tolopko, A; Jiang, Z; Ribaut, J-M

    2004-10-01

    In the past few decades, a wealth of genomic data has been produced in a wide variety of species using a diverse array of functional and molecular marker approaches. In order to unlock the full potential of the information contained in these independent experiments, researchers need efficient and intuitive means to identify common genomic regions and genes involved in the expression of target phenotypic traits across diverse conditions. To address this need, we have developed a Comparative Map and Trait Viewer (CMTV) tool that can be used to construct dynamic aggregations of a variety of types of genomic datasets. By algorithmically determining correspondences between sets of objects on multiple genomic maps, the CMTV can display syntenic regions across taxa, combine maps from separate experiments into a consensus map, or project data from different maps into a common coordinate framework using dynamic coordinate translations between source and target maps. We present a case study that illustrates the utility of the tool for managing large and varied datasets by integrating data collected by CIMMYT in maize drought tolerance research with data from public sources. This example will focus on one of the visualization features for Quantitative Trait Locus (QTL) data, using likelihood ratio (LR) files produced by generic QTL analysis software and displaying the data in a unique visual manner across different combinations of traits, environments and crosses. Once a genomic region of interest has been identified, the CMTV can search and display additional QTLs meeting a particular threshold for that region, or other functional data such as sets of differentially expressed genes located in the region; it thus provides an easily used means for organizing and manipulating data sets that have been dynamically integrated under the focus of the researcher's specific hypothesis.

  4. Cytoplasmic inheritance of parent-offspring cell structure in the clonal diatom Cyclotella meneghiniana.

    PubMed

    Shirokawa, Yuka; Shimada, Masakazu

    2016-11-16

    In cytoplasmic inheritance, structural states of a parent cell could be transmitted to offspring cells via two mechanisms. The first is referred to as the hangover of parent structure, where the structure itself remains and faithfully transmits within offspring cells; the second is structural inheritance, wherein the parent structure functions as a template for development of new offspring structure. We estimated to what extent the parent structure affects the development of offspring structure by structural inheritance, using a clone of the diatom Cyclotella meneghiniana The cell has two siliceous valves (a cell wall part at both cell poles): one is inherited from the parent and the other is newly formed. We estimated cytoplasmic heritability by comparing valve traits (central fultoportulae (CTFP), striae, central area, and cell diameter) of parent and new offspring valves, using single-cell isolation and valve labelling. Parent-offspring valve trait regressions showed that all traits, except CTFP, were significantly correlated. We formulated a quantitative genetic model considering the diatom inheritance system and revealed short-term rapid evolution compared with other inheritance systems. Diatom structural inheritance will have evolved to enable clonal populations to rapidly acquire and maintain suitable structures for temporal changes in environments and life-cycle stages. © 2016 The Author(s).

  5. Mapping genomic features to functional traits through microbial whole genome sequences.

    PubMed

    Zhang, Wei; Zeng, Erliang; Liu, Dan; Jones, Stuart E; Emrich, Scott

    2014-01-01

    Recently, the utility of trait-based approaches for microbial communities has been identified. Increasing availability of whole genome sequences provide the opportunity to explore the genetic foundations of a variety of functional traits. We proposed a machine learning framework to quantitatively link the genomic features with functional traits. Genes from bacteria genomes belonging to different functional traits were grouped to Cluster of Orthologs (COGs), and were used as features. Then, TF-IDF technique from the text mining domain was applied to transform the data to accommodate the abundance and importance of each COG. After TF-IDF processing, COGs were ranked using feature selection methods to identify their relevance to the functional trait of interest. Extensive experimental results demonstrated that functional trait related genes can be detected using our method. Further, the method has the potential to provide novel biological insights.

  6. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  7. Magnetic resonance imaging traits in siblings discordant for Alzheimer disease.

    PubMed

    Cuenco, Karen T; Green, Robert C; Zhang, J; Lunetta, Kathryn; Erlich, Porat M; Cupples, L Adrienne; Farrer, Lindsay A; DeCarli, Charles

    2008-07-01

    Magnetic resonance imaging (MRI) can aid clinical assessment of brain changes potentially correlated with Alzheimer disease (AD). MRI traits may improve our ability to identify genes associated with AD-outcomes. We evaluated semi-quantitative MRI measures as endophenotypes for genetic studies by assessing their association with AD in families from the Multi-Institutional Research in Alzheimer Genetic Epidemiology (MIRAGE) Study. Discordant siblings from multiple ethnicities were ascertained through a single affected proband. Semi-quantitative MRI measures were obtained for each individual. The association between continuous/ordinal MRI traits and AD were analyzed using generalized estimating equations. Medical history and Apolipoprotein E (APOE)epsilon4 status were evaluated as potential confounders. Comparisons of 214 affected and 234 unaffected subjects from 229 sibships revealed that general cerebral atrophy, white matter hyperintensities (WMH), and mediotemporal atrophy differed significantly between groups (each at P < .0001) and varied by ethnicity. Age at MRI and duration of AD confounded all associations between AD and MRI traits. Among unaffected sibs, the presence of at least one APOEepsilon4 allele and MRI infarction was associated with more WMH after adjusting for age at MRI. The strong association between MRI traits and AD suggests that MRI traits may be informative endophenotypes for basic and clinical studies of AD. In particular, WMH may be a marker of vascular disease that contributes to AD pathogenesis.

  8. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Quantitative Trait Loci for Light Sensitivity, Body Weight, Body Size, and Morphological Eye Parameters in the Bumblebee, Bombus terrestris.

    PubMed

    Maebe, Kevin; Meeus, Ivan; De Riek, Jan; Smagghe, Guy

    2015-01-01

    Bumblebees such as Bombus terrestris are essential pollinators in natural and managed ecosystems. In addition, this species is intensively used in agriculture for its pollination services, for instance in tomato and pepper greenhouses. Here we performed a quantitative trait loci (QTL) analysis on B. terrestris using 136 microsatellite DNA markers to identify genes linked with 20 traits including light sensitivity, body size and mass, and eye and hind leg measures. By composite interval mapping (IM), we found 83 and 34 suggestive QTLs for 19 of the 20 traits at the linkage group wide significance levels of p = 0.05 and 0.01, respectively. Furthermore, we also found five significant QTLs at the genome wide significant level of p = 0.05. Individual QTLs accounted for 7.5-53.3% of the phenotypic variation. For 15 traits, at least one QTL was confirmed with multiple QTL model mapping. Multivariate principal components analysis confirmed 11 univariate suggestive QTLs but revealed three suggestive QTLs not identified by the individual traits. We also identified several candidate genes linked with light sensitivity, in particular the Phosrestin-1-like gene is a primary candidate for its phototransduction function. In conclusion, we believe that the suggestive and significant QTLs, and markers identified here, can be of use in marker-assisted breeding to improve selection towards light sensitive bumblebees, and thus also the pollination service of bumblebees.

