Genome Sequences of Pseudomonas spp. Isolated from Cereal Crops
Stiller, Jiri; Covarelli, Lorenzo; Lindeberg, Magdalen; Shivas, Roger G.; Manners, John M.
2013-01-01
Compared to those of dicot-infecting bacteria, the available genome sequences of bacteria that infect wheat and barley are limited. Herein, we report the draft genome sequences of four pseudomonads originally isolated from these cereals. These genome sequences provide a useful resource for comparative analyses within the genus and for cross-kingdom analyses of plant pathogenesis. PMID:23661484
Sockeye: A 3D Environment for Comparative Genomics
Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.
2004-01-01
Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.
2007-03-01
The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as proteinmore » coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.« less
Sputnik: a database platform for comparative plant genomics.
Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X
2003-01-01
Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.
Sputnik: a database platform for comparative plant genomics
Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F.X.
2003-01-01
Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics. PMID:12519965
ERIC Educational Resources Information Center
Cappellini, Marco; Azaoui, Brahim
2017-01-01
In our study we analyse how the same interactional dynamic is produced in two different pedagogical settings exploiting a desktop videoconference system. We propose to focus our attention on a specific type of conversational side sequence, known in the Francophone literature as sequences of normative evaluation. More particularly, we analyse data…
mySyntenyPortal: an application package to construct websites for synteny block analysis.
Lee, Jongin; Lee, Daehwan; Sim, Mikang; Kwon, Daehong; Kim, Juyeon; Ko, Younhee; Kim, Jaebum
2018-06-05
Advances in sequencing technologies have facilitated large-scale comparative genomics based on whole genome sequencing. Constructing and investigating conserved genomic regions among multiple species (called synteny blocks) are essential in the comparative genomics. However, they require significant amounts of computational resources and time in addition to bioinformatics skills. Many web interfaces have been developed to make such tasks easier. However, these web interfaces cannot be customized for users who want to use their own set of genome sequences or definition of synteny blocks. To resolve this limitation, we present mySyntenyPortal, a stand-alone application package to construct websites for synteny block analyses by using users' own genome data. mySyntenyPortal provides both command line and web-based interfaces to build and manage websites for large-scale comparative genomic analyses. The websites can be also easily published and accessed by other users. To demonstrate the usability of mySyntenyPortal, we present an example study for building websites to compare genomes of three mammalian species (human, mouse, and cow) and show how they can be easily utilized to identify potential genes affected by genome rearrangements. mySyntenyPortal will contribute for extended comparative genomic analyses based on large-scale whole genome sequences by providing unique functionality to support the easy creation of interactive websites for synteny block analyses from user's own genome data.
Mackey, Aaron J; Pearson, William R
2004-10-01
Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.
Krahn, Thomas; Wibberg, Daniel; Maus, Irena; Winkler, Anika; Pühler, Alfred; Poirel, Laurent; Schlüter, Andreas
2015-07-30
The complete genome sequence for the reference strain Acinetobacter baumannii CIP 70.10 (ATCC 15151) was established. The strain was isolated in France in 1970, is susceptible to most antimicrobial compounds, and is therefore of importance for comparative genome analyses with clinical multidrug-resistant (MDR) A. baumannii strains to study resistance development and acquisition in this emerging human pathogen. Copyright © 2015 Krahn et al.
Comparative analysis of chloroplast genomes of the genus Citrus and its close relatives.
Liu, Xiaogang; Wu, Hongkun; Luo, Yan; Xi, Wanpeng; Zhou, Zhiqin
2017-01-01
The genus Citrus and its close relatives are economically and nutritionally important fruit trees. However, the huge controversy over the phylogeny of key wild species, as well as the genetic relationship between the cultivated species and their putative wild progenitors, remains unresolved. Comparative analyses of chloroplast (cp) genomes have been useful in resolving various phylogenetic issues. Thus far, the cp genomes of only two Citrus species have been sequenced. In this study, we sequenced six complete cp genomes, four belonging to the genus Citrus, and two belonging to the genera Fortunella and Poncirus, respectively. These newly sequenced genomes together with the two publicly available were used for comparative analyses of the genus Citrus and its close relatives. All eight cp genomes share similar basic structure, gene order and gene content. Phylogenetic analyses supported the monophyly of the three genera in the order Sapindales within the major clade Malvidae.
Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e. shotgun metagenomics) is transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which pr...
Comparative Genomics of Erwinia amylovora and Related Erwinia Species—What do We Learn?
Zhao, Youfu; Qi, Mingsheng
2011-01-01
Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. Recent reports on the complete or draft genome sequences of four species in the genus Erwinia, including E. amylovora, E. pyrifoliae, E. tasmaniensis, and E. billingiae, have provided us near complete genetic information about this pathogen and its closely-related species. This review describes in silico subtractive hybridization-based comparative genomic analyses of eight genomes currently available, and highlights what we have learned from these comparative analyses, as well as genetic and functional genomic studies. Sequence analyses reinforce the assumption that E. amylovora is a relatively homogeneous species and support the current classification scheme of E. amylovora and its related species. The potential evolutionary origin of these Erwinia species is also proposed. The current understanding of the pathogen, its virulence mechanism and host specificity from genome sequencing data is summarized. Future research directions are also suggested. PMID:24710213
Alignment methods: strategies, challenges, benchmarking, and comparative overview.
Löytynoja, Ari
2012-01-01
Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.
Genetic diversity of Babesia bovis in virulent and attenuated strains.
Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V
2012-03-01
The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.
Taylor, Robin L; Bailey, Jeffrey Craig; Freshwater, David Wilson
2017-06-01
Identification of Cladophora species is challenging due to conservation of gross morphology, few discrete autapomorphies, and environmental influences on morphology. Twelve species of marine Cladophora were reported from North Carolina waters. Cladophora specimens were collected from inshore and offshore marine waters for DNA sequence and morphological analyses. The nuclear-encoded rRNA internal transcribed spacer regions (ITS) were sequenced for 105 specimens and used in molecular assisted identification. The ITS1 and ITS2 region was highly variable, and sequences were sorted into ITS Sets of Alignable Sequences (SASs). Sequencing of short hyper-variable ITS1 sections from Cladophora type specimens was used to positively identify species represented by SASs when the types were made available. Secondary structures for the ITS1 locus were also predicted for each specimen and compared to predicted structures from Cladophora sequences available in GenBank. Nine ITS SASs were identified and representative specimens chosen for phylogenetic analyses of 18S and 28S rRNA gene sequences to reveal relationships with other Cladophora species. Phylogenetic analyses indicated that marine Cladophorales were polyphyletic and separated into two clades, the Cladophora clade and the "Siphonocladales" clade. Morphological analyses were performed to assess the consistency of character states within species, and complement the DNA sequence analyses. These analyses revealed intra- and interspecific character state variation, and that combined molecular and morphological analyses were required for the identification of species. One new report, Cladophora dotyana, and one new species Cladophora subtilissima sp. nov., were revealed, and increased the biodiversity of North Carolina marine Cladophora to 14 species. © 2017 Phycological Society of America.
Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations
Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter
2017-01-01
Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594
Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii
Krishnan, Neeraja M.
2017-01-01
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357
Exploring Evolutionary Patterns in Genetic Sequence: A Computer Exercise
ERIC Educational Resources Information Center
Shumate, Alice M.; Windsor, Aaron J.
2010-01-01
The increase in publications presenting molecular evolutionary analyses and the availability of comparative sequence data through resources such as NCBI's GenBank underscore the necessity of providing undergraduates with hands-on sequence analysis skills in an evolutionary context. This need is particularly acute given that students have been…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew
2005-09-07
We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.
Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo
2012-01-01
In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.
Comparative genomic data of the Avian Phylogenomics Project.
Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun
2014-01-01
The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of genomic data that has been generated and used in our Avian Phylogenomics Project. To the best of our knowledge, the Avian Phylogenomics Project is the biggest vertebrate comparative genomics project to date. The genomic data presented here is expected to accelerate further analyses in many fields, including phylogenetics, comparative genomics, evolution, neurobiology, development biology, and other related areas.
Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality
Lee, Elvina; Khurana, Maninder S.; Whiteley, Andrew S.; Monis, Paul T.; Bath, Andrew; Gordon, Cameron; Ryan, Una M.; Paparini, Andrea
2017-01-01
Next generation sequencing (NGS) has rapidly become an invaluable tool for the detection, identification and relative quantification of environmental microorganisms. Here, we demonstrate two new 16S rDNA primer sets, which are compatible with NGS approaches and are primarily for use in water quality studies. Compared to 16S rRNA gene based universal primers, in silico and experimental analyses demonstrated that the new primers showed increased specificity for the Cyanobacteria and Proteobacteria phyla, allowing increased sensitivity for the detection, identification and relative quantification of toxic bloom-forming microalgae, microbial water quality bioindicators and common pathogens. Significantly, Cyanobacterial and Proteobacterial sequences accounted for ca. 95% of all sequences obtained within NGS runs (when compared to ca. 50% with standard universal NGS primers), providing higher sensitivity and greater phylogenetic resolution of key water quality microbial groups. The increased selectivity of the new primers allow the parallel sequencing of more samples through reduced sequence retrieval levels required to detect target groups, potentially reducing NGS costs by 50% but still guaranteeing optimal coverage and species discrimination. PMID:28118368
Sequencing and comparative analyses of the genomes of zoysiagrasses
Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei
2016-01-01
Zoysia is a warm-season turfgrass, which comprises 11 allotetraploid species (2n = 4x = 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession ‘Nagirizaki’ (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella ‘Wakaba’ and Z. pacifica ‘Zanpa’ were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica ‘Kyoto’, Z. japonica ‘Miyagi’ and Z. matrella ‘Chiba Fair Green’, were accumulated, and aligned against the reference genome of ‘Nagirizaki’ along with those from ‘Wakaba’ and ‘Zanpa’. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the ‘Zoysia Genome Database’ at http://zoysia.kazusa.or.jp. PMID:26975196
Sequencing and comparative analyses of the genomes of zoysiagrasses.
Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei
2016-04-01
Zoysiais a warm-season turfgrass, which comprises 11 allotetraploid species (2n= 4x= 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession 'Nagirizaki' (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella 'Wakaba' and Z. pacifica 'Zanpa' were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica'Kyoto', Z. japonica'Miyagi' and Z. matrella'Chiba Fair Green', were accumulated, and aligned against the reference genome of 'Nagirizaki' along with those from 'Wakaba' and 'Zanpa'. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the 'Zoysia Genome Database' at http://zoysia.kazusa.or.jp. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo
2013-01-01
Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data.
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
Yebra, Gonzalo; Hodcroft, Emma B.; Ragonnet-Cronin, Manon L.; Pillay, Deenan; Brown, Andrew J. Leigh; Fraser, Christophe; Kellam, Paul; de Oliveira, Tulio; Dennis, Ann; Hoppe, Anne; Kityo, Cissy; Frampton, Dan; Ssemwanga, Deogratius; Tanser, Frank; Keshani, Jagoda; Lingappa, Jairam; Herbeck, Joshua; Wawer, Maria; Essex, Max; Cohen, Myron S.; Paton, Nicholas; Ratmann, Oliver; Kaleebu, Pontiano; Hayes, Richard; Fidler, Sarah; Quinn, Thomas; Novitsky, Vladimir; Haywards, Andrew; Nastouli, Eleni; Morris, Steven; Clark, Duncan; Kozlakidis, Zisis
2016-01-01
HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree’s using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences. PMID:28008945
Yebra, Gonzalo; Hodcroft, Emma B; Ragonnet-Cronin, Manon L; Pillay, Deenan; Brown, Andrew J Leigh
2016-12-23
HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree's using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences.
MaxAlign: maximizing usable data in an alignment.
Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G
2007-08-28
The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.
Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.
Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P
1997-11-01
A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.
Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox.
Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Fröhlich, Jan; Rubes, Jiri
2016-01-01
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox. © 2017 S. Karger AG, Basel.
Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis
2013-01-01
In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the functional diversity and to a lesser extent the taxonomic diversity of the bacterial communities. PMID:23418476
Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo
2013-01-01
Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data. PMID:24124457
Phylogenetic and Protein Sequence Analysis of Bacterial Chemoreceptors.
Ortega, Davi R; Zhulin, Igor B
2018-01-01
Identifying chemoreceptors in sequenced bacterial genomes, revealing their domain architecture, inferring their evolutionary relationships, and comparing them to chemoreceptors of known function become important steps in genome annotation and chemotaxis research. Here, we describe bioinformatics procedures that enable such analyses, using two closely related bacterial genomes as examples.
USDA-ARS?s Scientific Manuscript database
Genome evolution influences a parasite’s’s pathogenicity, host-pathogen interactions, environmental constraints, and invasion biology, while genome assemblies form the basis of comparative sequence analyses. Given that closely related organisms typically maintain appreciable synteny, the genome asse...
Defining objective clusters for rabies virus sequences using affinity propagation clustering
Fischer, Susanne; Freuling, Conrad M.; Pfaff, Florian; Bodenhofer, Ulrich; Höper, Dirk; Fischer, Mareike; Marston, Denise A.; Fooks, Anthony R.; Mettenleiter, Thomas C.; Conraths, Franz J.; Homeier-Bachmann, Timo
2018-01-01
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. PMID:29357361
Goller, Katja V; Gabriel, Claudia; Dimna, Mireille Le; Le Potier, Marie-Frédérique; Rossi, Sophie; Staubach, Christoph; Merboth, Matthias; Beer, Martin; Blome, Sandra
2016-03-01
Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers.
He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric
2012-01-01
Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes (“H-probes”) for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin. PMID:22745230
Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome
Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend
2007-01-01
A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995
Wen, Chiu-Ming
2017-08-01
An aquabirnavirus was isolated from diseased marbled eels (Anguilla marmorata; MEIPNV1310) with gill haemorrhages and associated mortality. Its genome segment sequences were obtained through next-generation sequencing and compared with published aquabirnavirus sequences. The results indicated that the genome sequence of MEIPNV1310 contains segment A (3099 nucleotides) and segment B (2789 nucleotides). Phylogenetic analysis showed that MEIPNV1310 is closely related to the infectious pancreatic necrosis Ab strain within genogroup II. This genome sequence is beneficial for studying the geographic distribution and evolution of aquabirnaviruses.
A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.
Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K
2008-09-10
Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.
Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai
2017-01-01
The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.
Biondi, Enrico; Zamorano, Alan; Vega, Ernesto; Ardizzi, Stefano; Sitta, Davide; De Salvador, Flavio Roberto; Campos-Vargas, Reinaldo; Meneses, Claudio; Perez, Set; Bertaccini, Assunta; Fiore, Nicola
2018-05-01
Kiwifruit bleeding sap samples, collected in Italian and Chilean orchards from symptomatic and asymptomatic plants, were evaluated for the presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker. The saps were sampled during the spring in both hemispheres, before the bud sprouting, during the optimal time window for the collection of an adequate volume of sample for the early detection of the pathogen, preliminarily by molecular assays, and then through its direct isolation and identification. The results of molecular analyses showed more effectiveness in the P. syringae pv. actinidiae detection when compared with those of microbiological analyses through the pathogen isolation on the nutritive and semiselective media selected. The bleeding sap analyses allowed the isolation and identification of two hypersensitive response (HR) negative and hypovirulent P. syringae pv. actinidiae strains from different regions in Italy. Moreover, multilocus sequence analysis (MLSA) and whole genome sequence (WGS) were carried out on selected Italian and Chilean P. syringae pv. actinidiae virulent strains to verify the presence of genetic variability compared with the HR negative strains and to compare the variability of selected gene clusters between strains isolated in both countries. All the strains showed the lack of argK and coronatine gene clusters as reported for the biovar 3 P. syringae pv. actinidiae strains. Despite the biologic differences obtained in the tobacco bioassays and in pathogenicity assays, the MLSA and WGS analyses did not show significant differences between the WGS of the HR negative and HR positive strains; the difference, on the other hand, between PAC_ICE sequences of Italian and Chilean P. syringae pv. actinidiae strains was confirmed. The inability of the hypovirulent strains IPV-BO 8893 and IPV-BO 9286 to provoke HR in tobacco and the low virulence shown in this host could not be associated with mutations or recombinations in T3SS island.
Sequence Search and Comparative Genomic Analysis of SUMO-Activating Enzymes Using CoGe.
Carretero-Paulet, Lorenzo; Albert, Victor A
2016-01-01
The growing number of genome sequences completed during the last few years has made necessary the development of bioinformatics tools for the easy access and retrieval of sequence data, as well as for downstream comparative genomic analyses. Some of these are implemented as online platforms that integrate genomic data produced by different genome sequencing initiatives with data mining tools as well as various comparative genomic and evolutionary analysis possibilities.Here, we use the online comparative genomics platform CoGe ( http://www.genomevolution.org/coge/ ) (Lyons and Freeling. Plant J 53:661-673, 2008; Tang and Lyons. Front Plant Sci 3:172, 2012) (1) to retrieve the entire complement of orthologous and paralogous genes belonging to the SUMO-Activating Enzymes 1 (SAE1) gene family from a set of species representative of the Brassicaceae plant eudicot family with genomes fully sequenced, and (2) to investigate the history, timing, and molecular mechanisms of the gene duplications driving the evolutionary expansion and functional diversification of the SAE1 family in Brassicaceae.
Oliani, L C; Lidani, K C F; Gabriel, J E
2015-10-16
MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.
2014-01-01
Background DNA repeats, such as transposable elements, minisatellites and palindromic sequences, are abundant in sequences and have been shown to have significant and functional roles in the evolution of the host genomes. In a previous study, we introduced the concept of a repeat DNA module, a flexible motif present in at least two occurences in the sequences. This concept was embedded into ModuleOrganizer, a tool allowing the detection of repeat modules in a set of sequences. However, its implementation remains difficult for larger sequences. Results Here we present Visual ModuleOrganizer, a Java graphical interface that enables a new and optimized version of the ModuleOrganizer tool. To implement this version, it was recoded in C++ with compressed suffix tree data structures. This leads to less memory usage (at least 120-fold decrease in average) and decreases by at least four the computation time during the module detection process in large sequences. Visual ModuleOrganizer interface allows users to easily choose ModuleOrganizer parameters and to graphically display the results. Moreover, Visual ModuleOrganizer dynamically handles graphical results through four main parameters: gene annotations, overlapping modules with known annotations, location of the module in a minimal number of sequences, and the minimal length of the modules. As a case study, the analysis of FoldBack4 sequences clearly demonstrated that our tools can be extended to comparative and evolutionary analyses of any repeat sequence elements in a set of genomic sequences. With the increasing number of sequences available in public databases, it is now possible to perform comparative analyses of repeated DNA modules in a graphic and friendly manner within a reasonable time period. Availability Visual ModuleOrganizer interface and the new version of the ModuleOrganizer tool are freely available at: http://lcb.cnrs-mrs.fr/spip.php?rubrique313. PMID:24678954
Tsuchiya, Karen D.; Greally, John M.; Yi, Yajun; Noel, Kevin P.; Truong, Jean-Pierre; Disteche, Christine M.
2004-01-01
We have performed X-inactivation and sequence analyses on 350 kb of sequence from human Xp11.2, a region shown previously to contain a cluster of genes that escape X inactivation, and we compared this region with the region of conserved synteny in mouse. We identified several new transcripts from this region in human and in mouse, which defined the full extent of the domain escaping X inactivation in both species. In human, escape from X inactivation involves an uninterrupted 235-kb domain of multiple genes. Despite highly conserved gene content and order between the two species, Smcx is the only mouse gene from the conserved segment that escapes inactivation. As repetitive sequences are believed to facilitate spreading of X inactivation along the chromosome, we compared the repetitive sequence composition of this region between the two species. We found that long terminal repeats (LTRs) were decreased in the human domain of escape, but not in the majority of the conserved mouse region adjacent to Smcx in which genes were subject to X inactivation, suggesting that these repeats might be excluded from escape domains to prevent spreading of silencing. Our findings indicate that genomic context, as well as gene-specific regulatory elements, interact to determine expression of a gene from the inactive X-chromosome. PMID:15197169
Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu
2016-01-01
Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141
Error and Error Mitigation in Low-Coverage Genome Assemblies
Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam
2011-01-01
The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033
The partial 16S rDNA gene sequences of two thermophilic archaeal strains, TY and TYS, previously isolated from the Guaymas Basin hydrothermal vent site were determined. Lipid analyses and a comparative analysis performed with 16S rDNA sequences of similar thermophilic species sho...
Allana K. Welsh; Jeffrey O. Dawson; Gerald J. Gottfried; Dittmar Hahn
2009-01-01
The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of...
Lim, Shu Yong; Yap, Kien-Pong; Thong, Kwai Lin
2016-01-01
Listeria monocytogenes is an important foodborne pathogen that causes considerable morbidity in humans with high mortality rates. In this study, we have sequenced the genomes and performed comparative genomics analyses on two strains, LM115 and LM41, isolated from ready-to-eat food in Malaysia. The genome size of LM115 and LM41 was 2,959,041 and 2,963,111 bp, respectively. These two strains shared approximately 90% homologous genes. Comparative genomics and phylogenomic analyses revealed that LM115 and LM41 were more closely related to the reference strains F2365 and EGD-e, respectively. Our virulence profiling indicated a total of 31 virulence genes shared by both analysed strains. These shared genes included those that encode for internalins and L. monocytogenes pathogenicity island 1 (LIPI-1). Both the Malaysian L. monocytogenes strains also harboured several genes associated with stress tolerance to counter the adverse conditions. Seven antibiotic and efflux pump related genes which may confer resistance against lincomycin, erythromycin, fosfomycin, quinolone, tetracycline, and penicillin, and macrolides were identified in the genomes of both strains. Whole genome sequencing and comparative genomics analyses revealed two virulent L. monocytogenes strains isolated from ready-to-eat foods in Malaysia. The identification of strains with pathogenic, persistent, and antibiotic resistant potentials from minimally processed food warrant close attention from both healthcare and food industry.
Rangel, Luiz Thibério; Novaes, Jeniffer; Durham, Alan M.; Madeira, Alda Maria B. N.; Gruber, Arthur
2013-01-01
Parasites of the genus Eimeria infect a wide range of vertebrate hosts, including chickens. We have recently reported a comparative analysis of the transcriptomes of Eimeria acervulina, Eimeria maxima and Eimeria tenella, integrating ORESTES data produced by our group and publicly available Expressed Sequence Tags (ESTs). All cDNA reads have been assembled, and the reconstructed transcripts have been submitted to a comprehensive functional annotation pipeline. Additional studies included orthology assignment across apicomplexan parasites and clustering analyses of gene expression profiles among different developmental stages of the parasites. To make all this body of information publicly available, we constructed the Eimeria Transcript Database (EimeriaTDB), a web repository that provides access to sequence data, annotation and comparative analyses. Here, we describe the web interface, available sequence data sets and query tools implemented on the site. The main goal of this work is to offer a public repository of sequence and functional annotation data of reconstructed transcripts of parasites of the genus Eimeria. We believe that EimeriaTDB will represent a valuable and complementary resource for the Eimeria scientific community and for those researchers interested in comparative genomics of apicomplexan parasites. Database URL: http://www.coccidia.icb.usp.br/eimeriatdb/ PMID:23411718
Whale song analyses using bioinformatics sequence analysis approaches
NASA Astrophysics Data System (ADS)
Chen, Yian A.; Almeida, Jonas S.; Chou, Lien-Siang
2005-04-01
Animal songs are frequently analyzed using discrete hierarchical units, such as units, themes and songs. Because animal songs and bio-sequences may be understood as analogous, bioinformatics analysis tools DNA/protein sequence alignment and alignment-free methods are proposed to quantify the theme similarities of the songs of false killer whales recorded off northeast Taiwan. The eighteen themes with discrete units that were identified in an earlier study [Y. A. Chen, masters thesis, University of Charleston, 2001] were compared quantitatively using several distance metrics. These metrics included the scores calculated using the Smith-Waterman algorithm with the repeated procedure; the standardized Euclidian distance and the angle metrics based on word frequencies. The theme classifications based on different metrics were summarized and compared in dendrograms using cluster analyses. The results agree with earlier classifications derived by human observation qualitatively. These methods further quantify the similarities among themes. These methods could be applied to the analyses of other animal songs on a larger scale. For instance, these techniques could be used to investigate song evolution and cultural transmission quantifying the dissimilarities of humpback whale songs across different seasons, years, populations, and geographic regions. [Work supported by SC Sea Grant, and Ilan County Government, Taiwan.
Richert, Kathrin; Brambilla, Evelyne; Stackebrandt, Erko
2005-01-01
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.
2009-01-01
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996
Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas
2009-10-12
Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Swallow Event Sequencing: Comparing Healthy Older and Younger Adults.
Herzberg, Erica G; Lazarus, Cathy L; Steele, Catriona M; Molfenter, Sonja M
2018-04-23
Previous research has established that a great deal of variation exists in the temporal sequence of swallowing events for healthy adults. Yet, the impact of aging on swallow event sequence is not well understood. Kendall et al. (Dysphagia 18(2):85-91, 2003) suggested there are 4 obligatory paired-event sequences in swallowing. We directly compared adherence to these sequences, as well as event latencies, and quantified the percentage of unique sequences in two samples of healthy adults: young (< 45) and old (> 65). The 8 swallowing events that contribute to the sequences were reliably identified from videofluoroscopy in a sample of 23 healthy seniors (10 male, mean age 74.7) and 20 healthy young adults (10 male, mean age 31.5) with no evidence of penetration-aspiration or post-swallow residue. Chi-square analyses compared the proportions of obligatory pairs and unique sequences by age group. Compared to the older subjects, younger subjects had significantly lower adherence to two obligatory sequences: Upper Esophageal Sphincter (UES) opening occurs before (or simultaneous with) the bolus arriving at the UES and UES maximum distention occurs before maximum pharyngeal constriction. The associated latencies were significantly different between age groups as well. Further, significantly fewer unique swallow sequences were observed in the older group (61%) compared with the young (82%) (χ 2 = 31.8; p < 0.001). Our findings suggest that paired swallow event sequences may not be robust across the age continuum and that variation in swallow sequences appears to decrease with aging. These findings provide normative references for comparisons to older individuals with dysphagia.
Genome sequence of the pathogenic Herbaspirillum seropedicae strain Os34, isolated from rice roots.
Ye, Weijun; Ye, Shuting; Liu, Jian; Chang, Siping; Chen, Mingyue; Zhu, Bo; Guo, Longbiao; An, Qianli
2012-12-01
Most Herbaspirillum seropedicae strains are beneficial endophytes to plants. In contrast, H. seropedicae strain Os34, isolated from rice roots, is pathogenic. The draft genome sequence of strain Os34 presented here allows in-depth comparative genome analyses to understand the specific mechanisms of beneficial and pathogenic Herbaspirillum-plant interactions.
Genome Sequence of the Pathogenic Herbaspirillum seropedicae Strain Os34, Isolated from Rice Roots
Ye, Weijun; Ye, Shuting; Liu, Jian; Chang, Siping; Chen, Mingyue; Zhu, Bo
2012-01-01
Most Herbaspirillum seropedicae strains are beneficial endophytes to plants. In contrast, H. seropedicae strain Os34, isolated from rice roots, is pathogenic. The draft genome sequence of strain Os34 presented here allows in-depth comparative genome analyses to understand the specific mechanisms of beneficial and pathogenic Herbaspirillum-plant interactions. PMID:23209241
Analysis of Pteridium ribosomal RNA sequences by rapid direct sequencing.
Tan, M K
1991-08-01
A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.
Mammoth and Mastodon collagen sequences; survival and utility
NASA Astrophysics Data System (ADS)
Buckley, M.; Larkin, N.; Collins, M.
2011-04-01
Near-complete collagen (I) sequences are proposed for elephantid and mammutid taxa, based upon available African elephant genomic data and supported with LC-MALDI-MS/MS and LC-ESI-MS/MS analyses of collagen digests from proboscidean bone. Collagen sequence coverage was investigated from several specimens of two extinct mammoths ( Mammuthus trogontherii and Mammuthus primigenius), the extinct American mastodon ( Mammut americanum), the extinct straight-tusked elephant ( Elephas ( Palaeoloxodon) antiquus) and extant Asian ( Elephas maximus) and African ( Loxodonta africana) elephants and compared between the two ionization techniques used. Two suspected mammoth fossils from the British Middle Pleistocene (Cromerian) deposits of the West Runton Forest Bed were analysed to investigate the potential use of peptide mass spectrometry for fossil identification. Despite the age of the fossils, sufficient peptides were obtained to identify these as elephantid, and sufficient sequence variation to discriminate elephantid and mammutid collagen (I). In-depth LC-MS analyses further failed to identify a peptide that could be used to reliably distinguish between the three genera of elephantids ( Elephas, Loxodonta and Mammuthus), an observation consistent with predicted amino acid substitution rates between these species.
Whole genome sequencing data and de novo draft assemblies for 66 teleost species
Malmstrøm, Martin; Matschiner, Michael; Tørresen, Ole K.; Jakobsen, Kjetill S.; Jentoft, Sissel
2017-01-01
Teleost fishes comprise more than half of all vertebrate species, yet genomic data are only available for 0.2% of their diversity. Here, we present whole genome sequencing data for 66 new species of teleosts, vastly expanding the availability of genomic data for this important vertebrate group. We report on de novo assemblies based on low-coverage (9–39×) sequencing and present detailed methodology for all analyses. To facilitate further utilization of this data set, we present statistical analyses of the gene space completeness and verify the expected phylogenetic position of the sequenced genomes in a large mitogenomic context. We further present a nuclear marker set used for phylogenetic inference and evaluate each gene tree in relation to the species tree to test for homogeneity in the phylogenetic signal. Collectively, these analyses illustrate the robustness of this highly diverse data set and enable extensive reuse of the selected phylogenetic markers and the genomic data in general. This data set covers all major teleost lineages and provides unprecedented opportunities for comparative studies of teleosts. PMID:28094797
An in-silico insight into the characteristics of β-propeller phytase.
Mathew, Akash; Verma, Anukriti; Gaur, Smriti
2014-06-01
Phytase is an enzyme that is found extensively in the plant kingdom and in some species of bacteria and fungi. This paper identifies and analyses the available full length sequences of β-propeller phytases (BPP). BPP was chosen due to its potential applicability in the field of aquaculture. The sequences were obtained from the Uniprot database and subject to various online bioinformatics tools to elucidate the physio-chemical characteristics, secondary structures and active site compositions of BPP. Protparam and SOPMA were used to analyse the physiochemical and secondary structure characteristics, while the Expasy online modelling tool and CASTp were used to model the 3-D structure and identify the active sites of the BPP sequences. The amino acid compositions of the four sequences were compared and composed in a graphical format to identify similarities and highlight the potentially important amino acids that form the active site of BPP. This study aims to analyse BPP and contribute to the clarification of the molecular mechanism involved in the enzyme activity of BPP and contribute in part to the possibility of constructing a synthetic version of BPP.
2012-01-01
Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331
Ross, Daniel E; Marshall, Christopher W; May, Harold D; Norman, R Sean
2017-09-07
Draft genome sequences of Acetobacterium sp. strain MES1 and Desulfovibrio sp. strain MES5 were obtained from the metagenome of a cathode-associated community enriched within a microbial electrosynthesis system (MES). The draft genome sequences provide insight into the functional potential of these microorganisms within an MES and a foundation for future comparative analyses. Copyright © 2017 Ross et al.
Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime
2016-01-01
Xanthomonas arboricola is a species in genus Xanthomonas which is mainly comprised of plant pathogens. Among the members of this taxon, X. arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of X. arboricola associated with Prunus spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process.
TaxI: a software tool for DNA barcoding using distance methods
Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel
2005-01-01
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755
Acoustic sequences in non-human animals: a tutorial review and prospectus.
Kershenbaum, Arik; Blumstein, Daniel T; Roch, Marie A; Akçay, Çağlar; Backus, Gregory; Bee, Mark A; Bohn, Kirsten; Cao, Yan; Carter, Gerald; Cäsar, Cristiane; Coen, Michael; DeRuiter, Stacy L; Doyle, Laurance; Edelman, Shimon; Ferrer-i-Cancho, Ramon; Freeberg, Todd M; Garland, Ellen C; Gustison, Morgan; Harley, Heidi E; Huetz, Chloé; Hughes, Melissa; Hyland Bruno, Julia; Ilany, Amiyaal; Jin, Dezhe Z; Johnson, Michael; Ju, Chenghui; Karnowski, Jeremy; Lohr, Bernard; Manser, Marta B; McCowan, Brenda; Mercado, Eduardo; Narins, Peter M; Piel, Alex; Rice, Megan; Salmi, Roberta; Sasahara, Kazutoshi; Sayigh, Laela; Shiu, Yu; Taylor, Charles; Vallejo, Edgar E; Waller, Sara; Zamora-Gutierrez, Veronica
2016-02-01
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality. © 2014 Cambridge Philosophical Society.
Acoustic sequences in non-human animals: a tutorial review and prospectus
Kershenbaum, Arik; Blumstein, Daniel T.; Roch, Marie A.; Akçay, Çağlar; Backus, Gregory; Bee, Mark A.; Bohn, Kirsten; Cao, Yan; Carter, Gerald; Cäsar, Cristiane; Coen, Michael; DeRuiter, Stacy L.; Doyle, Laurance; Edelman, Shimon; Ferrer-i-Cancho, Ramon; Freeberg, Todd M.; Garland, Ellen C.; Gustison, Morgan; Harley, Heidi E.; Huetz, Chloé; Hughes, Melissa; Bruno, Julia Hyland; Ilany, Amiyaal; Jin, Dezhe Z.; Johnson, Michael; Ju, Chenghui; Karnowski, Jeremy; Lohr, Bernard; Manser, Marta B.; McCowan, Brenda; Mercado, Eduardo; Narins, Peter M.; Piel, Alex; Rice, Megan; Salmi, Roberta; Sasahara, Kazutoshi; Sayigh, Laela; Shiu, Yu; Taylor, Charles; Vallejo, Edgar E.; Waller, Sara; Zamora-Gutierrez, Veronica
2015-01-01
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise – let alone understand – the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, “Analysing vocal sequences in animals”. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality. PMID:25428267
Lubelchek, Ronald J.; Hoehnen, Sarah C.; Hotton, Anna L.; Kincaid, Stacey L.; Barker, David E.; French, Audrey L.
2014-01-01
Introduction HIV transmission cluster analyses can inform HIV prevention efforts. We describe the first such assessment for transmission clustering among HIV patients in Chicago. Methods We performed transmission cluster analyses using HIV pol sequences from newly diagnosed patients presenting to Chicago’s largest HIV clinic between 2008 and 2011. We compared sequences via progressive pairwise alignment, using neighbor joining to construct an un-rooted phylogenetic tree. We defined clusters as >2 sequences among which each sequence had at least one partner within a genetic distance of ≤ 1.5%. We used multivariable regression to examine factors associated with clustering and used geospatial analysis to assess geographic proximity of phylogenetically clustered patients. Results We compared sequences from 920 patients; median age 35 years; 75% male; 67% Black, 23% Hispanic; 8% had a Rapid Plasma Reagin (RPR) titer ≥ 1:16 concurrent with their HIV diagnosis. We had HIV transmission risk data for 54%; 43% identified as men who have sex with men (MSM). Phylogenetic analysis demonstrated 123 patients (13%) grouped into 26 clusters, the largest having 20 members. In multivariable regression, age < 25, Black race, MSM status, male gender, higher HIV viral load, and RPR ≥ 1:16 associated with clustering. We did not observe geographic grouping of genetically clustered patients. Discussion Our results demonstrate high rates of HIV transmission clustering, without local geographic foci, among young Black MSM in Chicago. Applied prospectively, phylogenetic analyses could guide prevention efforts and help break the cycle of transmission. PMID:25321182
NASA Technical Reports Server (NTRS)
Zhao, H.; Yang, D.; Woese, C. R.; Bryant, M. P.
1993-01-01
After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.
Genome sequence analysis of dengue virus 1 isolated in Key West, Florida.
Shin, Dongyoung; Richards, Stephanie L; Alto, Barry W; Bettinardi, David J; Smartt, Chelsea T
2013-01-01
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.
Genetic analysis of duck circovirus in Pekin ducks from South Korea.
Cha, S-Y; Kang, M; Cho, J-G; Jang, H-K
2013-11-01
The genetic organization of the 24 duck circovirus (DuCV) strains detected in commercial Pekin ducks from South Korea between 2011 and 2012 is described in this study. Multiple sequence alignment and phylogenetic analyses were performed on the 24 viral genome sequences as well as on 45 genome sequences available from the GenBank database. Phylogenetic analyses based on the genomic and open reading frame 2/cap sequences demonstrated that all DuCV strains belonged to genotype 1 and were designated in a subcluster under genotype 1. Analysis of the capsid protein amino acid sequences of the 24 Korean DuCV strains showed 10 substitutions compared with that of other genotype 1 strains. Our analysis showed that genotype 1 is predominant and circulating in South Korea. These present results serve as incentive to add more data to the DuCV database and provide insight to conduct further intensive study on the geographic relationships among these virus strains.
Nowrousian, Minou; Stajich, Jason E.; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D.; Pöggeler, Stefanie; Read, Nick D.; Seiler, Stephan; Smith, Kristina M.; Zickler, Denise; Kück, Ulrich; Freitag, Michael
2010-01-01
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology. PMID:20386741
Nowrousian, Minou; Stajich, Jason E; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D; Pöggeler, Stefanie; Read, Nick D; Seiler, Stephan; Smith, Kristina M; Zickler, Denise; Kück, Ulrich; Freitag, Michael
2010-04-08
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.
Fault tree models for fault tolerant hypercube multiprocessors
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Tuazon, Jezus O.
1991-01-01
Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.
Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I
2015-03-01
The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Relationships between physical properties and sequence in silkworm silks
Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji
2016-01-01
Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149
Relationships between physical properties and sequence in silkworm silks
NASA Astrophysics Data System (ADS)
Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji
2016-06-01
Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.
Using SQL Databases for Sequence Similarity Searching and Analysis.
Pearson, William R; Mackey, Aaron J
2017-09-13
Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
A comparative analysis of exome capture.
