Learning Oceanography from a Computer Simulation Compared with Direct Experience at Sea
ERIC Educational Resources Information Center
Winn, William; Stahr, Frederick; Sarason, Christian; Fruland, Ruth; Oppenheimer, Peter; Lee, Yen-Ling
2006-01-01
Considerable research has compared how students learn science from computer simulations with how they learn from "traditional" classes. Little research has compared how students learn science from computer simulations with how they learn from direct experience in the real environment on which the simulations are based. This study compared two…
ERIC Educational Resources Information Center
Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.
2011-01-01
This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…
Fung, Lillia; Boet, Sylvain; Bould, M Dylan; Qosa, Haytham; Perrier, Laure; Tricco, Andrea; Tavares, Walter; Reeves, Scott
2015-01-01
Crisis resource management (CRM) abilities are important for different healthcare providers to effectively manage critical clinical events. This study aims to review the effectiveness of simulation-based CRM training for interprofessional and interdisciplinary teams compared to other instructional methods (e.g., didactics). Interprofessional teams are composed of several professions (e.g., nurse, physician, midwife) while interdisciplinary teams are composed of several disciplines from the same profession (e.g., cardiologist, anaesthesiologist, orthopaedist). Medline, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were searched using terms related to CRM, crisis management, crew resource management, teamwork, and simulation. Trials comparing simulation-based CRM team training versus any other methods of education were included. The educational interventions involved interprofessional or interdisciplinary healthcare teams. The initial search identified 7456 publications; 12 studies were included. Simulation-based CRM team training was associated with significant improvements in CRM skill acquisition in all but two studies when compared to didactic case-based CRM training or simulation without CRM training. Of the 12 included studies, one showed significant improvements in team behaviours in the workplace, while two studies demonstrated sustained reductions in adverse patient outcomes after a single simulation-based CRM team intervention. In conclusion, CRM simulation-based training for interprofessional and interdisciplinary teams show promise in teaching CRM in the simulator when compared to didactic case-based CRM education or simulation without CRM teaching. More research, however, is required to demonstrate transfer of learning to workplaces and potential impact on patient outcomes.
NASA Astrophysics Data System (ADS)
Kubota, Y.; Nagatsuma, T.; Den, M.; Nakamizo, A.; Matsumoto, H.; Tanaka, T.
2017-12-01
We are developing a numerical simulator for future space weather forecast using magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. We investigate the validity of the MHD simulation result as compared with observation. In this study we simulate some events including both quiet and disturbed geomagnetic conditions using OMNIWeb solar wind data. The simulation results are compared with magnetic field observations from Michibiki satellite, which is on the quasi-zenith orbit (QZO). In quiet geomagnetic condition, magnetic field variations at QZO obtained from simulation results have good consistency as compared correspondence with those from Michibiki observation. In disturbed geomagnetic condition in which the Dst < -20 nT, however, V component of magnetic field variations from simulation results tend to deviate from observations especially at the night side. We consider that this deviation during disturbed geomagnetic condition might be due to tail and/or ring current enhancement which is already suggested by many other MHD simulation studies as compared with the magnetic field observation at geosynchronous orbit. In this presentation, we will discuss the cause of this discrepancy in more detail with studying the relationship between the magnetic field deviation and some parameters such as Dst and solar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirley, Rachel; Smidts, Carol; Boring, Ronald
Information-Decision-Action Crew (IDAC) operator model simulations of a Steam Generator Tube Rupture are compared to student operator performance in studies conducted in the Ohio State University’s Nuclear Power Plant Simulator Facility. This study is presented as a prototype for conducting simulator studies to validate key aspects of Human Reliability Analysis (HRA) methods. Seven student operator crews are compared to simulation results for crews designed to demonstrate three different decision-making strategies. The IDAC model used in the simulations is modified slightly to capture novice behavior rather that expert operators. Operator actions and scenario pacing are compared. A preliminary review of availablemore » performance shaping factors (PSFs) is presented. After the scenario in the NPP Simulator Facility, student operators review a video of the scenario and evaluate six PSFs at pre-determined points in the scenario. This provides a dynamic record of the PSFs experienced by the OSU student operators. In this preliminary analysis, Time Constraint Load (TCL) calculated in the IDAC simulations is compared to TCL reported by student operators. We identify potential modifications to the IDAC model to develop an “IDAC Student Operator Model.” This analysis provides insights into how similar experiments could be conducted using expert operators to improve the fidelity of IDAC simulations.« less
Dawe, Susan R; Windsor, John A; Broeders, Joris A J L; Cregan, Patrick C; Hewett, Peter J; Maddern, Guy J
2014-02-01
A systematic review to determine whether skills acquired through simulation-based training transfer to the operating room for the procedures of laparoscopic cholecystectomy and endoscopy. Simulation-based training assumes that skills are directly transferable to the operation room, but only a few studies have investigated the effect of simulation-based training on surgical performance. A systematic search strategy that was used in 2006 was updated to retrieve relevant studies. Inclusion of articles was determined using a predetermined protocol, independent assessment by 2 reviewers, and a final consensus decision. Seventeen randomized controlled trials and 3 nonrandomized comparative studies were included in this review. In most cases, simulation-based training was in addition to patient-based training programs. Only 2 studies directly compared simulation-based training in isolation with patient-based training. For laparoscopic cholecystectomy (n = 10 studies) and endoscopy (n = 10 studies), participants who reached simulation-based skills proficiency before undergoing patient-based assessment performed with higher global assessment scores and fewer errors in the operating room than their counterparts who did not receive simulation training. Not all parameters measured were improved. Two of the endoscopic studies compared simulation-based training in isolation with patient-based training with different results: for sigmoidoscopy, patient-based training was more effective, whereas for colonoscopy, simulation-based training was equally effective. Skills acquired by simulation-based training seem to be transferable to the operative setting for laparoscopic cholecystectomy and endoscopy. Future research will strengthen these conclusions by evaluating predetermined competency levels on the same simulators and using objective validated global rating scales to measure operative performance.
Genetic data simulators and their applications: an overview
Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J.
2016-01-01
Computer simulations have played an indispensable role in the development and application of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the Genetic Simulation Resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286
Technology-enhanced simulation in emergency medicine: a systematic review and meta-analysis.
Ilgen, Jonathan S; Sherbino, Jonathan; Cook, David A
2013-02-01
Technology-enhanced simulation is used frequently in emergency medicine (EM) training programs. Evidence for its effectiveness, however, remains unclear. The objective of this study was to evaluate the effectiveness of technology-enhanced simulation for training in EM and identify instructional design features associated with improved outcomes by conducting a systematic review. The authors systematically searched MEDLINE, EMBASE, CINAHL, ERIC, PsychINFO, Scopus, key journals, and previous review bibliographies through May 2011. Original research articles in any language were selected if they compared simulation to no intervention or another educational activity for the purposes of training EM health professionals (including student and practicing physicians, midlevel providers, nurses, and prehospital providers). Reviewers evaluated study quality and abstracted information on learners, instructional design (curricular integration, feedback, repetitive practice, mastery learning), and outcomes. From a collection of 10,903 articles, 85 eligible studies enrolling 6,099 EM learners were identified. Of these, 56 studies compared simulation to no intervention, 12 compared simulation with another form of instruction, and 19 compared two forms of simulation. Effect sizes were pooled using a random-effects model. Heterogeneity among these studies was large (I(2) ≥ 50%). Among studies comparing simulation to no intervention, pooled effect sizes were large (range = 1.13 to 1.48) for knowledge, time, and skills and small to moderate for behaviors with patients (0.62) and patient effects (0.43; all p < 0.02 except patient effects p = 0.12). Among comparisons between simulation and other forms of instruction, the pooled effect sizes were small (≤ 0.33) for knowledge, time, and process skills (all p > 0.1). Qualitative comparisons of different simulation curricula are limited, although feedback, mastery learning, and higher fidelity were associated with improved learning outcomes. Technology-enhanced simulation for EM learners is associated with moderate or large favorable effects in comparison with no intervention and generally small and nonsignificant benefits in comparison with other instruction. Future research should investigate the features that lead to effective simulation-based instructional design. © 2013 by the Society for Academic Emergency Medicine.
NASA Astrophysics Data System (ADS)
Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.
1988-01-01
This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.
A Simulation Study Comparing Procedures for Assessing Individual Educational Growth. Report No. 182.
ERIC Educational Resources Information Center
Richards, James M., Jr.
A computer simulation procedure was developed to reproduce the overall pattern of results obtained in the Educational Testing Service Growth Study. Then simulated data for seven sets of 10,000 to 15,000 cases were analyzed, and findings compared on the basis of correlations between estimated and true growth scores. Findings showed that growth was…
Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, A.; Sather, N.
2012-06-01
NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.
Dilaveri, C A; Szostek, J H; Wang, A T; Cook, D A
2013-09-01
Breast and pelvic examinations are challenging intimate examinations. Technology-based simulation may help to overcome these challenges. To synthesise the evidence regarding the effectiveness of technology-based simulation training for breast and pelvic examination. Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus, and key journals and review articles; the date of the last search was January 2012. Original research studies evaluating technology-enhanced simulation of breast and pelvic examination to teach learners, compared with no intervention or with other educational activities. The reviewers evaluated study eligibility and abstracted data on methodological quality, learners, instructional design, and outcomes, and used random-effects models to pool weighted effect sizes. In total, 11 272 articles were identified for screening, and 22 studies were eligible, enrolling 2036 trainees. In eight studies comparing simulation for breast examination training with no intervention, simulation was associated with a significant improvement in skill, with a pooled effect size of 0.86 (95% CI 0.52-1.19; P < 0.001). Four studies comparing simulation training for pelvic examination with no intervention had a large and significant benefit, with a pooled effect size of 1.18 (95% CI 0.40-1.96; P = 0.003). Among breast examination simulation studies, dynamic models providing feedback were associated with improved outcomes. In pelvic examination simulation studies, the addition of a standardised patient to the simulation model and the use of an electronic model with enhanced feedback improved outcomes. In comparison with no intervention, breast and pelvic examination simulation training is associated with moderate to large effects for skills outcomes. Enhanced feedback appears to improve learning. © 2013 RCOG.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.
Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F
2015-02-01
The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Effectiveness of Simulation in a Hybrid and Online Networking Course.
ERIC Educational Resources Information Center
Cameron, Brian H.
2003-01-01
Reports on a study that compares the performance of students enrolled in two sections of a Web-based computer networking course: one utilizing a simulation package and the second utilizing a static, graphical software package. Analysis shows statistically significant improvements in performance in the simulation group compared to the…
Judd, Belinda Karyn; Alison, Jennifer Ailsey; Waters, Donna; Gordon, Christopher James
2016-08-01
Simulation-based clinical education often aims to replicate varying aspects of real clinical practice. It is unknown whether learners' stress levels in simulation are comparable with those in clinical practice. The current study compared acute stress markers during simulation-based clinical education with that experienced in situ in a hospital-based environment. Undergraduate physiotherapy students' (n = 33) acute stress responses [visual analog scales of stress and anxiety, continuous heart rate (HR), and saliva cortisol] were assessed during matched patient encounters in simulation-based laboratories using standardized patients and during hospital clinical placements with real patients. Group differences in stress variables were compared using repeated measures analysis of variance for 3 time points (before, during the patient encounter, and after) at 2 settings (simulation and hospital). Visual analog scale stress and anxiety as well as HR increased significantly from baseline levels before the encounter in both settings (all P < 0.05). Stress and anxiety were significantly higher in simulation [mean (SD), 45 (22) and 44 (25) mm; P = 0.003] compared with hospital [mean (SD), 31 (21) and 26 (20) mm; P = 0.002]. The mean (SD) HR during the simulation patient encounter was 90 (16) beats per minute and was not different compared with hospital [mean (SD), 87 (15) beats per minute; P = 0.89]. Changes in salivary cortisol before and after patient encounters were not statistically different between settings [mean (SD) simulation, 1.5 (2.4) nmol/L; hospital, 2.5 (2.9) nmol/L; P = 0.70]. Participants' experienced stress on clinical placements, irrespective of the clinical education setting (simulation vs. hospital). This study revealed that psychological stress and anxiety were greater during simulation compared with hospital settings; however, physiological stress responses (HR and cortisol) were comparable. These results indicate that psychological stress may be heightened in simulation, and health professional educators need to consider the impact of this on learners in simulation-based clinical education. New learners in their clinical education program may benefit from a less stressful simulation environment, before a gradual increase in stress demands as they approach clinical practice.
Li, Chih-Huang; Kuan, Win-Sen; Mahadevan, Malcolm; Daniel-Underwood, Lynda; Chiu, Te-Fa; Nguyen, H Bryant
2012-07-01
Medical simulation has been used to teach critical illness in a variety of settings. This study examined the effect of didactic lectures compared with simulated case scenario in a medical simulation course on the early management of severe sepsis. A prospective multicentre randomised study was performed enrolling resident physicians in emergency medicine from four hospitals in Asia. Participants were randomly assigned to a course that included didactic lectures followed by a skills workshop and simulated case scenario (lecture-first) or to a course that included a skills workshop and simulated case scenario followed by didactic lectures (simulation-first). A pre-test was given to the participants at the beginning of the course, post-test 1 was given after the didactic lectures or simulated case scenario depending on the study group assignment, then a final post-test 2 was given at the end of the course. Performance on the simulated case scenario was evaluated with a performance task checklist. 98 participants were enrolled in the study. Post-test 2 scores were significantly higher than pre-test scores in all participants (80.8 ± 12.0% vs 65.4 ± 12.2%, p<0.01). There was no difference in pre-test scores between the two study groups. The lecture-first group had significantly higher post-test 1 scores than the simulation-first group (78.8 ± 10.6% vs 71.6 ± 12.6%, p<0.01). There was no difference in post-test 2 scores between the two groups. The simulated case scenario task performance completion was 90.8% (95% CI 86.6% to 95.0%) in the lecture-first group compared with 83.8% (95% CI 79.5% to 88.1%) in the simulation-first group (p=0.02). A medical simulation course can improve resident physician knowledge in the early management of severe sepsis. Such a course should include a comprehensive curriculum that includes didactic lectures followed by simulation experience.
Efficient Simulation of Explicitly Solvated Proteins in the Well-Tempered Ensemble.
Deighan, Michael; Bonomi, Massimiliano; Pfaendtner, Jim
2012-07-10
Herein, we report significant reduction in the cost of combined parallel tempering and metadynamics simulations (PTMetaD). The efficiency boost is achieved using the recently proposed well-tempered ensemble (WTE) algorithm. We studied the convergence of PTMetaD-WTE conformational sampling and free energy reconstruction of an explicitly solvated 20-residue tryptophan-cage protein (trp-cage). A set of PTMetaD-WTE simulations was compared to a corresponding standard PTMetaD simulation. The properties of PTMetaD-WTE and the convergence of the calculations were compared. The roles of the number of replicas, total simulation time, and adjustable WTE parameter γ were studied.
ERIC Educational Resources Information Center
Isaranuwatchai, Wanrudee; Brydges, Ryan; Carnahan, Heather; Backstein, David; Dubrowski, Adam
2014-01-01
While the ultimate goal of simulation training is to enhance learning, cost-effectiveness is a critical factor. Research that compares simulation training in terms of educational- and cost-effectiveness will lead to better-informed curricular decisions. Using previously published data we conducted a cost-effectiveness analysis of three…
Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
NASA Technical Reports Server (NTRS)
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
A Modular Set of Mixed Reality Simulators for Blind and Guided Procedures
2017-08-01
Form Factor, Modular, DoD CVA Sim: Learning Outcome Study This between-groups study will compare performance scores on the CVA simulator to determine...simulation.health.ufl.edu/research/ra_sim.wmv. Preliminary data from a new study of the CVA simulator indicates that an integrated tutor may be non-inferior to a human...instructor, opening the possibility of self- study and self-debriefing which in turn facilitate competency-based, instead of time-based simulation
Sales Simulation Games: Student and Instructor Perceptions
ERIC Educational Resources Information Center
Beuk, Frederik
2016-01-01
This study combines the perspective of students (n = 137) and sales instructors (n = 248). It compares how well selling and sales management simulation games, case discussions, and traditional lectures are perceived to conform to the seven principles for good practice in undergraduate education. The study further compares each method's performance…
Human Cadavers vs. Multimedia Simulation: A Study of Student Learning in Anatomy
ERIC Educational Resources Information Center
Saltarelli, Andrew J.; Roseth, Cary J.; Saltarelli, William A.
2014-01-01
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi-experimental-control design, this study compared the effects of "Anatomy and Physiology Revealed" (APR) multimedia…
ERIC Educational Resources Information Center
William, Abeer; Vidal, Victoria L.; John, Pamela
2016-01-01
This quasi-experimental study compared differences in phlebotomy performance on a live client, between a control group taught through the traditional method and an experimental group using virtual reality simulation. The study showed both groups had performed successfully, using the following metrics: number of reinsertions, pain factor, hematoma…
Hunnicutt, Jacob N; Ulbricht, Christine M; Chrysanthopoulou, Stavroula A; Lapane, Kate L
2016-12-01
We systematically reviewed pharmacoepidemiologic and comparative effectiveness studies that use probabilistic bias analysis to quantify the effects of systematic error including confounding, misclassification, and selection bias on study results. We found articles published between 2010 and October 2015 through a citation search using Web of Science and Google Scholar and a keyword search using PubMed and Scopus. Eligibility of studies was assessed by one reviewer. Three reviewers independently abstracted data from eligible studies. Fifteen studies used probabilistic bias analysis and were eligible for data abstraction-nine simulated an unmeasured confounder and six simulated misclassification. The majority of studies simulating an unmeasured confounder did not specify the range of plausible estimates for the bias parameters. Studies simulating misclassification were in general clearer when reporting the plausible distribution of bias parameters. Regardless of the bias simulated, the probability distributions assigned to bias parameters, number of simulated iterations, sensitivity analyses, and diagnostics were not discussed in the majority of studies. Despite the prevalence and concern of bias in pharmacoepidemiologic and comparative effectiveness studies, probabilistic bias analysis to quantitatively model the effect of bias was not widely used. The quality of reporting and use of this technique varied and was often unclear. Further discussion and dissemination of the technique are warranted. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less
A comparative study between shielded and open coplanar waveguide discontinuities
NASA Technical Reports Server (NTRS)
Dib, Nihad I.; Harokopus, W. P., Jr.; Ponchak, G. E.; Katehi, L. P. B.
1993-01-01
A comparative study between open and shielded coplanar waveguide (CPW) discontinuities is presented. The space domain integral equation method is used to characterize several discontinuities such as the open-end CPW and CPW series stubs. Two different geometries of CPW series stubs (straight and bent stubs) are compared with respect to resonant frequency and radiation loss. In addition, the encountered radiation loss due to different CPW shunt stubs is evaluated experimentally. The notion of forced radiation simulation is presented, and the results of such a simulation are compared to the actual radiation loss obtained rigorously. It is shown that such a simulation cannot give reliable results concerning radiation loss from printed circuits.
Towards an Operational Definition of Clinical Competency in Pharmacy
2015-01-01
Objective. To estimate the inter-rater reliability and accuracy of ratings of competence in student pharmacist/patient clinical interactions as depicted in videotaped simulations and to compare expert panelist and typical preceptor ratings of those interactions. Methods. This study used a multifactorial experimental design to estimate inter-rater reliability and accuracy of preceptors’ assessment of student performance in clinical simulations. The study protocol used nine 5-10 minute video vignettes portraying different levels of competency in student performance in simulated clinical interactions. Intra-Class Correlation (ICC) was used to calculate inter-rater reliability and Fisher exact test was used to compare differences in distribution of scores between expert and nonexpert assessments. Results. Preceptors (n=42) across 5 states assessed the simulated performances. Intra-Class Correlation estimates were higher for 3 nonrandomized video simulations compared to the 6 randomized simulations. Preceptors more readily identified high and low student performances compared to satisfactory performances. In nearly two-thirds of the rating opportunities, a higher proportion of expert panelists than preceptors rated the student performance correctly (18 of 27 scenarios). Conclusion. Valid and reliable assessments are critically important because they affect student grades and formative student feedback. Study results indicate the need for pharmacy preceptor training in performance assessment. The process demonstrated in this study can be used to establish minimum preceptor benchmarks for future national training programs. PMID:26089563
Nonlinear vs. linear biasing in Trp-cage folding simulations
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka
2015-03-01
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
Nonlinear vs. linear biasing in Trp-cage folding simulations.
Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
NASA Astrophysics Data System (ADS)
Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon
2017-06-01
In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.
Student measurement of blood pressure using a simulator arm compared with a live subject's arm.
Lee, Jennifer J; Sobieraj, Diana M; Kuti, Effie L
2010-06-15
To compare accuracy of blood pressure measurements using a live subject and a simulator arm, and to determine students' preferences regarding measurement. This was a crossover study comparing blood pressure measurements from a live subject and a simulator arm. Students completed an anonymous survey instrument defining opinions on ease of measurement. Fifty-seven students completed blood pressure measurements on live subjects while 72 students completed blood pressure measurements using the simulator arm. There were no significant systematic differences between the 2 measurement techniques. Systolic blood pressure measurements from a live subject arm were less likely to be within 4 mm Hg compared with measurements of a simulator arm. Diastolic blood pressure measurements were not significantly different between the 2 techniques. Accuracy of student measurement of blood pressure using a simulator arm was similar to the accuracy with a live subject. There was no difference in students' preferences regarding measurement techniques.
Piloted simulation study of two tilt-wing flap control concepts, phase 2
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.
1994-01-01
A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.
Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson
2008-01-01
We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...
Do Social Studies Teachers Use Simulations?
ERIC Educational Resources Information Center
Young, Gail A; Schug, Mark C.
1990-01-01
Reports the results of a survey of Wisconsin secondary social studies teachers designed to answer the question: To what extent do teachers use simulations? Describes the study designed to replicate an earlier survey of Ohio teachers in 1979 by J.J. Blaga. Compares the results of the two surveys. Concludes simulation use has increased. (RW)
Leblanc, Fabien; Senagore, Anthony J; Ellis, Clyde N; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Delaney, Conor P
2010-01-01
The aim of this study was to compare a simulator with the human cadaver model for hand-assisted laparoscopic colorectal skills acquisition training. An observational prospective comparative study was conducted to compare the laparoscopic surgery training models. The study took place during the laparoscopic colectomy training course performed at the annual scientific meeting of the American Society of Colon and Rectal Surgeons. Thirty four practicing surgeons performed hand-assisted laparoscopic sigmoid colectomy on human cadavers (n = 7) and on an augmented reality simulator (n = 27). Prior laparoscopic colorectal experience was assessed. Trainers and trainees completed independently objective structured assessment forms. Training models were compared by trainees' technical skills scores, events scores, and satisfaction. Prior laparoscopic experience was similar in both surgeon groups. Generic and specific skills scores were similar on both training models. Generic events scores were significantly better on the cadaver model. The 2 most frequent generic events occurring on the simulator were poor hand-eye coordination and inefficient use of retraction. Specific events were scored better on the simulator and reached the significance limit (p = 0.051) for trainers. The specific events occurring on the cadaver were intestinal perforation and left ureter identification difficulties. Overall satisfaction was better for the cadaver than for the simulator model (p = 0.009). With regard to skills scores, the augmented reality simulator had adequate qualities for the hand-assisted laparoscopic colectomy training. Nevertheless, events scores highlighted weaknesses of the anatomical replication on the simulator. Although improvements likely will be required to incorporate the simulator more routinely into the colorectal training, it may be useful in its current form for more junior trainees or those early on their learning curve. Copyright 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna
2016-10-01
We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Hudson, Brian D.; George, Ashley R.; Ford, Martyn G.; Livingstone, David J.
1992-04-01
Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.
Alluri, Ram Kiran; Tsing, Pamela; Lee, Edward; Napolitano, Jason
2016-01-01
The purpose of this study was to compare the efficacy of simulation versus lecture-based education among preclinical medical students. Twenty medical students participated in this randomized, controlled crossover study. Students were randomized to four groups. Each group received two simulations and two lectures covering four different topics. Students were administered a pre-test, post-test and delayed post-test. The mean percentage of questions answered correctly on each test was calculated. The mean of each student's change in score across the three tests was used to compare simulation- versus lecture-based education. Students in both the simulation and lecture groups demonstrated improvement between the pre-test and post-test (p < 0.05). Students in the simulation group demonstrated improvement between the immediate post-test and delayed post-test (p < 0.05), while students in the lecture group did not demonstrate improvement (p > 0.05). When comparing interventions, the change in score between the pre-test and post-test was similar among both the groups (p > 0.05). The change in score between the post-test and delayed post-test was greater in the simulation group (p < 0.05). High-fidelity simulation may serve as a viable didactic platform for preclinical medical education. Our study demonstrated equivalent immediate knowledge gain and superior long-term knowledge retention in comparison to lectures.
ERIC Educational Resources Information Center
Keyser, Diane
2010-01-01
To design a series of assessments that could be used to compare the learning gains of high school students studying the cardiopulmonary system using traditional methods to those who used a collaborative computer simulation, called "Mr. Vetro". Five teachers and 264 HS biology students participated in the study. The students were in…
Udani, Ankeet Deepak; Harrison, T Kyle; Mariano, Edward R; Derby, Ryan; Kan, Jack; Ganaway, Toni; Shum, Cynthia; Gaba, David M; Tanaka, Pedro; Kou, Alex; Howard, Steven K
2016-01-01
Simulation-based education strategies to teach regional anesthesia have been described, but their efficacy largely has been assumed. We designed this study to determine whether residents trained using the simulation-based strategy of deliberate practice show greater improvement of ultrasound-guided regional anesthesia (UGRA) skills than residents trained using self-guided practice in simulation. Anesthesiology residents new to UGRA were randomized to participate in either simulation-based deliberate practice (intervention) or self-guided practice (control). Participants were recorded and assessed while performing simulated peripheral nerve blocks at baseline, immediately after the experimental condition, and 3 months after enrollment. Subject performance was scored from video by 2 blinded reviewers using a composite tool. The amount of time each participant spent in deliberate or self-guided practice was recorded. Twenty-eight participants completed the study. Both groups showed within-group improvement from baseline scores immediately after the curriculum and 3 months following study enrollment. There was no difference between groups in changed composite scores immediately after the curriculum (P = 0.461) and 3 months following study enrollment (P = 0.927) from baseline. The average time in minutes that subjects spent in simulation practice was 6.8 minutes for the control group compared with 48.5 minutes for the intervention group (P < 0.001). In this comparative effectiveness study, there was no difference in acquisition and retention of skills in UGRA for novice residents taught by either simulation-based deliberate practice or self-guided practice. Both methods increased skill from baseline; however, self-guided practice required less time and faculty resources.
Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Chung, Hyun Soo
2016-01-01
Objective Tube thoracostomy (TT) is a commonly performed intensive care procedure. Simulator training may be a good alternative method for TT training, compared with conventional methods such as apprenticeship and animal skills laboratory. However, there is insufficient evidence supporting use of a simulator. The aim of this study is to determine whether training with medical simulator is associated with faster TT process, compared to conventional training without simulator. Methods This is a simulation study. Eligible participants were emergency medicine residents with very few (≤3 times) TT experience. Participants were randomized to two groups: the conventional training group, and the simulator training group. While the simulator training group used the simulator to train TT, the conventional training group watched the instructor performing TT on a cadaver. After training, all participants performed a TT on a cadaver. The performance quality was measured as correct placement and time delay. Subjects were graded if they had difficulty on process. Results Estimated median procedure time was 228 seconds in the conventional training group and 75 seconds in the simulator training group, with statistical significance (P=0.040). The difficulty grading did not show any significant difference among groups (overall performance scale, 2 vs. 3; P=0.094). Conclusion Tube thoracostomy training with a medical simulator, when compared to no simulator training, is associated with a significantly faster procedure, when performed on a human cadaver. PMID:27752610
Lin, Lawrence; Pan, Yi; Hedayat, A S; Barnhart, Huiman X; Haber, Michael
2016-01-01
Total deviation index (TDI) captures a prespecified quantile of the absolute deviation of paired observations from raters, observers, methods, assays, instruments, etc. We compare the performance of TDI using nonparametric quantile regression to the TDI assuming normality (Lin, 2000). This simulation study considers three distributions: normal, Poisson, and uniform at quantile levels of 0.8 and 0.9 for cases with and without contamination. Study endpoints include the bias of TDI estimates (compared with their respective theoretical values), standard error of TDI estimates (compared with their true simulated standard errors), and test size (compared with 0.05), and power. Nonparametric TDI using quantile regression, although it slightly underestimates and delivers slightly less power for data without contamination, works satisfactorily under all simulated cases even for moderate (say, ≥40) sample sizes. The performance of the TDI based on a quantile of 0.8 is in general superior to that of 0.9. The performances of nonparametric and parametric TDI methods are compared with a real data example. Nonparametric TDI can be very useful when the underlying distribution on the difference is not normal, especially when it has a heavy tail.
Simulation and the Development of Clinical Judgment: A Quantitative Study
ERIC Educational Resources Information Center
Holland, Susan
2015-01-01
The purpose of this quantitative pretest posttest quasi-experimental research study was to explore the effect of the NESD on clinical judgment in associate degree nursing students and compare the differences between groups when the Nursing Education Simulation Design (NESD) guided simulation in order to identify educational strategies promoting…
Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Clarke, Lauren; Gillanders, Elizabeth; Feuer, Eric J.
2013-01-01
Summary: Many simulation methods and programs have been developed to simulate genetic data of the human genome. These data have been widely used, for example, to predict properties of populations retrospectively or prospectively according to mathematically intractable genetic models, and to assist the validation, statistical inference and power analysis of a variety of statistical models. However, owing to the differences in type of genetic data of interest, simulation methods, evolutionary features, input and output formats, terminologies and assumptions for different applications, choosing the right tool for a particular study can be a resource-intensive process that usually involves searching, downloading and testing many different simulation programs. Genetic Simulation Resources (GSR) is a website provided by the National Cancer Institute (NCI) that aims to help researchers compare and choose the appropriate simulation tools for their studies. This website allows authors of simulation software to register their applications and describe them with well-defined attributes, thus allowing site users to search and compare simulators according to specified features. Availability: http://popmodels.cancercontrol.cancer.gov/gsr. Contact: gsr@mail.nih.gov PMID:23435068
Nonlinear vs. linear biasing in Trp-cage folding simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energymore » minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.« less
2013-01-01
Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556
Preliminary analysis of one year long space climate simulation
NASA Astrophysics Data System (ADS)
Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.
2013-12-01
One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.
Influence of wheel-rail contact modelling on vehicle dynamic simulation
NASA Astrophysics Data System (ADS)
Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf
2015-08-01
This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.
Fenske, Cynthia L; Harris, Margaret A; Aebersold, Michelle L; Hartman, Laurie S
2013-09-01
This study was conducted to determine how closely nurses' perceptions of their clinical judgment abilities matched their demonstrated clinical judgment skills during a simulation. Seventy-four registered nurses participated in a simulation using a video format. After the simulation, the nurses self-assessed their performance using the Lasater Clinical Judgment Rubric. This rubric was then used to rate the nurses' actual performance in the simulation activity. The study results showed a significant discrepancy between nurses' perceptions of their own clinical judgment abilities and their demonstrated clinical judgment skills. Age and length of nursing experience enhanced the difference between the findings of self-assessment and actual performance. Younger nurses and those with 1 year or less of nursing experience were significantly more likely to have self-assessed their abilities at a much higher level compared with their actual skills. Copyright 2013, SLACK Incorporated.
Cook, David A; Hamstra, Stanley J; Brydges, Ryan; Zendejas, Benjamin; Szostek, Jason H; Wang, Amy T; Erwin, Patricia J; Hatala, Rose
2013-01-01
Although technology-enhanced simulation is increasingly used in health professions education, features of effective simulation-based instructional design remain uncertain. Evaluate the effectiveness of instructional design features through a systematic review of studies comparing different simulation-based interventions. We systematically searched MEDLINE, EMBASE, CINAHL, ERIC, PsycINFO, Scopus, key journals, and previous review bibliographies through May 2011. We included original research studies that compared one simulation intervention with another and involved health professions learners. Working in duplicate, we evaluated study quality and abstracted information on learners, outcomes, and instructional design features. We pooled results using random effects meta-analysis. From a pool of 10,903 articles we identified 289 eligible studies enrolling 18,971 trainees, including 208 randomized trials. Inconsistency was usually large (I2 > 50%). For skills outcomes, pooled effect sizes (positive numbers favoring the instructional design feature) were 0.68 for range of difficulty (20 studies; p < 0.001), 0.68 for repetitive practice (7 studies; p = 0.06), 0.66 for distributed practice (6 studies; p = 0.03), 0.65 for interactivity (89 studies; p < 0.001), 0.62 for multiple learning strategies (70 studies; p < 0.001), 0.52 for individualized learning (59 studies; p < 0.001), 0.45 for mastery learning (3 studies; p = 0.57), 0.44 for feedback (80 studies; p < 0.001), 0.34 for longer time (23 studies; p = 0.005), 0.20 for clinical variation (16 studies; p = 0.24), and -0.22 for group training (8 studies; p = 0.09). These results confirm quantitatively the effectiveness of several instructional design features in simulation-based education.
Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál
2008-01-28
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.
Three-Dimensional Imaging in Rhinoplasty: A Comparison of the Simulated versus Actual Result.
Persing, Sarah; Timberlake, Andrew; Madari, Sarika; Steinbacher, Derek
2018-05-22
Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-01-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-05-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. © IMechE 2016.
Simulation-based training for cardiac auscultation skills: systematic review and meta-analysis.
McKinney, James; Cook, David A; Wood, David; Hatala, Rose
2013-02-01
The current review examines the effectiveness of simulation-based medical education (SBME) for training health professionals in cardiac physical examination and examines the relative effectiveness of key instructional design features. Data sources included a comprehensive, systematic search of MEDLINE, EMBASE, CINAHL, PsychINFO, ERIC, Web of Science, and Scopus through May 2011. Included studies investigated SBME to teach health profession learners cardiac physical examination skills using outcomes of knowledge or skill. We carried out duplicate assessment of study quality and data abstraction and pooled effect sizes using random effects. We identified 18 articles for inclusion. Thirteen compared SBME to no-intervention (either single group pre-post comparisons or SBME added to other instruction common to all learners, such as traditional bedside teaching), three compared SBME to other educational interventions, and two compared two SBME interventions. Meta-analysis of the 13 no-intervention comparison studies demonstrated that simulation-based instruction in cardiac auscultation was effective, with pooled effect sizes of 1.10 (95 % CI 0.49-1.72; p < 0.001; I(2) = 92.4 %) for knowledge outcomes and 0.87 (95 % CI 0.52-1.22; p < 0.001; I(2) = 91.5 %) for skills. In sub-group analysis, hands-on practice with the simulator appeared to be an important teaching technique. Narrative review of the comparative effectiveness studies suggests that SBME may be of similar effectiveness to other active educational interventions, but more studies are required. The quantity of published evidence and the relative lack of comparative effectiveness studies limit this review. SBME is an effective educational strategy for teaching cardiac auscultation. Future studies should focus on comparing key instructional design features and establishing SBME's relative effectiveness compared to other educational interventions.
Ultrasound-Guided Regional Anesthesia Simulation Training: A Systematic Review.
Chen, Xiao Xu; Trivedi, Vatsal; AlSaflan, AbdulHadi A; Todd, Suzanne Clare; Tricco, Andrea C; McCartney, Colin J L; Boet, Sylvain
Ultrasound-guided regional anesthesia (UGRA) has become the criterion standard of regional anesthesia practice. Ultrasound-guided regional anesthesia teaching programs often use simulation, and guidelines have been published to help guide URGA education. This systematic review aimed to examine the effectiveness of simulation-based education for the acquisition and maintenance of competence in UGRA. Studies identified in MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were included if they assessed simulation-based UGRA teaching with outcomes measured at Kirkpatrick level 2 (knowledge and skills), 3 (transfer of learning to the workplace), or 4 (patient outcomes). Two authors independently reviewed all identified references for eligibility, abstracted data, and appraised quality. After screening 176 citations and 45 full-text articles, 12 studies were included. Simulation-enhanced training improved knowledge acquisition (Kirkpatrick level 2) when compared with nonsimulation training. Seven studies measuring skill acquisition (Kirkpatrick level 2) found that simulation-enhanced UGRA training was significantly more effective than alternative teaching methods or no intervention. One study measuring transfer of learning into the clinical setting (Kirkpatrick level 3) found no difference between simulation-enhanced UGRA training and non-simulation-based training. However, this study was discontinued early because of technical challenges. Two studies examined patient outcomes (Kirkpatrick level 4), and one of these found that simulation-based UGRA training improved patient outcomes compared with didactic teaching. Ultrasound-guided regional anesthesia knowledge and skills significantly improved with simulation training. The acquired UGRA skills may be transferred to the clinical setting; however, further studies are required to confirm these changes translate to improved patient outcomes.
Simulation-based bronchoscopy training: systematic review and meta-analysis.
Kennedy, Cassie C; Maldonado, Fabien; Cook, David A
2013-07-01
Simulation-based bronchoscopy training is increasingly used, but effectiveness remains uncertain. We sought to perform a comprehensive synthesis of published work on simulation-based bronchoscopy training. We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles through May 11, 2011. We included all original studies involving health professionals that evaluated, in comparison with no intervention or an alternative instructional approach, simulation-based training for flexible or rigid bronchoscopy. Study selection and data abstraction were performed independently and in duplicate. We pooled results using random effects meta-analysis. From an initial pool of 10,903 articles, we identified 17 studies evaluating simulation-based bronchoscopy training. In comparison with no intervention, simulation training was associated with large benefits on skills and behaviors (pooled effect size, 1.21 [95% CI, 0.82-1.60]; n=8 studies) and moderate benefits on time (0.62 [95% CI, 0.12-1.13]; n=7). In comparison with clinical instruction, behaviors with real patients showed nonsignificant effects favoring simulation for time (0.61 [95% CI, -1.47 to 2.69]) and process (0.33 [95% CI, -1.46 to 2.11]) outcomes (n=2 studies each), although variation in training time might account for these differences. Four studies compared alternate simulation-based training approaches. Inductive analysis to inform instructional design suggested that longer or more structured training is more effective, authentic clinical context adds value, and animal models and plastic part-task models may be superior to more costly virtual-reality simulators. Simulation-based bronchoscopy training is effective in comparison with no intervention. Comparative effectiveness studies are few.
Simulating tracer transport in variably saturated soils and shallow groundwater
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in variably saturated soils and to compare simulation results with the detailed monitoring observations. The USDA-ARS OPE3 field site was selected for the case study due to ava...
A Comparison of Observed and Simulated 1990 – 2010 U.S. Ozone Trends
In this study, we analyze ozone concentrations from long-term (1990 – 2010) WRF-CMAQ simulations driven by year specific meteorology and emissions. These simulations allow us to compare observed and simulated ozone trends in order to evaluate the model’s ability to pr...