  10. Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeis guineensis Jacq.) Compared to Its Wild Relative E. oleifera (H.B.K) Cortés

    PubMed Central

    Montoya, Carmenza; Cochard, Benoit; Flori, Albert; Cros, David; Lopes, Ricardo; Cuellar, Teresa; Espeout, Sandra; Syaputra, Indra; Villeneuve, Pierre; Pina, Michel; Ritter, Enrique; Leroy, Thierry; Billotte, Norbert

    2014-01-01

    We searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E. oleifera (H.B.K) Cortés. The oil palm cross LM2T x DA10D between two heterozygous parents was considered in our experiment as an intraspecific representative of E. guineensis. Its QTLs were compared to QTLs published for the same traits in an interspecific Elaeis pseudo-backcross used as an indirect representative of E. oleifera. Few correlations were found in E. guineensis between pulp fatty acid proportions and yield traits, allowing for the rather independent selection of both types of traits. Sixteen QTLs affecting palm oil fatty acid proportions and iodine value were identified in oil palm. The phenotypic variation explained by the detected QTLs was low to medium in E. guineensis, ranging between 10% and 36%. The explained cumulative variation was 29% for palmitic acid C16:0 (one QTL), 68% for stearic acid C18:0 (two QTLs), 50% for oleic acid C18:1 (three QTLs), 25% for linoleic acid C18:2 (one QTL), and 40% (two QTLs) for the iodine value. Good marker co-linearity was observed between the intraspecific and interspecific Simple Sequence Repeat (SSR) linkage maps. Specific QTL regions for several traits were found in each mapping population. Our comparative QTL results in both E. guineensis and interspecific materials strongly suggest that, apart from two common QTL zones, there are two specific QTL regions with major effects, which might be one in E. guineensis, the other in E. oleifera, which are independent of each other and harbor QTLs for several traits, indicating either pleiotropic effects or linkage. Using QTL maps connected by highly transferable SSR markers, our study established a good basis to decipher in the future such hypothesis at the Elaeis genus level. PMID:24816555

  11. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés.

    PubMed

    Montoya, Carmenza; Cochard, Benoit; Flori, Albert; Cros, David; Lopes, Ricardo; Cuellar, Teresa; Espeout, Sandra; Syaputra, Indra; Villeneuve, Pierre; Pina, Michel; Ritter, Enrique; Leroy, Thierry; Billotte, Norbert

    2014-01-01

    We searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E. oleifera (H.B.K) Cortés. The oil palm cross LM2T x DA10D between two heterozygous parents was considered in our experiment as an intraspecific representative of E. guineensis. Its QTLs were compared to QTLs published for the same traits in an interspecific Elaeis pseudo-backcross used as an indirect representative of E. oleifera. Few correlations were found in E. guineensis between pulp fatty acid proportions and yield traits, allowing for the rather independent selection of both types of traits. Sixteen QTLs affecting palm oil fatty acid proportions and iodine value were identified in oil palm. The phenotypic variation explained by the detected QTLs was low to medium in E. guineensis, ranging between 10% and 36%. The explained cumulative variation was 29% for palmitic acid C16:0 (one QTL), 68% for stearic acid C18:0 (two QTLs), 50% for oleic acid C18:1 (three QTLs), 25% for linoleic acid C18:2 (one QTL), and 40% (two QTLs) for the iodine value. Good marker co-linearity was observed between the intraspecific and interspecific Simple Sequence Repeat (SSR) linkage maps. Specific QTL regions for several traits were found in each mapping population. Our comparative QTL results in both E. guineensis and interspecific materials strongly suggest that, apart from two common QTL zones, there are two specific QTL regions with major effects, which might be one in E. guineensis, the other in E. oleifera, which are independent of each other and harbor QTLs for several traits, indicating either pleiotropic effects or linkage. Using QTL maps connected by highly transferable SSR markers, our study established a good basis to decipher in the future such hypothesis at the Elaeis genus level.

  12. Computational, Integrative, and Comparative Methods for the Elucidation of Genetic Coexpression Networks

    DOE PAGES

    Baldwin, Nicole E.; Chesler, Elissa J.; Kirov, Stefan; ...

    2005-01-01

    Gene expression microarray data can be used for the assembly of genetic coexpression network graphs. Using mRNA samples obtained from recombinant inbred Mus musculus strains, it is possible to integrate allelic variation with molecular and higher-order phenotypes. The depth of quantitative genetic analysis of microarray data can be vastly enhanced utilizing this mouse resource in combination with powerful computational algorithms, platforms, and data repositories. The resulting network graphs transect many levels of biological scale. This approach is illustrated with the extraction of cliques of putatively co-regulated genes and their annotation using gene ontology analysis and cis -regulatory element discovery. Themore » causal basis for co-regulation is detected through the use of quantitative trait locus mapping.« less

  13. Genetic constraints predict evolutionary divergence in Dalechampia blossoms

    PubMed Central

    Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott

    2014-01-01

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  14. Mapping quantitative trait loci controlling seed and grain production traits of intermediate wheatgrass (Thinopyrum intermedium)

    USDA-ARS?s Scientific Manuscript database

    Intermediate wheatgrass (Thinopyrum intermedium) is a cool-season perennial grass cultivated for seed used in forage production, conservation plantings, and consumable grain products such as flour. Intermediate wheatgrass (2n=6x=42) has a large, allohexploid genome (~13 GB) and is a distant relativ...

  15. Brief Report: Autism-Like Traits Are Associated with Enhanced Ability to Disembed Visual Forms

    ERIC Educational Resources Information Center

    Sabatino DiCriscio, Antoinette; Troiani, Vanessa

    2017-01-01

    Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of…

  16. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  17. Candidate causative mutation on BTA18 associated with calving and conformation traits in Holstein bulls

    USDA-ARS?s Scientific Manuscript database

    Complementing quantitative methods with sequence data analysis is a major goal of the post-genome era of biology. In this study, we analyzed Illumina HiSeq sequence data derived from 11 US Holstein bulls in order to identify putative causal mutations associated with calving and conformation traits. ...

  18. An Investigation of Personality Traits in Relation to Job Performance of Online Instructors

    ERIC Educational Resources Information Center

    Holmes, Charles; Kirwan, Jeral R.; Bova, Mark; Belcher, Trevor

    2015-01-01

    This quantitative study examined the relationship between the Big 5 personality traits and how they relate to online teacher effectiveness. The primary method of data collection for this study was through the use of surveys primarily building upon the Personality Style Inventory (PSI) (Lounsbury & Gibson, 2010), a work-based personality…

  19. Linking "Big" Personality Traits to Anxiety, Depressive, and Substance Use Disorders: A Meta-Analysis

    ERIC Educational Resources Information Center

    Kotov, Roman; Gamez, Wakiza; Schmidt, Frank; Watson, David

    2010-01-01

    We performed a quantitative review of associations between the higher order personality traits in the Big Three and Big Five models (i.e., neuroticism, extraversion, disinhibition, conscientiousness, agreeableness, and openness) and specific depressive, anxiety, and substance use disorders (SUD) in adults. This approach resulted in 66…

  20. An Examination of Authentic Leadership Traits and Their Relation to Student Achievement Scores

    ERIC Educational Resources Information Center

    Hunter, Robin C.