Parla, Jennifer S; Iossifov, Ivan; Grabill, Ian; Spector, Mona S; Kramer, Melissa; McCombie, W Richard
2011-09-29
Human exome resequencing using commercial target capture kits has been and is being used for sequencing large numbers of individuals to search for variants associated with various human diseases. We rigorously evaluated the capabilities of two solution exome capture kits. These analyses help clarify the strengths and limitations of those data as well as systematically identify variables that should be considered in the use of those data. Each exome kit performed well at capturing the targets they were designed to capture, which mainly corresponds to the consensus coding sequences (CCDS) annotations of the human genome. In addition, based on their respective targets, each capture kit coupled with high coverage Illumina sequencing produced highly accurate nucleotide calls. However, other databases, such as the Reference Sequence collection (RefSeq), define the exome more broadly, and so not surprisingly, the exome kits did not capture these additional regions. Commercial exome capture kits provide a very efficient way to sequence select areas of the genome at very high accuracy. Here we provide the data to help guide critical analyses of sequencing data derived from these products.
Towards decoding the conifer giga-genome.
Mackay, John; Dean, Jeffrey F D; Plomion, Christophe; Peterson, Daniel G; Cánovas, Francisco M; Pavy, Nathalie; Ingvarsson, Pär K; Savolainen, Outi; Guevara, M Ángeles; Fluch, Silvia; Vinceti, Barbara; Abarca, Dolores; Díaz-Sala, Carmen; Cervera, María-Teresa
2012-12-01
Several new initiatives have been launched recently to sequence conifer genomes including pines, spruces and Douglas-fir. Owing to the very large genome sizes ranging from 18 to 35 gigabases, sequencing even a single conifer genome had been considered unattainable until the recent throughput increases and cost reductions afforded by next generation sequencers. The purpose of this review is to describe the context for these new initiatives. A knowledge foundation has been acquired in several conifers of commercial and ecological interest through large-scale cDNA analyses, construction of genetic maps and gene mapping studies aiming to link phenotype and genotype. Exploratory sequencing in pines and spruces have pointed out some of the unique properties of these giga-genomes and suggested strategies that may be needed to extract value from their sequencing. The hope is that recent and pending developments in sequencing technology will contribute to rapidly filling the knowledge vacuum surrounding their structure, contents and evolution. Researchers are also making plans to use comparative analyses that will help to turn the data into a valuable resource for enhancing and protecting the world's conifer forests.
Xuan Lin; Nurul Faridi; Claudio Casola
2016-01-01
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In  eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to  move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively  ...
NASA Technical Reports Server (NTRS)
Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.
1992-01-01
Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.
Genomic and probiotic characterization of SJP-SNU strain of Pichia kudriavzevii.
Hong, Seung-Min; Kwon, Hyuk-Joon; Park, Se-Joon; Seong, Won-Jin; Kim, Ilhwan; Kim, Jae-Hong
2018-05-17
The yeast strain SJP-SNU was investigated as a probiotic and was characterized with respect to growth temperature, bile salt resistance, hydrogen sulfide reducing activity, intestinal survival ability and chicken embryo pathogenicity. In addition, we determined the complete genomic and mitochondrial sequences of SJP-SNU and conducted comparative genomics analyses. SJP-SNU grew rapidly at 37 °C and formed colonies on MacConkey agar containing bile salt. SJP-SNU reduced hydrogen sulfide produced by Salmonella serotype Enteritidis and, after being fed to 4-week-old chickens, could be isolated from cecal feces. SJP-SNU did not cause mortality in 10-day-old chicken embryos. From 13 initial contigs, 11 were finally assembled and represented 10 chromosomal sequences and 1 mitochondrial DNA sequence. Comparative genomic analyses revealed that SJP-SNU was a strain of Pichia kudriavzevii. Although SJP-SNU possesses pathogenicity-related genes, they showed very low amino acid sequence identities to those of Candida albicans. Furthermore, SJP-SNU possessed useful genes, such as phytases and cellulase. Thus, SJP-SNU is a useful yeast possessing the basic traits of a probiotic, and further studies to demonstrate its efficacy as a probiotic in the future may be warranted.
Nagaraj, Shivashankar H; Gasser, Robin B; Nisbet, Alasdair J; Ranganathan, Shoba
2008-01-01
The analysis of expressed sequence tags (EST) offers a rapid and cost effective approach to elucidate the transcriptome of an organism, but requires several computational methods for assembly and annotation. Researchers frequently analyse each step manually, which is laborious and time consuming. We have recently developed ESTExplorer, a semi-automated computational workflow system, in order to achieve the rapid analysis of EST datasets. In this study, we evaluated EST data analysis for the parasitic nematode Trichostrongylus vitrinus (order Strongylida) using ESTExplorer, compared with database matching alone. We functionally annotated 1776 ESTs obtained via suppressive-subtractive hybridisation from T. vitrinus, an important parasitic trichostrongylid of small ruminants. Cluster and comparative genomic analyses of the transcripts using ESTExplorer indicated that 290 (41%) sequences had homologues in Caenorhabditis elegans, 329 (42%) in parasitic nematodes, 202 (28%) in organisms other than nematodes, and 218 (31%) had no significant match to any sequence in the current databases. Of the C. elegans homologues, 90 were associated with 'non-wildtype' double-stranded RNA interference (RNAi) phenotypes, including embryonic lethality, maternal sterility, sterile progeny, larval arrest and slow growth. We could functionally classify 267 (38%) sequences using the Gene Ontologies (GO) and establish pathway associations for 230 (33%) sequences using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Further examination of this EST dataset revealed a number of signalling molecules, proteases, protease inhibitors, enzymes, ion channels and immune-related genes. In addition, we identified 40 putative secreted proteins that could represent potential candidates for developing novel anthelmintics or vaccines. We further compared the automated EST sequence annotations, using ESTExplorer, with database search results for individual T. vitrinus ESTs. ESTExplorer reliably and rapidly annotated 301 ESTs, with pathway and GO information, eliminating 60 low quality hits from database searches. We evaluated the efficacy of ESTExplorer in analysing EST data, and demonstrate that computational tools can be used to accelerate the process of gene discovery in EST sequencing projects. The present study has elucidated sets of relatively conserved and potentially novel genes for biological investigation, and the annotated EST set provides further insight into the molecular biology of T. vitrinus, towards the identification of novel drug targets.
Eastman, Alexander W; Heinrichs, David E; Yuan, Ze-Chun
2014-10-03
Members of the genus Paenibacillus are important plant growth-promoting rhizobacteria that can serve as bio-reactors. Paenibacillus polymyxa promotes the growth of a variety of economically important crops. Our lab recently completed the genome sequence of Paenibacillus polymyxa CR1. As of January 2014, four P. polymyxa genomes have been completely sequenced but no comparative genomic analyses have been reported. Here we report the comparative and genetic analyses of four sequenced P. polymyxa genomes, which revealed a significantly conserved core genome. Complex metabolic pathways and regulatory networks were highly conserved and allow P. polymyxa to rapidly respond to dynamic environmental cues. Genes responsible for phytohormone synthesis, phosphate solubilization, iron acquisition, transcriptional regulation, σ-factors, stress responses, transporters and biomass degradation were well conserved, indicating an intimate association with plant hosts and the rhizosphere niche. In addition, genes responsible for antimicrobial resistance and non-ribosomal peptide/polyketide synthesis are present in both the core and accessory genome of each strain. Comparative analyses also reveal variations in the accessory genome, including large plasmids present in strains M1 and SC2. Furthermore, a considerable number of strain-specific genes and genomic islands are irregularly distributed throughout each genome. Although a variety of plant-growth promoting traits are encoded by all strains, only P. polymyxa CR1 encodes the unique nitrogen fixation cluster found in other Paenibacillus sp. Our study revealed that genomic loci relevant to host interaction and ecological fitness are highly conserved within the P. polymyxa genomes analysed, despite variations in the accessory genome. This work suggets that plant-growth promotion by P. polymyxa is mediated largely through phytohormone production, increased nutrient availability and bio-control mechanisms. This study provides an in-depth understanding of the genome architecture of this species, thus facilitating future genetic engineering and applications in agriculture, industry and medicine. Furthermore, this study highlights the current gap in our understanding of complex plant biomass metabolism in Gram-positive bacteria.
NASA Astrophysics Data System (ADS)
Wüthrich, Lorenz; Bliedtner, Marcel; Kathrin Schäfer, Imke; Zech, Jana; Shajari, Fatemeh; Gaar, Dorian; Preusser, Frank; Salazar, Gary; Szidat, Sönke; Zech, Roland
2017-12-01
We present the results of leaf wax analyses (long-chain n-alkanes) from the 6.8 m deep loess sequence of Möhlin, Switzerland, spanning the last ˜ 70 kyr. Leaf waxes are well preserved and occur in sufficient amounts only down to 0.4 m and below 1.8 m depth, so no paleoenvironmental reconstructions can be done for marine isotope stage (MIS) 2. Compound-specific δ2Hwax analyses yielded similar values for late MIS 3 compared to the uppermost samples, indicating that various effects (e.g., more negative values due to lower temperatures, more positive values due to an enriched moisture source) cancel each other out. A pronounced ˜ 30 ‰ shift towards more negative values probably reflects more humid conditions before ˜ 32 ka. Radiocarbon dating of the n-alkanes corroborates the stratigraphic integrity of leaf waxes and their potential for dating loess-paleosol sequences (LPS) back to ˜ 30 ka.
Bohmann, Kristine; Monadjem, Ara; Lehmkuhl Noer, Christina; Rasmussen, Morten; Zeale, Matt R. K.; Clare, Elizabeth; Jones, Gareth; Willerslev, Eske; Gilbert, M. Thomas P.
2011-01-01
Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5′ tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated. PMID:21731749
Gardner, Shea N; Wagner, Mark C
2005-01-01
Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493
Homology and phylogeny and their automated inference
NASA Astrophysics Data System (ADS)
Fuellen, Georg
2008-06-01
The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.
Cost-effectiveness of biological treatment sequences for fistulising Crohn’s disease across Europe
Baji, Petra; Gulácsi, László; Brodszky, Valentin; Végh, Zsuzsanna; Danese, Silvio; Irving, Peter M; Peyrin-Biroulet, Laurent; Schreiber, Stefan; Rencz, Fanni; Lakatos, Péter L; Péntek, Márta
2017-01-01
Background In clinical practice, treatment sequences of biologicals are applied for active fistulising Crohn’s disease, however underlying health economic analyses are lacking. Objective The purpose of this study was to analyse the cost-effectiveness of different biological sequences including infliximab, biosimilar-infliximab, adalimumab and vedolizumab in nine European countries. Methods A Markov model was developed to compare treatment sequences of one, two and three biologicals from the payer’s perspective on a five-year time horizon. Data on effectiveness and health state utilities were obtained from the literature. Country-specific costs were considered. Calculations were performed with both official list prices and estimated real prices of biologicals. Results Biosimilar-infliximab is the most cost-effective treatment against standard care across the countries (with list prices: €34684–€72551/quality adjusted life year; with estimated real prices: €24364–€56086/quality adjusted life year). The most cost-effective two-agent sequence, except for Germany, is the biosimilar-infliximab–adalimumab therapy compared with single biosimilar-infliximab (with list prices: €58533–€133831/quality adjusted life year; with estimated prices: €45513–€105875/quality adjusted life year). The cost-effectiveness of the biosimilar-infliximab–adalimumab–vedolizumab three-agent sequence compared wit biosimilar-infliximab –adalimumab is €87214–€152901/quality adjusted life year. Conclusions The suggested first-choice biological treatment is biosimilar-infliximab. In case of treatment failure, switching to adalimumab then to vedolizumab provides meaningful additional health gains but at increased costs. Inter-country differences in cost-effectiveness are remarkable due to significant differences in costs. PMID:29511561
Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man
Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.
2000-01-01
The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409
Rodrigues, Jorge L. M.; Serres, Margrethe H.; Tiedje, James M.
2011-01-01
The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects. PMID:21642407
Rangel-Gamboa, Lucia; Martinez-Hernandez, Fernando; Maravilla, Pablo; Flisser, Ana
2018-02-02
Sporotrichosis is a subcutaneous mycosis that is caused by diverse species of Sporothrix. High levels of genetic diversity in Sporothrix isolates have been reported, but few population genetics analyses have been documented. To analyse the genetic variability and population genetics relations of Sporothrix schenckii Mexican clinical isolates and to compare them with other reported isolates. We studied the partial sequences of calmodulin and calcium/calmodulin-dependent kinase genes in 24 isolates; 22 from Mexico, one from Colombia, and one ATCC ® 6331™; the latter was used as a positive control. In total, 24 isolates were analysed. Phylogenetic, haplotype and population genetic analyses were performed with 24 sequences obtained by us and 345 sequences obtained from GenBank. The frequency of S. schenckii sensu stricto was 81% in the 22 Mexican isolates, while the remaining 19% were Sporothrix globosa. Mexican S. schenckii sensu stricto had high genetic diversity and was related to isolates from South America. In contrast, S. globosa showed one haplotype related to isolates from Asia, Brazil, Spain and the USA. In S. schenckii sensu stricto, S. brasiliensis and S. globosa, haplotype polymorphism (θ) values were higher than the nucleotide diversity data (π). In addition, Tajima's D plus Fu and Li's tests analyses displayed negative values, suggesting directional selection and arguing against the model of neutral evolution in these populations. In addition, analyses showed that calcium/calmodulin-dependent kinase was a suitable genetic marker to discriminate between common Sporothrix species. © 2018 Blackwell Verlag GmbH.
Buck, Patrick M.; Kumar, Sandeep; Singh, Satish K.
2013-01-01
The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences, monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than average sequence identity among closely related homologues (≥80% sequence identity with a parent) but APRs are more conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent. Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein. Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the contributions made by candidate APRs, targeted for disruption, towards protein structure and activity. PMID:24146608
A New Zamilon-like Virophage Partial Genome Assembled from a Bioreactor Metagenome
Bekliz, Meriem; Verneau, Jonathan; Benamar, Samia; Raoult, Didier; La Scola, Bernard; Colson, Philippe
2015-01-01
Virophages replicate within viral factories inside the Acanthamoeba cytoplasm, and decrease the infectivity and replication of their associated giant viruses. Culture isolation and metagenome analyses have suggested that they are common in our environment. By screening metagenomic databases in search of amoebal viruses, we detected virophage-related sequences among sequences generated from the same non-aerated bioreactor metagenome as recently screened by another team for virophage capsid-encoding genes. We describe here the assembled partial genome of a virophage closely related to Zamilon, which infects Acanthamoeba with mimiviruses of lineages B and C but not A. Searches for sequences related to amoebal giant viruses, other Megavirales representatives and virophages were conducted using BLAST against this bioreactor metagenome (PRJNA73603). Comparative genomic and phylogenetic analyses were performed using sequences from previously identified virophages. A total of 72 metagenome contigs generated from the bioreactor were identified as best matching with sequences from Megavirales representatives, mostly Pithovirus sibericum, pandoraviruses and amoebal mimiviruses from three lineages A–C, as well as from virophages. In addition, a partial genome from a Zamilon-like virophage, we named Zamilon 2, was assembled. This genome has a size of 6716 base pairs, corresponding to 39% of the Zamilon genome, and comprises partial or full-length homologs for 15 Zamilon predicted open reading frames (ORFs). Mean nucleotide and amino acid identities for these 15 Zamilon 2 ORFs with their Zamilon counterparts were 89% (range, 81–96%) and 91% (range, 78–99%), respectively. Notably, these ORFs included two encoding a capsid protein and a packaging ATPase. Comparative genomics and phylogenetic analyses indicated that the partial genome was that of a new Zamilon-like virophage. Further studies are needed to gain better knowledge of the tropism and prevalence of virophages in our biosphere and in humans. PMID:26640459
Low-pass sequencing for microbial comparative genomics
Goo, Young Ah; Roach, Jared; Glusman, Gustavo; Baliga, Nitin S; Deutsch, Kerry; Pan, Min; Kennedy, Sean; DasSarma, Shiladitya; Victor Ng, Wailap; Hood, Leroy
2004-01-01
Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich genome of H. sp. NRC-1. Identification of multiple TBP and TFB homologs in these four halophiles are consistent with the hypothesis that different types of complex transcriptional regulation may occur through multiple TBP-TFB combinations in response to rapidly changing environmental conditions. Low-pass shotgun sequence analyses of genomes permit extensive and diverse analyses, and should be generally useful for comparative microbial genomics. PMID:14718067
A weighted U-statistic for genetic association analyses of sequencing data.
Wei, Changshuai; Li, Ming; He, Zihuai; Vsevolozhskaya, Olga; Schaid, Daniel J; Lu, Qing
2014-12-01
With advancements in next-generation sequencing technology, a massive amount of sequencing data is generated, which offers a great opportunity to comprehensively investigate the role of rare variants in the genetic etiology of complex diseases. Nevertheless, the high-dimensional sequencing data poses a great challenge for statistical analysis. The association analyses based on traditional statistical methods suffer substantial power loss because of the low frequency of genetic variants and the extremely high dimensionality of the data. We developed a Weighted U Sequencing test, referred to as WU-SEQ, for the high-dimensional association analysis of sequencing data. Based on a nonparametric U-statistic, WU-SEQ makes no assumption of the underlying disease model and phenotype distribution, and can be applied to a variety of phenotypes. Through simulation studies and an empirical study, we showed that WU-SEQ outperformed a commonly used sequence kernel association test (SKAT) method when the underlying assumptions were violated (e.g., the phenotype followed a heavy-tailed distribution). Even when the assumptions were satisfied, WU-SEQ still attained comparable performance to SKAT. Finally, we applied WU-SEQ to sequencing data from the Dallas Heart Study (DHS), and detected an association between ANGPTL 4 and very low density lipoprotein cholesterol. © 2014 WILEY PERIODICALS, INC.
Zhang, Hong-Li; Ye, Fei
2017-01-01
Praying mantises are a diverse group of predatory insects. Although some Mantodea mitogenomes have been reported, a comprehensive comparative and evolutionary genomic study is lacking for this group. In the present study, four new mitogenomes were sequenced, annotated, and compared to the previously published mitogenomes of other Mantodea species. Most Mantodea mitogenomes share a typical set of mitochondrial genes and a putative control region (CR). Additionally, and most intriguingly, another large non-coding region (LNC) was detected between trnM and ND2 in all six Paramantini mitogenomes examined. The main section in this common region of Paramantini may have initially originated from the corresponding control region for each species, whereas sequence differences between the LNCs and CRs and phylogenetic analyses indicate that LNC and CR are largely independently evolving. Namely, the LNC (the duplicated CR) may have subsequently degenerated during evolution. Furthermore, evidence suggests that special intergenic gaps have been introduced in some species through gene rearrangement and duplication. These gaps are actually the original abutting sequences of migrated or duplicated genes. Some gaps (G5 and G6) are homologous to the 5' and 3' surrounding regions of the duplicated gene in the original gene order, and another specific gap (G7) has tandem repeats. We analysed the phylogenetic relationships of fifteen Mantodea species using 37 concatenated mitochondrial genes and detected several synapomorphies unique to species in some clades. PMID:28367101
Lu, Fu-Hao; McKenzie, Neil; Kettleborough, George; Heavens, Darren; Clark, Matthew D; Bevan, Michael W
2018-05-01
The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.
Doğan, Özgül; Korkmaz, E Mahir
2017-10-01
The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markussen, Turhan; Jonassen, Christine Monceyron; Numanovic, Sanela
2008-05-10
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing a multisystemic, emerging disease in Atlantic salmon. Here we present, for the first time, detailed sequence analyses of the full-genome sequence of a presumed avirulent isolate displaying a full-length hemagglutinin-esterase (HE) gene (HPR0), and compare this with full-genome sequences of 11 Norwegian ISAV isolates from clinically diseased fish. These analyses revealed the presence of a virulence marker right upstream of the putative cleavage site R{sub 267} in the fusion (F) protein, suggesting a Q{sub 266} {yields} L{sub 266} substitution to be a prerequisite for virulence. To gain virulence in isolates lackingmore » this substitution, a sequence insertion near the cleavage site seems to be required. This strongly suggests the involvement of a protease recognition pattern at the cleavage site of the fusion protein as a determinant of virulence, as seen in highly pathogenic influenza A virus H5 or H7 and the paramyxovirus Newcastle disease virus.« less
Vasconcelos, Ana Tereza R.; Ferreira, Henrique B.; Bizarro, Cristiano V.; Bonatto, Sandro L.; Carvalho, Marcos O.; Pinto, Paulo M.; Almeida, Darcy F.; Almeida, Luiz G. P.; Almeida, Rosana; Alves-Filho, Leonardo; Assunção, Enedina N.; Azevedo, Vasco A. C.; Bogo, Maurício R.; Brigido, Marcelo M.; Brocchi, Marcelo; Burity, Helio A.; Camargo, Anamaria A.; Camargo, Sandro S.; Carepo, Marta S.; Carraro, Dirce M.; de Mattos Cascardo, Júlio C.; Castro, Luiza A.; Cavalcanti, Gisele; Chemale, Gustavo; Collevatti, Rosane G.; Cunha, Cristina W.; Dallagiovanna, Bruno; Dambrós, Bibiana P.; Dellagostin, Odir A.; Falcão, Clarissa; Fantinatti-Garboggini, Fabiana; Felipe, Maria S. S.; Fiorentin, Laurimar; Franco, Gloria R.; Freitas, Nara S. A.; Frías, Diego; Grangeiro, Thalles B.; Grisard, Edmundo C.; Guimarães, Claudia T.; Hungria, Mariangela; Jardim, Sílvia N.; Krieger, Marco A.; Laurino, Jomar P.; Lima, Lucymara F. A.; Lopes, Maryellen I.; Loreto, Élgion L. S.; Madeira, Humberto M. F.; Manfio, Gilson P.; Maranhão, Andrea Q.; Martinkovics, Christyanne T.; Medeiros, Sílvia R. B.; Moreira, Miguel A. M.; Neiva, Márcia; Ramalho-Neto, Cicero E.; Nicolás, Marisa F.; Oliveira, Sergio C.; Paixão, Roger F. C.; Pedrosa, Fábio O.; Pena, Sérgio D. J.; Pereira, Maristela; Pereira-Ferrari, Lilian; Piffer, Itamar; Pinto, Luciano S.; Potrich, Deise P.; Salim, Anna C. M.; Santos, Fabrício R.; Schmitt, Renata; Schneider, Maria P. C.; Schrank, Augusto; Schrank, Irene S.; Schuck, Adriana F.; Seuanez, Hector N.; Silva, Denise W.; Silva, Rosane; Silva, Sérgio C.; Soares, Célia M. A.; Souza, Kelly R. L.; Souza, Rangel C.; Staats, Charley C.; Steffens, Maria B. R.; Teixeira, Santuza M. R.; Urmenyi, Turan P.; Vainstein, Marilene H.; Zuccherato, Luciana W.; Simpson, Andrew J. G.; Zaha, Arnaldo
2005-01-01
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae. PMID:16077101
Yi, Zhenzhen; Song, Weibo; Clamp, John C; Chen, Zigui; Gao, Shan; Zhang, Qianqian
2009-03-01
Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the "typical" euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae-Certesiidae-Aspidiscidae-Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.
Gao, Yuan; Zhang, Yan; Yang, Xin; Qiu, Jian-Hua; Duan, Hong; Xu, Wen-Wen; Chang, Qiao-Cheng; Wang, Chun-Ren
2017-01-01
Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae. PMID:28824575
Ferreira de Carvalho, J; Chelaifa, H; Boutte, J; Poulain, J; Couloux, A; Wincker, P; Bellec, A; Fourment, J; Bergès, H; Salmon, A; Ainouche, M
2013-12-01
Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.
Furuse, Yuki; Matsuzaki, Yoko; Nishimura, Hidekazu; Oshitani, Hitoshi
2016-11-26
Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.
Furuse, Yuki; Matsuzaki, Yoko; Nishimura, Hidekazu; Oshitani, Hitoshi
2016-01-01
Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics. PMID:27898037
Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J
2016-12-01
High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
False positives complicate ancient pathogen identifications using high-throughput shotgun sequencing
2014-01-01
Background Identification of historic pathogens is challenging since false positives and negatives are a serious risk. Environmental non-pathogenic contaminants are ubiquitous. Furthermore, public genetic databases contain limited information regarding these species. High-throughput sequencing may help reliably detect and identify historic pathogens. Results We shotgun-sequenced 8 16th-century Mixtec individuals from the site of Teposcolula Yucundaa (Oaxaca, Mexico) who are reported to have died from the huey cocoliztli (‘Great Pestilence’ in Nahautl), an unknown disease that decimated native Mexican populations during the Spanish colonial period, in order to identify the pathogen. Comparison of these sequences with those deriving from the surrounding soil and from 4 precontact individuals from the site found a wide variety of contaminant organisms that confounded analyses. Without the comparative sequence data from the precontact individuals and soil, false positives for Yersinia pestis and rickettsiosis could have been reported. Conclusions False positives and negatives remain problematic in ancient DNA analyses despite the application of high-throughput sequencing. Our results suggest that several studies claiming the discovery of ancient pathogens may need further verification. Additionally, true single molecule sequencing’s short read lengths, inability to sequence through DNA lesions, and limited ancient-DNA-specific technical development hinder its application to palaeopathology. PMID:24568097
2011-01-01
Background Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. Results The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Conclusions Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains. PMID:22111657
Siddaramappa, Shivakumara; Challacombe, Jean F; Duncan, Alison J; Gillaspy, Allison F; Carson, Matthew; Gipson, Jenny; Orvis, Joshua; Zaitshik, Jeremy; Barnes, Gentry; Bruce, David; Chertkov, Olga; Detter, J Chris; Han, Cliff S; Tapia, Roxanne; Thompson, Linda S; Dyer, David W; Inzana, Thomas J
2011-11-23
Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
Yu, J; Blom, J; Glaeser, S P; Jaenicke, S; Juhre, T; Rupp, O; Schwengers, O; Spänig, S; Goesmann, A
2017-11-10
The rapid development of next generation sequencing technology has greatly increased the amount of available microbial genomes. As a result of this development, there is a rising demand for fast and automated approaches in analyzing these genomes in a comparative way. Whole genome sequencing also bears a huge potential for obtaining a higher resolution in phylogenetic and taxonomic classification. During the last decade, several software tools and platforms have been developed in the field of comparative genomics. In this manuscript, we review the most commonly used platforms and approaches for ortholog group analyses with a focus on their potential for phylogenetic and taxonomic research. Furthermore, we describe the latest improvements of the EDGAR platform for comparative genome analyses and present recent examples of its application for the phylogenomic analysis of different taxa. Finally, we illustrate the role of the EDGAR platform as part of the BiGi Center for Microbial Bioinformatics within the German network on Bioinformatics Infrastructure (de.NBI). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.
Lu, Ping; Qin, Jinxia; Wang, Guoxin; Wang, Lili; Wang, Zhenzhong; Wu, Qiuhong; Xie, Jingzhong; Liang, Yong; Wang, Yong; Zhang, Deyun; Sun, Qixin; Liu, Zhiyong
2015-08-01
By applying comparative genomics analyses, a high-density genetic linkage map of the Wax 1 ( W1 ) locus was constructed as a framework for map-based cloning. Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, the wax on leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Wax1 (W1) is located on chromosome arm 2BS between markers Xgwm210 and Xbarc35. By applying comparative genomics analyses, colinearity genomic regions of the W1 locus on wheat 2BS were identified in Brachypodium distachyon chromosome 5, rice chromosome 4 and sorghum chromosome 6, respectively. Four STS markers were developed using the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. W1 was mapped into a 0.93 cM genetic interval flanked by markers XWGGC3197 and XWGGC2484, which has synteny with genomic regions of 56.5 kb in Brachypodium, 390 kb in rice and 31.8 kb in sorghum. The fine genetic map can serve as a framework for chromosome landing, physical mapping and map-based cloning of the W1 in wheat.
Lu, You; Ishimaru, Carol A; Glazebrook, Jane; Samac, Deborah A
2018-02-01
Clavibacter michiganensis is the most economically important gram-positive bacterial plant pathogen, with subspecies that cause serious diseases of maize, wheat, tomato, potato, and alfalfa. Much less is known about pathogenesis involving gram-positive plant pathogens than is known for gram-negative bacteria. Comparative genome analyses of C. michiganensis subspecies affecting tomato, potato, and maize have provided insights on pathogenicity. In this study, we identified strains of C. michiganensis subsp. insidiosus with contrasting pathogenicity on three accessions of the model legume Medicago truncatula. We generated complete genome sequences for two strains and compared these to a previously sequenced strain and genome sequences of four other subspecies. The three C. michiganensis subsp. insidiosus strains varied in gene content due to genome rearrangements, most likely facilitated by insertion elements, and plasmid number, which varied from one to three depending on strain. The core C. michiganensis genome consisted of 1,917 genes, with 379 genes unique to C. michiganensis subsp. insidiosus. An operon for synthesis of the extracellular blue pigment indigoidine, enzymes for pectin degradation, and an operon for inositol metabolism are among the unique features. Secreted serine proteases belonging to both the pat-1 and ppa families were present but highly diverged from those in other subspecies.
Association analysis of whole genome sequencing data accounting for longitudinal and family designs.
Hu, Yijuan; Hui, Qin; Sun, Yan V
2014-01-01
Using the whole genome sequencing data and the simulated longitudinal phenotypes for 849 pedigree-based individuals from Genetic Analysis Workshop 18, we investigated various approaches to detecting the association of rare and common variants with blood pressure traits. We compared three strategies for longitudinal data: (a) using the baseline measurement only, (b) using the average from multiple visits, and (c) using all individual measurements. We also compared the power of using all of the pedigree-based data and the unrelated subset. The analyses were performed without knowledge of the underlying simulating model.
Large-scale contamination of microbial isolate genomes by Illumina PhiX control.
Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos C; Pati, Amrita
2015-01-01
With the rapid growth and development of sequencing technologies, genomes have become the new go-to for exploring solutions to some of the world's biggest challenges such as searching for alternative energy sources and exploration of genomic dark matter. However, progress in sequencing has been accompanied by its share of errors that can occur during template or library preparation, sequencing, imaging or data analysis. In this study we screened over 18,000 publicly available microbial isolate genome sequences in the Integrated Microbial Genomes database and identified more than 1000 genomes that are contaminated with PhiX, a control frequently used during Illumina sequencing runs. Approximately 10% of these genomes have been published in literature and 129 contaminated genomes were sequenced under the Human Microbiome Project. Raw sequence reads are prone to contamination from various sources and are usually eliminated during downstream quality control steps. Detection of PhiX contaminated genomes indicates a lapse in either the application or effectiveness of proper quality control measures. The presence of PhiX contamination in several publicly available isolate genomes can result in additional errors when such data are used in comparative genomics analyses. Such contamination of public databases have far-reaching consequences in the form of erroneous data interpretation and analyses, and necessitates better measures to proofread raw sequences before releasing them to the broader scientific community.
Rowe, Janet M; Fabre, Marie-Françoise; Gobena, Daniel; Wilson, William H; Wilhelm, Steven W
2011-05-01
Studies of the Phycodnaviridae have traditionally relied on the DNA polymerase (pol) gene as a biomarker. However, recent investigations have suggested that the major capsid protein (MCP) gene may be a reliable phylogenetic biomarker. We used MCP gene amplicons gathered across the North Atlantic to assess the diversity of Emiliania huxleyi-infecting Phycodnaviridae. Nucleotide sequences were examined across >6000 km of open ocean, with comparisons between concentrates of the virus-size fraction of seawater and of lysates generated by exposing host strains to these same virus concentrates. Analyses revealed that many sequences were only sampled once, while several were over-represented. Analyses also revealed nucleotide sequences distinct from previous coastal isolates. Examination of lysed cultures revealed a new richness in phylogeny, as MCP sequences previously unrepresented within the existing collection of E. huxleyi viruses (EhV) were associated with viruses lysing cultures. Sequences were compared with previously described EhV MCP sequences from the North Sea and a Norwegian Fjord, as well as from the Gulf of Maine. Principal component analysis indicates that location-specific distinctions exist despite the presence of sequences common across these environments. Overall, this investigation provides new sequence data and an assessment on the use of the MCP gene. © 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.
Emerging patterns of somatic mutations in cancer
Watson, Ian R.; Takahashi, Koichi; Futreal, P. Andrew; Chin, Lynda
2014-01-01
The advance in technological tools for massively parallel, high-throughput sequencing of DNA has enabled the comprehensive characterization of somatic mutations in large number of tumor samples. Here, we review recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates, spectrums, and roles of environmental insults that influence these processes. We highlight the developing statistical approaches used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses as well as the challenges ahead translating these genomic data into clinical impacts. PMID:24022702
Evans, L H; Cloyd, M W
1985-01-01
A group of mink cell focus-forming (MCF) viruses was derived by inoculation of NFS/N mice with Moloney murine leukemia virus (Mo-MuLV 1387) and was compared to a similarly derived group of MCF viruses from mice inoculated with Friend MuLV (Fr-MuLV 57). Antigenic analyses using monoclonal antibodies specific for MCF virus and xenotropic MuLV envelope proteins and genomic structural analyses by RNase T1-resistant oligonucleotide finger-printing indicated that the Moloney and Friend MCF viruses arose by recombination of the respective ecotropic MuLVs with different endogenous retrovirus sequences of NFS mice.
2012-01-01
Background Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. Results The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. Conclusions Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes. PMID:22559199
Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas
2013-07-01
The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.
Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.
Holmes, Roger S
2015-06-05
Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard
The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.
Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A
2012-01-15
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.
Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma.
Wrzeszczynski, Kazimierz O; Frank, Mayu O; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A; Moore Vogel, Julia L; Bruce, Jeffrey N; Lassman, Andrew B; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V; Zody, Michael C; Jobanputra, Vaidehi; Royyuru, Ajay K; Darnell, Robert B
2017-08-01
To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. NCT02725684.
Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong
2008-08-01
In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.
Cicuendez, Marta; Castaño-León, Ana; Ramos, Ana; Hilario, Amaya; Gómez, Pedro A; Lagares, Alfonso
To compare the identification capability of traumatic axonal injury (TAI) by different sequences on conventional magnetic resonance (MR) studies in traumatic brain injury (TBI) patients. We retropectevely analyzed 264 TBI patients to whom a MR had been performed in the first 60 days after trauma. All clinical variables related to prognosis were registered, as well as the data from the initial computed tomography. The MR imaging protocol consisted of a 3-plane localizer sequence T1-weighted and T2-weighted fast spin-echo, FLAIR and gradient-echo images (GRET2*). TAI lesions were classified according to Gentry and Firsching classifications. We calculated weighted kappa coefficients and the area under the ROC curve for each MR sequence. A multivariable analyses was performed to correlate MR findings in each sequence with the final outcome of the patients. TAI lesions were adequately visualized on T2, FLAIR and GRET2* sequences in more than 80% of the studies. Subcortical TAI lesions were well on FLAIR and GRET2* sequences visualized hemorrhagic TAI lesions. We saw that these MR sequences had a high inter-rater agreement for TAI diagnosis (0.8). T2 sequence presented the highest value on ROC curve in Gentry (0.68, 95%CI: 0.61-0.76, p<0.001, Nagerlkerke-R 2 0.26) and Firsching classifications (0.64, 95%CI 0.57-0.72, p<0.001, Nagerlkerke-R 2 0.19), followed by FLAIR and GRET2* sequences. Both classifications determined by each of these sequences were associated with poor outcome after performing a multivariable analyses adjusted for prognostic factors (p<0.02). We recommend to perform conventional MR study in subacute phase including T2, FLAIR and GRET2* sequences for visualize TAI lesions. These MR findings added prognostic information in TBI patients. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Phylogenomic analyses data of the avian phylogenomics project.
Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Narula, Nitish; Liu, Liang; Burt, Dave; Ellegren, Hans; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas Pius; Zhang, Guojie
2015-01-01
Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.
2012-01-01
Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742
Humphreys-Pereira, Danny A; Elling, Axel A
2014-01-01
Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution. Copyright © 2014 Elsevier B.V. All rights reserved.
COGNATE: comparative gene annotation characterizer.
Wilbrandt, Jeanne; Misof, Bernhard; Niehuis, Oliver
2017-07-17
The comparison of gene and genome structures across species has the potential to reveal major trends of genome evolution. However, such a comparative approach is currently hampered by a lack of standardization (e.g., Elliott TA, Gregory TR, Philos Trans Royal Soc B: Biol Sci 370:20140331, 2015). For example, testing the hypothesis that the total amount of coding sequences is a reliable measure of potential proteome diversity (Wang M, Kurland CG, Caetano-Anollés G, PNAS 108:11954, 2011) requires the application of standardized definitions of coding sequence and genes to create both comparable and comprehensive data sets and corresponding summary statistics. However, such standard definitions either do not exist or are not consistently applied. These circumstances call for a standard at the descriptive level using a minimum of parameters as well as an undeviating use of standardized terms, and for software that infers the required data under these strict definitions. The acquisition of a comprehensive, descriptive, and standardized set of parameters and summary statistics for genome publications and further analyses can thus greatly benefit from the availability of an easy to use standard tool. We developed a new open-source command-line tool, COGNATE (Comparative Gene Annotation Characterizer), which uses a given genome assembly and its annotation of protein-coding genes for a detailed description of the respective gene and genome structure parameters. Additionally, we revised the standard definitions of gene and genome structures and provide the definitions used by COGNATE as a working draft suggestion for further reference. Complete parameter lists and summary statistics are inferred using this set of definitions to allow down-stream analyses and to provide an overview of the genome and gene repertoire characteristics. COGNATE is written in Perl and freely available at the ZFMK homepage ( https://www.zfmk.de/en/COGNATE ) and on github ( https://github.com/ZFMK/COGNATE ). The tool COGNATE allows comparing genome assemblies and structural elements on multiples levels (e.g., scaffold or contig sequence, gene). It clearly enhances comparability between analyses. Thus, COGNATE can provide the important standardization of both genome and gene structure parameter disclosure as well as data acquisition for future comparative analyses. With the establishment of comprehensive descriptive standards and the extensive availability of genomes, an encompassing database will become possible.
Comparative sequence analyses of sixteen reptilian paramyxoviruses
Ahne, W.; Batts, W.N.; Kurath, G.; Winton, J.R.