Directly comparing gravitational wave data to numerical relativity simulations: systematics
NASA Astrophysics Data System (ADS)
Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Zlochower, Yosef; Shoemaker, Deirdre; Lovelace, Geoffrey; Pankow, Christopher; Brady, Patrick; Scheel, Mark; Pfeiffer, Harald; Ossokine, Serguei
2017-01-01
We compare synthetic data directly to complete numerical relativity simulations of binary black holes. In doing so, we circumvent ad-hoc approximations introduced in semi-analytical models previously used in gravitational wave parameter estimation and compare the data against the most accurate waveforms including higher modes. In this talk, we focus on the synthetic studies that test potential sources of systematic errors. We also run ``end-to-end'' studies of intrinsically different synthetic sources to show we can recover parameters for different systems.
Metrics for comparing dynamic earthquake rupture simulations
Barall, Michael; Harris, Ruth A.
2014-01-01
Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.
Strom, Suzanne L; Anderson, Craig L; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C Eric; Osborn, Megan Boysen; Langdorf, Mark I
2015-11-01
Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.
Howard, Valerie Michele; Ross, Carl; Mitchell, Ann M; Nelson, Glenn M
2010-01-01
Although human patient simulators provide an innovative teaching method for nursing students, they are quite expensive. To investigate the value of this expenditure, a quantitative, quasi-experimental, two-group pretest and posttest design was used to compare two educational interventions: human patient simulators and interactive case studies. The sample (N = 49) consisted of students from baccalaureate, accelerated baccalaureate, and diploma nursing programs. Custom-designed Health Education Systems, Inc examinations were used to measure knowledge before and after the implementation of the two educational interventions. Students in the human patient simulation group scored significantly higher than did those in the interactive case study group on the posttest Health Education Systems, Inc examination, and no significant difference was found in student scores among the three types of nursing programs that participated in the study. Data obtained from a questionnaire administered to participants indicated that students responded favorably to the use of human patient simulators as a teaching method.
Use of simulation-based education to reduce catheter-related bloodstream infections.
Barsuk, Jeffrey H; Cohen, Elaine R; Feinglass, Joe; McGaghie, William C; Wayne, Diane B
2009-08-10
Simulation-based education improves procedural competence in central venous catheter (CVC) insertion. The effect of simulation-based education in CVC insertion on the incidence of catheter-related bloodstream infection (CRBSI) is unknown. The aim of this study was to determine if simulation-based training in CVC insertion reduces CRBSI. This was an observational education cohort study set in an adult intensive care unit (ICU) in an urban teaching hospital. Ninety-two internal medicine and emergency medicine residents completed a simulation-based mastery learning program in CVC insertion skills. Rates of CRBSI from CVCs inserted by residents in the ICU before and after the simulation-based educational intervention were compared over a 32-month period. There were fewer CRBSIs after the simulator-trained residents entered the intervention ICU (0.50 infections per 1000 catheter-days) compared with both the same unit prior to the intervention (3.20 per 1000 catheter-days) (P = .001) and with another ICU in the same hospital throughout the study period (5.03 per 1000 catheter-days) (P = .001). An educational intervention in CVC insertion significantly improved patient outcomes. Simulation-based education is a valuable adjunct in residency education.
Liaw, Sok Ying; Chan, Sally Wai-Chi; Chen, Fun-Gee; Hooi, Shing Chuan; Siau, Chiang
2014-09-17
Virtual patient simulation has grown substantially in health care education. A virtual patient simulation was developed as a refresher training course to reinforce nursing clinical performance in assessing and managing deteriorating patients. The objective of this study was to describe the development of the virtual patient simulation and evaluate its efficacy, by comparing with a conventional mannequin-based simulation, for improving the nursing students' performances in assessing and managing patients with clinical deterioration. A randomized controlled study was conducted with 57 third-year nursing students who were recruited through email. After a baseline evaluation of all participants' clinical performance in a simulated environment, the experimental group received a 2-hour fully automated virtual patient simulation while the control group received 2-hour facilitator-led mannequin-based simulation training. All participants were then re-tested one day (first posttest) and 2.5 months (second posttest) after the intervention. The participants from the experimental group completed a survey to evaluate their learning experiences with the newly developed virtual patient simulation. Compared to their baseline scores, both experimental and control groups demonstrated significant improvements (P<.001) in first and second post-test scores. While the experimental group had significantly lower (P<.05) second post-test scores compared with the first post-test scores, no significant difference (P=.94) was found between these two scores for the control group. The scores between groups did not differ significantly over time (P=.17). The virtual patient simulation was rated positively. A virtual patient simulation for a refreshing training course on assessing and managing clinical deterioration was developed. Although the randomized controlled study did not show that the virtual patient simulation was superior to mannequin-based simulation, both simulations have demonstrated to be effective refresher learning strategies for improving nursing students' clinical performance. Given the greater resource requirements of mannequin-based simulation, the virtual patient simulation provides a more promising alternative learning strategy to mitigate the decay of clinical performance over time.
ERIC Educational Resources Information Center
Jaakkola, Tomi; Nurmi, Sami; Veermans, Koen
2011-01-01
The aim of this experimental study was to compare learning outcomes of students using a simulation alone (simulation environment) with outcomes of those using a simulation in parallel with real circuits (combination environment) in the domain of electricity, and to explore how learning outcomes in these environments are mediated by implicit (only…
NASA Astrophysics Data System (ADS)
Sundberg, Mikaela
While the distinction between theory and experiment is often used to discuss the place of simulation from a philosophical viewpoint, other distinctions are possible from a sociological perspective. Turkle (1995) distinguishes between cultures of calculation and cultures of simulation and relates these cultures to the distinction between modernity and postmodernity, respectively. What can we understand about contemporary simulation practices in science by looking at them from the point of view of these two computer cultures? What new questions does such an analysis raise for further studies? On the basis of two case studies, the present paper compares and discusses simulation activities in astrophysics and meteorology. It argues that simulation practices manifest aspects of both of these cultures simultaneously, but in different situations. By employing the dichotomies surface/depth, play/seriousness, and extreme/reasonable to characterize and operationalize cultures of calculation and cultures of simulation as sensitizing concepts, the analysis shows how simulation code work shifts from development to use, the importance of but also resistance towards too much visualizations, and how simulation modelers play with extreme values, yet also try to achieve reasonable results compared to observations.
Medicanes in an ocean-atmosphere coupled regional climate model
NASA Astrophysics Data System (ADS)
Akhtar, Naveed; Brauch, Jennifer; Ahrens, Bodo
2014-05-01
So-called medicanes (Mediterranean hurricanes) are meso-scale, marine and warm core Mediterranean cyclones which exhibit some similarities with tropical cyclones. The strong cyclonic winds associated with them are a potential thread for highly populated coastal areas around the Mediterranean basin. In this study we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (NEMO-1d) to simulate medicanes. The goal of this study is to assess the robustness of the coupled model to simulate these extreme events. For this purpose 11 historical medicane events are simulated by the atmosphere-only and the coupled models using different set-ups (horizontal grid-spacings: 0.44o, 0.22o, 0.088o; with/with-out spectral nudging). The results show that at high resolution the coupled model is not only able to simulate all medicane events but also improves the simulated track length, warm core, and wind speed of simulated medicanes compared to atmosphere-only simulations. In most of the cases the medicanes trajectories and structures are better represented in coupled simulations compared to atmosphere-only simulations. We conclude that the coupled model is a suitable tool for systemic and detailed study of historical medicane events and also for future projections.
Molecular dynamics simulations of classical sound absorption in a monatomic gas
NASA Astrophysics Data System (ADS)
Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.
2018-05-01
Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.
The Use of Computer Simulation Gaming in Teaching Broadcast Economics.
ERIC Educational Resources Information Center
Mancuso, Louis C.
The purpose of this study was to develop a broadcast economic computer simulation and to ascertain how a lecture-computer simulation game compared as a teaching method with a more traditional lecture and case study instructional methods. In each of three sections of a broadcast economics course, a different teaching methodology was employed: (1)…
Pilot Study: Impact of Computer Simulation on Students' Economic Policy Performance. Pilot Study.
ERIC Educational Resources Information Center
Domazlicky, Bruce; France, Judith
Fiscal and monetary policies taught in macroeconomic principles courses are concepts that might require both lecture and simulation methods. The simulation models, which apply the principles gleened from comparative statistics to a dynamic world, may give students an appreciation for the problems facing policy makers. This paper is a report of a…
Student Perceptions of a Role-Playing Simulation in an Introductory International Relations Course
ERIC Educational Resources Information Center
Giovanello, Sean P.; Kirk, Jason A.; Kromer, Mileah K.
2013-01-01
An emerging assumption in undergraduate political science education is that role-playing simulations are an effective teaching tool. While previous studies have addressed the pedagogical advantages of simulations as compared to more traditional teaching techniques, less attention has been paid to student perceptions of these simulations. This…
A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maile, Tobias; Bazjanac, Vladimir; O'Donnell, James
2011-11-01
Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots andmore » data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.« less
Low-Visibility Visual Simulation with Real Fog
NASA Technical Reports Server (NTRS)
Chase, Wendell D.
1982-01-01
An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that the two major factors must be accounted for in the simulation of low visibility-one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by: comparing actual measurements lo those computed from the Fog equations, and comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the Features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity, low-visibility visual simulation are discussed.
Low-visibility visual simulation with real fog
NASA Technical Reports Server (NTRS)
Chase, W. D.
1981-01-01
An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that two major factors must be accounted for in the simulation of low visibility - one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by (1) comparing actual measurements to those computed from the fog equations, and (2) comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity low-visibility visual simulation are discussed.
NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures
NASA Technical Reports Server (NTRS)
Wheless, T. K.
1985-01-01
This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Simulation-Based Bronchoscopy Training
Kennedy, Cassie C.; Maldonado, Fabien
2013-01-01
Background: Simulation-based bronchoscopy training is increasingly used, but effectiveness remains uncertain. We sought to perform a comprehensive synthesis of published work on simulation-based bronchoscopy training. Methods: We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles through May 11, 2011. We included all original studies involving health professionals that evaluated, in comparison with no intervention or an alternative instructional approach, simulation-based training for flexible or rigid bronchoscopy. Study selection and data abstraction were performed independently and in duplicate. We pooled results using random effects meta-analysis. Results: From an initial pool of 10,903 articles, we identified 17 studies evaluating simulation-based bronchoscopy training. In comparison with no intervention, simulation training was associated with large benefits on skills and behaviors (pooled effect size, 1.21 [95% CI, 0.82-1.60]; n = 8 studies) and moderate benefits on time (0.62 [95% CI, 0.12-1.13]; n = 7). In comparison with clinical instruction, behaviors with real patients showed nonsignificant effects favoring simulation for time (0.61 [95% CI, −1.47 to 2.69]) and process (0.33 [95% CI, −1.46 to 2.11]) outcomes (n = 2 studies each), although variation in training time might account for these differences. Four studies compared alternate simulation-based training approaches. Inductive analysis to inform instructional design suggested that longer or more structured training is more effective, authentic clinical context adds value, and animal models and plastic part-task models may be superior to more costly virtual-reality simulators. Conclusions: Simulation-based bronchoscopy training is effective in comparison with no intervention. Comparative effectiveness studies are few. PMID:23370487
This study presents a comparative evaluation of the impact of WRF-NMM and WRF-ARW meteorology on CMAQ simulations of PM2.5, its composition and related precursors over the eastern United States with the intensive observations obtained by aircraft (NOAA WP-3), ship and ...
Experimental and Computational Study of Sonic and Supersonic Jet Plumes
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Naughton, J. W.; Fletcher, D. G.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock-shear-layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
Veldstra, J L; Bosker, W M; de Waard, D; Ramaekers, J G; Brookhuis, K A
2015-08-01
The driving simulator provides a safe and controlled environment for testing driving behaviour efficiently. The question is whether it is sensitive to detect drug-induced effects. The primary aim of the current study was to investigate the sensitivity of the driving simulator for detecting drug effects. As a case in point, we investigated the dose-related effects of oral ∆(9)-tetrahydrocannabinol (THC), i.e. dronabinol, on simulator and on-the-road driving performance in equally demanding driving tasks. Twenty-four experienced driver participants were treated with dronabinol (Marinol®; 10 and 20 mg) and placebo. Dose-related effects of the drug on the ability to keep a vehicle in lane (weaving) and to follow the speed changes of a lead car (car following) were compared within subjects for on-the-road versus in-simulator driving. Additionally, the outcomes of equivalence testing to alcohol-induced effects were investigated. Treatment effects found on weaving when driving in the simulator were comparable to treatment effects found when driving on the road. The effect after 10 mg dronabinol was however less strong in the simulator than on the road and inter-individual variance seemed higher in the simulator. There was, however, a differential treatment effect of dronabinol on reactions to speed changes of a lead car (car following) when driving on the road versus when driving in the simulator. The driving simulator was proven to be sensitive for demonstrating dronabinol-induced effects particularly at higher doses. Treatment effects of dronabinol on weaving were comparable with driving on the road but inter-individual variability seemed higher in the simulator than on the road which may have potential effects on the clinical inferences made from simulator driving. Car following on the road and in the simulator were, however, not comparable.
Baker, B G; Bhalla, A; Doleman, B; Yarnold, E; Simons, S; Lund, J N; Williams, J P
2017-01-01
Simulation-based training (SBT) has become an increasingly important method by which doctors learn. Stress has an impact upon learning, performance, technical, and non-technical skills. However, there are currently no studies that compare stress in the clinical and simulated environment. We aimed to compare objective (heart rate variability, HRV) and subjective (state trait anxiety inventory, STAI) measures of stress theatre with a simulated environment. HRV recordings were obtained from eight anesthetic trainees performing an uncomplicated rapid sequence induction at pre-determined procedural steps using a wireless Polar RS800CX monitor © in an emergency theatre setting. This was repeated in the simulated environment. Participants completed an STAI before and after the procedure. Eight trainees completed the study. The theatre environment caused an increase in objective stress vs baseline (p = .004). There was no significant difference between average objective stress levels across all time points (p = .20) between environments. However, there was a significant interaction between the variables of objective stress and environment (p = .045). There was no significant difference in subjective stress (p = .27) between environments. Simulation was unable to accurately replicate the stress of the technical procedure. This is the first study that compares the stress during SBT with the theatre environment and has implications for the assessment of simulated environments for use in examinations, rating of technical and non-technical skills, and stress management training.
Bonjour, Timothy J; Charny, Grigory; Thaxton, Robert E
2016-11-01
Rapid effective trauma resuscitations (TRs) decrease patient morbidity and mortality. Few studies have evaluated TR care times. Effective time goals and superior human patient simulator (HPS) training can improve patient survivability. The purpose of this study was to compare live TR to HPS resuscitation times to determine mean incremental resuscitation times and ascertain if simulation was educationally equivalent. The study was conducted at San Antonio Military Medical Center, Department of Defense Level I trauma center. This was a prospective observational study measuring incremental step times by trauma teams during trauma and simulation patient resuscitations. Trauma and simulation patient arms had 60 patients for statistical significance. Participants included Emergency Medicine residents and Physician Assistant residents as the trauma team leader. The trauma patient arm revealed a mean evaluation time of 10:33 and simulation arm 10:23. Comparable time characteristics in the airway, intravenous access, blood sample collection, and blood pressure data subsets were seen. TR mean times were similar to the HPS arm subsets demonstrating simulation as an effective educational tool. Effective stepwise approaches, incremental time goals, and superior HPS training can improve patient survivability and improved departmental productivity using TR teams. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
ERIC Educational Resources Information Center
Wright-Maley, Cory
2015-01-01
This comparative case study presents one key challenge that 2 experienced teachers faced when using simulations: control. Simulations are activities that place high demands on teachers, including the ability to anticipate pitfalls in advance, act in multiple capacities, shape the direction of the activity without unduly interfering, and to be…
ERIC Educational Resources Information Center
Waddick, John
1994-01-01
Compares the effect of a chemistry computer simulation, written by the author, with the effect of an instructor demonstration. The study indicates that in this particular situation the operation of a spectrophotometer can be effectively taught by computer simulation method. The program is written using HyperTalk, the HyperCard programming…
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in USDA-ARS OPE3 field site and to compare simulation results with the detailed monitoring observations. The site has been studied for over 10 years with the extensive availabl...
ERIC Educational Resources Information Center
McCarthy, Mary M.
2014-01-01
Games and simulations are increasingly used in courses on international politics. This study explores the hypothesis that games are better than simulations (as well as only reading and lectures) in introducing students to abstract concepts integral to an understanding of world politics. The study compares a two-level Prisoner's Dilemma game…
MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries
NASA Astrophysics Data System (ADS)
Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas
2015-11-01
The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.
Evaluation of DNA Force Fields in Implicit Solvation
Gaillard, Thomas; Case, David A.
2011-01-01
DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178
Effectiveness of simulation for improvement in self-efficacy among novice nurses: a meta-analysis.
Franklin, Ashley E; Lee, Christopher S
2014-11-01
The influence of simulation on self-efficacy for novice nurses has been reported inconsistently in the literature. Effect sizes across studies were synthesized using random-effects meta-analyses. Simulation improved self-efficacy in one-group, pretest-posttest studies (Hedge's g=1.21, 95% CI [0.63, 1.78]; p<0.001). Simulation also was favored over control teaching interventions in improving self-efficacy in studies with experimental designs (Hedge's g=0.27, 95% CI [0.1, 0.44]; p=0.002). In nonexperimental designs, consistent conclusions about the influence of simulation were tempered by significant between-study differences in effects. Simulation is effective at increasing self-efficacy among novice nurses, compared with traditional control groups. Copyright 2014, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.
2009-12-01
Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.
Simulation Activities and Student Learning Characteristics in a College Economics Survey Course.
ERIC Educational Resources Information Center
Fraas, John W.; Rafeld, Frederick J.
The paper describes a study involving simulation activities in a college level survey course in economics. In addition, it compares student learning in an economics course based on simulation with student learning in a lecture discussion course. The hypothesis was that certain types of students would benefit from the simulation-gaming approach…
NASA Astrophysics Data System (ADS)
Yinkai Lei
Atomistic simulation refers to a set of simulation methods that model the materials on the atomistic scale. These simulation methods are faster and cheaper alternative approaches to investigate thermodynamics and kinetics of materials compared to experiments. In this dissertation, atomistic simulation methods have been used to study the thermodynamic and kinetic properties of two material systems, i.e. the entropy of Al-containing high entropy alloys (HEAs) and the vacancy migration energy of thermally grown aluminum oxide. (Abstract shortened by ProQuest.).
Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results
NASA Astrophysics Data System (ADS)
Sharmazanashvili, A.; Tsutskiridze, Niko
2016-09-01
Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.
Human cadavers Vs. multimedia simulation: A study of student learning in anatomy.
Saltarelli, Andrew J; Roseth, Cary J; Saltarelli, William A
2014-01-01
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi-experimental-control design, this study compared the effects of "Anatomy and Physiology Revealed" (APR) multimedia learning system with a traditional undergraduate human cadaver laboratory. APR is a model-based multimedia simulation tool that uses high-resolution pictures to construct a prosected cadaver. APR also provides animations showing the function of specific anatomical structures. Results showed that the human cadaver laboratory offered a significant advantage over the multimedia simulation program on cadaver-based measures of identification and explanatory knowledge. These findings reinforce concerns that incorporating multimedia simulation into anatomy instruction requires careful alignment between learning tasks and performance measures. Findings also imply that additional pedagogical strategies are needed to support transfer from simulated to real-world application of anatomical knowledge. © 2014 American Association of Anatomists.
Leming, Matthew; Steiner, Rachel; Styner, Martin
2016-02-27
Tract-based spatial statistics (TBSS) 6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder 7 . To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS 10 ). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder's registration enhances TBSS group-based studies.
Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.
2005-01-01
The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.
Effectiveness evaluation of simulative workshops for newly licensed drivers.
Rosenbloom, Tova; Eldror, Ehud
2014-02-01
The current study set to examine the effects of simulator use in driving instruction on newly licensed drivers, comparing the road safety knowledge and reported intended behavior, as well as the actual driving performance of new drivers. Participants consisted of 280 newly licensed driver, of which 140 whose drivers license training included additional simulator-based lessons, and 140 drivers whose training precluded simulator-based lessons. All drivers answered questionnaires pertaining to their intended safe driving behaviors (according to Ajzen's (2000) theory of planned behavior), and to their traffic safety knowledge. Of the initial sample, 40 drivers received actual driving performance evaluation by an expert driving instructor, as well as by in-vehicle data recorders (IVDRs). We assumed that safer drivers report safer driving intentions, demonstrate greater traffic safety knowledge, evaluated as safer drivers by the driving instructor, and display lower and stable driving parameters on the IVDRs. We hypothesized that theoretical driving studies combined with practical training on simulators will elevate the safety level of novices driving. Hierarchical regression analyses on driving intentions indicated that drivers who did not receive simulator-based lessons demonstrated safer driving intentions compared to drivers who received simulator-based lessons. This pattern possibly indicating the drivers who received simulator-based lessons felt more confident in their driving abilities compared to drivers who did not receive simulated training. No significant difference was found in traffic safety knowledge, or in the evaluation of the expert driving instructor. IDVR data comparisons indicated drivers who received simulator-based lessons braked more often and were less prone to headway events, suggesting a more responsive driving style. These findings do not point to any significant advantage or disadvantage of the current simulator-based driving training over other driving training methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin;
2006-01-01
Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.
Simulated characteristics of the DEGAS γ-detector array
NASA Astrophysics Data System (ADS)
Li, G. S.; Lizarazo, C.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Górska, M.; Pietralla, N.; Saha, S.; Liu, M. L.; Wang, J. G.
2018-05-01
The performance of the novel HPGe-Cluster array DEGAS to be used at FAIR has been studied through GEANT4 simulations using accurate geometries of most of the detector components. The simulation framework has been tested by comparing experimental data of various detector setups. The study showed that the DEGAS system could provide a clear improvement of the photo-peak efficiency compared to the previous RISING array. In addition, the active BGO Back-catcher could greatly enhance the background suppression capability. The add-back analysis revealed that even at a γ multiplicity of six the sensitivity is improved by adding back the energy depositions of the neighboring Ge crystals.
The 3-D numerical simulation research of vacuum injector for linear induction accelerator
NASA Astrophysics Data System (ADS)
Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing
2017-01-01
Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.
Assessment of the simulated climate in two versions of the RegT-Band
NASA Astrophysics Data System (ADS)
da Rocha, Rosmeri; Reboita, Michelle; Llopart, Marta
2017-04-01
This study evaluates two simulations carried out with the tropical band version of the Regional Climate Model (RegT-Band). The purpose was to compare the performance of the RegCM 4.4.5 and 4.6 versions (RegT4.4.5 and RegT4.6). The domain used in the simulations extends from 45° S to 45° N and covers all tropical longitudes, with grid spacing of 39 km, 18 sigma-pressure vertical levels. The initial and boundary conditions for the simulations were provided by ERA-Interim reanalysis and the analyzed period is from January 2005 to December 2008. Regarding the physical parameterizations schemes were used the Emanuel scheme to solve cumulus convection and Community Land Model version 4.5 (CLM4.5) to surface-atmosphere interactions. Seasonal simulated precipitation was compared with Global Precipitation Climatology Project (GPCP) while 2 meters air temperature with ERA-Interim reanalysis. The main results of this study are that RegT4.6 reduces the wet bias over the oceans and the cold bias over the continents compared with RegT4.4.5. In austral summer, RegT4.6 improves the simulation reducing the precipitation amounts mainly over Indian Ocean, Indonesia and eastern northeastern Brazil. However, both versions underestimate the precipitation over the South America Convergence Zone (SACZ). During the austral winter, RegT4.6 simulates the precipitation similar to GPCP over India and it reduces the cold bias over this country compared with RegT4.4.5. However, over the South of Africa, Australia and central-southeast South America, RegT4.6 simulates a strong warm bias.
Boysen, Guy A; VanBergen, Alexandra
2014-02-01
Dissociative Identity Disorder (DID) has long been surrounded by controversy due to disagreement about its etiology and the validity of its associated phenomena. Researchers have conducted studies comparing people diagnosed with DID and people simulating DID in order to better understand the disorder. The current research presents a systematic review of this DID simulation research. The literature consists of 20 studies and contains several replicated findings. Replicated differences between the groups include symptom presentation, identity presentation, and cognitive processing deficits. Replicated similarities between the groups include interidentity transfer of information as shown by measures of recall, recognition, and priming. Despite some consistent findings, this research literature is hindered by methodological flaws that reduce experimental validity. Copyright © 2013 Elsevier Ltd. All rights reserved.
A FLUKA simulation of the KLOE electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Di Micco, B.; Branchini, P.; Ferrari, A.; Loffredo, S.; Passeri, A.; Patera, V.
2007-10-01
We present the simulation of the KLOE calorimeter with the FLUKA Monte Carlo program. The response of the detector to electromagnetic showers has been studied and compared with the publicly available KLOE data. The energy and the time resolution of the electromagnetic clusters is in good agreement with the data. The simulation has been also used to study a possible improvement of the KLOE calorimeter using multianode photo-multipliers. An HAMAMATSU R7600-M16 photomultiplier has been assembled in order to determine the whole cross talk matrix that has been included in the simulation. The cross talk matrix takes into account the effects of a realistic photo-multiplier's electronics and of its coupling to the active material. The performance of the modified readout has been compared to the usual KLOE configuration.
Curuksu, Jeremy; Zacharias, Martin
2009-03-14
Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.
Barbour, P S; Stone, M H; Fisher, J
2000-01-01
This study validates a hip joint simulator configuration as compared with other machines and clinical wear rates using smooth metal and ceramic femoral heads and ultra-high molecular weight polyethylene (UHMWPE) acetabular cups. Secondly the wear rate of UHMWPE cups is measured in the simulator with deliberately scratched cobalt-chrome heads to represent the type of mild and severe scratch damage found on retrieved heads. Finally, the scratching processes are described and the resulting scratches compared with those found in retrieved cobalt-chrome heads. For smooth cobalt-chrome and zirconia heads the wear rates were found to be statistically similar to other simulator machines and within the normal range found from clinical studies. An increased wear rate was found with cobalt-chrome heads scratched using either the diamond stylus or the bead cobalt-chrome but the greatest increase was with the diamond scratched heads which generated scratches of similar dimensions to those on retrieved heads. A greater than twofold increase in wear rate is reported for these heads when compared with smooth heads. This increased wear rate is, however, still within the limits of data from clinical wear studies.
Dawn simulation and bright light in the treatment of SAD: a controlled study.
Avery, D H; Eder, D N; Bolte, M A; Hellekson, C J; Dunner, D L; Vitiello, M V; Prinz, P N
2001-08-01
Some small controlled studies have found that dawn simulation is effective in treating seasonal affective disorder (SAD). With a larger sample size and a longer duration of treatment, we compared dawn simulation with bright light therapy and a placebo condition in patients with SAD. Medication-free patients with SAD were randomly assigned to one of three conditions: bright light therapy (10,000 lux for 30 min, from 6:00 AM to 6:30 AM), dawn simulation (1.5 hour dawn signal from 4:30 AM to 6:00 AM peaking at 250 lux), and a placebo condition, a dim red light (1.5 hour dawn signal from 4:30 am to 6:00 AM peaking at 0.5 lux.) Over the subsequent 6 weeks, the subjects were blindly rated by a psychiatrist using the Structured Interview Guide for the Hamilton Depression Rating-Seasonal Affective Disorder Version (SIGH-SAD). We modeled the profiles of the remissions (SIGH-SAD < or = 8) and response (> or =50% decrease in SIGH-SAD) to treatment over time using Cox proportional hazards models. The sample consisted of 95 subjects who were randomized to the three conditions: bright light (n = 33), dawn simulation (n = 31) and placebo (n = 31). Dawn simulation was associated with greater remission (p <.05) and response (p <.001) rates compared to the placebo. Bright light did not differ significantly from the placebo. Dawn simulation was associated with greater remission (p <.01) and response (p <.001) rates compared to the bright light therapy. The mean daily hours of sunshine during the week before each visit were associated with a significant increase in likelihood of both remission (p <.001) and response (p <.001). Dawn simulation was associated with greater remission and response rates compared to the placebo and compared to bright light therapy. The hours of sunshine during the week before each assessment were associated with a positive clinical response.
Curran, Vernon; Fleet, Lisa; White, Susan; Bessell, Clare; Deshpandey, Akhil; Drover, Anne; Hayward, Mark; Valcour, James
2015-03-01
The neonatal resuscitation program (NRP) has been developed to educate physicians and other health care providers about newborn resuscitation and has been shown to improve neonatal resuscitation skills. Simulation-based training is recommended as an effective modality for instructing neonatal resuscitation and both low and high-fidelity manikin simulators are used. There is limited research that has compared the effect of low and high-fidelity manikin simulators for NRP learning outcomes, and more specifically on teamwork performance and confidence. The purpose of this study was to examine the effect of using low versus high-fidelity manikin simulators in NRP instruction. A randomized posttest-only control group study design was conducted. Third year undergraduate medical students participated in NRP instruction and were assigned to an experimental group (high-fidelity manikin simulator) or control group (low-fidelity manikin simulator). Integrated skills station (megacode) performance, participant satisfaction, confidence and teamwork behaviour scores were compared between the study groups. Participants in the high-fidelity manikin simulator instructional group reported significantly higher total scores in overall satisfaction (p = 0.001) and confidence (p = 0.001). There were no significant differences in teamwork behaviour scores, as observed by two independent raters, nor differences on mandatory integrated skills station performance items at the p < 0.05 level. Medical students' reported greater satisfaction and confidence with high-fidelity manikin simulators, but did not demonstrate overall significantly improved teamwork or integrated skills station performance. Low and high-fidelity manikin simulators facilitate similar levels of objectively measured NRP outcomes for integrated skills station and teamwork performance.
Comparing the IRT Pre-equating and Section Pre-equating: A Simulation Study.
ERIC Educational Resources Information Center
Hwang, Chi-en; Cleary, T. Anne
The results obtained from two basic types of pre-equatings of tests were compared: the item response theory (IRT) pre-equating and section pre-equating (SPE). The simulated data were generated from a modified three-parameter logistic model with a constant guessing parameter. Responses of two replication samples of 3000 examinees on two 72-item…
A comparative molecular dynamics study on thermostability of human and chicken prion proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Hong-Fang; Zhang, Hong-Yu
To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP{sup C} and CkPrP{sup C}), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP{sup C} is comparable with that of CkPrP{sup C}, which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP{sup C}.
2016-01-27
presented. Besides, Spice simulation provides an excellent way of studying the NLTL principle operation by comparing them with the experimental...high voltage nonlinear capacitive line (NLCL) using commercial BT and PZT ceramic capacitors. Corresponding NLCL Spice simulation is provided for...which causes a long tail on the output pulse. In special for PZT, Spice simulation of a line with respective linear capacitors illustrates its weak
ERIC Educational Resources Information Center
BRATTEN, JACK E.
THE BIOLOGY COURSE OF THEODORE HIGH SCHOOL AT THEODORE, ALABAMA, WAS STUDIED AS A SYSTEM FOR "PROCESSING" STUDENTS AND WAS SIMULATED ON A COMPUTER. AN EXPERIMENTAL VERSION OF THE COURSE WAS SIMULATED AND COMPARED WITH THE ACTUAL COURSE. THE PURPOSES OF THIS STUDY WERE (1) TO EXAMINE THE CONCEPT OF INDIVIDUAL PROGRESS AS IT RELATED TO THE…
NASA Astrophysics Data System (ADS)
Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun
2017-12-01
This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.
ERIC Educational Resources Information Center
Wang, Hung-Yuan; Duh, Henry Been-Lirn; Li, Nai; Lin, Tzung-Jin; Tsai, Chin-Chung
2014-01-01
The purpose of this study is to investigate and compare students' collaborative inquiry learning behaviors and their behavior patterns in an augmented reality (AR) simulation system and a traditional 2D simulation system. Their inquiry and discussion processes were analyzed by content analysis and lag sequential analysis (LSA). Forty…
NASA Astrophysics Data System (ADS)
Chen, Henry; Raby, Paul
2016-09-01
Cs2HfCl6 (CHC) is one of the most promising recently discovered new inorganic single crystal scintillator that has high light output, non-hygroscopic, no self-activity, having energy resolution significantly better than NaI(Tl), even approaching that of LaBr3 yet can also potentially be at a much lower cost than LaBr3. This study attempts to use Monte Carlo simulation to examine the great potential offered by this new scintillator. CHC's detector performance is compared via simulation with that of 4 typical existing scintillators of the same size and same PMT readout. Two halide-scintillators: NaI(Tl) and LaBr3 and two oxide-scintillators: GSO and LSO were used in this simulation to compare their 122 keV and 511 keV gamma responses with that of CHC with both spectroscopy application and imaging applications in mind. Initial simulation results are very promising and consistent with reported experimental measurements. Beside detector energy resolution, image-quality measurement parameters commonly used to characterize imaging detectors as in nuclear medicine such as Light Response Function (LRF) which goes in parallel with spatial resolution and simulated position spectra will also be presented and discussed.
Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations
NASA Astrophysics Data System (ADS)
Song, C.; Maksyutov, S.; Belikov, D.; Takagi, H.; Shu, J.
2015-03-01
We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10 s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0° E to -84.0° W, and 87.0° N to -67.2° S. The simulation results were compared with CO2 observations made in January and November 2009, and March and April 2010. The analysis attests that the model is good enough to simulate vertical profiles with errors generally within 1-2 ppmv, except for the lower stratosphere in the Northern Hemisphere high latitudes.
NASA Astrophysics Data System (ADS)
Choi, Byung-Soon; Gennaro, Eugene
Several researchers have suggested that the computer holds much promise as a tool for science teachers for use in their classrooms (Bork, 1979, Lunetta & Hofstein, 1981). It also has been said that there needs to be more research in determining the effectiveness of computer software (Tinker, 1983).This study compared the effectiveness of microcomputer simulated experiences with that of parallel instruction involving hands-on laboratory experiences for teaching the concept of volume displacement to junior high school students. This study also assessed the differential effect on students' understanding of the volume displacement concept using sex of the students as another independent variable. In addition, it compared the degree of retention, after 45 days, of both treatment groups.It was found that computer simulated experiences were as effective as hands-on laboratory experiences, and that males, having had hands-on laboratory experiences, performed better on the posttest than females having had the hands-on laboratory experiences. There were no significant differences in performance when comparing males with females using the computer simulation in the learning of the displacement concept. This study also showed that there were no significant differences in the retention levels when the retention scores of the computer simulation groups were compared to those that had the hands-on laboratory experiences. However, an ANOVA of the retention test scores revealed that males in both treatment conditions retained knowledge of volume displacement better than females.
Hasan, Nazia; Gross, Seth A; Gralnek, Ian M; Pochapin, Mark; Kiesslich, Ralf; Halpern, Zamir
2014-12-01
Although standard colonoscopy is considered the optimal test to detect adenomas, it can have a significant adenoma miss rate. A major contributing factor to high miss rates is the inability to visualize adenomas behind haustral folds and at anatomic flexures. To compare the diagnostic yield of balloon-assisted colonoscopy versus standard colonoscopy in the detection of simulated polyps in a colon model. Prospective, cohort study. International gastroenterology meeting. A colon model composed of elastic material, which mimics the flexible structure of haustral folds, allowing for dynamic responses to balloon inflation, with embedded simulated colon polyps (n = 12 silicone "polyps"). Fifty gastroenterologists were recruited to identify simulated colon polyps in a colon model, first using standard colonoscopy immediately followed by balloon-assisted colonoscopy. Detection of simulated polyps. The median polyp detection rate for all simulated polyps was significantly higher with balloon-assisted as compared with standard colonoscopy (91.7% vs 45.8%, respectively; P < .0001). The significantly higher simulated polyp detection rate with balloon-assisted versus standard colonoscopy was notable both for non-obscured polyps (100.0% vs 75.0%; P < .0001) and obscured polyps (88.0% vs 25.0%; P < .0001). Non-randomized design, use of a colon model, and simulated colon polyps. As compared with standard colonoscopy, balloon-assisted colonoscopy detected significantly more obscured and non-obscured simulated polyps in a colon model. Clinical studies in human participants are being pursued to further evaluate this new colonoscopic technology. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia
2003-01-01
This study examines a high-resolution simulation of Hurricane Bonnie. Results from the simulation will be compared to the conceptual model of Heymsfield et al. (2001) to determine the extent to which this conceptual model explains vertical motions and precipitation growth in the eyewall.
Simulation and Advanced Practice Nursing Education
ERIC Educational Resources Information Center
Blue, Dawn I.
2016-01-01
This quantitative study compared changes in level of confidence resulting from participation in simulation or traditional instructional methods for BSN (Bachelor of Science in Nursing) to DNP (Doctor of Nursing Practice) students in a nurse practitioner course when they entered the clinical practicum. Simulation has been used in many disciplines…
Elementary Teachers' Simulation Adoption and Inquiry-Based Use Following Professional Development
ERIC Educational Resources Information Center
Gonczi, Amanda; Maeng, Jennifer; Bell, Randy
2017-01-01
The purpose of this study was to characterize and compare 64 elementary science teachers' computer simulation use prior to and following professional development (PD) aligned with Innovation Adoption Theory. The PD highlighted computer simulation affordances that elementary teachers might find particularly useful. Qualitative and quantitative…
NASA Astrophysics Data System (ADS)
Jana, Suman; Biswas, Pabitra Kumar; Das, Upama
2018-04-01
The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Brian; Williamson, David L.; Olson, Jerry G.
In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less
Reference aquaplanet climate in the Community Atmosphere Model, Version 5
Medeiros, Brian; Williamson, David L.; Olson, Jerry G.
2016-03-18
In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Fox, Rodney O.; Feng, Heng
An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less
Kong, Bo; Fox, Rodney O.; Feng, Heng; ...
2017-02-16
An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less
Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Cho, Vince Y.
This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun
Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less
Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E
2015-04-13
In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structure of Sphingomyelin Bilayers: A Simulation Study
Chiu, S. W.; Vasudevan, S.; Jakobsson, Eric; Mashl, R. Jay; Scott, H. Larry
2003-01-01
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC. PMID:14645055
Simulation-based training for nurses: Systematic review and meta-analysis.