    2017-01-01

    The purpose of this quantitative, single case study was to examine principal perceptions of their own leadership traits which may impact student achievement. Principals in one Florida district were invited to participate in an open ended interview, providing their own perceptions of their personal leadership behaviors. By examining the data…

  1. Born to Burnout: A Meta-Analytic Path Model of Personality, Job Burnout, and Work Outcomes

    ERIC Educational Resources Information Center

    Swider, Brian W.; Zimmerman, Ryan D.

    2010-01-01

    We quantitatively summarized the relationship between Five-Factor Model personality traits, job burnout dimensions (emotional exhaustion, depersonalization, and personal accomplishment), and absenteeism, turnover, and job performance. All five of the Five-Factor Model personality traits had multiple true score correlations of 0.57 with emotional…

  2. Identification of nutrient and physical seed trait QTLs in the model legume, Lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Legume seeds have the potential to provide a significant portion of essential micronutrients to the human diet. To identify the genetic basis for seed nutrient density, quantitative trait locus (QTL) analysis was conducted with the Gifu B-129 x Miyakojima MG-20 recombinant inbred population from th...

  3. Experimental evidence for the evolution of indirect genetic effects: changes in the interaction effect coefficient, psi (Psi), due to sexual selection.

    PubMed

    Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W

    2010-06-01

    Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.

  4. Heritabilities of Directional Asymmetry in the Fore- and Hindlimbs of Rabbit Fetuses

    PubMed Central

    Breno, Matteo; Bots, Jessica; Van Dongen, Stefan

    2013-01-01

    Directional asymmetry (DA), where at the population level symmetry differs from zero, has been reported in a wide range of traits and taxa, even for traits in which symmetry is expected to be the target of selection such as limbs or wings. In invertebrates, DA has been suggested to be non-adaptive. In vertebrates, there has been a wealth of research linking morphological asymmetry to behavioural lateralisation. On the other hand, the prenatal expression of DA and evidences for quantitative genetic variation for asymmetry may suggest it is not solely induced by differences in mechanic loading between sides. We estimate quantitative genetic variation of fetal limb asymmetry in a large dataset of rabbits. Our results showed a low but highly significant level of DA that is partially under genetic control for all traits, with forelimbs displaying higher levels of asymmetry. Genetic correlations were positive within limbs, but negative across bones of fore and hind limbs. Environmental correlations were positive for all, but smaller across fore and hind limbs. We discuss our results in light of the existence and maintenance of DA in locomotory traits. PMID:24130770

  5. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  6. Signatures of Evolutionary Adaptation in Quantitative Trait Loci Influencing Trace Element Homeostasis in Liver

    PubMed Central

    Sabidó, Eduard; Bosch, Elena

    2016-01-01

    Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562

  7. Identification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice

    PubMed Central

    Sun, Wenqian; Zhou, Qiaoling; Yao, Yue; Qiu, Xianjin; Xie, Kun; Yu, Sibin

    2015-01-01

    Grain chalkiness is an important grain quality related to starch granules in the endosperm. A high percentage of grain chalkiness is a major problem because it diminishes grain quality in rice. Here, we report quantitative trait loci identification for grain chalkiness using high-throughput single nucleotide polymorphism genotyping of a chromosomal segment substitution line population in which each line carried one or a few introduced japonica cultivar Nipponbare segments in the genetic background of the indica cultivar ZS97. Ten quantitative trait loci regions were commonly identified for the percentage of grain chalkiness and the degree of endosperm chalkiness. The allelic effects at nine of these quantitative trait loci reduced grain chalkiness. Furthermore, a quantitative trait locus (qPGC8-2) on chromosome 8 was validated in a chromosomal segment substitution line–derived segregation population, and had a stable effect on chalkiness in a multiple-environment evaluation of the near-isogenic lines. Residing on the qPGC8-2 region, the isoamylase gene (ISA1) was preferentially expressed in the endosperm and revealed some nucleotide polymorphisms between two varieties, Nipponbare and ZS97. Transgenic lines with suppression of ISA1 by RNA interference produced grains with 20% more chalkiness than the control. The results support that the gene may underlie qPGC8-2 for grain chalkiness. The multiple-environment trials of the near-isogenic lines also show that combination of the favorable alleles such as the ISA1 gene for low chalkiness and the GS3 gene for long grains considerably improved grain quality of ZS97, which proves useful for grain quality improvement in rice breeding programs. PMID:25790260

  8. Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness

    PubMed Central

    Koziol, Liz; Bever, James D

    2018-01-01

    Abstract Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species’ sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species’ reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root:shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history. PMID:29383232

  9. Adaptive testing for multiple traits in a proportional odds model with applications to detect SNP-brain network associations.

    PubMed

    Kim, Junghi; Pan, Wei

    2017-04-01

    There has been increasing interest in developing more powerful and flexible statistical tests to detect genetic associations with multiple traits, as arising from neuroimaging genetic studies. Most of existing methods treat a single trait or multiple traits as response while treating an SNP as a predictor coded under an additive inheritance mode. In this paper, we follow an earlier approach in treating an SNP as an ordinal response while treating traits as predictors in a proportional odds model (POM). In this way, it is not only easier to handle mixed types of traits, e.g., some quantitative and some binary, but it is also potentially more robust to the commonly adopted additive inheritance mode. More importantly, we develop an adaptive test in a POM so that it can maintain high power across many possible situations. Compared to the existing methods treating multiple traits as responses, e.g., in a generalized estimating equation (GEE) approach, the proposed method can be applied to a high dimensional setting where the number of phenotypes (p) can be larger than the sample size (n), in addition to a usual small P setting. The promising performance of the proposed method was demonstrated with applications to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data, in which either structural MRI driven phenotypes or resting-state functional MRI (rs-fMRI) derived brain functional connectivity measures were used as phenotypes. The applications led to the identification of several top SNPs of biological interest. Furthermore, simulation studies showed competitive performance of the new method, especially for p>n. © 2017 WILEY PERIODICALS, INC.

  10. Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness.

    PubMed

    Bauer, Jonathan T; Koziol, Liz; Bever, James D

    2018-02-01

    Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species' sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species' reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root:shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history.

  11. A population genetic interpretation of GWAS findings for human quantitative traits

    PubMed Central

    Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy

    2018-01-01

    Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID:29547617

  12. Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid.

    PubMed

    Cnaani, A; Zilberman, N; Tinman, S; Hulata, G; Ron, M

    2004-09-01

    We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers (GM180, GM553, MHC-I, UNH848, UNH868, UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers (GM47, GM552, UNH208, UNH881, UNH952, UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.

  13. Genome-Wide Search for Quantitative Trait Loci Controlling Important Plant and Flower Traits in Petunia Using an Interspecific Recombinant Inbred Population of Petunia axillaris and Petunia exserta.

    PubMed

    Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao

    2018-05-15

    A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.

  14. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.

    PubMed

    Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2016-06-01

    To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.

  15. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710

  16. The developmental genetics of biological robustness

    PubMed Central

    Mestek Boukhibar, Lamia; Barkoulas, Michalis

    2016-01-01

    Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved. PMID:26292993

  17. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    PubMed

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  18. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    PubMed Central

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  19. Smoothing of the bivariate LOD score for non-normal quantitative traits.