1999-01-01
Viral genomic RNA of Fer-de-Lance virus (FDLV), a paramyxovirus highly pathogenic for reptiles, was reverse transcribed and cloned. Plasmids with significant sequence similarities to the hemagglutinin-neuraminidase (HN) and polymerase (L) genes of mammalian paramyxoviruses were identified by BLAST search. Partial sequences of the FDLV genes were used to design primers for amplification by nested polymerase chain reaction (PCR) and sequencing of 518-bp L gene and 352-bp HN gene fragments from a collection of 15 previously uncharacterized reptilian paramyxoviruses. Phylogenetic analyses of the partial L and HN sequences produced similar trees in which there were two distinct subgroups of isolates that were supported with maximum bootstrap values, and several intermediate isolates. Within each subgroup the nucleotide divergence values were less than 2.5%, while the divergence between the two subgroups was 20-22%. This indicated that the two subgroups represent distinct virus species containing multiple virus strains. The five intermediate isolates had nucleotide divergence values of 11-20% and may represent additional distinct species. In addition to establishing diversity among reptilian paramyxoviruses, the phylogenetic groupings showed some correlation with geographic location, and clearly demonstrated a low level of host species-specificity within these viruses. Copyright (C) 1999 Elsevier Science B.V.
Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K
2015-01-01
Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users.
Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K
2015-01-01
Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. Availability PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users. PMID:26339154
Yu, Yao; Hu, Hao; Bohlender, Ryan J; Hu, Fulan; Chen, Jiun-Sheng; Holt, Carson; Fowler, Jerry; Guthery, Stephen L; Scheet, Paul; Hildebrandt, Michelle A T; Yandell, Mark; Huff, Chad D
2018-04-06
High-throughput sequencing data are increasingly being made available to the research community for secondary analyses, providing new opportunities for large-scale association studies. However, heterogeneity in target capture and sequencing technologies often introduce strong technological stratification biases that overwhelm subtle signals of association in studies of complex traits. Here, we introduce the Cross-Platform Association Toolkit, XPAT, which provides a suite of tools designed to support and conduct large-scale association studies with heterogeneous sequencing datasets. XPAT includes tools to support cross-platform aware variant calling, quality control filtering, gene-based association testing and rare variant effect size estimation. To evaluate the performance of XPAT, we conducted case-control association studies for three diseases, including 783 breast cancer cases, 272 ovarian cancer cases, 205 Crohn disease cases and 3507 shared controls (including 1722 females) using sequencing data from multiple sources. XPAT greatly reduced Type I error inflation in the case-control analyses, while replicating many previously identified disease-gene associations. We also show that association tests conducted with XPAT using cross-platform data have comparable performance to tests using matched platform data. XPAT enables new association studies that combine existing sequencing datasets to identify genetic loci associated with common diseases and other complex traits.
Kashuk, Carl S.; Stone, Eric A.; Grice, Elizabeth A.; Portnoy, Matthew E.; Green, Eric D.; Sidow, Arend; Chakravarti, Aravinda; McCallion, Andrew S.
2005-01-01
The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (≥116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease. PMID:15956201
Kimura, Tomohiro; Nakano, Toshiki; Yamaguchi, Toshiyasu; Sato, Minoru; Ogawa, Tomohisa; Muramoto, Koji; Yokoyama, Takehiko; Kan-No, Nobuhiro; Nagahisa, Eizou; Janssen, Frank; Grieshaber, Manfred K
2004-01-01
The complete complementary DNA sequences of genes presumably coding for opine dehydrogenases from Arabella iricolor (sandworm), Haliotis discus hannai (abalone), and Patinopecten yessoensis (scallop) were determined, and partial cDNA sequences were derived for Meretrix lusoria (Japanese hard clam) and Spisula sachalinensis (Sakhalin surf clam). The primers ODH-9F and ODH-11R proved useful for amplifying the sequences for opine dehydrogenases from the 4 mollusk species investigated in this study. The sequence of the sandworm was obtained using primers constructed from the amino acid sequence of tauropine dehydrogenase, the main opine dehydrogenase in A. iricolor. The complete cDNA sequence of A. iricolor, H. discus hannai, and P. yessoensis encode 397, 400, and 405 amino acids, respectively. All sequences were aligned and compared with published databank sequences of Loligo opalescens, Loligo vulgaris (squid), Sepia officinalis (cuttlefish), and Pecten maximus (scallop). As expected, a high level of homology was observed for the cDNA from closely related species, such as for cephalopods or scallops, whereas cDNA from the other species showed lower-level homologies. A similar trend was observed when the deduced amino acid sequences were compared. Furthermore, alignment of these sequences revealed some structural motifs that are possibly related to the binding sites of the substrates. The phylogenetic trees derived from the nucleotide and amino acid sequences were consistent with the classification of species resulting from classical taxonomic analyses.
Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X
1993-05-01
The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.
Licciardello, Concetta; D'Agostino, Nunzio; Traini, Alessandra; Recupero, Giuseppe Reforgiato; Frusciante, Luigi; Chiusano, Maria Luisa
2014-02-03
Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin pigments and in their transport into the vacuole, specifically in fruit flesh of the pigmented cultivar.
Lim, Chun Shen; Brown, Chris M
2017-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Lim, Chun Shen; Brown, Chris M.
2018-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101
High-throughput physical mapping of chromosomes using automated in situ hybridization.
George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V
2012-06-28
Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.
Ko, Kwan Soo; Peck, Kyong Ran; Oh, Won Sup; Lee, Nam Yong; Lee, Jang Ho; Song, Jae-Hoon
2005-05-01
A gram-negative bacillus, SMC-8986(T), which was isolated from the purulent exudate of an epidermal cyst but could not be identified by a conventional microbiologic method, was characterized by a variety of phenotypic and genotypic analyses. Sequences of the 16S rRNA gene revealed that this bacterium belongs to the genus Bordetella but diverged distinctly from previously described Bordetella species. Analyses of cellular fatty acid composition and performance of biochemical tests confirmed that this bacterium is distinct from other Bordetella species. Furthermore, the results of comparative sequence analyses of two protein-coding genes (risA and ompA) also showed that this strain represents a new species within the genus Bordetella. Based on the evaluated phenotypic and genotypic characteristics, it is proposed that SMC-8986(T) should be classified as a new species, namely Bordetella ansorpii sp. nov.
Taipale, Kaisa; Winfree, Katherine B; Boye, Mark; Basson, Mickael; Sleilaty, Ghassan; Eaton, James; Evans, Rachel; Chouaid, Christos
2017-01-01
Background Comparative effectiveness and cost-effectiveness data for induction–maintenance (I–M) sequences for the treatment of patients with nonsquamous non-small-cell lung cancer (nsqNSCLC) are limited because of a lack of direct evidence. This analysis aimed to compare the cost-effectiveness of I–M pemetrexed with those of other I–M regimens used for the treatment of patients with advanced nsqNSCLC in the French health-care setting. Materials and methods A previously developed global partitioned survival model was adapted to the France-only setting by restricting treatment sequences to include 12 I–M regimens most relevant to France, and incorporating French costs and resource-use data. Following a systematic literature review, network meta-analyses were performed to obtain hazard ratios for progression-free survival (PFS) and overall survival (OS) relative to gemcitabine + cisplatin (induction sequences) or best supportive care (BSC) (maintenance sequences). Modeled health-care benefits were expressed as life-years (LYs) and quality-adjusted LYs (QALYs) (estimated using French EuroQol five-dimension questionnaire tariffs). The study was conducted from the payer perspective (National Health Insurance). Cost- and benefit-model inputs were discounted at an annual rate of 4%. Results Base-case results showed pemetrexed + cisplatin induction followed by (→) pemetrexed maintenance had the longest mean OS and PFS and highest LYs and QALYs. Costs ranged from €12,762 for paclitaxel + carboplatin → BSC to €35,617 for pemetrexed + cisplatin → pemetrexed (2015 values). Gemcitabine + cisplatin → BSC, pemetrexed + cisplatin → BSC, and pemetrexed + cisplatin → pemetrexed were associated with fully incremental cost-effectiveness ratios (ICERs) of €16,593, €80,656, and €102,179, respectively, per QALY gained versus paclitaxel + carboplatin → BSC. All other treatment sequences were either dominated (ie, another sequence had lower costs and better/equivalent outcomes) or extendedly dominated (ie, the comparator had a higher ICER than a more effective comparator) in the model. Sensitivity analyses showed the model to be relatively insensitive to plausible changes in the main assumptions, with none increasing or decreasing the ICER by more than ~€20,000 per QALY gained. Conclusion In the absence of direct comparative trial evidence, this cost-effectiveness analysis indicated that of a large number of I–M sequences used for the treatment of patients with nsqNSCLC in France, pemetrexed + cisplatin → pemetrexed achieved the best clinical outcomes (0.28 incremental QALYs gained) versus paclitaxel + carboplatin → BSC. PMID:28860832
Gray, Stanton B; Howard, Timothy D; Langefeld, Carl D; Hawkins, Gregory A; Diallo, Abdoulaye F; Wagner, Janice D
2009-01-01
Tumor necrosis factor is a cytokine that plays critical roles in inflammation, the innate immune response, and a variety of other physiologic and pathophysiologic processes. In addition, TNF has recently been shown to mediate an intersection of chronic, low-grade inflammation and concurrent metabolic dysregulation associated with obesity and its comorbidities. As part of an ongoing initiative to further characterize vervet monkeys originating from St Kitts as an animal model of obesity and inflammation, we sequenced and genotyped the human ortholog vervet TNF gene and approximately 1 kb of the flanking 3′ and 5′ regions from 265 monkeys in a closed, pedigreed colony. This process revealed a total of 11 single-nucleotide polymorphisms (SNPs) and a single 4-bp insertion–deletion, with minor allele frequencies of 0.08 to 0.39. Many of these polymorphisms were in strong or complete linkage disequilibrium with each other, and all but 1 were contained within a single haplotype block, comprising 5 haplotypes with frequencies of 0.075 to 0.298. Using sequences from humans, chimpanzees, vervets, baboons, and rhesus macaques, phylogenetic shadowing of the TNF promoter region revealed that vervet SNPs, like the SNPs in related species, were clustered nonrandomly and nonuniformly around conserved transcription factor binding sites. These data, combined with previously defined heritable phenotypes, permit future association analyses in this nonhuman primate model and have great potential to help dissect the genetic and nongenetic contributions to complex diseases like obesity. More broadly, the sequence data and comparative analyses reported herein facilitates study of the evolution of regulatory sequences of inflammatory and immune-related genes. PMID:20034434
2012-01-01
Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678
Nagataki, Mitsuru; Tantrawatpan, Chairat; Agatsuma, Takeshi; Sugiura, Tetsuro; Duenngai, Kunyarat; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N; Saijuntha, Weerachai
2015-10-01
The "37 collar-spined" or "revolutum" group of echinostomes is recognized as a species complex. The identification of members of this complex by morphological taxonomic characters is difficult and confusing, and hence, molecular analyses are a useful alternative method for molecular systematic studies. The current study examined the genetic diversity of those 37 collar-spined echinostomes which are recognized morphologically as Echinostoma revolutum in Thailand and Lao PDR using the cytochrome c oxidase subunit 1 (CO1) and the NADH dehydrogenase subunit 1 (ND1) sequences. On the basis of molecular investigations, at least two species of 37 collar-spined echinostomes exist in Southeast Asia, namely E. revolutum and Echinostoma miyagawai. The specimens examined in this study, coming from ducks in Thailand and Lao PDR, were compared to isolates from America, Europe and Australia for which DNA sequences are available in public databases. Haplotype analysis detected 6 and 26 haplotypes when comparing the CO1 sequences of E. revolutum and E. miyagawai, respectively, from different geographical isolates from Thailand and Lao PDR. The phylogenetic trees, ND1 haplotype network and genetic differentiation (ɸST) analyses showed that E. revolutum were genetically different on a continental scale, i.e. Eurasian and American lineages. Copyright © 2015 Elsevier B.V. All rights reserved.
[Methods, challenges and opportunities for big data analyses of microbiome].
Sheng, Hua-Fang; Zhou, Hong-Wei
2015-07-01
Microbiome is a novel research field related with a variety of chronic inflamatory diseases. Technically, there are two major approaches to analysis of microbiome: metataxonome by sequencing the 16S rRNA variable tags, and metagenome by shot-gun sequencing of the total microbial (mainly bacterial) genome mixture. The 16S rRNA sequencing analyses pipeline includes sequence quality control, diversity analyses, taxonomy and statistics; metagenome analyses further includes gene annotation and functional analyses. With the development of the sequencing techniques, the cost of sequencing will decrease, and big data analyses will become the central task. Data standardization, accumulation, modeling and disease prediction are crucial for future exploit of these data. Meanwhile, the information property in these data, and the functional verification with culture-dependent and culture-independent experiments remain the focus in future research. Studies of human microbiome will bring a better understanding of the relations between the human body and the microbiome, especially in the context of disease diagnosis and therapy, which promise rich research opportunities.
Music performance and the perception of key.
Thompson, W F; Cuddy, L L
1997-02-01
The effect of music performance on perceived key movement was examined. Listeners judged key movement in sequences presented without performance expression (mechanical) in Experiment 1 and with performance expression in Experiment 2. Modulation distance varied. Judgments corresponded to predictions based on the cycle of fifths and toroidal models of key relatedness, with the highest correspondence for performed versions with the toroidal model. In Experiment 3, listeners compared mechanical sequences with either performed sequences or modifications of performed sequences. Modifications preserved expressive differences between chords, but not between voices. Predictions from Experiments 1 and 2 held only for performed sequences, suggesting that differences between voices are informative of key movement. Experiment 4 confirmed that modifications did not disrupt musicality. Analyses of performances further suggested a link between performance expression and key.
Evolution of long centromeres in fire ants.
Huang, Yu-Ching; Lee, Chih-Chi; Kao, Chia-Yi; Chang, Ni-Chen; Lin, Chung-Chi; Shoemaker, DeWayne; Wang, John
2016-09-15
Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered.
CisSERS: Customizable in silico sequence evaluation for restriction sites
Sharpe, Richard M.; Koepke, Tyson; Harper, Artemus; ...
2016-04-12
High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Here, data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated tomore » enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERSenable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3’UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERSand results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.« less
CisSERS: Customizable in silico sequence evaluation for restriction sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, Richard M.; Koepke, Tyson; Harper, Artemus
High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Here, data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated tomore » enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERSenable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3’UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERSand results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.« less
Jaenicke, Sebastian; Ander, Christina; Bekel, Thomas; Bisdorf, Regina; Dröge, Marcus; Gartemann, Karl-Heinz; Jünemann, Sebastian; Kaiser, Olaf; Krause, Lutz; Tille, Felix; Zakrzewski, Martha; Pühler, Alfred
2011-01-01
Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation. PMID:21297863
PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences
Machida, Ryuji J.; Knowlton, Nancy
2012-01-01
Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed. PMID:23049971
Preservation of protein clefts in comparative models.
Piedra, David; Lois, Sergi; de la Cruz, Xavier
2008-01-16
Comparative, or homology, modelling of protein structures is the most widely used prediction method when the target protein has homologues of known structure. Given that the quality of a model may vary greatly, several studies have been devoted to identifying the factors that influence modelling results. These studies usually consider the protein as a whole, and only a few provide a separate discussion of the behaviour of biologically relevant features of the protein. Given the value of the latter for many applications, here we extended previous work by analysing the preservation of native protein clefts in homology models. We chose to examine clefts because of their role in protein function/structure, as they are usually the locus of protein-protein interactions, host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-domain interactions that lead to the structure of the whole protein. We studied how the largest cleft of a protein varies in comparative models. To this end, we analysed a set of 53507 homology models that cover the whole sequence identity range, with a special emphasis on medium and low similarities. More precisely we examined how cleft quality - measured using six complementary parameters related to both global shape and local atomic environment, depends on the sequence identity between target and template proteins. In addition to this general analysis, we also explored the impact of a number of factors on cleft quality, and found that the relationship between quality and sequence identity varies depending on cleft rank amongst the set of protein clefts (when ordered according to size), and number of aligned residues. We have examined cleft quality in homology models at a range of seq.id. levels. Our results provide a detailed view of how quality is affected by distinct parameters and thus may help the user of comparative modelling to determine the final quality and applicability of his/her cleft models. In addition, the large variability in model quality that we observed within each sequence bin, with good models present even at low sequence identities (between 20% and 30%), indicates that properly developed identification methods could be used to recover good cleft models in this sequence range.
@TOME-2: a new pipeline for comparative modeling of protein-ligand complexes.
Pons, Jean-Luc; Labesse, Gilles
2009-07-01
@TOME 2.0 is new web pipeline dedicated to protein structure modeling and small ligand docking based on comparative analyses. @TOME 2.0 allows fold recognition, template selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. These tasks are routinely used in sequence analyses for structure prediction. In our pipeline the necessary software is efficiently interconnected in an original manner to accelerate all the processes. Furthermore, we have also connected comparative docking of small ligands that is performed using protein-protein superposition. The input is a simple protein sequence in one-letter code with no comment. The resulting 3D model, protein-ligand complexes and structural alignments can be visualized through dedicated Web interfaces or can be downloaded for further studies. These original features will aid in the functional annotation of proteins and the selection of templates for molecular modeling and virtual screening. Several examples are described to highlight some of the new functionalities provided by this pipeline. The server and its documentation are freely available at http://abcis.cbs.cnrs.fr/AT2/
@TOME-2: a new pipeline for comparative modeling of protein–ligand complexes
Pons, Jean-Luc; Labesse, Gilles
2009-01-01
@TOME 2.0 is new web pipeline dedicated to protein structure modeling and small ligand docking based on comparative analyses. @TOME 2.0 allows fold recognition, template selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. These tasks are routinely used in sequence analyses for structure prediction. In our pipeline the necessary software is efficiently interconnected in an original manner to accelerate all the processes. Furthermore, we have also connected comparative docking of small ligands that is performed using protein–protein superposition. The input is a simple protein sequence in one-letter code with no comment. The resulting 3D model, protein–ligand complexes and structural alignments can be visualized through dedicated Web interfaces or can be downloaded for further studies. These original features will aid in the functional annotation of proteins and the selection of templates for molecular modeling and virtual screening. Several examples are described to highlight some of the new functionalities provided by this pipeline. The server and its documentation are freely available at http://abcis.cbs.cnrs.fr/AT2/ PMID:19443448
Promises and challenges of genomics for rice pathology
USDA-ARS?s Scientific Manuscript database
Publically available genome sequences of Magnaporthe oryzae, Rhizoctonia solani, and Oryza sativa are being used to study host-pathogen interactions. Comparative genomic analyses on natural alleles of major resistance (R) genes and the corresponding avirulence (AVR) genes have provided new clues for...
Theta oscillations promote temporal sequence learning.
Crivelli-Decker, Jordan; Hsieh, Liang-Tien; Clarke, Alex; Ranganath, Charan
2018-05-17
Many theoretical models suggest that neural oscillations play a role in learning or retrieval of temporal sequences, but the extent to which oscillations support sequence representation remains unclear. To address this question, we used scalp electroencephalography (EEG) to examine oscillatory activity over learning of different object sequences. Participants made semantic decisions on each object as they were presented in a continuous stream. For three "Consistent" sequences, the order of the objects was always fixed. Activity during Consistent sequences was compared to "Random" sequences that consisted of the same objects presented in a different order on each repetition. Over the course of learning, participants made faster semantic decisions to objects in Consistent, as compared to objects in Random sequences. Thus, participants were able to use sequence knowledge to predict upcoming items in Consistent sequences. EEG analyses revealed decreased oscillatory power in the theta (4-7 Hz) band at frontal sites following decisions about objects in Consistent sequences, as compared with objects in Random sequences. The theta power difference between Consistent and Random only emerged in the second half of the task, as participants were more effectively able to predict items in Consistent sequences. Moreover, we found increases in parieto-occipital alpha (10-13 Hz) and beta (14-28 Hz) power during the pre-response period for objects in Consistent sequences, relative to objects in Random sequences. Linear mixed effects modeling revealed that single trial theta oscillations were related to reaction time for future objects in a sequence, whereas beta and alpha oscillations were only predictive of reaction time on the current trial. These results indicate that theta and alpha/beta activity preferentially relate to future and current events, respectively. More generally our findings highlight the importance of band-specific neural oscillations in the learning of temporal order information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Verstappen, Koen M; Huijbregts, Loes; Spaninks, Mirlin; Wagenaar, Jaap A; Fluit, Ad C; Duim, Birgitta
2017-01-01
Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and cats and occasionally causes infections in humans. S. pseudintermedius is often resistant to multiple classes of antimicrobials. It requires a reliable detection so that it is not misidentified as S. aureus. Phenotypic and currently-used molecular-based diagnostic assays lack specificity or are labour-intensive using multiplex PCR or nucleic acid sequencing. The aim of this study was to identify a specific target for real-time PCR by comparing whole genome sequences of S. pseudintermedius and non-pseudintermedius.Genome sequences were downloaded from public repositories and supplemented by isolates that were sequenced in this study. A Perl-script was written that analysed 300-nt fragments from a reference genome sequence of S. pseudintermedius and checked if this sequence was present in other S. pseudintermedius genomes (n = 74) and non-pseudintermedius genomes (n = 138). Six sequences specific for S. pseudintermedius were identified (sequence length between 300-500 nt). One sequence, which was located in the spsJ gene, was used to develop primers and a probe. The real-time PCR showed 100% specificity when testing for S. pseudintermedius isolates (n = 54), and eight other staphylococcal species (n = 43). In conclusion, a novel approach by comparing whole genome sequences identified a sequence that is specific for S. pseudintermedius and provided a real-time PCR target for rapid and reliable detection of S. pseudintermedius.
Park, Sun-Kyeong; Park, Seung-Hoo; Lee, Min-Young; Park, Ji-Hyun; Jeong, Jae-Hong; Lee, Eui-Kyung
2016-11-01
In south Korea, the price of biologics has been decreasing owing to patent expiration and the availability of biosimilars. This study evaluated the cost-effectiveness of a treatment strategy initiated with etanercept (ETN) compared with leflunomide (LFN) after a 30% reduction in the medication cost of ETN in patients with active rheumatoid arthritis (RA) with an inadequate response to methotrexate (MTX-IR). A cohort-based Markov model was designed to evaluate the lifetime cost-effectiveness of treatment sequence initiated with ETN (A) compared with 2 sequences initiated with LFN: LFN-ETN sequence (B) and LFN sequence (C). Patients transited through the treatment sequences, which consisted of sequential biologics and palliative therapy, based on American College of Rheumatology (ACR) responses and the probability of discontinuation. A systematic literature review and a network meta-analysis were conducted to estimate ACR responses to ETN and LFN. Utility was estimated by mapping an equation for converting the Health Assessment Questionnaire-Disability Index score to utility weight. The costs comprised medications, outpatient visits, administration, dispensing, monitoring, palliative therapy, and treatment for adverse events. A subanalysis was conducted to identify the influence of the ETN price reduction compared with the unreduced price, and sensitivity analyses explored the uncertainty of model parameters and assumptions. The ETN sequence (A) was associated with higher costs and a gain in quality-adjusted life years (QALYs) compared with both sequences initiated with LFN (B, C) throughout the lifetime of patients with RA and MTX-IR. The incremental cost-effectiveness ratio (ICER) for strategy A versus B was ₩13,965,825 (US$1726) per QALY and that for strategy A versus C was ₩9,587,983 (US$8050) per QALY. The results indicated that strategy A was cost-effective based on the commonly cited ICER threshold of ₩20,000,000 (US$16,793) per QALY in South Korea. The robustness of the base-case analysis was confirmed using sensitivity analyses. When the unreduced medication cost of ETN was applied in a subanalysis, the ICER for strategy A versus B was ₩20,909,572 (US$17,556) per QALY and that for strategy A versus C was ₩22,334,713 (US$18,753) per QALY. This study indicated that a treatment strategy initiated with ETN was more cost-effective in patients with active RA and MTX-IR than 2 sequences initiated with LFN. The results also indicate that the reduced price of ETN affected the cost-effectiveness associated with its earlier use. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie
2016-01-01
The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.
Dual-echo ASL based assessment of motor networks: a feasibility study
NASA Astrophysics Data System (ADS)
Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria
2018-04-01
Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.
Cohabitational and marital histories of adults in Great Britain.
Haskey, J
1999-01-01
This article presents findings on cohabitation-derived from cohabitation and marriage histories collected in a specially designed module of the ONS Omnibus Survey. It examines the sequence of types of partnerships, and how this sequence varies by birth cohort of respondents. Also compared is the relative stability of cohabiting unions and married partnerships. Finally, the reasons for converting a cohabiting union into a marriage are analysed--separately for men and women, and separately according to whether the marriage continued or ended.
Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.; ...
2018-01-09
The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.
The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less
Atibalentja, N; Noel, G R; Domier, L L
2000-03-01
A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.
Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza
2017-06-01
The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.
SieveSifter: a web-based tool for visualizing the sieve analyses of HIV-1 vaccine efficacy trials.
Fiore-Gartland, Andrew; Kullman, Nicholas; deCamp, Allan C; Clenaghan, Graham; Yang, Wayne; Magaret, Craig A; Edlefsen, Paul T; Gilbert, Peter B
2017-08-01
Analysis of HIV-1 virions from participants infected in a randomized controlled preventive HIV-1 vaccine efficacy trial can help elucidate mechanisms of partial protection. By comparing the genetic sequence of viruses from vaccine and placebo recipients to the sequence of the vaccine itself, a technique called 'sieve analysis', one can identify functional specificities of vaccine-induced immune responses. We have created an interactive web-based visualization and data access tool for exploring the results of sieve analyses performed on four major preventive HIV-1 vaccine efficacy trials: (i) the HIV Vaccine Trial Network (HVTN) 502/Step trial, (ii) the RV144/Thai trial, (iii) the HVTN 503/Phambili trial and (iv) the HVTN 505 trial. The tool acts simultaneously as a platform for rapid reinterpretation of sieve effects and as a portal for organizing and sharing the viral sequence data. Access to these valuable datasets also enables the development of novel methodology for future sieve analyses. Visualization: http://sieve.fredhutch.org/viz . Source code: https://github.com/nkullman/SIEVE . Data API: http://sieve.fredhutch.org/data . agartlan@fredhutch.org. © The Author(s) 2017. Published by Oxford University Press.
Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing.
Fang, Chao; Zhong, Huanzi; Lin, Yuxiang; Chen, Bing; Han, Mo; Ren, Huahui; Lu, Haorong; Luber, Jacob M; Xia, Min; Li, Wangsheng; Stein, Shayna; Xu, Xun; Zhang, Wenwei; Drmanac, Radoje; Wang, Jian; Yang, Huanming; Hammarström, Lennart; Kostic, Aleksandar D; Kristiansen, Karsten; Li, Junhua
2018-03-01
More extensive use of metagenomic shotgun sequencing in microbiome research relies on the development of high-throughput, cost-effective sequencing. Here we present a comprehensive evaluation of the performance of the new high-throughput sequencing platform BGISEQ-500 for metagenomic shotgun sequencing and compare its performance with that of 2 Illumina platforms. Using fecal samples from 20 healthy individuals, we evaluated the intra-platform reproducibility for metagenomic sequencing on the BGISEQ-500 platform in a setup comprising 8 library replicates and 8 sequencing replicates. Cross-platform consistency was evaluated by comparing 20 pairwise replicates on the BGISEQ-500 platform vs the Illumina HiSeq 2000 platform and the Illumina HiSeq 4000 platform. In addition, we compared the performance of the 2 Illumina platforms against each other. By a newly developed overall accuracy quality control method, an average of 82.45 million high-quality reads (96.06% of raw reads) per sample, with 90.56% of bases scoring Q30 and above, was obtained using the BGISEQ-500 platform. Quantitative analyses revealed extremely high reproducibility between BGISEQ-500 intra-platform replicates. Cross-platform replicates differed slightly more than intra-platform replicates, yet a high consistency was observed. Only a low percentage (2.02%-3.25%) of genes exhibited significant differences in relative abundance comparing the BGISEQ-500 and HiSeq platforms, with a bias toward genes with higher GC content being enriched on the HiSeq platforms. Our study provides the first set of performance metrics for human gut metagenomic sequencing data using BGISEQ-500. The high accuracy and technical reproducibility confirm the applicability of the new platform for metagenomic studies, though caution is still warranted when combining metagenomic data from different platforms.
Subsurface microbial diversity in deep-granitic-fracture water in Colorado
Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿
Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950
Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng
2016-01-01
Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.
Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng
2016-01-01
Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423
Genomic Repeat Abundances Contain Phylogenetic Signal
Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.
2015-01-01
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464
Gil-Serna, Jessica; Vázquez, Covadonga; González-Jaén, María Teresa; Patiño, Belén
2015-12-02
Aspergillus steynii is probably the most relevant species of section Circumdati producing ochratoxin A (OTA). This mycotoxin contaminates a wide number of commodities and it is highly toxic for humans and animals. Little is known on the biosynthetic genes and their regulation in Aspergillus species. In this work, we identified and analysed three contiguous genes in A. steynii using 5'-RACE and genome walking approaches which predicted a cytochrome P450 monooxygenase (p450ste), a non-ribosomal peptide synthetase (nrpsste) and a polyketide synthase (pksste). These three genes were contiguous within a 20742 bp long genomic DNA fragment. Their corresponding cDNA were sequenced and their expression was analysed in three A. steynii strains using real time RT-PCR specific assays in permissive conditions in in vitro cultures. OTA was also analysed in these cultures. Comparative analyses of predicted genomic, cDNA and amino acid sequences were performed with sequences of similar gene functions. All the results obtained in these analyses were consistent and point out the involvement of these three genes in OTA biosynthesis by A. steynii and showed a co-ordinated expression pattern. This is the first time that a clustered organization OTA biosynthetic genes has been reported in Aspergillus genus. The results also suggested that this situation might be common in Aspergillus OTA-producing species and distinct to the one described for Penicillium species. Copyright © 2015 Elsevier B.V. All rights reserved.
Korber, B T; Kunstman, K J; Patterson, B K; Furtado, M; McEvilly, M M; Levy, R; Wolinsky, S M
1994-01-01
Human immunodeficiency virus type 1 (HIV-1) sequences were generated from blood and from brain tissue obtained by stereotactic biopsy from six patients undergoing a diagnostic neurosurgical procedure. Proviral DNA was directly amplified by nested PCR, and 8 to 36 clones from each sample were sequenced. Phylogenetic analysis of intrapatient envelope V3-V5 region HIV-1 DNA sequence sets revealed that brain viral sequences were clustered relative to the blood viral sequences, suggestive of tissue-specific compartmentalization of the virus in four of the six cases. In the other two cases, the blood and brain virus sequences were intermingled in the phylogenetic analyses, suggesting trafficking of virus between the two tissues. Slide-based PCR-driven in situ hybridization of two of the patients' brain biopsy samples confirmed our interpretation of the intrapatient phylogenetic analyses. Interpatient V3 region brain-derived sequence distances were significantly less than blood-derived sequence distances. Relative to the tip of the loop, the set of brain-derived viral sequences had a tendency towards negative or neutral charge compared with the set of blood-derived viral sequences. Entropy calculations were used as a measure of the variability at each position in alignments of blood and brain viral sequences. A relatively conserved set of positions were found, with a significantly lower entropy in the brain-than in the blood-derived viral sequences. These sites constitute a brain "signature pattern," or a noncontiguous set of amino acids in the V3 region conserved in viral sequences derived from brain tissue. This brain-derived signature pattern was also well preserved among isolates previously characterized in vitro as macrophage tropic. Macrophage-monocyte tropism may be the biological constraint that results in the conservation of the viral brain signature pattern. Images PMID:7933130
Nair, Pradeep S; John, Eugene B
2007-01-01
Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.
Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.
Xu, Jianping
2006-06-01
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; ...
2017-08-08
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Quail, Michael A; Smith, Miriam; Coupland, Paul; Otto, Thomas D; Harris, Simon R; Connor, Thomas R; Bertoni, Anna; Swerdlow, Harold P; Gu, Yong
2012-07-24
Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.
Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan
2009-01-01
Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385
Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637
Genetic Analyses in Small-for-Gestational-Age Newborns.
Stalman, Susanne E; Solanky, Nita; Ishida, Miho; Alemán-Charlet, Cristina; Abu-Amero, Sayeda; Alders, Marielle; Alvizi, Lucas; Baird, William; Demetriou, Charalambos; Henneman, Peter; James, Chela; Knegt, Lia C; Leon, Lydia J; Mannens, Marcel M A M; Mul, Adi N; Nibbering, Nicole A; Peskett, Emma; Rezwan, Faisal I; Ris-Stalpers, Carrie; van der Post, Joris A M; Kamp, Gerdine A; Plötz, Frans B; Wit, Jan M; Stanier, Philip; Moore, Gudrun E; Hennekam, Raoul C
2018-03-01
Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. A prospective cohort study of subjects with a low birth weight for gestational age. The study was conducted at an academic pediatric research institute. A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. The numbers of CNVs, methylation disturbances, and sequence variants. The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.
Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph; Aury, Jean-Marc
2017-02-01
Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. © The Author 2017. Published by Oxford University Press.
Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph
2017-01-01
Abstract Background: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Results: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Conclusion: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. PMID:28369459
Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma
Wrzeszczynski, Kazimierz O.; Frank, Mayu O.; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A.; Moore Vogel, Julia L.; Bruce, Jeffrey N.; Lassman, Andrew B.; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V.; Zody, Michael C.; Jobanputra, Vaidehi; Royyuru, Ajay K.
2017-01-01
Objective: To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Methods: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. Results: More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. Conclusions: The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. ClinicalTrials.gov identifier: NCT02725684. PMID:28740869
Lawton, Samantha J; Weis, Allison M; Byrne, Barbara A; Fritz, Heather; Taff, Conor C; Townsend, Andrea K; Weimer, Bart C; Mete, Aslı; Wheeler, Sarah; Boyce, Walter M
2018-05-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared to conventional biochemical testing methods and nucleic acid analyses (16S rDNA sequencing, hippurate hydrolysis gene testing, whole genome sequencing [WGS]) for species identification of Campylobacter isolates obtained from chickens ( Gallus gallus domesticus, n = 8), American crows ( Corvus brachyrhynchos, n = 17), a mallard duck ( Anas platyrhynchos, n = 1), and a western scrub-jay ( Aphelocoma californica, n = 1). The test results for all 27 isolates were in 100% agreement between MALDI-TOF MS, the combined results of 16S rDNA sequencing, and the hippurate hydrolysis gene PCR ( p = 0.0027, kappa = 1). Likewise, the identifications derived from WGS from a subset of 14 isolates were in 100% agreement with the MALDI-TOF MS identification. In contrast, biochemical testing misclassified 5 isolates of C. jejuni as C. coli, and 16S rDNA sequencing alone was not able to differentiate between C. coli and C. jejuni for 11 sequences ( p = 0.1573, kappa = 0.0857) when compared to MALDI-TOF MS and WGS. No agreement was observed between MALDI-TOF MS dendrograms and the phylogenetic relationships revealed by rDNA sequencing or WGS. Our results confirm that MALDI-TOF MS is a fast and reliable method for identifying Campylobacter isolates to the species level from wild birds and chickens, but not for elucidating phylogenetic relationships among Campylobacter isolates.
Mutation Detection with Next-Generation Resequencing through a Mediator Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtzel, Omri; Dori-Bachash, Mally; Pietrokovski, Shmuel
2010-12-31
The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WTmore » and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.« less
Sequence Alignment to Predict Across Species Susceptibility ...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev
Angiuoli, Samuel V; White, James R; Matalka, Malcolm; White, Owen; Fricke, W Florian
2011-01-01
The widespread popularity of genomic applications is threatened by the "bioinformatics bottleneck" resulting from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not been evaluated thoroughly. We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60. Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs between EC2 and comparable local grid servers. Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local computing centers.
Angiuoli, Samuel V.; White, James R.; Matalka, Malcolm; White, Owen; Fricke, W. Florian
2011-01-01
Background The widespread popularity of genomic applications is threatened by the “bioinformatics bottleneck” resulting from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not been evaluated thoroughly. Results We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60. Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs between EC2 and comparable local grid servers. Conclusions Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local computing centers. PMID:22028928
Floral gene resources from basal angiosperms for comparative genomics research
Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H
2005-01-01
Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777
Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.
2013-01-01
We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231
Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D
2004-10-01
Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.
Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas
2009-01-01
Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species. PMID:19635741
Nair, Shalima S; Luu, Phuc-Loi; Qu, Wenjia; Maddugoda, Madhavi; Huschtscha, Lily; Reddel, Roger; Chenevix-Trench, Georgia; Toso, Martina; Kench, James G; Horvath, Lisa G; Hayes, Vanessa M; Stricker, Phillip D; Hughes, Timothy P; White, Deborah L; Rasko, John E J; Wong, Justin J-L; Clark, Susan J
2018-05-28
Comprehensive genome-wide DNA methylation profiling is critical to gain insights into epigenetic reprogramming during development and disease processes. Among the different genome-wide DNA methylation technologies, whole genome bisulphite sequencing (WGBS) is considered the gold standard for assaying genome-wide DNA methylation at single base resolution. However, the high sequencing cost to achieve the optimal depth of coverage limits its application in both basic and clinical research. To achieve 15× coverage of the human methylome, using WGBS, requires approximately three lanes of 100-bp-paired-end Illumina HiSeq 2500 sequencing. It is important, therefore, for advances in sequencing technologies to be developed to enable cost-effective high-coverage sequencing. In this study, we provide an optimised WGBS methodology, from library preparation to sequencing and data processing, to enable 16-20× genome-wide coverage per single lane of HiSeq X Ten, HCS 3.3.76. To process and analyse the data, we developed a WGBS pipeline (METH10X) that is fast and can call SNPs. We performed WGBS on both high-quality intact DNA and degraded DNA from formalin-fixed paraffin-embedded tissue. First, we compared different library preparation methods on the HiSeq 2500 platform to identify the best method for sequencing on the HiSeq X Ten. Second, we optimised the PhiX and genome spike-ins to achieve higher quality and coverage of WGBS data on the HiSeq X Ten. Third, we performed integrated whole genome sequencing (WGS) and WGBS of the same DNA sample in a single lane of HiSeq X Ten to improve data output. Finally, we compared methylation data from the HiSeq 2500 and HiSeq X Ten and found high concordance (Pearson r > 0.9×). Together we provide a systematic, efficient and complete approach to perform and analyse WGBS on the HiSeq X Ten. Our protocol allows for large-scale WGBS studies at reasonable processing time and cost on the HiSeq X Ten platform.