Hegland, Pål A; Aarlie, Hege; Strømme, Hilde; Jamtvedt, Gro
2017-07-01
Simulation-based training is a widespread strategy to improve health-care quality. However, its effect on registered nurses has previously not been established in systematic reviews. The aim of this systematic review is to evaluate effect of simulation-based training on nurses' skills and knowledge. We searched CDSR, DARE, HTA, CENTRAL, CINAHL, MEDLINE, Embase, ERIC, and SveMed+ for randomised controlled trials (RCT) evaluating effect of simulation-based training among nurses. Searches were completed in December 2016. Two reviewers independently screened abstracts and full-text, extracted data, and assessed risk of bias. We compared simulation-based training to other learning strategies, high-fidelity simulation to other simulation strategies, and different organisation of simulation training. Data were analysed through meta-analysis and narrative syntheses. GRADE was used to assess the quality of evidence. Fifteen RCTs met the inclusion criteria. For the comparison of simulation-based training to other learning strategies on nurses' skills, six studies in the meta-analysis showed a significant, but small effect in favour of simulation (SMD -1.09, CI -1.72 to -0.47). There was large heterogeneity (I 2 85%). For the other comparisons, there was large between-study variation in results. The quality of evidence for all comparisons was graded as low. The effect of simulation-based training varies substantially between studies. Our meta-analysis showed a significant effect of simulation training compared to other learning strategies, but the quality of evidence was low indicating uncertainty. Other comparisons showed inconsistency in results. Based on our findings simulation training appears to be an effective strategy to improve nurses' skills, but further good-quality RCTs with adequate sample sizes are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
The terminal area simulation system. Volume 2: Verification cases
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
The numerical simulation of five case studies are presented and are compared with available data in order to verify the three-dimensional version of the Terminal Area Simulation System (TASS). A spectrum of convective storm types are selected for the case studies. Included are: a High-Plains supercell hailstorm, a small and relatively short-lived High-Plains cumulonimbus, a convective storm which produced the 2 August 1985 DFW microburst, a South Florida convective complex, and a tornadic Oklahoma thunderstorm. For each of the cases the model results compared reasonably well with observed data. In the simulations of the supercell storms many of their characteristic features were modeled, such as the hook echo, BWER, mesocyclone, gust fronts, giant persistent updraft, wall cloud, flanking-line towers, anvil and radar reflectivity overhang, and rightward veering in the storm propagation. In the simulation of the tornadic storm a horseshoe-shaped updraft configuration and cyclic changes in storm intensity and structure were noted. The simulation of the DFW microburst agreed remarkably well with sparse observed data. The simulated outflow rapidly expanded in a nearly symmetrical pattern and was associated with a ringvortex. A South Florida convective complex was simulated and contained updrafts and downdrafts in the form of discrete bubbles. The numerical simulations, in all cases, always remained stable and bounded with no anomalous trends.
Does the sequence of instruction matter during simulation?
Stefaniak, Jill E; Turkelson, Carman L
2014-02-01
Instructional strategies must be balanced when subjecting students to full-immersion simulation so as not to discourage learning and increase cognitive overload. The purpose of this study was to determine if participating in a simulation exercise before lecture yielded better performance outcomes among novice learners. Twenty-nine participants were divided into 2 groups as follows: group 1 participated in simulation exercises followed by a didactic lecture and group 2 participated in the same learning activities presented in the opposite order. Participants were administered a multiple-choice cognitive assessment upon completion of a workshop. Learners who participated in the simulated exercises followed by the didactic lecture performed better on postassessments as compared with those who participated in the simulation after the lecture. A repeated-measures or nested analysis of variance generated statistically significant results in terms of model fit F (α=0.05; 4.54)=176.07 with a P<0.0001. Despite their higher levels of increased performance, 76% of those who participated in simulation activities first indicated that they would have preferred to participate in a lecture first. The findings of this study suggest that differences occur among learners when the sequencing of instructional components is altered. Learners who participated in simulation before lecture demonstrated increased knowledge compared with learners who participated in simulation after a lecture.
Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Chen, Yang; Parker, Scott
2004-11-01
The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.
2018-03-01
Results are compared to a previous study using a similar design of experiments but different simulation software. The baseline scenario for exploring the...behaviors are mimicked in this research, enabling Solem’s MANA results to be compared to our LITMUS’ results. By design , the principal difference...missions when using the second order NOLH, and compares favorably with the over six million in the full factorial design . 3. Advantages of Cluster
ERIC Educational Resources Information Center
Meyer, Kimberly E.
2010-01-01
The purpose of this dissertation was to evaluate learning transfer achieved by physician assistant students comparing two instructional methods, human patient simulation and electronic clinical case studies. This prospective, randomized, mixed-methods study utilized first and second-year physician assistant student volunteers taking a pretest and…
A Simulation Study of Missing Data with Multiple Missing X's
ERIC Educational Resources Information Center
Rubright, Jonathan D.; Nandakumar, Ratna; Glutting, Joseph J.
2014-01-01
When exploring missing data techniques in a realistic scenario, the current literature is limited: most studies only consider consequences with data missing on a single variable. This simulation study compares the relative bias of two commonly used missing data techniques when data are missing on more than one variable. Factors varied include type…
Measuring Behavioral Learnings: A Study in Consumer Credits.
ERIC Educational Resources Information Center
Anderson, C. Raymond
A social simulation game, Consumer, was used to study the effectiveness of simulation in teaching facts about: (1) installment buying; (2) how to compare available sources of credit; and (3) how to recognize the best credit contract. The entire twelfth grade at one high school participated in the study. Ten class sections were assigned to…
Comparing DIF Methods for Data with Dual Dependency
ERIC Educational Resources Information Center
Jin, Ying; Kang, Minsoo
2016-01-01
Background: The current study compared four differential item functioning (DIF) methods to examine their performances in terms of accounting for dual dependency (i.e., person and item clustering effects) simultaneously by a simulation study, which is not sufficiently studied under the current DIF literature. The four methods compared are logistic…
Brunner, S.; Berger, R. L.; Cohen, B. I.; ...
2014-10-01
Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPImore » accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.« less
North Atlantic Jet Variability in PMIP3 LGM Simulations
NASA Astrophysics Data System (ADS)
Hezel, P.; Li, C.
2017-12-01
North Atlantic jet variability in glacial climates has been shown inmodelling studies to be strongly influenced by upstream ice sheettopography. We analyze the results of 8 models from the PMIP3simulations, forced with a hybrid Laurentide Ice Sheet topography, andcompare them to the PMIP2 simulations which were forced with theICE-5G topography, to develop a general understanding of the NorthAtlantic jet and jet variability. The strengthening of the jet andreduced spatial variability is a robust feature of the last glacialmaximum (LGM) simulations compared to the pre-industrial state.However, the canonical picture of the LGM North Atlantic jet as beingmore zonal and elongated compared to pre-industrial climate states isnot a robust result across models, and may have arisen in theliterature as a function of multiple studies performed with the samemodel.
NASA Technical Reports Server (NTRS)
Kibler, J. F.; Suttles, J. T.
1977-01-01
One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.
Auditory perceptual simulation: Simulating speech rates or accents?
Zhou, Peiyun; Christianson, Kiel
2016-07-01
When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparing the Impact of Dynamic and Static Media on Students' Learning of One-Dimensional Kinematics
ERIC Educational Resources Information Center
Mešic, Vanes; Dervic, Dževdeta; Gazibegovic-Busuladžic, Azra; Salibašic, Džana; Erceg, Nataša
2015-01-01
In our study, we aimed to compare the impact of simulations, sequences of printed simulation frames and conventional static diagrams on the understanding of students with regard to the one-dimensional kinematics. Our student sample consisted of three classes of middle years students (N = 63; mostly 15 year-olds). These three classes served as…
High-gain EDFA using ASE suppression: numerical simulation and experimental characterization
NASA Astrophysics Data System (ADS)
Woellner, Eudes F.; Fugihara, Meire C.; Vendramin, Marcio; Chitz, Edson; Kalinowski, Hypolito J.; Pontes, Maria J.
2001-08-01
A single stage, bi-directionally pumped Erbium Doped Fiber Amplifier is studied, using a scheme that reduces the counter propagating ASE, avoiding self saturation due to ASE. The amplifier is numerically simulated and experimentally characterized. Gain, saturation and polarization dependence measurements are carried to compare with simulated results. Transient response is simulated to verify the amplifier performance in cable television distribution network.
Efficiencies of joint non-local update moves in Monte Carlo simulations of coarse-grained polymers
NASA Astrophysics Data System (ADS)
Austin, Kieran S.; Marenz, Martin; Janke, Wolfhard
2018-03-01
In this study four update methods are compared in their performance in a Monte Carlo simulation of polymers in continuum space. The efficiencies of the update methods and combinations thereof are compared with the aid of the autocorrelation time with a fixed (optimal) acceptance ratio. Results are obtained for polymer lengths N = 14, 28 and 42 and temperatures below, at and above the collapse transition. In terms of autocorrelation, the optimal acceptance ratio is approximately 0.4. Furthermore, an overview of the step sizes of the update methods that correspond to this optimal acceptance ratio is given. This shall serve as a guide for future studies that rely on efficient computer simulations.
Combining Heterogeneous Correlation Matrices: Simulation Analysis of Fixed-Effects Methods
ERIC Educational Resources Information Center
Hafdahl, Adam R.
2008-01-01
Monte Carlo studies of several fixed-effects methods for combining and comparing correlation matrices have shown that two refinements improve estimation and inference substantially. With rare exception, however, these simulations have involved homogeneous data analyzed using conditional meta-analytic procedures. The present study builds on…
Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore
2014-04-01
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.
Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore
2014-01-01
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided. PMID:24834325
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
ERIC Educational Resources Information Center
Hirumi, Atsusi; Kleinsmith, Andrea; Johnsen, Kyle; Kubovec, Stacey; Eakins, Michael; Bogert, Kenneth; Rivera-Gutierrez, Diego J.; Reyes, Ramsamooj Javier; Lok, Benjamin; Cendan, Juan
2016-01-01
Systematic reviews and meta-analyses of randomized controlled studies conclude that virtual patient simulations are consistently associated with higher learning outcomes compared to other educational methods. However, we cannot assume that students will learn from simply exposing students to the simulations. The instructional features that are…
Strategic Management: An Evaluation of the Use of Three Learning Methods.
ERIC Educational Resources Information Center
Jennings, David
2002-01-01
A study of 46 management students compared three methods for learning strategic management: cases, simulation, and action learning through consulting projects. Simulation was superior to action learning on all outcomes and equal or superior to cases on two. Simulation gave students a central role in management and greater control of the learning…
The Impact of a Simulation Game on Operations Management Education
ERIC Educational Resources Information Center
Pasin, Federico; Giroux, Helene
2011-01-01
This study presents a new simulation game and analyzes its impact on operations management education. The proposed simulation was empirically tested by comparing the number of mistakes during the first and second halves of the game. Data were gathered from 100 teams of four or five undergraduate students in business administration, taking their…
ERIC Educational Resources Information Center
Balakrishnan, B.; Woods, P. C.
2013-01-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…
ERIC Educational Resources Information Center
Chang, Hsin-Yi
2017-01-01
Two investigations were conducted in this study. In the first experiment, the effects of two types of interactivity with a computer simulation were compared: experimentation versus observation interactivity. Experimentation interactivity allows students to use simulations to conduct virtual experiments, whereas observation interactivity allows…
Bacterial populations were examined in a simulated chloraminated drinking water distribution system. After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The distribution system ...
Huber, Tobias; Paschold, Markus; Hansen, Christian; Lang, Hauke; Kneist, Werner
2018-06-01
Immersive virtual reality (VR) laparoscopy simulation connects VR simulation with head-mounted displays to increase presence during VR training. The goal of the present study was the comparison of 2 different surroundings according to performance and users' preference. With a custom immersive virtual reality laparoscopy simulator, an artificially created VR operating room (AVR) and a highly immersive VR operating room (IVR) were compared. Participants (n = 30) performed 3 tasks (peg transfer, fine dissection, and cholecystectomy) in AVR and IVR in a crossover study design. No overall difference in virtual laparoscopic performance was obtained when comparing results from AVR with IVR. Most participants preferred the IVR surrounding (n = 24). Experienced participants (n = 10) performed significantly better than novices (n = 10) in all tasks regardless of the surrounding ( P < .05). Participants with limited experience (n = 10) showed differing results. Presence, immersion, and exhilaration were significantly higher in IVR. Two thirds assumed that IVR would have a positive influence on their laparoscopic simulator use. This first study comparing AVR and IVR did not reveal differences in virtual laparoscopic performance. IVR is considered the more realistic surrounding and is therefore preferred by the participants.
Occupational exposure of personnel operating military radio equipment: measurements and simulation.
Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin
2015-09-01
Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.
Numerical Modeling Studies of Wake Vortices: Real Case Simulations
NASA Technical Reports Server (NTRS)
Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.
1999-01-01
A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.
Cold dark matter. 1: The formation of dark halos
NASA Technical Reports Server (NTRS)
Gelb, James M.; Bertschinger, Edmund
1994-01-01
We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.
Summary of nozzle-exhaust plume flowfield analyses related to space shuttle applications
NASA Technical Reports Server (NTRS)
Penny, M. M.
1975-01-01
Exhaust plume shape simulation is studied, with the major effort directed toward computer program development and analytical support of various plume related problems associated with the space shuttle. Program development centered on (1) two-phase nozzle-exhaust plume flows, (2) plume impingement, and (3) support of exhaust plume simulation studies. Several studies were also conducted to provide full-scale data for defining exhaust plume simulation criteria. Model nozzles used in launch vehicle test were analyzed and compared to experimental calibration data.
NASA Astrophysics Data System (ADS)
Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanh Lai; Timothy R. McJunkin; Carla J. Miller
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctlymore » predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.« less
NASA Technical Reports Server (NTRS)
Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.
2005-01-01
This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.
1980-01-01
NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.
Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.
2009-01-01
Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.
Neural and Behavioral Evidence for the Role of Mental Simulation in Meaning in Life
Waytz, Adam; Hershfield, Hal E; Tamir, Diana I
2014-01-01
Mental simulation, the process of self-projection into alternate temporal, spatial, social, or hypothetical realities is a distinctively human capacity. Numerous lines of research also suggest that the tendency for mental simulation is associated with enhanced meaning. The present research tests this association specifically examining the relationship between two forms of simulation (temporal and spatial) and meaning in life. Study 1 uses neuroimaging to demonstrate that enhanced connectivity in the medial temporal lobe network, a subnetwork of the brain’s default network implicated in prospection and retrospection, correlates with self-reported meaning in life. Study 2 demonstrates that experimentally inducing people to think about the past or future versus the present enhances self-reported meaning in life, through the generation of more meaningful events. Study 3 demonstrates that experimentally inducing people to think specifically versus generally about the past or future enhances self-reported meaning in life. Study 4 turns to spatial simulation to demonstrate that experimentally inducing people to think specifically about an alternate spatial location (from the present) increases meaning derived from this simulation compared to thinking generally about another location or specifically about one’s present location. Study 5 demonstrates that experimentally inducing people to think about an alternate spatial location versus one’s present location enhances meaning in life, through meaning derived from this simulation. Study 6 demonstrates that simply asking people to imagine completing a measure of meaning in life in an alternate location compared to asking them to do so in their present location enhances reports of meaning. This research sheds light on an important determinant of meaning in life and suggests that undirected mental simulation benefits psychological well-being. PMID:25603379
State of the evidence on simulation-based training for laparoscopic surgery: a systematic review.
Zendejas, Benjamin; Brydges, Ryan; Hamstra, Stanley J; Cook, David A
2013-04-01
Summarize the outcomes and best practices of simulation training for laparoscopic surgery. Simulation-based training for laparoscopic surgery has become a mainstay of surgical training. Much new evidence has accrued since previous reviews were published. We systematically searched the literature through May 2011 for studies evaluating simulation, in comparison with no intervention or an alternate training activity, for training health professionals in laparoscopic surgery. Outcomes were classified as satisfaction, skills (in a test setting) of time (to perform the task), process (eg, performance rating), product (eg, knot strength), and behaviors when caring for patients. We used random effects to pool effect sizes. From 10,903 articles screened, we identified 219 eligible studies enrolling 7138 trainees, including 91 (42%) randomized trials. For comparisons with no intervention (n = 151 studies), pooled effect size (ES) favored simulation for outcomes of knowledge (1.18; N = 9 studies), skills time (1.13; N = 89), skills process (1.23; N = 114), skills product (1.09; N = 7), behavior time (1.15; N = 7), behavior process (1.22; N = 15), and patient effects (1.28; N = 1), all P < 0.05. When compared with nonsimulation instruction (n = 3 studies), results significantly favored simulation for outcomes of skills time (ES, 0.75) and skills process (ES, 0.54). Comparisons between different simulation interventions (n = 79 studies) clarified best practices. For example, in comparison with virtual reality, box trainers have similar effects for process skills outcomes and seem to be superior for outcomes of satisfaction and skills time. Simulation-based laparoscopic surgery training of health professionals has large benefits when compared with no intervention and is moderately more effective than nonsimulation instruction.
Crip for a day: The unintended negative consequences of disability simulations.
Nario-Redmond, Michelle R; Gospodinov, Dobromir; Cobb, Angela
2017-08-01
To investigate the impact of disability simulations on mood, self-ascribed disability stereotypes, attitudes about interacting with disabled individuals, and behavioral intentions for improving campus accessibility. Experiment 1 evaluated disability-awareness simulations by randomly assigning undergraduates (N = 60) with and without disabilities to stations simulating either dyslexia, hearing or mobility impairments. Experiment 2 extended the field study into the lab where undergraduates (N = 50) with and without disabilities each completed low vision, hearing impairment, and dyslexia simulations. Both studies incorporated pretest-posttest measures of mood, self-ascribed disability stereotypes, and attitudinal measures. In both experiments, disability simulations made participants feel more confused, embarrassed, helpless, and more vulnerable to becoming disabled themselves compared to baseline. Following the simulations, empathetic concern (warmth) toward disabled people increased in both studies, but attitudes about interacting did not improve. In Experiment 1, postsimulation anxiety, embarrassment, and helplessness were highest for those who used wheelchairs or simulated dyslexia. In Experiment 2, participants judged themselves less competent, expressed more pity, expressed more interaction discomfort, and were not more willing to interview disabled students for an accessibility project following the simulations compared to baseline. In addition, Experiment 2 found frustration, guilt, anxiety, and depression were most pronounced among those who interacted with disabled people less than once per month. Simulating disabilities promotes distress and fails to improve attitudes toward disabled people, undermining efforts to improve integration even while participants report more empathetic concern and "understanding of what the disability experience is like." (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Cost: the missing outcome in simulation-based medical education research: a systematic review.
Zendejas, Benjamin; Wang, Amy T; Brydges, Ryan; Hamstra, Stanley J; Cook, David A
2013-02-01
The costs involved with technology-enhanced simulation remain unknown. Appraising the value of simulation-based medical education (SBME) requires complete accounting and reporting of cost. We sought to summarize the quantity and quality of studies that contain an economic analysis of SBME for the training of health professions learners. We performed a systematic search of MEDLINE, EMBASE, CINAHL, ERIC, PsychINFO, Scopus, key journals, and previous review bibliographies through May 2011. Articles reporting original research in any language evaluating the cost of simulation, in comparison with nonstimulation instruction or another simulation intervention, for training practicing and student physicians, nurses, and other health professionals were selected. Reviewers working in duplicate evaluated study quality and abstracted information on learners, instructional design, cost elements, and outcomes. From a pool of 10,903 articles we identified 967 comparative studies. Of these, 59 studies (6.1%) reported any cost elements and 15 (1.6%) provided information on cost compared with another instructional approach. We identified 11 cost components reported, most often the cost of the simulator (n = 42 studies; 71%) and training materials (n = 21; 36%). Ten potential cost components were never reported. The median number of cost components reported per study was 2 (range, 1-9). Only 12 studies (20%) reported cost in the Results section; most reported it in the Discussion (n = 34; 58%). Cost reporting in SBME research is infrequent and incomplete. We propose a comprehensive model for accounting and reporting costs in SBME. Copyright © 2013 Mosby, Inc. All rights reserved.
Spinello, Elio F; Fischbach, Ronald
2008-01-01
This study investigated the use of a Web-based community health simulation as a problem-based learning (PBL) experience for undergraduate students majoring in public health. The study sought to determine whether students who participated in the online simulation achieved differences in academic and attitudinal outcomes compared with students who participated in a traditional PBL exercise. Using a nonexperimental comparative design, 21 undergraduate students enrolled in a health-behavior course were each randomly assigned to one of four workgroups. Each workgroup was randomly assigned the semester-long simulation project or the traditional PBL exercise. Survey instruments were used to measure students' attitudes toward the course, their perceptions of the learning community, and perceptions of their own cognitive learning. Content analysis of final essay exams and group reports was used to identify differences in academic outcomes and students' level of conceptual understanding of health-behavior theory. Findings indicated that students participating in the simulation produced higher mean final exam scores compared with students participating in the traditional PBL (p=0.03). Students in the simulation group also outperformed students in the traditional group with respect to their understanding of health-behavior theory (p=0.04). Students in the simulation group, however, rated their own level of cognitive learning lower than did students in the traditional group (p=0.03). By bridging time and distance constraints of the traditional classroom setting, an online simulation may be an effective PBL approach for public health students. Recommendations include further research using a larger sample to explore students' perceptions of learning when participating in simulated real-world activities. Additional research focusing on possible differences between actual and perceived learning relative to PBL methods and student workgroup dynamics is also recommended.
Johnson, Sheena Joanne; Guediri, Sara M; Kilkenny, Caroline; Clough, Peter J
2011-12-01
This study developed and validated a virtual reality (VR) simulator for use by interventional radiologists. Research in the area of skill acquisition reports practice as essential to become a task expert. Studies on simulation show skills learned in VR can be successfully transferred to a real-world task. Recently, with improvements in technology, VR simulators have been developed to allow complex medical procedures to be practiced without risking the patient. Three studies are reported. In Study I, 35 consultant interventional radiologists took part in a cognitive task analysis to empirically establish the key competencies of the Seldinger procedure. In Study 2, 62 participants performed one simulated procedure, and their performance was compared by expertise. In Study 3, the transferability of simulator training to a real-world procedure was assessed with 14 trainees. Study I produced 23 key competencies that were implemented as performance measures in the simulator. Study 2 showed the simulator had both face and construct validity, although some issues were identified. Study 3 showed the group that had undergone simulator training received significantly higher mean performance ratings on a subsequent patient procedure. The findings of this study support the centrality of validation in the successful design of simulators and show the utility of simulators as a training device. The studies show the key elements of a validation program for a simulator. In addition to task analysis and face and construct validities, the authors highlight the importance of transfer of training in validation studies.
A Comparative Study of High and Low Fidelity Fan Models for Turbofan Engine System Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1991-01-01
In this paper, a heterogeneous propulsion system simulation method is presented. The method is based on the formulation of a cycle model of a gas turbine engine. The model includes the nonlinear characteristics of the engine components via use of empirical data. The potential to simulate the entire engine operation on a computer without the aid of data is demonstrated by numerically generating "performance maps" for a fan component using two flow models of varying fidelity. The suitability of the fan models were evaluated by comparing the computed performance with experimental data. A discussion of the potential benefits and/or difficulties in connecting simulations solutions of differing fidelity is given.
Thisgaard, Malene; Makransky, Guido
2017-01-01
The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student's interest in and goals toward STEM related careers.
NASA Technical Reports Server (NTRS)
Garrahan, Steven L.; Tolson, Robert H.; Williams, Robert L., II
1995-01-01
Industrial robots are usually attached to a rigid base. Placing the robot on a compliant base introduces dynamic coupling between the two systems. The Vehicle Emulation System (VES) is a six DOF platform that is capable of modeling this interaction. The VES employs a force-torque sensor as the interface between robot and base. A computer simulation of the VES is presented. Each of the hardware and software components is described and Simulink is used as the programming environment. The simulation performance is compared with experimental results to validate accuracy. A second simulation which models the dynamic interaction of a robot and a flexible base acts as a comparison to the simulated motion of the VES. Results are presented that compare the simulated VES motion with the motion of the VES hardware using the same admittance model. The two computer simulations are compared to determine how well the VES is expected to emulate the desired motion. Simulation results are given for robots mounted to the end effector of the Space Shuttle Remote Manipulator System (SRMS). It is shown that for fast motions of the two robots studied, the SRMS experiences disturbances on the order of centimeters. Larger disturbances are possible if different manipulators are used.
Thisgaard, Malene; Makransky, Guido
2017-01-01
The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student’s interest in and goals toward STEM related careers. PMID:28611701
Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel
NASA Astrophysics Data System (ADS)
Alizadeh, Hadi; Davoodi, Jamal; Zeilinger, Carsten; Rafii-Tabar, Hashem
2018-01-01
Connexin hemichannels mediate cytoplasm and extracellular milieu communication by exchanging a variety of cytoplasmic molecules and ions. These hemichannels can be regulated by external stimuli such as mechanical stress, applied voltage, pH and temperature changes. Although there are many studies on structures and functions of connexin 26 in contexts of pH, ion concentration and voltage, employing computational methods, no such study has been performed so far involving temperature changes. In this study, using molecular dynamics simulation, we investigate thermosensitivity of the human Connexin 26 hemichannel. Our results show that the channel approaches a structurally closed state at lower temperature compared to higher temperature. This is in fair agreement with experimental results that indicate channel closure at lower temperature. Furthermore, our MD simulation results show that some regions of connexin 26 hemichannel are more sensitive to temperature compared to other regions. Whereas the intercellular half of the channel does not show any considerable response to temperature during the simulation time accessible in this study, the cytoplasmic half approaches a closed structural state at lower temperature compared to the higher temperature. Specifically, our results suggest that the cytoplasmic loop, the cytoplasmic half of the second transmembrane helix, and the N-terminus helix play a dominant role in temperature gating.
NASA Astrophysics Data System (ADS)
Lapusta, N.; Thomas, M.; Noda, H.; Avouac, J.
2012-12-01
Long-term simulations that incorporate both seismic events and aseismic slip are quite important for studies of earthquake physics but challenging computationally. To study long deformation histories, most simulation methods do not incorporate full inertial effects (wave propagation) during simulated earthquakes, using quasi-dynamic approximations instead. Here we compare the results of quasi-dynamic simulations to the fully dynamic ones for a range of problems to determine the applicability of the quasi-dynamic approach. Intuitively, the quasi-dynamic approach should do relatively well in problems where wave-mediated effects are relatively simple but should have substantially different (and hence wrong) response when the wave-mediated stress transfers dominate the character of the seismic events. This is exactly what we observe in our simulations. We consider a 2D model of a rate-and-state fault with a seismogenic (steady-state velocity-weakening) zone surrounded by creeping (steady-state velocity-strengthening) areas. If the seismogenic zone is described by the standard Dieterich-Ruina rate-and-state friction, the resulting earthquake sequences consist of relatively simple crack-like ruptures, and the inclusion of true wave-propagation effects mostly serves to concentrate stress more efficiently at the rupture front. Hence, in such models, rupture speeds and slip rates are significantly (several times) lower in the quasi-dynamic simulations compared to the fully dynamic ones, but the total slip, the crack-like nature of seismic events, and the overall pattern of earthquake sequences is comparable, consistently with prior studies. Such behavior can be classified as qualitatively similar but quantitatively different, and it motivates the popularity of the quasi-dynamic methods in simulations. However, the comparison changes dramatically once we consider a model with enhanced dynamic weakening in the seismogenic zone in the form of flash heating. In this case, the fully dynamic simulations produce seismic ruptures in the form of short-duration slip pulses, where the pulses form due to a combination of enhanced weakening and wave effects. The quasi-dynamic simulations in the same model produce completely different results, with large crack-like ruptures, different total slips, different rupture patterns, and different prestress state before large, model-spanning events. Such qualitative differences between the quasi-dynamic and fully-dynamic simulation should result in any model where inertial effects lead to qualitative differences, such as cases with supershear transition or fault with different materials on the two sides. We will present results on our current work on how the quasi-dynamic and fully dynamic simulations compare for the cases with heterogeneous fault properties.
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
A New Approach to Modeling Jupiter's Magnetosphere
NASA Astrophysics Data System (ADS)
Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.
2017-12-01
The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.
Validation of computer simulation training for esophagogastroduodenoscopy: Pilot study.
Sedlack, Robert E
2007-08-01
Little is known regarding the value of esophagogastroduodenoscopy (EGD) simulators in education. The purpose of the present paper was to validate the use of computer simulation in novice EGD training. In phase 1, expert endoscopists evaluated various aspects of simulation fidelity as compared to live endoscopy. Additionally, computer-recorded performance metrics were assessed by comparing the recorded scores from users of three different experience levels. In phase 2, the transfer of simulation-acquired skills to the clinical setting was assessed in a two-group, randomized pilot study. The setting was a large gastroenterology (GI) Fellowship training program; in phase 1, 21 subjects (seven expert, intermediate and novice endoscopist), made up the three experience groups. In phase 2, eight novice GI fellows were involved in the two-group, randomized portion of the study examining the transfer of simulation skills to the clinical setting. During the initial validation phase, each of the 21 subjects completed two standardized EDG scenarios on a computer simulator and their performance scores were recorded for seven parameters. Following this, staff participants completed a questionnaire evaluating various aspects of the simulator's fidelity. Finally, four novice GI fellows were randomly assigned to receive 6 h of simulator-augmented training (SAT group) in EGD prior to beginning 1 month of patient-based EGD training. The remaining fellows experienced 1 month of patient-based training alone (PBT group). Results of the seven measured performance parameters were compared between three groups of varying experience using a Wilcoxon ranked sum test. The staffs' simulator fidelity survey used a 7-point Likert scale (1, very unrealistic; 4, neutral; 7, very realistic) for each of the parameters examined. During the second phase of this study, supervising staff rated both SAT and PBT fellows' patient-based performance daily. Scoring in each skill was completed using a 7-point Likert scale (1, strongly disagree; 4, neutral; 7, strongly agree). Median scores were compared between groups using the Wilcoxon ranked sum test. Staff evaluations of fidelity found that only two of the parameters examined (anatomy and scope maneuverability) had a significant degree of realism. The remaining areas were felt to be limited in their fidelity. Of the computer-recorded performance scores, only the novice group could be reliably identified from the other two experience groups. In the clinical application phase, the median Patient Discomfort ratings were superior in the PBT group (6; interquartile range [IQR], 5-6) as compared to the SAT group (5; IQR, 4-6; P = 0.015). PBT fellows' ratings were also superior in Sedation, Patient Discomfort, Independence and Competence during various phases of the evaluation. At no point were SAT fellows rated higher than the PBT group in any of the parameters examined. This EGD simulator has limitations to the degree of fidelity and can differentiate only novice endoscopists from other levels of experience. Finally, skills learned during EGD simulation training do not appear to translate well into patient-based endoscopy skills. These findings suggest against a key element of validity for the use of this computer simulator in novice EGD training.
ERIC Educational Resources Information Center
Ma, Irene W. Y.; Zalunardo, Nadia; Pachev, George; Beran, Tanya; Brown, Melanie; Hatala, Rose; McLaughlin, Kevin
2012-01-01
The use of checklists is recommended for the assessment of competency in central venous catheterization (CVC) insertion. To explore the use of a global rating scale in the assessment of CVC skills, this study seeks to compare its use with two checklists, within the context of a formative examination using simulation. Video-recorded performances of…
ERIC Educational Resources Information Center
Dusaj, Tresa Kaur
2014-01-01
Clinical placement sites for nursing students have become limited around the country. An alternative teaching strategy must be employed to allow for students to gain valuable knowledge and skills. High fidelity human patient simulation is one such strategy that allows students to safely practice nursing interventions in a controlled environment…
ERIC Educational Resources Information Center
Wade, Joshua; Weitlauf, Amy; Broderick, Neill; Swanson, Amy; Zhang, Lian; Bian, Dayi; Sarkar, Medha; Warren, Zachary; Sarkar, Nilanjan
2017-01-01
Individuals with Autism Spectrum Disorder (ASD), compared to typically-developed peers, may demonstrate behaviors that are counter to safe driving. The current work examines the use of a novel simulator in two separate studies. Study 1 demonstrates statistically significant performance differences between individuals with (N = 7) and without ASD…
NASA Astrophysics Data System (ADS)
Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.
2017-11-01
We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.
Teaching End-of-Life Care Using Interprofessional Simulation.
Gannon, Jane; Motycka, Carol; Egelund, Eric; Kraemer, Dale F; Smith, W Thomas; Solomon, Kathleen
2017-04-01
Competency in end-of-life (EOL) care is a growing expectation for health professions students. This study assessed the impact of four EOL care scenarios, using high-fidelity simulation, on the perceived learning needs and attitudes of pharmacy and nursing students. On three campuses, pharmacy students (N = 158) were exposed to standard paper EOL case scenarios, while a fourth campus exposed eight graduate nursing and 37 graduate pharmacy students to simulated versions of the same cases. The paper-based groups produced similar pre-post changes on the End of Life Professional Caregiver Survey. Results were pooled and compared with the simulation-only group, revealing significantly higher changes in pre-post scores for the simulation group. Students participating in the simulation group showed some significant differences in attitudes toward EOL care, compared with students in the classroom setting. [J Nurs Educ. 2017;56(4):205-210.]. Copyright 2017, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Yu, Yuanyuan
2018-01-01
A two-dimensional axisymmetric inductively coupled plasma (ICP) model with its implementation in the COMSOL (Multi-physics simulation software) platform is described. Specifically, a large size ICP generator filled with argon is simulated in this study. Distributions of the number density and temperature of electrons are obtained for various input power and pressure settings and compared. In addition, the electron trajectory distribution is obtained in simulation. Finally, using experimental data, the results from simulations are compared to assess the veracity of the two-dimensional fluid model. The purpose of this comparison is to validate the veracity of the simulation model. An approximate agreement was found (variation tendency is the same). The main reasons for the numerical magnitude discrepancies are the assumption of a Maxwellian distribution and a Druyvesteyn distribution for the electron energy and the lack of cross sections of collision frequencies and reaction rates for argon plasma.
Solymos, Orsolya; O'Kelly, Patrick; Walshe, Criona M
2015-10-21
Simulation-based medical education has rapidly evolved over the past two decades, despite this, there are few published reports of its use in critical care teaching. We hypothesised that simulation-based teaching of a critical care topic to final-year medical students is superior to lecture-based teaching. Thirty-nine final-year medical students were randomly assigned to either simulation-based or lecture-based teaching in the chosen critical care topic. The study was conducted over a 6-week period. Efficacy of each teaching method was compared through use of multiple choice questionnaires (MCQ) - baseline, post-teaching and 2 week follow-up. Student satisfaction was evaluated by means of a questionnaire. Feasibility and resource requirements were documented by teachers. Eighteen students were randomised to simulation-based, and 21 to lecture-based teaching. There were no differences in age and gender between groups (p > 0.05). Simulation proved more resource intensive requiring specialised equipment, two instructors, and increased duration of teaching sessions (126.7 min (SD = 4.71) vs 68.3 min (SD = 2.36)). Students ranked simulation-based teaching higher with regard to enjoyment (p = 0.0044), interest (p = 0.0068), relevance to taught subject (p = 0.0313), ease of understanding (p = 0.0476) and accessibility to posing questions (p = 0.001). Both groups demonstrated improvement in post-teaching MCQ from baseline (p = 0.0002), with greater improvement seen among the simulation group (p = 0.0387), however, baseline scores were higher among the lecture group. The results of the 2-week follow-up MCQ and post-teaching MCQ were not statistically significant when each modality were compared. Simulation was perceived as more enjoyable by students. Although there was a greater improvement in post-teaching MCQ among the simulator group, baseline scores were higher among lecture group which limits interpretation of efficacy. Simulation is more resource intensive, as demonstrated by increased duration and personnel required, and this may have affected our results. The current pilot may be of use in informing future studies in this area.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model
NASA Astrophysics Data System (ADS)
Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie
2017-11-01
Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.
Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G
2013-01-01
In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.
Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz
2014-01-01
In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing.
Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz
2014-01-01
Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing. PMID:24922512
Chaabène, Helmi; Mkaouer, Bessem; Franchini, Emerson; Souissi, Nafaa; Selmi, Mohamed Amine; Nagra, Yassine; Chamari, Karim
2014-03-01
This study aimed to compare physiological responses and time-motion analysis between official and simulated karate combat. Ten high-level karatekas participated in this study, which included official and simulated karate combat. Karatekas used more upper-limb attack techniques during official combat compared to simulated ones (6±3 vs 3±1; P=0.05, respectively). For official and simulated karate matches, the numbers of high-intensity actions (i.e. offensive and defensive fighting activity) were 14±6 and 18±5, respectively (P>0.05), lasting from <1s to 5s each. Total fighting activity phase was lower during official compared to simulated matches (21.0±8.2s vs 30.4±9.9s, P<0.01, respectively). Effort (10.0±2.8s) to rest (11.9±2.7s) ratio (E:R) was 1:1 and high-intensity actions (1.6±0.3s) to rest (11.9±2.7s) ratio was higher than 1:7 during simulated combat. During official karate match, the activity and rest duration were 10.0±3.4s and 16.2±4.1s, respectively (E:R ratio 1:1.5), while high-intensity actions were 1.5±0.3s, resulting in an E:R ratio of 1:11. Blood lactate concentration was higher during official (11.14±1.82 mmol.l(-1)) compared to simulated karate combat (7.80±2.66 mmol.l(-1)) (P<0.05). Subjective perceived exertion differed significantly between official and simulated combat (14±2 vs. 12±2; P<0.05, respectively). The majority of karatekas' perceived exertion was higher in the lower limb muscle groups irrespective of the karate combat condition. Official and simulated matches differ considerably, therefore coaches should create new strategies during training sessions to achieve the same effort and pause profile of competitive matches and/or that athletes should be submitted to frequent competitions to adapt themselves to the profile of this event.
Chaabène, Helmi; Mkaouer, Bessem; Franchini, Emerson; Souissi, Nafaa; Selmi, Mohamed Amine; Nagra, Yassine; Chamari, Karim
2013-01-01
Purpose This study aimed to compare physiological responses and time-motion analysis between official and simulated karate combat. Methods Ten high-level karatekas participated in this study, which included official and simulated karate combat. Results Karatekas used more upper-limb attack techniques during official combat compared to simulated ones (6±3 vs 3±1; P=0.05, respectively). For official and simulated karate matches, the numbers of high-intensity actions (i.e. offensive and defensive fighting activity) were 14±6 and 18±5, respectively (P>0.05), lasting from <1s to 5s each. Total fighting activity phase was lower during official compared to simulated matches (21.0±8.2s vs 30.4±9.9s, P<0.01, respectively). Effort (10.0±2.8s) to rest (11.9±2.7s) ratio (E:R) was 1:1 and high-intensity actions (1.6±0.3s) to rest (11.9±2.7s) ratio was higher than 1:7 during simulated combat. During official karate match, the activity and rest duration were 10.0±3.4s and 16.2±4.1s, respectively (E:R ratio 1:1.5), while high-intensity actions were 1.5±0.3s, resulting in an E:R ratio of 1:11. Blood lactate concentration was higher during official (11.14±1.82 mmol.l-1) compared to simulated karate combat (7.80±2.66 mmol.l-1) (P<0.05). Subjective perceived exertion differed significantly between official and simulated combat (14±2 vs. 12±2; P<0.05, respectively). The majority of karatekas’ perceived exertion was higher in the lower limb muscle groups irrespective of the karate combat condition. Conclusion Official and simulated matches differ considerably, therefore coaches should create new strategies during training sessions to achieve the same effort and pause profile of competitive matches and/or that athletes should be submitted to frequent competitions to adapt themselves to the profile of this event. PMID:24868428
Bacterial populations were examined in a simulated chloraminated drinking water distribution system. After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The distribution system wa...
DOT National Transportation Integrated Search
2000-03-01
One-third-scale Model Mobile Load Simulator Mk3 (MMLS3) tests were conducted on US 281 in Jacksboro, Texas, adjacent to the full-scale Texas Mobile Load Simulator (TxMLS). The objectives were to investigate the moisture susceptibility and relative pe...
ERIC Educational Resources Information Center
Hall, L. O.; Soderstrom, T.; Ahlqvist, J.; Nilsson, T.
2011-01-01
This article is about collaborative learning with educational computer-assisted simulation (ECAS) in health care education. Previous research on training with a radiological virtual reality simulator has indicated positive effects on learning when compared to a more conventional alternative. Drawing upon the field of Computer-Supported…
The effects of changing land cover on streamflow simulation in Puerto Rico
A.E. Van Beusekom; L.E. Hay; R.J. Viger; W.A. Gould; J.A. Collazo; A. Henareh Khalyani
2014-01-01
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from...
Spatial interpolation of forest conditions using co-conditional geostatistical simulation
H. Todd Mowrer
2000-01-01
In recent work the author used the geostatistical Monte Carlo technique of sequential Gaussian simulation (s.G.s.) to investigate uncertainty in a GIS analysis of potential old-growth forest areas. The current study compares this earlier technique to that of co-conditional simulation, wherein the spatial cross-correlations between variables are included. As in the...
Comparing Simulated and Theoretical Sampling Distributions of the U3 Person-Fit Statistic.
ERIC Educational Resources Information Center
Emons, Wilco H. M.; Meijer, Rob R.; Sijtsma, Klaas
2002-01-01
Studied whether the theoretical sampling distribution of the U3 person-fit statistic is in agreement with the simulated sampling distribution under different item response theory models and varying item and test characteristics. Simulation results suggest that the use of standard normal deviates for the standardized version of the U3 statistic may…
Enhancement of CFD validation exercise along the roof profile of a low-rise building
NASA Astrophysics Data System (ADS)
Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.
2018-04-01
The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.
Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter
2015-07-01
To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
Results of a joint NOAA/NASA sounder simulation study
NASA Technical Reports Server (NTRS)
Phillips, N.; Susskind, Joel; Mcmillin, L.
1988-01-01
This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.
NASA Technical Reports Server (NTRS)
Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.
1994-01-01
A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.
Repetition-Related Reductions in Neural Activity during Emotional Simulations of Future Events.
Szpunar, Karl K; Jing, Helen G; Benoit, Roland G; Schacter, Daniel L
2015-01-01
Simulations of future experiences are often emotionally arousing, and the tendency to repeatedly simulate negative future outcomes has been identified as a predictor of the onset of symptoms of anxiety. Nonetheless, next to nothing is known about how the healthy human brain processes repeated simulations of emotional future events. In this study, we present a paradigm that can be used to study repeated simulations of the emotional future in a manner that overcomes phenomenological confounds between positive and negative events. The results show that pulvinar nucleus and orbitofrontal cortex respectively demonstrate selective reductions in neural activity in response to frequently as compared to infrequently repeated simulations of negative and positive future events. Implications for research on repeated simulations of the emotional future in both non-clinical and clinical populations are discussed.
Comparison of instructor-led versus peer-led debriefing in nursing students.
Roh, Young Sook; Kelly, Michelle; Ha, Eun Ho
2016-06-01
Despite its widespread support, the most effective simulation-based debriefing method has little evidence to support its efficacy. In this study, we compared the effect of peer-led and instructor-led debriefing among nursing students. The study was conducted with a non-equivalent control group using a pretest-post-test design. A convenience sample of third-year nursing students was used for the study, where 65 students enrolled in a 2-week clinical placement rotation were randomly assigned to the instructor-led group or peer-led group. The quality of cardiopulmonary resuscitation skills, satisfaction with simulation, and quality of debriefing in the peer-led group were compared to those in the instructor-led group. Group differences at each testing interval were analyzed using independent t-test. Nursing students in the instructor-led debriefing group showed better subsequent cardiopulmonary resuscitation performance, more satisfaction with simulation experience, and higher debriefing scores compared to the peer-led group. From our study, instructor-led debriefing is an effective method in improving skills performance, inducing favorable satisfaction, and providing better quality of debriefing among nursing students. © 2016 John Wiley & Sons Australia, Ltd.
Self-regulated learning in simulation-based training: a systematic review and meta-analysis.
Brydges, Ryan; Manzone, Julian; Shanks, David; Hatala, Rose; Hamstra, Stanley J; Zendejas, Benjamin; Cook, David A
2015-04-01
Self-regulated learning (SRL) requires an active learner who has developed a set of processes for managing the achievement of learning goals. Simulation-based training is one context in which trainees can safely practise learning how to learn. The purpose of the present study was to evaluate, in the simulation-based training context, the effectiveness of interventions designed to support trainees in SRL activities. We used the social-cognitive model of SRL to guide a systematic review and meta-analysis exploring the links between instructor supervision, supports or scaffolds for SRL, and educational outcomes. We searched databases including MEDLINE and Scopus, and previous reviews, for material published until December 2011. Studies comparing simulation-based SRL interventions with another intervention for teaching health professionals were included. Reviewers worked independently and in duplicate to extract information on learners, study quality and educational outcomes. We used random-effects meta-analysis to compare the effects of supervision (instructor present or absent) and SRL educational supports (e.g. goal-setting study guides present or absent). From 11,064 articles, we included 32 studies enrolling 2482 trainees. Only eight of the 32 studies included educational supports for SRL. Compared with instructor-supervised interventions, unsupervised interventions were associated with poorer immediate post-test outcomes (pooled effect size: -0.34, p = 0.09; n = 19 studies) and negligible effects on delayed (i.e. > 1 week) retention tests (pooled effect size: 0.11, p = 0.63; n = 8 studies). Interventions including SRL supports were associated with small benefits compared with interventions without supports on both immediate post-tests (pooled effect size: 0.23, p = 0.22; n = 5 studies) and delayed retention tests (pooled effect size: 0.44, p = 0.067; n = 3 studies). Few studies in the simulation literature have designed SRL training to explicitly support trainees' capacity to self-regulate their learning. We recommend that educators and researchers shift from thinking about SRL as learning alone to thinking of SRL as comprising a shared responsibility between the trainee and the instructional designer (i.e. learning using designed supports that help prepare individuals for future learning). © 2015 John Wiley & Sons Ltd.
Low cost, high yield: simulation of obstetric emergencies for family medicine training.
Magee, Susanna R; Shields, Robin; Nothnagle, Melissa
2013-01-01
Simulation is now the educational standard for emergency training in residency and is particularly useful on a labor and delivery unit, which is often a stressful environment for learners given the frequency of emergencies. However, simulation can be costly. This study aimed to assess the feasibility and effectiveness of low-cost simulated obstetrical emergencies in training family medicine residents. The study took place in a community hospital in an urban underserved setting in the northeast United States. Low-cost simulations were developed for postpartum hemorrhage (PPH) and preeclampsia/eclampsia (PEC). Twenty residents were randomly assigned to the intervention (simulated PPH or PEC followed by debriefing) or control (lecture on PPH or PEC) group, and equal numbers of residents were assigned to each scenario. All participants completed a written test at baseline and an oral exam 6 months later on the respective scenario to which they were assigned. The participants provided written feedback on their respective teaching interventions. We compared performance on pretests and posttests by group using Wilcoxon Rank Sum. Twenty residents completed the study. Both groups performed similarly on baseline tests for both scenarios. Compared to controls, intervention residents scored significantly higher on the examination on the management of PPH but not for PEC. All intervention group participants reported that the simulation training was "extremely useful," and most found it "enjoyable." We demonstrated the feasibility and acceptability of two low-cost obstetric emergency simulations and found that they may result in persistent increases in trainee knowledge.
Stepniak, Camilla; Wickens, Brandon; Husein, Murad; Paradis, Josee; Ladak, Hanif M; Fung, Kevin; Agrawal, Sumit K
2017-06-01
OtoTrain is a Web-based otoscopy simulator that has previously been shown to have face and content validity. The objective of this study was to evaluate the effectiveness of this Web-based otoscopy simulator in teaching diagnostic otoscopy to novice learners STUDY DESIGN: Prospective, blinded randomized control trial. Second-year medical students were invited to participate in the study. A pretest consisted of a series of otoscopy videos followed by an open-answer format assessment pertaining to the characteristics and diagnosis of each video. Participants were then randomly divided into a control group and a simulator group. Following the pretest, both groups attended standard otology lectures, but the simulator group was additionally given unlimited access to OtoTrain for 1 week. A post-test was completed using a separate set of otoscopy videos. Tests were graded based on a comprehensive marking scheme. The pretest and post-test were anonymized, and the three evaluators were blinded to student allotment. A total of 41 medical students were enrolled in the study and randomized to the control group (n = 20) and the simulator group (n = 21). There was no significant difference between the two groups on their pretest scores. With the standard otology lectures, the control group had a 31% improvement in their post-test score (mean ± standard error of the mean, 30.4 ± 1.5) compared with their pretest score (23.3 ± 1.8) (P < .001). The simulator group had the addition of OtoTrain to the otology lectures, and their score improved by 71% on their post-test (37.8 ± 1.6) compared to their pretest (22.1 ± 1.9) (P < .001). Comparing the post-test results, the simulator group had a 24% higher score than the control group (P < .002). Inter-rater reliability between the blinded evaluators was excellent (r = 0.953, P < .001). The use of OtoTrain increased the diagnostic otoscopic performance in novice learners. OtoTrain may be an effective teaching adjunct for undergraduate medical students. 1b. Laryngoscope, 127:1306-1311, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Star Formation of Merging Disk Galaxies with AGN Feedback Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr
2017-08-20
Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Coxmore » et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.« less
Tablet-based cardiac arrest documentation: a pilot study.
Peace, Jack M; Yuen, Trevor C; Borak, Meredith H; Edelson, Dana P
2014-02-01
Conventional paper-based resuscitation transcripts are notoriously inaccurate, often lacking the precision that is necessary for recording a fast-paced resuscitation. The aim of this study was to evaluate whether a tablet computer-based application could improve upon conventional practices for resuscitation documentation. Nurses used either the conventional paper code sheet or a tablet application during simulated resuscitation events. Recorded events were compared to a gold standard record generated from video recordings of the simulations and a CPR-sensing defibrillator/monitor. Events compared included defibrillations, medication deliveries, and other interventions. During the study period, 199 unique interventions were observed in the gold standard record. Of these, 102 occurred during simulations recorded by the tablet application, 78 by the paper code sheet, and 19 during scenarios captured simultaneously by both documentation methods These occurred over 18 simulated resuscitation scenarios, in which 9 nurses participated. The tablet application had a mean sensitivity of 88.0% for all interventions, compared to 67.9% for the paper code sheet (P=0.001). The median time discrepancy was 3s for the tablet, and 77s for the paper code sheet when compared to the gold standard (P<0.001). Similar to prior studies, we found that conventional paper-based documentation practices are inaccurate, often misreporting intervention delivery times or missing their delivery entirely. However, our study also demonstrated that a tablet-based documentation method may represent a means to substantially improve resuscitation documentation quality, which could have implications for resuscitation quality improvement and research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Comparing CTH Simulations and Experiments on Explosively Loaded Rings
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Aydelotte, B.; Thadhani, N. N.; Williamson, D. M.
2011-06-01
A series of experiments were conducted on explosively loaded rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with PDV and the arrangement was imaged using a high speed camera. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 450 m/s, which was achieved through loading with a 5g PETN based charge.
ERIC Educational Resources Information Center
Hldreth, Laura A.; Robison-Cox, Jim; Schmidt, Jade
2018-01-01
This study examines the transferability of results from previous studies of simulation-based curriculum in introductory statistics using data from 3,500 students enrolled in an introductory statistics course at Montana State University from fall 2013 through spring 2016. During this time, four different curricula, a traditional curriculum and…
Using Monte Carlo Simulation to Prioritize Key Maritime Environmental Impacts of Port Infrastructure
NASA Astrophysics Data System (ADS)
Perez Lespier, L. M.; Long, S.; Shoberg, T.
2016-12-01
This study creates a Monte Carlo simulation model to prioritize key indicators of environmental impacts resulting from maritime port infrastructure. Data inputs are derived from LandSat imagery, government databases, and industry reports to create the simulation. Results are validated using subject matter experts and compared with those returned from time-series regression to determine goodness of fit. The Port of Prince Rupert, Canada is used as the location for the study.
Cosmicflows Constrained Local UniversE Simulations
NASA Astrophysics Data System (ADS)
Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo
2016-01-01
This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.
Thermophysical Properties of Undercooled Alloys: An Overview of the Molecular Simulation Approaches
Lv, Yong J.; Chen, Min
2011-01-01
We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature and the composition dependences of the thermophysical properties in undercooled regime are discussed. PMID:21339987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less
Burger, Stefan; Fraunholz, Thomas; Leirer, Christian; Hoppe, Ronald H W; Wixforth, Achim; Peter, Malte A; Franke, Thomas
2013-06-25
Phase decomposition in lipid membranes has been the subject of numerous investigations by both experiment and theoretical simulation, yet quantitative comparisons of the simulated data to the experimental results are rare. In this work, we present a novel way of comparing the temporal development of liquid-ordered domains obtained from numerically solving the Cahn-Hilliard equation and by inducing a phase transition in giant unilamellar vesicles (GUVs). Quantitative comparison is done by calculating the structure factor of the domain pattern. It turns out that the decomposition takes place in three distinct regimes in both experiment and simulation. These regimes are characterized by different rates of growth of the mean domain diameter, and there is quantitative agreement between experiment and simulation as to the duration of each regime and the absolute rate of growth in each regime.
Schumacher, Jan; Gray, Stuart A; Michel, Sophie; Alcock, Roger; Brinker, Andrea
2013-02-01
Emergency pediatric life support (EPLS) of children infected with transmissible respiratory diseases requires adequate respiratory protection for medical first responders. Conventional air-purifying respirators (APR) and modern loose-fitting powered air-purifying respirator-hoods (PAPR-hood) may have a different impact during pediatric resuscitation and therefore require evaluation. This study investigated the influence of APRs and PAPR-hoods during simulated pediatric cardiopulmonary resuscitation. Study design was a randomized, controlled, crossover study. Sixteen paramedics carried out a standardized EPLS scenario inside an ambulance, either unprotected (control) or wearing a conventional APR or a PAPR-hood. Treatment times and wearer comfort were determined and compared. All paramedics completed the treatment objectives of the study arms without adverse events. Study subjects reported that communication, dexterity and mobility were significantly better in the APR group, whereas the heat-build-up was significantly less in the PAPR-hood group. Treatment times compared to the control group did not significantly differ for the APR group but did with the PAPR-hood group (261±12 seconds for the controls, 275±9 seconds for the conventional APR and 286±13 seconds for the PAPR-hood group, P < .05. APRs showed a trend to better treatment times compared to PAPR-hoods during simulated pediatric cardiopulmonary resuscitation. Study participants rated mobility, ease of communication and dexterity with the tight-fitting APR system significantly better compared to the loose-fitting PAPR-hood.
Cohen, Elaine R; Feinglass, Joe; Barsuk, Jeffrey H; Barnard, Cynthia; O'Donnell, Anna; McGaghie, William C; Wayne, Diane B
2010-04-01
Interventions to reduce preventable complications such as catheter-related bloodstream infections (CRBSI) can also decrease hospital costs. However, little is known about the cost-effectiveness of simulation-based education. The aim of this study was to estimate hospital cost savings related to a reduction in CRBSI after simulation training for residents. This was an intervention evaluation study estimating cost savings related to a simulation-based intervention in central venous catheter (CVC) insertion in the Medical Intensive Care Unit (MICU) at an urban teaching hospital. After residents completed a simulation-based mastery learning program in CVC insertion, CRBSI rates declined sharply. Case-control and regression analysis methods were used to estimate savings by comparing CRBSI rates in the year before and after the intervention. Annual savings from reduced CRBSIs were compared with the annual cost of simulation training. Approximately 9.95 CRBSIs were prevented among MICU patients with CVCs in the year after the intervention. Incremental costs attributed to each CRBSI were approximately $82,000 in 2008 dollars and 14 additional hospital days (including 12 MICU days). The annual cost of the simulation-based education was approximately $112,000. Net annual savings were thus greater than $700,000, a 7 to 1 rate of return on the simulation training intervention. A simulation-based educational intervention in CVC insertion was highly cost-effective. These results suggest that investment in simulation training can produce significant medical care cost savings.
Technology-enhanced simulation and pediatric education: a meta-analysis.
Cheng, Adam; Lang, Tara R; Starr, Stephanie R; Pusic, Martin; Cook, David A
2014-05-01
Pediatrics has embraced technology-enhanced simulation (TES) as an educational modality, but its effectiveness for pediatric education remains unclear. The objective of this study was to describe the characteristics and evaluate the effectiveness of TES for pediatric education. This review adhered to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) standards. A systematic search of Medline, Embase, CINAHL, ERIC, Web of Science, Scopus, key journals, and previous review bibliographies through May 2011 and an updated Medline search through October 2013 were conducted. Original research articles in any language evaluating the use of TES for educating health care providers at any stage, where the content solely focuses on patients 18 years or younger, were selected. Reviewers working in duplicate abstracted information on learners, clinical topic, instructional design, study quality, and outcomes. We coded skills (simulated setting) separately for time and nontime measures and similarly classified patient care behaviors and patient effects. We identified 57 studies (3666 learners) using TES to teach pediatrics. Effect sizes (ESs) were pooled by using a random-effects model. Among studies comparing TES with no intervention, pooled ESs were large for outcomes of knowledge, nontime skills (eg, performance in simulated setting), behaviors with patients, and time to task completion (ES = 0.80-1.91). Studies comparing the use of high versus low physical realism simulators showed small to moderate effects favoring high physical realism (ES = 0.31-0.70). TES for pediatric education is associated with large ESs in comparison with no intervention. Future research should include comparative studies that identify optimal instructional methods and incorporate pediatric-specific issues into educational interventions. Copyright © 2014 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Byggmästar, J.; Hodille, E. A.; Ferro, Y.; Nordlund, K.
2018-04-01
An analytical interatomic bond order potential for the Be-O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.
Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom
2017-01-01
In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.
Simulation study on the maximum continuous working condition of a power plant boiler
NASA Astrophysics Data System (ADS)
Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo
2018-05-01
First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.
Bernhardt, Johannes; Hye, Florian; Thallinger, Sigrid; Bauer, Pamela; Ginter, Gabriele; Smolle, Josef
2009-07-01
Mycological KOH preparation is one of the most popular practical laboratory skills in dermatology. The study addresses the question whether an interactive simulation program enhances knowledge of students about this procedure. 166 students, 107 female and 59 male, participated. We separated our study in three phases: pretest, completing the simulation three times and post-test. In the pre- and post-test we recorded the number of correct steps of the mycological KOH preparation listed by the students. The full text feedback was explored by content analysis. In the pre-test the students listed an average of 3.1 +/- 2.2 correct steps, compared to 8.8 +/- 1.2 correct steps after completing the simulation (p < 0.001). Furthermore, the improvement was significant for each individual step. There were no significant differences between male and female students. In content analysis of the feedback, positive statements prevailed with 78.3%, compared to only 1.8% critical items. Our study shows that an interactive computer simulation program of mycological KOH preparation results in a significant learning effectiveness as far as recall of the correct procedural steps is concerned. Furthermore, subjective acceptance by students is high.
Lee, Gyusung I; Lee, Mija R
2018-01-01
While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system's performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training. Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups. After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG's TPM was initially long but substantially shortened as the group became familiar with PM. Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.
Kim, Ji-Hoon; Kim, Young-Min; Park, Seong Heui; Ju, Eun A; Choi, Se Min; Hong, Tai Yong
2017-06-01
The aim of the study was to compare the educational impact of two postsimulation debriefing methods-focused and corrective feedback (FCF) versus Structured and Supported Debriefing (SSD)-on team dynamics in simulation-based cardiac arrest team training. This was a pilot randomized controlled study conducted at a simulation center. Fourth-year medical students were randomly assigned to the FCF or SSD group, with each team composed of six students and a confederate. Each team participated in two simulations and the assigned debriefing (FCF or SSD) sessions and then underwent a test simulation. Two trained raters blindly assessed all of the recorded simulations using checklists. The primary outcome was the improvement in team dynamics scores between baseline and test simulation. The secondary outcomes were improvements before and after training in team clinical performance scores, self-assessed comprehension of and confidence in cardiac arrest management and team dynamics, as well as evaluations of the postsimulation debriefing intervention. In total, 95 students participated [FCF (8 teams, n = 47) and SSD (8 teams, n = 48)]. The SSD team dynamics score during the test simulation was higher than at baseline [baseline: 74.5 (65.9-80.9), test: 85.0 (71.9-87.6), P = 0.035]. However, there were no differences in the improvement in the team dynamics or team clinical performance scores between the two groups (P = 0.328, respectively). There was no significant difference in improvement in team dynamics scores during the test simulation compared with baseline between the SSD and FCF groups in a simulation-based cardiac arrest team training in fourth-year Korean medical students.
NASA Technical Reports Server (NTRS)
Arneson, Heather; Evans, Antony D.; Li, Jinhua; Wei, Mei Yueh
2017-01-01
Integrated Demand Management (IDM) is a near- to mid-term NASA concept that proposes to address mismatches in air traffic system demand and capacity by using strategic flow management capabilities to pre-condition demand into the more tactical Time-Based Flow Management System (TBFM). This paper describes an automated simulation capability to support IDM concept development. The capability closely mimics existing human-in-the-loop (HITL) capabilities, automating both the human components and collaboration between operational systems, and speeding up the real-time aircraft simulations. Such a capability allows for parametric studies that will inform the HITL simulations, identifying breaking points and parameter values at which significant changes in system behavior occur. This paper also describes the initial validation of individual components of the automated simulation capability, and an example application comparing the performance of the IDM concept under two TBFM scheduling paradigms. The results and conclusions from this simulation compare closely to those from previous HITL simulations using similar scenarios, providing an initial validation of the automated simulation capability.
Isaranuwatchai, Wanrudee; Brydges, Ryan; Carnahan, Heather; Backstein, David; Dubrowski, Adam
2014-05-01
While the ultimate goal of simulation training is to enhance learning, cost-effectiveness is a critical factor. Research that compares simulation training in terms of educational- and cost-effectiveness will lead to better-informed curricular decisions. Using previously published data we conducted a cost-effectiveness analysis of three simulation-based programs. Medical students (n = 15 per group) practiced in one of three 2-h intravenous catheterization skills training programs: low-fidelity (virtual reality), high-fidelity (mannequin), or progressive (consisting of virtual reality, task trainer, and mannequin simulator). One week later, all performed a transfer test on a hybrid simulation (standardized patient with a task trainer). We used a net benefit regression model to identify the most cost-effective training program via paired comparisons. We also created a cost-effectiveness acceptability curve to visually represent the probability that one program is more cost-effective when compared to its comparator at various 'willingness-to-pay' values. We conducted separate analyses for implementation and total costs. The results showed that the progressive program had the highest total cost (p < 0.001) whereas the high-fidelity program had the highest implementation cost (p < 0.001). While the most cost-effective program depended on the decision makers' willingness-to-pay value, the progressive training program was generally most educationally- and cost-effective. Our analyses suggest that a progressive program that strategically combines simulation modalities provides a cost-effective solution. More generally, we have introduced how a cost-effectiveness analysis may be applied to simulation training; a method that medical educators may use to investment decisions (e.g., purchasing cost-effective and educationally sound simulators).
Lemaster, Margaret; Flores, Joyce M; Blacketer, Margaret S
2016-02-01
This study explored the effectiveness of simulated mouth models to improve identification and recording of dental restorations when compared to using traditional didactic instruction combined with 2-dimensional images. Simulation has been adopted into medical and dental education curriculum to improve both student learning and patient safety outcomes. A 2-sample, independent t-test analysis of data was conducted to compare graded dental recordings of dental hygiene students using simulated mouth models and dental hygiene students using 2-dimensional photographs. Evaluations from graded dental charts were analyzed and compared between groups of students using the simulated mouth models containing random placement of custom preventive and restorative materials and traditional 2-dimensional representations of didactically described conditions. Results demonstrated a statistically significant (p≤0.0001) difference: for experimental group, students using the simulated mouth models to identify and record dental conditions had a mean of 86.73 and variance of 33.84. The control group students using traditional 2-dimensional images mean graded dental chart scores were 74.43 and variance was 14.25. Using modified simulation technology for dental charting identification may increase level of dental charting skill competency in first year dental hygiene students. Copyright © 2016 The American Dental Hygienists’ Association.
Boza, Camilo; León, Felipe; Buckel, Erwin; Riquelme, Arnoldo; Crovari, Fernando; Martínez, Jorge; Aggarwal, Rajesh; Grantcharov, Teodor; Jarufe, Nicolás; Varas, Julián
2017-01-01
Multiple simulation training programs have demonstrated that effective transfer of skills can be attained and applied into a more complex scenario, but evidence regarding transfer to the operating room is limited. To assess junior residents trained with simulation performing an advanced laparoscopic procedure in the OR and compare results to those of general surgeons without simulation training and expert laparoscopic surgeons. Experimental study: After a validated 16-session advanced laparoscopy simulation training program, junior trainees were compared to general surgeons (GS) with no simulation training and expert bariatric surgeons (BS) in performing a stapled jejuno-jejunostomy (JJO) in the OR. Global rating scale (GRS) and specific rating scale scores, operative time and the distance traveled by both hands measured with a tracking device, were assessed. In addition, all perioperative and immediate postoperative morbidities were registered. Ten junior trainees, 12 GS and 5 BS experts were assessed performing a JJO in the OR. All trainees completed the entire JJO in the OR without any takeovers by the BS. Six (50 %) BS takeovers took place in the GS group. Trainees had significantly better results in all measured outcomes when compared to GS with considerable higher GRS median [19.5 (18.8-23.5) vs. 12 (9-13.8) p < 0.001] and lower operative time. One morbidity was registered; a patient in the trainees group was readmitted at postoperative day 10 for mechanical ileus that resolved with medical treatment. This study demonstrated transfer of advanced laparoscopic skills acquired through a simulated training program in novice surgical residents to the OR.
Torner, Benjamin; Konnigk, Lucas; Hallier, Sebastian; Kumar, Jitendra; Witte, Matthias; Wurm, Frank-Hendrik
2018-06-01
Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.
ERIC Educational Resources Information Center
Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel
2012-01-01
In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…
DOT National Transportation Integrated Search
1983-09-01
The present study employed auditory startle to simulate the principal components (unexpectedness, fear, and physiological arousal) that are common to many types of sudden emergencies and compared performance recovery following startle with recovery f...
2013-01-01
Background Investigation of conformational changes in a protein is a prerequisite to understand its biological function. To explore these conformational changes in proteins we developed a strategy with the combination of molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy. The major goal of this work is to investigate how far computer simulations can meet the experiments. Methods Vinculin tail protein is chosen as a model system as conformational changes within the vinculin protein are believed to be important for its biological function at the sites of cell adhesion. MD simulations were performed on vinculin tail protein both in water and in vacuo environments. EPR experimental data is compared with those of the simulated data for corresponding spin label positions. Results The calculated EPR spectra from MD simulations trajectories of selected spin labelled positions are comparable to experimental EPR spectra. The results show that the information contained in the spin label mobility provides a powerful means of mapping protein folds and their conformational changes. Conclusions The results suggest the localization of dynamic and flexible regions of the vinculin tail protein. This study shows MD simulations can be used as a complementary tool to interpret experimental EPR data. PMID:23445506
Madenci, Arin L; Solis, Carolina V; de Moya, Marc A
2014-02-01
Simulation training for invasive procedures may improve patient safety by enabling efficient training. This study is a meta-analysis with rigorous inclusion and exclusion criteria designed to assess the real patient procedural success of simulation training for central venous access. Published randomized controlled trials and prospective 2-group cohort studies that used simulation for the training of procedures involving central venous access were identified. The quality of each study was assessed. The primary outcome was the proportion of trainees who demonstrated the ability to successfully complete the procedure. Secondary outcomes included the mean number of attempts to procedural success and periprocedural adverse events. Proportions were compared between groups using risk ratios (RRs), whereas continuous variables were compared using weighted mean differences. Random-effects analysis was used to determine pooled effect sizes. We identified 550 studies, of which 5 (3 randomized controlled trials, 2 prospective 2-group cohort studies) studies of central venous catheter (CVC) insertion were included in the meta-analysis, composed of 407 medical trainees. The simulation group had a significantly larger proportion of trainees who successfully placed CVCs (RR, 1.09; 95% confidence interval [CI], 1.03-1.16, P<0.01). In addition, the simulation group had significantly fewer mean attempts to CVC insertion (weighted mean difference, -1.42; 95% CI, -2.34 to -0.49, P<0.01). There was no significant difference in the rate of adverse events between the groups (RR, 0.50; 95% CI, 0.19-1.29; P=0.15). Training programs should consider adopting simulation training for CVC insertion to improve the real patient procedural success of trainees.
Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations
NASA Astrophysics Data System (ADS)
Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod
2016-11-01
Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, Gennady; /Fermilab
CST Particle Studio combines electromagnetic field simulation, multi-particle tracking, adequate post-processing and advanced probabilistic emission model, which is the most important new capability in multipactor simulation. The emission model includes in simulation the stochastic properties of emission and adds primary electron elastic and inelastic reflection from the surfaces. The simulation of multipactor in coaxial waveguides have been performed to study the effects of the innovations on the multipactor threshold and the range over which multipactor can occur. The results compared with available previous experiments and simulations as well as the technique of MP simulation with CST PS are presented andmore » discussed.« less
Chen, Aileen B; Neville, Bridget A; Sher, David J; Chen, Kun; Schrag, Deborah
2011-06-10
Technical studies suggest that computed tomography (CT) -based simulation improves the therapeutic ratio for thoracic radiation therapy (TRT), although few studies have evaluated its use or impact on outcomes. We used the Surveillance, Epidemiology and End Results (SEER) -Medicare linked data to identify CT-based simulation for TRT among Medicare beneficiaries diagnosed with stage III non-small-cell lung cancer (NSCLC) between 2000 and 2005. Demographic and clinical factors associated with use of CT simulation were identified, and the impact of CT simulation on survival was analyzed by using Cox models and propensity score analysis. The proportion of patients treated with TRT who had CT simulation increased from 2.4% in 1994 to 34.0% in 2000 to 77.6% in 2005. Of the 5,540 patients treated with TRT from 2000 to 2005, 60.1% had CT simulation. Geographic variation was seen in rates of CT simulation, with lower rates in rural areas and in the South and West compared with those in the Northeast and Midwest. Patients treated with chemotherapy were more likely to have CT simulation (65.2% v 51.2%; adjusted odds ratio, 1.67; 95% CI, 1.48 to 1.88; P < .01), although there was no significant association between use of surgery and CT simulation. Controlling for demographic and clinical characteristics, CT simulation was associated with lower risk of death (adjusted hazard ratio, 0.77; 95% CI, 0.73 to 0.82; P < .01) compared with conventional simulation. CT-based simulation has been widely, although not uniformly, adopted for the treatment of stage III NSCLC and is associated with higher survival among patients receiving TRT.
High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael
2007-01-01
We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.
Simulation Data as Data Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulla, G; Arrighi, W; Critchlow, T
2003-11-18
Computational or scientific simulations are increasingly being applied to solve a variety of scientific problems. Domains such as astrophysics, engineering, chemistry, biology, and environmental studies are benefiting from this important capability. Simulations, however, produce enormous amounts of data that need to be analyzed and understood. In this overview paper, we describe scientific simulation data, its characteristics, and the way scientists generate and use the data. We then compare and contrast simulation data to data streams. Finally, we describe our approach to analyzing simulation data, present the AQSim (Ad-hoc Queries for Simulation data) system, and discuss some of the challenges thatmore » result from handling this kind of data.« less
Hamilton, Matthew B; Tartakovsky, Maria; Battocletti, Amy
2018-05-01
The genetic effective population size, N e , can be estimated from the average gametic disequilibrium (r2^) between pairs of loci, but such estimates require evaluation of assumptions and currently have few methods to estimate confidence intervals. speed-ne is a suite of matlab computer code functions to estimate Ne^ from r2^ with a graphical user interface and a rich set of outputs that aid in understanding data patterns and comparing multiple estimators. speed-ne includes functions to either generate or input simulated genotype data to facilitate comparative studies of Ne^ estimators under various population genetic scenarios. speed-ne was validated with data simulated under both time-forward and time-backward coalescent models of genetic drift. Three classes of estimators were compared with simulated data to examine several general questions: what are the impacts of microsatellite null alleles on Ne^, how should missing data be treated, and does disequilibrium contributed by reduced recombination among some loci in a sample impact Ne^. Estimators differed greatly in precision in the scenarios examined, and a widely employed Ne^ estimator exhibited the largest variances among replicate data sets. speed-ne implements several jackknife approaches to estimate confidence intervals, and simulated data showed that jackknifing over loci and jackknifing over individuals provided ~95% confidence interval coverage for some estimators and should be useful for empirical studies. speed-ne provides an open-source extensible tool for estimation of Ne^ from empirical genotype data and to conduct simulations of both microsatellite and single nucleotide polymorphism (SNP) data types to develop expectations and to compare Ne^ estimators. © 2018 John Wiley & Sons Ltd.
A meta-analysis of outcomes from the use of computer-simulated experiments in science education
NASA Astrophysics Data System (ADS)
Lejeune, John Van
The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.
2014-07-28
Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less
Comparative testing of pulse oximeter probes.
van Oostrom, Johannes H; Melker, Richard J
2004-05-01
The testing of pulse oximeter probes is generally limited to the integrity of the electrical circuit and does not include the optical properties of the probes. Few pulse oximeter testers evaluate the accuracy of both the monitor and the probe. We designed a study to compare the accuracy of nonproprietary probes (OSS Medical) designed for use with Nellcor, Datex-Ohmeda, and Criticare pulse oximeter monitors with that of their corresponding proprietary probes by using a commercial off-the-shelf pulse oximeter tester (Index). The Index pulse oximeter tester does include testing of the optical properties of the pulse oximeter probes. The pulse oximeter tester was given a controlled input that simulated acute apnea. Desaturation curves were automatically recorded from the pulse oximeter monitors with a data-collection computer. Comparisons between equivalent proprietary and nonproprietary probes were performed. Data were analyzed by using univariate and multivariate general linear model analysis. Five OSS Medical probe models were statistically better than the equivalent proprietary probes. The remainder of the probes were statistically similar. Comparative and simulation studies can have significant advantages over human studies because they are cost-effective, evaluate equipment in a clinically relevant scenario, and pose no risk to patients, but they are limited by the realism of the simulation. We studied the performance of pulse oximeter probes in a simulated environment. Our results show significant differences between some probes that affect the accuracy of measurement.
Comparing volume of fluid and level set methods for evaporating liquid-gas flows
NASA Astrophysics Data System (ADS)
Palmore, John; Desjardins, Olivier
2016-11-01
This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.
Barabash, R. I.; Agarwal, V.; Koric, S.; ...
2016-01-01
Tmore » he depth-dependent strain partitioning across the interfaces in the growth direction of the NiAl/Cr(Mo) nanocomposite between the Cr and NiAl lamellae was directly measured experimentally and simulated using a finite element method (FEM). Depth-resolved X-ray microdiffraction demonstrated that in the as-grown state both Cr and NiAl lamellae grow along the 111 direction with the formation of as-grown distinct residual ~0.16% compressive strains for Cr lamellae and ~0.05% tensile strains for NiAl lamellae. hree-dimensional simulations were carried out using an implicit FEM. First simulation was designed to study residual strains in the composite due to cooling resulting in formation of crystals. Strains in the growth direction were computed and compared to those obtained from the microdiffraction experiments. Second simulation was conducted to understand the combined strains resulting from cooling and mechanical indentation of the composite. Numerical results in the growth direction of crystal were compared to experimental results confirming the experimentally observed trends.« less
NASA Astrophysics Data System (ADS)
Ramirez, Joaquin; Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ramesh, Govindarajan T.; Sharma, S. Chidananda
2014-02-01
Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal's average body weights were found to be not different, while the liver weights were decreased and found to be significantly different ( p < 0.05) from control mice. Further, in liver the specific activity of hexokinase enzyme was reduced ( p < 0.02) and the phosphoenolpyruvate carboxykinase activity was significantly increased in simulated microgravity subjected mice compared to control ( p < 0.003). Immunoblot analysis show decreased phosphofructokinase-2 activity in HLS mice compared to control. Liver lactate dehydrogenase activity significantly reduced in simulated microgravity subjected mice ( p < 0.005). Thus in our study the rodents have adapted to simulated microgravity conditions, with decreased glycolysis and increased gluconeogenesis in liver and reciprocally regulated.
Computer simulations for lab experiences in secondary physics
NASA Astrophysics Data System (ADS)
Murphy, David Shannon
Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain circumstances, have been found to allow students to gain insight into the operation of the systems they model. This study compared the use of a DC circuit simulation, a modified simulation, static graphics, and traditional bulbs and wires to compare gains in DC circuit knowledge as measured by the DIRECT instrument, a multiple choice instrument previously developed to assess DC circuit knowledge. Gender, prior DC circuit knowledge and subsets of DC circuit knowledge of students were also compared. The population (n=166) was comprised of high school freshmen students from an eastern Kentucky public school with a population of 1100 students and followed a quantitative quasi experimental research design. Differences between treatment groups were not statistically significant. Keywords: Simulations, Static Images, Science Education, DC Circuit Instruction, Phet.
Sonic and Supersonic Jet Plumes
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
The mental simulation of state/psychological verbs in the adolescent brain: An fMRI study.
Tomasino, Barbara; Nobile, Maria; Re, Marta; Bellina, Monica; Garzitto, Marco; Arrigoni, Filippo; Molteni, Massimo; Fabbro, Franco; Brambilla, Paolo
2018-06-01
This fMRI study investigated mental simulation of state/psychological and action verbs during adolescence. Sixteen healthy subjects silently read verbs describing a motor scene or not (STIMULUS: motor, state/psychological verbs) and they were explicitly asked to imagine the situation or they performed letter detection preventing them from using simulation (TASK: imagery vs. letter detection). A significant task by stimuli interaction showed that imagery of state/psychological verbs, as compared to action stimuli (controlled by the letter detection) selectively increased activation in the right supramarginal gyrus/rolandic operculum and in the right insula, and decreased activation in the right intraparietal sulcus. We compared these data to those from a group of older participants (Tomasino et al. 2014a). Activation in the left supramarginal gyrus decreased for the latter group (as compared to the present group) for imagery of state/psychological verbs. By contrast, activation in the right superior frontal gyrus decreased for the former group (as compared to the older group) for imagery of state/psychological verbs. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdolkader, Tarek M.; Shaker, Ahmed; Alahmadi, A. N. M.
2018-07-01
With the continuous miniaturization of electronic devices, quantum-mechanical effects such as tunneling become more effective in many device applications. In this paper, a numerical simulation tool is developed under a MATLAB environment to calculate the tunneling probability and current through an arbitrary potential barrier comparing three different numerical techniques: the finite difference method, transfer matrix method, and transmission line method. For benchmarking, the tool is applied to many case studies such as the rectangular single barrier, rectangular double barrier, and continuous bell-shaped potential barrier, each compared to analytical solutions and giving the dependence of the error on the number of mesh points. In addition, a thorough study of the J ‑ V characteristics of MIM and MIIM diodes, used as rectifiers for rectenna solar cells, is presented and simulations are compared to experimental results showing satisfactory agreement. On the undergraduate level, the tool provides a deeper insight for students to compare numerical techniques used to solve various tunneling problems and helps students to choose a suitable technique for a certain application.
NASA Technical Reports Server (NTRS)
Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne
1991-01-01
The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.
Clinical simulation training improves the clinical performance of Chinese medical students
Zhang, Ming-ya; Cheng, Xin; Xu, An-ding; Luo, Liang-ping; Yang, Xuesong
2015-01-01
Background Modern medical education promotes medical students’ clinical operating capacity rather than the mastery of theoretical knowledge. To accomplish this objective, clinical skill training using various simulations was introduced into medical education to cultivate creativity and develop the practical ability of students. However, quantitative analysis of the efficiency of clinical skill training with simulations is lacking. Methods In the present study, we compared the mean scores of medical students (Jinan University) who graduated in 2013 and 2014 on 16 stations between traditional training (control) and simulative training groups. In addition, in a clinical skill competition, the objective structured clinical examination (OSCE) scores of participating medical students trained using traditional and simulative training were compared. The data were statistically analyzed and qualitatively described. Results The results revealed that simulative training could significantly enhance the graduate score of medical students compared with the control. The OSCE scores of participating medical students in the clinical skill competition, trained using simulations, were dramatically higher than those of students trained through traditional methods, and we also observed that the OSCE marks were significantly increased for the same participant after simulative training for the clinical skill competition. Conclusions Taken together, these data indicate that clinical skill training with a variety of simulations could substantially promote the clinical performance of medical students and optimize the resources used for medical education, although a precise analysis of each specialization is needed in the future. PMID:26478142
Evaluation of snowmelt simulation in the Weather Research and Forecasting model
NASA Astrophysics Data System (ADS)
Jin, Jiming; Wen, Lijuan
2012-05-01
The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.
Vehicle influence on permeation through intact and compromised skin.
Gujjar, Meera; Banga, Ajay K
2014-09-10
The purpose of this study was to compare the transdermal permeation of a model compound, diclofenac diethylamine, from a hydrophilic and lipophilic vehicle across in vitro models simulating compromised skin. Mineral oil served as a lipophilic vehicle while 10mM phosphate buffered saline served as a hydrophilic vehicle. Compromised skin was simulated by tape stripping, delipidization, or microneedle application and compared with intact skin as a control. Transepidermal water loss was measured to assess barrier function. Skin compromised with tape stripping and delipidization significantly (p<0.05) increased permeation of diclofenac diethylamine compared to intact and microneedle treated skin with phosphate buffered saline vehicle. A similar trend in permeation was observed with mineral oil as the vehicle. For both vehicles, permeation across skin increased in the same order and correlated with degree of barrier impairment as indicated by transepidermal water loss values: intact
Evaluating Outcomes of High Fidelity Simulation Curriculum in a Community College Nursing Program
ERIC Educational Resources Information Center
Denlea, Gregory Richard
2017-01-01
This study took place at a Wake Technical Community College, a multi-campus institution in Raleigh, North Carolina. An evaluation of the return on investment in high fidelity simulation used by an associate degree of nursing program was conducted with valid and reliable instruments. The study demonstrated that comparable student outcomes are…
Kelly, Sinead; O'Rourke, Malachy
2012-04-01
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.
A comparison of heuristic and model-based clustering methods for dietary pattern analysis.
Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia
2016-02-01
Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.
Kobayashi, Leo; Gosbee, John W; Merck, Derek L
2017-07-01
(1) To develop a clinical microsystem simulation methodology for alarm fatigue research with a human factors engineering (HFE) assessment framework and (2) to explore its application to the comparative examination of different approaches to patient monitoring and provider notification. Problems with the design, implementation, and real-world use of patient monitoring systems result in alarm fatigue. A multidisciplinary team is developing an open-source tool kit to promote bedside informatics research and mitigate alarm fatigue. Simulation, HFE, and computer science experts created a novel simulation methodology to study alarm fatigue. Featuring multiple interconnected simulated patient scenarios with scripted timeline, "distractor" patient care tasks, and triggered true and false alarms, the methodology incorporated objective metrics to assess provider and system performance. Developed materials were implemented during institutional review board-approved study sessions that assessed and compared an experimental multiparametric alerting system with a standard monitor telemetry system for subject response, use characteristics, and end-user feedback. A four-patient simulation setup featuring objective metrics for participant task-related performance and response to alarms was developed along with accompanying structured HFE assessment (questionnaire and interview) for monitor systems use testing. Two pilot and four study sessions with individual nurse subjects elicited true alarm and false alarm responses (including diversion from assigned tasks) as well as nonresponses to true alarms. In-simulation observation and subject questionnaires were used to test the experimental system's approach to suppressing false alarms and alerting providers. A novel investigative methodology applied simulation and HFE techniques to replicate and study alarm fatigue in controlled settings for systems assessment and experimental research purposes.
Sun, Rui; Dama, James F; Tan, Jeffrey S; Rose, John P; Voth, Gregory A
2016-10-11
Metadynamics is an important enhanced sampling technique in molecular dynamics simulation to efficiently explore potential energy surfaces. The recently developed transition-tempered metadynamics (TTMetaD) has been proven to converge asymptotically without sacrificing exploration of the collective variable space in the early stages of simulations, unlike other convergent metadynamics (MetaD) methods. We have applied TTMetaD to study the permeation of drug-like molecules through a lipid bilayer to further investigate the usefulness of this method as applied to problems of relevance to medicinal chemistry. First, ethanol permeation through a lipid bilayer was studied to compare TTMetaD with nontempered metadynamics and well-tempered metadynamics. The bias energies computed from various metadynamics simulations were compared to the potential of mean force calculated from umbrella sampling. Though all of the MetaD simulations agree with one another asymptotically, TTMetaD is able to predict the most accurate and reliable estimate of the potential of mean force for permeation in the early stages of the simulations and is robust to the choice of required additional parameters. We also show that using multiple randomly initialized replicas allows convergence analysis and also provides an efficient means to converge the simulations in shorter wall times and, more unexpectedly, in shorter CPU times; splitting the CPU time between multiple replicas appears to lead to less overall error. After validating the method, we studied the permeation of a more complicated drug-like molecule, trimethoprim. Three sets of TTMetaD simulations with different choices of collective variables were carried out, and all converged within feasible simulation time. The minimum free energy paths showed that TTMetaD was able to predict almost identical permeation mechanisms in each case despite significantly different definitions of collective variables.
Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.
2015-08-04
We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm 3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models basedmore » on the Coulomb coupling parameter and one-component plasmas.« less
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2009-01-01
Very large eddy simulation (VLES) of the nonreacting turbulent flow in a single-element lean direct injection (LDI) combustor has been successfully performed via the approach known as the partially resolved numerical simulation (PRNS/VLES) using a nonlinear subscale model. The grid is the same as the one used in a previous RANS simulation, which was considered as too coarse for a traditional LES simulation. In this study, we first carry out a steady RANS simulation to provide the initial flow field for the subsequent PRNS/VLES simulation. We have also carried out an unsteady RANS (URANS) simulation for the purpose of comparing its results with that of the PRNS/VLES simulation. In addition, these calculated results are compared with the experimental data. The present effort has demonstrated that the PRNS/VLES approach, while using a RANS type of grid, is able to reveal the dynamically important, unsteady large-scale turbulent structures occurring in the flow field of a single-element LDI combustor. The interactions of these coherent structures play a critical role in the dispersion of the fuel, hence, the mixing between the fuel and the oxidizer in a combustor.
Comparative study on gene set and pathway topology-based enrichment methods.
Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim
2015-10-22
Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.
ERIC Educational Resources Information Center
Fang, N.; Tajvidi, M.
2018-01-01
This study focuses on the investigation of the effects of computer simulation and animation (CSA) on students' cognitive processes in an undergraduate engineering course. The revised Bloom's taxonomy, which consists of six categories in the cognitive process domain, was employed in this study. Five of the six categories were investigated,…
Development and evaluation of packet video schemes
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Y. C.; Hadenfeldt, A. C.
1990-01-01
Reflecting the two tasks proposed for the current year, namely a feasibility study of simulating the NASA network, and a study of progressive transmission schemes, are presented. The view of the NASA network, gleaned from the various technical reports made available to use, is provided. Also included is a brief overview of how the current simulator could be modified to accomplish the goal of simulating the NASA network. As the material in this section would be the basis for the actual simulation, it is important to make sure that it is an accurate reflection of the requirements on the simulator. Brief descriptions of the set of progressive transmission algorithms selected for the study are contained. The results available in the literature were obtained under a variety of different assumptions, not all of which are stated. As such, the only way to compare the efficiency and the implementational complexity of the various algorithms is to simulate them.
A preliminary investigation of the use of throttles for emergency flight control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.
1991-01-01
A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.
Comparison of fabric skins for the simulation of sweating on thermal manikins
NASA Astrophysics Data System (ADS)
Koelblen, Barbara; Psikuta, Agnes; Bogdan, Anna; Annaheim, Simon; Rossi, René M.
2017-09-01
Sweating is an important thermoregulatory process helping to dissipate heat and, thus, to prevent overheating of the human body. Simulations of human thermo-physiological responses in hot conditions or during exercising are helpful for assessing heat stress; however, realistic sweating simulation and evaporative cooling is needed. To this end, thermal manikins dressed with a tight fabric skin can be used, and the properties of this skin should help human-like sweat evaporation simulation. Four fabrics, i.e., cotton with elastane, polyester, polyamide with elastane, and a skin provided by a manikin manufacturer (Thermetrics) were compared in this study. The moisture management properties of the fabrics have been investigated in basic tests with regard to all phases of sweating relevant for simulating human thermo-physiological responses, namely, onset of sweating, fully developed sweating, and drying. The suitability of the fabrics for standard tests, such as clothing evaporative resistance measurements, was evaluated based on tests corresponding to the middle phase of sweating. Simulations with a head manikin coupled to a thermo-physiological model were performed to evaluate the overall performance of the skins. The results of the study showed that three out of four evaluated fabrics have adequate moisture management properties with regard to the simulation of sweating, which was confirmed in the coupled simulation with the head manikin. The presented tests are helpful for comparing the efficiency of different fabrics to simulate sweat-induced evaporative cooling on thermal manikins.
Dunn, John C; Belmont, Philip J; Lanzi, Joseph; Martin, Kevin; Bader, Julia; Owens, Brett; Waterman, Brian R
2015-01-01
Surgical education is evolving as work hour constraints limit the exposure of residents to the operating room. Potential consequences may include erosion of resident education and decreased quality of patient care. Surgical simulation training has become a focus of study in an effort to counter these challenges. Previous studies have validated the use of arthroscopic surgical simulation programs both in vitro and in vivo. However, no study has examined if the gains made by residents after a simulation program are retained after a period away from training. In all, 17 orthopedic surgery residents were randomized into simulation or standard practice groups. All subjects were oriented to the arthroscopic simulator, a 14-point anatomic checklist, and Arthroscopic Surgery Skill Evaluation Tool (ASSET). The experimental group received 1 hour of simulation training whereas the control group had no additional training. All subjects performed a recorded, diagnostic arthroscopy intraoperatively. These videos were scored by 2 blinded, fellowship-trained orthopedic surgeons and outcome measures were compared within and between the groups. After 1 year in which neither group had exposure to surgical simulation training, all residents were retested intraoperatively and scored in the exact same fashion. Individual surgical case logs were reviewed and surgical case volume was documented. There was no difference between the 2 groups after initial simulation testing and there was no correlation between case volume and initial scores. After training, the simulation group improved as compared with baseline in mean ASSET (p = 0.023) and mean time to completion (p = 0.01). After 1 year, there was no difference between the groups in any outcome measurements. Although individual technical skills can be cultivated with surgical simulation training, these advancements can be lost without continued education. It is imperative that residency programs implement a simulation curriculum and continue to train throughout the academic year. Published by Elsevier Inc.
Ignacio, Jeanette; Dolmans, Diana; Scherpbier, Albert; Rethans, Jan-Joost; Chan, Sally; Liaw, Sok Ying
2015-12-01
The use of standardized patients in deteriorating patient simulations adds realism that can be valuable for preparing nurse trainees for stress and enhancing their performance during actual patient deterioration. Emotional engagement resulting from increased fidelity can provide additional stress for student nurses with limited exposure to real patients. To determine the presence of increased stress with the standardized patient modality, this study compared the use of standardized patients (SP) with the use of high-fidelity simulators (HFS) during deteriorating patient simulations. Performance in managing deteriorating patients was also compared. It also explored student nurses' insights on the use of standardized patients and patient simulators in deteriorating patient simulations as preparation for clinical placement. Fifty-seven student nurses participated in a randomized controlled design study with pre- and post-tests to evaluate stress and performance in deteriorating patient simulations. Performance was assessed using the Rescuing A Patient in Deteriorating Situations (RAPIDS) rating tool. Stress was measured using salivary alpha-amylase levels. Fourteen participants who joined the randomized controlled component then participated in focus group discussions that elicited their insights on SP use in patient deterioration simulations. Analysis of covariance (ANCOVA) results showed no significant difference (p=0.744) between the performance scores of the SP and HFS groups in managing deteriorating patients. Amylase levels were also not significantly different (p=0.317) between the two groups. Stress in simulation, awareness of patient interactions, and realism were the main themes that resulted from the thematic analysis. Performance and stress in deteriorating patient simulations with standardized patients did not vary from similar simulations using high-fidelity patient simulators. Data from focus group interviews, however, suggested that the use of standardized patients was perceived to be valuable in preparing students for actual patient deterioration management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluating the use of simulation with beginning nursing students.
Alfes, Celeste M
2011-02-01
The purpose of this quasi-experimental study was to evaluate and compare the effectiveness of simulation versus a traditional skills laboratory method in promoting self-confidence and satisfaction with learning among beginning nursing students. A single convenience sample of 63 first-semester baccalaureate nursing students learning effective comfort care measures were recruited to compare the two teaching methods. Students participating in the simulation experience were statistically more confident than students participating in the traditional group. There was a slight, nonsignificant difference in satisfaction with learning between the two groups. Bivariate analysis revealed a significant positive relationship between self-confidence and satisfaction. Students in both groups reported higher levels of self-confidence following the learning experiences. Findings may influence the development of simulation experiences for beginning nursing students and encourage the implementation of simulation as a strand from beginning to end in nursing curricula. Copyright 2011, SLACK Incorporated.
Spotting the difference in molecular dynamics simulations of biomolecules
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
Assessment of Innovative Emergency Department Information Displays in a Clinical Simulation Center
McGeorge, Nicolette; Hegde, Sudeep; Berg, Rebecca L.; Guarrera-Schick, Theresa K.; LaVergne, David T.; Casucci, Sabrina N.; Hettinger, A. Zachary; Clark, Lindsey N.; Lin, Li; Fairbanks, Rollin J.; Benda, Natalie C.; Sun, Longsheng; Wears, Robert L.; Perry, Shawna; Bisantz, Ann
2016-01-01
The objective of this work was to assess the functional utility of new display concepts for an emergency department information system created using cognitive systems engineering methods, by comparing them to similar displays currently in use. The display concepts were compared to standard displays in a clinical simulation study during which nurse-physician teams performed simulated emergency department tasks. Questionnaires were used to assess the cognitive support provided by the displays, participants’ level of situation awareness, and participants’ workload during the simulated tasks. Participants rated the new displays significantly higher than the control displays in terms of cognitive support. There was no significant difference in workload scores between the display conditions. There was no main effect of display type on situation awareness, but there was a significant interaction; participants using the new displays showed improved situation awareness from the middle to the end of the session. This study demonstrates that cognitive systems engineering methods can be used to create innovative displays that better support emergency medicine tasks, without increasing workload, compared to more standard displays. These methods provide a means to develop emergency department information systems—and more broadly, health information technology—that better support the cognitive needs of healthcare providers. PMID:27974881
Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner
NASA Astrophysics Data System (ADS)
Poon, Jonathan K.; Dahlbom, Magnus L.; Casey, Michael E.; Qi, Jinyi; Cherry, Simon R.; Badawi, Ramsey D.
2015-02-01
Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.
Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids
NASA Astrophysics Data System (ADS)
Hulse, R. J.; Rowley, R. L.; Wilding, W. V.
2005-01-01
Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Du, X; Su, L
2014-06-15
Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5−0.6CT and 10×6−0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. Formore » the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.« less
Simulation of a tethered microgravity robot pair and validation on a planar air bearing
NASA Astrophysics Data System (ADS)
Mantellato, R.; Lorenzini, E. C.; Sternberg, D.; Roascio, D.; Saenz-Otero, A.; Zachrau, H. J.
2017-09-01
A software model has been developed to simulate the on-orbit dynamics of a dual-mass tethered system where one or both of the tethered spacecraft are able to produce propulsive thrust. The software simulates translations and rotations of both spacecraft, with the visco-elastic tether being simulated as a lumped-mass model. Thanks to this last feature, tether longitudinal and lateral modes of vibration and tether tension can be accurately assessed. Also, the way the spacecraft motion responds to sudden tether tension spikes can be studied in detail. The code enables the simulation of different scenarios, including space tug missions for deorbit maneuvers in a debris mitigation context and general-purpose tethered formation flight missions. This study aims to validate the software through a representative test campaign performed with the MIT Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) planar air bearing system. Results obtained with the numerical simulator are compared with data from direct measurements in different testing setups. The studied cases take into account different initial conditions of the spacecraft velocities and relative attitudes, and thrust forces. Data analysis is presented comparing the results of the simulations with direct measurements of acceleration and Azimuth rate of the two bodies in the planar air bearing test facility using a Nylon tether. Plans for conducting a microgravity test campaign using the SPHERES satellites aboard the International Space Station are also being scheduled in the near future in order to further validate the simulation using data from the relevant operational environment of extended microgravity with full six degree of freedom (per body) motion.
Pandey, Poonam; Mallajosyula, Sairam S
2016-07-14
Carbohydrates are known to closely modulate their surrounding solvent structures and influence solvation dynamics. Spectroscopic investigations studying far-IR regions (below 1000 cm(-1)) have observed spectral shifts in the libration band (around 600 cm(-1)) of water in the presence of monosaccharides and polysaccharides. In this paper, we use molecular dynamics simulations to gain atomistic insight into carbohydrate-water interactions and to specifically highlight the differences between additive (nonpolarizable) and polarizable simulations. A total of six monosaccharide systems, α and β anomers of glucose, galactose, and mannose, were studied using additive and polarizable Chemistry at HARvard Macromolecular Mechanics (CHARMM) carbohydrate force fields. Solvents were modeled using three additive water models TIP3P, TIP4P, and TIP5P in additive simulations and polarizable water model SWM4 in polarizable simulations. The presence of carbohydrate has a significant effect on the microscopic water structure, with the effects being pronounced for proximal water molecules. Notably, disruption of the tetrahedral arrangement of proximal water molecules was observed due to the formation of strong carbohydrate-water hydrogen bonds in both additive and polarizable simulations. However, the inclusion of polarization resulted in significant water-bridge occupancies, improved ordered water structures (tetrahedral order parameter), and longer carbohydrate-water H-bond correlations as compared to those for additive simulations. Additionally, polarizable simulations also allowed the calculation of power spectra from the dipole-dipole autocorrelation function, which corresponds to the IR spectra. From the power spectra, we could identify spectral signatures differentiating the proximal and bulk water structures, which could not be captured from additive simulations.
Henn, R Frank; Shah, Neel; Warner, Jon J P; Gomoll, Andreas H
2013-06-01
The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaveric model of shoulder arthroscopy. Seventeen first-year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and 9 of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The 2 groups were compared by use of Student t tests, and change over time within groups was analyzed with paired t tests. There were no observed differences between the 2 groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (P < .05). Time to completion was significantly faster in the simulator group compared with controls at the final evaluation (P < .05). No difference was observed between the groups on the subjective scores at the final evaluation (P = .98). Shoulder arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaveric model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. There may be a role for simulator training in shoulder arthroscopy education. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Shoulder Arthroscopy Simulator Training Improves Shoulder Arthroscopy Performance in a Cadaver Model
Henn, R. Frank; Shah, Neel; Warner, Jon J.P.; Gomoll, Andreas H.
2013-01-01
Purpose The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaver model of shoulder arthroscopy. Methods Seventeen first year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and nine of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The two groups were compared with students t-tests, and change over time within groups was analyzed with paired t-tests. Results There were no observed differences between the two groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (p<0.05). Time to completion was significantly faster in the simulator group compared to controls at final evaluation (p<0.05). No difference was observed between the groups on the subjective scores at final evaluation (p=0.98). Conclusions Shoulder arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaver model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. Clinical Relevance There may be a role for simulator training in shoulder arthroscopy education. PMID:23591380
Cascade Defect Evolution Processes: Comparison of Atomistic Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Haixuan; Stoller, Roger E; Osetskiy, Yury N
2013-11-01
Determining the defect evolution beyond the molecular dynamics (MD) time scale is critical in bridging the gap between atomistic simulations and experiments. The recently developed self-evolving atomistic kinetic Monte Carlo (SEAKMC) method provides new opportunities to simulate long-term defect evolution with MD-like fidelity. In this study, SEAKMC is applied to investigate the cascade defect evolution in bcc iron. First, the evolution of a vacancy rich region is simulated and compared with results obtained using autonomous basin climbing (ABC) +KMC and kinetic activation-relaxation technique (kART) simulations. Previously, it is found the results from kART are orders of magnitude faster than ABC+KMC.more » The results obtained from SEAKMC are similar to kART but the time predicted is about one order of magnitude faster than kART. The fidelity of SEAKMC is confirmed by statistically relevant MD simulations at multiple higher temperatures, which proves that the saddle point sampling is close to complete in SEAKMC. The second is the irradiation-induced formation of C15 Laves phase nano-size defect clusters. In contrast to previous studies, which claim the defects can grow by capturing self-interstitials, we found these highly stable clusters can transform to <111> glissile configuration on a much longer time scale. Finally, cascade-annealing simulations using SEAKMC is compared with traditional object KMC (OKMC) method. SEAKMC predicts substantially fewer surviving defects compared with OKMC. The possible origin of this difference is discussed and a possible way to improve the accuracy of OKMC based on SEAKMC results is outlined. These studies demonstrate the atomistic fidelity of SEAKMC in comparison with other on-the-fly KMC methods and provide new information on long-term defect evolution in iron.« less
NASA Astrophysics Data System (ADS)
Karimzadeh, Shaghayegh; Askan, Aysegul; Yakut, Ahmet
2017-09-01
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.
Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.
2012-01-01
The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.
Comparing CTH simulations and experiments on explosively loaded rings
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin
2012-03-01
A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.
Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.
Scale effects in wind tunnel modeling of an urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kozmar, Hrvoje
2010-03-01
Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.
Yang, Huiqin; Thompson, Carl; Bland, Martin
2012-12-01
Apparent overconfidence and underconfidence in clinicians making clinical judgements could be a feature of evaluative research designs that fail to accurately represent clinical environments. To test the effect of improved realism of clinical judgement tasks on confidence calibration performance of nurses and student nurses. A comparative confidence calibration analysis. The study was conducted in a large university of Northern England. Ninety-seven participants rated their confidence - using a scale that ranged from 0 (no confidence) to 100 (totally confident) on dichotomous clinical judgements of critical event risk. The judgements were in response to 25 paper-based and 25 higher fidelity scenarios using a computerised patient simulator and clinical equipment. Scenarios, and judgement criteria of 'correctness', were generated from real patient cases. Using a series of calibration measures (calibration, resolution and over/underconfidence), participants' confidence was calibrated against the proportion of correct judgements. The calibration measures generated by the paper-based and high fidelity clinical simulation conditions were compared. Participants made significantly less accurate clinical judgements of risk in the high fidelity clinical simulations compared to the paper simulations (P=0.0002). They were significantly less confident in high fidelity clinical simulations than paper simulations (P=0.03). However, there was no significant difference of over/underconfidence for participants between the two simulated settings (P=0.06). Participants were no better calibrated in the high fidelity clinical simulations than paper simulations, P=0.85. Likewise, participants had no better ability of discriminating correct judgements from incorrect judgements as measured by the resolution statistic in high fidelity clinical simulations than paper simulations, P=0.76. Improving the realism of simulated judgement tasks led to reduced confidence and judgement accuracy in participants but did not alter confidence calibration. These findings suggest that judgemental miscalibration of confidence in nurses may be a systematic cognitive bias and that simply making scenarios more realistic may not be a sufficient condition for correction. Copyright © 2012 Elsevier Ltd. All rights reserved.
2016-08-15
NASA’s Kennedy Space Center is partnering with the Florida Tech Buzz Aldrin Space Institute in Melbourne, Florida, to collaborate on research studying the performance of crop species grown in a simulated “Martian garden” — a proving ground for a potential future farm on the Red Planet. Plants were grown in a preliminary experiment comparing (left to right) potting soil, regolith simulant with added nutrients, and simulant without nutrients.
Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†
Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia
2015-01-01
Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144
NASA Astrophysics Data System (ADS)
Pu, Wanli
The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.
Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR
NASA Astrophysics Data System (ADS)
Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team
2018-04-01
Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.
TRANSMISSION NETWORK PLANNING METHOD FOR COMPARATIVE STUDIES (JOURNAL VERSION)
An automated transmission network planning method for comparative studies is presented. This method employs logical steps that may closely parallel those taken in practice by the planning engineers. Use is made of a sensitivity matrix to simulate the engineers' experience in sele...
Counterfactual Plausibility and Comparative Similarity.
Stanley, Matthew L; Stewart, Gregory W; Brigard, Felipe De
2017-05-01
Counterfactual thinking involves imagining hypothetical alternatives to reality. Philosopher David Lewis (1973, 1979) argued that people estimate the subjective plausibility that a counterfactual event might have occurred by comparing an imagined possible world in which the counterfactual statement is true against the current, actual world in which the counterfactual statement is false. Accordingly, counterfactuals considered to be true in possible worlds comparatively more similar to ours are judged as more plausible than counterfactuals deemed true in possible worlds comparatively less similar. Although Lewis did not originally develop his notion of comparative similarity to be investigated as a psychological construct, this study builds upon his idea to empirically investigate comparative similarity as a possible psychological strategy for evaluating the perceived plausibility of counterfactual events. More specifically, we evaluate judgments of comparative similarity between episodic memories and episodic counterfactual events as a factor influencing people's judgments of plausibility in counterfactual simulations, and we also compare it against other factors thought to influence judgments of counterfactual plausibility, such as ease of simulation and prior simulation. Our results suggest that the greater the perceived similarity between the original memory and the episodic counterfactual event, the greater the perceived plausibility that the counterfactual event might have occurred. While similarity between actual and counterfactual events, ease of imagining, and prior simulation of the counterfactual event were all significantly related to counterfactual plausibility, comparative similarity best captured the variance in ratings of counterfactual plausibility. Implications for existing theories on the determinants of counterfactual plausibility are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Monte Carlo Simulations of Radiative and Neutrino Transport under Astrophysical Conditions
NASA Astrophysics Data System (ADS)
Krivosheyev, Yu. M.; Bisnovatyi-Kogan, G. S.
2018-05-01
Monte Carlo simulations are utilized to model radiative and neutrino transfer in astrophysics. An algorithm that can be used to study radiative transport in astrophysical plasma based on simulations of photon trajectories in a medium is described. Formation of the hard X-ray spectrum of the Galactic microquasar SS 433 is considered in detail as an example. Specific requirements for applying such simulations to neutrino transport in a densemedium and algorithmic differences compared to its application to photon transport are discussed.
Simulating Forest Dynamics of Lowland Rainforests in Eastern Madagascar
NASA Technical Reports Server (NTRS)
Armstrong, Amanda; Fischer, Rico; Huth, Andreas; Shugart, Herman; Fatoyinbo, Temilola
2018-01-01
Ecological modeling and forecasting are essential tools for the understanding of complex vegetation dynamics. The parametric demands of some of these models are often lacking or scant for threatened ecosystems, particularly in diverse tropical ecosystems. One such ecosystem and also one of the world's biodiversity hotspots, Madagascar's lowland rainforests, have disappeared at an alarming rate. The processes that drive tree species growth and distribution remain as poorly understood as the species themselves. We investigated the application of the process-based individual-based FORMIND model to successfully simulate a Madagascar lowland rainforest using previously collected multi-year forest inventory plot data. We inspected the model's ability to characterize growth and species abundance distributions over the study site, and then validated the model with an independently collected forest-inventory dataset from another lowland rainforest in eastern Madagascar. Following a comparative analysis using inventory data from the two study sites, we found that FORMIND accurately captures the structure and biomass of the study forest, with r(squared) values of 0.976, 0.895, and 0.995 for 1:1 lines comparing observed and simulated values across all plant functional types for aboveground biomass (tonnes/ha), stem numbers, and basal area (m(squared)/ha), respectively. Further, in validation with a second study forest site, FORMIND also compared well, only slightly over-estimating shade-intermediate species as compared to the study site, and slightly under-representing shade-tolerant species in percentage of total aboveground biomass. As an important application of the FORMIND model, we measured the net ecosystem exchange (NEE, in tons of carbon per hectare per year) for 50 ha of simulated forest over a 1000-year run from bare ground. We found that NEE values ranged between 1 and -1 t Cha(exp -1)year(exp -1), consequently the study forest can be considered as a net neutral or a very slight carbon sink ecosystem, after the initial 130 years of growth. Our study found that FORMIND represents a valuable tool toward simulating forest dynamics in the immensely diverse Madagascar rainforests.
Study on photon transport problem based on the platform of molecular optical simulation environment.
Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie
2010-01-01
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.
Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment
Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie
2010-01-01
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737
Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems
NASA Astrophysics Data System (ADS)
Liu, Xin; Datta, Anwitaman
Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.
Systematic review of skills transfer after surgical simulation-based training.
Dawe, S R; Pena, G N; Windsor, J A; Broeders, J A J L; Cregan, P C; Hewett, P J; Maddern, G J
2014-08-01
Simulation-based training assumes that skills are directly transferable to the patient-based setting, but few studies have correlated simulated performance with surgical performance. A systematic search strategy was undertaken to find studies published since the last systematic review, published in 2007. Inclusion of articles was determined using a predetermined protocol, independent assessment by two reviewers and a final consensus decision. Studies that reported on the use of surgical simulation-based training and assessed the transferability of the acquired skills to a patient-based setting were included. Twenty-seven randomized clinical trials and seven non-randomized comparative studies were included. Fourteen studies investigated laparoscopic procedures, 13 endoscopic procedures and seven other procedures. These studies provided strong evidence that participants who reached proficiency in simulation-based training performed better in the patient-based setting than their counterparts who did not have simulation-based training. Simulation-based training was equally as effective as patient-based training for colonoscopy, laparoscopic camera navigation and endoscopic sinus surgery in the patient-based setting. These studies strengthen the evidence that simulation-based training, as part of a structured programme and incorporating predetermined proficiency levels, results in skills transfer to the operative setting. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
NASA Astrophysics Data System (ADS)
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten
2017-11-01
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.
Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.
Di Stasi, Leandro L; McCamy, Michael B; Martinez-Conde, Susana; Gayles, Ellis; Hoare, Chad; Foster, Michael; Catena, Andrés; Macknik, Stephen L
2016-01-01
Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments. Here we measured the eye movements of US Marine Corps combat helicopter pilots before and after simulated flight missions of different durations.We found a decrease in saccadic velocities after long simulated flights compared to short simulated flights. These results suggest that saccadic velocity could serve as a biomarker of aviator fatigue.
Use of simulation to compare the performance of minimization with stratified blocked randomization.
Toorawa, Robert; Adena, Michael; Donovan, Mark; Jones, Steve; Conlon, John
2009-01-01
Minimization is an alternative method to stratified permuted block randomization, which may be more effective at balancing treatments when there are many strata. However, its use in the regulatory setting for industry trials remains controversial, primarily due to the difficulty in interpreting conventional asymptotic statistical tests under restricted methods of treatment allocation. We argue that the use of minimization should be critically evaluated when designing the study for which it is proposed. We demonstrate by example how simulation can be used to investigate whether minimization improves treatment balance compared with stratified randomization, and how much randomness can be incorporated into the minimization before any balance advantage is no longer retained. We also illustrate by example how the performance of the traditional model-based analysis can be assessed, by comparing the nominal test size with the observed test size over a large number of simulations. We recommend that the assignment probability for the minimization be selected using such simulations. Copyright (c) 2008 John Wiley & Sons, Ltd.
Diamond, G M; More, D L; Hawkins, A G; Soucar, E
1995-02-01
The recent article by Stephen T. Black (1993) comparing genuine suicide notes with simulated notes is examined here. This article corrected a sampling error made in the original study by E. S. Shneidman and N. Farberow (1957), but Black's design suffers from theoretical and methodological problems that render it uninterpretable: First, no theoretical background is elaborated, and no hypotheses are offered. Second, no constructs are operationalized, and no predictions are tested. In the present article, the operational design is critiqued, and then it is suggested that the study of suicide notes in this fashion should cease.
Arnold, Matthias
2017-12-02
The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.
Daetwyler, Hans D; Calus, Mario P L; Pong-Wong, Ricardo; de Los Campos, Gustavo; Hickey, John M
2013-02-01
The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals.
Daetwyler, Hans D.; Calus, Mario P. L.; Pong-Wong, Ricardo; de los Campos, Gustavo; Hickey, John M.
2013-01-01
The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals. PMID:23222650
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.
2013-06-01
The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.
Drones for Provision of Flotation Support in Simulated Drowning.
Bäckman, Anders; Hollenberg, Jacob; Svensson, Leif; Ringh, Mattias; Nordberg, Per; Djärv, Therese; Forsberg, Sune; Hernborg, Olof; Claesson, Andreas
The feasibility and potential of using drones for providing flotation devices in cases of drowning have not yet been assessed. We hypothesize that a drone carrying an inflatable life buoy is a faster way to provide flotation compared with traditional methods. The purpose of this study is to explore the feasibility and efficiency of using a drone for delivering and providing flotation support to conscious simulated drowning victims. A simulation study was performed with a simulated drowning victim 100 m from the shore. A drone (DJI Phantom 4; dji, Shenzhen, China) equipped with an inflatable life buoy of 60 N was compared with traditional surf rescue swimming for providing flotation. The primary outcome was delay (minutes:seconds). A total number of 30 rescues were performed with a median time to delivery of the floating device of 30 seconds (interquartile range [IQR] = 24-32 seconds) for the drone compared with 65 seconds (IQR = 60-77 seconds) with traditional rescue swimming (P < .001). The drone had an accuracy of 100% in dropping the inflatable life buoy < 5 m from the victim, with a median of 1 m (IQR = 1-2 m). Using drones to deliver inflatable life buoys is safe and may be a faster method to provide early flotation devices to conscious drowning victims compared with rescue swimming. Copyright © 2018 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.; Lu, Zheng; Rahimi-Esfarjani, Stefan R.
2017-10-01
The reliability of climate simulations and projections, particularly in the regions with complex terrains, is greatly limited by the model resolution. In this study we evaluate the variable-resolution Community Earth System Model (VR-CESM) with a high-resolution (0.125°) refinement over the Rocky Mountain region. The VR-CESM results are compared with observations, as well as CESM simulation at a quasi-uniform 1° resolution (UNIF) and Canadian Regional Climate Model version 5 (CRCM5) simulation at a 0.11° resolution. We find that VR-CESM is effective at capturing the observed spatial patterns of temperature, precipitation, and snowpack in the Rocky Mountains with the performance comparable to CRCM5, while UNIF is unable to do so. VR-CESM and CRCM5 simulate better the seasonal variations of precipitation than UNIF, although VR-CESM still overestimates winter precipitation whereas CRCM5 and UNIF underestimate it. All simulations distribute more winter precipitation along the windward (west) flanks of mountain ridges with the greatest overestimation in VR-CESM. VR-CESM simulates much greater snow water equivalent peaks than CRCM5 and UNIF, although the peaks are still 10-40% less than observations. Moreover, the frequency of heavy precipitation events (daily precipitation ≥ 25 mm) in VR-CESM and CRCM5 is comparable to observations, whereas the same events in UNIF are an order of magnitude less frequent. In addition, VR-CESM captures the observed occurrence frequency and seasonal variation of rain-on-snow days and performs better than UNIF and CRCM5. These results demonstrate the VR-CESM's capability in regional climate modeling over the mountainous regions and its promising applications for climate change studies.
Differentiating levels of surgical experience on a virtual reality temporal bone simulator.
Zhao, Yi C; Kennedy, Gregor; Hall, Richard; O'Leary, Stephen
2010-11-01
Virtual reality simulation is increasingly being incorporated into surgical training and may have a role in temporal bone surgical education. Here we test whether metrics generated by a virtual reality surgical simulation can differentiate between three levels of experience, namely novices, otolaryngology residents, and experienced qualified surgeons. Cohort study. Royal Victorian Eye and Ear Hospital. Twenty-seven participants were recruited. There were 12 experts, six residents, and nine novices. After orientation, participants were asked to perform a modified radical mastoidectomy on the simulator. Comparisons of time taken, injury to structures, and forces exerted were made between the groups to determine which specific metrics would discriminate experience levels. Experts completed the simulated task in significantly shorter time than the other two groups (experts 22 minutes, residents 36 minutes, and novices 46 minutes; P = 0.001). Novices exerted significantly higher average forces when dissecting close to vital structures compared with experts (0.24 Newton [N] vs 0.13 N, P = 0.002). Novices were also more likely to injure structures such as dura compared to experts (23 injuries vs 3 injuries, P = 0.001). Compared with residents, the experts modulated their force between initial cortex dissection and dissection close to vital structures. Using the combination of these metrics, we were able to correctly classify the participants' level of experience 90 percent of the time. This preliminary study shows that measurements of performance obtained from within a virtual reality simulator can differentiate between levels of users' experience. These results suggest that simulator training may have a role in temporal bone training beyond foundational training. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Underwood, T. S. A.; Sung, W.; McFadden, C. H.; McMahon, S. J.; Hall, D. C.; McNamara, A. L.; Paganetti, H.; Sawakuchi, G. O.; Schuemann, J.
2017-04-01
Whilst Monte Carlo (MC) simulations of proton energy deposition have been well-validated at the macroscopic level, their microscopic validation remains lacking. Equally, no gold-standard yet exists for experimental metrology of individual proton tracks. In this work we compare the distributions of stochastic proton interactions simulated using the TOPAS-nBio MC platform against confocal microscope data for Al2O3:C,Mg fluorescent nuclear track detectors (FNTDs). We irradiated 8× 4× 0.5 mm3 FNTD chips inside a water phantom, positioned at seven positions along a pristine proton Bragg peak with a range in water of 12 cm. MC simulations were implemented in two stages: (1) using TOPAS to model the beam properties within a water phantom and (2) using TOPAS-nBio with Geant4-DNA physics to score particle interactions through a water surrogate of Al2O3:C,Mg. The measured median track integrated brightness (IB) was observed to be strongly correlated to both (i) voxelized track-averaged linear energy transfer (LET) and (ii) frequency mean microdosimetric lineal energy, \\overline{{{y}F}} , both simulated in pure water. Histograms of FNTD track IB were compared against TOPAS-nBio histograms of the number of terminal electrons per proton, scored in water with mass-density scaled to mimic Al2O3:C,Mg. Trends between exposure depths observed in TOPAS-nBio simulations were experimentally replicated in the study of FNTD track IB. Our results represent an important first step towards the experimental validation of MC simulations on the sub-cellular scale and suggest that FNTDs can enable experimental study of the microdosimetric properties of individual proton tracks.
Underwood, T S A; Sung, W; McFadden, C H; McMahon, S J; Hall, D C; McNamara, A L; Paganetti, H; Sawakuchi, G O; Schuemann, J
2017-04-21
Whilst Monte Carlo (MC) simulations of proton energy deposition have been well-validated at the macroscopic level, their microscopic validation remains lacking. Equally, no gold-standard yet exists for experimental metrology of individual proton tracks. In this work we compare the distributions of stochastic proton interactions simulated using the TOPAS-nBio MC platform against confocal microscope data for Al 2 O 3 :C,Mg fluorescent nuclear track detectors (FNTDs). We irradiated [Formula: see text] mm 3 FNTD chips inside a water phantom, positioned at seven positions along a pristine proton Bragg peak with a range in water of 12 cm. MC simulations were implemented in two stages: (1) using TOPAS to model the beam properties within a water phantom and (2) using TOPAS-nBio with Geant4-DNA physics to score particle interactions through a water surrogate of Al 2 O 3 :C,Mg. The measured median track integrated brightness (IB) was observed to be strongly correlated to both (i) voxelized track-averaged linear energy transfer (LET) and (ii) frequency mean microdosimetric lineal energy, [Formula: see text], both simulated in pure water. Histograms of FNTD track IB were compared against TOPAS-nBio histograms of the number of terminal electrons per proton, scored in water with mass-density scaled to mimic Al 2 O 3 :C,Mg. Trends between exposure depths observed in TOPAS-nBio simulations were experimentally replicated in the study of FNTD track IB. Our results represent an important first step towards the experimental validation of MC simulations on the sub-cellular scale and suggest that FNTDs can enable experimental study of the microdosimetric properties of individual proton tracks.
ERP evidence for the recognition of emotional prosody through simulated cochlear implant strategies.
Agrawal, Deepashri; Timm, Lydia; Viola, Filipa Campos; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias
2012-09-20
Emotionally salient information in spoken language can be provided by variations in speech melody (prosody) or by emotional semantics. Emotional prosody is essential to convey feelings through speech. In sensori-neural hearing loss, impaired speech perception can be improved by cochlear implants (CIs). Aim of this study was to investigate the performance of normal-hearing (NH) participants on the perception of emotional prosody with vocoded stimuli. Semantically neutral sentences with emotional (happy, angry and neutral) prosody were used. Sentences were manipulated to simulate two CI speech-coding strategies: the Advance Combination Encoder (ACE) and the newly developed Psychoacoustic Advanced Combination Encoder (PACE). Twenty NH adults were asked to recognize emotional prosody from ACE and PACE simulations. Performance was assessed using behavioral tests and event-related potentials (ERPs). Behavioral data revealed superior performance with original stimuli compared to the simulations. For simulations, better recognition for happy and angry prosody was observed compared to the neutral. Irrespective of simulated or unsimulated stimulus type, a significantly larger P200 event-related potential was observed for happy prosody after sentence onset than the other two emotions. Further, the amplitude of P200 was significantly more positive for PACE strategy use compared to the ACE strategy. Results suggested P200 peak as an indicator of active differentiation and recognition of emotional prosody. Larger P200 peak amplitude for happy prosody indicated importance of fundamental frequency (F0) cues in prosody processing. Advantage of PACE over ACE highlighted a privileged role of the psychoacoustic masking model in improving prosody perception. Taken together, the study emphasizes on the importance of vocoded simulation to better understand the prosodic cues which CI users may be utilizing.
Implementation and assessment of a curriculum for bedside ultrasound training.
Turner, Elizabeth E; Fox, J Christian; Rosen, Mark; Allen, Angela; Rosen, Sasha; Anderson, Craig
2015-05-01
This study assessed a curriculum for bedside ultrasound (US) and compared outcomes from 2 common training pathways. The program consisted of e-learning paired with expert-led hands-on training administered to pulmonary/critical care and cardiology fellows with no prior formal training in bedside US. This "simulation-based learner" group completed a survey of attitudes and confidence before and after training, and knowledge and skills were assessed after training. The surveys and scores of the simulation-based learners were compared to the scores of "experts," who were US-trained emergency physicians, and "apprentice learners," who were intensivist physicians informally trained in bedside US on the job during fellowships. There was a significant difference in the self-reported level of prior training between the groups (simulation-based learners, 2.8; apprentice learners, 3.7; experts, 4.1, on a scale of 1-5 [P= .02]) but no difference in the interest level or perceived importance of bedside US. The study curriculum was successful, as shown by scores that exceeded the comparison groups in the cardiac and pulmonary courses (cardiac: simulation-based learners, 80%; apprentice learners, 73%; experts, 62% [P= .001]; pulmonary: 84%, 75%, and 72%, respectively [P =.02]). The simulation-based learners gained confidence in skills, whereas the comparison groups lost confidence after testing (P < .005); however, the simulation-based learners gained confidence in US subject areas that were not taught (abdomen [P <.002] and miscellaneous [P =.005]). The simulation-based learner curriculum resulted in comparable or greater knowledge and confidence in each area of US versus the comparison groups. Findings of overgeneralization of confidence highlight the importance of quality assurance and supervision in bedside US training programs. © 2015 by the American Institute of Ultrasound in Medicine.
Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer
NASA Astrophysics Data System (ADS)
Jang, Min; Lee, Min-Woo; Seo, See-Yoon; Shin, Sang-Hoon
2017-03-01
Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.
A quantitative approach to evaluating caring in nursing simulation.
Eggenberger, Terry L; Keller, Kathryn B; Chase, Susan K; Payne, Linda
2012-01-01
This study was designed to test a quantitative method of measuring caring in the simulated environment. Since competency in caring is central to nursing practice, ways of including caring concepts in designing scenarios and in evaluation of performance need to be developed. Coates' Caring Efficacy scales were adapted for simulation and named the Caring Efficacy Scale-Simulation Student Version (CES-SSV) and Caring Efficacy Scale-Simulation Faculty Version (CES-SFV). A correlational study was designed to compare student self-ratings with faculty ratings on caring efficacy during an adult acute simulation experience with traditional and accelerated baccalaureate students in a nursing program grounded in caring theory. Student self-ratings were significantly correlated with objective ratings (r = 0.345, 0.356). Both the CES-SSV and the CES-SFV were found to have excellent internal consistency and significantly correlated interrater reliability. They were useful in measuring caring in the simulated learning environment.
A Comparative Study of Test Data Dimensionality Assessment Procedures Under Nonparametric IRT Models
ERIC Educational Resources Information Center
van Abswoude, Alexandra A. H.; van der Ark, L. Andries; Sijtsma, Klaas
2004-01-01
In this article, an overview of nonparametric item response theory methods for determining the dimensionality of item response data is provided. Four methods were considered: MSP, DETECT, HCA/CCPROX, and DIMTEST. First, the methods were compared theoretically. Second, a simulation study was done to compare the effectiveness of MSP, DETECT, and…
Numerical Study of a High Head Francis Turbine with Measurements from the Francis-99 Project
NASA Astrophysics Data System (ADS)
Wallimann, H.; Neubauer, R.
2015-01-01
For the Francis-99 project initiated by the Norwegian University of Science and Technology (NTNU, Norway) and the Luleå University of Technology (LTU, Sweden) numerical flow simulation has been performed and the results compared to experimentally obtained data. The full machine including spiral casing, stay vanes, guide vanes, runner and draft tube was simulated transient for three operating points defined by the Francis-99 organisers. Two sets of results were created with differing time steps. Additionally, a reduced domain was simulated in a stationary manner to create a complete cut along constant prototype head and constant prototype discharge. The efficiency values and shape of the curves have been investigated and compared to the experimental data. Special attention has been given to rotor stator interaction (RSI). Signals from several probes and their counterpart in the simulation have been processed to evaluate the pressure fluctuations occurring due to the RSI. The direct comparison of the hydraulic efficiency obtained by the full machine simulation compared to the experimental data showed no improvement when using a 1° time step compared to a coarser 2° time step. At the BEP the 2° time step even showed a slightly better result with an absolute deviation 1.08% compared with 1.24% for the 1° time step. At the other two operating points the simulation results were practically identical but fell short of predicting the measured values. The RSI evaluation was done using the results of the 2° time step simulation, which proved to be an adequate setting to reproduce pressure signals with peaks at the correct frequencies. The simulation results showed the highest amplitudes in the vaneless space at the BEP operating point at a location different from the probe measurements available. This implies that not only the radial distance, but the shape of the vaneless space influences the RSI.
Methods to Estimate the Variance of Some Indices of the Signal Detection Theory: A Simulation Study
ERIC Educational Resources Information Center
Suero, Manuel; Privado, Jesús; Botella, Juan
2017-01-01
A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…
ERIC Educational Resources Information Center
Veermans, Koen; van Joolingen, Wouter; de Jong, Ton
2006-01-01
This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…
Developing Leadership Skills in a Virtual Simulation: Coaching the Affiliative Style Leader
ERIC Educational Resources Information Center
Gurley, Kathy; Wilson, Dawn
2011-01-01
This study looked at the use of a business simulation that focused on improving the leadership skills of students in an MBA class at an HBCU in North Carolina. The students were asked to complete a questionnaire that identified their dominant leadership style. The study then compared the students who had an affiliative style of management against…
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-09-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations.
Gramicidin S production by Bacillus brevis in simulated microgravity
NASA Technical Reports Server (NTRS)
Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.
1997-01-01
In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity.
Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.
2012-01-01
The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.
A three-dimensional transport model for the middle atmosphere
NASA Technical Reports Server (NTRS)
Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.
1994-01-01
In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative agreement but are less diffusive than when driven with instantaneous winds sampled at half-hour intervals. Simulations with the off-line and 2-D models are quite similar in the middle and upper stratosphere but behave quite differently in the lower stratosphere, where the 3-D model has a substantially more vigorous circulation. The off-line model is quite realistic in its simulation of C-14. While there are still systematic differences between the 3-D calculation and the observations, the differences seem to be substantially reduced when compared with the body of 2-D simulations documented in the above mentioned NASA intercomparison, particularly at 31 deg N.
Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements
NASA Astrophysics Data System (ADS)
Floors, R.; Hahmann, A. N.; Peña, A.
2018-03-01
The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.
Parametric study of graphite foam fins and application in heat exchangers
NASA Astrophysics Data System (ADS)
Collins, Michael
This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system greatly enhanced the heat transfer because of the increased interaction with the porous graphite foam fins.
NASA Astrophysics Data System (ADS)
Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad
2018-04-01
Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.
Driving performance in a power wheelchair simulator.
Archambault, Philippe S; Tremblay, Stéphanie; Cachecho, Sarah; Routhier, François; Boissy, Patrick
2012-05-01
A power wheelchair simulator can allow users to safely experience various driving tasks. For such training to be efficient, it is important that driving performance be equivalent to that in a real wheelchair. This study aimed at comparing driving performance in a real and in a simulated environment. Two groups of healthy young adults performed different driving tasks, either in a real power wheelchair or in a simulator. Smoothness of joystick control as well as the time necessary to complete each task were recorded and compared between the two groups. Driving strategies were analysed from video recordings. The sense of presence, of really being in the virtual environment, was assessed through a questionnaire. Smoothness of joystick control was the same in the real and virtual groups. Task completion time was higher in the simulator for the more difficult tasks. Both groups showed similar strategies and difficulties. The simulator generated a good sense of presence, which is important for motivation. Performance was very similar for power wheelchair driving in the simulator or in real life. Thus, the simulator could potentially be used to complement training of individuals who require a power wheelchair and use a regular joystick. [Box: see text].
Comparing simulation of plasma turbulence with experiment. II. Gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Ross, David W.; Dorland, William
2002-12-01
The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyrokinetic simulations with the GS2 code. This is a continuation of previous work with gyrofluid simulations [D. W. Ross et al., Phys. Plasmas 9, 177 (2002)], and the same L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] is studied. The simulated turbulence is dominated by ion temperature gradient (ITG) modes, corrected by trapped-electron, passing-electron and impurity effects. The energy fluxes obtained in the gyrokinetic simulations are comparable to, even somewhat higher than, those of the earlier work, and the simulated ion thermal transport, corrected for E×B flow shear, exceeds the experimental value by more than a factor of 2. The simulation also overestimates the density fluctuation level. Varying the local temperature gradient shows a stiff response in the flux and an apparent up-shift from the linear mode threshold [A. M. Dimits et al., Phys. Plasmas 7, 969 (2000)]. This effect is insufficient, within the estimated error, to bring the results into conformity with the experiment.
Large-eddy simulation of the urban boundary layer in the MEGAPOLI Paris Plume experiment
NASA Astrophysics Data System (ADS)
Esau, Igor
2010-05-01
This study presents results from the specific large-eddy simulation study of the urban boundary layer in the MEGAPOLI Paris Plume field campaign. We used LESNIC and PALM codes, MEGAPOLI city morphology database, nudging to the observed meteorological conditions during the Paris Plume campaign and some concentration measurements from that campaign to simulate and better understand the nature of the urban boundary layer on scales larger then the street canyon scales. The primary attention was paid to turbulence self-organization and structure-to-surface interaction. The study has been aimed to demonstrate feasibility and estimate required resources for such research. Therefore, at this stage we do not compare the simulation with other relevant studies as well as we do not formulate the theoretical conclusions.
NASA Astrophysics Data System (ADS)
Safaei, Hadi; Emami, Mohsen Davazdah; Jazi, Hamidreza Salimi; Mostaghimi, Javad
2017-12-01
Applications of hollow spherical particles in thermal spraying process have been developed in recent years, accompanied by attempts in the form of experimental and numerical studies to better understand the process of impact of a hollow droplet on a surface. During such process, volume and density of the trapped gas inside droplet change. The numerical models should be able to simulate such changes and their consequent effects. The aim of this study is to numerically simulate the impact of a hollow ZrO2 droplet on a flat surface using the volume of fluid technique for compressible flows. An open-source, finite-volume-based CFD code was used to perform the simulations, where appropriate subprograms were added to handle the studied cases. Simulation results were compared with the available experimental data. Results showed that at high impact velocities ( U 0 > 100 m/s), the compression of trapped gas inside droplet played a significant role in the impact dynamics. In such velocities, the droplet splashed explosively. Compressibility effects result in a more porous splat, compared to the corresponding incompressible model. Moreover, the compressible model predicted a higher spread factor than the incompressible model, due to planetary structure of the splat.
Effective interactions between soft-repulsive colloids: experiments, theory, and simulations.
Mohanty, Priti S; Paloli, Divya; Crassous, Jérôme J; Zaccarelli, Emanuela; Schurtenberger, Peter
2014-03-07
We describe a combined experimental, theoretical, and simulation study of the structural correlations between cross-linked highly monodisperse and swollen Poly(N-isopropylacrylamide) microgel dispersions in the fluid phase in order to obtain the effective pair-interaction potential between the microgels. The density-dependent experimental pair distribution functions g(r)'s are deduced from real space studies using fluorescent confocal microscopy and compared with integral equation theory and molecular dynamics computer simulations. We use a model of Hertzian spheres that is capable to well reproduce the experimental pair distribution functions throughout the fluid phase, having fixed the particle size and the repulsive strength. Theoretically, a monodisperse system is considered whose properties are calculated within the Rogers-Young closure relation, while in the simulations the role of polydispersity is taken into account. We also discuss the various effects arising from the finite resolution of the microscope and from the noise coming from the fast Brownian motion of the particles at low densities, and compare the information content from data taken in 2D and 3D through a comparison with the corresponding simulations. Finally different potential shapes, recently adopted in studies of microgels, are also taken into account to assess which ones could also be used to describe the structure of the microgel fluid.
Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models
Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...
Role of meteorology in simulating methane seasonal cycle and growth rate
NASA Astrophysics Data System (ADS)
Ghosh, A.; Patra, P. K.; Ishijima, K.; Morimoto, S.; Aoki, S.; Nakazawa, T.
2012-12-01
Methane (CH4) is the second most important anthropogenically produced greenhouse gas whose radiative effect is comparable to that of carbon dioxide since the preindustrial time. Methane also contributes to formation of tropospheric ozone and water vapor in the stratosphere, further increasing its importance to the Earth's radiative balance. In the present study, model simulation of CH4 for three different emission scenarios has been conducted using the CCSR/NIES/FRCGC Atmospheric General Circulation Model (AGCM) based Chemistry Transport Model (ACTM) with and without nudging of meteorological parameters for the period of 1981-2011. The model simulations are compared with measurements at monthly timescale at surface monitoring stations. We show the overall trends in CH4 growth rate and seasonal cycle at most measurement sites can be fairly successfully modeled by using existing knowledge of CH4 flux trends and seasonality. Detailed analysis reveals the model simulation without nudging has greater seasonal cycle amplitude compared to observation as well as the model simulation with nudging. The growth rate is slightly overestimated for the model simulation without nudging. For better representation of regional/global flux distribution pattern and strength in the future, we are exploring various dynamical and chemical aspects in the forward model with and without nudging.
Simulation studies for the evaluation of health information technologies: experiences and results.
Ammenwerth, Elske; Hackl, Werner O; Binzer, Kristine; Christoffersen, Tue E H; Jensen, Sanne; Lawton, Kitta; Skjoet, Peter; Nohr, Christian
It is essential for new health information technologies (IT) to undergo rigorous evaluations to ensure they are effective and safe for use in real-world situations. However, evaluation of new health IT is challenging, as field studies are often not feasible when the technology being evaluated is not sufficiently mature. Laboratory-based evaluations have also been shown to have insufficient external validity. Simulation studies seem to be a way to bridge this gap. The aim of this study was to evaluate, using a simulation methodology, the impact of a new prototype of an electronic medication management system on the appropriateness of prescriptions and drug-related activities, including laboratory test ordering or medication changes. This article presents the results of a controlled simulation study with 50 simulation runs, including ten doctors and five simulation patients, and discusses experiences and lessons learnt while conducting the study. Although the new electronic medication management system showed tendencies to improve medication safety when compared with the standard system, this tendency was not significant. Altogether, five distinct situations were identified where the new medication management system did help to improve medication safety. This simulation study provided a good compromise between internal validity and external validity. However, several challenges need to be addressed when undertaking simulation evaluations including: preparation of adequate test cases; training of participants before using unfamiliar applications; consideration of time, effort and costs of conducting the simulation; technical maturity of the evaluated system; and allowing adequate preparation of simulation scenarios and simulation setting. Simulation studies are an interesting but time-consuming approach, which can be used to evaluate newly developed health IT systems, particularly those systems that are not yet sufficiently mature to undergo field evaluation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Pratt, Annabelle; Bialek, Tom
2016-11-21
This paper reports on tools and methodologies developed to study the impact of adding rooftop photovoltaic (PV) systems, with and without the ability to provide voltage support, on the voltage profile of distribution feeders. Simulation results are provided from a study of a specific utility feeder. The simulation model of the utility distribution feeder was built in OpenDSS and verified by comparing the simulated voltages to field measurements. First, we set all PV systems to operate at unity power factor and analyzed the impact on feeder voltages. Then we conducted multiple simulations with voltage support activated for all the smartmore » PV inverters. These included different constant power factor settings and volt/VAR controls.« less
Alamrani, Mashael Hasan; Alammar, Kamila Ahmad; Alqahtani, Sarah Saad; Salem, Olfat A
2018-06-01
Critical thinking and self-confidence are imperative to success in clinical practice. Educators should use teaching strategies that will help students enhance their critical thinking and self-confidence in complex content such as electrocardiogram interpretation. Therefore, teaching electrocardiogram interpretation to students is important for nurse educators. This study compares the effect of simulation-based and traditional teaching methods on the critical thinking and self-confidence of students during electrocardiogram interpretation sessions. Thirty undergraduate nursing students volunteered to participate in this study. The participants were divided into intervention and control groups, which were taught respectively using the simulation-based and traditional teaching programs. All of the participants were asked to complete the study instrumentpretest and posttest to measure their critical thinking and self-confidence. Improvement was observed in the control and experimental groups with respect to critical thinking and self-confidence, as evidenced by the results of the paired samples t test and the Wilcoxon signed-rank test (p < .05). However, the independent t test and Mann-Whitney U test indicate that the difference between the two groups was not significant (p > .05). This study evaluated an innovative simulation-based teaching method for nurses. No significant differences in outcomes were identified between the simulator-based and traditional teaching methods, indicating that well-implemented educational programs that use either teaching method effectively promote critical thinking and self-confidence in nursing students. Nurse educators are encouraged to design educational plans with clear objectives to improve the critical thinking and self-confidence of their students. Future research should compare the effects of several teaching sessions using each method in a larger sample.
Reduced order model based on principal component analysis for process simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Y.; Malacina, A.; Biegler, L.
2009-01-01
It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
Hydrodynamic Simulations of Protoplanetary Disks with GIZMO
NASA Astrophysics Data System (ADS)
Rice, Malena; Laughlin, Greg
2018-01-01
Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.
[Simulation and Design of Infant Incubator Assembly Line].
Ke, Huqi; Hu, Xiaoyong; Ge, Xia; Hu, Yanhai; Chen, Zaihong
2015-11-01
According to current assembly situation of infant incubator in company A, basic industrial engineering means such as time study was used to analyze the actual products assembly production and an assembly line was designed. The assembly line was modeled and simulated with software Flexsim. The problem of the assembly line was found by comparing simulation result and actual data, then through optimization to obtain high efficiency assembly line.
Effects of Preoperative Simulation on Minimally Invasive Hybrid Lumbar Interbody Fusion.
Rieger, Bernhard; Jiang, Hongzhen; Reinshagen, Clemens; Molcanyi, Marek; Zivcak, Jozef; Grönemeyer, Dietrich; Bosche, Bert; Schackert, Gabriele; Ruess, Daniel
2017-10-01
The main focus of this study was to evaluate how preoperative simulation affects the surgical work flow, radiation exposure, and outcome of minimally invasive hybrid lumbar interbody fusion (MIS-HLIF). A total of 132 patients who underwent single-level MIS-HLIF were enrolled in a cohort study design. Dose area product was analyzed in addition to surgical data. Once preoperative simulation was established, 66 cases (SIM cohort) were compared with 66 patients who had previously undergone MIS-HLIF without preoperative simulation (NO-SIM cohort). Dose area product was reduced considerably in the SIM cohort (320 cGy·cm 2 NO-SIM cohort: 470 cGy·cm 2 ; P < 0.01). Surgical time was shorter for the SIM cohort (155 minutes; NO-SIM cohort, 182 minutes; P < 0.05). SIM cohort had a better outcome in Numeric Rating Scale back at 6 months follow-up compared with the NO-SIM cohort (P < 0.05). Preoperative simulation reduced radiation exposure and resulted in less back pain at the 6 months follow-up time point. Preoperative simulation provided guidance in determining the correct cage height. Outcome controls enabled the surgeon to improve the procedure and the software algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.
Voolstra, Christian R.; Wild, Christian
2014-01-01
In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea. PMID:24765573
Jessen, Christian; Voolstra, Christian R; Wild, Christian
2014-01-01
In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea.
Ibitoye, Ayo Zaccheaus; Nwoye, Ephraim Okeke; Aweda, Adebayo Moses; Oremosu, Ademola A; Anunobi, Chidozie Charles; Akanmu, Nurudeen Olanrewaju
2016-12-01
To study the efficiency of a dual slot antenna with a floating metallic sleeve on the ablation of different ex vivo bovine tissues. COMSOL Multiphysics® version 4.4 (Stockholm, Sweden), which is based on finite element methods (FEM), was used to design and simulate monopole and dual slot with sleeve antennas. Power, specific absorption rate (SAR), temperature and necrosis distributions in the selected tissues were determined using these antennas. Monopole and dual slot with sleeve antennas were designed, simulated, constructed and applied in this study based on a semi-rigid coaxial cable. Ex vivo experiments were performed on liver, lung, muscle and heart of bovine obtained from a public animal slaughter house. The microwave energy was delivered using a 2.45 GHz solid-state microwave generator at 40 W for 3, 5 and 10 min. Aspect ratio, ablation length and ablation diameter were also determined on ablated tissues and compared with simulated results. Student's t-test was used to compare the statistically significant difference between the performance of the two antennas. The dual slot antenna with sleeve produces localised microwave energy better than the monopole antenna in all ablated tissues using simulation and experimental validation methods. There were significant differences in ablation diameter and aspect ratio between the sleeve antenna and monopole antenna. Additionally, there were no significant differences between the simulation and experimental results. This study demonstrated that the dual slot antenna with sleeve produced larger ablation zones and higher sphericity index in ex vivo bovine tissues with minimal backward heating when compared with the monopole antenna.
Kruglikova, Irina; Grantcharov, Teodor P; Drewes, Asbjorn M; Funch-Jensen, Peter
2010-02-01
Recently, virtual reality computer simulators have been used to enhance traditional endoscopy teaching. Previous studies have demonstrated construct validity of these systems and transfer of virtual skills to the operating room. However, to date no simulator-training curricula have been designed and there is very little evidence on the impact of external feedback on acquisition of endoscopic skills. The aim of the present study was to assess the impact of external feedback on the learning curves on a VR colonoscopy simulator using inexperienced trainees. 22 trainees, without colonoscopy experience were randomised to a group which received structured feedback provided by an experienced supervisor and a controlled group. All participants performed 15 repetitions of task 3 from the Introduction colonoscopy module of the Accu Touch Endoscopy simulator. Retention/transfer tests on simulator were performed 4-6 weeks after the last repetition. The proficiency levels were based on the performance of eight experienced colonoscopists. All subjects were able to complete the procedure on the simulator. There were no perforations in the feedback group versus seven in the non-feedback group. Subjects in the feedback group reached expert proficiency levels in percentage of mucosa visualised and time to reach the caecum significantly faster compared with the control group. None of the groups demonstrated significant degradation of performance in simulator retention/transfer tests. Concurrent feedback given by supervisor concur an advantage in acquisition of basic colonoscopy skills and achieving of proficiency level as compared to independent training.
Li, Kun; Yu, Zhuang
2008-01-01
Urban heat islands are one of the most critical urban environment heat problems. Landsat ETM+ satellite data were used to investigate the land surface temperature and underlying surface indices such as NDVI and NDBI. A comparative study of the urban heat environment at different scales, times and locations was done to verify the heat island characteristics. Since remote sensing technology has limitations for dynamic flow analysis in the study of urban spaces, a CFD simulation was used to validate the improvement of the heat environment in a city by means of wind. CFD technology has its own shortcomings in parameter setting and verification, while RS technology is helpful to remedy this. The city of Wuhan and its climatological condition of being hot in summer and cold in winter were chosen to verify the comparative and combinative application of RS with CFD in studying the urban heat island. PMID:27873893
Piloted simulation study of two tilt-wing control concepts
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Corliss, Lloyd D.
1994-01-01
A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.
WEST-3 wind turbine simulator development. Volume 2: Verification
NASA Technical Reports Server (NTRS)
Sridhar, S.
1985-01-01
The details of a study to validate WEST-3, a new time wind turbine simulator developed by Paragib Pacific Inc., are presented in this report. For the validation, the MOD-0 wind turbine was simulated on WEST-3. The simulation results were compared with those obtained from previous MOD-0 simulations, and with test data measured during MOD-0 operations. The study was successful in achieving the major objective of proving that WEST-3 yields results which can be used to support a wind turbine development process. The blade bending moments, peak and cyclic, from the WEST-3 simulation correlated reasonably well with the available MOD-0 data. The simulation was also able to predict the resonance phenomena observed during MOD-0 operations. Also presented in the report is a description and solution of a serious numerical instability problem encountered during the study. The problem was caused by the coupling of the rotor and the power train models. The results of the study indicate that some parts of the existing WEST-3 simulation model may have to be refined for future work; specifically, the aerodynamics and procedure used to couple the rotor model with the tower and the power train models.
Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom
2010-05-01
Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Improving the result of forcasting using reservoir and surface network simulation
NASA Astrophysics Data System (ADS)
Hendri, R. S.; Winarta, J.
2018-01-01
This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.
Comparative study of signalling methods for high-speed backplane transceiver
NASA Astrophysics Data System (ADS)
Wu, Kejun
2017-11-01
A combined analysis of transient simulation and statistical method is proposed for comparative study of signalling methods applied to high-speed backplane transceivers. This method enables fast and accurate signal-to-noise ratio and symbol error rate estimation of a serial link based on a four-dimension design space, including channel characteristics, noise scenarios, equalisation schemes, and signalling methods. The proposed combined analysis method chooses an efficient sampling size for performance evaluation. A comparative study of non-return-to-zero (NRZ), PAM-4, and four-phase shifted sinusoid symbol (PSS-4) using parameterised behaviour-level simulation shows PAM-4 and PSS-4 has substantial advantages over conventional NRZ in most of the cases. A comparison between PAM-4 and PSS-4 shows PAM-4 gets significant bit error rate degradation when noise level is enhanced.
NASA Astrophysics Data System (ADS)
Reilhac, Anthonin; Boisson, Frédéric; Wimberley, Catriona; Parmar, Arvind; Zahra, David; Hamze, Hasar; Davis, Emma; Arthur, Andrew; Bouillot, Caroline; Charil, Arnaud; Grégoire, Marie-Claude
2016-02-01
In PET imaging, research groups have recently proposed different experimental set ups allowing multiple animals to be simultaneously imaged in a scanner in order to reduce the costs and increase the throughput. In those studies, the technical feasibility was demonstrated and the signal degradation caused by additional mice in the FOV characterized, however, the impact of the signal degradation on the outcome of a PET study has not yet been studied. Here we thoroughly investigated, using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies, different experimental designs for whole-body and brain acquisitions of two mice and assessed the actual impact on the detection of biological variations as compared to a single-mouse setting. First, we extended the validation of the PET-SORTEO Monte Carlo simulation platform for the simultaneous simulation of two animals. Then, we designed [18F]FDG and [11C]Raclopride input mouse models for the simulation of realistic whole-body and brain PET studies. Simulated studies allowed us to accurately estimate the differences in detection between single- and dual-mode acquisition settings that are purely the result of having two animals in the FOV. Validation results showed that PET-SORTEO accurately reproduced the spatial resolution and noise degradations that were observed with actual dual phantom experiments. The simulated [18F]FDG whole-body study showed that the resolution loss due to the off-center positioning of the mice was the biggest contributing factor in signal degradation at the pixel level and a minimal inter-animal distance as well as the use of reconstruction methods with resolution modeling should be preferred. Dual mode acquisition did not have a major impact on ROI-based analysis except in situations where uptake values in organs from the same subject were compared. The simulated [11C]Raclopride study however showed that dual-mice imaging strongly reduced the sensitivity to variations when mice were positioned side-by-side while no sensitivity reduction was observed when they were facing each other. This is the first study showing the impact of different experimental designs for whole-body and brain acquisitions of two mice on the quality of the results using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies.
Computer-Simulated Arthroscopic Knee Surgery: Effects of Distraction on Resident Performance.
Cowan, James B; Seeley, Mark A; Irwin, Todd A; Caird, Michelle S
2016-01-01
Orthopedic surgeons cite "full focus" and "distraction control" as important factors for achieving excellent outcomes. Surgical simulation is a safe and cost-effective way for residents to practice surgical skills, and it is a suitable tool to study the effects of distraction on resident surgical performance. This study investigated the effects of distraction on arthroscopic knee simulator performance among residents at various levels of experience. The authors hypothesized that environmental distractions would negatively affect performance. Twenty-five orthopedic surgery residents performed a diagnostic knee arthroscopy computer simulation according to a checklist of structures to identify and tasks to complete. Participants were evaluated on arthroscopy time, number of chondral injuries, instances of looking down at their hands, and completion of checklist items. Residents repeated this task at least 2 weeks later while simultaneously answering distracting questions. During distracted simulation, the residents had significantly fewer completed checklist items (P<.02) compared with the initial simulation. Senior residents completed the initial simulation in less time (P<.001), with fewer chondral injuries (P<.005) and fewer instances of looking down at their hands (P<.012), compared with junior residents. Senior residents also completed 97% of the diagnostic checklist, whereas junior residents completed 89% (P<.019). During distracted simulation, senior residents continued to complete tasks more quickly (P<.006) and with fewer instances of looking down at their hands (P<.042). Residents at all levels appear to be susceptible to the detrimental effects of distraction when performing arthroscopic simulation. Addressing even straightforward questions intraoperatively may affect surgeon performance. Copyright 2016, SLACK Incorporated.
LeBlanc, Fabien; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Senagore, Anthony J; Ellis, Clyde N; Delaney, Conor P
2010-08-01
The aim of this study was to compare the human cadaver model with an augmented reality simulator for straight laparoscopic colorectal skills acquisition. Thirty-five sigmoid colectomies were performed on a cadaver (n = 7) or an augmented reality simulator (n = 28) during a laparoscopic training course. Prior laparoscopic colorectal experience was assessed. Objective structured technical skills assessment forms were completed by trainers and trainees independently. Groups were compared according to technical skills and events scores and satisfaction with training model. Prior laparoscopic experience was similar in both groups. For trainers and trainees, technical skills scores were considerably better on the simulator than on the cadaver. For trainers, generic events score was also considerably better on the simulator than on the cadaver. The main generic event occurring on both models was errors in the use of retraction. The main specific event occurring on both models was bowel perforation. Global satisfaction was better for the cadaver than for the simulator model (p < 0.001). The human cadaver model was more difficult but better appreciated than the simulator for laparoscopic sigmoid colectomy training. Simulator training followed by cadaver training can appropriately integrate simulators into the learning curve and maintain the benefits of both training methodologies. Published by Elsevier Inc.
Walczewska-Szewc, Katarzyna; Deplazes, Evelyne; Corry, Ben
2015-07-14
Adequately sampling the large number of conformations accessible to proteins and other macromolecules is one of the central challenges in molecular dynamics (MD) simulations; this activity can be difficult, even for relatively simple systems. An example where this problem arises is in the simulation of dye-labeled proteins, which are now being widely used in the design and interpretation of Förster resonance energy transfer (FRET) experiments. In this study, MD simulations are used to characterize the motion of two commonly used FRET dyes attached to an immobilized chain of polyproline. Even in this simple system, the dyes exhibit complex behavior that is a mixture of fast and slow motions. Consequently, very long MD simulations are required to sufficiently sample the entire range of dye motion. Here, we compare the ability of enhanced sampling methods to reproduce the behavior of fluorescent labels on proteins. In particular, we compared Accelerated Molecular Dynamics (AMD), metadynamics, Replica Exchange Molecular Dynamics (REMD), and High Temperature Molecular Dynamics (HTMD) to equilibrium MD simulations. We find that, in our system, all of these methods improve the sampling of the dye motion, but the most significant improvement is achieved using REMD.
Teaching binocular indirect ophthalmoscopy to novice residents using an augmented reality simulator.
Rai, Amandeep S; Rai, Amrit S; Mavrikakis, Emmanouil; Lam, Wai Ching
2017-10-01
To compare the traditional teaching approach of binocular indirect ophthalmoscopy (BIO) to the EyeSI augmented reality (AR) BIO simulator. Prospective randomized control trial. 28 post-graduate year one (PGY1) ophthalmology residents. Residents were recruited at the 2012 Toronto Ophthalmology Residents Introductory Course (TORIC). 15 were randomized to conventional teaching (Group 1), and 13 to augmented reality simulator training (Group 2). 3 vitreoretinal fellows were enrolled to serve as experts. Evaluations were completed on the simulator, with 3 tasks, and outcome measures were total raw score, total time elapsed, and performance. Following conventional training, Group 1 residents were outperformed by vitreoretinal fellows with respect to all 3 outcome measures. Following AR training, Group 2 residents demonstrated superior total scores and performance compared to Group 1 residents. Once the Group 1 residents also completed the AR BIO training, there was a significant improvement compared to their baseline scores, and were now on par with Group 2 residents. This study provides construct validity for the EyeSI AR BIO simulator and demonstrates that it may be superior to conventional BIO teaching for novice ophthalmology residents. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Park, Hyeon K.; Yun, Gunsu; Lee, Jaehyun; Lee, Jieun; Lee, Woochang; Jardin, Stephen; Xu, X. Q.; Kstar Team
2015-11-01
The modeling of the Edge-localized-mode (ELM) should be rigorously pursued for reliable and robust ELM control for steady-state long-pulse H-mode operation in ITER as well as DEMO. In the KSTAR discharge #7328, a linear stability of the ELMs is investigated using M3D-C1 and BOUT + + codes. This is achieved by linear simulation for the n = 8 mode structure of the ELM observed by the KSTAR electron cyclotron emission imaging (ECEI) systems. In the process of analysis, variations due to the plasma equilibrium profiles and transport coefficients on the ELM growth rate are investigated and simulation results with the two codes are compared. The numerical simulations are extended to nonlinear phase of the ELM dynamics, which includes saturation and crash of the modes. Preliminary results of the nonlinear simulations are compared with the measured images especially from the saturation to the crash. This work is supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865, US DoE by LLNL under contract DE-AC52-07NA27344 and US DoE by PPPL under contract DE-AC02-09CH11466.
Simulating maize yield and biomass with spatial variability of soil field capacity
USDA-ARS?s Scientific Manuscript database
Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...
ERIC Educational Resources Information Center
Sieh-Bliss, Selina
2014-01-01
While there is evidence in the literature measuring effective clinical teacher characteristics in traditional experiences, little is known of effective characteristics expected from clinical teachers during simulated clinical experiences. This study examined which clinical teaching behaviors and characteristics are perceived by nursing students'…
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Patel, J. S.; Justice, D. W.; Schweitzer, G. E.
1972-01-01
The results are presented of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.
USDA-ARS?s Scientific Manuscript database
Despite increased interest in watershed scale model simulations, literature lacks application of long-term data in fuzzy logic simulations and comparing outputs with physically based models such as APEX (Agricultural Policy Environmental eXtender). The objective of this study was to develop a fuzzy...
A previous intercomparison of atmospheric mercury models in North America has been extended to compare simulated and observed wet deposition of mercury. Three regional-scale atmospheric mercury models were tested; CMAQ, REMSAD and TEAM. These models were each employed using thr...
Teaching Classical Statistical Mechanics: A Simulation Approach.
ERIC Educational Resources Information Center
Sauer, G.
1981-01-01
Describes a one-dimensional model for an ideal gas to study development of disordered motion in Newtonian mechanics. A Monte Carlo procedure for simulation of the statistical ensemble of an ideal gas with fixed total energy is developed. Compares both approaches for a pseudoexperimental foundation of statistical mechanics. (Author/JN)
TinkerPlots™ Model Construction Approaches for Comparing Two Groups: Student Perspectives
ERIC Educational Resources Information Center
Noll, Jennifer; Kirin, Dana
2017-01-01
Teaching introductory statistics using curricula focused on modeling and simulation is becoming increasingly common in introductory statistics courses and touted as a more beneficial approach for fostering students' statistical thinking. Yet, surprisingly little research has been conducted to study the impact of modeling and simulation curricula…
2010-01-01
Background The present study compares the value of additional use of computer simulated heart sounds, to conventional bedside auscultation training, on the cardiac auscultation skills of 3rd year medical students at Oslo University Medical School. Methods In addition to their usual curriculum courses, groups of seven students each were randomized to receive four hours of additional auscultation training either employing a computer simulator system or adding on more conventional bedside training. Cardiac auscultation skills were afterwards tested using live patients. Each student gave a written description of the auscultation findings in four selected patients, and was rewarded from 0-10 points for each patient. Differences between the two study groups were evaluated using student's t-test. Results At the auscultation test no significant difference in mean score was found between the students who had used additional computer based sound simulation compared to additional bedside training. Conclusions Students at an early stage of their cardiology training demonstrated equal performance of cardiac auscultation whether they had received an additional short auscultation course based on computer simulated training, or had had additional bedside training. PMID:20082701
Trapping in irradiated p +-n-n - silicon sensors at fluences anticipated at the HL-LHC outer tracker
Adam, W.
2016-04-22
The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200μm thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3 x 10 15 neq/cm 2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulationmore » assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. Furthermore, the effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations.« less
Comprehensive Numerical Simulation of Filling and Solidification of Steel Ingots
Pola, Annalisa; Gelfi, Marcello; La Vecchia, Giovina Marina
2016-01-01
In this paper, a complete three-dimensional numerical model of mold filling and solidification of steel ingots is presented. The risk of powder entrapment and defects formation during filling is analyzed in detail, demonstrating the importance of using a comprehensive geometry, with trumpet and runner, compared to conventional simplified models. By using a case study, it was shown that the simplified model significantly underestimates the defects sources, reducing the utility of simulations in supporting mold and process design. An experimental test was also performed on an instrumented mold and the measurements were compared to the calculation results. The good agreement between calculation and trial allowed validating the simulation. PMID:28773890
SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.
2011-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297
SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†
Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.
2013-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136
I Can't Make Heads or Tails out of What You Are Saying, So Let's Just Agree to Be Fair
ERIC Educational Resources Information Center
Carter, Rickey E.
2013-01-01
Assuming a coin is fair is common place in introductory statistical education. This article offers three approaches to test if a coin is fair. The approaches lend themselves to straightforward simulation studies that can enrich student understanding of joint probability and sample size requirements. Simulation studies comparing the relative merits…
Hyunwoo Kim; Devendra M. Amatya; Stephen W. Broome; Dean L. Hesterberg; Minha Choi
2011-01-01
The DRAINWAT, DRAINmod for WATershed model, was selected for hydrological modelling to obtain water table depths and drainage outflows at Open Grounds Farm in Carteret County, North Carolina, USA. Six simulated storm events from the study period were compared with the measured data and analysed. Simulation results from the whole study period and selected rainfall...
NASA Technical Reports Server (NTRS)
Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.
1999-01-01
The human zero-gravity locomotion simulator and the cadaver simulator offer a powerful combination for the study of the implications of exercise for maintaining bone quality during space flight. Such studies, when compared with controlled in-flight exercise programs, could help in the identification of a strain threshold for the prevention of bone loss during space flight.
Pukenas, Erin W; Dodson, Gregory; Deal, Edward R; Gratz, Irwin; Allen, Elaine; Burden, Amanda R
2014-11-01
To examine the results of simulation-based education with deliberate practice on the acquisition of handoff skills by studying resident intraoperative handoff communication performances. Preinvention and postintervention pilot study. Simulated operating room of a university-affiliated hospital. Resident handoff performances during 27 encounters simulating elective surgery were studied. Ten residents (CA-1, CA-2, and CA-3) participated in a one-day simulation-based handoff course. Each resident repeated simulated handoffs to deliberately practice with an intraoperative handoff checklist. One year later, 7 of the 10 residents participated in simulated intraoperative handoffs. All handoffs were videotaped and later scored for accuracy by trained raters. A handoff assessment tool was used to characterize the type and frequency of communication failures. The percentage of handoff errors and omissions were compared before simulation and postsimulation-based education with deliberate practice and at one year following the course. Initially, the overall communication failure rate, defined as the percentage of handoff omissions plus errors, was 29.7%. After deliberate practice with the intraoperative handoff checklist, the communication failure rate decreased to 16.8%, and decreased further to 13.2% one year after the course. Simulation-based education using deliberate practice may result in improved intraoperative handoff communication and retention of skills at one year. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hummels, Cameron
Computational hydrodynamical simulations are a very useful tool for understanding how galaxies form and evolve over cosmological timescales not easily revealed through observations. However, they are only useful if they reproduce the sorts of galaxies that we see in the real universe. One of the ways in which simulations of this sort tend to fail is in the prescription of stellar feedback, the process by which nascent stars return material and energy to their immediate environments. Careful treatment of this interaction in subgrid models, so-called because they operate on scales below the resolution of the simulation, is crucial for the development of realistic galaxy models. Equally important is developing effective methods for comparing simulation data against observations to ensure galaxy models which mimic reality and inform us about natural phenomena. This thesis examines the formation and evolution of galaxies and the observable characteristics of the resulting systems. We employ extensive use of cosmological hydrodynamical simulations in order to simulate and interpret the evolution of massive spiral galaxies like our own Milky Way. First, we create a method for producing synthetic photometric images of grid-based hydrodynamical models for use in a direct comparison against observations in a variety of filter bands. We apply this method to a simulation of a cluster of galaxies to investigate the nature of the red-sequence/blue-cloud dichotomy in the galaxy color-magnitude diagram. Second, we implement several subgrid models governing the complex behavior of gas and stars on small scales in our galaxy models. Several numerical simulations are conducted with similar initial conditions, where we systematically vary the subgrid models, afterward assessing their efficacy through comparisons of their internal kinematics with observed systems. Third, we generate an additional method to compare observations with simulations, focusing on the tenuous circumgalactic medium. Informed by our previous studies, we investigate the sensitivity of this new mode of comparison to hydrodynamical subgrid prescription. Finally, we synthesize the results of these studies and identify future avenues of research.
Vandyk, Amanda D; Lalonde, Michelle; Merali, Sabrina; Wright, Erica; Bajnok, Irmajean; Davies, Barbara
2018-04-01
Evidence on the use of simulation to teach psychiatry and mental health (including addiction) content is emerging, yet no summary of the implementation processes or associated outcomes exists. The aim of this study was to systematically search and review empirical literature on the use of psychiatry-focused simulation in undergraduate nursing education. Objectives were to (i) assess the methodological quality of existing evidence on the use of simulation to teach mental health content to undergraduate nursing students, (ii) describe the operationalization of the simulations, and (iii) summarize the associated quantitative and qualitative outcomes. We conducted online database (MEDLINE, Embase, ERIC, CINAHL, PsycINFO from January 2004 to October 2015) and grey literature searches. Thirty-two simulation studies were identified describing and evaluating six types of simulations (standardized patients, audio simulations, high-fidelity simulators, virtual world, multimodal, and tabletop). Overall, 2724 participants were included in the studies. Studies reflected a limited number of intervention designs, and outcomes were evaluated with qualitative and quantitative methods incorporating a variety of tools. Results indicated that simulation was effective in reducing student anxiety and improving their knowledge, empathy, communication, and confidence. The summarized qualitative findings all supported the benefit of simulation; however, more research is needed to assess the comparative effectiveness of the types of simulations. Recommendations from the findings include the development of guidelines for educators to deliver each simulation component (briefing, active simulation, debriefing). Finally, consensus around appropriate training of facilitators is needed, as is consistent and agreed upon simulation terminology. © 2017 Australian College of Mental Health Nurses Inc.
Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Gulshan B., E-mail: gbsharma@ucalgary.ca; University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213; University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4
Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respondmore » over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.« less
Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine
NASA Astrophysics Data System (ADS)
Sharma, Gulshan B.; Robertson, Douglas D.
2013-07-01
Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.
Cadaver-based training is superior to simulation training for cricothyrotomy and tube thoracostomy.
Takayesu, James Kimo; Peak, David; Stearns, Dana
2017-02-01
Emergency medicine (EM) training mandates that residents be able to competently perform low-frequency critical procedures upon graduation. Simulation is the main method of training in addition to clinical patient care. Access to cadaver-based training is limited due to cost and availability. The relative fidelity and perceived value of cadaver-based simulation training is unknown. This pilot study sought to describe the relative value of cadaver training compared to simulation for cricothyrotomy and tube thoracostomy. To perform a pilot study to assess whether there is a significant difference in fidelity and educational experience of cadaver-based training compared to simulation training. To understand how important this difference is in training residents in low-frequency procedures. Twenty-two senior EM residents (PGY3 and 4) who had completed standard simulation training on cricothyrotomy and tube thoracostomy participated in a formalin-fixed cadaver training program. Participants were surveyed on the relative fidelity of the training using a 100 point visual analogue scale (VAS) with 100 defined as equal to performing the procedure on a real patient. Respondents were also asked to estimate how much the cadaveric training improved the comfort level with performing the procedures on a scale between 0 and 100 %. Open-response feedback was also collected. The response rate was 100 % (22/22). The average fidelity of the cadaver versus simulation training was 79.9 ± 7.0 vs. 34.7 ± 13.4 for cricothyrotomy (p < 0.0001) and 86 ± 8.6 vs. 38.4 ± 19.3 for tube thoracostomy (p < 0.0001). Improvement in comfort levels performing procedures after the cadaveric training was rated as 78.5 ± 13.3 for tube thoracostomy and 78.7 ± 14.3 for cricothyrotomy. All respondents felt this difference in fidelity to be important for procedural training with 21/22 respondents specifically citing the importance of superior landmark and tissue fidelity compared to simulation training. Cadaver-based training provides superior landmark and tissue fidelity compared to simulation training and may be a valuable addition to EM residency training for certain low-frequency procedures.
A comparative analysis and guide to virtual reality robotic surgical simulators.
Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia; Truong, Mireille; Perez, Manuela; Smith, Roger
2018-02-01
Since the US Food and Drug Administration approved robotically assisted surgical devices for human surgery in 2000, the number of surgeries utilizing this innovative technology has risen. In 2015, approximately 650 000 robot-assisted procedures were performed worldwide. Surgeons must be properly trained to safely transition to using such innovative technology. Multiple virtual reality robotic simulators are now commercially available for educational and training purposes. There is a need for comparative evaluations of these simulators to aid users in selecting an appropriate device for their purposes. We conducted a comparison of the design and capabilities of all dedicated simulators of the da Vinci robot - the da Vinci Skills Simulator (dVSS), dV-Trainer (dVT), Robotic Skills Simulators (RoSS) and the RobotiX Mentor. This paper provides the base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises for skills development: dVSS n = 40, dVT n = 65, RoSS n = 52, RobotiX Mentor n = 31. All four offer 3D visual images but use different display technologies. The dVSS leverages the real robotic surgical console to provide visualization, hand controls and foot pedals. The dVT, RoSS and RobotiX Mentor created simulated versions of all of these control systems. Each includes systems management services that allow instructors to collect, export and analyze the scores of students using the simulators. This study provides comparative information on the four simulators' functional capabilities. Each device offers unique advantages and capabilities for training robotic surgeons. Each has been the subject of validation experiments, which have been published in the literature. But those do not provide specific details on the capabilities of the simulators, which are necessary for an understanding sufficient to select the one best suited for an organization's needs. This article provides comparative information to assist with that type of selection. Copyright © 2017 John Wiley & Sons, Ltd.
Welding Thermal Simulation and Corrosion Study of X-70 Deep Sea Pipeline Steel
NASA Astrophysics Data System (ADS)
Zhang, Weipeng; Li, Zhuoran; Gao, Jixiang; Peng, Zhengwu
2017-12-01
Gleeble thermomechanical processing machine was used to simulate coarse grain heat affected zone (CGHAZ) of API X-70 thick wall pipeline steel used in deep sea. Microstructures and corresponding corrosion behavior of the simulated CGHAZs using different cooling rate were investigated and compared to the as-received material by scanning electron microscope and electrochemical experiments carried out in 3.5 wt. % NaCl solution. Results of this study show that the as-received samples exhibited a little bit higher corrosion resistance than the simulated CGHAZs. Among 3 sets of simulation experiments, the maximum corrosion tendency was exhibited at the t8/5 = 20 s with the most martensite-austensite (M-A) microstructure and highest corrosion potential was shown at the t8/5 = 60 s.
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
A simulation model for risk assessment of turbine wheels
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Hage, Richard T.
1991-01-01
A simulation model has been successfully developed to evaluate the risk of the Space Shuttle auxiliary power unit (APU) turbine wheels for a specific inspection policy. Besides being an effective tool for risk/reliability evaluation, the simulation model also allows the analyst to study the trade-offs between wheel reliability, wheel life, inspection interval, and rejection crack size. For example, in the APU application, sensitivity analysis results showed that the wheel life limit has the least effect on wheel reliability when compared to the effect of the inspection interval and the rejection crack size. In summary, the simulation model developed represents a flexible tool to predict turbine wheel reliability and study the risk under different inspection policies.
A simulation model for risk assessment of turbine wheels
NASA Astrophysics Data System (ADS)
Safie, Fayssal M.; Hage, Richard T.
A simulation model has been successfully developed to evaluate the risk of the Space Shuttle auxiliary power unit (APU) turbine wheels for a specific inspection policy. Besides being an effective tool for risk/reliability evaluation, the simulation model also allows the analyst to study the trade-offs between wheel reliability, wheel life, inspection interval, and rejection crack size. For example, in the APU application, sensitivity analysis results showed that the wheel life limit has the least effect on wheel reliability when compared to the effect of the inspection interval and the rejection crack size. In summary, the simulation model developed represents a flexible tool to predict turbine wheel reliability and study the risk under different inspection policies.
Simulation of a small muon tomography station system based on RPCs
NASA Astrophysics Data System (ADS)
Chen, S.; Li, Q.; Ma, J.; Kong, H.; Ye, Y.; Gao, J.; Jiang, Y.
2014-10-01
In this work, Monte Carlo simulations were used to study the performance of a small muon Tomography Station based on four glass resistive plate chambers(RPCs) with a spatial resolution of approximately 1.0mm (FWHM). We developed a simulation code to generate cosmic ray muons with the appropriate distribution of energies and angles. PoCA and EM algorithm were used to rebuild the objects for comparison. We compared Z discrimination time with and without muon momentum measurement. The relation between Z discrimination time and spatial resolution was also studied. Simulation results suggest that mean scattering angle is a better Z indicator and upgrading to larger RPCs will improve reconstruction image quality.
Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...
2015-04-08
The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less
Use of static picture prompts versus video modeling during simulation instruction.
Alberto, Paul A; Cihak, David F; Gama, Robert I
2005-01-01
The purpose of this study was to compare the effectiveness and efficiency of static picture prompts and video modeling as classroom simulation strategies in combination with in vivo community instruction. Students with moderate intellectual disabilities were instructed in the tasks of withdrawing money from an ATM and purchasing items using a debit card. Both simulation strategies were effective and efficient at teaching the skills. The two simulation strategies were not functionally different in terms of number of trials to acquisition, number of errors, and number of instructional sessions to criterion.
Using Simulations to Investigate Decision Making in Airline Operations
NASA Technical Reports Server (NTRS)
Bruce, Peter J.; Gray, Judy H.
2003-01-01
This paper examines a range of methods to collect data for the investigation of decision-making in airline Operations Control Centres (OCCs). A study was conducted of 52 controllers in five OCCs of both domestic and international airlines in the Asia-Pacific region. A range of methods was used including: surveys, interviews, observations, simulations, and think-aloud protocol. The paper compares and evaluates the suitability of these techniques for gathering data and provides recommendations on the application of simulations. Keywords Data Collection, Decision-Making, Research Methods, Simulation, Think-Aloud Protocol.
Comparing Pedagogies for Plastic Waste Management at University Level
ERIC Educational Resources Information Center
Yeung, Siu-Kit; So, Wing-Mui Winnie; Cheng, Nga-Yee Irene; Cheung, Tsz-Yan; Chow, Cheuk-Fai
2017-01-01
Purpose: This paper aims to compare the learning outcomes of gaming simulation and guided inquiry in sustainability education on plastic waste management. The current study targets the identification of success factors in these teaching approaches. Design/methodology/approach: This study used a quasi-experimental design with undergraduate…
A Comparative Study of Exact versus Propensity Matching Techniques Using Monte Carlo Simulation
ERIC Educational Resources Information Center
Itang'ata, Mukaria J. J.
2013-01-01
Often researchers face situations where comparative studies between two or more programs are necessary to make causal inferences for informed policy decision-making. Experimental designs employing randomization provide the strongest evidence for causal inferences. However, many pragmatic and ethical challenges may preclude the use of randomized…
NASA Astrophysics Data System (ADS)
Guidi, Giovanni; Scannapieco, Cecilia; Walcher, C. Jakob
2015-12-01
We study the sources of biases and systematics in the derivation of galaxy properties from observational studies, focusing on stellar masses, star formation rates, gas and stellar metallicities, stellar ages, magnitudes and colours. We use hydrodynamical cosmological simulations of galaxy formation, for which the real quantities are known, and apply observational techniques to derive the observables. We also analyse biases that are relevant for a proper comparison between simulations and observations. For our study, we post-process the simulation outputs to calculate the galaxies' spectral energy distributions (SEDs) using stellar population synthesis models and also generate the fully consistent far-UV-submillimetre wavelength SEDs with the radiative transfer code SUNRISE. We compared the direct results of simulations with the observationally derived quantities obtained in various ways, and found that systematic differences in all studied galaxy properties appear, which are caused by: (1) purely observational biases, (2) the use of mass-weighted and luminosity-weighted quantities, with preferential sampling of more massive and luminous regions, (3) the different ways of constructing the template of models when a fit to the spectra is performed, and (4) variations due to different calibrations, most notably for gas metallicities and star formation rates. Our results show that large differences can appear depending on the technique used to derive galaxy properties. Understanding these differences is of primary importance both for simulators, to allow a better judgement of similarities and differences with observations, and for observers, to allow a proper interpretation of the data.
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-09-01
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
Herranz, Raul; Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C M; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J A; Lebert, Michael; Medina, F Javier; Vagt, Nicole; Ullrich, Oliver; van Loon, Jack J W A; Hemmersbach, Ruth
2013-01-01
Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
2017-05-17
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
NASA Technical Reports Server (NTRS)
Matsuda, Y.
1974-01-01
A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.
Evaluation of the Malcolm horizon in a moving-base flight simulator
NASA Technical Reports Server (NTRS)
Gillingham, K. K.
1984-01-01
The efficacy of the Malcolm Horizon (MH) in a controlled, simulated, instrument flight environment was examined. Eight flight parameters were used to compare performance under experimental and control conditions. The parameters studied were pitch attitude, roll attitude, turn rate, airspeed, vertical velocity, heading, altitude, and course deviation. Testing of a commercial realization of the MH concept in a flight simulator revealed strengths and weaknesses of the currently available MH hardware.
Evaluation of the Navys Sea/Shore Flow Policy
2016-06-01
CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of alternative sea/shore flow policies. In this study...remains, even if the system is optimized. In building a Discrete -Event Simulation model, we discovered key factors that should be included in the... Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model) and compared the results with the SSFM for one
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-01-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations. Images FIGURE 5 FIGURE 7 PMID:8873992
Zhong, Xiao; Wang, Pingxian; Feng, Jiayu; Hu, Wengang; Huang, Chibing
2015-01-01
This randomized controlled study compared a novel transparent urinary tract simulator with the traditional opaque urinary tract simulator as an aid for efficiently teaching urological surgical procedures. Senior medical students were tested on their understanding of urological theory before and after lectures concerning urinary system disease. The students received operative training using the transparent urinary tract simulator (experimental group, n = 80) or the J3311 opaque plastic urinary tract simulator (control, n = 80), specifically in catheterization and retrograde double-J stent implantation. The operative training was followed by a skills test and student satisfaction survey. The test scores for theory were similar between the two groups, before and after training. Students in the experimental group performed significantly better than those in the control group on the procedural skills test, and also had significantly better self-directed learning skills, analytical skills, and greater motivation to learn. During the initial step of training, the novel transparent urinary tract simulator significantly improved the efficiency of teaching urological procedural skills compared with the traditional opaque device. © 2015 S. Karger AG, Basel.
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
Oganesyan, Vasily S; Chami, Fatima; White, Gaye F; Thomson, Andrew J
2017-01-01
EPR studies combined with fully atomistic Molecular Dynamics (MD) simulations and an MD-EPR simulation method provide evidence for intrinsic low rotameric mobility of a nitroxyl spin label, Rn, compared to the more widely employed label MTSL (R1). Both experimental and modelling results using two structurally different sites of attachment to Myoglobin show that the EPR spectra of Rn are more sensitive to the local protein environment than that of MTSL. This study reveals the potential of using the Rn spin label as a reporter of protein motions. Copyright © 2016 Elsevier Inc. All rights reserved.
Validation of thermal effects of LED package by using Elmer finite element simulation method
NASA Astrophysics Data System (ADS)
Leng, Lai Siang; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Taniselass, Steven; Bin Ab Aziz, Muhamad Hafiz; Vairavan, Rajendaran; Kirtsaeng, Supap
2017-02-01
The overall performance of the Light-emitting diode, LED package is critically affected by the heat attribution. In this study, open source software - Elmer FEM has been utilized to study the thermal analysis of the LED package. In order to perform a complete simulation study, both Salome software and ParaView software were introduced as Pre and Postprocessor. The thermal effect of the LED package was evaluated by this software. The result has been validated with commercially licensed software based on previous work. The percentage difference from both simulation results is less than 5% which is tolerable and comparable.
Comparative analysis of the functionality of simulators of the da Vinci surgical robot.
Smith, Roger; Truong, Mireille; Perez, Manuela
2015-04-01
The implementation of robotic technology in minimally invasive surgery has led to the need to develop more efficient and effective training methods, as well as assessment and skill maintenance tools for surgical education. Multiple simulators and procedures are available for educational and training purposes. A need for comparative evaluations of these simulators exists to aid users in selecting an appropriate device for their purposes. We conducted an objective review and comparison of the design and capabilities of all dedicated simulators of the da Vinci robot, the da Vinci Skill Simulator (DVSS) (Intuitive Surgical Inc., Sunnyvale, CA, USA), dV-Trainer (dVT) (Mimic Technologies Inc., Seattle, WA, USA), and Robotic Surgery Simulator (RoSS) (Simulated Surgical Skills, LLC, Williamsville, NY, USA). This provides base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies. The DVSS leverages the real robotic surgeon's console to provide visualization, hand controls, and foot pedals. The dVT and RoSS created simulated versions of all of these control systems. They include systems management services which allow instructors to collect, export, and analyze the scores of students using the simulators. This study is the first to provide comparative information of the three simulators functional capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic surgeons. Each device has been the subject of multiple validation experiments which have been published in the literature. But those do not provide specific details on the capabilities of the simulators which are necessary for an understanding sufficient to select the one best suited for an organization's needs.
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...
2017-01-24
Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyuho; Chang, C. S.; Seo, Janghoon
Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less
Shin, Hyunsook; Ma, Hyunhee; Park, Jiyoung; Ji, Eun Sun; Kim, Dong Hee
2015-04-01
The use of simulations has been considered as opportunities for students to enhance their critical thinking (CT), but previous studies were limited because they did not provide in-depth information on the working dynamics of simulation or on the effects of the number of simulation exposures on CT. This study examined the effect of an integrated pediatric nursing simulation used in a nursing practicum on students' CT abilities and identified the effects of differing numbers of simulation exposures on CT in a multi-site environment. The study used a multi-site, pre-test, post-test design. A total of 237 nursing students at three universities enrolled in a pediatric practicum participated in this study from February to December 2013. All three schools used the same simulation courseware, including the same simulation scenarios, evaluation tools, and simulation equipment. The courseware incorporated high-fidelity simulators and standardized patients. Students at school A completed one simulation session, whereas students at schools B and C completed two and three simulation sessions, respectively. Yoon's Critical Thinking Disposition tool (2008) was used to measure students' CT abilities. The gains in students' CT scores varied according to their numbers of exposures to the simulation courseware. With a single exposure, there were no statistically significant gains in CT, whereas three exposures to the courseware produced significant gains in CT. In seven subcategories of critical thinking, three exposures to the simulation courseware produced CT gains in the prudence and intellectual eagerness subcategories, and the overall simulation experience produced CT gains in the prudence, systematicity, healthy skepticism, and intellectual eagerness subcategories. Simulation courseware may produce positive learning outcomes for prudence in nursing education. In addition, the findings from the multi-site comparative study may contribute to greater understanding of how patient simulation experiences impact students' CT abilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.
2016-01-01
Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its integration into clinical practice and this study can be used to improve the diagnostic efficiency of lung field and spinal bone screening using CDT.
Acoustic Parametric Array for Identifying Standoff Targets
NASA Astrophysics Data System (ADS)
Hinders, M. K.; Rudd, K. E.
2010-02-01
An integrated simulation method for investigating nonlinear sound beams and 3D acoustic scattering from any combination of complicated objects is presented. A standard finite-difference simulation method is used to model pulsed nonlinear sound propagation from a source to a scattering target via the KZK equation. Then, a parallel 3D acoustic simulation method based on the finite integration technique is used to model the acoustic wave interaction with the target. Any combination of objects and material layers can be placed into the 3D simulation space to study the resulting interaction. Several example simulations are presented to demonstrate the simulation method and 3D visualization techniques. The combined simulation method is validated by comparing experimental and simulation data and a demonstration of how this combined simulation method assisted in the development of a nonlinear acoustic concealed weapons detector is also presented.
Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility
NASA Astrophysics Data System (ADS)
Mitchell, J.; Harris, S.
DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.
2016-12-01
he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.
Comparison of Flight Simulators Based on Human Motion Perception Metrics
NASA Technical Reports Server (NTRS)
Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.
2015-01-01
In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.
High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations
NASA Astrophysics Data System (ADS)
Neal, William; Garasi, Christopher
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
NASA Astrophysics Data System (ADS)
Dhanya, M.; Chandrasekar, A.
2016-02-01
The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.
In Situ Operating Room-Based Simulation: A Review.
Owei, Lily; Neylan, Christopher J; Rao, Raghavendra; Caskey, Robert C; Morris, Jon B; Sensenig, Richard; Brooks, Ari D; Dempsey, Daniel T; Williams, Noel N; Atkins, Joshua H; Baranov, Dimitry Y; Dumon, Kristoffel R
To systematically review the literature surrounding operating room-based in situ training in surgery. A systematic review was conducted of MEDLINE. The review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, and employed the Population, Intervention, Comparator, Outcome (PICO) structure to define inclusion/exclusion criteria. The Kirkpatrick model was used to further classify the outcome of in situ training when possible. The search returned 308 database hits, and ultimately 19 articles were identified that met the stated PICO inclusion criteria. Operating room-based in situ simulation is used for a variety of purposes and in a variety of settings, and it has the potential to offer unique advantages over other types of simulation. Only one randomized controlled trial was conducted comparing in situ simulation to off-site simulation, which found few significant differences. One large-scale outcome study showed improved perinatal outcomes in obstetrics. Although in situ simulation theoretically offers certain advantages over other types of simulation, especially in addressing system-wide or environmental threats, its efficacy has yet to be clearly demonstrated. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less
Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes
Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; ...
2017-11-27
Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Claire Y.; Zepeda-Ruiz, Luis A.; Han, Sang M.
2015-06-01
Molecular dynamics simulations were used to study Ge island nucleation and growth on amorphous SiO 2 substrates. This process is relevant in selective epitaxial growth of Ge on Si, for which SiO 2 is often used as a template mask. The islanding process was studied over a wide range of temperatures and fluxes, using a recently proposed empirical potential model for the Si–SiO 2–Ge system. The simulations provide an excellent quantitative picture of the Ge islanding and compare well with detailed experimental measurements. These quantitative comparisons were enabled by an analytical rate model as a bridge between simulations and experimentsmore » despite the fact that deposition fluxes accessible in simulations and experiments are necessarily different by many orders of magnitude. In particular, the simulations led to accurate predictions of the critical island size and the scaling of island density as a function of temperature. Lastly, the overall approach used here should be useful not just for future studies in this particular system, but also for molecular simulations of deposition in other materials.« less
NASA Astrophysics Data System (ADS)
Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-02-01
In previous studies of KASCADE-Grande data, a Monte Carlo simulation code based on the GEANT3 program has been developed to describe the energy deposited by EAS particles in the detector stations. In an attempt to decrease the simulation time and ensure compatibility with the geometry description in standard KASCADE-Grande analysis software, several structural elements have been neglected in the implementation of the Grande station geometry. To improve the agreement between experimental and simulated data, a more accurate simulation of the response of the KASCADE-Grande detector is necessary. A new simulation code has been developed based on the GEANT4 program, including a realistic geometry of the detector station with structural elements that have not been considered in previous studies. The new code is used to study the influence of a realistic detector geometry on the energy deposited in the Grande detector stations by particles from EAS events simulated by CORSIKA. Lateral Energy Correction Functions are determined and compared with previous results based on GEANT3.
Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C.M.; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J.A.; Lebert, Michael; Medina, F. Javier; Vagt, Nicole; Ullrich, Oliver
2013-01-01
Abstract Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature. Key Words: 2-D clinostat—3-D clinostat—Gravity—Magnetic levitation—Random positioning machine—Simulated microgravity—Space biology. Astrobiology 13, 1–17. PMID:23252378
Carbonaceous aerosols and Impacts on regional climate over South Asia
NASA Astrophysics Data System (ADS)
Pathak, B.; Parottil, A.
2017-12-01
A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.
Snyder, Christopher W; Vandromme, Marianne J; Tyra, Sharon L; Hawn, Mary T
2009-01-01
Virtual reality (VR) simulators for laparoscopy and endoscopy may be valuable tools for resident education. However, the cost of such training in terms of trainee and instructor time may vary depending upon whether an independent or proctored approach is employed. We performed a randomized controlled trial to compare independent and proctored methods of proficiency-based VR simulator training. Medical students were randomized to independent or proctored training groups. Groups were compared with respect to the number of training hours and task repetitions required to achieve expert level proficiency on laparoscopic and endoscopic simulators. Cox regression modeling was used to compare time to proficiency between groups, with adjustment for appropriate covariates. Thirty-six medical students (18 independent, 18 proctored) were enrolled. Achievement of overall simulator proficiency required a median of 11 hours of training (range, 6-21 hours). Laparoscopic and endoscopic proficiency were achieved after a median of 11 (range, 6-32) and 10 (range, 5-27) task repetitions, respectively. The number of repetitions required to achieve proficiency was similar between groups. After adjustment for covariates, trainees in the independent group achieved simulator proficiency with significantly fewer hours of training (hazard ratio, 2.62; 95% confidence interval, 1.01-6.85; p = 0.048). Our study quantifies the cost, in instructor and trainee hours, of proficiency-based laparoscopic and endoscopic VR simulator training, and suggests that proctored instruction does not offer any advantages to trainees. The independent approach may be preferable for surgical residency programs desiring to implement VR simulator training.
A simulation-based training program improves emergency department staff communication.
Sweeney, Lynn A; Warren, Otis; Gardner, Liz; Rojek, Adam; Lindquist, David G
2014-01-01
The objectives of this study were to evaluate the effectiveness of Project CLEAR!, a novel simulation-based training program designed to instill Crew Resource Management (CRM) as the communication standard and to create a service-focused environment in the emergency department (ED) by standardizing the patient encounter. A survey-based study compared physicians' and nurses' perceptions of the quality of communication before and after the training program. Surveys were developed to measure ED staff perceptions of the quality of communication between staff members and with patients. Pretraining and posttraining survey results were compared. After the training program, survey scores improved significantly on questions that asked participants to rate the overall communication between staff members and between staff and patients. A simulation-based training program focusing on CRM and standardizing the patient encounter improves communication in the ED, both between staff members and between staff members and patients.
Comparative study of the biodegradability of porous silicon films in simulated body fluid.
Peckham, J; Andrews, G T
2015-01-01
The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
Accounting for dropout bias using mixed-effects models.
Mallinckrodt, C H; Clark, W S; David, S R
2001-01-01
Treatment effects are often evaluated by comparing change over time in outcome measures. However, valid analyses of longitudinal data can be problematic when subjects discontinue (dropout) prior to completing the study. This study assessed the merits of likelihood-based repeated measures analyses (MMRM) compared with fixed-effects analysis of variance where missing values were imputed using the last observation carried forward approach (LOCF) in accounting for dropout bias. Comparisons were made in simulated data and in data from a randomized clinical trial. Subject dropout was introduced in the simulated data to generate ignorable and nonignorable missingness. Estimates of treatment group differences in mean change from baseline to endpoint from MMRM were, on average, markedly closer to the true value than estimates from LOCF in every scenario simulated. Standard errors and confidence intervals from MMRM accurately reflected the uncertainty of the estimates, whereas standard errors and confidence intervals from LOCF underestimated uncertainty.
Propulsion Simulations with the Unstructured-Grid CFD Tool TetrUSS
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Pandya, Mohagna J.
2002-01-01
A computational investigation has been completed to assess the capability of the NASA Tetrahedral Unstructured Software System (TetrUSS) for simulation of exhaust nozzle flows. Three configurations were chosen for this study: (1) a fluidic jet effects model, (2) an isolated nacelle with a supersonic cruise nozzle, and (3) a fluidic pitchthrust- vectoring nozzle. These configurations were chosen because existing data provided a means for measuring the ability of the TetrUSS flow solver USM3D for simulating complex nozzle flows. Fluidic jet effects model simulations were compared with structured-grid CFD (computational fluid dynamics) data at Mach numbers from 0.3 to 1.2 at nozzle pressure ratios up to 7.2. Simulations of an isolated nacelle with a supersonic cruise nozzle were compared with wind tunnel experimental data and structured-grid CFD data at Mach numbers of 0.9 and 1.2, with a nozzle pressure ratio of 5. Fluidic pitch-thrust-vectoring nozzle simulations were compared with static experimental data and structured-grid CFD data at static freestream conditions and nozzle pressure ratios from 3 to 10. A fluidic injection case was computed with the third configuration at a nozzle pressure ratio of 4.6 and a secondary pressure ratio of 0.7. Results indicate that USM3D with the S-A turbulence model provides accurate exhaust nozzle simulations at on-design conditions, but does not predict internal shock location at overexpanded conditions or pressure recovery along a boattail at transonic conditions.
Middleton, Kellie K; Hamilton, Travis; Tsai, Pei-Chien; Middleton, Dana B; Falcone, John L; Hamad, Giselle
2013-11-01
Video games have been shown to improve eye-hand coordination, spatial visualization, manual dexterity, and rapid mental processing, which are important in the acquisition of laparoscopic skills. This study investigated the relationship between playing Nintendo(®) Wii™ and virtual reality (VR) laparoscopic surgery simulator performance. We hypothesized that playing the Wii would improve surgical skills performance on a VR laparoscopic simulator and hoped to elucidate which tasks, in particular, would be most beneficial for nondominant hand training. This was a single-blinded, randomized, prospective study conducted with 23 student volunteers. VR laparoscopic skills were assessed at baseline on a Simbionix LapMentor™ Surgical Simulator (Simbionix Ltd., Israel) and after the gaming period of 2 weeks. Simulator performance metrics were compared between groups using nonparametric statistics and an alpha of 0.05. Compared with the control group, the Wii-playing group demonstrated greater improvement of six measures, including accuracy on the eye-hand coordination task (p = 0.04), faster completion time (p = 0.04), decreased number of left-handed movements (p = 0.03), decreased left handed total path length (p = 0.03), decreased total number of grasping attempts (p = 0.04), and improved left-handed economy of movement (p = 0.05) for the bimanual clipping and grasping task. When comparing the number of measures improved upon by the Wii-playing group and the control group for all three tasks, the Wii-playing group consistently outperformed the control group in 18 measures compared with the control group's improvement in 6. This study further characterizes the association between video game playing and surgical performance. Improvements following the intervention were made in the most basic of surgical skills, most notably with the nondominant hand, suggesting that short-term playing of the Wii could improve bimanual dexterity and expedite the acquisition of basic surgical skills.
Khan, Niaz Bahadur; Ibrahim, Zainah; Nguyen, Linh Tuan The; Javed, Muhammad Faisal; Jameel, Mohammed
2017-01-01
This study numerically investigates the vortex-induced vibration (VIV) of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re) = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear-stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV.
NASA Technical Reports Server (NTRS)
Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi
2007-01-01
One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.
NASA Astrophysics Data System (ADS)
Nelson, Douglas Harold
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. This investigation develops a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. The simulation, previously utilized to simulate the effects of atmospheric optical turbulence alone, is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, is used to simulate the effect of atmospheric optical turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. These investigations compare the output of the numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. This work also compares the output of the model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement is found between the model and the experimental data. Good agreement is also found with analytical predictions. Additionally, results of simulation of the combined effects on a finite aperture lidar system show agreement with experimental observations of increasing RMS noise with increasing turbulence level and the behavior of the experimental integrated intensity probability distribution. Simulation studies are included that demonstrate the usefulness of the model, examine its limitations and provide greater insight into the process of combined atmospheric optical turbulence and reflective speckle. One highlight of these studies is examination of the limitations of the simulation that shows, in general, precision increases with increasing grid size. The study of the backscatter intensity enhancement predicted by analytical theory show it to behave as a multi-path effect, like scintillation, with the highest contributions from atmospheric optical turbulence weighted at the middle of the propagation path. Aperture geometry also affects the signal-to-noise ratio with thin annular apertures exhibiting lower RMS noise than circular apertures of the same active area. The simulation is capable of studying a variety of lidar schemes including varying atmospheric optical turbulence along the propagation path as well as diverse transmitter and receiver geometries.
Simulation of Laser Induced Thermal Damage in Nd:YVO4 Crystals
NASA Astrophysics Data System (ADS)
Nagi, Richie
Neodymium-doped yttrium orthovanadate (Nd:YVO4) is a commonly used gain medium in Diode Pumped Solid State (DPSS) lasers, but high heat loading of Nd:YVO4 at high pump powers (≥ 5 W) leads to thermal distortions and crystal fracture, which limits the utility of Nd:YVO 4 for high power applications. In this thesis, a Nd:YVO4 crystal suffered thermal damage during experiments for investigating the optical gain characteristics of the crystal. This thesis examines the thermal damage mechanisms in detail. Principally, laser induced melting, as well as laser induced thermal stress fracture were studied, all in the absence of stimulated emission in the crystal. The optical system for coupling the pump laser light into the crystal was first simulated in Zemax, an optical design software, and the simulations were then compared to the experimental coupling efficiency results, which were found to be in agreement. The simulations for the laser coupling system were then used in conjunction with LASCAD, a finite element analysis software, to obtain the temperatures inside the crystal, as a function of optical power coupled into the crystal. The temperature simulations were then compared to the experimental results, which were in excellent agreement, and the temperature simulations were then generalized to other crystal geometries and Nd doping levels. Zemax and LASCAD were also used to simulate the thermal stress in the crystal as a function of the coupled optical power, and the simulations were compared to experiments, both of which were found to be in agreement. The thermal stress simulations were then generalized to different crystal geometries and Nd doping levels as well.
Comparison of vision through surface modulated and spatial light modulated multifocal optics.
Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana
2017-04-01
Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.
Comparison of vision through surface modulated and spatial light modulated multifocal optics
Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana
2017-01-01
Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near. PMID:28736655
Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.
Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal
2014-05-15
We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.
Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater
NASA Astrophysics Data System (ADS)
Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun
2010-06-01
For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.
Paseiro-Cerrato, Rafael; Tongchat, Chinawat; Franz, Roland
2016-05-01
This study evaluated the influence of parameters such as temperature and type of low-density polyethylene (LDPE) film on the log Kp/f values of seven model migrants in food simulants. Two different types of LDPE films contaminated by extrusion and immersion were placed in contact with three food simulants including 20% ethanol, 50% ethanol and olive oil under several time-temperature conditions. Results suggest that most log Kp/f values are little affected by these parameters in this study. In addition, the relation between log Kp/f and log Po/w was established for each food simulant and regression lines, as well as correlation coefficients, were calculated. Correlations were compared with data from real foodstuffs. Data presented in this study could be valuable in assigning certain foods to particular food simulants as well as predicting the mass transfer of potential migrants into different types of food or food simulants, avoiding tedious and expensive laboratory analysis. The results could be especially useful for regulatory agencies as well as for the food industry.
A comparative study of interface reconstruction methods for multi-material ALE simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucharik, Milan; Garimalla, Rao; Schofield, Samuel
2009-01-01
In this paper we compare the performance of different methods for reconstructing interfaces in multi-material compressible flow simulations. The methods compared are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF method based on power diagram partitioning of cells and the Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides the most accurate tracking of interfaces, followed by the VOF method with the right material ordering. The material-order-independent VOF method performs some-what worse than the above two while the solutions with VOF using the wrong material order are considerably worse.
Systematic review on mentoring and simulation in laparoscopic colorectal surgery.
Miskovic, Danilo; Wyles, Susannah M; Ni, Melody; Darzi, Ara W; Hanna, George B
2010-12-01
To identify and evaluate the influence of mentoring and simulated training in laparoscopic colorectal surgery (LCS) and define the key components for learning advanced technical skills. Laparoscopic colorectal surgery is a complex procedure, often being self-taught by senior surgeons. Educational issues such as inadequate training facilities or a shortfall of training fellowships may result in a slow uptake of LCS. The effectiveness of mentored and simulated training, however, remains unclear. We conducted a systematic search, using Ovid databases. Four study categories were identified: mentored versus nonmentored cases, training case selection, simulation, and assessment. We performed a meta-analysis and a mixed model regression on the difference of the main outcome measures (conversion rates, morbidity, and mortality) for mentored trainees and expert surgeons. We also compared conversion rates of mentored and nonmentored. Meta-analysis of risk factors for conversion was performed using published and unpublished data sets requested from various investigators. For studies on simulation, we compared scores of surveys on the perception of different training courses. Thirty-seven studies were included. Pooled weighted outcomes of mentored cases (n = 751) showed a lower conversion rate (13.3% vs 20.5%, P = 0.0332) compared with nonmentored cases (n = 695). Compared to expert case series (n = 5313), there was no difference in conversion (P = 0.2835), anastomotic leak (P = 0.8342), or mortality (P = 0.5680). A meta-analysis of training case selection data (n = 4444) revealed male sex (P < 0.0001), previous abdominal surgery (P = 0.0200), a BMI greater than 30 (P = 0.0050), an ASA of less than 2 (P < 0.0001), colorectal cancer (P < 0.0001) and intra-abdominal fistula (P < 0.0001), but not older than 64 years (P = 0.4800), to significantly increase conversion risk. Participants on cadaveric courses were highly satisfied with the teaching value yet trainees on an animal course gave less positive feedback. Structured assessment for LCS has been partially implemented. This review and meta-analysis supports evidence that trainees can obtain similar clinical results like expert surgeons in laparoscopic colorectal surgery if supervised by an experienced trainer. Cadaveric models currently provide the best value for training in a simulated environment. There remains a need for further research into technical skills assessment and the educational value of simulated training.
Modeling the Cost Effectiveness of Malaria Control Interventions in the Highlands of Western Kenya
Stuckey, Erin M.; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y.; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A.; Cox, Jonathan; Chitnis, Nakul
2014-01-01
Introduction Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Methods Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. Results The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. Conclusions All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions. PMID:25290939
Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya.
Stuckey, Erin M; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A; Cox, Jonathan; Chitnis, Nakul
2014-01-01
Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.
Khan, Asaduzzaman; Chien, Chi-Wen; Bagraith, Karl S
2015-04-01
To investigate whether using a parametric statistic in comparing groups leads to different conclusions when using summative scores from rating scales compared with using their corresponding Rasch-based measures. A Monte Carlo simulation study was designed to examine between-group differences in the change scores derived from summative scores from rating scales, and those derived from their corresponding Rasch-based measures, using 1-way analysis of variance. The degree of inconsistency between the 2 scoring approaches (i.e. summative and Rasch-based) was examined, using varying sample sizes, scale difficulties and person ability conditions. This simulation study revealed scaling artefacts that could arise from using summative scores rather than Rasch-based measures for determining the changes between groups. The group differences in the change scores were statistically significant for summative scores under all test conditions and sample size scenarios. However, none of the group differences in the change scores were significant when using the corresponding Rasch-based measures. This study raises questions about the validity of the inference on group differences of summative score changes in parametric analyses. Moreover, it provides a rationale for the use of Rasch-based measures, which can allow valid parametric analyses of rating scale data.
The Impacts of a Web-Aided Instructional Simulation on Science Learning.
ERIC Educational Resources Information Center
Hsu, Ying-Shao; Thomas, Rex A.
2002-01-01
Investigates the effects of selected characteristics of a web-aided instructional simulation on students' conceptual change, problem solving, and transfer abilities. Conducts a two-pronged research study with (n=117) students enrolled in a beginning meteorology course at Iowa State University. Compares three groups--with-log group, without-log…
ERIC Educational Resources Information Center
Kogar, Hakan
2018-01-01
The aim of the present research study was to compare the findings from the nonparametric MSA, DIMTEST and DETECT and the parametric dimensionality determining methods in various simulation conditions by utilizing exploratory and confirmatory methods. For this purpose, various simulation conditions were established based on number of dimensions,…
ERIC Educational Resources Information Center
Morrison, Jennifer R.; Bol, Linda; Ross, Steven M.; Watson, Ginger S.
2015-01-01
This study examined the incorporation of generative strategies for the guided discovery of physics principles in a simulation. Participants who either paraphrased or predicted and self-explained guided discovery assignments exhibited improved performance on an achievement test as compared to a control group. Calibration accuracy (the…
Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories
ERIC Educational Resources Information Center
Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.
2011-01-01
A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…
Simulation and the Need for Practice in Teacher Preparation
ERIC Educational Resources Information Center
Girod, Mark; Girod, Gerald R.
2008-01-01
Recognizing the power of high quality practice in teacher preparation, a web-based simulation called Cook School District was designed to allow teacher candidates to practice the skills necessary to connect their teaching to the learning of all children employing the framework of teacher work samples (TWS). Pilot study data comparing simulation…
Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard-design nuclear power plants. The main objective of the study was to compare the dispersion in the wakes of the plants with that in a simulated atmospheric bound...
ERIC Educational Resources Information Center
Bazaldua, Diego A. Luna; Lee, Young-Sun; Keller, Bryan; Fellers, Lauren
2017-01-01
The performance of various classical test theory (CTT) item discrimination estimators has been compared in the literature using both empirical and simulated data, resulting in mixed results regarding the preference of some discrimination estimators over others. This study analyzes the performance of various item discrimination estimators in CTT:…
Actual and simulated injury of Creontiades signatus (Heteroptera: Miridae) feeding on cotton bolls
USDA-ARS?s Scientific Manuscript database
The actual feeding injury of Creontiades signatus (Distant) was compared to a simulated technique for study years 2005, 2006 and 2008 by injecting varying dilutions of pectinase into cotton bolls at different boll sizes (ages) in an effort to determine if such a technique could be used to reduce the...
Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series
USDA-ARS?s Scientific Manuscript database
Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...
Use of Static Picture Prompts Versus Video Modeling during Simulation Instruction
ERIC Educational Resources Information Center
Alberto, Paul A.; Cihak, David F.; Gama, Robert I.
2005-01-01
The purpose of this study was to compare the effectiveness and efficiency of static picture prompts and video modeling as classroom simulation strategies in combination with in vivo community instruction. Students with moderate intellectual disabilities were instructed in the tasks of withdrawing money from an ATM and purchasing items using a…
The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...
The Development of MST Test Information for the Prediction of Test Performances
ERIC Educational Resources Information Center
Park, Ryoungsun; Kim, Jiseon; Chung, Hyewon; Dodd, Barbara G.
2017-01-01
The current study proposes novel methods to predict multistage testing (MST) performance without conducting simulations. This method, called MST test information, is based on analytic derivation of standard errors of ability estimates across theta levels. We compared standard errors derived analytically to the simulation results to demonstrate the…
On the spreading and instability of gravity current fronts of arbitrary shape
NASA Astrophysics Data System (ADS)
Zgheib, N.; Bonometti, T.; Balachandar, S.
2012-11-01
Experiments, simulations and theoretical analysis were carried out to study the influence of geometry on the spreading of gravity currents. The horizontal spreading of three different intial planforms of initial release were investigated: an extended ellipse, a cross, and a circle. The experiments used a pulley system for a swift nearly instantaneous release. The case of the axisymmetric cylinder compared favorably with earlier simulations. We ran experiments for multiple aspect ratios for all three configurations. Perhaps the most intriguing of the three cases is the ``ellipse,'' which within a short period of release flipped the major and minor axes. This behavior cannot be captured by current theoretical methods (such as the Box Model). These cases have also been investigated using shallow water and direct numerical simulations. Also, in this study, we investigate the possibility of a Rayleigh-Taylor (RT) instability of the radially moving, but decelerating front. We present a simple theoretical framework based on the inviscid Shallow Water Equations. The theoretical results are supplemented and compared to highly resolved three-dimensional simulations with the Boussinesq approximation. Chateaubriand Fellowship - NSF PIRE grant OISE-0968313.
NASA Astrophysics Data System (ADS)
Chao, Zenas C.; Bakkum, Douglas J.; Potter, Steve M.
2007-09-01
Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.
Computational modeling of cardiovascular response to orthostatic stress
NASA Technical Reports Server (NTRS)
Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G.
2002-01-01
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance.
Trade-offs in experimental designs for estimating post-release mortality in containment studies
Rogers, Mark W.; Barbour, Andrew B; Wilson, Kyle L
2014-01-01
Estimates of post-release mortality (PRM) facilitate accounting for unintended deaths from fishery activities and contribute to development of fishery regulations and harvest quotas. The most popular method for estimating PRM employs containers for comparing control and treatment fish, yet guidance for experimental design of PRM studies with containers is lacking. We used simulations to evaluate trade-offs in the number of containers (replicates) employed versus the number of fish-per container when estimating tagging mortality. We also investigated effects of control fish survival and how among container variation in survival affects the ability to detect additive mortality. Simulations revealed that high experimental effort was required when: (1) additive treatment mortality was small, (2) control fish mortality was non-negligible, and (3) among container variability in control fish mortality exceeded 10% of the mean. We provided programming code to allow investigators to compare alternative designs for their individual scenarios and expose trade-offs among experimental design options. Results from our simulations and simulation code will help investigators develop efficient PRM experimental designs for precise mortality assessment.
Development and validation of a short-lag spatial coherence theory for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Graham, Michelle T.; Lediju Bell, Muyinatu A.
2018-02-01
We previously derived spatial coherence theory to be implemented for studying theoretical properties of ShortLag Spatial Coherence (SLSC) beamforming applied to photoacoustic images. In this paper, our newly derived theoretical equation is evaluated to generate SLSC images of a point target and a 1.2 mm diameter target and corresponding lateral profiles. We compared SLSC images simulated solely based on our theory to SLSC images created after beamforming acoustic channel data from k-Wave simulations of 1.2 mm-diameter disc target. This process was repeated for a point target and the full width at half the maximum signal amplitudes were measured to estimate the resolution of each imaging system. Resolution as a function of lag was comparable for the first 10% of the receive aperture (i.e., the short-lag region), after which resolution measurements diverged by a maximum of 1 mm between the two types of simulated images. These results indicate the potential for both simulation methods to be utilized as independent resources to study coherence-based photoacoustic beamformers when imaging point-like targets.
Laser fractional photothermolysis of the skin: numerical simulation of microthermal zones.
Marqa, Mohamad Feras; Mordon, Serge
2014-04-01
Laser Fractional Photothermolysis (FP) is one of the innovative techniques for skin remodeling and resurfacing. During treatment, the control of the Microscopic Thermal Zones' (MTZs) dimensions versus pulse energy requires detailed knowledge of the various parameters governing the heat transfer process. In this study, a mathematical model is devised to simulate the effect of pulse energy variations on the dimensions of MTZs. Two series of simulations for ablative (10.6 μm CO2) and non-ablative (1.550 μm Er:Glass) lasers systems were performed. In each series, simulations were carried for the following pulses energies: 5, 10, 15, 20, 25, 30, 35, and 40 mJ. Results of simulations are validated by histological analysis images of MTZs sections reported in works by Hantash et al. and Bedi et al. MTZs dimensions were compared between histology and those achieved using our simulation model using fusion data technique for both ablative FP and non-ablative FP treatment methods. Depths and widths from simulations are usually deeper (21 ± 2%) and wider (12 ± 2%) when compared with histological analysis data. When accounting for the shrinkage effect of excision of cutaneous tissues, a good correlation can be established between the simulation and the histological analysis results.
Simulation of white light generation and near light bullets using a novel numerical technique
NASA Astrophysics Data System (ADS)
Zia, Haider
2018-01-01
An accurate and efficient simulation has been devised, employing a new numerical technique to simulate the derivative generalised non-linear Schrödinger equation in all three spatial dimensions and time. The simulation models all pertinent effects such as self-steepening and plasma for the non-linear propagation of ultrafast optical radiation in bulk material. Simulation results are compared to published experimental spectral data of an example ytterbium aluminum garnet system at 3.1 μm radiation and fits to within a factor of 5. The simulation shows that there is a stability point near the end of the 2 mm crystal where a quasi-light bullet (spatial temporal soliton) is present. Within this region, the pulse is collimated at a reduced diameter (factor of ∼2) and there exists a near temporal soliton at the spatial center. The temporal intensity within this stable region is compressed by a factor of ∼4 compared to the input. This study shows that the simulation highlights new physical phenomena based on the interplay of various linear, non-linear and plasma effects that go beyond the experiment and is thus integral to achieving accurate designs of white light generation systems for optical applications. An adaptive error reduction algorithm tailor made for this simulation will also be presented in appendix.
Framework for modeling urban restoration resilience time in the aftermath of an extreme event
Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Héctor
2015-01-01
The impacts of extreme events continue long after the emergency response has terminated. Effective reconstruction of supply-chain strategic infrastructure (SCSI) elements is essential for postevent recovery and the reconnectivity of a region with the outside. This study uses an interdisciplinary approach to develop a comprehensive framework to model resilience time. The framework is tested by comparing resilience time results for a simulated EF-5 tornado with ground truth data from the tornado that devastated Joplin, Missouri, on May 22, 2011. Data for the simulated tornado were derived for Overland Park, Johnson County, Kansas, in the greater Kansas City, Missouri, area. Given the simulated tornado, a combinatorial graph considering the damages in terms of interconnectivity between different SCSI elements is derived. Reconstruction in the aftermath of the simulated tornado is optimized using the proposed framework to promote a rapid recovery of the SCSI. This research shows promising results when compared with the independent quantifiable data obtained from Joplin, Missouri, returning a resilience time of 22 days compared with 25 days reported by city and state officials.
Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I
2017-02-01
Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated tumors.
Bipedal vs. unipedal: a comparison between one-foot and two-foot driving in a driving simulator.
Wang, Dong-Yuan Debbie; Richard, F Dan; Cino, Cullen R; Blount, Trevin; Schmuller, Joseph
2017-04-01
Is it better to drive with one foot or with two feet? Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. The current study compared traditional unipedal (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (two-foot driving, using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator study. Each of 30 undergraduate participants drove in a simulated driving scenario. They responded to a STOP sign displayed on the centre of the screen by bringing their vehicle to a complete stop. Brake RT was shorter under the bipedal condition, while throttle RT showed advantage under the unipedal condition. Stopping time and distance showed a bipedal advantage, however. We discuss further limitations of the current study and implications in a driving task. Before drawing any conclusions from the simulator study, further on-road driving tests are necessary to confirm these obtained bipedal advantages. Practitioner Summary: Traditional unipedal (using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator were compared. Our results showed a bipedal advantage. Promotion: Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. Traditional (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a simulated driving study were compared. Throttle reaction time was faster in the unipedal condition whereas brake reaction time, stopping time and stopping distance showed a bipedal advantage. We discuss further theoretical issues and implications in a driving task.
Same Content, Different Methods: Comparing Lecture, Engaged Classroom, and Simulation.
Raleigh, Meghan F; Wilson, Garland Anthony; Moss, David Alan; Reineke-Piper, Kristen A; Walden, Jeffrey; Fisher, Daniel J; Williams, Tracy; Alexander, Christienne; Niceler, Brock; Viera, Anthony J; Zakrajsek, Todd
2018-02-01
There is a push to use classroom technology and active teaching methods to replace didactic lectures as the most prevalent format for resident education. This multisite collaborative cohort study involving nine residency programs across the United States compared a standard slide-based didactic lecture, a facilitated group discussion via an engaged classroom, and a high-fidelity, hands-on simulation scenario for teaching the topic of acute dyspnea. The primary outcome was knowledge retention at 2 to 4 weeks. Each teaching method was assigned to three different residency programs in the collaborative according to local resources. Learning objectives were determined by faculty. Pre- and posttest questions were validated and utilized as a measurement of knowledge retention. Each site administered the pretest, taught the topic of acute dyspnea utilizing their assigned method, and administered a posttest 2 to 4 weeks later. Differences between the groups were compared using paired t-tests. A total of 146 residents completed the posttest, and scores increased from baseline across all groups. The average score increased 6% in the standard lecture group (n=47), 11% in the engaged classroom (n=53), and 9% in the simulation group (n=56). The differences in improvement between engaged classroom and simulation were not statistically significant. Compared to standard lecture, both engaged classroom and high-fidelity simulation were associated with a statistically significant improvement in knowledge retention. Knowledge retention after engaged classroom and high-fidelity simulation did not significantly differ. More research is necessary to determine if different teaching methods result in different levels of comfort and skill with actual patient care.
Greenbaum, Michael P.; Strom, Eric A.; Allen, Pamela K.; Perkins, George H.; Oh, Julia L.; Tereffe, Welela; Yu, Tse-Kuan; Buchholz, Thomas A.; Woodward, Wendy. A.
2011-01-01
Purpose To determine the rate of locoregional recurrence (LRR) associated with modern tri-modality therapy. Methods We retrospectively reviewed data from 291 consecutive PMRT patients treated from 1999 to 2001. These patients were compared to an historical group of 313 patients treated from 1979 to 1988 who had fluoroscopic simulation and contour-generated 2D planning. 1999–2001 spans the adoption of CT simulators for breast radiation therapy and a comparison was made between patients simulated before and after the implementation of CT simulation. Five-year actuarial rates for LRR, distal metastasis (DM), and overall survival (OS) between the pre and post CT simulation cohorts were compared as well. Results Compared to a 2D planned historic control, the combined contemporary patients had improved outcomes at 5 years for all endpoints studied; LRR 3.0% vs. 11.5%, DM 29.2% vs. 39.2%, and OS 79.2% vs. 70.6% (p = 0.0004, 0.0052, 0.0012, respectively). Significant factors in a multivariate analysis for LRR were: advanced T-stage (RR = 2.14, CI = 1.11–4.11, p = 0.023), and percent positive nodes (RR = 1.01, CI = 1.00–1.02, p = 0.012). The comparison of the pre and post CT-simulated PMRT patients (1999–2001) found no significant difference in any endpoint. Conclusions The rate of locoregional control for PMRT patients treated with modern radiotherapy is outstanding and has improved significantly compared to historical controls. PMID:20227126
Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data
NASA Astrophysics Data System (ADS)
Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.
2017-07-01
A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.
Neural Processing of Musical and Vocal Emotions Through Cochlear Implants Simulation.
Ahmed, Duha G; Paquette, Sebastian; Zeitouni, Anthony; Lehmann, Alexandre
2018-05-01
Cochlear implants (CIs) partially restore the sense of hearing in the deaf. However, the ability to recognize emotions in speech and music is reduced due to the implant's electrical signal limitations and the patient's altered neural pathways. Electrophysiological correlations of these limitations are not yet well established. Here we aimed to characterize the effect of CIs on auditory emotion processing and, for the first time, directly compare vocal and musical emotion processing through a CI-simulator. We recorded 16 normal hearing participants' electroencephalographic activity while listening to vocal and musical emotional bursts in their original form and in a degraded (CI-simulated) condition. We found prolonged P50 latency and reduced N100-P200 complex amplitude in the CI-simulated condition. This points to a limitation in encoding sound signals processed through CI simulation. When comparing the processing of vocal and musical bursts, we found a delay in latency with the musical bursts compared to the vocal bursts in both conditions (original and CI-simulated). This suggests that despite the cochlear implants' limitations, the auditory cortex can distinguish between vocal and musical stimuli. In addition, it adds to the literature supporting the complexity of musical emotion. Replicating this study with actual CI users might lead to characterizing emotional processing in CI users and could ultimately help develop optimal rehabilitation programs or device processing strategies to improve CI users' quality of life.
Discrete Spin Vector Approach for Monte Carlo-based Magnetic Nanoparticle Simulations
NASA Astrophysics Data System (ADS)
Senkov, Alexander; Peralta, Juan; Sahay, Rahul
The study of magnetic nanoparticles has gained significant popularity due to the potential uses in many fields such as modern medicine, electronics, and engineering. To study the magnetic behavior of these particles in depth, it is important to be able to model and simulate their magnetic properties efficiently. Here we utilize the Metropolis-Hastings algorithm with a discrete spin vector model (in contrast to the standard continuous model) to model the magnetic hysteresis of a set of protected pure iron nanoparticles. We compare our simulations with the experimental hysteresis curves and discuss the efficiency of our algorithm.
Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
van der Kolk, N.
2018-03-01
The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.
NASA Astrophysics Data System (ADS)
Xie, Zhipeng; Hu, Zeyong
2016-04-01
Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm for SL12, respectively. This study demonstrates that future improvements on snow simulation over the Tibetan Plateau are in urgent need for better representing the variability of snow in CLM. Furthermore, these findings lay a foundation for follow-up studies on the modification of snow cover parameterization in the land surface model. Keywords: snow cover, CLM, Tibetan Plateau, simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid
2008-12-01
This paper assesses the accuracy of the simplified frame cavity conduction/convection and radiation models presented in ISO 15099 and used in software for rating and labeling window products. Temperatures and U-factors for typical horizontal window frames with internal cavities are compared; results from Computational Fluid Dynamics (CFD) simulations with detailed radiation modeling are used as a reference. Four different frames were studied. Two were made of polyvinyl chloride (PVC) and two of aluminum. For each frame, six different simulations were performed, two with a CFD code and four with a building-component thermal-simulation tool using the Finite Element Method (FEM). Thismore » FEM tool addresses convection using correlations from ISO 15099; it addressed radiation with either correlations from ISO 15099 or with a detailed, view-factor-based radiation model. Calculations were performed using the CFD code with and without fluid flow in the window frame cavities; the calculations without fluid flow were performed to verify that the CFD code and the building-component thermal-simulation tool produced consistent results. With the FEM-code, the practice of subdividing small frame cavities was examined, in some cases not subdividing, in some cases subdividing cavities with interconnections smaller than five millimeters (mm) (ISO 15099) and in some cases subdividing cavities with interconnections smaller than seven mm (a breakpoint that has been suggested in other studies). For the various frames, the calculated U-factors were found to be quite comparable (the maximum difference between the reference CFD simulation and the other simulations was found to be 13.2 percent). A maximum difference of 8.5 percent was found between the CFD simulation and the FEM simulation using ISO 15099 procedures. The ISO 15099 correlation works best for frames with high U-factors. For more efficient frames, the relative differences among various simulations are larger. Temperature was also compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.« less
[Existing laparoscopic simulators and their benefit for the surgeon].
Kalvach, J; Ryska, O; Ryska, M
2016-01-01
Nowadays, laparoscopic operations are a common part of surgical practice. However, they have their own characteristics and require a specific method of preparation. Recently, simulation techniques have been increasingly used for the training of skills. The aim of this review is to provide a summary of available literature on the topic of laparoscopic simulators, to assess their contribution to the training of surgeons, and to identify the most effective type of simulation. PubMed database, Web of Science and Cochrane Library were used to search for relevant publications. The keywords "laparoscopy, simulator, surgery, assessment" were used in the search. The search was limited to prospective studies published in the last 5 years in the English language. From a total of 354 studies found, we included in the survey 26 that matched our criteria. Nine studies compared individual simulators to one another. Five studies evaluated "high and low fidelity" (a virtual box simulator) as equally effective (EBM 2a). In three cases the "low fidelity" box simulator was found to be more efficient (EBM 2a3b). Only one study preferred the virtual simulator (VR) (EBM2b).Thirteen studies evaluated the benefits of simulators for practice. Twelve found training on a simulator to be an effective method of preparation (EBM 1b3b). In contrast, one study did not find any difference between the training simulator and traditional preparation (EBM 3b). Nine studies evaluated directly one of the methods of evaluating laparoscopic skills. Three studies evaluated VR simulator as a useful assessment tool. Other studies evaluated as successful the scoring system GOALS-GH. The hand motion analysis model was successful in one case. Most studies were observational (EBM 3b) and only 2 studies were of higher quality (EBM 2b). Simulators are an effective tool for practicing laparoscopic techniques (EBM: 1b). It cannot be determined based on available data which of the simulators is most effective. The virtual simulator, however, still remains the most self-sufficient unit suitable for teaching as well as evaluation of laparoscopic techniques (EBM 2b3b). Further studies are needed to find an effective system and parameters for an objective evaluation of skills. laparoscopy - simulator - surgery assessment.
On the kinetics of anaerobic power
2012-01-01
Background This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while Model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. Results Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, Model 2 showed that the alactic energy storage decreased with time, whereas Model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. Conclusions The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicate that blood lactate levels can be accurately modeled during steady state, and suggests a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. PMID:22830586
Andersen, Simone Nyholm; Broberg, Ole
2015-11-01
Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.
2007-12-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.
Drixler, Fabian F
2015-04-01
This article quantifies the frequency of infanticide and abortion in one region of Japan by comparing observed fertility in a sample of 4.9 million person-years (1660-1872) with a Monte Carlo simulation of how many conceptions and births that population should have experienced. The simulation uses empirical values for the determinants of fertility from Eastern Japan itself as well as the best available studies of comparable populations. This procedure reveals that in several decades of the eighteenth century, at least 40% of pregnancies must have ended in either an induced abortion or an infanticide. In addition, the simulation results imply a rapid decline in the incidence of infanticide and abortion during the nineteenth century, when in a reverse fertility transition, this premodern family-planning regime gave way to a new age of large families.
Verifying Safeguards Declarations with INDEPTH: A Sensitivity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grogan, Brandon R; Richards, Scott
2017-01-01
A series of ORIGEN calculations were used to simulate the irradiation and decay of a number of spent fuel assemblies. These simulations focused on variations in the irradiation history that achieved the same terminal burnup through a different set of cycle histories. Simulated NDA measurements were generated for each test case from the ORIGEN data. These simulated measurement types included relative gammas, absolute gammas, absolute gammas plus neutrons, and concentrations of a set of six isotopes commonly measured by NDA. The INDEPTH code was used to reconstruct the initial enrichment, cooling time, and burnup for each irradiation using each simulatedmore » measurement type. The results were then compared to the initial ORIGEN inputs to quantify the size of the errors induced by the variations in cycle histories. Errors were compared based on the underlying changes to the cycle history, as well as the data types used for the reconstructions.« less
Ammentorp, Jette; Thomsen, Janus Laust; Jarbøl, Dorte Ejg; Holst, René; Øvrehus, Anne Lindebo Holm; Kofoed, Poul-Erik
2013-04-08
The accuracy of self-assessment has been questioned in studies comparing physicians' self-assessments to observed assessments; however, none of these studies used self-efficacy as a method for self-assessment. The aim of the study was to investigate how medical students' perceived self-efficacy of specific communication skills corresponds to the evaluation of simulated patients and observers. All of the medical students who signed up for an Objective Structured Clinical Examination (OSCE) were included. As a part of the OSCE, the student performance in the "parent-physician interaction" was evaluated by a simulated patient and an observer at one of the stations. After the examination the students were asked to assess their self-efficacy according to the same specific communication skills. The Calgary Cambridge Observation Guide formed the basis for the outcome measures used in the questionnaires. A total of 12 items was rated on a Likert scale from 1-5 (strongly disagree to strongly agree). We used extended Rasch models for comparisons between the groups of responses of the questionnaires. Comparisons of groups were conducted on dichotomized responses. Eighty-four students participated in the examination, 87% (73/84) of whom responded to the questionnaire. The response rate for the simulated patients and the observers was 100%. Significantly more items were scored in the highest categories (4 and 5) by the observers and simulated patients compared to the students (observers versus students: -0.23; SE:0.112; p=0.002 and patients versus students:0.177; SE:0.109; p=0.037). When analysing the items individually, a statistically significant difference only existed for two items. This study showed that students scored their communication skills lower compared to observers or simulated patients. The differences were driven by only 2 of 12 items. The results in this study indicate that self-efficacy based on the Calgary Cambridge Observation guide seems to be a reliable tool.
Reime, Marit Hegg; Johnsgaard, Tone; Kvam, Fred Ivan; Aarflot, Morten; Engeberg, Janecke Merethe; Breivik, Marit; Brattebø, Guttorm
2017-01-01
Larger student groups and pressure on limited faculty time have raised the question of the learning value of merely observing simulation training in emergency medicine, instead of active team participation. The purpose of this study was to examine observers and hands-on participants' self-reported learning outcomes during simulation-based interprofessional team training regarding non-technical skills. In addition, we compared the learning outcomes for different professions and investigated team performance relative to the number of simulations in which they participated. A concurrent mixed-method design was chosen to evaluate the study, using questionnaires, observations, and focus group interviews. Participants included a total of 262 postgraduate and bachelor nursing students and medical students, organised into 44 interprofessional teams. The quantitative data showed that observers and participants had similar results in three of six predefined learning outcomes. The qualitative data emphasised the importance of participating in different roles, training several times, and training interprofessionally to enhance realism. Observing simulation training can be a valuable learning experience, but the students' preferred hands-on participation and learning by doing. For this reason, one can legitimise the observer role, given the large student groups and limited faculty time, as long as the students are also given some opportunity for hands-on participation in order to become more confident in their professional roles.
Lago, M A; Rupérez, M J; Monserrat, C; Martínez-Martínez, F; Martínez-Sanchis, S; Larra, E; Díez-Ajenjo, M A; Peris-Martínez, C
2015-11-01
The purpose of this study was the simulation of the implantation of intrastromal corneal-ring segments for patients with keratoconus. The aim of the study was the prediction of the corneal curvature recovery after this intervention. Seven patients with keratoconus diagnosed and treated by implantation of intrastromal corneal-ring segments were enrolled in the study. The 3D geometry of the cornea of each patient was obtained from its specific topography and a hyperelastic model was assumed to characterize its mechanical behavior. To simulate the intervention, the intrastromal corneal-ring segments were modeled and placed at the same location at which they were placed in the surgery. The finite element method was then used to obtain a simulation of the deformation of the cornea after the ring segment insertion. Finally, the predicted curvature was compared with the real curvature after the intervention. The simulation of the ring segment insertion was validated comparing the curvature change with the data after the surgery. Results showed a flattening of the cornea which was in consonance with the real improvement of the corneal curvature. The mean difference obtained was of 0.74 mm using properties of healthy corneas. For the first time, a patient-specific model of the cornea has been used to predict the outcomes of the surgery after the intrastromal corneal-ring segments implantation in real patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Current status of validation for robotic surgery simulators - a systematic review.
Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran
2013-02-01
To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU International.
Simulation in Occupational Therapy Curricula: A literature review.
Bennett, Sally; Rodger, Sylvia; Fitzgerald, Cate; Gibson, Libby
2017-08-01
Simulated learning experiences are increasingly being used in health-care education to enhance student engagement and provide experiences that reflect clinical practice; however, simulation has not been widely investigated in occupational therapy curricula. The aim of this paper was to: (i) describe the existing research about the use and evaluation of simulation over the last three decades in occupational therapy curricula and (ii) consider how simulation has been used to develop competence in students. A literature review was undertaken with searches of MEDLINE, CINAHL and ERIC to locate articles that described or evaluated the use of simulation in occupational therapy curricula. Fifty-seven papers were identified. Occupational therapy educators have used the full scope of simulation modalities, including written case studies (22), standardised patients (13), video case studies (15), computer-based and virtual reality cases (7), role-play (8) and mannequins and part-task trainers (4). Ten studies used combinations of these modalities and two papers compared modalities. Most papers described the use of simulation for foundational courses, as for preparation for fieldwork, and to address competencies necessary for newly graduating therapists. The majority of studies were descriptive, used pre-post design, or were student's perceptions of the value of simulation. Simulation-based education has been used for a wide range of purposes in occupational therapy curricula and appears to be well received. Randomised controlled trials are needed to more accurately understand the effects of simulation not just for occupational therapy students but for longer term outcomes in clinical practice. © 2017 Occupational Therapy Australia.
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
Yousefi, Milad; Yousefi, Moslem; Fogliatto, F S; Ferreira, R P M; Kim, J H
2018-01-11
The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies.
Yousefi, Milad; Yousefi, Moslem; Fogliatto, F.S.; Ferreira, R.P.M.; Kim, J.H.
2018-01-01
The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies. PMID:29340526
Energy consumption during simulated minimal access surgery with and without using an armrest.
Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie
2013-03-01
Minimal access surgery (MAS) can be a lengthy procedure when compared to open surgery and therefore surgeon fatigue becomes an important issue and surgeons may expose themselves to chronic injuries and making errors. There have been few studies on this topic and they have used only questionnaires and electromyography rather than direct measurement of energy expenditure (EE). The aim of this study was to investigate whether the use of an armrest could reduce the EE of surgeons during MAS. Sixteen surgeons performed simulated MAS with and without using an armrest. They were required to perform the time-consuming task of using scissors to cut a rubber glove through its top layer in a triangular fashion with the help of a laparoscopic camera. Energy consumptions were measured using the Oxycon Mobile system during all the procedures. Error rate and duration time for simulated surgery were recorded. After performing the simulated surgery, subjects scored how comfortable they felt using the armrest. It was found that O(2) uptake (VO(2)) was 5 % less when surgeons used the armrest. The error rate when performing the procedure with the armrest was 35 % compared with 42.29 % without the armrest. Additionally, comfort levels with the armrest were higher than without the armrest. 75 % of surgeons indicated a preference for using the armrest during the simulated surgery. The armrest provides support for surgeons and cuts energy consumption during simulated MAS.
Tuzer, Hilal; Dinc, Leyla; Elcin, Melih
2016-10-01
Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (p<0.001). Results of this study revealed that use of standardized patients was more effective than the use of a high-fidelity simulator in increasing the knowledge scores of students on thorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Irwin, S. H.; NELSON; Roleyni, G.
1977-01-01
Optimal design studies of MLS angle-receivers and a theoretical design-study of MLS DME-receivers are reported. The angle-receiver results include an integration of the scan data processor and tracking filter components of the optimal receiver into a unified structure. An extensive simulation study comparing the performance of the optimal and threshold receivers in a wide variety of representative dynamical interference environments was made. The optimal receiver was generally superior. A simulation of the performance of the threshold and delay-and-compare receivers in various signal environments was performed. An analysis of combined errors due to lateral reflections from vertical structures with small differential path delays, specular ground reflections with neglible differential path delays, and thermal noise in the receivers is provided.
Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data
NASA Technical Reports Server (NTRS)
Stillwater, Ryan Allanque; Merritt, Deborah S.
2011-01-01
The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.
Multi-Fluid Simulations of Field Reversed Configuration Formation
NASA Astrophysics Data System (ADS)
Sousa, Eder; Martin, Robert
2017-10-01
The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.
Djaker, Nadia; Wulfman, Claudine; Sadoun, Michaël; Lamy de la Chapelle, Marc
2013-01-01
Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning. PMID:23667788