    PubMed

    Buil, Alfonso; Dyer, Thomas D; Almasy, Laura; Blangero, John

    2005-12-30

    Variance component analysis provides an efficient method for performing linkage analysis for quantitative traits. However, type I error of variance components-based likelihood ratio testing may be affected when phenotypic data are non-normally distributed (especially with high values of kurtosis). This results in inflated LOD scores when the normality assumption does not hold. Even though different solutions have been proposed to deal with this problem with univariate phenotypes, little work has been done in the multivariate case. We present an empirical approach to adjust the inflated LOD scores obtained from a bivariate phenotype that violates the assumption of normality. Using the Collaborative Study on the Genetics of Alcoholism data available for the Genetic Analysis Workshop 14, we show how bivariate linkage analysis with leptokurtotic traits gives an inflated type I error. We perform a novel correction that achieves acceptable levels of type I error.

  20. Quantitative trait locus gene mapping: a new method for locating alcohol response genes.

    PubMed

    Crabbe, J C

    1996-01-01

    Alcoholism is a multigenic trait with important non-genetic determinants. Studies with genetic animal models of susceptibility to several of alcohol's effects suggest that several genes contributing modest effects on susceptibility (Quantitative Trait Loci, or QTLs) are important. A new technique of QTL gene mapping has allowed the identification of the location in mouse genome of several such QTLs. The method is described, and the locations of QTLs affecting the acute alcohol withdrawal reaction are described as an example of the method. Verification of these QTLs in ancillary studies is described and the strengths, limitations, and future directions to be pursued are discussed. QTL mapping is a promising method for identifying genes in rodents with the hope of directly extrapolating the results to the human genome. This review is based on a paper presented at the First International Congress of the Latin American Society for Biomedical Research on Alcoholism, Santiago, Chile, November 1994.

  1. Quantitative Trait Locus Analysis of SIX1-SIX6 with Retinal Nerve Fiber Layer Thickness in Individuals of European Descent

    PubMed Central

    Kuo, Jane Z.; Zangwill, Linda M.; Medeiros, Felipe A.; Liebmann, Jeffery M.; Girkin, Christopher A.; Hammel, Na’ama; Rotter, Jerome I.; Weinreb, Robert N.

    2015-01-01

    Purpose To perform a quantitative trait locus (QTL) analysis and evaluate whether a locus between SIX1 and SIX6 is associated with retinal nerve fiber layer (RNFL) thickness in individuals of European descent. Design Observational, multi-center, cross-sectional study. Methods 231 participants were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Association of rs10483727 in SIX1-SIX6 with global and sectoral RNFL thickness was performed. Quantitative trait analysis with the additive model of inheritance was analyzed using linear regression. Trend analysis was performed to evaluate the mean global and sectoral RNFL thickness with 3 genotypes of interest (T/T, C/T, C/C). All models were adjusted for age and gender. Results Direction of association between T allele and RNFL thickness was consistent in the global and different sectoral RNFL regions. Each copy of the T risk allele in rs10483727 was associated with −0.16 μm thinner global RNFL thickness (β=−0.16, 95% CI: −0.28 to −0.03; P=0.01). Similar patterns were found for the sectoral regions, including inferior (P=0.03), inferior-nasal (P=0.017), superior-nasal (P=0.0025), superior (P=0.002) and superior-temporal (P=0.008). The greatest differences were observed in the superior and inferior quadrants, supporting clinical observations for RNFL thinning in glaucoma. Thinner global RNFL was found in subjects with T/T genotypes compared to subjects with C/T and C/C genotypes (P=0.044). Conclusions Each copy of the T risk allele has an additive effect and was associated with thinner global and sectoral RNFL. Findings from this QTL analysis further support a genetic contribution to glaucoma pathophysiology. PMID:25849520

  2. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.

    PubMed

    Bocianowski, Jan

    2013-03-01

    Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

  3. Gastrointestinal Traits: Individualizing Therapy for Obesity with Drugs and Devices

    PubMed Central

    Camilleri, Michael; Acosta, Andres

    2015-01-01

    Objectives The objectives were to review the discrepancy between numbers of people requiring weight loss treatment and results, and to assess the potential effects of pharmacological treatments (recently approved for obesity) and endoscopically deployed devices on quantitative gastrointestinal traits in development for obesity treatment. Methods We conducted a review of relevant literature to achieve our objectives. Results The 2013 guidelines increased the number of adults recommended for weight loss treatment by 20.9% (116.0 million to 140.2 million). There is an imbalance between efficacy and costs of commercial weight loss programs and drug therapy (average weight loss ~5 kg). The number of bariatric procedures performed in the United States has doubled in the past decade. The efficacy of bariatric surgery is attributed to reduction in the volume of the stomach, nutrient malabsorption with some types of surgery, increased postprandial incretin responses, and activation of farnesoid X receptor mechanisms. These gastrointestinal and behavioral traits identify sub-phenotypes of obesity based on recent research. Conclusions The mechanisms or traits targeted by drug and device treatments include centrally mediated alterations of appetite or satiation, diversion of nutrients, and alteration of stomach capacity, gastric emptying, or incretin hormones. Future treatment may be individualized based on quantitative gastrointestinal and behavioral traits measured in obese patients. PMID:26271184

  4. Testing for a genetic response to sexual selection in a wild Drosophila population.

    PubMed

    Gosden, T P; Thomson, J R; Blows, M W; Schaul, A; Chenoweth, S F

    2016-06-01

    In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)-5,9-C27 : 2 . Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. The genetic architecture of Drosophila sensory bristle number.

    PubMed Central

    Dilda, Christy L; Mackay, Trudy F C

    2002-01-01

    We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits. PMID:12524340

  6. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq.

    PubMed

    Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.

  7. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq

    PubMed Central

    Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843

  8. From plant traits to plant communities: a statistical mechanistic approach to biodiversity.

    PubMed

    Shipley, Bill; Vile, Denis; Garnier, Eric

    2006-11-03

    We developed a quantitative method, analogous to those used in statistical mechanics, to predict how biodiversity will vary across environments, which plant species from a species pool will be found in which relative abundances in a given environment, and which plant traits determine community assembly. This provides a scaling from plant traits to ecological communities while bypassing the complications of population dynamics. Our method treats community development as a sorting process involving species that are ecologically equivalent except with respect to particular functional traits, which leads to a constrained random assembly of species; the relative abundance of each species adheres to a general exponential distribution as a function of its traits. Using data for eight functional traits of 30 herbaceous species and community-aggregated values of these traits in 12 sites along a 42-year chronosequence of secondary succession, we predicted 94% of the variance in the relative abundances.

  9. Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22.