GeNets: a unified web platform for network-based genomic analyses.
Li, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasper
2018-06-18
Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.
Pecon-Slattery, Jill; Troyer, Jennifer L; Johnson, Warren E; O'Brien, Stephen J
2008-05-15
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence.
Pecon-Slattery, Jill; Troyer, Jennifer L.; Johnson, Warren E.; O’Brien, Stephen J.
2008-01-01
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence. PMID:18359092
Some methodical peculiarities of analysis of small-mass samples by SRXFA
NASA Astrophysics Data System (ADS)
Kudryashova, A. F.; Tarasov, L. S.; Ulyanov, A. A.; Baryshev, V. B.
1989-10-01
The stability of work of the element analysis station on the storage rings VEPP-3 and VEPP-4 in INP (Novosibirsk, USSR) was demonstrated on the example of three sets of rare element analyses carried out by SRXFA in May 1985, January and May-June 1988. These data show that there are some systematic deviations in the results of measurements of Zr and La contents. SRXFA and INAA data have been compared for the latter element. A false linear correlation on the Rb-Sr plot in one set of analyses has been attributed to an overlapping artificial Sr peak on a Rb peak. The authors proposed sequences of registration of spectra and computer treatment for samples and standards. Such sequences result in better final concentration data.
Miao, Wei; Simpson, Alastair G B; Fu, Chengjie; Lobban, Christopher S
2005-01-01
The small subunit rDNA sequence of Maristentor dinoferus (Lobban, Schefter, Simpson, Pochon, Pawlowski, and Foissner, 2002) was determined and compared with sequences from other Heterotrichea and Karyorelictea. Maristentor resembles Stentor in basic morphology and had been provisionally assigned to Stentoridae. However, our phylogenetic analyses show that Maristentor is more closely related to Folliculinidae. Our results support the creation of a separate family for Maristentor, Maristentoridae n. fam., and also confirm the phylogenetic grouping of Folliculindae, Stentoridae, Blepharismidae, and Maristentoridae, which we informally call 'stentorids'. Maristentor, rather than Stentor itself, appears to be most significant in understanding the origins of folliculinids from their aloricate ancestors. Our analyses suggest continued uncertainty in the exact placement of the root of heterotrichs with this phylogenetic marker.
Mameaux, Sabine; Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Jack, Peter; Werner, Peter; Gray, John C; Greenland, Andy J; Powell, Wayne
2012-01-01
The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae. © 2011 National Institute of Agricultural Botany (NIAB). Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
2011-01-01
Background Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source. Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses. Results We have sequenced and annotated the genome of E. coli W. The chromosome is 4,900,968 bp and encodes 4,764 ORFs. Two plasmids, pRK1 (102,536 bp) and pRK2 (5,360 bp), are also present. W has unique features relative to other sequenced laboratory strains (K-12, B and Crooks): it has a larger genome and belongs to phylogroup B1 rather than A. W also grows on a much broader range of carbon sources than does K-12. A genome-scale reconstruction was developed and validated in order to interrogate metabolic properties. Conclusions The genome of W is more similar to commensal and pathogenic B1 strains than phylogroup A strains, and therefore has greater utility for comparative analyses with these strains. W should therefore be the strain of choice, or 'type strain' for group B1 comparative analyses. The genome annotation and tools created here are expected to allow further utilization and development of E. coli W as an industrial organism for sucrose-based bioprocesses. Refinements in our E. coli metabolic reconstruction allow it to more accurately define E. coli metabolism relative to previous models. PMID:21208457
Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes
Park, Jungsun; Peng, Zuogang; Zeng, Jia; Elango, Navin; Park, Taesung; Wheeler, Dave; Werren, John H.; Yi, Soojin V.
2011-01-01
The functional and evolutionary significance of DNA methylation in insect genomes remains to be resolved. Nasonia is well situated for comparative analyses of DNA methylation and genome evolution, since the genomes of a moderately distant outgroup species as well as closely related sibling species are available. Using direct sequencing of bisulfite-converted DNA, we uncovered a substantial level of DNA methylation in 17 of 18 Nasonia vitripennis genes and a strong correlation between methylation level and CpG depletion. Notably, in the sex-determining locus transformer, the exon that is alternatively spliced between the sexes is heavily methylated in both males and females, whereas other exons are only sparsely methylated. Orthologous genes of the honeybee and Nasonia show highly similar relative levels of CpG depletion, despite ∼190 My divergence. Densely and sparsely methylated genes in these species also exhibit similar functional enrichments. We found that the degree of CpG depletion is negatively correlated with substitution rates between closely related Nasonia species for synonymous, nonsynonymous, and intron sites. This suggests that mutation rates increase with decreasing levels of germ line methylation. Thus, DNA methylation is prevalent in the Nasonia genome, may participate in regulatory processes such as sex determination and alternative splicing, and is correlated with several aspects of genome and sequence evolution. PMID:21693438
Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir
2011-01-01
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353
Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw
Jiménez, Diego Javier; Chaves-Moreno, Diego; van Elsas, Jan Dirk
2015-01-01
Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential. PMID:26343383
2013-01-01
Background Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species. PMID:24261823
Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul
2016-01-01
Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35-120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs' analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the two major groups of strains of this pathogen.
Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M.; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul
2016-01-01
Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35–120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs’ analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the two major groups of strains of this pathogen. PMID:27092114
Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas
2013-01-01
Background and Aims The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. Methods A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100–500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Key Results Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S–5·8S–25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. Conclusions The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species. PMID:23666888
de la Bastide, Paul Y; Leung, Wai Lam; Hintz, William E
2015-01-01
The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data. This non-subjective approach to species identification does not rely upon transient morphological features. Phylogenetic analyses comparing our ITS sequences and species designations with data from previous studies generally supported the clade scheme of Diéguez-Uribeondo et al. (2007) and found agreement with the molecular taxonomic cluster system of Sandoval-Sierra et al. (2014). Our Canadian ITS sequence collection will thus contribute to the public database and assist the clarification of Saprolegnia spp. taxonomy. The analysis of ITS region sequence variability facilitated genus- and species-level identification of unknown samples from aquaculture facilities and provided useful information on species composition. A unique ITS-RFLP for the identification of S. parasitica was also described. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R
2013-04-23
Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic strains remains a challenge for this genus, as it is for other opportunistic pathogens. This paper demonstrates, by using whole-genome sequencing of clinical Aeromonas strains, followed by corresponding virulence assays, that comparative genomics can be used to identify a virulent subtype of A. hydrophila that is aggressive during human infection and more lethal in a mouse model of infection. This aggressive pathotype contained genes for toxin production, toxin secretion, and bacterial motility that likely enabled its pathogenicity. Our results highlight the potential of whole-genome sequencing to transform microbial diagnostics; with further advances in rapid sequencing and annotation, genomic analysis will be able to provide timely information on the identities and virulence potential of clinically isolated microorganisms.
Diversity of halophilic archaea from six hypersaline environments in Turkey.
Ozcan, Birgul; Ozcengiz, Gulay; Coleri, Arzu; Cokmus, Cumhur
2007-06-01
The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.
CMG-biotools, a free workbench for basic comparative microbial genomics.
Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David
2013-01-01
Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training.
Genome sequence and genetic diversity of European ash trees.
Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J; Sambles, Christine M; Ramirez-Gonzalez, Ricardo H; Swarbreck, David; Kaithakottil, Gemy; Cooper, Endymion D; Uauy, Cristobal; Havlickova, Lenka; Worswick, Gemma; Studholme, David J; Zohren, Jasmin; Salmon, Deborah L; Clavijo, Bernardo J; Li, Yi; He, Zhesi; Fellgett, Alison; McKinney, Lea Vig; Nielsen, Lene Rostgaard; Douglas, Gerry C; Kjær, Erik Dahl; Downie, J Allan; Boshier, David; Lee, Steve; Clark, Jo; Grant, Murray; Bancroft, Ian; Caccamo, Mario; Buggs, Richard J A
2017-01-12
Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.
Next-generation sequencing library construction on a surface.
Feng, Kuan; Costa, Justin; Edwards, Jeremy S
2018-05-30
Next-generation sequencing (NGS) has revolutionized almost all fields of biology, agriculture and medicine, and is widely utilized to analyse genetic variation. Over the past decade, the NGS pipeline has been steadily improved, and the entire process is currently relatively straightforward. However, NGS instrumentation still requires upfront library preparation, which can be a laborious process, requiring significant hands-on time. Herein, we present a simple but robust approach to streamline library preparation by utilizing surface bound transposases to construct DNA libraries directly on a flowcell surface. The surface bound transposases directly fragment genomic DNA while simultaneously attaching the library molecules to the flowcell. We sequenced and analysed a Drosophila genome library generated by this surface tagmentation approach, and we showed that our surface bound library quality was comparable to the quality of the library from a commercial kit. In addition to the time and cost savings, our approach does not require PCR amplification of the library, which eliminates potential problems associated with PCR duplicates. We described the first study to construct libraries directly on a flowcell. We believe our technique could be incorporated into the existing Illumina sequencing pipeline to simplify the workflow, reduce costs, and improve data quality.
Adorno, E V; Moura-Neto, J P; Lyra, I; Zanette, A; Santos, L F O; Seixas, M O; Reis, M G; Goncalves, M S
2008-02-01
The fetal hemoglobin (HbF) levels and betaS-globin gene haplotypes of 125 sickle cell anemia patients from Brazil were investigated. We sequenced the Ggamma- and Agamma-globin gene promoters and the DNase I-2 hypersensitive sites in the locus control regions (HS2-LCR) of patients with HbF level disparities as compared to their betaS haplotypes. Sixty-four (51.2%) patients had CAR/Ben genotype; 36 (28.8%) Ben/Ben; 18 (14.4%) CAR/CAR; 2 (1.6%) CAR/Atypical; 2 (1.6%) Ben/Cam; 1 (0.8%) CAR/Cam; 1 (0.8%) CAR/Arab-Indian, and 1 (0.8%) Sen/Atypical. The HS2-LCR sequence analyses demonstrated a c.-10.677G>A change in patients with the Ben haplotype and high HbF levels. The Gg gene promoter sequence analyses showed a c.-157T>C substitution shared by all patients, and a c.-222_-225del related to the Cam haplotype. These results identify new polymorphisms in the HS2-LCR and Gg-globin gene promoter. Further studies are required to determine the correlation between HbF synthesis and the clinical profile of sickle cell anemia patients.
BRepertoire: a user-friendly web server for analysing antibody repertoire data.
Margreitter, Christian; Lu, Hui-Chun; Townsend, Catherine; Stewart, Alexander; Dunn-Walters, Deborah K; Fraternali, Franca
2018-04-14
Antibody repertoire analysis by high throughput sequencing is now widely used, but a persisting challenge is enabling immunologists to explore their data to discover discriminating repertoire features for their own particular investigations. Computational methods are necessary for large-scale evaluation of antibody properties. We have developed BRepertoire, a suite of user-friendly web-based software tools for large-scale statistical analyses of repertoire data. The software is able to use data preprocessed by IMGT, and performs statistical and comparative analyses with versatile plotting options. BRepertoire has been designed to operate in various modes, for example analysing sequence-specific V(D)J gene usage, discerning physico-chemical properties of the CDR regions and clustering of clonotypes. Those analyses are performed on the fly by a number of R packages and are deployed by a shiny web platform. The user can download the analysed data in different table formats and save the generated plots as image files ready for publication. We believe BRepertoire to be a versatile analytical tool that complements experimental studies of immune repertoires. To illustrate the server's functionality, we show use cases including differential gene usage in a vaccination dataset and analysis of CDR3H properties in old and young individuals. The server is accessible under http://mabra.biomed.kcl.ac.uk/BRepertoire.
Structural and functional partitioning of bread wheat chromosome 3B.
Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine
2014-07-18
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.
Large-Scale Concatenation cDNA Sequencing
Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.
1997-01-01
A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174
Vander Lugt correlation of DNA sequence data
NASA Astrophysics Data System (ADS)
Christens-Barry, William A.; Hawk, James F.; Martin, James C.
1990-12-01
DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.
NASA Astrophysics Data System (ADS)
Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.
2011-10-01
Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.
USDA-ARS?s Scientific Manuscript database
In this study we sequenced the genomes of 60 Fusarium graminearum, the major fungal pathogen responsible for Fusarium head blight (FHB) in cereal crops world-wide. To investigate adaptive evolution of FHB pathogens, we performed population-level analyses to characterize genomic structure, signatures...
Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519
USDA-ARS?s Scientific Manuscript database
Aflatoxins are fungal secondary metabolites that often contaminate foodstuffs and crops, the major producer of which is Aspergillus flavus. Use of non-aflatoxigenic strains of A. flavus to compete against aflatoxin-producing strains has emerged as one of the best management practices for reducing af...
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus and aflatoxin contamination in the field are known to be influenced by numerous stress factors, particularly drought and heat stress. However, the purpose of aflatoxin production is unknown. Here, we report transcriptome analyses comprised of 282.6 Gb of sequencing data describing...
USDA-ARS?s Scientific Manuscript database
The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic mode...
Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin
2017-01-01
The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.
Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses
Callahan, Ben J.; Sankaran, Kris; Fukuyama, Julia A.; McMurdie, Paul J.; Holmes, Susan P.
2016-01-01
High-throughput sequencing of PCR-amplified taxonomic markers (like the 16S rRNA gene) has enabled a new level of analysis of complex bacterial communities known as microbiomes. Many tools exist to quantify and compare abundance levels or OTU composition of communities in different conditions. The sequencing reads have to be denoised and assigned to the closest taxa from a reference database. Common approaches use a notion of 97% similarity and normalize the data by subsampling to equalize library sizes. In this paper, we show that statistical models allow more accurate abundance estimates. By providing a complete workflow in R, we enable the user to do sophisticated downstream statistical analyses, whether parametric or nonparametric. We provide examples of using the R packages dada2, phyloseq, DESeq2, ggplot2 and vegan to filter, visualize and test microbiome data. We also provide examples of supervised analyses using random forests and nonparametric testing using community networks and the ggnetwork package. PMID:27508062
Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun
2013-01-01
Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933
Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming
2015-01-01
Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.
Batty, Elizabeth M; Chaemchuen, Suwittra; Blacksell, Stuart; Richards, Allen L; Paris, Daniel; Bowden, Rory; Chan, Caroline; Lachumanan, Ramkumar; Day, Nicholas; Donnelly, Peter; Chen, Swaine; Salje, Jeanne
2018-06-01
Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.
Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming
2015-01-01
Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430
Reference genome sequence of the model plant Setaria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao
We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species thatmore » demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).« less
Reference genome sequence of the model plant Setaria.
Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chu-Yu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela C; Panaud, Olivier; Kellogg, Elizabeth A; Brutnell, Thomas P; Doust, Andrew N; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M
2012-05-13
We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).
2014-01-01
Background Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). Results We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. Conclusions This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin pigments and in their transport into the vacuole, specifically in fruit flesh of the pigmented cultivar. PMID:24490620
De Novo Sequencing of a Sparassis latifolia Genome and Its Associated Comparative Analyses
Ma, Lu; Yang, Chi; Ying, Zhenghe; Jiang, Xiaoling
2018-01-01
Known to be rich in β-glucan, Sparassis latifolia (S. latifolia) is a valuable edible fungus cultivated in East Asia. A few studies have suggested that S. latifolia is effective on antidiabetic, antihypertension, antitumor, and antiallergen medications. However, it is still unclear genetically why the fungus has these medical effects, which has become a key bottleneck for its further applications. To provide a better understanding of this fungus, we sequenced its whole genome, which has a total size of 48.13 megabases (Mb) and contains 12,471 predicted gene models. We then performed comparative and phylogenetic analyses, which indicate that S. latifolia is closely related to a few species in the antrodia clade including Fomitopsis pinicola, Wolfiporia cocos, Postia placenta, and Antrodia sinuosa. Finally, we annotated the predicted genes. Interestingly, the S. latifolia genome encodes most enzymes involved in carbohydrate and glycoconjugate metabolism and is also enriched in genes encoding enzymes critical to secondary metabolite biosynthesis and involved in indole, terpene, and type I polyketide pathways. As a conclusion, the genome content of S. latifolia sheds light on its genetic basis of the reported medicinal properties and could also be used as a reference genome for comparative studies on fungi. PMID:29682127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, P; Garcia, E
2003-02-06
The goal of this proposed effort was to assess the difficulty in identifying and characterizing virulence candidate genes in an organism for which very limited data exists. This was accomplished by first addressing the finishing phase of draft-sequenced F. tularensis genomes and conducting comparative analyses to determine the coding potential of each genome; to discover the differences in genome structure and content, and to identify potential genes whose products may be involved in the F. tularensis virulence process. The project was divided into three parts: (1) Genome finishing: This part involves determining the order and orientation of the consensus sequencesmore » of contigs obtained from Phrap assemblies of random draft genomic sequences. This tedious process consists of linking contig ends using information embedded in each sequence file that relates the sequence to the original cloned insert. Since inserts are sequenced from both ends, we can establish a link between these paired-ends in different contigs and thus order and orient contigs. Since these genomes carry numerous copies of insertion sequences, these repeated elements ''confuse'' the Phrap assembly program. It is thus necessary to break these contigs apart at the repeated sequences and individually join the proper flanking regions using paired-end information, or using results of comparisons against a similar genome. Larger repeated elements such as the small subunit ribosomal RNA operon require verification with PCR. Tandem repeats require manual intervention and typically rely on single nucleotide polymorphisms to be resolved. Remaining gaps require PCR reactions and sequencing. Once the genomes have been ''closed'', low quality regions are addressed by resequencing reactions. (2) Genome analysis: The final consensus sequences are processed by combining the results of three gene modelers: Glimmer, Critica and Generation. The final gene models are submitted to a battery of homology searches and domain prediction programs in order to annotate them (e.g. BLAST, Pfam, TIGRfam, COG, KEGG, InterPro, TMhmm, SignalP). The genome structure is also assessed in terms of G+C content, GC bias (GC skew), and locations of repeated regions (e.g. IS elements) and phage-like genes. (3) Comparative genomics: The results of the various genome analyses are compared between the finished (or almost finished) genomes. Here, we have compared the F. tularensis genomes from the extremely lethal strain Schu4 (subsp. tularensis), the vaccine strain LVS (subsp. holartica), and strain UT01-4992 of the less virulent, opportunistic subsp. novicida. Regions present in the highly virulent strain that are absent from the other less virulent strains may provide insight into what factors are required for the high level of virulence.« less
Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss).
Jonathan Shaw, A; Devos, Nicolas; Liu, Yang; Cox, Cymon J; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka
2016-08-01
Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)
Jonathan Shaw, A.; Devos, Nicolas; Liu, Yang; Cox, Cymon J.; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka
2016-01-01
Background and Aims Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. Methods We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium. Key Results Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium. Conclusions Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. PMID:27268484
Schuster, Tanja M.; Setaro, Sabrina D.; Tibbits, Josquin F. G.; Batty, Erin L.; Fowler, Rachael M.; McLay, Todd G. B.; Wilcox, Stephen; Ades, Peter K.
2018-01-01
Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9–10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes. PMID:29668710
Wang, Guohong; Xiong, Yao; Xu, Qi; Yin, Jia; Hao, Yanling
2015-11-20
Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411 bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard
2013-03-05
The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.
Ciliates and the rare biosphere: a review.
Dunthorn, Micah; Stoeck, Thorsten; Clamp, John; Warren, Alan; Mahé, Frédéric
2014-01-01
Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in-depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community-comparative, novel-diversity, and ecosystem-functioning questions. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Antell, Gregory C.; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean; Liu, Yucheng; James, Tony; Jacobson, Jeffrey M.; Szep, Zsofia
2017-01-01
Vpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the vpr gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. Genotypic classification of Env-V3 sequences as X4 (CXCR4-utilizing) or R5 (CCR5-utilizing) was used to group colinear Vpr sequences. To reveal the sequences associated with a specific coreceptor usage genotype, Vpr amino acid sequences were assessed for amino acid diversity and Jensen-Shannon divergence between the two groups. Five amino acid alphabets were used to comprehensively examine the impact of amino acid substitutions involving side chains with similar physiochemical properties. Positions 36, 37, 41, 89, and 96 of Vpr were characterized by statistically significant divergence across multiple alphabets when X4 and R5 sequence groups were compared. In addition, consensus amino acid switches were found at positions 37 and 41 in comparisons of the R5 and X4 sequence populations. These results suggest an evolutionary link between Vpr and gp120 in HIV-1-infected patients. PMID:28620613
Ji, Feng; Zhao, Jing-Zhuang; Liu, Miao; Lu, Tong-Yan; Liu, Hong-Bai; Yin, Jiasheng; Xu, Li-Ming
2017-04-01
Infectious pancreatic necrosis (IPN) is a significant disease of farmed salmonids resulting in direct economic losses due to high mortality in China. However, no gene sequence of any Chinese infectious pancreatic necrosis virus (IPNV) isolates was available. In the study, moribund rainbow trout fry samples were collected during an outbreak of IPN in Yunnan province of southwest China in 2013. An IPNV was isolated and tentatively named ChRtm213. We determined the full genome sequence of the IPNV ChRtm213 and compared it with previously identified IPNV sequences worldwide. The sequences of different structural and non-structural protein genes were compared to those of other aquatic birnaviruses sequenced to date. The results indicated that the complete genome sequence of ChRtm213 strain contains a segment A (3099 nucleotides) coding a polyprotein VP2-VP4-VP3, and a segment B (2789 nucleotides) coding a RNA-dependent RNA polymerase VP1. The phylogenetic analyses showed that ChRtm213 strain fell within genogroup 1, serotype A9 (Jasper), having similarities of 96.3% (segment A) and 97.3% (segment B) with the IPNV strain AM98 from Japan. The results suggest that the Chinese IPNV isolate has relative closer relationship with Japanese IPNV strains. The sequence of ChRtm213 was the first gene sequence of IPNV isolates in China. This study provided a robust reference for diagnosis and/or control of IPNV prevalent in China.
Sanz, Yolanda
2017-01-01
Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506
Nakazato, Takeru; Ohta, Tazro; Bono, Hidemasa
2013-01-01
High-throughput sequencing technology, also called next-generation sequencing (NGS), has the potential to revolutionize the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public primary data archive, the Sequence Read Archive (SRA). As of January 2013, data from more than 14,000 projects have been submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs) from SRA and full-text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA entries by disease keywords, according to the Medical Subject Headings (MeSH) extracted from articles assigned to each SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We previously developed feature profiles of diseases in a system called “Gendoo”. We generated hyperlinks between diseases extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this study are available at our web service, called “DBCLS SRA” (http://sra.dbcls.jp/). This service will improve accessibility to high-quality data from SRA. PMID:24167589
An application of statistics to comparative metagenomics
Rodriguez-Brito, Beltran; Rohwer, Forest; Edwards, Robert A
2006-01-01
Background Metagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments. Results Here we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified. Conclusion The methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems. PMID:16549025
An application of statistics to comparative metagenomics.
Rodriguez-Brito, Beltran; Rohwer, Forest; Edwards, Robert A
2006-03-20
Metagenomics, sequence analyses of genomic DNA isolated directly from the environments, can be used to identify organisms and model community dynamics of a particular ecosystem. Metagenomics also has the potential to identify significantly different metabolic potential in different environments. Here we use a statistical method to compare curated subsystems, to predict the physiology, metabolism, and ecology from metagenomes. This approach can be used to identify those subsystems that are significantly different between metagenome sequences. Subsystems that were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared to non-redundant databases were identified. The methodology described herein applies statistics to the comparisons of metabolic potential in metagenomes. This analysis reveals those subsystems that are more, or less, represented in the different environments that are compared. These differences in metabolic potential lead to several testable hypotheses about physiology and metabolism of microbes from these ecosystems.
Ji, Boyang; Zhang, Sheng-Da; Zhang, Wei-Jia; Rouy, Zoe; Alberto, François; Santini, Claire-Lise; Mangenot, Sophie; Gagnot, Séverine; Philippe, Nadège; Pradel, Nathalie; Zhang, Lichen; Tempel, Sébastien; Li, Ying; Médigue, Claudine; Henrissat, Bernard; Coutinho, Pedro M; Barbe, Valérie; Talla, Emmanuel; Wu, Long-Fei
2017-03-01
Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Michetti, Davide; Brandsdal, Bjørn Olav; Bon, Davide; Isaksen, Geir Villy; Tiberti, Matteo; Papaleo, Elena
2017-01-01
The psychrophilic and mesophilic endonucleases A (EndA) from Aliivibrio salmonicida (VsEndA) and Vibrio cholera (VcEndA) have been studied experimentally in terms of the biophysical properties related to thermal adaptation. The analyses of their static X-ray structures was no sufficient to rationalize the determinants of their adaptive traits at the molecular level. Thus, we used Molecular Dynamics (MD) simulations to compare the two proteins and unveil their structural and dynamical differences. Our simulations did not show a substantial increase in flexibility in the cold-adapted variant on the nanosecond time scale. The only exception is a more rigid C-terminal region in VcEndA, which is ascribable to a cluster of electrostatic interactions and hydrogen bonds, as also supported by MD simulations of the VsEndA mutant variant where the cluster of interactions was introduced. Moreover, we identified three additional amino acidic substitutions through multiple sequence alignment and the analyses of MD-based protein structure networks. In particular, T120V occurs in the proximity of the catalytic residue H80 and alters the interaction with the residue Y43, which belongs to the second coordination sphere of the Mg2+ ion. This makes T120V an amenable candidate for future experimental mutagenesis.
Gbadegesin, Micheal A; Beeching, John R
2011-12-20
Retrotransposons are ubiquitous in eukaryotic genomes and now proving to be useful genetic tools for genetic diversity and phylogenetic analyses, especially in plants. In order to assess the diversity of Ty1/Copia-like retrotransposons of cassava, we used PCR primers anchored on the conserved domains of reverse transcriptases (RTs) to amplify cassava Ty1/Copia-like RT. The PCR product was cloned and sequenced. Sequences analysis of the clones revealed the presence of 69 families of Ty1/Copia-like retrotransposon in the genome of cassava. Comparative analyses of the predicted amino acid sequences of these clones with those of other plants showed that retroelements of this class are very heterogeneous in cassava. Cassava is widely grown for its edible roots in the tropical and subtropical regions of the world. Cassava roots, though poor in protein, are rich in starch (makes up about 80% of the dry matter), vitamin C, carotenes, calcium and potassium. It has a great commercial importance as a source of starch and starch based products. Realizing the importance of cassava, it stands out as a crop to benefit from biotechnology development. Heterogeneity of Mecops (Manihot esculenta copia-like Retrotransposons) showed that they may be useful for genetic diversity and phylogenetic analyses of cassava germplasm.
Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas
2018-02-10
Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.
Seo, Eunyoung; Woo, Jongchan; Park, Eunsook; Bertolani, Steven J; Siegel, Justin B; Choi, Doil; Dinesh-Kumar, Savithramma P
2016-11-01
Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.
Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi
2014-09-18
Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.
Hanke, Dennis; Pohlmann, Anne; Sauter-Louis, Carola; Höper, Dirk; Stadler, Julia; Ritzmann, Mathias; Steinrigl, Adi; Schwarz, Bernd-Andreas; Akimkin, Valerij; Fux, Robert; Blome, Sandra; Beer, Martin
2017-07-06
Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by the eponymous virus (PEDV) which belongs to the genus Alphacoronavirus within the Coronaviridae virus family. Following the disastrous outbreaks in Asia and the United States, PEDV has been detected also in Europe. In order to better understand the overall situation, the molecular epidemiology, and factors that might influence the most variable disease impact; 40 samples from swine feces were collected from different PED outbreaks in Germany and other European countries and sequenced by shot-gun next-generation sequencing. A total of 38 new PEDV complete coding sequences were generated. When compared on a global scale, all investigated sequences from Central and South-Eastern Europe formed a rather homogeneous PEDV S INDEL cluster, suggesting a recent re-introduction. However, in-detail analyses revealed two new clusters and putative ancestor strains. Based on the available background data, correlations between clusters and location, farm type or clinical presentation could not be established. Additionally, the impact of secondary infections was explored using the metagenomic data sets. While several coinfections were observed, no correlation was found with disease courses. However, in addition to the PEDV genomes, ten complete viral coding sequences from nine different data sets were reconstructed each representing new virus strains. In detail, three pasivirus A strains, two astroviruses, a porcine sapelovirus, a kobuvirus, a porcine torovirus, a posavirus, and an enterobacteria phage were almost fully sequenced.
Parker, Jennifer K.; Havird, Justin C.
2012-01-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287
Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo
2012-03-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Mak, Sarah Siu Tze; Gopalakrishnan, Shyam; Carøe, Christian; Geng, Chunyu; Liu, Shanlin; Sinding, Mikkel-Holger S; Kuderna, Lukas F K; Zhang, Wenwei; Fu, Shujin; Vieira, Filipe G; Germonpré, Mietje; Bocherens, Hervé; Fedorov, Sergey; Petersen, Bent; Sicheritz-Pontén, Thomas; Marques-Bonet, Tomas; Zhang, Guojie; Jiang, Hui; Gilbert, M Thomas P
2017-01-01
Abstract Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA. PMID:28854615
Gulitz, A; Stadie, J; Ehrmann, M A; Ludwig, W; Vogel, R F
2013-04-01
The aim of this study was to analyse the bacterial microbiota of water kefir using culture-independent methods. We compared four water kefirs of different origins using 16S rDNA amplicon sequencing and ARDRA. The microbiota consisted of different proportions of the genera Lactobacillus (Lact.), Leuconostoc (Leuc.), Acetobacter (Acet.) and Gluconobacter. Surprisingly, varying but consistently high numbers of sequences representing members of the genus Bifidobacterium (Bif.) were found in all kefirs. Whereas part of the bifidobacterial sequences could be assigned to Bifidobacterium psychraerophilum, a majority of sequences identical to each other could not be assigned to any known species. A nearly full-length sequence of the latter exhibited a beyond-species similarity (96.4%) with the sequence from the closest relative species Bif. psychraerophilum. A Bifidobacterium-specific ARDRA analysis reflected the abundance of the novel Bifidobacterium species by revealing its unique MboI restriction profile. Attempts to isolate the bifidobacteria were successful for Bif. psychraerophilum only. The complexity of the water kefir microbiota has been underestimated in previously studies. The occurrence of bifidobacteria as part of the consortium is novel. These data give new insights into the understanding of the complexity of food fermentations and underline the need for approaches detecting noncultivable organisms. © 2013 The Society for Applied Microbiology.
Jiang, Fan; Pan, Xubin; Li, Xuankun; Yu, Yanxue; Zhang, Junhua; Jiang, Hongshan; Dou, Liduo; Zhu, Shuifang
2016-01-01
The genus Dacus is one of the most economically important tephritid fruit flies. The first complete mitochondrial genome (mitogenome) of Dacus species – D. longicornis was sequenced by next-generation sequencing in order to develop the mitogenome data for this genus. The circular 16,253 bp mitogenome is the typical set and arrangement of 37 genes present in the ancestral insect. The mitogenome data of D. longicornis was compared to all the published homologous sequences of other tephritid species. We discovered the subgenera Bactrocera, Daculus and Tetradacus differed from the subgenus Zeugodacus, the genera Dacus, Ceratitis and Procecidochares in the possession of TA instead of TAA stop codon for COI gene. There is a possibility that the TA stop codon in COI is the synapomorphy in Bactrocera group in the genus Bactrocera comparing with other Tephritidae species. Phylogenetic analyses based on the mitogenome data from Tephritidae were inferred by Bayesian and Maximum-likelihood methods, strongly supported the sister relationship between Zeugodacus and Dacus. PMID:27812024
Feldman, Sanford H; Ntenda, Abraham M
2011-01-01
We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574
Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji
2016-01-01
High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619
Crinipellis brasiliensis, a new species based on morphological and molecular data.
de Arruda, Maricília C C; Sepulveda, German F; Miller, Robert N G; Ferreira, Marisa A S V; Santiago, Denise V R; Resende, Mário Lúcio V; Dianese, José Carmine; Felipe, Maria Sueli S
2005-01-01
Crinipellis perniciosa infects a diversity of hosts causing severe damage to T. cacao production in many Brazilian growing regions. We compared isolates of Crinipellis from different geographic origins and hosts in Brazil by structural analysis using light (LM) and scanning electronic microscopy (SEM), as well as RFLP and sequence data based on the nuclear rDNA ITS region. Statistical analyses of morphometric data of basidia and basidiospores revealed a distinct group of isolates of Crinipellis obtained from Heteropterys acutifolia when compared to representatives from Theobroma cacao, Solanum lycocarpum and Heteropterys nervosa. A similar distinction also was observed based on sequence data of the ITS region such that combined results allowed for the segregation of a new species within the genus Crinipellis.
Evolution of epigenetic regulation in vertebrate genomes
Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting
2016-01-01
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453
Comparative immunogenomics of molluscs.
Schultz, Jonathan H; Adema, Coen M
2017-10-01
Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Developing Fair Tests for Mathematics Curriculum Comparison Studies: The Role of Content Analyses
ERIC Educational Resources Information Center
Chavez, Oscar; Papick, Ira; Ross, Daniel J.; Grouws, Douglas A.
2011-01-01
This article describes the process of development of assessment instruments for a three-year longitudinal comparative study that focused on evaluating American high school students' mathematics learning from two distinct approaches to content organization: curriculum built around a sequence of three full-year courses (Algebra 1, Geometry, and…
New Hepatitis E Virus Genotype in Camels, the Middle East
Lau, Susanna K.P.; Teng, Jade L.L.; Tsang, Alan K. L.; Joseph, Marina; Wong, Emily Y.M.; Tang, Ying; Sivakumar, Saritha; Xie, Jun; Bai, Ru; Wernery, Renate; Wernery, Ulrich; Yuen, Kwok-Yung
2014-01-01
In a molecular epidemiology study of hepatitis E virus (HEV) in dromedaries in Dubai, United Arab Emirates, HEV was detected in fecal samples from 3 camels. Complete genome sequencing of 2 strains showed >20% overall nucleotide difference to known HEVs. Comparative genomic and phylogenetic analyses revealed a previously unrecognized HEV genotype. PMID:24856611
The plant ontology as a tool for comparative plant anatomy and genomic analyses
USDA-ARS?s Scientific Manuscript database
Plant science is now a major player in the fields of genomics, gene expression analysis, phenomics and metabolomics. Recent advances in sequencing technologies have led to a windfall of data, with new species being added rapidly to the list of species whose genomes have been decoded. The Plant Ontol...
Cuesta, Isabel; González, Luis M.; Estrada, Karel; Grande, Ricardo; Zaballos, Ángel; Lobo, Cheryl A.; Barrera, Jorge
2014-01-01
Babesia divergens causes significant morbidity and mortality in cattle and splenectomized or immunocompromised individuals. Here, we present a 10.7-Mb high-quality draft genome of this parasite close to chromosome resolution that will enable comparative genome analyses and synteny studies among related parasites. PMID:25395649
USDA-ARS?s Scientific Manuscript database
Bread wheat (Triticum aestivum, AABBDD) is an allohexaploid species derived from multiple rounds of interspecific hybridizations. A high-quality genome assembly of diploid Ae. tauschii, the donor of the wheat D genome, will provide a useful platform to study polyploid wheat evolution. A combination...
What can we learn about lyssavirus genomes using 454 sequencing?
Höper, Dirk; Finke, Stefan; Freuling, Conrad M; Hoffmann, Bernd; Beer, Martin
2012-01-01
The main task of the individual project number four"Whole genome sequencing, virus-host adaptation, and molecular epidemiological analyses of lyssaviruses "within the network" Lyssaviruses--a potential re-emerging public health threat" is to provide high quality complete genome sequences from lyssaviruses. These sequences are analysed in-depth with regard to the diversity of the viral populations as to both quasi-species and so-called defective interfering RNAs. Moreover, the sequence data will facilitate further epidemiological analyses, will provide insight into the evolution of lyssaviruses and will be the basis for the design of novel nucleic acid based diagnostics. The first results presented here indicate that not only high quality full-length lyssavirus genome sequences can be generated, but indeed efficient analysis of the viral population gets feasible.
Leung, Kenneth Siu-Sing; Siu, Gilman Kit-Hang; Tam, Kingsley King-Gee; To, Sabrina Wai-Chi; Rajwani, Rahim; Ho, Pak-Leung; Wong, Samson Sai-Yin; Zhao, Wei W; Ma, Oliver Chiu-Kit; Yam, Wing-Cheong
2017-01-01
Background: Multidrug-resistant tuberculosis (MDR-TB) is posing a major threat to global TB control. In this study, we focused on two consecutive MDR-TB isolated from the same patient before and after the initiation of anti-TB treatment. To better understand the genomic characteristics of MDR-TB, Single Molecule Real-Time (SMRT) Sequencing and comparative genomic analyses was performed to identify mutations that contributed to the stepwise development of drug resistance and growth fitness in MDR-TB under in vivo challenge of anti-TB drugs. Result: Both pre-treatment and post-treatment strain demonstrated concordant phenotypic and genotypic susceptibility profiles toward rifampicin, pyrazinamide, streptomycin, fluoroquinolones, aminoglycosides, cycloserine, ethionamide, and para-aminosalicylic acid. However, although both strains carried identical missense mutations at rpoB S531L, inhA C-15T, and embB M306V, MYCOTB Sensititre assay showed that the post-treatment strain had 16-, 8-, and 4-fold elevation in the minimum inhibitory concentrations (MICs) toward rifabutin, isoniazid, and ethambutol respectively. The results have indicated the presence of additional resistant-related mutations governing the stepwise development of MDR-TB. Further comparative genomic analyses have identified three additional polymorphisms between the clinical isolates. These include a single nucleotide deletion at nucleotide position 360 of rv0888 in pre-treatment strain, and a missense mutation at rv3303c ( lpdA) V44I and a 6-bp inframe deletion at codon 67-68 in rv2071c ( cobM) in the post-treatment strain. Multiple sequence alignment showed that these mutations were occurring at highly conserved regions among pathogenic mycobacteria. Using structural-based and sequence-based algorithms, we further predicted that the mutations potentially have deleterious effect on protein function. Conclusion: This is the first study that compared the full genomes of two clonally-related MDR-TB clinical isolates during the course of anti-TB treatment. Our work has demonstrated the robustness of SMRT Sequencing in identifying mutations among MDR-TB clinical isolates. Comparative genome analysis also suggested novel mutations at rv0888, lpdA , and cobM that might explain the difference in antibiotic resistance and growth pattern between the two MDR-TB strains.