    PubMed

    Parsons, Claire A; Mroczkowski, H Joel; McGuigan, Fiona E A; Albagha, Omar M E; Manolagas, Stavros; Reid, David M; Ralston, Stuart H; Shmookler Reis, Robert J

    2005-11-01

    Bone mineral density (BMD) is a complex trait with a strong genetic component and an important predictor of osteoporotic fracture risk. Here we report the use of a cross-species strategy to identify genes that regulate BMD, proceeding from quantitative trait mapping in mice to association mapping of the syntenic region in the human genome. We identified a quantitative trait locus (QTL) on the mouse X-chromosome for post-maturity change in spine BMD in a cross of SAMP6 and AKR/J mice and conducted association mapping of the syntenic region on human chromosome Xp22. We studied 76 single nucleotide polymorphisms (SNP) from the human region in two sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3100 post-menopausal women. This procedure identified a region of significant association for two adjacent SNP (rs234494 and rs234495) within the Xp22 locus (P<0.001). Individual genotyping for rs234494 in the BMD pools confirmed the presence of an association for alleles (P=0.018) and genotypes (P=0.008). Analysis of rs234494 and rs234495 in 1053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for rs234495 (P=0.01) and for haplotypes defined by both SNP (P=0.002). Our study illustrates that interspecies synteny can be used to identify and refine QTL for complex traits and represents the first example where a human QTL for BMD regulation has been mapped using this approach.

  10. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  11. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population

    PubMed Central

    Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J

    2013-01-01

    Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259

  12. Selection on quantitative colour variation in Centaurea cyanus: the role of the pollinator's visual system.

    PubMed

    Renoult, J P; Thomann, M; Schaefer, H M; Cheptou, P-O

    2013-11-01

    Even though the importance of selection for trait evolution is well established, we still lack a functional understanding of the mechanisms underlying phenotypic selection. Because animals necessarily use their sensory system to perceive phenotypic traits, the model of sensory bias assumes that sensory systems are the main determinant of signal evolution. Yet, it has remained poorly known how sensory systems contribute to shaping the fitness surface of selected individuals. In a greenhouse experiment, we quantified the strength and direction of selection on floral coloration in a population of cornflowers exposed to bumblebees as unique pollinators during 4 days. We detected significant selection on the chromatic and achromatic (brightness) components of floral coloration. We then studied whether these patterns of selection are explicable by accounting for the visual system of the pollinators. Using data on bumblebee colour vision, we first showed that bumblebees should discriminate among quantitative colour variants. The observed selection was then compared to the selection predicted by psychophysical models of bumblebee colour vision. The achromatic but not the chromatic channel of the bumblebee's visual system could explain the observed pattern of selection. These results highlight that (i) pollinators can select quantitative variation in floral coloration and could thus account for a gradual evolution of flower coloration, and (ii) stimulation of the visual system represents, at least partly, a functional mechanism potentially explaining pollinators' selection on floral colour variants. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  13. Multienvironment Quantitative Trait Loci Analysis for Photosynthate Acquisition, Accumulation, and Remobilization Traits in Common Bean Under Drought Stress

    PubMed Central

    Asfaw, Asrat; Blair, Matthew W.; Struik, Paul C.

    2012-01-01

    Many of the world’s common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers’ field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and stem carbohydrate QTL on b05 were most consistent between the multilocation model and the single environment detection. Our results indicate the relevance of QTL detection in the sites in which bean breeding will be undertaken and the importance of photosynthate accumulation as a trait for common bean drought tolerance. PMID:22670228

  14. Multienvironment quantitative trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress.

    PubMed

    Asfaw, Asrat; Blair, Matthew W; Struik, Paul C

    2012-05-01

    Many of the world's common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers' field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and stem carbohydrate QTL on b05 were most consistent between the multilocation model and the single environment detection. Our results indicate the relevance of QTL detection in the sites in which bean breeding will be undertaken and the importance of photosynthate accumulation as a trait for common bean drought tolerance.

  15. An intersection network based on combining SNP co-association and RNA co-expression networks for feed utilization traits in Japanese Black cattle.

    PubMed

    Okada, D; Endo, S; Matsuda, H; Ogawa, S; Taniguchi, Y; Katsuta, T; Watanabe, T; Iwaisaki, H

    2018-05-12

    Genome-wide association studies (GWAS) of quantitative traits have detected numerous genetic associations, but they encounter difficulties in pinpointing prominent candidate genes and inferring gene networks. The present study used a systems genetics approach integrating GWAS results with external RNA-expression data to detect candidate gene networks in feed utilization and growth traits of Japanese Black cattle, which are matters of concern. A SNP co-association network was derived from significant correlations between SNPs with effects estimated by GWAS across seven phenotypic traits. The resulting network genes contained significant numbers of annotations related to the traits. Using bovine transcriptome data from a public database, an RNA co-expression network was inferred based on the similarity of expression patterns across different tissues. An intersection network was then generated by superimposing the SNP and RNA networks and extracting shared interactions. This intersection network contained four tissue-specific modules: nervous system, reproductive system, muscular system, and glands. To characterize the structure (topographical properties) of the three networks, their scale-free properties were evaluated, which revealed that the intersection network was the most scale-free. In the sub-network containing the most connected transcription factors (URI1, ROCK2 and ETV6), most genes were widely expressed across tissues, and genes previously shown to be involved in the traits were found. Results indicated that the current approach might be used to construct a gene network that better reflects biological information, providing encouragement for the genetic dissection of economically important quantitative traits.

  16. Exercise and diet affect quantitative trait loci for body weight and composition traits in an advanced intercross population of mice

    PubMed Central

    Kelly, Scott A.; Hua, Kunjie; Pomp, Daniel

    2012-01-01

    Driven by the recent obesity epidemic, interest in understanding the complex genetic and environmental basis of body weight and composition is great. We investigated this by searching for quantitative trait loci (QTLs) affecting a number of weight and adiposity traits in a G10 advanced intercross population produced from crosses of mice in inbred strain C57BL/6J with those in a strain selected for high voluntary wheel running. The mice in this population were fed either a high-fat or a control diet throughout the study and also measured for four exercise traits prior to death, allowing us to test for pre- and postexercise QTLs as well as QTL-by-diet and QTL-by-exercise interactions. Our genome scan uncovered a number of QTLs, of which 40% replicated QTLs previously found for similar traits in an earlier (G4) generation. For those replicated QTLs, the confidence intervals were reduced from an average of 19 Mb in the G4 to 8 Mb in the G10. Four QTLs on chromosomes 3, 8, 13, and 18 were especially prominent in affecting the percentage of fat in the mice. About of all QTLs showed interactions with diet, exercise, or both, their genotypic effects on the traits showing a variety of patterns depending on the diet or level of exercise. It was concluded that the indirect effects of these QTLs provide an underlying genetic basis for the considerable variability in weight or fat loss typically found among individuals on the same diet and/or exercise regimen. PMID:23048196

  17. QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep

    PubMed Central

    Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W

    2012-01-01

    Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. PMID:21847139

  18. Methods for meta-analysis of multiple traits using GWAS summary statistics.

    PubMed

    Ray, Debashree; Boehnke, Michael

    2018-03-01

    Genome-wide association studies (GWAS) for complex diseases have focused primarily on single-trait analyses for disease status and disease-related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual-level data. Here, we develop metaUSAT (where USAT is unified score-based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual-level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P-value for association and is computationally efficient for implementation at a genome-wide level. Simulation experiments show that metaUSAT maintains proper type-I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits. © 2017 WILEY PERIODICALS, INC.

  19. Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population.

    PubMed

    Zhang, H M; Hui, G Q; Luo, Q; Sun, Y; Liu, X H

    2014-01-21

    Maize (Zea mays L.) is one of the most important crops in the world. In this study, 13 agronomic traits of a recombinant inbred line population that was derived from the cross between Mo17 and Huangzao4 were investigated in maize: ear diameter, ear length, ear axis diameter, ear weight, plant height, ear height, days to pollen shed (DPS), days to silking (DS), the interval between DPS and DS, 100-kernel weight, kernel test weight, ear kernel weight, and kernel rate. Furthermore, the descriptive statistics and correlation analysis of the 13 traits were performed using the SPSS 11.5 software. The results providing the phenotypic data here are needed for the quantitative trait locus mapping of these agronomic traits.

  20. Fourteen Years of R/qtl: Just Barely Sustainable

    PubMed Central

    Broman, Karl W.

    2014-01-01

    R/qtl is an R package for mapping quantitative trait loci (genetic loci that contribute to variation in quantitative traits) in experimental crosses. Its development began in 2000. There have been 38 software releases since 2001. The latest release contains 35k lines of R code and 24k lines of C code, plus 15k lines of code for the documentation. Challenges in the development and maintenance of the software are discussed. A key to the success of R/qtl is that it remains a central tool for the chief developer's own research work, and so its maintenance is of selfish importance. PMID:25364504

  1. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  2. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  3. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    PubMed

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  4. Identifying the genes underlying quantitative traits: a rationale for the QTN programme.

    PubMed

    Lee, Young Wha; Gould, Billie A; Stinchcombe, John R

    2014-01-01

    The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the 'QTN programme' and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution.

  5. Identifying the genes underlying quantitative traits: a rationale for the QTN programme

    PubMed Central

    Lee, Young Wha; Gould, Billie A.; Stinchcombe, John R.

    2014-01-01

    The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the ‘QTN programme’ and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution. PMID:24790125

  6. Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    PubMed Central

    Heuven, Henri CM; van Wijk, Rik HJ; Dibbits, Bert; van Kampen, Tony A; Knol, Egbert F; Bovenhuis, Henk

    2009-01-01

    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only. PMID:19284675

  7. Deleterious Mutations, Apparent Stabilizing Selection and the Maintenance of Quantitative Variation

    PubMed Central

    Kondrashov, A. S.; Turelli, M.

    1992-01-01

    Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations. PMID:1427047

  8. Phenotypic variation and identification of quantitative trait loci for ozone injury in a Fiskeby III x Mandarin (Ottawa) soybean population

    USDA-ARS?s Scientific Manuscript database

    Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tol...

  9. The Relationship between Resilience and the Big Five Personality Traits in Emerging Adulthood

    ERIC Educational Resources Information Center

    Ercan, Hulya

    2017-01-01

    Purpose: The factors related with resilience, which is an important element of positive psychology, are still being discussed. The main purpose of this study is to examine the relationship between the resilience levels of individuals in emerging adulthood and the big five personality traits. Research Methods: Using a quantitative approach, the…

  10. Selection for Reduced Fusarium Ear Rot and Fumonisin Content in Advanced Backcross Maize Lines and Their Topcross Hybrids

    USDA-ARS?s Scientific Manuscript database

    Backcross breeding is an important method to improve elite cultivars for traits controlled by a small number of loci but has been used less frequently to improve quantitatively controlled traits. Resistances to Fusarium ear rot and contamination by the associated mycotoxin fumonisin in maize are qua...

  11. A genetic linkage map of tetraploid orchardgrass (Dactylis glomerata L.) a quantitative trait loci for heading date

    USDA-ARS?s Scientific Manuscript database

    Orchardgrass (Dactylis glomerata L.) is indigenous to Eurasia and northern Africa, has been naturalized on nearly every continent, and is one of the top perennial forage grasses grown worldwide. Despite its distribution and uses, there is a need for improvement of value added traits that are limite...

  12. Genetic analysis of grain attributes, milling performance, and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class and culinary end-uses. Of interest to wheat breeders is to identify quantitative trait loci (QTL) for wheat kernel texture, milling performance, or end-use quality because it is imperative for wheat breeders to ascertain the genetic architecture ...

  13. Construction of a Genetic Linkage Map and Identification of QTLs for Resistance to TSWV in Cultivated Peanut (Arachis hypagea L.)

    USDA-ARS?s Scientific Manuscript database

    A genetic linkage map is critical for identifying the QTL (quantitative trait loci) underling targeted traits. Over the last few years, progress has been made in marker development from multiple sources enabling the expansion of quality resources needed for genotyping applications in cultivated x cu...

  14. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat.

    PubMed

    Coan, Philip M; Hummel, Oliver; Garcia Diaz, Ana; Barrier, Marjorie; Alfazema, Neza; Norsworthy, Penny J; Pravenec, Michal; Petretto, Enrico; Hübner, Norbert; Aitman, Timothy J

    2017-03-01

    We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl , RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1 , Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the underlying genes and cellular mechanisms. © 2017. Published by The Company of Biologists Ltd.

  15. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

    PubMed Central

    Hummel, Oliver; Garcia Diaz, Ana; Barrier, Marjorie; Alfazema, Neza; Norsworthy, Penny J.; Pravenec, Michal; Petretto, Enrico; Hübner, Norbert

    2017-01-01

    ABSTRACT We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl, RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1, Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the underlying genes and cellular mechanisms. PMID:28130354

  16. The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans.

    PubMed

    Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P

    2005-10-01

    Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.

  17. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  18. High Density Single Nucleotide Polymorphism (SNP) Mapping and Quantitative Trait Loci (QTL) Analysis in a Biparental Spring Triticale Population Localized Major and Minor Effect Fusarium Head Blight Resistance and Associated Traits QTL

    PubMed Central

    Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh

    2018-01-01

    Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028

  19. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images.

    PubMed

    Moore, Candace R; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P

    2013-01-01

    Seeds are studied to understand dispersal and establishment of the next generation, as units of agricultural yield, and for other important reasons. Thus, elucidating the genetic architecture of seed size and shape traits will benefit basic and applied plant biology research. This study sought quantitative trait loci (QTL) controlling the size and shape of Arabidopsis thaliana seeds by computational analysis of seed phenotypes in recombinant inbred lines derived from the small-seeded Landsberg erecta × large-seeded Cape Verde Islands accessions. On the order of 10(3) seeds from each recombinant inbred line were automatically measured with flatbed photo scanners and custom image analysis software. The eight significant QTL affecting seed area explained 63% of the variation, and overlapped with five of the six major-axis (length) QTL and three of the five minor-axis (width) QTL, which accounted for 57% and 38% of the variation in those traits, respectively. Because the Arabidopsis seed is exalbuminous, lacking an endosperm at maturity, the results are relatable to embryo length and width. The Cvi allele generally had a positive effect of 2.6-4.0%. Analysis of variance showed heritability of the three traits ranged between 60% and 73%. Repeating the experiment with 2.2 million seeds from a separate harvest of the RIL population and approximately 0.5 million seeds from 92 near-isogenic lines confirmed the aforementioned results. Structured for download are files containing phenotype measurements, all sets of seed images, and the seed trait measuring tool.

  20. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

    PubMed Central

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444

  2. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat.

    PubMed

    Oyiga, Benedict C; Sharma, Ram C; Baum, Michael; Ogbonnaya, Francis C; Léon, Jens; Ballvora, Agim

    2018-05-01

    The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K + and Na +  contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R 2  = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat. © 2017 The Authors. Plant, Cell & Environment published by JohnWiley & Sons Ltd.

  3. Natural Selection on Female Life-History Traits in Relation to Socio-Economic Class in Pre-Industrial Human Populations

    PubMed Central

    Pettay, Jenni E.; Helle, Samuli; Jokela, Jukka; Lummaa, Virpi

    2007-01-01

    Life-history theory predicts that resource scarcity constrains individual optimal reproductive strategies and shapes the evolution of life-history traits. In species where the inherited structure of social class may lead to consistent resource differences among family lines, between-class variation in resource availability should select for divergence in optimal reproductive strategies. Evaluating this prediction requires information on the phenotypic selection and quantitative genetics of life-history trait variation in relation to individual lifetime access to resources. Here, we show using path analysis how resource availability, measured as the wealth class of the family, affected the opportunity and intensity of phenotypic selection on the key life-history traits of women living in pre-industrial Finland during the 1800s and 1900s. We found the highest opportunity for total selection and the strongest selection on earlier age at first reproduction in women of the poorest wealth class, whereas selection favoured older age at reproductive cessation in mothers of the wealthier classes. We also found clear differences in female life-history traits across wealth classes: the poorest women had the lowest age-specific survival throughout their lives, they started reproduction later, delivered fewer offspring during their lifetime, ceased reproduction younger, had poorer offspring survival to adulthood and, hence, had lower fitness compared to the wealthier women. Our results show that the amount of wealth affected the selection pressure on female life-history in a pre-industrial human population. PMID:17622351

  4. Seed traits and taxonomic relationships determine the occurrence of mutualisms versus seed predation in a tropical forest rodent and seed dispersal system.

    PubMed

    Wang, Zhenyu; Cao, Lin; Zhang, Zhibin

    2014-06-01

    Although many studies have been carried out on plant-animal mutualistic assemblages, the roles of functional traits and taxonomy in determining both whether interactions involve mutualisms or predation and the structure of such assemblages are unclear. We used semi-natural enclosures to quantitatively assess the interaction strengths between seeds of 8 sympatric tree species and 4 rodent species in a tropical forest in Xishuangbanna, Yunnan, Southwest China. We found 2 clusters of species in the seed-rodent network represented by 2 genera in the Fagaceae (Castanopsis, Lithocarpus). Compared to seeds of 3 Castanopsis species, seeds with heavy weight, hard coat or caloric content (including 3 Lithocarpus species) were eaten less and more frequently hoarded by rodents. In turn, hoarded seeds showed less predation and more mutualism with rodents. Our results suggest that seed traits significantly affected the hoarding behavior of rodents, and, consequently, the occurrence of mutualisms and predation as well as assemblage structure in the plant-animal seed dispersal system. Taxonomically-related species with similar seed traits as functional groups belong to the same substructures in the assemblage. Our results indicate that both seed traits and taxonomic relationships may simplify thinking about seed dispersal systems by helping to elucidate whether interactions are likely to be dominated by predation or mutualism. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  5. Differentially expressed genes during the imbibition of dormant and after-ripened seeds - a reverse genetics approach.

    PubMed

    Yazdanpanah, Farzaneh; Hanson, Johannes; Hilhorst, Henk W M; Bentsink, Leónie

    2017-09-11

    Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits. We used transcriptome analysis combined with a reverse genetics approach to identify genes that are prominent for dormancy maintenance and germination in imbibed seeds of Arabidopsis thaliana. Comparative transcriptomics analysis was employed on freshly harvested (dormant) and after-ripened (AR; non-dormant) 24-h imbibed seeds of four different DELAY OF GERMINATION near isogenic lines (DOGNILs) and the Landsberg erecta (Ler) wild type with varying levels of primary dormancy. T-DNA knock-out lines of the identified genes were phenotypically investigated for their effect on dormancy and AR. We identified conserved sets of 46 and 25 genes which displayed higher expression in seeds of all dormant and all after-ripened DOGNILs and Ler, respectively. Knock-out mutants in these genes showed dormancy and germination related phenotypes. Most of the identified genes had not been implicated in seed dormancy or germination. This research will be useful to further decipher the molecular mechanisms by which these important ecological and commercial traits are regulated.

  6. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn.

    PubMed

    Li, Y L; Niu, S Z; Dong, Y B; Cui, D Q; Wang, Y Z; Liu, Y Y; Wei, M G

    2007-06-01

    Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F(2:3) lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F(2:3) population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.

  7. Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low-density SNP genotypes.

    PubMed

    Lopes, F B; Wu, X-L; Li, H; Xu, J; Perkins, T; Genho, J; Ferretti, R; Tait, R G; Bauck, S; Rosa, G J M

    2018-02-01

    Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP-LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP-LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de-regressed EBV was slightly small (i.e. 0.87%-18.75%). The present study also compared the performance of five genomic prediction models and two cross-validation methods. The five genomic models predicted EBV and de-regressed EBV of the ten traits similarly well. Of the two cross-validation methods, leave-one-out cross-validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle. © 2018 Blackwell Verlag GmbH.

  8. Quantitative genetic analysis of anxiety trait in bipolar disorder.

    PubMed

    Contreras, J; Hare, E; Chavarría, G; Raventós, H

    2018-01-01

    Bipolar disorder type I (BPI) affects approximately 1% of the world population. Although genetic influences on bipolar disorder are well established, identification of genes that predispose to the illness has been difficult. Most genetic studies are based on categorical diagnosis. One strategy to overcome this obstacle is the use of quantitative endophenotypes, as has been done for other medical disorders. We studied 619 individuals, 568 participants from 61 extended families and 51 unrelated healthy controls. The sample was 55% female and had a mean age of 43.25 (SD 13.90; range 18-78). Heritability and genetic correlation of the trait scale from the Anxiety State and Trait Inventory (STAI) was computed by using the general linear model (SOLAR package software). we observed that anxiety trait meets the following criteria for an endophenotype of bipolar disorder type I (BPI): 1) association with BPI (individuals with BPI showed the highest trait score (F = 15.20 [5,24], p = 0.009), 2) state-independence confirmed after conducting a test-retest in 321 subjects, 3) co-segregation within families 4) heritability of 0.70 (SE: 0.060), p = 2.33 × 10 -14 and 5) genetic correlation with BPI was 0.20, (SE = 0.17, p = 3.12 × 10 -5 ). Confounding factors such as comorbid disorders and pharmacological treatment could affect the clinical relationship between BPI and anxiety trait. Further research is needed to evaluate if anxiety traits are specially related to BPI in comparison with other traits such as anger, attention or response inhibition deficit, pathological impulsivity or low self-directedness. Anxiety trait is a heritable phenotype that follows a normal distribution when measured not only in subjects with BPI but also in unrelated healthy controls. It could be used as an endophenotype in BPI for the identification of genomic regions with susceptibility genes for this disorder. Published by Elsevier B.V.