Tapping the promise of genomics in species with complex, nonmodel genomes.
Hirsch, Candice N; Buell, C Robin
2013-01-01
Genomics is enabling a renaissance in all disciplines of plant biology. However, many plant genomes are complex and remain recalcitrant to current genomic technologies. The complexities of these nonmodel plant genomes are attributable to gene and genome duplication, heterozygosity, ploidy, and/or repetitive sequences. Methods are available to simplify the genome and reduce these barriers, including inbreeding and genome reduction, making these species amenable to current sequencing and assembly methods. Some, but not all, of the complexities in nonmodel genomes can be bypassed by sequencing the transcriptome rather than the genome. Additionally, comparative genomics approaches, which leverage phylogenetic relatedness, can aid in the interpretation of complex genomes. Although there are limitations in accessing complex nonmodel plant genomes using current sequencing technologies, genome manipulation and resourceful analyses can allow access to even the most recalcitrant plant genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequencemore » (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Software for pre-processing Illumina next-generation sequencing short read sequences
2014-01-01
Background When compared to Sanger sequencing technology, next-generation sequencing (NGS) technologies are hindered by shorter sequence read length, higher base-call error rate, non-uniform coverage, and platform-specific sequencing artifacts. These characteristics lower the quality of their downstream analyses, e.g. de novo and reference-based assembly, by introducing sequencing artifacts and errors that may contribute to incorrect interpretation of data. Although many tools have been developed for quality control and pre-processing of NGS data, none of them provide flexible and comprehensive trimming options in conjunction with parallel processing to expedite pre-processing of large NGS datasets. Methods We developed ngsShoRT (next-generation sequencing Short Reads Trimmer), a flexible and comprehensive open-source software package written in Perl that provides a set of algorithms commonly used for pre-processing NGS short read sequences. We compared the features and performance of ngsShoRT with existing tools: CutAdapt, NGS QC Toolkit and Trimmomatic. We also compared the effects of using pre-processed short read sequences generated by different algorithms on de novo and reference-based assembly for three different genomes: Caenorhabditis elegans, Saccharomyces cerevisiae S288c, and Escherichia coli O157 H7. Results Several combinations of ngsShoRT algorithms were tested on publicly available Illumina GA II, HiSeq 2000, and MiSeq eukaryotic and bacteria genomic short read sequences with the focus on removing sequencing artifacts and low-quality reads and/or bases. Our results show that across three organisms and three sequencing platforms, trimming improved the mean quality scores of trimmed sequences. Using trimmed sequences for de novo and reference-based assembly improved assembly quality as well as assembler performance. In general, ngsShoRT outperformed comparable trimming tools in terms of trimming speed and improvement of de novo and reference-based assembly as measured by assembly contiguity and correctness. Conclusions Trimming of short read sequences can improve the quality of de novo and reference-based assembly and assembler performance. The parallel processing capability of ngsShoRT reduces trimming time and improves the memory efficiency when dealing with large datasets. We recommend combining sequencing artifacts removal, and quality score based read filtering and base trimming as the most consistent method for improving sequence quality and downstream assemblies. ngsShoRT source code, user guide and tutorial are available at http://research.bioinformatics.udel.edu/genomics/ngsShoRT/. ngsShoRT can be incorporated as a pre-processing step in genome and transcriptome assembly projects. PMID:24955109
Wenric, Stephane; Sticca, Tiberio; Caberg, Jean-Hubert; Josse, Claire; Fasquelle, Corinne; Herens, Christian; Jamar, Mauricette; Max, Stéphanie; Gothot, André; Caers, Jo; Bours, Vincent
2017-01-01
An increasing number of bioinformatic tools designed to detect CNVs (copy number variants) in tumor samples based on paired exome data where a matched healthy tissue constitutes the reference have been published in the recent years. The idea of using a pool of unrelated healthy DNA as reference has previously been formulated but not thoroughly validated. As of today, the gold standard for CNV calling is still aCGH but there is an increasing interest in detecting CNVs by exome sequencing. We propose to design a metric allowing the comparison of two CNV profiles, independently of the technique used and assessed the validity of using a pool of unrelated healthy DNA instead of a matched healthy tissue as reference in exome-based CNV detection. We compared the CNV profiles obtained with three different approaches (aCGH, exome sequencing with a matched healthy tissue as reference, exome sequencing with a pool of eight unrelated healthy tissue as reference) on three multiple myeloma samples. We show that the usual analyses performed to compare CNV profiles (deletion/amplification ratios and CNV size distribution) lack in precision when confronted with low LRR values, as they only consider the binary status of each CNV. We show that the metric-based distance constitutes a more accurate comparison of two CNV profiles. Based on these analyses, we conclude that a reliable picture of CNV alterations in multiple myeloma samples can be obtained from whole-exome sequencing in the absence of a matched healthy sample. © 2016 WILEY PERIODICALS, INC.
Westling, Katarina; Julander, Inger; Ljungman, Per; Vondracek, Martin; Wretlind, Bengt; Jalal, Shah
2008-03-01
Viridans group streptococci (VGS) cause severe diseases such as infective endocarditis and septicaemia. Genetically, VGS species are very close to each other and it is difficult to identify them to species level with conventional methods. The aims of the present study were to use sequence analysis of the RNase P RNA gene (rnpB) to identify VGS species in clinical blood culture isolates, and to compare the results with the API 20 Strep system that is based on phenotypical characteristics. Strains from patients with septicaemia or endocarditis were analysed with PCR amplification and sequence analysis of the rnpB gene. Clinical data were registered as well. One hundred and thirty two VGS clinical blood culture isolates from patients with septicaemia (n=95) or infective endocarditis (n=36) were analysed; all but one were identified by rnpB. Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii strains were most common in the patients with infective endocarditis. In the isolates from patients with haematological diseases, Streptococcus mitis and S. oralis dominated. In addition in 76 of the isolates it was possible to compare the results from rnpB analysis and the API 20 Strep system. In 39/76 (51%) of the isolates the results were concordant to species level; in 55 isolates there were no results from API 20 Strep. Sequence analysis of the RNase P RNA gene (rnpB) showed that almost all isolates could be identified. This could be of importance for evaluation of the portal of entry in patients with septicaemia or infective endocarditis.
A review of bioinformatic methods for forensic DNA analyses.
Liu, Yao-Yuan; Harbison, SallyAnn
2018-03-01
Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used. Copyright © 2017 Elsevier B.V. All rights reserved.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
Lee, I-M; Bottner-Parker, K D; Zhao, Y; Bertaccini, A; Davis, R E
2012-09-01
The pigeon pea witches'-broom phytoplasma group (16SrIX) comprises diverse strains that cause numerous diseases in leguminous trees and herbaceous crops, vegetables, a fruit, a nut tree and a forest tree. At least 14 strains have been reported worldwide. Comparative phylogenetic analyses of the highly conserved 16S rRNA gene and the moderately conserved rplV (rpl22)-rpsC (rps3) and secY genes indicated that the 16SrIX group consists of at least six distinct genetic lineages. Some of these lineages cannot be readily differentiated based on analysis of 16S rRNA gene sequences alone. The relative genetic distances among these closely related lineages were better assessed by including more variable genes [e.g. ribosomal protein (rp) and secY genes]. The present study demonstrated that virtual RFLP analyses using rp and secY gene sequences allowed unambiguous identification of such lineages. A coding system is proposed to designate each distinct rp and secY subgroup in the 16SrIX group.
Controllability of Deterministic Networks with the Identical Degree Sequence
Ma, Xiujuan; Zhao, Haixing; Wang, Binghong
2015-01-01
Controlling complex network is an essential problem in network science and engineering. Recent advances indicate that the controllability of complex network is dependent on the network's topology. Liu and Barabási, et.al speculated that the degree distribution was one of the most important factors affecting controllability for arbitrary complex directed network with random link weights. In this paper, we analysed the effect of degree distribution to the controllability for the deterministic networks with unweighted and undirected. We introduce a class of deterministic networks with identical degree sequence, called (x,y)-flower. We analysed controllability of the two deterministic networks ((1, 3)-flower and (2, 2)-flower) by exact controllability theory in detail and give accurate results of the minimum number of driver nodes for the two networks. In simulation, we compare the controllability of (x,y)-flower networks. Our results show that the family of (x,y)-flower networks have the same degree sequence, but their controllability is totally different. So the degree distribution itself is not sufficient to characterize the controllability of deterministic networks with unweighted and undirected. PMID:26020920
Termite hindguts and the ecology of microbial communities in the sequencing age.
Tai, Vera; Keeling, Patrick J
2013-01-01
Advances in high-throughput nucleic acid sequencing have improved our understanding of microbial communities in a number of ways. Deeper sequence coverage provides the means to assess diversity at the resolution necessary to recover ecological and biogeographic patterns, and at the same time single-cell genomics provides detailed information about the interactions between members of a microbial community. Given the vastness and complexity of microbial ecosystems, such analyses remain challenging for most environments, so greater insight can also be drawn from analysing less dynamic ecosystems. Here, we outline the advantages of one such environment, the wood-digesting hindgut communities of termites and cockroaches, and how it is a model to examine and compare both protist and bacterial communities. Beyond the analysis of diversity, our understanding of protist community ecology will depend on using statistically sound sampling regimes at biologically relevant scales, transitioning from discovery-based to experimental ecology, incorporating single-cell microbiology and other data sources, and continued development of analytical tools. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Leaché, Adam D.; Chavez, Andreas S.; Jones, Leonard N.; Grummer, Jared A.; Gottscho, Andrew D.; Linkem, Charles W.
2015-01-01
Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both “recent” and “deep” timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487
Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan
2016-01-01
Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean.
Leon, Lydia J; Doyle, Ronan; Diez-Benavente, Ernest; Clark, Taane G; Klein, Nigel; Stanier, Philip; Moore, Gudrun E
2018-05-18
In this study differences in the placental microbiota of term and preterm deliveries from a large UK pregnancy cohort were studied using 16S targeted amplicon sequencing. The impact of contamination from DNA extraction, PCR reagents, as well as those from delivery itself were also examined. A total of 400 placental samples from 256 singleton pregnancies were analysed and differences investigated between spontaneous preterm, non-spontaneous preterm, and term delivered placenta. DNA from recently delivered placenta was extracted, and screening for bacterial DNA was carried out using targeted sequencing of the 16S rRNA gene on the Illumina MiSeq platform. Sequenced reads were analysed for presence of contaminating operational taxonomic units (OTUs) identified via sequencing of negative extraction and PCR blank samples. Differential abundance and between sample (beta) diversity metrics were then compared. A large proportion of the reads sequenced from the extracted placental samples mapped to OTUs that were also found in negative extractions. Striking differences in the composition of samples were also observed, according to whether the placenta was delivered abdominally or vaginally, providing strong circumstantial evidence for delivery contamination as an important contributor to observed microbial profiles. When OTU and genus level abundances were compared between the groups of interest, a number of organisms were enriched in the spontaneous preterm cohort, including organisms that have been previously associated with adverse pregnancy outcomes, specifically Mycoplasma spp., and Ureaplasma spp.. However, analyses of overall community structure did not reveal convincing evidence for the existence of a reproducible 'preterm placental microbiome'. IMPORTANCE Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the 'placental microbiome' with preterm birth risk. Consistent with previous studies, the abundance of certain clinically relevant species differed between spontaneous preterm and non-spontaneous preterm or term delivered placenta. These results support the view that a proportion of spontaneous preterm births have an intra-uterine infection component. However, an additional observation from this study was that a substantial proportion of reads sequenced were contaminating reads, rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing output from such low biomass samples as the placenta. Copyright © 2018 Leon et al.
NAVARRO, F. B.; SUÁREZ-SANTIAGO, V. N.; BLANCA, G.
2004-01-01
• Background and Aims The discovery of a new species, Haplophyllum bastetanum F.B. Navarro, V.N. Suárez-Santiago & Blanca sp. nov., in the south-east of Spain has prompted the comparative study of species of the Iberian Peninsula, and others related, through morphological, cytogenetic, molecular, distributional and ecological characterization. • Methods The morphological study involved a quantitative analysis of the species present in the Iberian Peninsula and a comparative analysis of the morphological characteristics between H. bastetanum and other related species. Mitotic analyses were made with root meristems taken from germinating seeds. Phylogenetic analyses of the internal transcribed spacer sequences of nuclear ribosomal DNA were performed using neighbour-joining (NJ) and maximum-parsimony methods. • Key Results Haplophyllum bastetanum is a diploid species (2n = 18) distinguished primarily for its non-trifoliate glabrous leaves, lanceolate sepals, dark-green petals with a dorsal band of hairs, and a highly hairy ovary with round-apex locules. The other two Iberian species (H. linifolium and H. rosmarinifolium) are tetraploid (2n = 36) and have yellow petals. Both phylogenetic methods generated a well-supported clade grouping H. linifolium with H. rosmarinifolium. In the NJ tree, the H. linifolium–H. rosmarinifolium clade is a sister group to H. bastetanum, while in the parsimony analysis this occurred only when the gaps were coded as a fifth base and the characters were reweighted according to the rescaled consistency index. This latter group is supported by the sequence divergence among taxa. • Conclusions The phylogenies established from DNA sequences together with morphological and cytogenetic analyses support the separation of H. bastetanum as a new species. The results suggest that the change in the number of chromosomes may be the key mechanism of speciation of the genus Haplophyllum in the Iberian Peninsula. An evolutionary scheme for them is propounded. PMID:15306560
NASA Astrophysics Data System (ADS)
Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.
2012-04-01
The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.
Leekitcharoenphon, Pimlapas; Friis, Carsten; Zankari, Ea; Svendsen, Christina Aaby; Price, Lance B; Rahmani, Maral; Herrero-Fresno, Ana; Fashae, Kayode; Vandenberg, Olivier; Aarestrup, Frank M; Hendriksen, Rene S
2013-10-15
Salmonella enterica serovar Typhimurium ST313 is an invasive and phylogenetically distinct lineage present in sub-Saharan Africa. We report the presence of S. Typhimurium ST313 from patients in the Democratic Republic of Congo and Nigeria. Eighteen S. Typhimurium ST313 isolates were characterized by antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Additionally, six of the isolates were characterized by whole genome sequence typing (WGST). The presence of a putative virulence determinant was examined in 177 Salmonella isolates belonging to 57 different serovars. All S. Typhimurium ST313 isolates harbored resistant genes encoded by blaTEM1b, catA1, strA/B, sul1, and dfrA1. Additionally, aac(6')1aa gene was detected. Phylogenetic analyses revealed close genetic relationships among Congolese and Nigerian isolates from both blood and stool. Comparative genomic analyses identified a putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and S. Dublin. We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution. Comparative genomics showed an interesting putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and invasive S. Dublin.
Applying Agrep to r-NSA to solve multiple sequences approximate matching.
Ni, Bing; Wong, Man-Hon; Lam, Chi-Fai David; Leung, Kwong-Sak
2014-01-01
This paper addresses the approximate matching problem in a database consisting of multiple DNA sequences, where the proposed approach applies Agrep to a new truncated suffix array, r-NSA. The construction time of the structure is linear to the database size, and the computations of indexing a substring in the structure are constant. The number of characters processed in applying Agrep is analysed theoretically, and the theoretical upper-bound can approximate closely the empirical number of characters, which is obtained through enumerating the characters in the actual structure built. Experiments are carried out using (synthetic) random DNA sequences, as well as (real) genome sequences including Hepatitis-B Virus and X-chromosome. Experimental results show that, compared to the straight-forward approach that applies Agrep to multiple sequences individually, the proposed approach solves the matching problem in much shorter time. The speed-up of our approach depends on the sequence patterns, and for highly similar homologous genome sequences, which are the common cases in real-life genomes, it can be up to several orders of magnitude.
The current status and portability of our sequence handling software.
Staden, R
1986-01-01
I describe the current status of our sequence analysis software. The package contains a comprehensive suite of programs for managing large shotgun sequencing projects, a program containing 61 functions for analysing single sequences and a program for comparing pairs of sequences for similarity. The programs that have been described before have been improved by the addition of new functions and by being made very much easier to use. The major interactive programs have 125 pages of online help available from within them. Several new programs are described including screen editing of aligned gel readings for shotgun sequencing projects; a method to highlight errors in aligned gel readings, new methods for searching for putative signals in sequences. We use the programs on a VAX computer but the whole package has been rewritten to make it easy to transport it to other machines. I believe the programs will now run on any machine with a FORTRAN77 compiler and sufficient memory. We are currently putting the programs onto an IBM PC XT/AT and another micro running under UNIX. PMID:3511446
Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).
Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong
2006-08-01
Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.
Identification of food and beverage spoilage yeasts from DNA sequence analyses
USDA-ARS?s Scientific Manuscript database
Detection, identification, and classification of yeasts has undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of th...
Enabling large-scale next-generation sequence assembly with Blacklight
Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.
2014-01-01
Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974
2012-01-01
Background Amazona vittata is a critically endangered Puerto Rican endemic bird, the only surviving native parrot species in the United States territory, and the first parrot in the large Neotropical genus Amazona, to be studied on a genomic scale. Findings In a unique community-based funded project, DNA from an A. vittata female was sequenced using a HiSeq Illumina platform, resulting in a total of ~42.5 billion nucleotide bases. This provided approximately 26.89x average coverage depth at the completion of this funding phase. Filtering followed by assembly resulted in 259,423 contigs (N50 = 6,983 bp, longest = 75,003 bp), which was further scaffolded into 148,255 fragments (N50 = 19,470, longest = 206,462 bp). This provided ~76% coverage of the genome based on an estimated size of 1.58 Gb. The assembled scaffolds allowed basic genomic annotation and comparative analyses with other available avian whole-genome sequences. Conclusions The current data represents the first genomic information from and work carried out with a unique source of funding. This analysis further provides a means for directed training of young researchers in genetic and bioinformatics analyses and will facilitate progress towards a full assembly and annotation of the Puerto Rican parrot genome. It also adds extensive genomic data to a new branch of the avian tree, making it useful for comparative analyses with other avian species. Ultimately, the knowledge acquired from these data will contribute to an improved understanding of the overall population health of this species and aid in ongoing and future conservation efforts. PMID:23587420
Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.
2013-01-01
ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906
Genomic analysis of expressed sequence tags in American black bear Ursus americanus
2010-01-01
Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065
Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings.
Schabereiter-Gurtner, C; Piñar, G; Vybiral, D; Lubitz, W; Rölleke, S
2001-11-01
A molecular approach was chosen to analyse the correlation between bacterial colonisation and rosy discolouration of masonry and lime wall paintings of two historically important buildings in Austria and Germany. The applied molecular method included PCR amplification of genes encoding the small subunit rRNA of bacteria (16S rDNA), genetic fingerprinting by denaturing gradient gel electrophoresis (DGGE), construction of 16S rDNA clone libraries, and comparative phylogenetic sequence analyses. The bacterial community of one red-pigmented biofilm sampled in Herberstein (Austria) contained bacteria phylogenetically related to the genera Saccharopolyspora, Nocardioides, Pseudonocardia, Rubrobacter, and to a Kineococcus-like bacterium. The bacterial community of the second red-pigmented biofilm sampled in Herberstein contained bacteria related to Arthrobacter, Comamonas, and to Rubrobacter. Rubrobacter-related 16S rDNA sequences were the most abundant. In the red-pigmented biofilm sampled in Burggen (Germany), only Rubrobacter-related bacteria were identified. No Rubrobacter-related bacteria were detected in non-rosy biofilms. The majority of sequences (70%) obtained from the bacterial communities of the three investigated rosy biofilms were related to sequences of the genus Rubrobacter (red-pigmented bacteria), demonstrating a correlation between Rubrobacter-related bacteria and the phenomenon of rosy discolouration of masonry and lime wall paintings.
Kinkar, Liina; Laurimäe, Teivi; Simsek, Sami; Balkaya, Ibrahim; Casulli, Adriano; Manfredi, Maria Teresa; Ponce-Gordo, Francisco; Varcasia, Antonio; Lavikainen, Antti; González, Luis Miguel; Rehbein, Steffen; VAN DER Giessen, Joke; Sprong, Hein; Saarma, Urmas
2016-11-01
Echinococcus granulosus is the causative agent of cystic echinococcosis. The disease is a significant global public health concern and human infections are most commonly associated with E. granulosus sensu stricto (s. s.) genotype G1. The objectives of this study were to: (i) analyse the genetic variation and phylogeography of E. granulosus s. s. G1 in part of its main distribution range in Europe using 8274 bp of mtDNA; (ii) compare the results with those derived from previously used shorter mtDNA sequences and highlight the major differences. We sequenced a total of 91 E. granulosus s. s. G1 isolates from six different intermediate host species, including humans. The isolates originated from seven countries representing primarily Turkey, Italy and Spain. Few samples were also from Albania, Greece, Romania and from a patient originating from Algeria, but diagnosed in Finland. The analysed 91 sequences were divided into 83 haplotypes, revealing complex phylogeography and high genetic variation of E. granulosus s. s. G1 in Europe, particularly in the high-diversity domestication centre of western Asia. Comparisons with shorter mtDNA datasets revealed that 8274 bp sequences provided significantly higher phylogenetic resolution and thus more power to reveal the genetic relations between different haplotypes.
Genomic analysis of expressed sequence tags in American black bear Ursus americanus.
Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun
2010-03-26
Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.
2013-08-30
We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less
Insights into hominid evolution from the gorilla genome sequence
Scally, Aylwyn; Dutheil, Julien Y.; Hillier, LaDeana W.; Jordan, Greg E.; Goodhead, Ian; Herrero, Javier; Hobolth, Asger; Lappalainen, Tuuli; Mailund, Thomas; Marques-Bonet, Tomas; McCarthy, Shane; Montgomery, Stephen H.; Schwalie, Petra C.; Tang, Y. Amy; Ward, Michelle C.; Xue, Yali; Yngvadottir, Bryndis; Alkan, Can; Andersen, Lars N.; Ayub, Qasim; Ball, Edward V.; Beal, Kathryn; Bradley, Brenda J.; Chen, Yuan; Clee, Chris M.; Fitzgerald, Stephen; Graves, Tina A.; Gu, Yong; Heath, Paul; Heger, Andreas; Karakoc, Emre; Kolb-Kokocinski, Anja; Laird, Gavin K.; Lunter, Gerton; Meader, Stephen; Mort, Matthew; Mullikin, James C.; Munch, Kasper; O’Connor, Timothy D.; Phillips, Andrew D.; Prado-Martinez, Javier; Rogers, Anthony S.; Sajjadian, Saba; Schmidt, Dominic; Shaw, Katy; Simpson, Jared T.; Stenson, Peter D.; Turner, Daniel J.; Vigilant, Linda; Vilella, Albert J.; Whitener, Weldon; Zhu, Baoli; Cooper, David N.; de Jong, Pieter; Dermitzakis, Emmanouil T.; Eichler, Evan E.; Flicek, Paul; Goldman, Nick; Mundy, Nicholas I.; Ning, Zemin; Odom, Duncan T.; Ponting, Chris P.; Quail, Michael A.; Ryder, Oliver A.; Searle, Stephen M.; Warren, Wesley C.; Wilson, Richard K.; Schierup, Mikkel H.; Rogers, Jane; Tyler-Smith, Chris; Durbin, Richard
2012-01-01
Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. PMID:22398555
Tzika, Athanasia C; Helaers, Raphaël; Schramm, Gerrit; Milinkovitch, Michel C
2011-09-26
Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.
Börstler, Boris; Thiéry, Odile; Sýkorová, Zuzana; Berner, Alfred; Redecker, Dirk
2010-04-01
Glomus intraradices, an arbuscular mycorrhizal fungus (AMF), is frequently found in a surprisingly wide range of ecosystems all over the world. It is used as model organism for AMF and its genome is being sequenced. Despite the ecological importance of AMF, little has been known about their population structure, because no adequate molecular markers have been available. In the present study we analyse for the first time the intraspecific genetic structure of an AMF directly from colonized roots in the field. A recently developed PCR-RFLP approach for the mitochondrial rRNA large subunit gene (mtLSU) of these obligate symbionts was used and complemented by sequencing and primers specific for a particularly frequent mtLSU haplotype. We analysed root samples from two agricultural field experiments in Switzerland and two semi-natural grasslands in France and Switzerland. RFLP type composition of G. intraradices (phylogroup GLOM A-1) differed strongly between agricultural and semi-natural sites and the G. intraradices populations of the two agricultural sites were significantly differentiated. RFLP type richness was higher in the agricultural sites compared with the grasslands. Detailed sequence analyses which resolved multiple sequence haplotypes within some RFLP types even revealed that there was no overlap of haplotypes among any of the study sites except between the two grasslands. Our results demonstrate a surprisingly high differentiation among semi-natural and agricultural field sites for G. intraradices. These findings will have major implications on our views of processes of adaptation and specialization in these plant/fungus associations.
The “Naked Coral” Hypothesis Revisited – Evidence for and Against Scleractinian Monophyly
Forêt, Sylvain; Huttley, Gavin; Miller, David J.; Chen, Chaolun Allen
2014-01-01
The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are “naked corals” that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the “naked coral” hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the “naked coral” hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of “Robust” corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the “naked coral” topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data. PMID:24740380
De Cremer, Koen; Piérard, Denis; Hendrickx, Marijke
2016-01-01
Recently, the Fusarium genus has been narrowed based upon phylogenetic analyses and a Fusarium-like clade was adopted. The few species of the Fusarium-like clade were moved to new, re-installed or existing genera or provisionally retained as "Fusarium." Only a limited number of reference strains and DNA marker sequences are available for this clade and not much is known about its actual species diversity. Here, we report six strains, preserved by the Belgian fungal culture collection BCCM/IHEM as a Fusarium species, that belong to the Fusarium-like clade. They showed a slow growth and produced pionnotes, typical morphological characteristics of many Fusarium-like species. Multilocus sequencing with comparative sequence analyses in GenBank and phylogenetic analyses, using reference sequences of type material, confirmed that they were indeed member of the Fusarium-like clade. One strain was identified as "Fusarium" ciliatum whereas another strain was identified as Fusicolla merismoides. The four remaining strains were shown to represent a unique phylogenetic lineage in the Fusarium-like clade and were also found morphologically distinct from other members of the Fusarium-like clade. Based upon phylogenetic considerations, a new genus, Pseudofusicolla gen. nov., and a new species, Pseudofusicolla belgica sp. nov., were installed for this lineage. A formal description is provided in this study. Additional sampling will be required to gather isolates other than the historical strains presented in the present study as well as to further reveal the actual species diversity in the Fusarium-like clade. PMID:27790062
The cancer transcriptome is shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially different than the reference or for detecting sequences from the cancer microbiome.
Integrative analysis of environmental sequences using MEGAN4.
Huson, Daniel H; Mitra, Suparna; Ruscheweyh, Hans-Joachim; Weber, Nico; Schuster, Stephan C
2011-09-01
A major challenge in the analysis of environmental sequences is data integration. The question is how to analyze different types of data in a unified approach, addressing both the taxonomic and functional aspects. To facilitate such analyses, we have substantially extended MEGAN, a widely used taxonomic analysis program. The new program, MEGAN4, provides an integrated approach to the taxonomic and functional analysis of metagenomic, metatranscriptomic, metaproteomic, and rRNA data. While taxonomic analysis is performed based on the NCBI taxonomy, functional analysis is performed using the SEED classification of subsystems and functional roles or the KEGG classification of pathways and enzymes. A number of examples illustrate how such analyses can be performed, and show that one can also import and compare classification results obtained using others' tools. MEGAN4 is freely available for academic purposes, and installers for all three major operating systems can be downloaded from www-ab.informatik.uni-tuebingen.de/software/megan.
Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation.
Nakato, Ryuichiro; Shirahige, Katsuhiko
2017-03-01
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis can detect protein/DNA-binding and histone-modification sites across an entire genome. Recent advances in sequencing technologies and analyses enable us to compare hundreds of samples simultaneously; such large-scale analysis has potential to reveal the high-dimensional interrelationship level for regulatory elements and annotate novel functional genomic regions de novo. Because many experimental considerations are relevant to the choice of a method in a ChIP-seq analysis, the overall design and quality management of the experiment are of critical importance. This review offers guiding principles of computation and sample preparation for ChIP-seq analyses, highlighting the validity and limitations of the state-of-the-art procedures at each step. We also discuss the latest challenges of single-cell analysis that will encourage a new era in this field. © The Author 2016. Published by Oxford University Press.
Lott, Steffen C; Wolfien, Markus; Riege, Konstantin; Bagnacani, Andrea; Wolkenhauer, Olaf; Hoffmann, Steve; Hess, Wolfgang R
2017-11-10
RNA-Sequencing (RNA-Seq) has become a widely used approach to study quantitative and qualitative aspects of transcriptome data. The variety of RNA-Seq protocols, experimental study designs and the characteristic properties of the organisms under investigation greatly affect downstream and comparative analyses. In this review, we aim to explain the impact of structured pre-selection, classification and integration of best-performing tools within modularized data analysis workflows and ready-to-use computing infrastructures towards experimental data analyses. We highlight examples for workflows and use cases that are presented for pro-, eukaryotic and mixed dual RNA-Seq (meta-transcriptomics) experiments. In addition, we are summarizing the expertise of the laboratories participating in the project consortium "Structured Analysis and Integration of RNA-Seq experiments" (de.STAIR) and its integration with the Galaxy-workbench of the RNA Bioinformatics Center (RBC). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Lüssen, Arne; Falk, Thomas M; Villwock, Wolfgang
2003-10-01
Patterns of molecular genetic differentiation among taxa of the "agassii species complex" (Parenti, 1984) were analysed based on partial mtDNA control region sequences. Special attention has been paid to Chilean populations of Orestias agassii and species from isolated lakes of northern Chile, e.g., O. agassii, Orestias chungarensis, Orestias parinacotensis, Orestias laucaensis, and Orestias ascotanensis. Orestias tschudii, Orestias luteus, and Orestias ispi were analysed comparatively. Our findings support the utility of mtDNA control region sequences for phylogenetic studies within the "agassii species complex" and confirmed the monophyly of this particular lineage, excluding O. luteus. However, the monophyly of further morphologically defined lineages within the "agassii complex" appears doubtful. No support was found for the utility of these data sets for inferring phylogenetic relationships between more distantly related taxa originating from Lake Titicaca.
MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples.
Sivaganesan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A
2011-12-01
DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from different studies by this approach, either a consistent source of calibrator cells must be used or the estimates must account for any differences in target sequence recoveries from different sources of calibrator cells. In this report we describe two methods for estimating target sequence recoveries from whole cell calibrator samples based on qPCR analyses of their serially diluted DNA extracts and most probable number (MPN) calculation. The first method employed a traditional MPN calculation approach. The second method employed a Bayesian hierarchical statistical modeling approach and a Monte Carlo Markov Chain (MCMC) simulation method to account for the uncertainty in these estimates associated with different individual samples of the cell preparations, different dilutions of the DNA extracts and different qPCR analytical runs. The two methods were applied to estimate mean target sequence recoveries per cell from two different lots of a commercially available source of enumerated Enterococcus cell preparations. The mean target sequence recovery estimates (and standard errors) per cell from Lot A and B cell preparations by the Bayesian method were 22.73 (3.4) and 11.76 (2.4), respectively, when the data were adjusted for potential false positive results. Means were similar for the traditional MPN approach which cannot comparably assess uncertainty in the estimates. Cell numbers and estimates of recoverable target sequences in calibrator samples prepared from the two cell sources were also used to estimate cell equivalent and target sequence quantities recovered from surface water samples in a comparative Ct method. Our results illustrate the utility of the Bayesian method in accounting for uncertainty, the high degree of precision attainable by the MPN approach and the need to account for the differences in target sequence recoveries from different calibrator sample cell sources when they are used in the comparative Ct method. Published by Elsevier B.V.
Nouvel, Laurent X; Sirand-Pugnet, Pascal; Marenda, Marc S; Sagné, Eveline; Barbe, Valérie; Mangenot, Sophie; Schenowitz, Chantal; Jacob, Daniel; Barré, Aurélien; Claverol, Stéphane; Blanchard, Alain; Citti, Christine
2010-02-02
While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.
2010-01-01
Background While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. Results The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. Conclusion Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events. PMID:20122262
Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes.
Zhang, Jin; Griffith, Malachi; Miller, Christopher A; Griffith, Obi L; Spencer, David H; Walker, Jason R; Magrini, Vincent; McGrath, Sean D; Ly, Amy; Helton, Nichole M; Trissal, Maria; Link, Daniel C; Dang, Ha X; Larson, David E; Kulkarni, Shashikant; Cordes, Matthew G; Fronick, Catrina C; Fulton, Robert S; Klco, Jeffery M; Mardis, Elaine R; Ley, Timothy J; Wilson, Richard K; Maher, Christopher A
2017-11-01
To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Fernandes, Noemi M; Vizzoni, Vinicius F; Borges, Bárbara do N; A G Soares, Carlos; Silva-Neto, Inácio D da; S Paiva, Thiago da
2018-04-18
The odontostomatids are among the least studied ciliates, possibly due to their small sizes, restriction to anaerobic environments and difficulty in culturing. Consequently, their phylogenetic affinities to other ciliate taxa are still poorly understood. In the present study, we analyzed newly obtained ribosomal gene sequences of the odontostomatids Discomorphella pedroeneasi and Saprodinium dentatum, together with sequences from the literature, including Epalxella antiquorum and a large assemblage of ciliate sequences representing the major recognized classes. The results show that D. pedroeneasi and S. dentatum form a deep-diverging branch related to metopid and clevelandellid armophoreans, corroborating the old literature. However E. antiquorum clustered with the morphologically discrepant plagiopylids, indicating that either the complex odontostomatid body architecture evolved convergently, or the positioning of E. antiquorum as a plagiopylid is artifactual. A new ciliate class, Odontostomatea n. cl., is proposed based on molecular analyses and comparative morphology of odontostomatids with related taxa. Copyright © 2018. Published by Elsevier Inc.
Martin, Joanne; Kabat, Peter; Herniou, Elisabeth; Tristem, Michael
2002-01-01
A novel group of retroviruses found within the order Crocodylia are described. Phylogenetic analyses demonstrate that they are probably the most divergent members of the Retroviridae described to date; even the most conserved regions of Pol show an average of only 23% amino acid identity when compared to other retroviruses. PMID:11932432
P-type ATPase superfamily: evidence for critical roles for kingdom evolution.
Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio
2003-04-01
The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.
Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2007-01-01
We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856
Population Genomics of Fungal and Oomycete Pathogens.
Grünwald, Niklaus J; McDonald, Bruce A; Milgroom, Michael G
2016-08-04
We are entering a new era in plant pathology in which whole-genome sequences of many individuals of a pathogen species are becoming readily available. Population genomics aims to discover genetic mechanisms underlying phenotypes associated with adaptive traits such as pathogenicity, virulence, fungicide resistance, and host specialization, as genome sequences or large numbers of single nucleotide polymorphisms become readily available from multiple individuals of the same species. This emerging field encompasses detailed genetic analyses of natural populations, comparative genomic analyses of closely related species, identification of genes under selection, and linkage analyses involving association studies in natural populations or segregating populations resulting from crosses. The era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. This review focuses on conceptual and methodological issues as well as the approaches to answering questions in population genomics. The major steps start with defining relevant biological and evolutionary questions, followed by sampling, genotyping, and phenotyping, and ending in analytical methods and interpretations. We provide examples of recent applications of population genomics to fungal and oomycete plant pathogens.
Kikuchi, Taisei; Hino, Akina; Tanaka, Teruhisa; Aung, Myo Pa Pa Thet Hnin Htwe; Afrin, Tanzila; Nagayasu, Eiji; Tanaka, Ryusei; Higashiarakawa, Miwa; Win, Kyu Kyu; Hirata, Tetsuo; Htike, Wah Win; Fujita, Jiro; Maruyama, Haruhiko
2016-12-01
The helminth Strongyloides stercoralis, which is transmitted through soil, infects 30-100 million people worldwide. S. stercoralis reproduces sexually outside the host as well as asexually within the host, which causes a life-long infection. To understand the population structure and transmission patterns of this parasite, we re-sequenced the genomes of 33 individual S. stercoralis nematodes collected in Myanmar (prevalent region) and Japan (non-prevalent region). We utilised a method combining whole genome amplification and next-generation sequencing techniques to detect 298,202 variant positions (0.6% of the genome) compared with the reference genome. Phylogenetic analyses of SNP data revealed an unambiguous geographical separation and sub-populations that correlated with the host geographical origin, particularly for the Myanmar samples. The relatively higher heterozygosity in the genomes of the Japanese samples can possibly be explained by the independent evolution of two haplotypes of diploid genomes through asexual reproduction during the auto-infection cycle, suggesting that analysing heterozygosity is useful and necessary to infer infection history and geographical prevalence.
Kusumi, J; Tsumura, Y; Yoshimaru, H; Tachida, H
2000-10-01
Nucleotide sequences from four chloroplast genes, the matK, chlL, intergenic spacer (IGS) region between trnL and trnF, and an intron of trnL, were determined from all species of Taxodiaceae and five species of Cupressaceae sensu stricto (s.s.). Phylogenetic trees were constructed using the maximum parsimony and the neighbor-joining methods with Cunninghamia as an outgroup. These analyses provided greater resolution of relationships among genera and higher bootstrap supports for clades compared to previous analyses. Results indicate that Taiwania diverged first, and then Athrotaxis diverged from the remaining genera. Metasequoia, Sequoia, and Sequoiadendron form a clade. Taxodium and Glyptostrobus form a clade, which is the sister to Cryptomeria. Cupressaceae s.s. are derived from within Taxodiaceae, being the most closely related to the Cryptomeria/Taxodium/Glyptostrobus clade. These relationships are consistent with previous morphological groupings and the analyses of molecular data. In addition, we found acceleration of evolutionary rates in Cupressaceae s.s. Possible causes for the acceleration are discussed.
1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.
Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale
2017-01-01
The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI.
1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study
Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E.; Lauenstein, Thomas C.; Forsting, Michael; Quick, Harald H.; Nassenstein, Kai; Umutlu, Lale
2017-01-01
Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI. PMID:29125850
Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.
1993-01-01
We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067
Bioinformatics analysis and genetic diversity of the poliovirus.
Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue
2014-12-01
Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30 % were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development. © 2014 The Authors.