  9. Quantitative palmar dermatoglyphics and the assessment of population affinities: data from marine fishermen of Puri, India.

    PubMed

    Reddy, B M; Chopra, V P; Karmakar, B; Malhotra, K C

    1988-09-01

    Variation in quantitative dermatoglyphics among three endogamous groups of marine fishermen of Puri Coast, India, is greater for the palmar variables than for the fingers. This is the case in both the sexes. The pattern of population affinities, however, differs for the males and females. In order to evaluate the importance of palmar variables in population studies, the results in males are compared with those of finger variables and anthropometrics. There is no significant heterogeneity between the groups for finger variables. Although significant intergroup variability is observed in the palmar and anthropometric traits, the two sets of results are not in the same direction. Palmar dermatoglyphic relationships reflect the caste affiliations, while the anthropometric are in line with geographic proximity.

  10. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure.

    PubMed

    Tobin, Martin D; Sheehan, Nuala A; Scurrah, Katrina J; Burton, Paul R

    2005-10-15

    A population-based study of a quantitative trait may be seriously compromised when the trait is subject to the effects of a treatment. For example, in a typical study of quantitative blood pressure (BP) 15 per cent or more of middle-aged subjects may take antihypertensive treatment. Without appropriate correction, this can lead to substantial shrinkage in the estimated effect of aetiological determinants of scientific interest and a marked reduction in statistical power. Correction relies upon imputation, in treated subjects, of the underlying BP from the observed BP having invoked one or more assumptions about the bioclinical setting. There is a range of different assumptions that may be made, and a number of different analytical models that may be used. In this paper, we motivate an approach based on a censored normal regression model and compare it with a range of other methods that are currently used or advocated. We compare these methods in simulated data sets and assess the estimation bias and the loss of power that ensue when treatment effects are not appropriately addressed. We also apply the same methods to real data and demonstrate a pattern of behaviour that is consistent with that in the simulation studies. Although all approaches to analysis are necessarily approximations, we conclude that two of the adjustment methods appear to perform well across a range of realistic settings. These are: (1) the addition of a sensible constant to the observed BP in treated subjects; and (2) the censored normal regression model. A third, non-parametric, method based on averaging ordered residuals may also be advocated in some settings. On the other hand, three approaches that are used relatively commonly are fundamentally flawed and should not be used at all. These are: (i) ignoring the problem altogether and analysing observed BP in treated subjects as if it was underlying BP; (ii) fitting a conventional regression model with treatment as a binary covariate; and (iii) excluding treated subjects from the analysis. Given that the more effective methods are straightforward to implement, there is no argument for undertaking a flawed analysis that wastes power and results in excessive bias. Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. Comparative analysis of qualitative dermatoglyphic traits of Albanian and Turkish populations living in the area of Dukagjin Valley in Kosovo.

    PubMed

    Temaj, Gazmend; Krajacić, Petra; Milicić, Jasna; Jurić, Tatjana Skarić; Behluli, Ibrahim; Narancić, Nina Smolej; Hadziselimović, Rifat; Nefić, Hilda; Sopi, Ramadan; Belegu, Mazllan; Jakupi, Muharrem; Rudan, Pavao

    2011-09-01

    Dermatoglyphic prints were collected from 800 inhabitants of Dukagjin valley in Kosovo. The sample consisted of two ethnically different sub-populations who refer themselves as Albanians (N = 400) and Turks (N = 400). Qualitative analysis of prints concerned the frequency of the patterns on fingers (arch, ulnar and radial loop, whorl, accidental whorl) and on palms (Thenar and I, II, III, and IV interdigital area and the hypothenar, main line index, and the axial "t" triradius position). As was expected due to previous study of quantitative dermatoglyphic traits, in the same population the Alba-nians and Turks showed to be significantly different in most explored qualitative dermatoglyphic variables. Found differences indicated that the reproductive isolation between the Albanian and Turkish population in Kosovo is substantial, despite the fact that those two ethnic sub-populations live in the close vicinity through several centuries.

  12. QTL mapping of sake brewing characteristics of yeast.

    PubMed

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2009-04-01

    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  13. The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.

    PubMed

    Lehtonen, Jussi

    2018-01-01

    A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.

  14. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs.

    PubMed

    Cherel, Pierre; Pires, José; Glénisson, Jérôme; Milan, Denis; Iannuccelli, Nathalie; Hérault, Frédéric; Damon, Marie; Le Roy, Pascale

    2011-08-29

    Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs.

  15. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs

    PubMed Central

    2011-01-01

    Background Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Results Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Conclusions Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs. PMID:21875434

  16. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.

    PubMed

    Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana

    2013-02-01

    Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.

  17. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs.

    PubMed

    Huang, Cong; Nie, Xinhui; Shen, Chao; You, Chunyuan; Li, Wu; Zhao, Wenxia; Zhang, Xianlong; Lin, Zhongxu

    2017-11-01

    Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton-producing and cotton-consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome-wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high-density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single-nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty-eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high-resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Comparison of statistical tests for association between rare variants and binary traits.

    PubMed

    Bacanu, Silviu-Alin; Nelson, Matthew R; Whittaker, John C

    2012-01-01

    Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless, the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene), the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the assumption that the tested variants have similar effects. We previously proposed a method that can accommodate heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is assumed to be large and covariates explain a small fraction of trait's variability and (3) the proposed trend and heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait variability.

  19. Comparison of genetic diversity and population structure of Pacific Coast whitebark pine across multiple markers

    Treesearch

    Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry

    2011-01-01

    Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...

  20. Fifteen years of quantitative trait loci studies in fish: challenges and future directions.

    PubMed

    Ashton, David T; Ritchie, Peter A; Wellenreuther, Maren

    2017-03-01

    Understanding the genetic basis of phenotypic variation is a major challenge in biology. Here, we systematically evaluate 146 quantitative trait loci (QTL) studies on teleost fish over the last 15 years to investigate (i) temporal trends and (ii) factors affecting QTL detection and fine-mapping. The number of fish QTL studies per year increased over the review period and identified a cumulative number of 3632 putative QTLs. Most studies used linkage-based mapping approaches and were conducted on nonmodel species with limited genomic resources. A gradual and moderate increase in the size of the mapping population and a sharp increase in marker density from 2011 onwards were observed; however, the number of QTLs and variance explained by QTLs changed only minimally over the review period. Based on these findings, we discuss the causative factors and outline how larger sample sizes, phenomics, comparative genomics, epigenetics and software development could improve both the quantity and quality of QTLs in future genotype-phenotype studies. Given that the technical limitations on DNA sequencing have mostly been overcome in recent years, a renewed focus on these and other study design factors will likely lead to significant improvements in QTL studies in the future. © 2016 John Wiley & Sons Ltd.

Top