Genome-wide signatures of convergent evolution in echolocating mammals
Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.
2013-01-01
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennetzen, Jeffrey L; Yang, Xiaohan; Ye, Chuyu
We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species thatmore » demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).« less
snpAD: An ancient DNA genotype caller.
Prüfer, Kay
2018-06-21
The study of ancient genomes can elucidate the evolutionary past. However, analyses are complicated by base-modifications in ancient DNA molecules that result in errors in DNA sequences. These errors are particularly common near the ends of sequences and pose a challenge for genotype calling. I describe an iterative method that estimates genotype frequencies and errors along sequences to allow for accurate genotype calling from ancient sequences. The implementation of this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity from several low-coverage Neandertals. These estimates show that low heterozygosity, compared to modern humans, was common among Neandertals. The C ++ code of snpAD is freely available at http://bioinf.eva.mpg.de/snpAD/. Supplementary data are available at Bioinformatics online.
Partial De Novo Sequencing and Unusual CID Fragmentation of a 7 kDa, Disulfide-Bridged Toxin
NASA Astrophysics Data System (ADS)
Medzihradszky, Katalin F.; Bohlen, Christopher J.
2012-05-01
A 7 kDa toxin isolated from the venom of the Texas coral snake ( Micrurus tener tener) was subjected to collision-induced dissociation (CID) and electron-transfer dissociation (ETD) analyses both before and after reduction at low pH. Manual and automated approaches to de novo sequencing are compared in detail. Manual de novo sequencing utilizing the combination of high accuracy CID and ETD data and an acid-related cleavage yielded the N-terminal half of the sequence from the reduced species. The intact polypeptide, containing 3 disulfide bridges produced a series of unusual fragments in ion trap CID experiments: abundant internal amino acid losses were detected, and also one of the disulfide-linkage positions could be determined from fragments formed by the cleavage of two bonds. In addition, internal and c-type fragments were also observed.
Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander
2017-09-10
The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Plant DNA sequences from feces: potential means for assessing diets of wild primates.
Bradley, Brenda J; Stiller, Mathias; Doran-Sheehy, Diane M; Harris, Tara; Chapman, Colin A; Vigilant, Linda; Poinar, Hendrik
2007-06-01
Analyses of plant DNA in feces provides a promising, yet largely unexplored, means of documenting the diets of elusive primates. Here we demonstrate the promise and pitfalls of this approach using DNA extracted from fecal samples of wild western gorillas (Gorilla gorilla) and black and white colobus monkeys (Colobus guereza). From these DNA extracts we amplified, cloned, and sequenced small segments of chloroplast DNA (part of the rbcL gene) and plant nuclear DNA (ITS-2). The obtained sequences were compared to sequences generated from known plant samples and to those in GenBank to identify plant taxa in the feces. With further optimization, this method could provide a basic evaluation of minimum primate dietary diversity even when knowledge of local flora is limited. This approach may find application in studies characterizing the diets of poorly-known, unhabituated primate species or assaying consumer-resource relationships in an ecosystem. (c) 2007 Wiley-Liss, Inc.
Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming
2013-01-01
Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.
2013-01-01
Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169
Kim, Minseok; Morrison, Mark; Yu, Zhongtang
2011-09-01
Phylogenetic analysis was conducted to examine ruminal bacteria in two ruminal fractions (adherent fraction vs. liquid fraction) collected from cattle fed with two different diets: forage alone vs. forage plus concentrate. One hundred forty-four 16S rRNA gene (rrs) sequences were obtained from clone libraries constructed from the four samples. These rrs sequences were assigned to 116 different operational taxonomic units (OTUs) defined at 0.03 phylogenetic distance. Most of these OTUs could not be assigned to any known genus. The phylum Firmicutes was represented by approximately 70% of all the sequences. By comparing to the OTUs already documented in the rumen, 52 new OTUs were identified. UniFrac, SONS, and denaturing gradient gel electrophoresis analyses revealed difference in diversity between the two fractions and between the two diets. This study showed that rrs sequences recovered from small clone libraries can still help identify novel species-level OTUs.
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius
Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.
2010-01-01
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665
High-Throughput, Data-Rich Cellular RNA Device Engineering
Townshend, Brent; Kennedy, Andrew B.; Xiang, Joy S.; Smolke, Christina D.
2015-01-01
Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing, and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary interaction RNA devices exhibit improved performance in terms of gene silencing, activation ratio, and ligand sensitivity as compared to optimized RNA devices that rely on secondary structure changes. We apply our method to building biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate understanding of the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292
Lei, Yong-Liang; Wang, Xiao-Guang; Liu, Fu-Ming; Chen, Xiu-Ying; Ye, Bi-Feng; Mei, Jian-Hua; Lan, Jin-Quan; Tang, Qing
2009-08-01
Based on sequencing the full-length genomes of two Chinese Ferret-Badger, we analyzed the properties of rabies viruses genetic variation in molecular level to get information on prevalence and variation of rabies viruses in Zhejiang, and to enrich the genome database of rabies viruses street strains isolated from Chinese wildlife. Overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses of the N genes from Chinese Ferret-Badger, sika deer, vole, dog. Vaccine strains were then determined. The two full-length genomes were completely sequenced to find out that they had the same genetic structure with 11 923 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions (IGRs), 423 nts-Pseudogene-like sequence (Psi), 70 nts-Trailer. The two full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by blast and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the two full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so that the nucleotide mutations happened in these two genomes were most probably as synonymous mutations. Compared to the referenced rabies viruses, the lengths of the five protein coding regions did not show any changes or recombination, but only with a few-point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the two ferret badgers genomes were similar to the referenced vaccine or street strains. The two strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessing the distinct geographyphic characteristics of China. All the evidence suggested a cue that these two ferret badgers rabies viruses were likely to be street virus that already circulating in wildlife.
2014-01-01
Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. PMID:24533922
Platt, Roy N.; Amman, Brian R.; Keith, Megan S.; Thompson, Cody W.; Bradley, Robert D.
2015-01-01
The evolutionary relationships between Peromyscus, Habromys, Isthmomys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase (Adh1-I2), beta fibrinogen (Fgb-I7), interphotoreceptor retinoid-binding protein (Rbp3), and cytochrome-b (Cytb). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys, Megadontomys, Neotomodon, Osgoodomys, Podomys, and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus. Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data. PMID:26937047
Platt, Roy N; Amman, Brian R; Keith, Megan S; Thompson, Cody W; Bradley, Robert D
2015-08-03
The evolutionary relationships between Peromyscus , Habromys , Isthmomys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase ( Adh 1-I2), beta fibrinogen ( Fgb -I7), interphotoreceptor retinoid-binding protein ( Rbp 3), and cytochrome- b ( Cytb ). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys , Megadontomys , Neotomodon , Osgoodomys , Podomys , and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus . Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data.
Draft genome of the red harvester ant Pogonomyrmex barbatus.
Smith, Chris R; Smith, Christopher D; Robertson, Hugh M; Helmkampf, Martin; Zimin, Aleksey; Yandell, Mark; Holt, Carson; Hu, Hao; Abouheif, Ehab; Benton, Richard; Cash, Elizabeth; Croset, Vincent; Currie, Cameron R; Elhaik, Eran; Elsik, Christine G; Favé, Marie-Julie; Fernandes, Vilaiwan; Gibson, Joshua D; Graur, Dan; Gronenberg, Wulfila; Grubbs, Kirk J; Hagen, Darren E; Viniegra, Ana Sofia Ibarraran; Johnson, Brian R; Johnson, Reed M; Khila, Abderrahman; Kim, Jay W; Mathis, Kaitlyn A; Munoz-Torres, Monica C; Murphy, Marguerite C; Mustard, Julie A; Nakamura, Rin; Niehuis, Oliver; Nigam, Surabhi; Overson, Rick P; Placek, Jennifer E; Rajakumar, Rajendhran; Reese, Justin T; Suen, Garret; Tao, Shu; Torres, Candice W; Tsutsui, Neil D; Viljakainen, Lumi; Wolschin, Florian; Gadau, Jürgen
2011-04-05
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.
Conserved noncoding sequences conserve biological networks and influence genome evolution.
Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang
2018-05-01
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.
Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology
Reuter, Sandra; Ellington, Matthew J.; Cartwright, Edward J. P.; Köser, Claudio U.; Török, M. Estée; Gouliouris, Theodore; Harris, Simon R.; Brown, Nicholas M.; Holden, Matthew T. G.; Quail, Mike; Parkhill, Julian; Smith, Geoffrey P.; Bentley, Stephen D.; Peacock, Sharon J.
2014-01-01
IMPORTANCE The latest generation of benchtop DNA sequencing platforms can provide an accurate whole-genome sequence (WGS) for a broad range of bacteria in less than a day. These could be used to more effectively contain the spread of multidrug-resistant pathogens. OBJECTIVE To compare WGS with standard clinical microbiology practice for the investigation of nosocomial outbreaks caused by multidrug-resistant bacteria, the identification of genetic determinants of antimicrobial resistance, and typing of other clinically important pathogens. DESIGN, SETTING, AND PARTICIPANTS A laboratory-based study of hospital inpatients with a range of bacterial infections at Cambridge University Hospitals NHS Foundation Trust, a secondary and tertiary referral center in England, comparing WGS with standard diagnostic microbiology using stored bacterial isolates and clinical information. MAIN OUTCOMES AND MEASURES Specimens were taken and processed as part of routine clinical care, and cultured isolates stored and referred for additional reference laboratory testing as necessary. Isolates underwent DNA extraction and library preparation prior to sequencing on the Illumina MiSeq platform. Bioinformatic analyses were performed by persons blinded to the clinical, epidemiologic, and antimicrobial susceptibility data. RESULTS We investigated 2 putative nosocomial outbreaks, one caused by vancomycin-resistant Enterococcus faecium and the other by carbapenem-resistant Enterobacter cloacae; WGS accurately discriminated between outbreak and nonoutbreak isolates and was superior to conventional typing methods. We compared WGS with standard methods for the identification of the mechanism of carbapenem resistance in a range of gram-negative bacteria (Acinetobacter baumannii, E cloacae, Escherichia coli, and Klebsiella pneumoniae). This demonstrated concordance between phenotypic and genotypic results, and the ability to determine whether resistance was attributable to the presence of carbapenemases or other resistance mechanisms. Whole-genome sequencing was used to recapitulate reference laboratory typing of clinical isolates of Neisseria meningitidis and to provide extended phylogenetic analyses of these. CONCLUSIONS AND RELEVANCE The speed, accuracy, and depth of information provided by WGS platforms to confirm or refute outbreaks in hospitals and the community, and to accurately define transmission of multidrug-resistant and other organisms, represents an important advance. PMID:23857503
Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.
Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K
2013-12-29
Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing
2013-01-01
Background Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Results Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. Conclusions The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants. PMID:24373163
Xing, Mengxin; Hou, Zhanhui; Yuan, Jianbo; Liu, Yuan; Qu, Yanmei; Liu, Bin
2013-12-01
Metagenomics combined with 16S rRNA gene sequence analyses was applied to unveil the taxonomic composition and functional diversity of the farmed adult turbot gastrointestinal (GI) microbiome. Proteobacteria and Firmicutes which existed in both GI content and mucus were dominated in the turbot GI microbiome. 16S rRNA gene sequence analyses also indicated that the turbot GI tract may harbor some bacteria which originated from associated seawater. Functional analyses indicated that the clustering-based subsystem and many metabolic subsystems were dominant in the turbot GI metagenome. Compared with other gut metagenomes, quorum sensing and biofilm formation was overabundant in the turbot GI metagenome. Genes associated with quorum sensing and biofilm formation were found in species within Vibrio, including Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus. In farmed fish gut metagenomes, the stress response and protein folding subsystems were over-represented and several genes concerning antibiotic and heavy metal resistance were also detected. These data suggested that the turbot GI microbiome may be affected by human factors in aquaculture. Additionally, iron acquisition and the metabolism subsystem were more abundant in the turbot GI metagenome when compared with freshwater fish gut metagenome, suggesting that unique metabolic potential may be observed in marine animal GI microbiomes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
2011-01-01
Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of these motile intestinal lactobacilli. PMID:21995554
Morsbach, F; Gordic, S; Gruner, C; Niemann, M; Goetti, R; Gotschy, A; Kozerke, S; Alkadhi, H; Manka, R
2016-08-15
This study aims to determine whether the quantification of myocardial fibrosis in patients with Fabry disease (FD) and hypertrophic cardiomyopathy (HCM) using a late gadolinium enhancement (LGE) singlebreath-hold three-dimensional (3D) inversion recovery magnetic resonance (MR) imaging sequence is comparable with a clinically established two-dimensional (2D) multi-breath-hold sequence. In this retrospective, IRB-approved study, 40 consecutive patients (18 male; mean age 50±17years) with Fabry disease (n=18) and HCM (n=22) underwent MR imaging at 1.5T. Spatial resolution was the same for 3D and 2D images (field-of-view, 350×350mm(2); in-plane-resolution, 1.2×1.2mm(2); section-thickness, 8mm). Datasets were analyzed for subjective image quality; myocardial and fibrotic mass, and total fibrotic tissue percentage were quantified. There was no significant difference in subjective image quality between 3D and 2D acquisitions (P=0.1 and P=0.3) for either disease. In patients with Fabry disease there were no significant differences between 3D and 2D acquisitions for myocardial mass (P=0.55), fibrous tissue mass (P=0.89), and total fibrous percentage (P=0.67), with good agreement between acquisitions according to Bland-Altman analyses. In patients with HCM there were also no significant differences between acquisitions for myocardial mass (P=0.48), fibrous tissue mass (P=0.56), and total fibrous percentage (P=0.67), with good agreement according to Bland-Altman analyses. Acquisition time was significantly shorter for 3D (25±5s) as compared to the 2D sequence (349±62s, P<0.001). In patients with Fabry disease and HCM, 3D LGE imaging provides equivalent diagnostic information in regard to quantification of myocardial fibrosis as compared with a standard 2D sequence, but at superior acquisition speed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Saini, M.; Palai, T. K.; Das, D. K.; Hatle, K. M.; Gupta, P. K.
2013-01-01
Interleukin-4 (IL-4) produced from Th2 cells modulates both innate and adaptive immune responses. It is a common belief that wild animals possess better immunity against diseases than domestic and laboratory animals; however, the immune system of wild animals is not fully explored yet. Therefore, a comparative study was designed to explore the wildlife immunity through characterisation of IL-4 cDNA of nilgai, a wild ruminant, and Indian buffalo, a domestic ruminant. Total RNA was extracted from peripheral blood mononuclear cells of nilgai and Indian buffalo and reverse transcribed into cDNA. Respective cDNA was further cloned and sequenced. Sequences were analysed in silico and compared with their homologues available at GenBank. The deduced 135 amino acid protein of nilgai IL-4 is 95.6% similar to that of Indian buffalo. N-linked glycosylation sequence, leader sequence, Cysteine residues in the signal peptide region, and 3′ UTR of IL-4 were found to be conserved across species. Six nonsynonymous nucleotide substitutions were found in Indian buffalo compared to nilgai amino acid sequence. Tertiary structure of this protein in both species was modeled, and it was found that this protein falls under 4-helical cytokines superfamily and short chain cytokine family. Phylogenetic analysis revealed a single cluster of ruminants including both nilgai and Indian buffalo that was placed distinct from other nonruminant mammals. PMID:24348167
Pightling, Arthur W.; Petronella, Nicholas; Pagotto, Franco
2014-01-01
The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should test a variety of conditions to achieve optimal results. PMID:25144537
Fähnrich, Anke; Krebbel, Moritz; Decker, Normann; Leucker, Martin; Lange, Felix D; Kalies, Kathrin; Möller, Steffen
2017-03-11
Next generation sequencing (NGS) technologies enable studies and analyses of the diversity of both T and B cell receptors (TCR and BCR) in human and animal systems to elucidate immune functions in health and disease. Over the last few years, several algorithms and tools have been developed to support respective analyses of raw sequencing data of the immune repertoire. These tools focus on distinct aspects of the data processing and require a strong bioinformatics background. To facilitate the analysis of T and B cell repertoires by less experienced users, software is needed that combines the most common tools for repertoire analysis. We introduce a graphical user interface (GUI) providing a complete analysis pipeline for processing raw NGS data for human and animal TCR and BCR clonotype determination and advanced differential repertoire studies. It provides two applications. ClonoCalc prepares the raw data for downstream analyses. It combines a demultiplexer for barcode splitting and employs MiXCR for paired-end read merging and the extraction of human and animal TCR/BCR sequences. ClonoPlot wraps the R package tcR and further contributes self-developed plots for the descriptive comparative investigation of immune repertoires. This workflow reduces the amount of programming required to perform the respective analyses and supports both communication and training between scientists and technicians, and across scientific disciplines. The Open Source development in Java and R is modular and invites advanced users to extend its functionality. Software and documentation are freely available at https://bitbucket.org/ClonoSuite/clonocalc-plot .
Sharma, Rahul; Xia, Xiaojuan; Cano, Liliana M; Evangelisti, Edouard; Kemen, Eric; Judelson, Howard; Oome, Stan; Sambles, Christine; van den Hoogen, D Johan; Kitner, Miloslav; Klein, Joël; Meijer, Harold J G; Spring, Otmar; Win, Joe; Zipper, Reinhard; Bode, Helge B; Govers, Francine; Kamoun, Sophien; Schornack, Sebastian; Studholme, David J; Van den Ackerveken, Guido; Thines, Marco
2015-10-05
Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
2012-01-01
Background MicroRNAs (miRNAs) are small RNAs (21-24 bp) providing an RNA-based system of gene regulation highly conserved in plants and animals. In plants, miRNAs control mRNA degradation or restrain translation, affecting development and responses to stresses. Plant miRNAs show imperfect but extensive complementarity to mRNA targets, making their computational prediction possible, useful when data mining is applied on different species. In this study we used a comparative approach to identify both miRNAs and their targets, in artichoke and safflower. Results Two complete expressed sequence tags (ESTs) datasets from artichoke (3.6·104 entries) and safflower (4.2·104), were analysed with a bioinformatic pipeline and in vitro experiments, identifying 17 potential miRNAs. For each EST, using RNAhybrid program and 953 non redundant miRNA mature sequences, available in mirBase as reference, we searched matching putative targets. 8730 out of 42011 ESTs from safflower and 7145 of 36323 ESTs from artichoke showed at least one predicted miRNA target. BLAST analysis showed that 75% of all ESTs shared at least a common homologous region (E-value < 10-4) and about 50% of these displayed 400 bp or longer aligned sequences as conserved homologous/orthologous (COS) regions. 960 and 890 ESTs of safflower and artichoke organized in COS shared 79 different miRNA targets, considered functionally conserved, and statistically significant when compared with random sequences (signal to noise ratio > 2 and specificity ≥ 0.85). Four highly significant miRNAs selected from in silico data were experimentally validated in globe artichoke leaves. Conclusions Mature miRNAs and targets were predicted within EST sequences of safflower and artichoke. Most of the miRNA targets appeared highly/moderately conserved, highlighting an important and conserved function. In this study we introduce a stringent parameter for the comparative sequence analysis, represented by the identification of the same target in the COS region. After statistical analysis 79 targets, found on the COS regions and belonging to 60 miRNA families, have a signal to noise ratio > 2, with ≥ 0.85 specificity. The putative miRNAs identified belong to 55 dicotyledon plants and to 24 families only in monocotyledon. PMID:22536958
Fort, Philippe; Albertini, Aurélie; Van-Hua, Aurélie; Berthomieu, Arnaud; Roche, Stéphane; Delsuc, Frédéric; Pasteur, Nicole; Capy, Pierre; Gaudin, Yves; Weill, Mylène
2012-01-01
Retroelements represent a considerable fraction of many eukaryotic genomes and are considered major drives for adaptive genetic innovations. Recent discoveries showed that despite not normally using DNA intermediates like retroviruses do, Mononegaviruses (i.e., viruses with nonsegmented, negative-sense RNA genomes) can integrate gene fragments into the genomes of their hosts. This was shown for Bornaviridae and Filoviridae, the sequences of which have been found integrated into the germ line cells of many vertebrate hosts. Here, we show that Rhabdoviridae sequences, the major Mononegavirales family, have integrated only into the genomes of arthropod species. We identified 185 integrated rhabdoviral elements (IREs) coding for nucleoproteins, glycoproteins, or RNA-dependent RNA polymerases; they were mostly found in the genomes of the mosquito Aedes aegypti and the blacklegged tick Ixodes scapularis. Phylogenetic analyses showed that most IREs in A. aegypti derived from multiple independent integration events. Since RNA viruses are submitted to much higher substitution rates as compared with their hosts, IREs thus represent fossil traces of the diversity of extinct Rhabdoviruses. Furthermore, analyses of orthologous IREs in A. aegypti field mosquitoes sampled worldwide identified an integrated polymerase IRE fragment that appeared under purifying selection within several million years, which supports a functional role in the host's biology. These results show that A. aegypti was subjected to repeated Rhabdovirus infectious episodes during its evolution history, which led to the accumulation of many integrated sequences. They also suggest that like retroviruses, integrated rhabdoviral sequences may participate actively in the evolution of their hosts.
Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex.
Chow, Keng-See; Wan, Kiew-Lian; Isa, Mohd Noor Mat; Bahari, Azlina; Tan, Siang-Hee; Harikrishna, K; Yeang, Hoong-Yeet
2007-01-01
Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.
Corella, Alfons; Bert, Francesc; Pérez-Pérez, Alejandro; Gené, Manel; Turbón, Daniel
2007-01-01
Chimane, Moseten Aymara and Quechua are Amerindian populations living in the Bolivian Piedmont, a characteristic ecoregion between the eastern slope of the Andean mountains and the Amazonian Llanos de Moxos. In both neighbouring areas, dense and complex societies have developed over the centuries. The Piedmont area is especially interesting from a human peopling perspective since there is no clear evidence regarding the genetic influence and peculiarities of these populations. This land has been used extensively as a territory of economic and cultural exchange between the Andes and Amazonia, however Chimane and Moseten populations have been sufficiently isolated from their neighbour groups to be recognized as distinct populations. Genetic information suggests that evolutionary processes, such as genetic drift, natural selection and genetic admixture have formed the history of the Piedmont populations. The objective of this study is to characterize the genetic diversity of the Piedmont populations, analysing the sequence variability of the HVR-I control region in the mitochondrial DNA (mtDNA). Haplogroup mtDNA data available from the whole of Central and South America were utilized to determine the relationship of the Piedmont populations with other Amerindian populations. Hair pulls were obtained in situ, and DNA from non-related individuals was extracted using a standard Chelex 100 method. A 401 bp DNA fragment of HVR-I region was amplified using standard procedures. Two independent 401 and 328 bp DNA fragments were sequenced separately for each sample. The sequence analyses included mismatch distribution and mean pairwise differences, median network analyses, AMOVA and principal component analyses. The genetic diversity of DNA sequences was measured and compared with other South Amerindian populations. The genetic diversity of 401 nucleotide mtDNA sequences, in the hypervariable Control Region, from positions 16 000-16 400, was characterized in a sample of 46 Amerindians living in the Piedmont area in the Beni Department of Bolivia. The results obtained indicate that the genetic diversity in the area is higher than that observed in other American groups living in much larger areas and despite the reduced size of the studied area the human groups analysed show high levels of inter-group variability. In addition, results show that Amerindian populations living in the Piedmont are genetically more related to those in the Andean than in the Amazonian populations.
RNA sequencing: current and prospective uses in metabolic research.
Vikman, Petter; Fadista, Joao; Oskolkov, Nikolay
2014-10-01
Previous global RNA analysis was restricted to known transcripts in species with a defined transcriptome. Next generation sequencing has transformed transcriptomics by making it possible to analyse expressed genes with an exon level resolution from any tissue in any species without any a priori knowledge of which genes that are being expressed, splice patterns or their nucleotide sequence. In addition, RNA sequencing is a more sensitive technique compared with microarrays with a larger dynamic range, and it also allows for investigation of imprinting and allele-specific expression. This can be done for a cost that is able to compete with that of a microarray, making RNA sequencing a technique available to most researchers. Therefore RNA sequencing has recently become the state of the art with regards to large-scale RNA investigations and has to a large extent replaced microarrays. The only drawback is the large data amounts produced, which together with the complexity of the data can make a researcher spend far more time on analysis than performing the actual experiment. © 2014 Society for Endocrinology.
Atropos: specific, sensitive, and speedy trimming of sequencing reads.
Didion, John P; Martin, Marcel; Collins, Francis S
2017-01-01
A key step in the transformation of raw sequencing reads into biological insights is the trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase the quality and reliability while decreasing the computational requirements of downstream analyses. Many read trimming software tools are available; however, no tool simultaneously provides the accuracy, computational efficiency, and feature set required to handle the types and volumes of data generated in modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read trimming tools, Atropos achieves significant increases in trimming accuracy while remaining competitive in execution times. Furthermore, Atropos maintains high accuracy even when trimming data with elevated rates of sequencing errors. The accuracy, high performance, and broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of Illumina, ABI SOLiD, and other current-generation short-read sequencing datasets. Atropos is open source and free software written in Python (3.3+) and available at https://github.com/jdidion/atropos.
Engel, Stacia R.; Cherry, J. Michael
2013-01-01
The first completed eukaryotic genome sequence was that of the yeast Saccharomyces cerevisiae, and the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the original model organism database. SGD remains the authoritative community resource for the S. cerevisiae reference genome sequence and its annotation, and continues to provide comprehensive biological information correlated with S. cerevisiae genes and their products. A diverse set of yeast strains have been sequenced to explore commercial and laboratory applications, and a brief history of those strains is provided. The publication of these new genomes has motivated the creation of new tools, and SGD will annotate and provide comparative analyses of these sequences, correlating changes with variations in strain phenotypes and protein function. We are entering a new era at SGD, as we incorporate these new sequences and make them accessible to the scientific community, all in an effort to continue in our mission of educating researchers and facilitating discovery. Database URL: http://www.yeastgenome.org/ PMID:23487186
Atropos: specific, sensitive, and speedy trimming of sequencing reads
Collins, Francis S.
2017-01-01
A key step in the transformation of raw sequencing reads into biological insights is the trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase the quality and reliability while decreasing the computational requirements of downstream analyses. Many read trimming software tools are available; however, no tool simultaneously provides the accuracy, computational efficiency, and feature set required to handle the types and volumes of data generated in modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read trimming tools, Atropos achieves significant increases in trimming accuracy while remaining competitive in execution times. Furthermore, Atropos maintains high accuracy even when trimming data with elevated rates of sequencing errors. The accuracy, high performance, and broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of Illumina, ABI SOLiD, and other current-generation short-read sequencing datasets. Atropos is open source and free software written in Python (3.3+) and available at https://github.com/jdidion/atropos. PMID:28875074
DMINDA: an integrated web server for DNA motif identification and analyses
Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying
2014-01-01
DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. PMID:24753419
GPSit: An automated method for evolutionary analysis of nonculturable ciliated microeukaryotes.
Chen, Xiao; Wang, Yurui; Sheng, Yalan; Warren, Alan; Gao, Shan
2018-05-01
Microeukaryotes are among the most important components of the microbial food web in almost all aquatic and terrestrial ecosystems worldwide. In order to gain a better understanding their roles and functions in ecosystems, sequencing coupled with phylogenomic analyses of entire genomes or transcriptomes is increasingly used to reconstruct the evolutionary history and classification of these microeukaryotes and thus provide a more robust framework for determining their systematics and diversity. More importantly, phylogenomic research usually requires high levels of hands-on bioinformatics experience. Here, we propose an efficient automated method, "Guided Phylogenomic Search in trees" (GPSit), which starts from predicted protein sequences of newly sequenced species and a well-defined customized orthologous database. Compared with previous protocols, our method streamlines the entire workflow by integrating all essential and other optional operations. In so doing, the manual operation time for reconstructing phylogenetic relationships is reduced from days to several hours, compared to other methods. Furthermore, GPSit supports user-defined parameters in most steps and thus allows users to adapt it to their studies. The effectiveness of GPSit is demonstrated by incorporating available online data and new single-cell data of three nonculturable marine ciliates (Anteholosticha monilata, Deviata sp. and Diophrys scutum) under moderate sequencing coverage (~5×). Our results indicate that the former could reconstruct robust "deep" phylogenetic relationships while the latter reveals the presence of intermediate taxa in shallow relationships. Based on empirical phylogenomic data, we also used GPSit to evaluate the impact of different levels of missing data on two commonly used methods of phylogenetic analyses, maximum likelihood (ML) and Bayesian inference (BI) methods. We found that BI is less sensitive to missing data when fast-evolving sites are removed. © 2018 John Wiley & Sons Ltd.
CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics
Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David
2013-01-01
Background Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. Results The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. Conclusion This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training. PMID:23577086
StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.
Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh
2016-01-01
The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia
2012-11-16
The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.
2012-01-01
Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda. PMID:23153176
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-03-01
Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org
Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.
Palesch, David; Bosinger, Steven E; Tharp, Gregory K; Vanderford, Thomas H; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P; Kirchhoff, Frank; Hahn, Beatrice H; Norgren, Robert B; Patel, Nirav B; Sodora, Donald L; Dawoud, Reem A; Stewart, Caro-Beth; Seepo, Sara M; Harris, R Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W C; Hahn, Matthew W; Pipes, Lenore; Mason, Christopher E; Muzny, Donna M; Gibbs, Richard A; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido
2018-01-03
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.
Using comparative genome analysis to identify problems in annotated microbial genomes.
Poptsova, Maria S; Gogarten, J Peter
2010-07-01
Genome annotation is a tedious task that is mostly done by automated methods; however, the accuracy of these approaches has been questioned since the beginning of the sequencing era. Genome annotation is a multilevel process, and errors can emerge at different stages: during sequencing, as a result of gene-calling procedures, and in the process of assigning gene functions. Missed or wrongly annotated genes differentially impact different types of analyses. Here we discuss and demonstrate how the methods of comparative genome analysis can refine annotations by locating missing orthologues. We also discuss possible reasons for errors and show that the second-generation annotation systems, which combine multiple gene-calling programs with similarity-based methods, perform much better than the first annotation tools. Since old errors may propagate to the newly sequenced genomes, we emphasize that the problem of continuously updating popular public databases is an urgent and unresolved one. Due to the progress in genome-sequencing technologies, automated annotation techniques will remain the main approach in the future. Researchers need to be aware of the existing errors in the annotation of even well-studied genomes, such as Escherichia coli, and consider additional quality control for their results.
Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang
2011-06-01
Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.
Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host
Palesch, David; Bosinger, Steven E.; Tharp, Gregory K.; Vanderford, Thomas H.; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P.; Kirchhoff, Frank; Hahn, Beatrice H.; Norgren, Robert B.; Patel, Nirav B.; Sodora, Donald L.; Dawoud, Reem A.; Stewart, Caro-Beth; Seepo, Sara M.; Harris, R. Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W. C.; Hahn, Matthew W.; Pipes, Lenore; Mason, Christopher E.; Muzny, Donna M.; Gibbs, Richard A.; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido
2018-01-01
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia1. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3–4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS. PMID:29300007
Numeric promoter description - A comparative view on concepts and general application.
Beier, Rico; Labudde, Dirk
2016-01-01
Nucleic acid molecules play a key role in a variety of biological processes. Starting from storage and transfer tasks, this also comprises the triggering of biological processes, regulatory effects and the active influence gained by target binding. Based on the experimental output (in this case promoter sequences), further in silico analyses aid in gaining new insights into these processes and interactions. The numerical description of nucleic acids thereby constitutes a bridge between the concrete biological issues and the analytical methods. Hence, this study compares 26 descriptor sets obtained by applying well-known numerical description concepts to an established dataset of 38 DNA promoter sequences. The suitability of the description sets was evaluated by computing partial least squares regression models and assessing the model accuracy. We conclude that the major importance regarding the descriptive power is attached to positional information rather than to explicitly incorporated physico-chemical information, since a sufficient amount of implicit physico-chemical information is already encoded in the nucleobase classification. The regression models especially benefited from employing the information that is encoded in the sequential and structural neighborhood of the nucleobases. Thus, the analyses of n-grams (short fragments of length n) suggested that they are valuable descriptors for DNA target interactions. A mixed n-gram descriptor set thereby yielded the best description of the promoter sequences. The corresponding regression model was checked and found to be plausible as it was able to reproduce the characteristic binding motifs of promoter sequences in a reasonable degree. As most functional nucleic acids are based on the principle of molecular recognition, the findings are not restricted to promoter sequences, but can rather be transferred to other kinds of functional nucleic acids. Thus, the concepts presented in this study could provide advantages for future nucleic acid-based technologies, like biosensoring, therapeutics and molecular imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Yao, Gang
2017-01-01
The herbal medicinal genus Aconitum L., belonging to the Ranunculaceae family, represents the earliest diverging lineage within the eudicots. It currently comprises of two subgenera, A. subgenus Lycoctonum and A. subg. Aconitum. The complete chloroplast (cp) genome sequences were characterized in three species: A. angustius, A. finetianum, and A. sinomontanum in subg. Lycoctonum and compared to other Aconitum species to clarify their phylogenetic relationship and provide molecular information for utilization of Aconitum species particularly in Eastern Asia. The length of the chloroplast genome sequences were 156,109 bp in A. angustius, 155,625 bp in A. finetianum and 157,215 bp in A. sinomontanum, with each species possessing 126 genes with 84 protein coding genes (PCGs). While genomic rearrangements were absent, structural variation was detected in the LSC/IR/SSC boundaries. Five pseudogenes were identified, among which Ψrps19 and Ψycf1 were in the LSC/IR/SSC boundaries, Ψrps16 and ΨinfA in the LSC region, and Ψycf15 in the IRb region. The nucleotide variability (Pi) of Aconitum was estimated to be 0.00549, with comparably higher variations in the LSC and SSC than the IR regions. Eight intergenic regions were revealed to be highly variable and a total of 58–62 simple sequence repeats (SSRs) were detected in all three species. More than 80% of SSRs were present in the LSC region. Altogether, 64.41% and 46.81% of SSRs are mononucleotides in subg. Lycoctonum and subg. Aconitum, respectively, while a higher percentage of di-, tri-, tetra-, and penta- SSRs were present in subg. Aconitum. Most species of subg. Aconitum in Eastern Asia were first used for phylogenetic analyses. The availability of the complete cp genome sequences of these species in subg. Lycoctonum will benefit future phylogenetic analyses and aid in germplasm utilization in Aconitum species. PMID:29134154
Kong, Hanghui; Liu, Wanzhen; Yao, Gang; Gong, Wei
2017-01-01
The herbal medicinal genus Aconitum L., belonging to the Ranunculaceae family, represents the earliest diverging lineage within the eudicots. It currently comprises of two subgenera, A . subgenus Lycoctonum and A . subg. Aconitum . The complete chloroplast (cp) genome sequences were characterized in three species: A. angustius , A. finetianum , and A. sinomontanum in subg. Lycoctonum and compared to other Aconitum species to clarify their phylogenetic relationship and provide molecular information for utilization of Aconitum species particularly in Eastern Asia. The length of the chloroplast genome sequences were 156,109 bp in A. angustius , 155,625 bp in A. finetianum and 157,215 bp in A. sinomontanum , with each species possessing 126 genes with 84 protein coding genes (PCGs). While genomic rearrangements were absent, structural variation was detected in the LSC/IR/SSC boundaries. Five pseudogenes were identified, among which Ψ rps 19 and Ψ ycf 1 were in the LSC/IR/SSC boundaries, Ψ rps 16 and Ψ inf A in the LSC region, and Ψ ycf 15 in the IRb region. The nucleotide variability ( Pi ) of Aconitum was estimated to be 0.00549, with comparably higher variations in the LSC and SSC than the IR regions. Eight intergenic regions were revealed to be highly variable and a total of 58-62 simple sequence repeats (SSRs) were detected in all three species. More than 80% of SSRs were present in the LSC region. Altogether, 64.41% and 46.81% of SSRs are mononucleotides in subg. Lycoctonum and subg. Aconitum , respectively, while a higher percentage of di-, tri-, tetra-, and penta- SSRs were present in subg. Aconitum . Most species of subg. Aconitum in Eastern Asia were first used for phylogenetic analyses. The availability of the complete cp genome sequences of these species in subg. Lycoctonum will benefit future phylogenetic analyses and aid in germplasm utilization in Aconitum species.
Awadi, Asma; Suchentrunk, Franz; Makni, Mohamed; Ben Slimen, Hichem
2016-10-01
North African hares are currently included in cape hares, Lepus capensis sensu lato, a taxon that may be considered a superspecies or a complex of closely related species. The existing molecular data, however, are not unequivocal, with mtDNA control region sequences suggesting a separate species status and nuclear loci (allozymes, microsatellites) revealing conspecificity of L. capensis and L. europaeus. Here, we study sequence variation in the intron 6 (468 bp) of the transferrin nuclear gene, of 105 hares with different coat colour from different regions in Tunisia with respect to genetic diversity and differentiation, as well as their phylogenetic status. Forty-six haplotypes (alleles) were revealed and compared phylogenetically to all available TF haplotypes of various Lepus species retrieved from GenBank. Maximum Likelihood, neighbor joining and median joining network analyses concordantly grouped all currently obtained haplotypes together with haplotypes belonging to six different Chinese hare species and the African scrub hare L. saxatilis. Moreover, two Tunisian haploypes were shared with L. capensis, L timidus, L. sinensis, L. yarkandensis, and L. hainanus from China. These results indicated the evolutionary complexity of the genus Lepus with the mixing of nuclear gene haplotypes resulting from introgressive hybridization or/and shared ancestral polymorphism. We report the presence of shared ancestral polymorphism between North African and Chinese hares. This has not been detected earlier in the mtDNA sequences of the same individuals. Genetic diversity of the TF sequences from the Tunisian populations was relatively high compared to other hare populations. However, genetic differentiation and gene flow analyses (AMOVA, F ST , Nm) indicated little divergence with the absence of geographically meaningful phylogroups and lack of clustering with coat colour types. These results confirm the presence of a single hare species in Tunisia, but a sound inference on its phylogenetic position would require additional nuclear markers and numerous geographically meaningful samples from Africa and Eurasia.
Khajanchi, Bijay K; Hasan, Nur A; Choi, Seon Young; Han, Jing; Zhao, Shaohua; Colwell, Rita R; Cerniglia, Carl E; Foley, Steven L
2017-08-02
The degree to which the chromosomal mediated iron acquisition system contributes to virulence of many bacterial pathogens is well defined. However, the functional roles of plasmid encoded iron acquisition systems, specifically Sit and aerobactin, have yet to be determined for Salmonella spp. In a recent study, Salmonella enterica strains isolated from different food sources were sequenced on the Illumina MiSeq platform and found to harbor the incompatibility group (Inc) FIB plasmid. In this study, we examined sequence diversity and the contribution of factors encoded on the IncFIB plasmid to the virulence of S. enterica. Whole genome sequences of seven S. enterica isolates were compared to genomes of serovars of S. enterica isolated from food, animal, and human sources. SeqSero analysis predicted that six strains were serovar Typhimurium and one was Heidelberg. Among the S. Typhimurium strains, single nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that five of the isolates clustered as a single monophyletic S. Typhimurium subclade, while one of the other strains branched with S. Typhimurium from a bovine source. DNA sequence based phylogenetic diversity analyses showed that the IncFIB plasmid-encoded Sit and aerobactin iron acquisition systems are conserved among bacterial species including S. enterica. The IncFIB plasmid was transferred to an IncFIB plasmid deficient strain of S. enterica by conjugation. The transconjugant SE819::IncFIB persisted in human intestinal epithelial (Caco-2) cells at a higher rate than the recipient SE819. Genes of the Sit and aerobactin operons in the IncFIB plasmid were differentially expressed in iron-rich and iron-depleted growth media. Minimal sequence diversity was detected in the Sit and aerobactin operons in the IncFIB plasmids present among different bacterial species, including foodborne Salmonella strains. IncFIB plasmid encoded factors play a role during infection under low-iron conditions in host cells.
Oono, Ryoko
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889
Analysis of codon usage in beta-tubulin sequences of helminths.
von Samson-Himmelstjerna, G; Harder, A; Failing, K; Pape, M; Schnieder, T
2003-07-01
Codon usage bias has been shown to be correlated with gene expression levels in many organisms, including the nematode Caenorhabditis elegans. Here, the codon usage (cu) characteristics for a set of currently available beta-tubulin coding sequences of helminths were assessed by calculating several indices, including the effective codon number (Nc), the intrinsic codon deviation index (ICDI), the P2 value and the mutational response index (MRI). The P2 value gives a measure of translational pressure, which has been shown to be correlated to high gene expression levels in some organisms, but it has not yet been analysed in that respect in helminths. For all but two of the C. elegans beta-tubulin coding sequences investigated, the P2 value was the only index that indicated the presence of codon usage bias. Therefore, we propose that in general the helminth beta-tubulin sequences investigated here are not expressed at high levels. Furthermore, we calculated the correlation coefficients for the cu patterns of the helminth beta-tubulin sequences compared with those of highly expressed genes in organisms such as Escherichia coli and C. elegans. It was found that beta-tubulin cu patterns for all sequences of members of the Strongylida were significantly correlated to those for highly expressed C. elegans genes. This approach provides a new measure for comparing the adaptation of cu of a particular coding sequence with that of highly expressed genes in possible expression systems.Finally, using the cu patterns of the sequences studied, a phylogenetic tree was constructed. The topology of this tree was very much in concordance with that of a phylogeny based on small subunit ribosomal DNA sequence alignments.
Partnering for functional genomics research conference: Abstracts of poster presentations
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.
EDGAR: A software framework for the comparative analysis of prokaryotic genomes
Blom, Jochen; Albaum, Stefan P; Doppmeier, Daniel; Pühler, Alfred; Vorhölter, Frank-Jörg; Zakrzewski, Martha; Goesmann, Alexander
2009-01-01
Background The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons. Results To support these studies EDGAR – "Efficient Database framework for comparative Genome Analyses using BLAST score Ratios" – was developed. EDGAR is designed to automatically perform genome comparisons in a high throughput approach. Comparative analyses for 582 genomes across 75 genus groups taken from the NCBI genomes database were conducted with the software and the results were integrated into an underlying database. To demonstrate a specific application case, we analyzed ten genomes of the bacterial genus Xanthomonas, for which phylogenetic studies were awkward due to divergent taxonomic systems. The resultant phylogeny EDGAR provided was consistent with outcomes from traditional approaches performed recently and moreover, it was possible to root each strain with unprecedented accuracy. Conclusion EDGAR provides novel analysis features and significantly simplifies the comparative analysis of related genomes. The software supports a quick survey of evolutionary relationships and simplifies the process of obtaining new biological insights into the differential gene content of kindred genomes. Visualization features, like synteny plots or Venn diagrams, are offered to the scientific community through a web-based and therefore platform independent user interface , where the precomputed data sets can be browsed. PMID:19457249
Suchan, Tomasz; Espíndola, Anahí; Rutschmann, Sereina; Emerson, Brent C; Gori, Kevin; Dessimoz, Christophe; Arrigo, Nils; Ronikier, Michał; Alvarez, Nadir
2017-09-01
Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used, notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies. However, with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation, phylogenies of closely related species have been resolved at a much higher detail in the last couple of years. Here we examine the potential and limitations of one of such techniques-Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). In Europe, this genus encompasses seven species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need a revision. However, relying on a single, non-recombining marker and ignoring potential incongruences between mitochondrial and nuclear loci may provide an incomplete account of the lineage history. In this study, we applied both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species' monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships among recently-diverged lineages may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence. Copyright © 2017 Elsevier Inc. All rights reserved.
Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal
2015-07-01
Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
WHOLE-GENOME SEQUENCING OF SALIVARY GLAND ADENOID CYSTIC CARCINOMA
Rettig, Eleni M; Talbot, C Conover; Sausen, Mark; Jones, Sian; Bishop, Justin A; Wood, Laura D; Tokheim, Collin; Niknafs, Noushin; Karchin, Rachel; Fertig, Elana J; Wheelan, Sarah J; Marchionni, Luigi; Considine, Michael; Ling, Shizhang; Fakhry, Carole; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Ha, Patrick K; Agrawal, Nishant
2016-01-01
Adenoid cystic carcinomas (ACCs) of the salivary glands are challenging to understand, treat, and cure. To better understand the genetic alterations underlying the pathogenesis of these tumors, we performed comprehensive genome analyses of 25 fresh-frozen tumors, including whole genome sequencing, expression and pathway analyses. In addition to the well-described MYB-NFIB fusion which was found in 11 tumors (44%), we observed five different rearrangements involving the NFIB transcription factor gene in seven tumors (28%). Taken together, NFIB translocations occurred in 15 of 25 samples (60%, 95%CI=41–77%). In addition, mRNA expression analysis of 17 tumors revealed overexpression of NFIB in ACC tumors compared with normal tissues (p=0.002). There was no difference in NFIB mRNA expression in tumors with NFIB fusions compared to those without. We also report somatic mutations of genes involved in the axonal guidance and Rho family signaling pathways. Finally, we confirm previously described alterations in genes related to chromatin regulation and Notch signaling. Our findings suggest a separate role for NFIB in ACC oncogenesis and highlight important signaling pathways for future functional characterization and potential therapeutic targeting. PMID:26862087
Adhikari, Utpal Kumar; Rahman, M Mizanur
2017-04-01
The nirk gene encoding the copper-containing nitrite reductase (CuNiR), a key catalytic enzyme in the environmental denitrification process that helps to produce nitric oxide from nitrite. The molecular mechanism of denitrification process is definitely complex and in this case a theoretical investigation has been conducted to know the sequence information and amino acid composition of the active site of CuNiR enzyme using various Bioinformatics tools. 10 Fasta formatted sequences were retrieved from the NCBI database and the domain and disordered regions identification and phylogenetic analyses were done on these sequences. The comparative modeling of protein was performed through Modeller 9v14 program and visualized by PyMOL tools. Validated protein models were deposited in the Protein Model Database (PMDB) (PMDB id: PM0080150 to PM0080159). Active sites of nirk encoding CuNiR enzyme were identified by Castp server. The PROCHECK showed significant scores for four protein models in the most favored regions of the Ramachandran plot. Active sites and cavities prediction exhibited that the amino acid, namely Glycine, Alanine, Histidine, Aspartic acid, Glutamic acid, Threonine, and Glutamine were common in four predicted protein models. The present in silico study anticipates that active site analyses result will pave the way for further research on the complex denitrification mechanism of the selected species in the experimental laboratory. Copyright © 2016. Published by Elsevier Ltd.
KinFin: Software for Taxon-Aware Analysis of Clustered Protein Sequences.
Laetsch, Dominik R; Blaxter, Mark L
2017-10-05
The field of comparative genomics is concerned with the study of similarities and differences between the information encoded in the genomes of organisms. A common approach is to define gene families by clustering protein sequences based on sequence similarity, and analyze protein cluster presence and absence in different species groups as a guide to biology. Due to the high dimensionality of these data, downstream analysis of protein clusters inferred from large numbers of species, or species with many genes, is nontrivial, and few solutions exist for transparent, reproducible, and customizable analyses. We present KinFin, a streamlined software solution capable of integrating data from common file formats and delivering aggregative annotation of protein clusters. KinFin delivers analyses based on systematic taxonomy of the species analyzed, or on user-defined, groupings of taxa, for example, sets based on attributes such as life history traits, organismal phenotypes, or competing phylogenetic hypotheses. Results are reported through graphical and detailed text output files. We illustrate the utility of the KinFin pipeline by addressing questions regarding the biology of filarial nematodes, which include parasites of veterinary and medical importance. We resolve the phylogenetic relationships between the species and explore functional annotation of proteins in clusters in key lineages and between custom taxon sets, identifying gene families of interest. KinFin can easily be integrated into existing comparative genomic workflows, and promotes transparent and reproducible analysis of clustered protein data. Copyright © 2017 Laetsch and Blaxter.
Tang, Jia-Min; Li, Fen; Cheng, Tian-Yin; Duan, De-Yong; Liu, Guo-Hua
2018-05-22
The sheep ked Melophagus ovinus is mainly found in Europe, Northwestern Africa, and Asia. Although M. ovinus is an important ectoparasite of sheep in many countries, the population genetics, molecular biology, and systematics of this ectoparasite remain poorly understood. Herein, we determined the mitochondrial (mt) genome of M. ovinus from Gansu Province, China (MOG) and compared with that of M. ovinus Xinjiang Uygur Autonomous Region, China (MOX). The mt genome sequence (15,044 bp) of M. ovinus MOG was significantly shorter (529 bp) than M. ovinus MOX. Nucleotide sequence difference in the whole mt genome except for non-coding region was 0.37% between M. ovinus MOG and MOX. For the 13 protein-coding genes, comparison revealed sequence divergences at both the nucleotide (0-1.1%) and amino acid (0-0.59%) levels between M. ovinus MOG and MOX, respectively. Interestingly, the cox1 gene of M. ovinus MOX is predicted to employ unusual mt start codons AAA, which has not been predicted previously for any parasite genome. Phylogenetic analyses showed that M. ovinus (Hippoboscoidea) is related to the superfamilies Oestroidea + Muscoidea. Our results have also indicated the paraphylies of the four families (Anthomyiidae, Calliphoridae, Muscidae, and Oestridae) and two superfamilies (Oestroidea and Muscoidea). This mt genome of M. ovinus provides useful molecular markers for studies into the population genetics, molecular biology, and systematics of this ectoparasite.
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James
2018-02-01
Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).
Lovell, Charles R; Decker, Peter V; Bagwell, Christopher E; Thompson, Shelly; Matsui, George Y
2008-05-01
Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.
Połka, Justyna; Rebecchi, Annalisa; Pisacane, Vincenza; Morelli, Lorenzo; Puglisi, Edoardo
2015-04-01
The bacterial diversity involved in food fermentations is one of the most important factors shaping the final characteristics of traditional foods. Knowledge about this diversity can be greatly improved by the application of high-throughput sequencing technologies (HTS) coupled to the PCR amplification of the 16S rRNA subunit. Here we investigated the bacterial diversity in batches of Salame Piacentino PDO (Protected Designation of Origin), a dry fermented sausage that is typical of a regional area of Northern Italy. Salami samples from 6 different local factories were analysed at 0, 21, 49 and 63 days of ripening; raw meat at time 0 and casing samples at 21 days of ripening where also analysed, and the effect of starter addition was included in the experimental set-up. Culture-based microbiological analyses and PCR-DGGE were carried out in order to be compared with HTS results. A total of 722,196 high quality sequences were obtained after trimming, paired-reads assembly and quality screening of raw reads obtained by Illumina MiSeq sequencing of the two bacterial 16S hypervariable regions V3 and V4; manual curation of 16S database allowed a correct taxonomical classification at the species for 99.5% of these reads. Results confirmed the presence of main bacterial species involved in the fermentation of salami as assessed by PCR-DGGE, but with a greater extent of resolution and quantitative assessments that are not possible by the mere analyses of gel banding patterns. Thirty-two different Staphylococcus and 33 Lactobacillus species where identified in the salami from different producers, while the whole data set obtained accounted for 13 main families and 98 rare ones, 23 of which were present in at least 10% of the investigated samples, with casings being the major sources of the observed diversity. Multivariate analyses also showed that batches from 6 local producers tend to cluster altogether after 21 days of ripening, thus indicating that HTS has the potential for fine scale differentiation of local fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y
2015-01-01
Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods.
Retention-error patterns in complex alphanumeric serial-recall tasks.
Mathy, Fabien; Varré, Jean-Stéphane
2013-01-01
We propose a new method based on an algorithm usually dedicated to DNA sequence alignment in order to both reliably score short-term memory performance on immediate serial-recall tasks and analyse retention-error patterns. There can be considerable confusion on how performance on immediate serial list recall tasks is scored, especially when the to-be-remembered items are sampled with replacement. We discuss the utility of sequence-alignment algorithms to compare the stimuli to the participants' responses. The idea is that deletion, substitution, translocation, and insertion errors, which are typical in DNA, are also typical putative errors in short-term memory (respectively omission, confusion, permutation, and intrusion errors). We analyse four data sets in which alphanumeric lists included a few (or many) repetitions. After examining the method on two simple data sets, we show that sequence alignment offers 1) a compelling method for measuring capacity in terms of chunks when many regularities are introduced in the material (third data set) and 2) a reliable estimator of individual differences in short-term memory capacity. This study illustrates the difficulty of arriving at a good measure of short-term memory performance, and also attempts to characterise the primary factors underpinning remembering and forgetting.
Alkowari, Moza K; Vozzi, Diego; Bhagat, Shruti; Krishnamoorthy, Navaneethakrishnan; Morgan, Anna; Hayder, Yousra; Logendra, Barathy; Najjar, Nehal; Gandin, Ilaria; Gasparini, Paolo; Badii, Ramin; Girotto, Giorgia; Abdulhadi, Khalid
2017-08-01
Hereditary hearing loss is characterized by a very high genetic heterogeneity. In the Qatari population the role of GJB2, the worldwide HHL major player, seems to be quite limited compared to Caucasian populations. In this study we analysed 18 Qatari families affected by non-syndromic hearing loss using a targeted sequencing approach that allowed us to analyse 81 genes simultaneously. Thanks to this approach, 50% of these families (9 out of 18) resulted positive for the presence of likely causative alleles in 6 different genes: CDH23, MYO6, GJB6, OTOF, TMC1 and OTOA. In particular, 4 novel alleles were detected while the remaining ones were already described to be associated to HHL in other ethnic groups. Molecular modelling has been used to further investigate the role of novel alleles identified in CDH23 and TMC1 genes demonstrating their crucial role in Ca2+ binding and therefore possible functional role in proteins. Present study showed that an accurate molecular diagnosis based on next generation sequencing technologies might largely improve molecular diagnostics outcome leading to benefits for both genetic counseling and definition of recurrence risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Splicing-Related Features of Introns Serve to Propel Evolution
Luo, Yuping; Li, Chun; Gong, Xi; Wang, Yanlu; Zhang, Kunshan; Cui, Yaru; Sun, Yi Eve; Li, Siguang
2013-01-01
The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution. PMID:23516505
Pedersen, Casper-Emil T; Frandsen, Peter; Wekesa, Sabenzia N; Heller, Rasmus; Sangula, Abraham K; Wadsworth, Jemma; Knowles, Nick J; Muwanika, Vincent B; Siegismund, Hans R
2015-01-01
With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.
Hurtado, Luis A; Santamaria, Carlos A; Fitzgerald, Lee A
2014-05-06
The phylogenetic position of the critically endangered Saint Croix ground lizard Ameiva polops is presently unknown and several hypotheses have been proposed. We investigated the phylogenetic position of this species using molecular phylogenetic methods. We obtained sequences of DNA fragments of the mitochondrial ribosomal genes 12S rDNA and 16S rDNA for this species. We aligned these sequences with published sequences of other Ameiva species, which include most of the Ameiva species from the West Indies, three Ameiva species from Central America and South America, and one from the teiid lizard Tupinambis teguixin, which was used as outgroup. We conducted Maximum Likelihood and Bayesian phylogenetic analyses. The phylogenetic reconstructions among the different methods were very similar, supporting the monophyly of West Indian Ameiva and showing within this lineage, a basal polytomy of four clades that are separated geographically. Ameiva polops grouped in a cluster that included the other two Ameiva species found in the Puerto Rican Bank: A. wetmorei and A. exsul. A sister relationship between A. polops and A. wetmorei is suggested by our analyses. We compare our results with a previous study on molecular systematics of West Indian Ameiva.
Complete Chloroplast Genome Sequences of Four Meliaceae Species and Comparative Analyses
Mader, Malte; Pakull, Birte; Blanc-Jolivet, Céline; Paulini-Drewes, Maike; Bouda, Zoéwindé Henri-Noël; Degen, Bernd; Small, Ian
2018-01-01
The Meliaceae family mainly consists of trees and shrubs with a pantropical distribution. In this study, the complete chloroplast genomes of four Meliaceae species were sequenced and compared with each other and with the previously published Azadirachta indica plastome. The five plastomes are circular and exhibit a quadripartite structure with high conservation of gene content and order. They include 130 genes encoding 85 proteins, 37 tRNAs and 8 rRNAs. Inverted repeat expansion resulted in a duplication of rps19 in the five Meliaceae species, which is consistent with that in many other Sapindales, but different from many other rosids. Compared to Azadirachta indica, the four newly sequenced Meliaceae individuals share several large deletions, which mainly contribute to the decreased genome sizes. A whole-plastome phylogeny supports previous findings that the four species form a monophyletic sister clade to Azadirachta indica within the Meliaceae. SNPs and indels identified in all complete Meliaceae plastomes might be suitable targets for the future development of genetic markers at different taxonomic levels. The extended analysis of SNPs in the matK gene led to the identification of four potential Meliaceae-specific SNPs as a basis for future validation and marker development. PMID:29494509
2013-01-01
Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome sequences. PMID:23800363
2011-01-01
Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics. PMID:21943375
Lim, Shu Yong; Yap, Kien-Pong; Teh, Cindy Shuan Ju; Jabar, Kartini Abdul; Thong, Kwai Lin
2017-04-01
Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VRE fm ) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.
2015-01-01
Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of Brassica crop AQPs. PMID:25904922
Muñoz-Ramírez, Zilia Y.; Mendez-Tenorio, Alfonso; Kato, Ikuko; Bravo, Maria M.; Rizzato, Cosmeri; Thorell, Kaisa; Torres, Roberto; Aviles-Jimenez, Francisco; Camorlinga, Margarita; Canzian, Federico; Torres, Javier
2017-01-01
Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk. PMID:28293542
Turlapati, Swathi A; Minocha, Rakesh; Long, Stephanie; Ramsdell, Jordan; Minocha, Subhash C
2015-01-01
The impact of chronic nitrogen amendments on bacterial communities was evaluated at Harvard Forest, Petersham, MA, USA. Thirty soil samples (3 treatments × 2 soil horizons × 5 subplots) were collected in 2009 from untreated (control), low nitrogen-amended (LN; 50 kg NH4NO3 ha(-1) yr(-1)) and high nitrogen-amended (HN; 150 kg NH4NO3 ha(-1) yr(-1)) plots. PCR-amplified partial 16S rRNA gene sequences made from soil DNA were subjected to pyrosequencing (Turlapati et al., 2013) and analyses using oligotyping. The parameters M (the minimum count of the most abundant unique sequence in an oligotype) and s (the minimum number of samples in which an oligotype is expected to be present) had to be optimized for forest soils because of high diversity and the presence of rare organisms. Comparative analyses of the pyrosequencing data by oligotyping and operational taxonomic unit clustering tools indicated that the former yields more refined units of taxonomy with sequence similarity of ≥99.5%. Sequences affiliated with four new phyla and 73 genera were identified in the present study as compared to 27 genera reported earlier from the same data (Turlapati et al., 2013). Significant rearrangements in the bacterial community structure were observed with N-amendments revealing the presence of additional genera in N-amended plots with the absence of some that were present in the control plots. Permutational MANOVA analyses indicated significant variation associated with soil horizon and N treatment for a majority of the phyla. In most cases soil horizon partitioned more variation relative to treatment and treatment effects were more evident for the organic (Org) horizon. Mantel test results for Org soil showed significant positive correlations between bacterial communities and most soil parameters including NH4 and NO3. In mineral soil, correlations were seen only with pH, NH4, and NO3. Regardless of the pipeline used, a major hindrance for such a study remains to be the lack of reference databases for forest soils.
Collin, Matthew A; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y
2018-07-01
A powerful system for studying protein aggregation, particularly rapid self-assembly, is spider silk. Spider silks are proteinaceous and silk proteins are synthesized and stored within silk glands as liquid dope. As needed, liquid dope is near-instantaneously transformed into solid fibers or viscous adhesives. The dominant constituents of silks are spidroins (spider fibroins) and their terminal domains are vital for the tight control of silk self-assembly. To better understand spidroin termini, we used target capture and deep sequencing to identify spidroin gene sequences from six species representing the araneoid families of Araneidae, Nephilidae, and Theridiidae. We obtained 145 terminal regions, of which 103 are newly annotated here, as well as novel variants within nine diverse spidroin types. Our comparative analyses demonstrated the conservation of acidic, basic, and cysteine amino acid residues across spidroin types that had been proposed to be important for monomer stability, dimer formation, and self-assembly from a limited sampling of spidroins. Computational, protein homology modeling revealed areas of spidroin terminal regions that are highly conserved in three-dimensions despite sequence divergence across spidroin types. Analyses of our dense sampling of terminal regions suggest that most spidroins share stabilization mechanisms, dimer formation, and tertiary structure, despite producing functionally distinct materials. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf
2014-01-01
CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234
Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf
2014-01-01
CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.
Isolation and characterization of orf viruses from Korean black goats.
Oem, Jae-Ku; Chung, Joon-Yee; Kim, Yong-Joo; Lee, Kyoung-Ki; Kim, Seong-Hee; Jung, Byeong-Yeal; Hyun, Bang-Hun
2013-01-01
Five cases of orf virus infection in Korean black goats were diagnosed in our laboratory between 2010 and 2011. One orf virus (ORF/2011) was isolated from an ovine testis cell line (OA3.Ts) for use as a vaccine candidate. Sequences of the major envelope protein and orf virus interferon resistance genes were determined and compared with published reference sequences. Phylogenetic analyses revealed that orf viruses from Korean black goats were most closely related to an isolate (ORF/09/Korea) from dairy goats in Korea. This result indicates that the orf viruses might have been introduced from dairy goats into the Korean black goat population.
Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars
2009-01-01
Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.
Ravi, Anuradha; Avershina, Ekaterina; Angell, Inga Leena; Ludvigsen, Jane; Manohar, Prasanth; Padmanaban, Sumathi; Nachimuthu, Ramesh; Snipen, Lars; Rudi, Knut
2018-06-01
Use of the 16S rRNA gene in microbiota studies is limited by the lack of taxonomic and functional resolution. High resolution analyses are particularly important for understanding transmission and persistence of bacteria. The aim of our work was therefore to compare a novel reduced metagenome sequencing (RMS) approach with 16S rRNA gene sequencing to determine both the metagenome genetic diversity and the mother-to-child sharing of the microbiota in a cohort of 17 mother-child pairs. We found that although both approaches gave comparable results with respect to sample separation and taxonomy, RMS gave higher resolution and the potential for genomic-/functional assignment. Using RMS we estimated that the metagenome size increased from about 60 Mbp for 4-day-old children to about 225 Mbp for mothers. The 4-day-old children shared 7% of the metagenome sequences with the mothers, while the metagenome sequence sharing was >30% among the mothers. We found 15 genomes shared across >50% of the mothers, of which 10 belonged to Clostridia. Only Bacteroides showed a direct mother-child association, with B. vulgatus being abundant in both 4-day-old children and mothers. For the functional assignments, we identified a significant association between antibiotic usage during labor, and quantity of Fosfomycin resistance genes. In conclusion, our results show a higher functional and taxonomic resolution for RMS compared to 16S rRNA gene sequencing, where RMS enabled a detailed description of mother to child gut microbiota transmission - supporting a late recruitment of most gut bacteria and an effect of antibiotic treatment during labor on infant antibiotic resistance gene patterns. Copyright © 2018. Published by Elsevier B.V.
Potenza, L; Cafiero, M A; Camarda, A; La Salandra, G; Cucchiarini, L; Dachà, M
2009-10-01
In the present work mites previously identified as Dermanyssus gallinae De Geer (Acari, Mesostigmata) using morphological keys were investigated by molecular tools. The complete internal transcribed spacer 1 (ITS1), 5.8S ribosomal DNA, and ITS2 region of the ribosomal DNA from mites were amplified and sequenced to examine the level of sequence variations and to explore the feasibility of using this region in the identification of this mite. Conserved primers located at the 3'end of 18S and at the 5'start of 28S rRNA genes were used first, and amplified fragments were sequenced. Sequence analyses showed no variation in 5.8S and ITS2 region while slight intraspecific variations involving substitutions as well as deletions concentrated in the ITS1 region. Based on the sequence analyses a nested PCR of the ITS2 region followed by RFLP analyses has been set up in the attempt to provide a rapid molecular diagnostic tool of D. gallinae.
Xiao, Chao-Ting; Halbur, Patrick G; Opriessnig, Tanja
2015-07-01
The oldest porcine circovirus type 2 (PCV2) sequence dates back to 1962 and is among several hundreds of publicly available PCV2 sequences. Despite this resource, few studies have investigated the global genetic diversity of PCV2. To evaluate the phylogenetic relationship of PCV2 strains, 1680 PCV2 open reading frame 2 (ORF2) sequences were compared and analysed by methods of neighbour-joining, maximum-likelihood, Bayesian inference and network analysis. Four distinct clades were consistently identified and included PCV2a, PCV2b, PCV2c and PCV2d; the p-distance between PCV2d and PCV2b was 0.055±0.008, larger than the PCV2 genotype-definition cut-off of 0.035, supporting PCV2d as an independent genotype. Among the 1680 sequences, 278-285 (16.5-17 %) were classified as PCV2a, 1007-1058 (59.9-63 %) as PCV2b, three (0.2 %) as PCV2c and 322-323 (19.2 %) as PCV2d, with the remaining 12-78 sequences (0.7-4.6 %) classified as intermediate clades or strains by the various methods. Classification of strains to genotypes differed based on the number of sequences used for the analysis, indicating that sample size is important when determining classification and assessing PCV2 trends and shifts. PCV2d was initially identified in 1999 in samples collected in Switzerland, now appears to be widespread in China and has been present in North America since 2012. During 2012-2013, 37 % of all investigated PCV2 sequences from US pigs were classified as PCV2d and overall data analysis suggests an ongoing genotype shift from PCV2b towards PCV2d. The present analyses indicate that PCV2d emerged approximately 20 years ago.
Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.
Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann
2009-06-01
The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.
NASA Technical Reports Server (NTRS)
Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.
1989-01-01
The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.
A Coalescent-Based Estimator of Admixture From DNA Sequences
Wang, Jinliang
2006-01-01
A variety of estimators have been developed to use genetic marker information in inferring the admixture proportions (parental contributions) of a hybrid population. The majority of these estimators used allele frequency data, ignored molecular information that is available in markers such as microsatellites and DNA sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations are not negligible. A previous molecular estimator based its inference of admixture proportions on the average coalescent times between pairs of genes taken from within and between populations. In this article I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other interesting parameters in the admixture model, such as admixture time, divergence time, population size, and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator generally yields better estimates of admixture proportions than the previous molecular estimator, especially when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of other admixture parameters. A human mtDNA sequence data set was analyzed to demonstrate the method, and the analysis results are discussed and compared with those from previous studies. PMID:16624918
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses
Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T
2014-01-01
Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600
Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.
Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T
2014-06-01
Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.
DMINDA: an integrated web server for DNA motif identification and analyses.
Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying
2014-07-01
DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Development of self-compressing BLSOM for comprehensive analysis of big sequence data.
Kikuchi, Akihito; Ikemura, Toshimichi; Abe, Takashi
2015-01-01
With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster genomic fragment sequences according to phylotype solely dependent on oligonucleotide composition and applied to genome and metagenomic studies. BLSOM is suitable for high-performance parallel-computing and can analyze big data simultaneously, but a large-scale BLSOM needs a large computational resource. We have developed Self-Compressing BLSOM (SC-BLSOM) for reduction of computation time, which allows us to carry out comprehensive analysis of big sequence data without the use of high-performance supercomputers. The strategy of SC-BLSOM is to hierarchically construct BLSOMs according to data class, such as phylotype. The first-layer BLSOM was constructed with each of the divided input data pieces that represents the data subclass, such as phylotype division, resulting in compression of the number of data pieces. The second BLSOM was constructed with a total of weight vectors obtained in the first-layer BLSOMs. We compared SC-BLSOM with the conventional BLSOM by analyzing bacterial genome sequences. SC-BLSOM could be constructed faster than BLSOM and cluster the sequences according to phylotype with high accuracy, showing the method's suitability for efficient knowledge discovery from big sequence data.
Software-assisted small bowel motility analysis using free-breathing MRI: feasibility study.
Bickelhaupt, Sebastian; Froehlich, Johannes M; Cattin, Roger; Raible, Stephan; Bouquet, Hanspeter; Bill, Urs; Patak, Michael A
2014-01-01
To validate a software prototype allowing for small bowel motility analysis in free breathing by comparing it to manual measurements. In all, 25 patients (15 male, 10 female; mean age 39 years) were included in this Institutional Review Board-approved, retrospective study. Magnetic resonance imaging (MRI) was performed on a 1.5T system after standardized preparation acquiring motility sequences in free breathing over 69-84 seconds. Small bowel motility was analyzed manually and with the software. Functional parameters, measurement time, and reproducibility were compared using the coefficient of variance and paired Student's t-test. Correlation was analyzed using Pearson's correlation coefficient and linear regression. The 25 segments were analyzed twice both by hand and using the software with automatic breathing correction. All assessed parameters significantly correlated between the methods (P < 0.01), but the scattering of repeated measurements was significantly (P < 0.01) lower using the software (3.90%, standard deviation [SD] ± 5.69) than manual examinations (9.77%, SD ± 11.08). The time needed was significantly less (P < 0.001) with the software (4.52 minutes, SD ± 1.58) compared to manual measurement, lasting 17.48 minutes for manual (SD ± 1.75 minutes). The use of the software proves reliable and faster small bowel motility measurements in free-breathing MRI compared to manual analyses. The new technique allows for analyses of prolonged sequences acquired in free breathing, improving the informative value of the examinations by amplifying the evaluable data. Copyright © 2013 Wiley Periodicals, Inc.
Whole genome sequences of a male and female supercentenarian, ages greater than 114 years.
Sebastiani, Paola; Riva, Alberto; Montano, Monty; Pham, Phillip; Torkamani, Ali; Scherba, Eugene; Benson, Gary; Milton, Jacqueline N; Baldwin, Clinton T; Andersen, Stacy; Schork, Nicholas J; Steinberg, Martin H; Perls, Thomas T
2011-01-01
Supercentenarians (age 110+ years old) generally delay or escape age-related diseases and disability well beyond the age of 100 and this exceptional survival is likely to be influenced by a genetic predisposition that includes both common and rare genetic variants. In this report, we describe the complete genomic sequences of male and female supercentenarians, both age >114 years old. We show that: (1) the sequence variant spectrum of these two individuals' DNA sequences is largely comparable to existing non-supercentenarian genomes; (2) the two individuals do not appear to carry most of the well-established human longevity enabling variants already reported in the literature; (3) they have a comparable number of known disease-associated variants relative to most human genomes sequenced to-date; (4) approximately 1% of the variants these individuals possess are novel and may point to new genes involved in exceptional longevity; and (5) both individuals are enriched for coding variants near longevity-associated variants that we discovered through a large genome-wide association study. These analyses suggest that there are both common and rare longevity-associated variants that may counter the effects of disease-predisposing variants and extend lifespan. The continued analysis of the genomes of these and other rare individuals who have survived to extremely old ages should provide insight into the processes that contribute to the maintenance of health during extreme aging.
Whole Genome Sequences of a Male and Female Supercentenarian, Ages Greater than 114 Years
Sebastiani, Paola; Riva, Alberto; Montano, Monty; Pham, Phillip; Torkamani, Ali; Scherba, Eugene; Benson, Gary; Milton, Jacqueline N.; Baldwin, Clinton T.; Andersen, Stacy; Schork, Nicholas J.; Steinberg, Martin H.; Perls, Thomas T.
2012-01-01
Supercentenarians (age 110+ years old) generally delay or escape age-related diseases and disability well beyond the age of 100 and this exceptional survival is likely to be influenced by a genetic predisposition that includes both common and rare genetic variants. In this report, we describe the complete genomic sequences of male and female supercentenarians, both age >114 years old. We show that: (1) the sequence variant spectrum of these two individuals’ DNA sequences is largely comparable to existing non-supercentenarian genomes; (2) the two individuals do not appear to carry most of the well-established human longevity enabling variants already reported in the literature; (3) they have a comparable number of known disease-associated variants relative to most human genomes sequenced to-date; (4) approximately 1% of the variants these individuals possess are novel and may point to new genes involved in exceptional longevity; and (5) both individuals are enriched for coding variants near longevity-associated variants that we discovered through a large genome-wide association study. These analyses suggest that there are both common and rare longevity-associated variants that may counter the effects of disease-predisposing variants and extend lifespan. The continued analysis of the genomes of these and other rare individuals who have survived to extremely old ages should provide insight into the processes that contribute to the maintenance of health during extreme aging. PMID:22303384
Lin, Xuan; Faridi, Nurul; Casola, Claudio
2016-01-01
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138
Gatenby, J. Christopher; Gore, John C.; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646
Wheat EST resources for functional genomics of abiotic stress
Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey
2006-01-01
Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID:16772040
Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.
Vink, Cor J; Paterson, Adrian M
2003-09-01
Datasets from the mitochondrial gene regions NADH dehydrogenase subunit I (ND1) and cytochrome c oxidase subunit I (COI) of the 20 species in the New Zealand wolf spider (Lycosidae) genus Anoteropsis were generated. Sequence data were phylogenetically analysed using parsimony and maximum likelihood analyses. The phylogenies generated from the ND1 and COI sequence data and a previously generated morphological dataset were significantly congruent (p<0.001). Sequence data were combined with morphological data and phylogenetically analysed using parsimony. The ND1 region sequenced included part of tRNA(Leu(CUN)), which appears to have an unstable amino-acyl arm and no TpsiC arm in lycosids. Analyses supported the existence of five species groups within Anoteropsis and the monophyly of species represented by multiple samples. A radiation of Anoteropsis species within the last five million years is inferred from the ND1 and COI likelihood phylograms, habitat and geological data, which also indicates that Anoteropsis arrived in New Zealand some time after it separated from Gondwana.
A Protein Domain and Family Based Approach to Rare Variant Association Analysis.
Richardson, Tom G; Shihab, Hashem A; Rivas, Manuel A; McCarthy, Mark I; Campbell, Colin; Timpson, Nicholas J; Gaunt, Tom R
2016-01-01
It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals.
2012-01-01
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response. PMID:22257588
Tectonics and metallogenesis of Proterozoic rocks of the Reading Prong
Gundersen, L.C.S.
2004-01-01
Detailed geologic mapping, petrography, and major and trace-element analyses of Proterozoic rocks from the Greenwood Lake Quadrangle, New York are compared with chemical analyses and stratigraphic information compiled for the entire Reading Prong. A persistent regional stratigraphy is evident in the mapped area whose geochemistry indicates protoliths consistent with a back-arc marginal basin sequence. The proposed marginal basin may have been floored by an older sialic basement and overlain by a basin-fill sequence consisting of a basal tholeiitic basalt, basic to intermediate volcanic or volcaniclastic rocks and carbonate sediments, a bimodal calc-alkaline volcanic sequence, and finally volcaniclastic, marine, and continental sediments. The presence of high-chlorine biotite and scapolite may indicate circulation of brine fluids or the presence of evaporite layers in the sequence. Abundant, stratabound magnetite deposits with a geologic setting very unlike that of cratonic, Proterozoic banded-iron formations are found throughout the proposed basin sequence. Associated with many of the magnetite deposits is unusual uranium and rare-earth element mineralization. It is proposed here that these deposits formed in an exhalative, volcanogenic, depositional environment within an extensional back-arc marginal basin. Such a tectonic setting is consistent with interpretations of protoliths in other portions of the Reading Prong, the Central Metasedimentary Belt of the Canadian Grenville Province, and recent interpretation of the origin of the Franklin lead-zinc deposits, suggesting a more cohesive evolving arc/back-arc tectonic model for the entire Proterozoic margin of the north-eastern portion of the North American craton. Published by Elsevier Ltd.
Saijuntha, Weerachai; Sithithaworn, Paiboon; Duenngai, Kunyarat; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N
2011-03-01
Multilocus enzyme electrophoresis (MEE) and DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to genetically compare four species of echinostomes of human health importance. Fixed genetic differences among adults of Echinostoma revolutum, Echinostoma malayanum, Echinoparyphium recurvatum and Hypoderaeum conoideum were detected at 51-75% of the enzyme loci examined, while interspecific differences in CO1 sequence were detected at 16-32 (8-16%) of the 205 alignment positions. The results of the MEE analyses also revealed fixed genetic differences between E. revolutum from Thailand and Lao PDR at five (19%) of 27 loci, which could either represent genetic variation between geographically separated populations of a single species, or the existence of a cryptic (i.e. genetically distinct but morphologically similar) species. However, there was no support for the existence of cryptic species within E. revolutum based on the CO1 sequence between the two geographical areas sampled. Genetic variation in CO1 sequence was also detected among E. malayanum from three different species of snail intermediate host. Separate phylogenetic analyses of the MEE and DNA sequence data revealed that the two species of Echinostoma (E. revolutum and E. malayanum) did not form a monophyletic clade. These results, together with the large number of morphologically similar species with inadequate descriptions, poor specific diagnoses and extensive synonymy, suggest that the morphological characters used for species taxonomy of echinostomes in South-East Asia should be reconsidered according to the concordance of biology, morphology and molecular classification. Copyright © 2010 Elsevier B.V. All rights reserved.
Mulkern, Robert; Haker, Steven; Mamata, Hatsuho; Lee, Edward; Mitsouras, Dimitrios; Oshio, Koichi; Balasubramanian, Mukund; Hatabu, Hiroto
2014-03-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T 2 * values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T 2 * values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice.
MULKERN, ROBERT; HAKER, STEVEN; MAMATA, HATSUHO; LEE, EDWARD; MITSOURAS, DIMITRIOS; OSHIO, KOICHI; BALASUBRAMANIAN, MUKUND; HATABU, HIROTO
2014-01-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T2* values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T2* values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice. PMID:25228852
Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.
Urabe, N; Ishii, Y; Hyodo, Y; Aoki, K; Yoshizawa, S; Saga, T; Murayama, S Y; Sakai, K; Homma, S; Tateda, K
2016-04-01
Between 18 November and 3 December 2011, five renal transplant patients at the Department of Nephrology, Toho University Omori Medical Centre, Tokyo, were diagnosed with Pneumocystis pneumonia (PCP). We used molecular epidemiologic methods to determine whether the patients were infected with the same strain of Pneumocystis jirovecii. DNA extracted from the residual bronchoalveolar lavage fluid from the five outbreak cases and from another 20 cases of PCP between 2007 and 2014 were used for multilocus sequence typing to compare the genetic similarity of the P. jirovecii. DNA base sequencing by the Sanger method showed some regions where two bases overlapped and could not be defined. A next-generation sequencer was used to analyse the types and ratios of these overlapping bases. DNA base sequences of P. jirovecii in the bronchoalveolar lavage fluid from four of the five PCP patients in the 2011 outbreak and from another two renal transplant patients who developed PCP in 2013 were highly homologous. The Sanger method revealed 14 genomic regions where two differing DNA bases overlapped and could not be identified. Analyses of the overlapping bases by a next-generation sequencer revealed that the differing types of base were present in almost identical ratios. There is a strong possibility that the PCP outbreak at the Toho University Omori Medical Centre was caused by the same strain of P. jirovecii. Two different types of base present in some regions may be due to P. jirovecii's being a diploid species. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Genotype Diversity and Distribution of Orientia tsutsugamushi Causing Scrub Typhus in Thailand
2011-07-01
typhus assay and vaccine development. Orientia tsutsugamushi, formerly known as Rickettsia tsutsug- amushi, is the causative agent of scrub typhus, a...Sunderland, MA. 13. Horinoucbi, H., et al. 1996. Genotypic identification of Rickettsia tsutsuga- mushi by restriction fragment length polymorphism... Rickettsia tsutsu· gamushi. Sequence and comparative analyses of the genes encoding TSA homologues from four antigenic variants. J. Bioi. Chern. 267:12728
ERIC Educational Resources Information Center
Abd-Kadir, Jan; Hardman, Frank
2007-01-01
This paper explores the discourse of whole class teaching in Kenyan and Nigerian primary school English lessons. Twenty lessons were analysed using a system of discourse analysis focusing on the teacher-led three-part exchange sequence of Initiation-Response-Feedback (IRF). The focus of the analysis was on the first and third part of the IRF…
The incredible journey of mankind: Helicobacter pylori as the narrator.
Desikan, P
2010-01-01
Over the past decade, sequence differences between microbes from various geographical areas have been studied with the intent to interpret population movements of their hosts. An organism that is a reliable storehouse of such data, by virtue of its long association with its human host, is Helicobacter pylori. Functional and comparative analyses of its genome provide fascinating insights into human behaviour in the ancient past.
Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles.
Kües, Ursula; Nelson, David R; Liu, Chang; Yu, Guo-Jun; Zhang, Jianhui; Li, Jianqin; Wang, Xin-Cun; Sun, Hui
2015-06-01
Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of Ganoderma species. The current review carries out a detailed comparison of the nuclear genomes, mitochondrial genomes and transcriptomes from several Ganoderma species. Genes involved in biosynthetic pathways such as CYP450 genes and in cellular development such as matA and matB genes are characterized and compared in detail, as examples to demonstrate the usefulness of comparative genomic analyses for the identification of critical genes. Resources needed for future data integration and exploitation are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wernegreen, Jennifer J
2017-09-15
Ancient associations between insects and bacteria provide models to study intimate host-microbe interactions. Currently, a wealth of genome sequence data for long-term, obligately intracellular (primary) endosymbionts of insects reveals profound genomic consequences of this specialized bacterial lifestyle. Those consequences include severe genome reduction and extreme base compositions. This minireview highlights the utility of genome sequence data to understand how, and why, endosymbionts have been pushed to such extremes, and to illuminate the functional consequences of such extensive genome change. While the static snapshots provided by individual endosymbiont genomes are valuable, comparative analyses of multiple genomes have shed light on evolutionary mechanisms. Namely, genome comparisons have told us that selection is important in fine-tuning gene content, but at the same time, mutational pressure and genetic drift contribute to genome degradation. Examples from Blochmannia, the primary endosymbiont of the ant tribe Camponotini, illustrate the value and constraints of genome sequence data, and exemplify how genomes can serve as a springboard for further comparative and experimental inquiry. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.
2013-09-01
We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.
Evolution of coding and non-coding genes in HOX clusters of a marsupial.
Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B
2012-06-18
The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
Evolution of coding and non-coding genes in HOX clusters of a marsupial
2012-01-01
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672
Skeletal development in the African elephant and ossification timing in placental mammals
Hautier, Lionel; Stansfield, Fiona J.; Allen, W. R. Twink; Asher, Robert J.
2012-01-01
We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Parsimov. Compared with other placentals, elephants show late ossifications of the basicranium, manual and pedal phalanges, and early ossifications of the ischium and metacarpals. Moreover, ossification in elephants starts very early and progresses rapidly. Specifically, the elephant exhibits the same percentage of bones showing an ossification centre at the end of the first third of its gestation period as the mouse and hamster have close to birth. Elephants show a number of features of their ossification patterns that differ from those of other placental mammals. The pattern of the initiation of the ossification evident in the African elephant underscores a possible correlation between the timing of ossification onset and gestation time throughout mammals. PMID:22298853
Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech
2015-01-01
Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.
SAMSA2: a standalone metatranscriptome analysis pipeline.
Westreich, Samuel T; Treiber, Michelle L; Mills, David A; Korf, Ian; Lemay, Danielle G
2018-05-21
Complex microbial communities are an area of growing interest in biology. Metatranscriptomics allows researchers to quantify microbial gene expression in an environmental sample via high-throughput sequencing. Metatranscriptomic experiments are computationally intensive because the experiments generate a large volume of sequence data and each sequence must be compared with reference sequences from thousands of organisms. SAMSA2 is an upgrade to the original Simple Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) pipeline that has been redesigned for standalone use on a supercomputing cluster. SAMSA2 is faster due to the use of the DIAMOND aligner, and more flexible and reproducible because it uses local databases. SAMSA2 is available with detailed documentation, and example input and output files along with examples of master scripts for full pipeline execution. SAMSA2 is a rapid and efficient metatranscriptome pipeline for analyzing large RNA-seq datasets in a supercomputing cluster environment. SAMSA2 provides simplified output that can be examined directly or used for further analyses, and its reference databases may be upgraded, altered or customized to fit the needs of any experiment.
The metagenomic data life-cycle: standards and best practices
ten Hoopen, Petra; Finn, Robert D.; Bongo, Lars Ailo; Corre, Erwan; Meyer, Folker; Mitchell, Alex; Pelletier, Eric; Pesole, Graziano; Santamaria, Monica; Willassen, Nils Peder
2017-01-01
Abstract Metagenomics data analyses from independent studies can only be compared if the analysis workflows are described in a harmonized way. In this overview, we have mapped the landscape of data standards available for the description of essential steps in metagenomics: (i) material sampling, (ii) material sequencing, (iii) data analysis, and (iv) data archiving and publishing. Taking examples from marine research, we summarize essential variables used to describe material sampling processes and sequencing procedures in a metagenomics experiment. These aspects of metagenomics dataset generation have been to some extent addressed by the scientific community, but greater awareness and adoption is still needed. We emphasize the lack of standards relating to reporting how metagenomics datasets are analysed and how the metagenomics data analysis outputs should be archived and published. We propose best practice as a foundation for a community standard to enable reproducibility and better sharing of metagenomics datasets, leading ultimately to greater metagenomics data reuse and repurposing. PMID:28637310
Park, Jeong-Hoon; Park, Jong-Hun; Je Seong, Hoon; Sul, Woo Jun; Jin, Kang-Hyun; Park, Hee-Deung
2018-07-01
To provide insight into direct interspecies electron transfer via granular activated carbon (GAC), the effect of GAC supplementation on anaerobic digestion was evaluated. Compared to control samples, the GAC supplementation increased the total amount of methane production and its production rate by 31% and 72%, respectively. 16S rDNA sequencing analysis revealed a shift in the archaeal community composition; the Methanosarcina proportion decreased 17%, while the Methanosaeta proportion increased 5.6%. Metagenomic analyses based on shotgun sequencing demonstrated that the abundance of pilA and omcS genes belonging to Geobacter species decreased 69.4% and 29.4%, respectively. Furthermore, the analyses suggested a carbon dioxide reduction pathway rather than an acetate decarboxylation pathway for methane formation. Taken together, these results suggest that GAC improved methane production performance by shifting the microbial community and altering functional genes associated with direct interspecies electron transfer via conductive materials. Copyright © 2018 Elsevier Ltd. All rights reserved.
The metagenomic data life-cycle: standards and best practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
ten Hoopen, Petra; Finn, Robert D.; Bongo, Lars Ailo
Metagenomics data analyses from independent studies can only be compared if the analysis workflows are described in a harmonised way. In this overview, we have mapped the landscape of data standards available for the description of essential steps in metagenomics: (1) material sampling, (2) material sequencing (3) data analysis and (4) data archiving & publishing. Taking examples from marine research, we summarise essential variables used to describe material sampling processes and sequencing procedures in a metagenomics experiment. These aspects of metagenomics dataset generation have been to some extent addressed by the scientific community but greater awareness and adoption is stillmore » needed. We emphasise the lack of standards relating to reporting how metagenomics datasets are analysed and how the metagenomics data analysis outputs should be archived and published. We propose best practice as a foundation for a community standard to enable reproducibility and better sharing of metagenomics datasets, leading ultimately to greater metagenomics data reuse and repurposing.« less
Jackson, Brendan R.; Tarr, Cheryl; Strain, Errol; Jackson, Kelly A.; Conrad, Amanda; Carleton, Heather; Katz, Lee S.; Stroika, Steven; Gould, L. Hannah; Mody, Rajal K.; Silk, Benjamin J.; Beal, Jennifer; Chen, Yi; Timme, Ruth; Doyle, Matthew; Fields, Angela; Wise, Matthew; Tillman, Glenn; Defibaugh-Chavez, Stephanie; Kucerova, Zuzana; Sabol, Ashley; Roache, Katie; Trees, Eija; Simmons, Mustafa; Wasilenko, Jamie; Kubota, Kristy; Pouseele, Hannes; Klimke, William; Besser, John; Brown, Eric; Allard, Marc; Gerner-Smidt, Peter
2016-01-01
Listeria monocytogenes (Lm) causes severe foodborne illness (listeriosis). Previous molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), were critical in detecting outbreaks that led to food safety improvements and declining incidence, but PFGE provides limited genetic resolution. A multiagency collaboration began performing real-time, whole-genome sequencing (WGS) on all US Lm isolates from patients, food, and the environment in September 2013, posting sequencing data into a public repository. Compared with the year before the project began, WGS, combined with epidemiologic and product trace-back data, detected more listeriosis clusters and solved more outbreaks (2 outbreaks in pre-WGS year, 5 in WGS year 1, and 9 in year 2). Whole-genome multilocus sequence typing and single nucleotide polymorphism analyses provided equivalent phylogenetic relationships relevant to investigations; results were most useful when interpreted in context of epidemiological data. WGS has transformed listeriosis outbreak surveillance and is being implemented for other foodborne pathogens. PMID:27090985
[Multilocus Sequence Typing analysis of human Campylobacter coli in Granada (Spain)].
Carrillo-Ávila, J A; Sorlózano-Puerto, A; Pérez-Ruiz, M; Gutiérrez-Fernández, J
2016-12-01
Different subtypes of Campylobacter spp. have been associated with diarrhoea and a Multilocus Sequence Typing (MLST) method has been performed for subtyping. In the present work, MLST was used to analyse the genetic diversity of eight strains of Campylobacter coli. Nineteen genetic markers were amplified for MLST analysis: AnsB, DmsA, ggt, Cj1585c, CJJ81176-1367/1371, Tlp7, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, cstIII. After comparing the obtained sequences with the Campylobacter MLST database, the allele numbers, sequence types (STs) and clonal complexes (CCs) were assigned. The 8 C. coli isolates yielded 4 different STs belonging to 2 CCs. Seven isolates belong to ST-828 clonal complex and only one isolate belong to ST-21. Two samples came from the same patient, but were isolated in two different periods of time. MLST can be useful for taxonomic characterization of C. coli isolates.
Correcting for Sample Contamination in Genotype Calling of DNA Sequence Data
Flickinger, Matthew; Jun, Goo; Abecasis, Gonçalo R.; Boehnke, Michael; Kang, Hyun Min
2015-01-01
DNA sample contamination is a frequent problem in DNA sequencing studies and can result in genotyping errors and reduced power for association testing. We recently described methods to identify within-species DNA sample contamination based on sequencing read data, showed that our methods can reliably detect and estimate contamination levels as low as 1%, and suggested strategies to identify and remove contaminated samples from sequencing studies. Here we propose methods to model contamination during genotype calling as an alternative to removal of contaminated samples from further analyses. We compare our contamination-adjusted calls to calls that ignore contamination and to calls based on uncontaminated data. We demonstrate that, for moderate contamination levels (5%–20%), contamination-adjusted calls eliminate 48%–77% of the genotyping errors. For lower levels of contamination, our contamination correction methods produce genotypes nearly as accurate as those based on uncontaminated data. Our contamination correction methods are useful generally, but are particularly helpful for sample contamination levels from 2% to 20%. PMID:26235984
Harris, R. Alan; Wang, Ting; Coarfa, Cristian; Nagarajan, Raman P.; Hong, Chibo; Downey, Sara L.; Johnson, Brett E.; Fouse, Shaun D.; Delaney, Allen; Zhao, Yongjun; Olshen, Adam; Ballinger, Tracy; Zhou, Xin; Forsberg, Kevin J.; Gu, Junchen; Echipare, Lorigail; O’Geen, Henriette; Lister, Ryan; Pelizzola, Mattia; Xi, Yuanxin; Epstein, Charles B.; Bernstein, Bradley E.; Hawkins, R. David; Ren, Bing; Chung, Wen-Yu; Gu, Hongcang; Bock, Christoph; Gnirke, Andreas; Zhang, Michael Q.; Haussler, David; Ecker, Joseph; Li, Wei; Farnham, Peggy J.; Waterland, Robert A.; Meissner, Alexander; Marra, Marco A.; Hirst, Martin; Milosavljevic, Aleksandar; Costello, Joseph F.
2010-01-01
Sequencing-based DNA methylation profiling methods are comprehensive and, as accuracy and affordability improve, will increasingly supplant microarrays for genome-scale analyses. Here, four sequencing-based methodologies were applied to biological replicates of human embryonic stem cells to compare their CpG coverage genome-wide and in transposons, resolution, cost, concordance and its relationship with CpG density and genomic context. The two bisulfite methods reached concordance of 82% for CpG methylation levels and 99% for non-CpG cytosine methylation levels. Using binary methylation calls, two enrichment methods were 99% concordant, while regions assessed by all four methods were 97% concordant. To achieve comprehensive methylome coverage while reducing cost, an approach integrating two complementary methods was examined. The integrative methylome profile along with histone methylation, RNA, and SNP profiles derived from the sequence reads allowed genome-wide assessment of allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression. PMID:20852635
2014-01-01
Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969
Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis
Awad, A; Khalil, S. R; Abd-Elhakim, Y. M
2015-01-01
Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegalensis), and Rock pigeon (Columba livia). Genomic DNA was extracted from blood samples and partial sequence of the mitochondrial cytochrome b gene (358 bp) was amplified and sequenced using universal primers. Sequences alignment and phylogenetic analyses were performed by CLC main workbench program. The obtained five sequences were deposited in GenBank and compared with those previously registered in GenBank. The similarity percentage was 88.60% between Gallus gallus and Coturnix japonica and 80.46% between Gallus gallus and Columba livia. The percentage of identity between the studied species and GenBank species ranged from 77.20% (Columba oenas and Anas platyrhynchos) to 100% (Gallus gallus and Gallus sonneratii, Coturnix coturnix and Coturnix japonica, Meleagris gallopavo and Columba livia). Amplification of the partial sequence of mitochondrial cytochrome b gene proved to be practical for identification of an avian species unambiguously. PMID:27175180
repRNA: a web server for generating various feature vectors of RNA sequences.
Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen
2016-02-01
With the rapid growth of RNA sequences generated in the postgenomic age, it is highly desired to develop a flexible method that can generate various kinds of vectors to represent these sequences by focusing on their different features. This is because nearly all the existing machine-learning methods, such as SVM (support vector machine) and KNN (k-nearest neighbor), can only handle vectors but not sequences. To meet the increasing demands and speed up the genome analyses, we have developed a new web server, called "representations of RNA sequences" (repRNA). Compared with the existing methods, repRNA is much more comprehensive, flexible and powerful, as reflected by the following facts: (1) it can generate 11 different modes of feature vectors for users to choose according to their investigation purposes; (2) it allows users to select the features from 22 built-in physicochemical properties and even those defined by users' own; (3) the resultant feature vectors and the secondary structures of the corresponding RNA sequences can be visualized. The repRNA web server is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repRNA/ .
Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H
2018-01-05
Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.
The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.
Schnitzler, P; Handermann, M; Szépe, O; Darai, G
1991-06-01
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
Houghton, Rebecca; Ellis, Joanna; Galiano, Monica; Clark, Tristan W; Wyllie, Sarah
2017-04-01
We describe haemagglutinin (HA) and neuraminidase (NA) sequencing in an apparent cross-site influenza A(H1N1) outbreak in renal transplant and haemodialysis patients, confirmed with whole genome sequencing (WGS). Isolates were sequenced from influenza positive individuals. Phylogenetic trees were constructed using HA and NA sequencing and subsequently WGS. Sequence data was analysed to determine genetic relatedness of viruses obtained from inpatient and outpatient cohorts and compared with epidemiological outbreak information. There were 6 patient cases of influenza in the inpatient renal ward cohort (associated with 3 deaths) and 9 patient cases in the outpatient haemodialysis unit cohort (no deaths). WGS confirmed clustered transmission of two genetically different influenza A(H1N1)pdm09 strains initially identified by analysis of HA and NA genes. WGS took longer, and in this case was not required to determine whether or not the two seemingly linked outbreaks were related. Rapid sequencing of HA and NA genes may be sufficient to aid early influenza outbreak investigation making it appealing for future outbreak investigation. However, as next generation sequencing becomes cheaper and more widely available and bioinformatics software is now freely accessible next generation whole genome analysis may increasingly become a valuable tool for real-time Influenza outbreak investigation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases.
Maldonado, Lucas L; Assis, Juliana; Araújo, Flávio M Gomes; Salim, Anna C M; Macchiaroli, Natalia; Cucher, Marcela; Camicia, Federico; Fox, Adolfo; Rosenzvit, Mara; Oliveira, Guilherme; Kamenetzky, Laura
2017-02-27
The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.
Staton, Margaret; Zhebentyayeva, Tetyana; Olukolu, Bode; Fang, Guang Chen; Nelson, Dana; Carlson, John E; Abbott, Albert G
2015-10-05
Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community. The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning. On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.
Tempo and mode of genomic mutations unveil human evolutionary history.
Hara, Yuichiro
2015-01-01
Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.
Lynch, T; Gregson, D; Church, D L
2016-03-01
Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Gregson, D.; Church, D. L.
2016-01-01
Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. PMID:26739153
Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.
2002-01-01
Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are geographically proximal along the south Atlantic coast of the US.
Webster, R J; Williams, A; Marchetti, F; Yauk, C L
2018-07-01
Mutations in germ cells pose potential genetic risks to offspring. However, de novo mutations are rare events that are spread across the genome and are difficult to detect. Thus, studies in this area have generally been under-powered, and no human germ cell mutagen has been identified. Whole Genome Sequencing (WGS) of human pedigrees has been proposed as an approach to overcome these technical and statistical challenges. WGS enables analysis of a much wider breadth of the genome than traditional approaches. Here, we performed power analyses to determine the feasibility of using WGS in human families to identify germ cell mutagens. Different statistical models were compared in the power analyses (ANOVA and multiple regression for one-child families, and mixed effect model sampling between two to four siblings per family). Assumptions were made based on parameters from the existing literature, such as the mutation-by-paternal age effect. We explored two scenarios: a constant effect due to an exposure that occurred in the past, and an accumulating effect where the exposure is continuing. Our analysis revealed the importance of modeling inter-family variability of the mutation-by-paternal age effect. Statistical power was improved by models accounting for the family-to-family variability. Our power analyses suggest that sufficient statistical power can be attained with 4-28 four-sibling families per treatment group, when the increase in mutations ranges from 40 to 10% respectively. Modeling family variability using mixed effect models provided a reduction in sample size compared to a multiple regression approach. Much larger sample sizes were required to detect an interaction effect between environmental exposures and paternal age. These findings inform study design and statistical modeling approaches to improve power and reduce sequencing costs for future studies in this area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
MG-Digger: An Automated Pipeline to Search for Giant Virus-Related Sequences in Metagenomes
Verneau, Jonathan; Levasseur, Anthony; Raoult, Didier; La Scola, Bernard; Colson, Philippe
2016-01-01
The number of metagenomic studies conducted each year is growing dramatically. Storage and analysis of such big data is difficult and time-consuming. Interestingly, analysis shows that environmental and human metagenomes include a significant amount of non-annotated sequences, representing a ‘dark matter.’ We established a bioinformatics pipeline that automatically detects metagenome reads matching query sequences from a given set and applied this tool to the detection of sequences matching large and giant DNA viral members of the proposed order Megavirales or virophages. A total of 1,045 environmental and human metagenomes (≈ 1 Terabase) were collected, processed, and stored on our bioinformatics server. In addition, nucleotide and protein sequences from 93 Megavirales representatives, including 19 giant viruses of amoeba, and 5 virophages, were collected. The pipeline was generated by scripts written in Python language and entitled MG-Digger. Metagenomes previously found to contain megavirus-like sequences were tested as controls. MG-Digger was able to annotate 100s of metagenome sequences as best matching those of giant viruses. These sequences were most often found to be similar to phycodnavirus or mimivirus sequences, but included reads related to recently available pandoraviruses, Pithovirus sibericum, and faustoviruses. Compared to other tools, MG-Digger combined stand-alone use on Linux or Windows operating systems through a user-friendly interface, implementation of ready-to-use customized metagenome databases and query sequence databases, adjustable parameters for BLAST searches, and creation of output files containing selected reads with best match identification. Compared to Metavir 2, a reference tool in viral metagenome analysis, MG-Digger detected 8% more true positive Megavirales-related reads in a control metagenome. The present work shows that massive, automated and recurrent analyses of metagenomes are effective in improving knowledge about the presence and prevalence of giant viruses in the environment and the human body. PMID:27065984
Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan
2011-01-01
The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education.
Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae
NASA Astrophysics Data System (ADS)
Tang, Xianghai; Xu, Kuipeng; Han, Xiaojuan; Mo, Zhaolan; Mao, Yunxiang
2018-03-01
Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 21022T genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-01-01
Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515
Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan
2011-01-01
The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991
Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus
NASA Technical Reports Server (NTRS)
Miller, S. R.; Castenholz, R. W.
2000-01-01
The extension of ecological tolerance limits may be an important mechanism by which microorganisms adapt to novel environments, but it may come at the evolutionary cost of reduced performance under ancestral conditions. We combined a comparative physiological approach with phylogenetic analyses to study the evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Among the 20 laboratory clones of Synechococcus isolated from collections made along an Oregon hot spring thermal gradient, four different 16S rRNA gene sequences were identified. Phylogenies constructed by using the sequence data indicated that the clones were polyphyletic but that three of the four sequence groups formed a clade. Differences in thermotolerance were observed for clones with different 16S rRNA gene sequences, and comparison of these physiological differences within a phylogenetic framework provided evidence that more thermotolerant lineages of Synechococcus evolved from less thermotolerant ancestors. The extension of the thermal limit in these bacteria was correlated with a reduction in the breadth of the temperature range for growth, which provides evidence that enhanced thermotolerance has come at the evolutionary cost of increased thermal specialization. This study illustrates the utility of using phylogenetic comparative methods to investigate how evolutionary processes have shaped historical patterns of ecological diversification in microorganisms.
Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae
NASA Astrophysics Data System (ADS)
Tang, Xianghai; Xu, Kuipeng; Han, Xiaojuan; Mo, Zhaolan; Mao, Yunxiang
2016-09-01
Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 21022T genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant diff erences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these diff erences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.
Evolutionary biology through the lens of budding yeast comparative genomics.
Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R
2017-10-01
The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.
Scheuch, Matthias; Höper, Dirk; Beer, Martin
2015-03-03
Fuelled by the advent and subsequent development of next generation sequencing technologies, metagenomics became a powerful tool for the analysis of microbial communities both scientifically and diagnostically. The biggest challenge is the extraction of relevant information from the huge sequence datasets generated for metagenomics studies. Although a plethora of tools are available, data analysis is still a bottleneck. To overcome the bottleneck of data analysis, we developed an automated computational workflow called RIEMS - Reliable Information Extraction from Metagenomic Sequence datasets. RIEMS assigns every individual read sequence within a dataset taxonomically by cascading different sequence analyses with decreasing stringency of the assignments using various software applications. After completion of the analyses, the results are summarised in a clearly structured result protocol organised taxonomically. The high accuracy and performance of RIEMS analyses were proven in comparison with other tools for metagenomics data analysis using simulated sequencing read datasets. RIEMS has the potential to fill the gap that still exists with regard to data analysis for metagenomics studies. The usefulness and power of RIEMS for the analysis of genuine sequencing datasets was demonstrated with an early version of RIEMS in 2011 when it was used to detect the orthobunyavirus sequences leading to the discovery of Schmallenberg virus.
Housworth, E A; Martins, E P
2001-01-01
Statistical randomization tests in evolutionary biology often require a set of random, computer-generated trees. For example, earlier studies have shown how large numbers of computer-generated trees can be used to conduct phylogenetic comparative analyses even when the phylogeny is uncertain or unknown. These methods were limited, however, in that (in the absence of molecular sequence or other data) they allowed users to assume that no phylogenetic information was available or that all possible trees were known. Intermediate situations where only a taxonomy or other limited phylogenetic information (e.g., polytomies) are available are technically more difficult. The current study describes a procedure for generating random samples of phylogenies while incorporating limited phylogenetic information (e.g., four taxa belong together in a subclade). The procedure can be used to conduct comparative analyses when the phylogeny is only partially resolved or can be used in other randomization tests in which large numbers of possible phylogenies are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1982-07-01
A probabilistic risk assessment (PRA) was made of the Browns Ferry, Unit 1, nuclear plant as part of the Nuclear Regulatory Commission's Interim Reliability Evaluation Program (IREP). Specific goals of the study were to identify the dominant contributors to core melt, develop a foundation for more extensive use of PRA methods, expand the cadre of experienced PRA practitioners, and apply procedures for extension of IREP analyses to other domestic light water reactors. Event tree and fault tree analyses were used to estimate the frequency of accident sequences initiated by transients and loss of coolant accidents. External events such as floods,more » fires, earthquakes, and sabotage were beyond the scope of this study and were, therefore, excluded. From these sequences, the dominant contributors to probable core melt frequency were chosen. Uncertainty and sensitivity analyses were performed on these sequences to better understand the limitations associated with the estimated sequence frequencies. Dominant sequences were grouped according to common containment failure modes and corresponding release categories on the basis of comparison with analyses of similar designs rather than on the basis of detailed plant-specific calculations.« less
Lei, Yong-Liang; Wang, Xiao-Guang; Tao, Xiao-Yan; Li, Hao; Meng, Sheng-Li; Chen, Xiu-Ying; Liu, Fu-Ming; Ye, Bi-Feng; Tang, Qing
2010-01-01
Based on sequencing the full-length genomes of four Chinese Ferret-Badger and dog, we analyze the properties of rabies viruses genetic variation in molecular level, get the information about rabies viruses prevalence and variation in Zhejiang, and enrich the genome database of rabies viruses street strains isolated from China. Rabies viruses in suckling mice were isolated, overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses from Chinese Ferret-Badger, dog, sika deer, vole, used vaccine strain were determined. The four full-length genomes were sequenced completely and had the same genetic structure with the length of 11, 923 nts or 11, 925 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions(IGRs), 423 nts-Pseudogene-like sequence (psi), 70 nts-Trailer. The four full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by BLAST and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the four full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so the nucleotide mutations happened in these four genomes were most synonymous mutations. Compared with the reference rabies viruses, the lengths of the five protein coding regions had no change, no recombination, only with a few point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the four genomes were similar to the reference vaccine or street strains. And the four strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessed the distinct district characteristics of China. Therefore, these four rabies viruses are likely to be street viruses already existing in the natural world.
Heuristics for multiobjective multiple sequence alignment.
Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B
2016-07-15
Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show that our approaches can obtain better results than TCoffee and Clustal Omega in terms of the first ratio.
Snelling, Timothy J; Genç, Buğra; McKain, Nest; Watson, Mick; Waters, Sinéad M; Creevey, Christopher J; Wallace, R John
2014-01-01
Ruminal archaeomes of two mature sheep grazing in the Scottish uplands were analysed by different sequencing and analysis methods in order to compare the apparent archaeal communities. All methods revealed that the majority of methanogens belonged to the Methanobacteriales order containing the Methanobrevibacter, Methanosphaera and Methanobacteria genera. Sanger sequenced 1.3 kb 16S rRNA gene amplicons identified the main species of Methanobrevibacter present to be a SGMT Clade member Mbb. millerae (≥ 91% of OTUs); Methanosphaera comprised the remainder of the OTUs. The primers did not amplify ruminal Thermoplasmatales-related 16S rRNA genes. Illumina sequenced V6-V8 16S rRNA gene amplicons identified similar Methanobrevibacter spp. and Methanosphaera clades and also identified the Thermoplasmatales-related order as 13% of total archaea. Unusually, both methods concluded that Mbb. ruminantium and relatives from the same clade (RO) were almost absent. Sequences mapping to rumen 16S rRNA and mcrA gene references were extracted from Illumina metagenome data. Mapping of the metagenome data to 16S rRNA gene references produced taxonomic identification to Order level including 2-3% Thermoplasmatales, but was unable to discriminate to species level. Mapping of the metagenome data to mcrA gene references resolved 69% to unclassified Methanobacteriales. Only 30% of sequences were assigned to species level clades: of the sequences assigned to Methanobrevibacter, most mapped to SGMT (16%) and RO (10%) clades. The Sanger 16S amplicon and Illumina metagenome mcrA analyses showed similar species richness (Chao1 Index 19-35), while Illumina metagenome and amplicon 16S rRNA analysis gave lower richness estimates (10-18). The values of the Shannon Index were low in all methods, indicating low richness and uneven species distribution. Thus, although much information may be extracted from the other methods, Illumina amplicon sequencing of the V6-V8 16S rRNA gene would be the method of choice for studying rumen archaeal communities.
Two Different Rickettsial Bacteria Invading Volvox carteri
Kawafune, Kaoru; Hongoh, Yuichi; Hamaji, Takashi; Sakamoto, Tomoaki; Kurata, Tetsuya; Hirooka, Shunsuke; Miyagishima, Shin-ya; Nozaki, Hisayoshi
2015-01-01
Background Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. Methodology/Principal Findings Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial gene-like sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. Conclusion/Significance At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution. PMID:25671568
Skorczyk, A; Flisikowski, K; Szydlowski, M; Cieslak, J; Fries, R; Switonski, M
2011-02-01
There are five genes encoding melanocortin receptors. Among canids, the genes have mainly been studied in the dog (MC1R, MC2R and MC4R). The MC4R gene has also been analysed in the red fox. In this report, we present a study of chromosome localization, comparative sequence analysis and polymorphism of the MC3R gene in the dog, red fox, arctic fox and Chinese raccoon dog. The gene was localized by FISH to the following chromosome: 24q24-25 in the dog, 14p16 in the red fox, 18q13 in the arctic fox and NPP4p15 in the Chinese raccoon dog. A high identity level of the MC3R gene sequences was observed among the species, ranging from 96.0% (red fox--Chinese raccoon dog) to 99.5% (red fox--arctic fox). Altogether, eight polymorphic sites were found in the red fox, six in the Chinese raccoon dog and two in the dog, while the arctic fox appeared to be monomorphic. In addition, association of several polymorphisms with body weight was analysed in red foxes (the number of genotyped animals ranged from 319 to 379). Two polymorphisms in the red fox, i.e. a silent substitution c.957A>C and c.*185C>T in the 3'-flanking sequence, showed a significant association (P < 0.01) with body weight. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.
Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y
2014-12-23
Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.
Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M
2015-05-01
When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome. © 2015 Collins et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
VKCDB: voltage-gated K+ channel database updated and upgraded.
Gallin, Warren J; Boutet, Patrick A
2011-01-01
The Voltage-gated K(+) Channel DataBase (VKCDB) (http://vkcdb.biology.ualberta.ca) makes a comprehensive set of sequence data readily available for phylogenetic and comparative analysis. The current update contains 2063 entries for full-length or nearly full-length unique channel sequences from Bacteria (477), Archaea (18) and Eukaryotes (1568), an increase from 346 solely eukaryotic entries in the original release. In addition to protein sequences for channels, corresponding nucleotide sequences of the open reading frames corresponding to the amino acid sequences are now available and can be extracted in parallel with sets of protein sequences. Channels are categorized into subfamilies by phylogenetic analysis and by using hidden Markov model analyses. Although the raw database contains a number of fragmentary, duplicated, obsolete and non-channel sequences that were collected in early steps of data collection, the web interface will only return entries that have been validated as likely K(+) channels. The retrieval function of the web interface allows retrieval of entries that contain a substantial fraction of the core structural elements of VKCs, fragmentary entries, or both. The full database can be downloaded as either a MySQL dump or as an XML dump from the web site. We have now implemented automated updates at quarterly intervals.
Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.
Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio
2017-10-06
Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.
Correcting for batch effects in case-control microbiome studies
Gibbons, Sean M.; Duvallet, Claire
2018-01-01
High-throughput data generation platforms, like mass-spectrometry, microarrays, and second-generation sequencing are susceptible to batch effects due to run-to-run variation in reagents, equipment, protocols, or personnel. Currently, batch correction methods are not commonly applied to microbiome sequencing datasets. In this paper, we compare different batch-correction methods applied to microbiome case-control studies. We introduce a model-free normalization procedure where features (i.e. bacterial taxa) in case samples are converted to percentiles of the equivalent features in control samples within a study prior to pooling data across studies. We look at how this percentile-normalization method compares to traditional meta-analysis methods for combining independent p-values and to limma and ComBat, widely used batch-correction models developed for RNA microarray data. Overall, we show that percentile-normalization is a simple, non-parametric approach for correcting batch effects and improving sensitivity in case-control meta-analyses. PMID:29684016
Application of cryopreservation to genetic analyses of a photosynthetic picoeukaryote community.
Kawachi, Masanobu; Kataoka, Takafumi; Sato, Mayumi; Noël, Mary-Hélène; Kuwata, Akira; Demura, Mikihide; Yamaguchi, Haruyo
2016-02-01
Cryopreservation is useful for long-term maintenance of living strains in microbial culture collections. We applied this technique to environmental specimens from two monitoring sites at Sendai Bay, Japan and compared the microbial diversity of photosynthetic picoeukaryotes in samples before and after cryopreservation. Flow cytometry (FCM) showed no considerable differences between specimens. We used 2500 cells sorted with FCM for next-generation sequencing of 18S rRNA gene amplicons and after removing low-quality sequences obtained 10,088-37,454 reads. Cluster analysis and comparative correlation analysis of observed high-level operational taxonomic units indicated similarity between specimens before and after cryopreservation. The effects of cryopreservation on cells were assessed with representative culture strains, including fragile cryptophyte cells. We confirmed the usefulness of cryopreservation for genetic studies on environmental specimens, and found that small changes in FCM cytograms after cryopreservation may affect biodiversity estimation. Copyright © 2015 Elsevier B.V. All rights reserved.
The tiger genome and comparative analysis with lion and snow leopard genomes.
Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong
2013-01-01
Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.
The tiger genome and comparative analysis with lion and snow leopard genomes
Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong
2013-01-01
Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858
NASA Astrophysics Data System (ADS)
Poag, C. W.
Biostratigraphic analyses of foraminiferal assemblages sampled from rotary cuttings taken at 10 ft to 90 ft intervals were used with interpretation of seismic sequences to determine the presence of nonconformities and to establish a chronostratigraphic framework for COST G-1 and G-2 wells. The chronostratigraphic sequences were then used to calculate sediment accumulation rates. Lithostratigraphic and chronostratigraphic units were compared with those of the Scotian Basin of Canada, and correlations were established between the COST G-2 and the Shell Mohican L-100 wells. Paleoenvironmental analysis was based on the microfossil record of the G-1 and G-2 wells and on interpretation of seismic facies along USGS multichannel line 19.
Krajewski, C; Fain, M G; Buckley, L; King, D G
1999-11-01
ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.
Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie
2013-01-01
Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens.