Sample records for comparative spectral analysis

  1. Comparative Analysis of the Clinical Significance of Oscillatory Components in the Rhythmic Structure of Pulse Signal in the Diagnostics of Psychosomatic Disorders in School Age Children.

    PubMed

    Desova, A A; Dorofeyuk, A A; Anokhin, A M

    2017-01-01

    We performed a comparative analysis of the types of spectral density typical of various parameters of pulse signal. The experimental material was obtained during the examination of school age children with various psychosomatic disorders. We also performed a typological analysis of the spectral density functions corresponding to the time series of different parameters of a single oscillation of pulse signals; the results of their comparative analysis are presented. We determined the most significant spectral components for two disordersin children: arterial hypertension and mitral valve prolapse.

  2. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  3. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification

    NASA Astrophysics Data System (ADS)

    Sharif, I.; Khare, S.

    2014-11-01

    With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.

  4. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    PubMed

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.

    1992-01-01

    The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.

  6. Global spectral graph wavelet signature for surface analysis of carpal bones

    NASA Astrophysics Data System (ADS)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  7. Global spectral graph wavelet signature for surface analysis of carpal bones.

    PubMed

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A

    2018-02-05

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  8. Analysis of spectrally resolved autofluorescence images by support vector machines

    NASA Astrophysics Data System (ADS)

    Mateasik, A.; Chorvat, D.; Chorvatova, A.

    2013-02-01

    Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.

  9. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  10. A Comparison of Raman Spectral Features of Frozen and Deparaffinized Tissues in Neuroblastoma and Ganglioneuroma

    NASA Astrophysics Data System (ADS)

    Devpura, Suneetha; Thakur, Jagdish S.; Poulik, Janet M.; Rabah, Raja; Naik, Vaman M.; Naik, Ratna

    2012-02-01

    We have investigated the cellular regions in neuroblastoma and ganglioneuroma using Raman spectroscopy and compared their spectral characteristics with those of normal adrenal gland. Thin sections from both frozen and deparaffinized tissues, obtained from the same tissue specimen, were studied in conjunction with the pathological examination of the tissues. We found a significant difference in the spectral features of frozen sections of normal adrenal gland, neuroblastoma, and ganglioneuroma when compared to deparaffinized tissues. The quantitative analysis of the Raman data using chemometric methods of principal component analysis and discriminant function analysis obtained from the frozen tissues show a sensitivity and specificity of 100% each. The biochemical identification based on the spectral differences shows that the normal adrenal gland tissues have higher levels of carotenoids, lipids, and cholesterol compared to the neuroblastoma and ganglioneuroma frozen tissues. However, deparaffinized tissues show complete removal of these biochemicals in adrenal tissues. This study demonstrates that Raman spectroscopy combined with chemometric methods can successfully distinguish neuroblastoma and ganglioneuroma at cellular level.

  11. Power Spectral Density Error Analysis of Spectral Subtraction Type of Speech Enhancement Methods

    NASA Astrophysics Data System (ADS)

    Händel, Peter

    2006-12-01

    A theoretical framework for analysis of speech enhancement algorithms is introduced for performance assessment of spectral subtraction type of methods. The quality of the enhanced speech is related to physical quantities of the speech and noise (such as stationarity time and spectral flatness), as well as to design variables of the noise suppressor. The derived theoretical results are compared with the outcome of subjective listening tests as well as successful design strategies, performed by independent research groups.

  12. Spectral components in electromyograms from four regions of the human masseter, in natural dentate and edentulous subjects with removable prostheses and implants.

    PubMed

    Guzmán-Venegas, Rodrigo A; Palma, Felipe H; Biotti P, Jorge L; de la Rosa, Francisco J Berral

    2018-06-01

    To compare the frequency or spectral components between different regions of the superficial masseter in young natural dentate and total edentulous older adults rehabilitated with removable prostheses and fixed-implant support. A secondary objective was to compare these components between the three groups. 21 young natural dentate and 28 edentulous (14 with removable prostheses and 14 with fixed-implant support) were assessed. High-density surface electromyography (sEMG) was recorded in four portions of the superficial masseter during submaximal isometric bites. Spectral components were obtained through a spectral analysis of the sEMG signals. An analysis of mixed models was used to compare the spectral components. In all groups, the spectral components of the anterior portion were lower than in the posterior region (p < 0.05). Both edentulous groups showed lower spectral components and median frequency slope than the natural dentate group (p < 0.05). The removable prostheses group showed the greatest differences with natural dentate group. There were significant differences in the spectral components recorded in the different regions of the superficial masseter. The lower spectral components and fatigability of older adults rehabilitated with prostheses could be a cause of a greater loss of type II fibers, especially in the removable prostheses group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  14. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area

    NASA Astrophysics Data System (ADS)

    Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin

    2013-12-01

    Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.

  15. Vibrations Detection in Industrial Pumps Based on Spectral Analysis to Increase Their Efficiency

    NASA Astrophysics Data System (ADS)

    Rachid, Belhadef; Hafaifa, Ahmed; Boumehraz, Mohamed

    2016-03-01

    Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analysis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  16. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  17. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines

    PubMed Central

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J.; Li, Ming

    2013-01-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables. PMID:22552787

  18. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines.

    PubMed

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J; Li, Ming; Tabb, David L

    2012-09-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables.

  19. Investigating cardiorespiratory interaction by cross-spectral analysis of event series

    NASA Astrophysics Data System (ADS)

    Schäfer, Carsten; Rosenblum, Michael G.; Pikovsky, Arkady S.; Kurths, Jürgen

    2000-02-01

    The human cardiovascular and respiratory systems interact with each other and show effects of modulation and synchronization. Here we present a cross-spectral technique that specifically considers the event-like character of the heartbeat and avoids typical restrictions of other spectral methods. Using models as well as experimental data, we demonstrate how modulation and synchronization can be distinguished. Finally, we compare the method to traditional techniques and to the analysis of instantaneous phases.

  20. Digital techniques for ULF wave polarization analysis

    NASA Technical Reports Server (NTRS)

    Arthur, C. W.

    1979-01-01

    Digital power spectral and wave polarization analysis are powerful techniques for studying ULF waves in the earth's magnetosphere. Four different techniques for using the spectral matrix to perform such an analysis have been presented in the literature. Three of these techniques are similar in that they require transformation of the spectral matrix to the principal axis system prior to performing the polarization analysis. The differences in the three techniques lie in the manner in which determine this transformation. A comparative study of these three techniques using both simulated and real data has shown them to be approximately equal in quality of performance. The fourth technique does not require transformation of the spectral matrix. Rather, it uses the measured spectral matrix and state vectors for a desired wave type to design a polarization detector function in the frequency domain. The design of various detector functions and their application to both simulated and real data will be presented.

  1. Determination of awareness in patients with severe brain injury using EEG power spectral analysis

    PubMed Central

    Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.

    2011-01-01

    Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214

  2. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    NASA Astrophysics Data System (ADS)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  3. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  4. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  5. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  6. An Analysis of Periodic Components in BL Lac Object S5 0716 +714 with MUSIC Method

    NASA Astrophysics Data System (ADS)

    Tang, J.

    2012-01-01

    Multiple signal classification (MUSIC) algorithms are introduced to the estimation of the period of variation of BL Lac objects.The principle of MUSIC spectral analysis method and theoretical analysis of the resolution of frequency spectrum using analog signals are included. From a lot of literatures, we have collected a lot of effective observation data of BL Lac object S5 0716 + 714 in V, R, I bands from 1994 to 2008. The light variation periods of S5 0716 +714 are obtained by means of the MUSIC spectral analysis method and periodogram spectral analysis method. There exist two major periods: (3.33±0.08) years and (1.24±0.01) years for all bands. The estimation of the period of variation of the algorithm based on the MUSIC spectral analysis method is compared with that of the algorithm based on the periodogram spectral analysis method. It is a super-resolution algorithm with small data length, and could be used to detect the period of variation of weak signals.

  7. Least-Squares Regression and Spectral Residual Augmented Classical Least-Squares Chemometric Models for Stability-Indicating Analysis of Agomelatine and Its Degradation Products: A Comparative Study.

    PubMed

    Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A

    2016-01-01

    Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.

  8. Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: evidence from spectral analysis of heart rate variability.

    PubMed

    Chen, Jin-Long; Chiu, Hung-Wen; Tseng, Yin-Jiun; Chu, Woei-Chyn

    2006-06-01

    The clinical manifestations of hyperthyroidism resemble those of the hyperadrenergic state. This study was designed to evaluate the impact of hyperthyroidism on the autonomic nervous system (ANS) and to investigate the relationship between serum thyroid hormone concentrations and parameters of spectral heart rate variability (HRV) analysis in hyperthyroidism. Thirty-two hyperthyroid Graves' disease patients (mean age 31 years) and 32 sex-, age-, and body mass index (BMI)-matched normal control subjects were recruited to receive one-channel electrocardiogram (ECG) recording. The cardiac autonomic nervous function was evaluated by the spectral analysis of HRV, which indicates the autonomic modulation of the sinus node. The correlation coefficients between serum thyroid hormone concentrations and parameters of the spectral HRV analysis were also computed. The hyperthyroid patients revealed significant differences (P < 0.001) compared with the controls in the following HRV parameters: a decrease in total power (TP), very low frequency power (VLF), low frequency power (LF), high frequency power (HF), and HF in normalized units (HF%); and an increase in LF in normalized units (LF%) and in the ratio of LF to HF (LF/HF). After correction of hyperthyroidism in 28 patients, all of the above parameters were restored to levels comparable to those of the controls. In addition, serum thyroid hormone concentrations showed significant correlations with spectral HRV parameters. Hyperthyroidism is in a sympathovagal imbalanced state, characterized by both increased sympathetic and decreased vagal modulation of the heart rate. These autonomic dysfunctions can be detected simultaneously by spectral analysis of HRV, and the spectral HRV parameters could reflect the disease severity in hyperthyroid patients.

  9. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    PubMed

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youden's index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability. Copyright © 2016 the American Physiological Society.

  10. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    NASA Astrophysics Data System (ADS)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  11. Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer

    NASA Astrophysics Data System (ADS)

    Shamina, Lyudmila A.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Moryatov, Alexander A.; Orlov, Andrey E.; Kozlov, Sergey V.; Zakharov, Valery P.

    2018-04-01

    In this study we measured spectral features of blood by Raman spectroscopy. Correlation of the obtained spectral data and biochemical studies results is investigated. Analysis of specific spectra allows for identification of informative spectral bands proportional to components whose content is associated with body fluids homeostasis changes at various pathological conditions. Regression analysis of the obtained spectral data allows for discriminating the lung cancer from other tumors with a posteriori probability of 88.3%. The potentiality of applying surface-enhanced Raman spectroscopy with utilized experimental setup for further studies of the body fluids component composition was estimated. The greatest signal amplification was achieved for the gold substrate with a surface roughness of 1 μm. In general, the developed approach of body fluids analysis provides the basis of a useful and minimally invasive method of pathologies screening.

  12. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  13. Different techniques of multispectral data analysis for vegetation fraction retrieval

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  14. Classification of river water pollution using Hyperion data

    NASA Astrophysics Data System (ADS)

    Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.

    2016-06-01

    A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from space.

  15. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    NASA Astrophysics Data System (ADS)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  16. Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field

    PubMed Central

    Ashtiani, Payam; Denison, Adelaide

    2015-01-01

    Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097

  17. [A comparative analysis of the passive electric probe detection and spectrum diagnosis of laser-induced plasma].

    PubMed

    Liu, Tong; Yang, Li-Jun; Wang, Li-Jun; Wang, Lang-Ping

    2014-02-01

    An approach to detecting laser-induced plasma using passive probe was brought up. The plasma of laser welding was studied by using a synchronous electric and spectral information acquisition system, the laser-induced plasma was detected by a passive electric probe and fiber spectrometer, the electrical signal was analyzed on the basis of the theory of plasma sheath, and the temperature of laser-induced plasma was calculated by using the method of relative spectral intensity. The analysis results from electrical signal and spectral one were compared. Calculation results of three kinds of surface circumstances, which were respectively coated by KF, TiO2 and without coating, were compared. The factors affecting the detection accuracy were studied. The results indicated that the results calculated by passive probe matched that by spectral signal basically, and the accuracy was affected by ions mass of the plasma. The designed passive electric probe can be used to reflect the continuous fluctuation of electron temperature of the generated plasma, and monitor the laser-induced plasma.

  18. A Modified Relative Spectral Mixture Analysis to Extract the Fractions of Major Land Cover Components

    NASA Astrophysics Data System (ADS)

    Jia, S.

    2015-12-01

    As an effective method of extracting land cover fractions based on spectral endmembers, spectral mixture analysis (SMA) has been applied using remotely sensed imagery in different spatial, temporal, and spectral resolutions. A number of studies focused on arid/semiarid ecosystem have used SMA to obtain the land cover fractions of GV, NPV/litter, and bare soil (BS) using MODIS reflectance products to understand ecosystem phenology, track vegetation dynamics, and evaluate the impact of major disturbances. However, several challenges remain in the application of SMA in studying ecosystem phenology, including obtaining high quality endmembers and increasing computational efficiency when considering to long time series that cover a broad spatial extent. Okin (2007) proposes a variation of SMA, named as relative spectra mixture analysis (RSMA) to address the latter challenge by calculating the relative change of fraction of GV, NPV/litter, and BS compared with a baseline date. This approach assumes that the baseline image contains the spectral information of the bare soil that can be used as an endmember for spectral mixture analysis though it is mixed with the spectral reflectance of other non-soil land cover types. Using the baseline image, one can obtain the change of fractions of GV, NPV/litter, BS, and snow compared with the baseline image. However, RSMA results depend on the selection of baseline date and the fractional components during this date. In this study, we modified the strategy of implementing RSMA by introducing a step of obtaining a soil map as the baseline image using multiple-endmember SMA (MESMA) before applying RSMA. The fractions of land cover components from this modified RSMA are also validated using the field observations from two study area in semiarid savanna and grassland of Queensland, Australia.

  19. Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling.

    PubMed

    Li, Ming; Gray, William; Zhang, Haixia; Chung, Christine H; Billheimer, Dean; Yarbrough, Wendell G; Liebler, Daniel C; Shyr, Yu; Slebos, Robbert J C

    2010-08-06

    Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher's Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples.

  20. Comparative Shotgun Proteomics Using Spectral Count Data and Quasi-Likelihood Modeling

    PubMed Central

    2010-01-01

    Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography−tandem mass spectrometry (LC−MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher’s Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography−multiple reaction monitoring mass spectrometry (LC−MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples. PMID:20586475

  1. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  2. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    PubMed Central

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  3. Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert and Amorphous Silica

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Hamilton, V. E.; Cady, S. L.; Knauth, P.

    2009-03-01

    We look in detail at the thermal infrared and visible to near-infrared spectra of various forms of chert and amorphous silica and compare the spectral variations between samples with variations in physical and chemical characteristics.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. W. Ginsberg

    Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The resultsmore » show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.« less

  5. Nonlinear single-spin spectrum analyzer.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  6. Mapping the Spectral and Biochemical Characteristics of Riparian Vegetation and Soils

    NASA Astrophysics Data System (ADS)

    Balaji Bhaskar, M. S.

    2016-12-01

    Salt cedar (Tamarix ramosissima), an invasive plant species, has successfully invaded large extents of several riparian zones along the western United States and northern Mexico. Mapping the distribution and abundance of Tamarix over these large areas through a, multi-seasonal, cost-effective monitoring approach using satellite remote sensing is very essential. Hence, the objectives of this study are: 1) to identify the spectral characteristics of the major riparian, agricultural vegetation types and soils in the Lower Colorado River (LCR) region; and 2) to determine the biochemical characteristics of the vegetation and soils. Ground truth surveys were conducted at 79 locations where the spectral reflectance measurements of vegetation, type of plant species, plant heights, soil samples and GPS co-ordinates were recorded. All the sampling was designed to coincide with the satellite overpass period. From the LANDSAT TM image, dark-object-subtracted (DOS) digital number (DN) values of six LANDSAT single bands (1-5 and 7) were extracted and all the spectral ratios and vegetative indices were calculated. The NDVI, R1,5 and R1,7 were identified as the best ratios to distinguish the major vegetation types. The LANDSAT TM color-composite spectral ratio image (NDVI, R1,5 and R1,7 as GBR) can clearly identify and map the areas infested with Tamarix. The salt cedar infested riparian soils showed high concentrations of Ca, Mg and Na concentrations compared to other soils and the spectral reflectance of soils with high Na concentrations were significantly higher in the 350-2500 nm spectral range compared to other soils. The Leaf Area Index (LAI) data shows that the salt cedar has higher LAI compared to other riparian vegetation. The spectral and satellite image analysis shows that the selected spectral ratios can be applied to multiple satellite overpasses for monitoring the seasonal progression of the riparian growth over time. Extending the image analysis over wider areas of western United States can improve the understanding of the riparian dynamics in this region.

  7. SVD analysis of Aura TES spectral residuals

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Kulawik, Susan S.; Rodgers, Clive D.; Bowman, Kevin W.

    2005-01-01

    Singular Value Decomposition (SVD) analysis is both a powerful diagnostic tool and an effective method of noise filtering. We present the results of an SVD analysis of an ensemble of spectral residuals acquired in September 2004 from a 16-orbit Aura Tropospheric Emission Spectrometer (TES) Global Survey and compare them to alternative methods such as zonal averages. In particular, the technique highlights issues such as the orbital variation of instrument response and incompletely modeled effects of surface emissivity and atmospheric composition.

  8. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  9. [Evaluation of a simplified index (spectral entropy) about sleep state of electrocardiogram recorded by a simplified polygraph, MemCalc-Makin2].

    PubMed

    Ohisa, Noriko; Ogawa, Hiromasa; Murayama, Nobuki; Yoshida, Katsumi

    2010-02-01

    Polysomnography (PSG) is the gold standard for the diagnosis of sleep apnea hypopnea syndrome (SAHS), but it takes time to analyze the PSG and PSG cannot be performed repeatedly because of efforts and costs. Therefore, simplified sleep respiratory disorder indices in which are reflected the PSG results are needed. The Memcalc method, which is a combination of the maximum entropy method for spectral analysis and the non-linear least squares method for fitting analysis (Makin2, Suwa Trust, Tokyo, Japan) has recently been developed. Spectral entropy which is derived by the Memcalc method might be useful to expressing the trend of time-series behavior. Spectral entropy of ECG which is calculated with the Memcalc method was evaluated by comparing to the PSG results. Obstructive SAS patients (n = 79) and control volanteer (n = 7) ECG was recorded using MemCalc-Makin2 (GMS) with PSG recording using Alice IV (Respironics) from 20:00 to 6:00. Spectral entropy of ECG, which was calculated every 2 seconds using the Memcalc method, was compared to sleep stages which were analyzed manually from PSG recordings. Spectral entropy value (-0.473 vs. -0.418, p < 0.05) were significantly increased in the OSAHS compared to the control. For the entropy cutoff level of -0.423, sensitivity and specificity for OSAHS were 86.1% and 71.4%, respectively, resulting in a receiver operating characteristic with an area under the curve of 0.837. The absolute value of entropy had inverse correlation with stage 3. Spectral entropy, which was calculated with Memcalc method, might be a possible index evaluating the quality of sleep.

  10. Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo

    PubMed Central

    Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2011-01-01

    We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them. PMID:21721808

  11. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  12. Photospheres of hot stars. IV - Spectral type O4

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.

    1990-01-01

    The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.

  13. A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data

    NASA Astrophysics Data System (ADS)

    Ling, Chengxing; Liu, Hua; Ju, Hongbo; Zhang, Huaiqing; You, Jia; Li, Weina

    2017-10-01

    The objective of this study was to verify the application of imaging spectrometer in wetland vegetation remote sensing monitoring, based on analysis of wetland vegetation spectral features. Spectral information of Carex vegetation spectral data under different water environment was collected bySOC710VP and ASD FieldSpec 3; Meanwhile, the chlorophyll contents of wheat leaves were tested in the lab. A total 9 typical vegetation indices were calculated by using two instruments’ data which were spectral values from 400nm to 1000 nm. Then features between the same vegetation indices and soil water contents for two applications were analyzed and compared. The results showed that there were same spectrum curve trends of Carex vegetation (soil moisture content of 51%, 32%, 14% and three regional comparative analysis)reflectance between SOC710VP and ASD FieldSpec 3, including the two reflectance peak of 550nm and 730 nm, two reflectance valley of 690 nm and 970nm, and continuous near infrared reflectance platform. However, The two also have a very clear distinction: (1) The reflection spectra of SOC710VP leaves of Carex Carex leaf spectra in the three soil moisture environment values are greater than ASD FieldSpec 3 collected value; (2) The SOC710VP reflectivity curve does not have the smooth curve of the original spectrum measured by the ASD FieldSpec 3, the amplitude of fluctuation is bigger, and it is more obvious in the near infrared band. It is concluded that SOC710VP spectral data are reliable, with the image features, spectral curve features reliable. It has great potential in the research of hyperspectral remote sensing technology in the development of wetland near earth, remote sensing monitoring of wetland resources.

  14. Data of ERPs and spectral alpha power when attention is engaged on visual or verbal/auditory imagery

    PubMed Central

    Villena-González, Mario; López, Vladimir; Rodríguez, Eugenio

    2016-01-01

    This article provides data from statistical analysis of event-related brain potentials (ERPs) and spectral power from 20 participants during three attentional conditions. Specifically, P1, N1 and P300 amplitude of ERP were compared when participant׳s attention was oriented to an external task, to a visual imagery and to an inner speech. The spectral power from alpha band was also compared in these three attentional conditions. These data are related to the research article where sensory processing of external information was compared during these three conditions entitled “Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli” (Villena-Gonzalez et al., 2016) [1]. PMID:27077090

  15. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    NASA Astrophysics Data System (ADS)

    Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk

    2018-03-01

    Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

  16. Development of seismic fragility curves for low-rise masonry infilled reinforced concrete buildings by a coefficient-based method

    NASA Astrophysics Data System (ADS)

    Su, Ray Kai Leung; Lee, Chien-Liang

    2013-06-01

    This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration- and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or nearcollapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.

  17. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    PubMed

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be included when reporting stable isotope data from IRIS. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  19. Statistical analysis and machine learning algorithms for optical biopsy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Liu, Cheng-hui; Boydston-White, Susie; Beckman, Hugh; Sriramoju, Vidyasagar; Sordillo, Laura; Zhang, Chunyuan; Zhang, Lin; Shi, Lingyan; Smith, Jason; Bailin, Jacob; Alfano, Robert R.

    2018-02-01

    Analyzing spectral or imaging data collected with various optical biopsy methods is often times difficult due to the complexity of the biological basis. Robust methods that can utilize the spectral or imaging data and detect the characteristic spectral or spatial signatures for different types of tissue is challenging but highly desired. In this study, we used various machine learning algorithms to analyze a spectral dataset acquired from human skin normal and cancerous tissue samples using resonance Raman spectroscopy with 532nm excitation. The algorithms including principal component analysis, nonnegative matrix factorization, and autoencoder artificial neural network are used to reduce dimension of the dataset and detect features. A support vector machine with a linear kernel is used to classify the normal tissue and cancerous tissue samples. The efficacies of the methods are compared.

  20. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  1. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different machine environments. There is a DEC VAX/VMS version with a central memory requirement of approximately 242K of 8 bit bytes and a machine independent UNIX 4.2 version. The display device currently supported is the Raster Technologies display processor. Other 512 x 512 resolution color display devices, such as De Anza, may be added with minor code modifications. This program was developed in 1986.

  2. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different machine environments. There is a DEC VAX/VMS version with a central memory requirement of approximately 242K of 8 bit bytes and a machine independent UNIX 4.2 version. The display device currently supported is the Raster Technologies display processor. Other 512 x 512 resolution color display devices, such as De Anza, may be added with minor code modifications. This program was developed in 1986.

  3. Atmospheric Properties Of T Dwarfs Inferred From Model Fits At Low Spectral Resolution

    NASA Astrophysics Data System (ADS)

    Giorla Godfrey, Paige A.; Rice, Emily L.; Filippazzo, Joseph C.; Douglas, Stephanie E.

    2016-09-01

    Brown dwarf spectral types (M, L, T, Y) correlate with spectral morphology, and generally appear to correspond with decreasing mass and effective temperature (Teff). Model fits to observed spectra suggest, however, that spectral subclasses do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. We seekto disentangle the fundamental parameters that underlie the spectral type sequence of the coolest fully populated spectral class of brown dwarfs using atmosphere models. We investigate the relationship between spectral type and best fit model parameters for a sample of over 150 T dwarfs with low resolution (R 75-100) near-infrared ( 0.8-2.5 micron) SpeX Prism spectra. We use synthetic spectra from four model grids (Saumon & Marley 2008, Morley+ 2012, Saumon+ 2012, BT Settl 2013) and a Markov-Chain Monte Carlo (MCMC) analysis to determine robust best fit parameters and their uncertainties. We compare the consistency of each model grid by performing our analysis on the full spectrum and also on individual wavelength bands (Y,J,H,K). We find more consistent results between the J band and full spectrum fits and that our best fit spectral type-Teff results agree with the polynomial relationships of Stephens+2009 and Filippazzo+ 2015 using bolometric luminosities. Our analysis consists of the most extensive low resolution T dwarf model comparison to date, and lays the foundation for interpretation of cool brown dwarf and exoplanet spectra.

  4. Site Characterization in the Urban Area of Tijuana, B. C., Mexico by Means of: H/V Spectral Ratios, Spectral Analysis of Surface Waves, and Random Decrement Method

    NASA Astrophysics Data System (ADS)

    Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.

    2009-05-01

    Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral ratio.

  5. Preliminary results of the comparative study between EO-1/Hyperion and ALOS/PALSAR

    NASA Astrophysics Data System (ADS)

    Koizumi, E.; Furuta, R.; Yamamoto, A.

    2011-12-01

    [Introduction]Hyper-spectral remote sensing images have been used for land-cover classification due to their high spectral resolutions. Synthetic Aperture Radar (SAR) remote sensing data are also useful to probe surface condition because radar image reflects surface geometry, although there are not so many reports about the land-cover detection with combination use of both hyper-spectral data and SAR data. Among SAR sensors, L-band SAR is thought to be useful tool to find physical properties because its comparatively long wave length can through small objects on surface. We are comparing the result of land cover classification and/or physical values from hyper-spectral and L-band SAR data to find the relationship between these two quite different sensors and to confirm the possibility of the combined analysis of hyper-spectral and L-band SAR data, and in this presentation we will report the preliminary result of this study. There are only few sources of both hyper-spectral and L-band SAR data from the space in this time, however, several space organizations plan to launch new satellites on which hyper-spectral or L-band SAR equipments are mounted in next few years. So, the importance of the combined analysis will increase more than ever. [Target Area]We are performing and planning analyses on the following areas in this study. (a)South of Cairo, Nile river area, Egypt, for sand, sandstone, limestone, river, crops. (b)Mount Sakurajima, Japan, for igneous rock and other related geological property. [Methods and Results]EO-1 Hyperion data are analyzed in this study as hyper-spectral data. The Hyperion equipment has 242 channels but some of them include full noise or have no data. We selected channels for analysis by checking each channel, and select about 150 channels (depend on the area). Before analysis, the atmospheric correction of ATCOR-3 was applied for the selected channels. The corrected data were analyzed by unsupervised classification or principal component analysis (PCA). We also did the unsupervised classification with the several components from PCA. According to the analysis results, several classifications can be extracted for each category (vegetation, sand and rocks, and water). One of the interesting results is that there are a few classes for sand as those of other categories, and these classes seem to reflect artificial and natural surface changes that are some result of excavation or scratching. ALOS PALSAR data are analyzed as L-band SAR data. We selected the Dual Polarization data for each target area. The data were converted to backscattered images, and then calculated some image statistic values. The topographic information also calculates with SAR interferometry technique as reference. Comparing the Hyperion classification results with the result of the calculation of statistic values from PALSAR, there are some areas where relativities seem to be confirmed. To confirm the combined analysis between hyper-spectral and L-band SAR data to detect and classify the surface material, further studies are still required. We will continue to investigate more efficient analytic methods and to examine other functions like the adopted channels, the number of class in classification, the kind of statistic information, and so on, to refine the method.

  6. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  7. Spectral signature verification using statistical analysis and text mining

    NASA Astrophysics Data System (ADS)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is present for comparison. The spectral validation method proposed is described from a practical application and analytical perspective.

  8. A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, Gregory L.

    1989-01-01

    A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.

  9. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  10. [Review of digital ground object spectral library].

    PubMed

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  11. Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses

    Treesearch

    Sari C. Saunders; Jiquan Chen; Thomas D. Drummer; Eric J. Gustafson; Kimberley D. Brosofske

    2005-01-01

    Identifying scales of pattern in ecological systems and coupling patterns to processes that create them are ongoing challenges. We examined the utility of three techniques (lacunarity, spectral, and wavelet analysis) for detecting scales of pattern of ecological data. We compared the information obtained using these methods for four datasets, including: surface...

  12. Analysis of Landsat-4 Thematic Mapper data for classification of forest stands in Baldwin County, Alabama

    NASA Technical Reports Server (NTRS)

    Hill, C. L.

    1984-01-01

    A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.

  13. Computerized EEG analysis for studying the effect of drugs on the central nervous system.

    PubMed

    Rosadini, G; Cavazza, B; Rodriguez, G; Sannita, W G; Siccardi, A

    1977-11-01

    Samples of our experience in quantitative pharmaco-EEG are reviewed to discuss and define its applicability and limits. Simple processing systems, such as the computation of Hjorth's descriptors, are useful for on-line monitoring of drug-induced EEG modifications which are evident also at the visual visual analysis. Power spectral analysis is suitable to identify and quantify EEG effects not evident at the visual inspection. It demonstrated how the EEG effects of compounds in a long-acting formulation vary according to the sampling time and the explored cerebral area. EEG modifications not detected by power spectral analysis can be defined by comparing statistically (F test) the spectral values of the EEG from a single lead at the different samples (longitudinal comparison), or the spectral values from different leads at any sample (intrahemispheric comparison). The presently available procedures of quantitative pharmaco-EEG are effective when applied to the study of mutltilead EEG recordings in a statistically significant sample of population. They do not seem reliable in the monitoring of directing of neuropyschiatric therapies in single patients, due to individual variability of drug effects.

  14. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  15. Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.

    2013-12-01

    The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3x5 km pixel). Multiple atmospheric corrections are performed for one image using the methods of Bandfield et al. [2004] and Ryan et al. [2013]. 7x7 pixel areas were selected, averaged, and compared using each atmospherically corrected image to ensure consistency. Corrections that provided reliable data were then used for spectral analyses. Linear deconvolution is performed using an iterative spectral analysis method [Huang et al. in review] that takes an endmember spectral library, and creates mineral combinations based on prescribed mineral group selections. The script then performs a spectral mixture analysis on each surface spectrum using all possible mineral combinations, and reports the best modeled fit to the measured spectrum. Here we present initial results from Syrtis Planum where multiple atmospherically corrected THEMIS images were deconvolved to produce similar spectral analysis results, within the detection limit of the instrument. THEMIS mineral abundances are comparable to TES-derived abundances. References: Bandfield, JL et al. [2004], JGR 109, E10008 Huang, J et al., JGR, in review Ryan, AJ et al. [2013], AGU Fall Meeting

  16. A study of the extended-range forecasting problem blocking

    NASA Technical Reports Server (NTRS)

    Chen, T. C.; Marshall, H. G.; Shukla, J.

    1981-01-01

    Wavenumber frequency spectral analysis of a 90 day winter (Jan. 15 - April 14) wind field simulated by a climate experiment of the GLAS atmospheric circulation model is made using the space time Fourier analysis which is modified with Tukey's numerical spectral analysis. Computations are also made to examine how the model wave disturbances in the wavenumber frequency domain are maintained by nonlinear interactions. Results are compared with observation. It is found that equatorial easterlies do not show up in this climate experiment at 200 mb. The zonal kinetic energy and momentum transport of stationary waves are too small in the model's Northern Hemisphere. The wavenumber and frequency spectra of the model are generally in good agreement with observation. However, some distinct features of the model's spectra are revealed. The wavenumber spectra of kinetic energy show that the eastward moving waves of low wavenumbers have stronger zonal motion while the eastward moving waves of intermediate wavenumbers have larger meridional motion compared with observation. Furthermore, the eastward moving waves show a band of large spectral value in the medium frequency regime.

  17. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  18. Autoregressive modeling for the spectral analysis of oceanographic data

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, Avijit; Cornillon, Peter; Jackson, Leland B.

    1989-01-01

    Over the last decade there has been a dramatic increase in the number and volume of data sets useful for oceanographic studies. Many of these data sets consist of long temporal or spatial series derived from satellites and large-scale oceanographic experiments. These data sets are, however, often 'gappy' in space, irregular in time, and always of finite length. The conventional Fourier transform (FT) approach to the spectral analysis is thus often inapplicable, or where applicable, it provides questionable results. Here, through comparative analysis with the FT for different oceanographic data sets, the possibilities offered by autoregressive (AR) modeling to perform spectral analysis of gappy, finite-length series, are discussed. The applications demonstrate that as the length of the time series becomes shorter, the resolving power of the AR approach as compared with that of the FT improves. For the longest data sets examined here, 98 points, the AR method performed only slightly better than the FT, but for the very short ones, 17 points, the AR method showed a dramatic improvement over the FT. The application of the AR method to a gappy time series, although a secondary concern of this manuscript, further underlines the value of this approach.

  19. Optimization of data analysis for the in vivo neutron activation analysis of aluminum in bone.

    PubMed

    Mohseni, H K; Matysiak, W; Chettle, D R; Byun, S H; Priest, N; Atanackovic, J; Prestwich, W V

    2016-10-01

    An existing system at McMaster University has been used for the in vivo measurement of aluminum in human bone. Precise and detailed analysis approaches are necessary to determine the aluminum concentration because of the low levels of aluminum found in the bone and the challenges associated with its detection. Phantoms resembling the composition of the human hand with varying concentrations of aluminum were made for testing the system prior to the application to human studies. A spectral decomposition model and a photopeak fitting model involving the inverse-variance weighted mean and a time-dependent analysis were explored to analyze the results and determine the model with the best performance and lowest minimum detection limit. The results showed that the spectral decomposition and the photopeak fitting model with the inverse-variance weighted mean both provided better results compared to the other methods tested. The spectral decomposition method resulted in a marginally lower detection limit (5μg Al/g Ca) compared to the inverse-variance weighted mean (5.2μg Al/g Ca), rendering both equally applicable to human measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mass Spectral Library Quality Assurance by Inter-Library Comparison

    NASA Astrophysics Data System (ADS)

    Wallace, William E.; Ji, Weihua; Tchekhovskoi, Dmitrii V.; Phinney, Karen W.; Stein, Stephen E.

    2017-04-01

    A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared, the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided.

  1. Multispectral image fusion for target detection

    NASA Astrophysics Data System (ADS)

    Leviner, Marom; Maltz, Masha

    2009-09-01

    Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.

  2. Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods.

    PubMed

    Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y

    2014-01-01

    The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mass Spectral Library Quality Assurance by Inter-Library Comparison

    PubMed Central

    Wallace, W.E.; Ji, W.; Tchekhovskoi, D.V.; Phinney, K.W.; Stein, S.E.

    2017-01-01

    A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided. PMID:28127680

  4. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index

    PubMed Central

    Pu, Ruiliang; Gong, Peng; Yu, Qian

    2008-01-01

    In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data. PMID:27879906

  5. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index.

    PubMed

    Pu, Ruiliang; Gong, Peng; Yu, Qian

    2008-06-06

    In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data.

  6. Integrated fluorescence analysis system

    DOEpatents

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  7. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  8. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    USGS Publications Warehouse

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains from all three focus regions support the hypothesis that the magnetic anomalies deflect solar wind ions away from the swirls and onto off-swirl surfaces. Nanophase iron (npFe0) is largely responsible for the spectral characteristics we attribute to space weathering and maturation, and is created by vaporization/deposition by micrometeorite impacts and sputtering/reduction by solar wind ions. On the swirls, the decreased proton flux slows the spectral effects of space weathering (relative to nonswirl regions) by limiting the npFe0 production mechanism almost exclusively to micrometeoroid impact vaporization/deposition. Immediately adjacent to the swirls, maturation is accelerated by the increased flux of protons deflected from the swirls.

  9. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  10. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  11. Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy.

    PubMed

    Pazesh, Samaneh; Lazorova, Lucia; Berggren, Jonas; Alderborn, Göran; Gråsjö, Johan

    2016-09-10

    The main purpose of the study was to evaluate various pre-processing and quantification approaches of Raman spectrum to quantify low level of amorphous content in milled lactose powder. To improve the quantification analysis, several spectral pre-processing methods were used to adjust background effects. The effects of spectral noise on the variation of determined amorphous content were also investigated theoretically by propagation of error analysis and were compared to the experimentally obtained values. Additionally, the applicability of calibration method with crystalline or amorphous domains in the estimation of amorphous content in milled lactose powder was discussed. Two straight baseline pre-processing methods gave the best and almost equal performance. By the succeeding quantification methods, PCA performed best, although the classical least square analysis (CLS) gave comparable results, while peak parameter analysis displayed to be inferior. The standard deviations of experimental determined percentage amorphous content were 0.94% and 0.25% for pure crystalline and pure amorphous samples respectively, which was very close to the standard deviation values from propagated spectral noise. The reasonable conformity between the milled samples spectra and synthesized spectra indicated representativeness of physical mixtures with crystalline or amorphous domains in the estimation of apparent amorphous content in milled lactose. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Theory of spectral radiance of pollutants at sea

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Remote measurement of soluble pollutants that change the color of the water in the sea is reported. The sensor is a spectral radiometer that flies over the polluted area and compares its spectral radiance to that of surrounding clean seawater. A quantitative analysis of the concentration of pollutants using the measured radiance of the sea compared to laboratory measurements of reflection and transmission spectra of the pollutants is presented. The quantities involved are defined and means for measuring them are described. The equations for remote sensing with a low-flying aircraft, in which case the absorption and radiance of intervening air is negligible are derived. High-flying aircraft and satellites, in which case the radiance of intervening air is the major problem are applied.

  13. Spectral sum rules for confining large-N theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherman, Aleksey; McGady, David A.; Yamazaki, Masahito

    2016-06-17

    We consider asymptotically-free four-dimensional large-$N$ gauge theories with massive fermionic and bosonic adjoint matter fields, compactified on squashed three-spheres, and examine their regularized large-$N$ confined-phase spectral sums. The analysis is done in the limit of vanishing ’t Hooft coupling, which is justified by taking the size of the compactification manifold to be small compared to the inverse strong scale Λ ₋1. We find our results motivate us to conjecture some universal spectral sum rules for these large $N$ gauge theories.

  14. Spectral statistics of the uni-modular ensemble

    NASA Astrophysics Data System (ADS)

    Joyner, Christopher H.; Smilansky, Uzy; Weidenmüller, Hans A.

    2017-09-01

    We investigate the spectral statistics of Hermitian matrices in which the elements are chosen uniformly from U(1) , called the uni-modular ensemble (UME), in the limit of large matrix size. Using three complimentary methods; a supersymmetric integration method, a combinatorial graph-theoretical analysis and a Brownian motion approach, we are able to derive expressions for 1 / N corrections to the mean spectral moments and also analyse the fluctuations about this mean. By addressing the same ensemble from three different point of view, we can critically compare their relative advantages and derive some new results.

  15. Apparatus description and data analysis of a radiometric technique for measurements of spectral and total normal emittance

    NASA Technical Reports Server (NTRS)

    Edwards, S. F.; Kantsios, A. G.; Voros, J. P.; Stewart, W. F.

    1975-01-01

    The development of a radiometric technique for determining the spectral and total normal emittance of materials heated to temperatures of 800, 1100, and 1300 K by direct comparison with National Bureau of Standards (NBS) reference specimens is discussed. Emittances are measured over the spectral range of 1 to 15 microns and are statistically compared with NBS reference specimens. Results are included for NBS reference specimens, Rene 41, alundum, zirconia, AISI type 321 stainless steel, nickel 201, and a space-shuttle reusable surface insulation.

  16. Systolic Processor Array For Recognition Of Spectra

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1995-01-01

    Spectral signatures of materials detected and identified quickly. Spectral Analysis Systolic Processor Array (SPA2) relatively inexpensive and satisfies need to analyze large, complex volume of multispectral data generated by imaging spectrometers to extract desired information: computational performance needed to do this in real time exceeds that of current supercomputers. Locates highly similar segments or contiguous subsegments in two different spectra at time. Compares sampled spectra from instruments with data base of spectral signatures of known materials. Computes and reports scores that express degrees of similarity between sampled and data-base spectra.

  17. SearchLight: a freely available web-based quantitative spectral analysis tool (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prabhat, Prashant; Peet, Michael; Erdogan, Turan

    2016-03-01

    In order to design a fluorescence experiment, typically the spectra of a fluorophore and of a filter set are overlaid on a single graph and the spectral overlap is evaluated intuitively. However, in a typical fluorescence imaging system the fluorophores and optical filters are not the only wavelength dependent variables - even the excitation light sources have been changing. For example, LED Light Engines may have a significantly different spectral response compared to the traditional metal-halide lamps. Therefore, for a more accurate assessment of fluorophore-to-filter-set compatibility, all sources of spectral variation should be taken into account simultaneously. Additionally, intuitive or qualitative evaluation of many spectra does not necessarily provide a realistic assessment of the system performance. "SearchLight" is a freely available web-based spectral plotting and analysis tool that can be used to address the need for accurate, quantitative spectral evaluation of fluorescence measurement systems. This tool is available at: http://searchlight.semrock.com/. Based on a detailed mathematical framework [1], SearchLight calculates signal, noise, and signal-to-noise ratio for multiple combinations of fluorophores, filter sets, light sources and detectors. SearchLight allows for qualitative and quantitative evaluation of the compatibility of filter sets with fluorophores, analysis of bleed-through, identification of optimized spectral edge locations for a set of filters under specific experimental conditions, and guidance regarding labeling protocols in multiplexing imaging assays. Entire SearchLight sessions can be shared with colleagues and collaborators and saved for future reference. [1] Anderson, N., Prabhat, P. and Erdogan, T., Spectral Modeling in Fluorescence Microscopy, http://www.semrock.com (2010).

  18. Fast algorithm for spectral mixture analysis of imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Schouten, Theo E.; Klein Gebbinck, Maurice S.; Liu, Z. K.; Chen, Shaowei

    1996-12-01

    Imaging spectrometers acquire images in many narrow spectral bands but have limited spatial resolution. Spectral mixture analysis (SMA) is used to determine the fractions of the ground cover categories (the end-members) present in each pixel. In this paper a new iterative SMA method is presented and tested using a 30 band MAIS image. The time needed for each iteration is independent of the number of bands, thus the method can be used for spectrometers with a large number of bands. Further a new method, based on K-means clustering, for obtaining endmembers from image data is described and compared with existing methods. Using the developed methods the available MAIS image was analyzed using 2 to 6 endmembers.

  19. Linearized spectrum correlation analysis for line emission measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  20. Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Srivastava, Askok N.; Matthews, Bryan; Das, Santanu

    2008-01-01

    The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.

  1. Software algorithm and hardware design for real-time implementation of new spectral estimator

    PubMed Central

    2014-01-01

    Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214

  2. Infrared spectral imaging as a novel approach for histopathological recognition in colon cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier

    2012-11-01

    Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.

  3. Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults.

    PubMed

    Ponomarev, Valery A; Mueller, Andreas; Candrian, Gian; Grin-Yatsenko, Vera A; Kropotov, Juri D

    2014-01-01

    To investigate the performance of the spectral analysis of resting EEG, Current Source Density (CSD) and group independent components (gIC) in diagnosing ADHD adults. Power spectra of resting EEG, CSD and gIC (19 channels, linked ears reference, eyes open/closed) from 96 ADHD and 376 healthy adults were compared between eyes open and eyes closed conditions, and between groups of subjects. Pattern of differences in gIC and CSD spectral power between conditions was approximately similar, whereas it was more widely spatially distributed for EEG. Size effect (Cohen's d) of differences in gIC and CSD spectral power between groups of subjects was considerably greater than in the case of EEG. Significant reduction of gIC and CSD spectral power depending on conditions was found in ADHD patients. Reducing power in a wide frequency range in the fronto-central areas is a common phenomenon regardless of whether the eyes were open or closed. Spectral power of local EEG activity isolated by gICA or CSD in the fronto-central areas may be a suitable marker for discrimination of ADHD and healthy adults. Spectral analysis of gIC and CSD provides better sensitivity to discriminate ADHD and healthy adults. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Definition of spectrally separable classes for soil survey research

    NASA Technical Reports Server (NTRS)

    Cipra, J. E.; Swain, P. H.; Gill, J. H.; Baumgardner, M. F.; Kristof, S. J.

    1972-01-01

    A procedure is outlined for defining spectral classes such that the differences between classes can be quantified. It also facilitates determination of a number of classes such that the classes are spectrally discriminable. This is accomplished by partitioning the data into many classes and then combining similar spectral classes on the basis of appropriate criteria. Multispectral data were collected over a 12-mile flightline in White County, Indiana, in connection with the 1971 Corn Blight Watch Experiment. Data were collected in May by the University of Michigan airborne scanning spectrometer at an altitude of 5000 feet. Spectral maps resulting from the analysis were compared to existing soil surveys of the National Cooperative Soil Survey. The method should help determine the extent to which spectral properties of soil surfaces can be associated with morphologic and topographic differences of interest to soil surveyors engaged in operational soil mapping.

  5. The contribution of timbre attributes to musical tension.

    PubMed

    Farbood, Morwaread M; Price, Khen C

    2017-01-01

    Timbre is an auditory feature that has received relatively little attention in empirical work examining musical tension. In order to address this gap, an experiment was conducted to explore the contribution of several specific timbre attributes-inharmonicity, roughness, spectral centroid, spectral deviation, and spectral flatness-to the perception of tension. Listeners compared pairs of sounds representing low and high degrees of each attribute and indicated which sound was more tense. Although the response profiles showed that the high states corresponded with increased tension for all attributes, further analysis revealed that some attributes were strongly correlated with others. When qualitative factors, attribute correlations, and listener responses were all taken into account, there was fairly strong evidence that higher degrees of roughness, inharmonicity, and spectral flatness elicited higher tension. On the other hand, evidence that higher spectral centroid and spectral deviation corresponded to increases in tension was ambiguous.

  6. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  7. A new multi-spectral feature level image fusion method for human interpretation

    NASA Astrophysics Data System (ADS)

    Leviner, Marom; Maltz, Masha

    2009-03-01

    Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.

  8. Interactive multi-spectral analysis of more than one Sonrai village in Niger, West Africa

    NASA Technical Reports Server (NTRS)

    Reining, P.; Egbert, D. D.

    1975-01-01

    Use of LANDSAT data and an interaction system is considered for identifying and measuring small scale compact human settlements (villages) for demographic and anthropological studies. Because village components are not uniformly distributed within any one village, they apparently are multimodal, spectrally. Therefore, the functions of location and enumeration are kept separate. Measurement of a known village is compared with CCT response.

  9. Breast tissue decomposition with spectral distortion correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique. PMID:25281953

  10. A two-step along-track spectral analysis for estimating the magnetic signals of magnetospheric ring current from Swarm data

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Velímský, Jakub; Haagmans, Roger; Šachl, Libor

    2018-02-01

    This study deals with the analysis of Swarm vector magnetic field measurements in order to estimate the magnetic field of magnetospheric ring current. For a single Swarm satellite, the magnetic measurements are processed by along-track spectral analysis on a track-by-track basis. The main and lithospheric magnetic fields are modelled by the CHAOS-6 field model and subtracted from the along-track Swarm magnetic data. The mid-latitude residual signal is then spectrally analysed and extrapolated to the polar regions. The resulting model of the magnetosphere (model MME) is compared to the existing Swarm Level 2 magnetospheric field model (MMA_SHA_2C). The differences of up to 10 nT are found on the nightsides Swarm data from 2014 April 8 to May 10, which are due to different processing schemes used to construct the two magnetospheric magnetic field models. The forward-simulated magnetospheric magnetic field generated by the external part of model MME then demonstrates the consistency of the separation of the Swarm along-track signal into the external and internal parts by the two-step along-track spectral analysis.

  11. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    PubMed

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  12. Spectral analysis of allogeneic hydroxyapatite powders

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  13. Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.

    1983-01-01

    The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

  14. Least Squares Moving-Window Spectral Analysis.

    PubMed

    Lee, Young Jong

    2017-08-01

    Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.

  15. Prior-knowledge-based spectral mixture analysis for impervious surface mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinshui; He, Chunyang; Zhou, Yuyu

    2014-01-03

    In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the Vegetation-Impervious model (V-I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the Vegetation-Impervious-Soil model (V-I-S) was used in an SMA analysis with four endmembers: high albedo, lowmore » albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.« less

  16. Assessment of insulin sensitivity by the hyperinsulinemic euglycemic clamp: Comparison with the spectral analysis of photoplethysmography.

    PubMed

    De Souza, Aglecio Luiz; Batista, Gisele Almeida; Alegre, Sarah Monte

    2017-01-01

    We compare spectral analysis of photoplethysmography (PTG) with insulin resistance measured by the hyperinsulinemic euglycemic clamp (HEC) technique. A total of 100 nondiabetic subjects, 43 men and 57 women aged 20-63years, 30 lean, 42 overweight and 28 obese were enrolled in the study. These patients underwent an examination with HEC, and an examination with the PTG spectral analysis and calculation of the PTG Total Power (PTG-TP). Receiver-operating characteristic (ROC) curves were constructed to determine the specificity and sensitivity of PTG-TP in the assessment of insulin resistance. There is a moderate correlation between insulin sensitivity (M-value) and PTG-TP (r=- 0.64, p<0.0001). The ROC curves showed that the most relevant cutoff to the whole study group was a PTG-TP>406.2. This cut-off had a sensitivity=95.7%, specificity =84,4% and the area under the ROC curve (AUC)=0.929 for identifying insulin resistance. All AUC ROC curve analysis were significant (p<0.0001). The use of the PTG-TP marker measured from the PTG spectral analysis is a useful tool in screening and follow up of IR, especially in large-scale studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?

    PubMed

    Caso, Francesca; Cursi, Marco; Magnani, Giuseppe; Fanelli, Giovanna; Falautano, Monica; Comi, Giancarlo; Leocani, Letizia; Minicucci, Fabio

    2012-10-01

    Drawing a clinical distinction between frontotemporal dementia (FTD) and Alzheimer's disease (AD) is tricky, particularly at the early stages of disease. This study evaluates the possibility in differentiating 39 FTD, 39 AD, and 39 controls (CTR) by means of power spectral analysis and standardized low resolution brain electromagnetic tomography (sLORETA) within delta, theta, alpha 1 and 2, beta 1, 2, and 3 frequency bands. Both analyses revealed in AD patients, relative to CTR, higher expression of diffuse delta/theta and lower central/posterior fast frequency (from alpha1 to beta2) bands. FTD patients showed diffuse increased theta power compared with CTR and lower delta relative to AD patients. Compared with FTD, AD patients showed diffuse higher theta power at spectral analysis and, at sLORETA, decreased alpha2 and beta1 values in central/temporal regions. Spectral analysis and sLORETA provided complementary information that might help characterizing different patterns of electroencephalogram (EEG) oscillatory activity in AD and FTD. Nevertheless, this differentiation was possible only at the group level because single patients could not be discerned with sufficient accuracy. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del

    NASA Astrophysics Data System (ADS)

    Robertson, Jordan; Sion, E.

    2012-05-01

    We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University

  19. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  20. A comparison of spectral mixture analysis an NDVI for ascertaining ecological variables

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Bateson, C. Ann; Curtiss, Brian; Benning, Tracy L.

    1993-01-01

    In this study, we compare the performance of spectral mixture analysis to the Normalized Difference Vegetation Index (NDVI) in detecting change in a grassland across topographically-induced nutrient gradients and different management schemes. The Konza Prairie Research Natural Area, Kansas, is a relatively homogeneous tallgrass prairie in which change in vegetation productivity occurs with respect to topographic positions in each watershed. The area is the site of long-term studies of the influence of fire and grazing on tallgrass production and was the site of the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) from 1987 to 1989. Vegetation indices such as NDVI are commonly used with imagery collected in few (less than 10) spectral bands. However, the use of only two bands (e.g. NDVI) does not adequately account for the complex of signals making up most surface reflectance. Influences from background spectral variation and spatial heterogeneity may confound the direct relationship with biological or biophysical variables. High dimensional multispectral data allows for the application position of techniques such as derivative analysis and spectral curve fitting, thereby increasing the probability of successfully modeling the reflectance from mixed surfaces. The higher number of bands permits unmixing of a greater number of surface components, separating the vegetation signal for further analyses relevant to biological variables.

  1. New parameter of the right gastroepiploic arterial graft using the power spectral analysis device named MemCalc soft.

    PubMed

    Uehara, Mayuko; Takagi, Nobuyuki; Muraki, Satoshi; Yanase, Yosuke; Tabuchi, Masaki; Tachibana, Kazutoshi; Miyaki, Yasuko; Ito, Toshiro; Higami, Tetsuya

    2015-12-01

    Transit-time flow measurement (TTFM) parameters such as mean graft flow (MGF, ml/min), pulsatility index (PI) and diastolic filling (DF, %) have been extensively researched for internal mammary arterial or saphenous vein grafts. In our experience of using the right gastroepiploic arterial (GEA) graft for right coronary artery (RCA) grafting, we observed unique GEA graft flow waveforms. We analysed the GEA graft flow waveforms for their effectiveness in determining GEA graft patency by power spectral analysis. Forty-five patients underwent off-pump coronary artery bypass using the GEA graft for RCA grafting individually. The means of intraoperative MGF, PI and DF were compared between patent and non-patent grafts, postoperatively. Furthermore, the GEA flow data were output and analysed using power spectral analysis. Forty grafts were 'patent' and five were 'non-patent'. There were no significant differences in the mean TTFM parameters between the patent and non-patent grafts (MGF: 22 vs 8 ml/min, respectively, P = 0.068; PI: 3.5 vs 6.5, respectively, P = 0.155; DF: 63 vs 53%, respectively, P = 0.237). Results of the power spectral analysis presented clear differences; the power spectral density (PSD) of patent grafts presented high peaks at frequency levels of 1, 2 and 3 Hz, and the non-patent graft PSD presented high peaks that were not limited to these frequencies. The PSD had a sensitivity and specificity of 80 and 87.5%, respectively. Power spectral analysis of the GEA graft flow is useful to distinguish between non-patent and patent grafts intraoperatively. This should be used as a fourth parameter along with MGF, PI and DF. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. [Experimental Methods and Result Analysis of a Variety of Spectral Reflectance Properties of the Thin Oil Film].

    PubMed

    Ye, Zhou; Liu, Li; Wei, Chuan-xin; Gu, Qun; An, Ping-ao; Zhao, Yue-jiao; Yin, Da-yi

    2015-06-01

    In order to analysis the oil spill situation based on the obtained data in airborne aerial work, it's needed to get the spectral reflectance characteristics of the oil film of different oils and thickness as support and to select the appropriate operating band. An experiment is set up to measure the reflectance spectroscopy from ultraviolet to near-infrared for the film of five target samples, which means petrol, diesel, lubricating oil, kerosene and fossil, using spectral measurement device. The result is compared with the reflectance spectra of water in the same experimental environment, which shows that the spectral reflection characteristics of the oil film are related to the thickness and the type of the oil film. In case of the same thickness, the spectral reflectance curve of different types of film is far different, and for the same type of film, the spectral reflectance curve changes accordingly with the change of film thickness, therefore in terms of the single film, different film thickness can be distinguished by reflectance curves. It also shows that in terms of the same film thickness, the reflectance of diesel, kerosene, lubricants reaches peak around 380 nm wavelength, obviously different from the reflectance of water, and that the reflectance of crude oil is far less than that of water in more than 340 nm wavelength, and the obtained reflection spectrum can be used to distinguish between different types of oil film to some extent. The experiment covers main types of spilled oil, with data comprehensively covering commonly used detect spectral bands, and quantitative description of the spectral reflectance properties of film. It provides comprehensive theoretical and data support for the selection of airborne oil spill detection working band and the detection and analysis of water-surface oil spill.

  3. Random vibration analysis of space flight hardware using NASTRAN

    NASA Technical Reports Server (NTRS)

    Thampi, S. K.; Vidyasagar, S. N.

    1990-01-01

    During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction.

  4. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Torres, C.; Streppa, L.; Arneodo, A.

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less

  5. Snapshot hyperspectral imaging probe with principal component analysis and confidence ellipse for classification

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-06-01

    Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.

  6. Model-free methods to study membrane environmental probes: a comparison of the spectral phasor and generalized polarization approaches

    PubMed Central

    Malacrida, Leonel; Gratton, Enrico; Jameson, David M

    2016-01-01

    In this note, we present a discussion of the advantages and scope of model-free analysis methods applied to the popular solvatochromic probe LAURDAN, which is widely used as an environmental probe to study dynamics and structure in membranes. In particular, we compare and contrast the generalized polarization approach with the spectral phasor approach. To illustrate our points we utilize several model membrane systems containing pure lipid phases and, in some cases, cholesterol or surfactants. We demonstrate that the spectral phasor method offers definitive advantages in the case of complex systems. PMID:27182438

  7. On modelling three-dimensional piezoelectric smart structures with boundary spectral element method

    NASA Astrophysics Data System (ADS)

    Zou, Fangxin; Aliabadi, M. H.

    2017-05-01

    The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.

  8. Surface Composition of Trojan Asteroids from Thermal-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A.; Emery, J. P.; Lindsay, S. S.

    2017-12-01

    Asteroid origins provide an effective means of constraining the events that dynamically shaped the solar system. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the extent of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and fall into two distinct spectral groups the near infrared (NIR). Though, featureless in this spectral region, NIR spectra of Trojans either exhibit a red or less-red slope. Typically, red-sloped spectra are associated with organics, but it has been shown that Trojans are not host to much, if any, organic material. Instead, the red slope is likely due to anhydrous silicates. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 µm region exhibits strong features due to the Si-O fundamental molecular vibrations. We hypothesize that the two Trojan spectral groups have different compositions (silicate mineralogy). With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids, five red and six less-red. Preliminary results from analysis of the 10 µm region indicate red-sloped Trojans have a higher spectral contrast compared to less-red-sloped Trojans. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 µm feature with sharp cutoffs between about 9 µm and 12 µm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Further spectral analysis in the 10 µm, 18 µm, and 30 µm band region will be performed for a more robust analysis. If all Trojans come from the same region, it is expected that they share spectral and compositional characteristics. Therefore, if spectral analysis in the TIR reinforce the NIR spectral slope dichotomy, it is likely that Trojans were sourced from two different regions of the solar system. This result would provide new constraints for dynamical models that explain giant planet migration.

  9. Parametric mapping using spectral analysis for 11C-PBR28 PET reveals neuroinflammation in mild cognitive impairment subjects.

    PubMed

    Fan, Zhen; Dani, Melanie; Femminella, Grazia D; Wood, Melanie; Calsolaro, Valeria; Veronese, Mattia; Turkheimer, Federico; Gentleman, Steve; Brooks, David J; Hinz, Rainer; Edison, Paul

    2018-07-01

    Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11 C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11 C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11 C-PBR28 parametric maps. These maps were then compared with regional 11 C-PBR28 V T (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18 F-Flutemetamol PET. With SA, three component peaks were identified in addition to blood volume. The 11 C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11 C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11 C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.

  10. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    NASA Astrophysics Data System (ADS)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  11. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    NASA Astrophysics Data System (ADS)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave infrared seen in geothermal fields. Hyperspectral analysis results indicated that kaolinite, smectite, illite, montmorillonite, and sepiolite minerals were distributed in a wide area, which covered the hot spring outlet. Rectorite, lizardite, richterite, dumortierite, nontronite, erionite, and clinoptilolite were observed occasionally.

  12. Breast Tissue Characterization with Photon-counting Spectral CT Imaging: A Postmortem Breast Study

    PubMed Central

    Ding, Huanjun; Klopfer, Michael J.; Ducote, Justin L.; Masaki, Fumitaro

    2014-01-01

    Purpose To investigate the feasibility of breast tissue characterization in terms of water, lipid, and protein contents with a spectral computed tomographic (CT) system based on a cadmium zinc telluride (CZT) photon-counting detector by using postmortem breasts. Materials and Methods Nineteen pairs of postmortem breasts were imaged with a CZT-based photon-counting spectral CT system with beam energy of 100 kVp. The mean glandular dose was estimated to be in the range of 1.8–2.2 mGy. The images were corrected for pulse pile-up and other artifacts by using spectral distortion corrections. Dual-energy decomposition was then applied to characterize each breast into water, lipid, and protein contents. The precision of the three-compartment characterization was evaluated by comparing the composition of right and left breasts, where the standard error of the estimations was determined. The results of dual-energy decomposition were compared by using averaged root mean square to chemical analysis, which was used as the reference standard. Results The standard errors of the estimations of the right-left correlations obtained from spectral CT were 7.4%, 6.7%, and 3.2% for water, lipid, and protein contents, respectively. Compared with the reference standard, the average root mean square error in breast tissue composition was 2.8%. Conclusion Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissue in a laboratory study by using postmortem specimens. © RSNA, 2014 PMID:24814180

  13. An interdisciplinary analysis of multispectral satellite data for selected cover types in the Colorado Mountains, using automatic data processing techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1975-01-01

    The author has reported the following significant results. A data set containing SKYLAB, LANDSAT, and topographic data has been overlayed, registered, and geometrically corrected to a scale of 1:24,000. After geometrically correcting both sets of data, the SKYLAB data were overlayed on the LANDSAT data. Digital topographic data were then obtained, reformatted, and a data channel containing elevation information was then digitally overlayed onto the LANDSAT and SKYLAB spectral data. The 14,039 square kilometers involving 2,113, 776 LANDSAT pixels represents a relatively large data set available for digital analysis. The overlayed data set enables investigators to numerically analyze and compare two sources of spectral data and topographic data from any point in the scene. This capability is new and it will permit a numerical comparison of spectral response with elevation, slope, and aspect. Utilization of the spectral and topographic data together to obtain more accurate classifications of the various cover types present is feasible.

  14. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  15. Method for predicting dry mechanical properties from wet wood and standing trees

    DOEpatents

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  16. Analysis of background irradiation in thermal IR hyper-spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Yuan, Liyin; Lin, Ying; He, Zhiping; Shu, Rong; Wang, Jianyu

    2010-04-01

    Our group designed a thermal IR hyper-spectral imaging system in this paper mounted in a vacuum encapsulated cavity with temperature controlling equipments. The spectral resolution is 80 nm; the spatial resolution is 1.0 mrad; the spectral channels are 32. By comparing and verifying the theoretical simulated calculation and experimental results for this system, we obtained the precise relationship between the temperature and background irradiation of optical and mechanical structures, and found the most significant components in the optic path for improving imaging quality that should be traded especially, also we had a conclusion that it should cool the imaging optics and structures to about 100K if we need utilize the full dynamic range and capture high quality of imagery.

  17. Hilbert-Huang Transform: A Spectral Analysis Tool Applied to Sunspot Number and Total Solar Irradiance Variations, as well as Near-Surface Atmospheric Variables

    NASA Astrophysics Data System (ADS)

    Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.

    2010-12-01

    Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.

  18. Analysis of dual coupler nested coupled cavities.

    PubMed

    Adib, George A; Sabry, Yasser M; Khalil, Diaa

    2017-12-01

    Coupled ring resonators are now forming the basic building blocks in several optical systems serving different applications. In many of these applications, a small full width at half maximum is required, along with a large free spectral range. In this work, a configuration of passive coupled cavities constituting dual coupler nested cavities is proposed. A theoretical study of the configuration is presented allowing us to obtain analytical expressions of its different spectral characteristics. The transfer function of the configuration is also used to generate design curves while comparing these results with analytical expressions. Finally, the configuration is compared with other coupled cavity configurations.

  19. Multitaper spectral analysis of atmospheric radar signals

    NASA Astrophysics Data System (ADS)

    Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.

    2004-11-01

    Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  20. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    PubMed

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.

  1. The influence of a local wall deformation on the development of natural instabilities in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Burnel, S.; Gougat, P.; Martin, F.

    1981-01-01

    The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.

  2. Molecular docking and spectroscopic investigations aided by density functional theory of Parkinson's drug 2-(3,4-dihydroxyphenyl)ethylamine

    NASA Astrophysics Data System (ADS)

    Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.

    2018-05-01

    Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.

  3. Implemented Lomb-Scargle periodogram: a valuable tool for improving cyclostratigraphic research on unevenly sampled deep-sea stratigraphic sequences

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Rodríguez-Tovar, Francisco J.

    2011-12-01

    One important handicap when working with stratigraphic sequences is the discontinuous character of the sedimentary record, especially relevant in cyclostratigraphic analysis. Uneven palaeoclimatic/palaeoceanographic time series are common, their cyclostratigraphic analysis being comparatively difficult because most spectral methodologies are appropriate only when working with even sampling. As a means to solve this problem, a program for calculating the smoothed Lomb-Scargle periodogram and cross-periodogram, which additionally evaluates the statistical confidence of the estimated power spectrum through a Monte Carlo procedure (the permutation test), has been developed. The spectral analysis of a short uneven time series calls for assessment of the statistical significance of the spectral peaks, since a periodogram can always be calculated but the main challenge resides in identifying true spectral features. To demonstrate the effectiveness of this program, two case studies are presented: the one deals with synthetic data and the other with paleoceanographic/palaeoclimatic proxies. On a simulated time series of 500 data, two uneven time series (with 100 and 25 data) were generated by selecting data at random. Comparative analysis between the power spectra from the simulated series and from the two uneven time series demonstrates the usefulness of the smoothed Lomb-Scargle periodogram for uneven sequences, making it possible to distinguish between statistically significant and spurious spectral peaks. Fragmentary time series of Cd/Ca ratios and δ18O from core AII107-131 of SPECMAP were analysed as a real case study. The efficiency of the direct and cross Lomb-Scargle periodogram in recognizing Milankovitch and sub-Milankovitch signals related to palaeoclimatic/palaeoceanographic changes is demonstrated. As implemented, the Lomb-Scargle periodogram may be applied to any palaeoclimatic/palaeoceanographic proxies, including those usually recovered from contourites, and it holds special interest in the context of centennial- to millennial-scale climatic changes affecting contouritic currents.

  4. Three-dimensional arbitrary voxel shapes in spectroscopy with submillisecond TEs.

    PubMed

    Snyder, Jeff; Haas, Martin; Dragonu, Iulius; Hennig, Jürgen; Zaitsev, Maxim

    2012-08-01

    A novel spectroscopic method for submillisecond TEs and three-dimensional arbitrarily shaped voxels was developed and applied to phantom and in vivo measurements, with additional parallel excitation (PEX) implementation. A segmented spherical shell excitation trajectory was used in combination with appropriate radiofrequency weights for target selection in three dimensions. Measurements in a two-compartment phantom realized a TE of 955 µs, excellent spectral quality and comparable signal-to-noise ratios between accelerated (R = 2) and nonaccelerated modes. The two-compartment model allowed a comparison of the spectral suppression qualities of the method and, although outer volume signals were suppressed by factors of 1434 and 2246 compared with the theoretical unsuppressed case for the clinical and PEX modes, respectively, incomplete suppression of the outer volume (935 cm(3) compared with a target volume of 5.86 cm(3) ) resulted in a spectral contamination of 10.2% and 6.5% compared with the total signal. The method was also demonstrated in vivo in human brain on a clinical system at TE = 935 µs with good signal-to-noise ratio and spatial and spectral selection, and included LCModel relative quantification analysis. Eight metabolites showed significant fitting accuracy, including aspartate, N-acetylaspartylglutamate, glutathione and glutamate. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Application and evaluation of ISVR method in QuickBird image fusion

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Song, Xiaolu

    2014-05-01

    QuickBird satellite images are widely used in many fields, and applications have put forward high requirements for the integration of the spatial information and spectral information of the imagery. A fusion method for high resolution remote sensing images based on ISVR is identified in this study. The core principle of ISVS is taking the advantage of radicalization targeting to remove the effect of different gain and error of satellites' sensors. Transformed from DN to radiance, the multi-spectral image's energy is used to simulate the panchromatic band. The linear regression analysis is carried through the simulation process to find a new synthetically panchromatic image, which is highly linearly correlated to the original panchromatic image. In order to evaluate, test and compare the algorithm results, this paper used ISVR and other two different fusion methods to give a comparative study of the spatial information and spectral information, taking the average gradient and the correlation coefficient as an indicator. Experiments showed that this method could significantly improve the quality of fused image, especially in preserving spectral information, to maximize the spectral information of original multispectral images, while maintaining abundant spatial information.

  6. Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

    PubMed Central

    Liu, Wenfen

    2017-01-01

    Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447

  7. [Variable selection methods combined with local linear embedding theory used for optimization of near infrared spectral quantitative models].

    PubMed

    Hao, Yong; Sun, Xu-Dong; Yang, Qiang

    2012-12-01

    Variables selection strategy combined with local linear embedding (LLE) was introduced for the analysis of complex samples by using near infrared spectroscopy (NIRS). Three methods include Monte Carlo uninformation variable elimination (MCUVE), successive projections algorithm (SPA) and MCUVE connected with SPA were used for eliminating redundancy spectral variables. Partial least squares regression (PLSR) and LLE-PLSR were used for modeling complex samples. The results shown that MCUVE can both extract effective informative variables and improve the precision of models. Compared with PLSR models, LLE-PLSR models can achieve more accurate analysis results. MCUVE combined with LLE-PLSR is an effective modeling method for NIRS quantitative analysis.

  8. Power-law statistics of neurophysiological processes analyzed using short signals

    NASA Astrophysics Data System (ADS)

    Pavlova, Olga N.; Runnova, Anastasiya E.; Pavlov, Alexey N.

    2018-04-01

    We discuss the problem of quantifying power-law statistics of complex processes from short signals. Based on the analysis of electroencephalograms (EEG) we compare three interrelated approaches which enable characterization of the power spectral density (PSD) and show that an application of the detrended fluctuation analysis (DFA) or the wavelet-transform modulus maxima (WTMM) method represents a useful way of indirect characterization of the PSD features from short data sets. We conclude that despite DFA- and WTMM-based measures can be obtained from the estimated PSD, these tools outperform the standard spectral analysis when characterization of the analyzed regime should be provided based on a very limited amount of data.

  9. Spectral Analysis of PG 1034+001, the Exciting Star of Hewett 1

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Mahsereci, M.; Ringat, E.; Rauch, T.; Werner, K.

    2011-01-01

    PG 1034+001 is an extremely hot, helium-rich DO-type star that excites the planetary nebula Hewett 1 and large parts of the surrounding interstellar medium. We present preliminary results of an ongoing spectral analysis by means of non-LTE model atmospheres that consider most elements from hydrogen to nickel. This analysis is based on high-resolution ultraviolet (FUSE, IUE) and optical (VLT/UVES, KECK) data. The results are compared with those of PG 1034+001's spectroscopic twin, the DO star PG 0038+ 199. Keywords. stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: individual (PG 1034+001, PG 0038+ 199), planetary nebulae: individual (Hewett 1)

  10. The MEM of spectral analysis applied to L.O.D.

    NASA Astrophysics Data System (ADS)

    Fernandez, L. I.; Arias, E. F.

    The maximum entropy method (MEM) has been widely applied for polar motion studies taking advantage of its performance on the management of complex time series. The authors used the algorithm of the MEM to estimate Cross Spectral function in order to compare interannual Length-of-Day (LOD) time series with Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) series, which are close related to El Niño-Southern Oscillation (ENSO) events.

  11. Robust Multipoint Water-Fat Separation Using Fat Likelihood Analysis

    PubMed Central

    Yu, Huanzhou; Reeder, Scott B.; Shimakawa, Ann; McKenzie, Charles A.; Brittain, Jean H.

    2016-01-01

    Fat suppression is an essential part of routine MRI scanning. Multiecho chemical-shift based water-fat separation methods estimate and correct for Bo field inhomogeneity. However, they must contend with the intrinsic challenge of water-fat ambiguity that can result in water-fat swapping. This problem arises because the signals from two chemical species, when both are modeled as a single discrete spectral peak, may appear indistinguishable in the presence of Bo off-resonance. In conventional methods, the water-fat ambiguity is typically removed by enforcing field map smoothness using region growing based algorithms. In reality, the fat spectrum has multiple spectral peaks. Using this spectral complexity, we introduce a novel concept that identifies water and fat for multiecho acquisitions by exploiting the spectral differences between water and fat. A fat likelihood map is produced to indicate if a pixel is likely to be water-dominant or fat-dominant by comparing the fitting residuals of two different signal models. The fat likelihood analysis and field map smoothness provide complementary information, and we designed an algorithm (Fat Likelihood Analysis for Multiecho Signals) to exploit both mechanisms. It is demonstrated in a wide variety of data that the Fat Likelihood Analysis for Multiecho Signals algorithm offers highly robust water-fat separation for 6-echo acquisitions, particularly in some previously challenging applications. PMID:21842498

  12. Ocean wavenumber estimation from wave-resolving time series imagery

    USGS Publications Warehouse

    Plant, N.G.; Holland, K.T.; Haller, M.C.

    2008-01-01

    We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.

  13. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    PubMed

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  14. Factor analysis as a tool for spectral line component separation 21cm emission in the direction of L1780

    NASA Technical Reports Server (NTRS)

    Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.

    1992-01-01

    The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.

  15. AIS Investigation of Agricultural Monocultures

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Wrigley, R. C.

    1985-01-01

    Airborne Imaging Spectrometer (AIS) data were acquired over an agricultural area in eastern San Joaquin County, California in July, 1984. Cover type information was subsequently collected for all fields along this flight line. The lack of detailed ground data on individual fields, however, limited AIS data analysis to a qualitative comparison of the spectral reflectance curves for a total of nine cover types. Based on this analysis, it appears that cover types with a positive slope in the 1550 to 1700 nm region have a higher spectral response in the 1200 to 1300 nm region compared to those cover types with a negative slope in the 1550 to 1700 nm region. Within cover type, spectral variability was also found to be greater than that between cover types. Given the lack of additional field data, the reason for these differences is a matter of speculation.

  16. Robust measurement of supernova ν e spectra with future neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku

    Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less

  17. Robust measurement of supernova ν e spectra with future neutrino detectors

    DOE PAGES

    Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku

    2018-01-25

    Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less

  18. Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.

    PubMed

    Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A

    2007-01-10

    Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.

  19. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic

    USGS Publications Warehouse

    Chavez, P.S.; Sides, S.C.; Anderson, J.A.

    1991-01-01

    The merging of multisensor image data is becoming a widely used procedure because of the complementary nature of various data sets. Ideally, the method used to merge data sets with high-spatial and high-spectral resolution should not distort the spectral characteristics of the high-spectral resolution data. This paper compares the results of three different methods used to merge the information contents of the Landsat Thematic Mapper (TM) and Satellite Pour l'Observation de la Terre (SPOT) panchromatic data. The comparison is based on spectral characteristics and is made using statistical, visual, and graphical analyses of the results. The three methods used to merge the information contents of the Landsat TM and SPOT panchromatic data were the Hue-Intensity-Saturation (HIS), Principal Component Analysis (PCA), and High-Pass Filter (HPF) procedures. The HIS method distorted the spectral characteristics of the data the most. The HPF method distorted the spectral characteristics the least; the distortions were minimal and difficult to detect. -Authors

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumway, R.H.; McQuarrie, A.D.

    Robust statistical approaches to the problem of discriminating between regional earthquakes and explosions are developed. We compare linear discriminant analysis using descriptive features like amplitude and spectral ratios with signal discrimination techniques using the original signal waveforms and spectral approximations to the log likelihood function. Robust information theoretic techniques are proposed and all methods are applied to 8 earthquakes and 8 mining explosions in Scandinavia and to an event from Novaya Zemlya of unknown origin. It is noted that signal discrimination approaches based on discrimination information and Renyi entropy perform better in the test sample than conventional methods based onmore » spectral ratios involving the P and S phases. Two techniques for identifying the ripple-firing pattern for typical mining explosions are proposed and shown to work well on simulated data and on several Scandinavian earthquakes and explosions. We use both cepstral analysis in the frequency domain and a time domain method based on the autocorrelation and partial autocorrelation functions. The proposed approach strips off underlying smooth spectral and seasonal spectral components corresponding to the echo pattern induced by two simple ripple-fired models. For two mining explosions, a pattern is identified whereas for two earthquakes, no pattern is evident.« less

  1. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum

    NASA Astrophysics Data System (ADS)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-01

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.

  2. The Impact of Quantitative Data Provided by a Multi-spectral Digital Skin Lesion Analysis Device on Dermatologists'Decisions to Biopsy Pigmented Lesions.

    PubMed

    Farberg, Aaron S; Winkelmann, Richard R; Tucker, Natalie; White, Richard; Rigel, Darrell S

    2017-09-01

    BACKGROUND: Early diagnosis of melanoma is critical to survival. New technologies, such as a multi-spectral digital skin lesion analysis (MSDSLA) device [MelaFind, STRATA Skin Sciences, Horsham, Pennsylvania] may be useful to enhance clinician evaluation of concerning pigmented skin lesions. Previous studies evaluated the effect of only the binary output. OBJECTIVE: The objective of this study was to determine how decisions dermatologists make regarding pigmented lesion biopsies are impacted by providing both the underlying classifier score (CS) and associated probability risk provided by multi-spectral digital skin lesion analysis. This outcome was also compared against the improvement reported with the provision of only the binary output. METHODS: Dermatologists attending an educational conference evaluated 50 pigmented lesions (25 melanomas and 25 benign lesions). Participants were asked if they would biopsy the lesion based on clinical images, and were asked this question again after being shown multi-spectral digital skin lesion analysis data that included the probability graphs and classifier score. RESULTS: Data were analyzed from a total of 160 United States board-certified dermatologists. Biopsy sensitivity for melanoma improved from 76 percent following clinical evaluation to 92 percent after quantitative multi-spectral digital skin lesion analysis information was provided ( p <0.0001). Specificity improved from 52 percent to 79 percent ( p <0.0001). The positive predictive value increased from 61 percent to 81 percent ( p <0.01) when the quantitative data were provided. Negative predictive value also increased (68% vs. 91%, p<0.01), and overall biopsy accuracy was greater with multi-spectral digital skin lesion analysis (64% vs. 86%, p <0.001). Interrater reliability improved (intraclass correlation 0.466 before, 0.559 after). CONCLUSION: Incorporating the classifier score and probability data into physician evaluation of pigmented lesions led to both increased sensitivity and specificity, thereby resulting in more accurate biopsy decisions.

  3. A comparative analysis of spectral exponent estimation techniques for 1/fβ processes with applications to the analysis of stride interval time series

    PubMed Central

    Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin

    2013-01-01

    Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509

  4. A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.

    PubMed

    Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin

    2014-01-30

    The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effects of Salinity on Leaf Spectral Reflectance and Biochemical Parameters of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Kirova, Elisaveta B.; Yanev, Tony K.; Iliev, Ilko Ts.

    2010-01-01

    Measurements of physiology and hyperspectral leaf reflectance were used to detect salinity stress in nitrogen fixing soybean plants. Seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. Salinity was performed at the stage of 2nd-4th trifoliate expanded leaves by adding of NaCl in the nutrient solution of Helrigel in concentrations 40 mM and 80 mM. A comparative analysis was performed between the changes in the biochemical parameters - stress markers (phenols, proline, malondialdehyde, thiol groups), chlorophyll a and b, hydrogen peroxide, and leaf spectral reflectance in the spectral range 450-850 nm. The spectral measurements were carried out by an USB2000 spectrometer. The reflectance data of the control and treated plants in the red, green, red-edge and the near infrared ranges of the spectrum were subjected to statistical analysis. Statistically significant differences were found through the Student's t-criterion at the two NaCl concentrations in all of the ranges examined with the exception of the near infrared range at 40 mM NaCl concentration. Similar results were obtained through linear discriminant analysis. The tents of the phenols, malondialdehyde and chlorophyll a and b were found to decrease at both salinity treatments. In the spectral data this effect is manifested by decrease of the reflectance values in the green and red ranges. The contents of proline, hydrogen peroxide and thiol groups rose with the NaCl concentration increase. At 80 mM NaCl concentration the values of these markers showed a considerable increase giving evidence that the soybean plants were stressed in comparison with the control. This finding is in agreement with the results from the spectral reflectance analysis.

  6. Non-Invasive Survey of Old Paintings Using Vnir Hyperspectral Sensor

    NASA Astrophysics Data System (ADS)

    Matouskova, E.; Pavelka, K.; Svadlenkova, Z.

    2013-07-01

    Hyperspectral imaging is relatively new method developed primarily for army applications with respect to detection of possible chemical weapon existence and as an efficient assistant for a geological survey. The method is based on recording spectral profile for many hundreds of narrow spectral band. The technique gives full spectral curve of explored pixel which is an unparalleled signature of pixels material. Spectral signatures can then be compared with pre-defined spectral libraries or they can be created with respect to application. A new project named "New Modern Methods of Non-invasive Survey of Historical Site Objects" started at CTU in Prague with the New Year. The project is designed for 4 years and is funded by the Ministry of Culture in the Czech Republic. It is focused on material and chemical composition, damage diagnostics, condition description of paintings, images, construction components and whole structure object analysis in cultural heritage domain. This paper shows first results of the project on painting documentation field as well as used instrument. Hyperspec VNIR by Headwall Photonics was used for this analysis. It operates in the spectral range between 400 and 1000 nm. Comparison with infrared photography is discussed. The goal of this contribution is a non-destructive deep exploration of specific paintings. Two original 17th century paintings by Flemish authors Thomas van Apshoven ("On the Road") and David Teniers the Younger ("The Interior of a Mill") were chosen for the first analysis with a kind permission of academic painter Mr. M. Martan. Both paintings oil painted on wooden panel. This combination was chosen because of the possibility of underdrawing visualization which is supposed to be the most uncomplicated painting combination for this type of analysis.

  7. Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Seungjin; Payne, Samuel H.; Bandeira, Nuno

    The spectral networks approach enables the detection of pairs of spectra from related peptides and thus allows for the propagation of annotations from identified peptides to unidentified spectra. Beyond allowing for unbiased discovery of unexpected post-translational modifications, spectral networks are also applicable to multi-species comparative proteomics or metaproteomics to identify numerous orthologous versions of a protein. We present algorithmic and statistical advances in spectral networks that have made it possible to rigorously assess the statistical significance of spectral pairs and accurately estimate the error rate of identifications via propagation. In the analysis of three related Cyanothece species, a model organismmore » for biohydrogen production, spectral networks identified peptides with highly divergent sequences with up to dozens of variants per peptide, including many novel peptides in species that lack a sequenced genome. Furthermore, spectral networks strongly suggested the presence of novel peptides even in genomically characterized species (i.e. missing from databases) in that a significant portion of unidentified multi-species networks included at least two polymorphic peptide variants.« less

  8. Hyperspectral and Hypertemporal Longwave Infrared Data Characterization

    NASA Astrophysics Data System (ADS)

    Jeganathan, Nirmalan

    The Army Research Lab conducted a persistent imaging experiment called the Spectral and Polarimetric Imagery Collection Experiment (SPICE) in 2012 and 2013 which focused on collecting and exploiting long wave infrared hyperspectral and polarimetric imagery. A part of this dataset was made for public release for research and development purposes. This thesis investigated the hyperspectral portion of this released dataset through data characterization and scene characterization of man-made and natural objects. First, the data were contrasted with MODerate resolution atmospheric TRANsmission (MODTRAN) results and found to be comparable. Instrument noise was characterized using an in-scene black panel, and was found to be comparable with the sensor manufacturer's specication. The temporal and spatial variation of certain objects in the scene were characterized. Temporal target detection was conducted on man-made objects in the scene using three target detection algorithms: spectral angle mapper (SAM), spectral matched lter (SMF) and adaptive coherence/cosine estimator (ACE). SMF produced the best results for detecting the targets when the training and testing data originated from different time periods, with a time index percentage result of 52.9%. Unsupervised and supervised classification were conducted using spectral and temporal target signatures. Temporal target signatures produced better visual classification than spectral target signature for unsupervised classification. Supervised classification yielded better results using the spectral target signatures, with a highest weighted accuracy of 99% for 7-class reference image. Four emissivity retrieval algorithms were applied on this dataset. However, the retrieved emissivities from all four methods did not represent true material emissivity and could not be used for analysis. This spectrally and temporally rich dataset enabled to conduct analysis that was not possible with other data collections. Regarding future work, applying noise-reduction techniques before applying temperature-emissivity retrieval algorithms may produce more realistic emissivity values, which could be used for target detection and material identification.

  9. A novel approach to pharmaco-EEG for investigating analgesics: assessment of spectral indices in single-sweep evoked brain potentials.

    PubMed

    Gram, Mikkel; Graversen, Carina; Nielsen, Anders K; Arendt-Nielsen, Thomas; Mørch, Carsten D; Andresen, Trine; Drewes, Asbjørn M

    2013-12-01

    To compare results from analysis of averaged and single-sweep evoked brain potentials (EPs) by visual inspection and spectral analysis in order to identify an objective measure for the analgesic effect of buprenorphine and fentanyl. Twenty-two healthy males were included in a randomized study to assess the changes in EPs after 110 sweeps of painful electrical stimulation to the median nerve following treatment with buprenorphine, fentanyl or placebo patches. Bone pressure, cutaneous heat and electrical pain ratings were assessed. EPs and pain assessments were obtained before drug administration, 24, 48, 72 and 144 h after beginning of treatment. Features from EPs were extracted by three different approaches: (i) visual inspection of amplitude and latency of the main peaks in the average EPs, (ii) spectral distribution of the average EPs and (iii) spectral distribution of the EPs from single-sweeps. Visual inspection revealed no difference between active treatments and placebo (all P > 0.05). Spectral distribution of the averaged potentials showed a decrease in the beta (12-32 Hz) band for fentanyl (P = 0.036), which however did not correlate with pain ratings. Spectral distribution in the single-sweep EPs revealed significant increases in the theta, alpha and beta bands for buprenorphine (all P < 0.05) as well as theta band increase for fentanyl (P = 0.05). For buprenorphine, beta band activity correlated with bone pressure and cutaneous heat pain (both P = 0.04, r = 0.90). In conclusion single-sweep spectral band analysis increases the information on the response of the brain to opioids and may be used to identify the response to analgesics. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  10. Spectroscopy by joint spectral and time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2015-03-01

    We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.

  11. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  12. Aging behavior of near atmospheric N2 ambient sputtered/patterned Au IR absorber thin films

    NASA Astrophysics Data System (ADS)

    Gaur, Surender P.; Kothari, Prateek; Rangra, Kamaljit; Kumar, Dinesh

    2018-03-01

    Near atmospheric N2 ambient sputtered Au thin films exhibit significant spectral absorptivity over medium to long wave infrared radiations. Thin films were found adequately robust for micropatterning using conventional photolithography and metal lift off processes. Since long term spectral absorptivity is major practical concern for Au blacks, this paper reports on aging behavior of near atmospheric Ar and Ar + N2 (1:1) ambient sputtered infrared absorber Au thin films. Comparative analysis on electrical, morphological and spectral absorption behavior of twenty-five weeks room temperature/vacuum aged Au infrared absorber thin films is performed. The Ar and Ar + N2 ambient sputtered Au thing films have shown anticipated consistency in their physical, electrical and spectral properties regardless the long term aging in this work.

  13. Do spectral bands of fetal heart rate variability associate with concomitant fetal scalp pH?

    PubMed

    Siira, Saila M; Ojala, Tiina H; Vahlberg, Tero J; Rosén, Karl G; Ekholm, Eeva M

    2013-09-01

    Objective information on specific fetal heart rate (FHR) parameters would be advantageous when assessing fetal responses to hypoxia. Small, visually undetectable changes in FHR variability can be quantified by power spectral analysis of FHR variability. To investigate the effect of intrapartum hypoxia and acidemia on spectral powers of FHR variability. This is a retrospective observational clinical study with data from an EU multicenter project. We had 462 fetuses with a normal pH-value (pH>7.20; controls) in fetal scalp blood sample (FBS) and 81 fetuses with a low scalp pH-value (≤ 7.20; low-FBS pH-fetuses). The low-FBS pH-fetuses were further divided into two subgroups according to the degree of acidemia: fetuses with FBS pH7.11-7.20 (n = 58) and fetuses with FBS pH ≤7.10 (n = 23). Spectral powers of FHR variability in relation to the concomitant FBS pH-value. Fetuses with FBS pH ≤7.20 had increased spectral powers of FHR variability compared with controls (2.49 AU vs. 2.23 AU; p = 0.038). However, the subgroup of most affected fetuses (those with FBS pH ≤7.10) had significantly lower FHR variability spectral powers when compared to fetuses with FBS pH7.11-7.20. This study shows that spectral powers of FHR variability change as a fetus becomes hypoxic, and that spectral powers decrease with deepening fetal acidemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Structural, spectral, NLO and MEP analysis of the [MgO2Ti2(OPri)6], [MgO2Ti2(OPri)2(acac)4] and [MgO2Ti2(OPri)2(bzac)4] by DFT method

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2015-06-01

    Quantum chemical calculations are performed on [MgO2Ti2(OPri)6] and [MgO2Ti2(OPri)2(L)4] complexes. L is acetylacetonate (acac) and benzoylacetonate (bzac) anion. The crystal structures of these complexes have not been obtained as experimentally but optimized structures of these complexes are obtained as theoretically in this study. Universal force field (UFF) and DFT/B3LYP method are used to obtain optimized structures. Theoretical spectral analysis (IR, 1H and 13C NMR) is compared with their experimental values. A good agreement is found between experimental and theoretical spectral analysis. These results mean that the optimized structures of mentioned complexes are appropriate. Additionally, the active sites of mentioned complexes are determined by molecular electrostatic potential (MEP) diagrams and non-linear optical (NLO) properties are investigated.

  15. PRISM: Processing routines in IDL for spectroscopic measurements (installation manual and user's guide, version 1.0)

    USGS Publications Warehouse

    Kokaly, Raymond F.

    2011-01-01

    This report describes procedures for installing and using the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software. PRISM provides a framework to conduct spectroscopic analysis of measurements made using laboratory, field, airborne, and space-based spectrometers. Using PRISM functions, the user can compare the spectra of materials of unknown composition with reference spectra of known materials. This spectroscopic analysis allows the composition of the material to be identified and characterized. Among its other functions, PRISM contains routines for the storage of spectra in database files, import/export of ENVI spectral libraries, importation of field spectra, correction of spectra to absolute reflectance, arithmetic operations on spectra, interactive continuum removal and comparison of spectral features, correction of imaging spectrometer data to ground-calibrated reflectance, and identification and mapping of materials using spectral feature-based analysis of reflectance data. This report provides step-by-step instructions for installing the PRISM software and running its functions.

  16. Groupwise shape analysis of the hippocampus using spectral matching

    NASA Astrophysics Data System (ADS)

    Shakeri, Mahsa; Lombaert, Hervé; Lippé, Sarah; Kadoury, Samuel

    2014-03-01

    The hippocampus is a prominent subcortical feature of interest in many neuroscience studies. Its subtle morphological changes often predicate illnesses, including Alzheimer's, schizophrenia or epilepsy. The precise location of structural differences requires a reliable correspondence between shapes across a population. In this paper, we propose an automated method for groupwise hippocampal shape analysis based on a spectral decomposition of a group of shapes to solve the correspondence problem between sets of meshes. The framework generates diffeomorphic correspondence maps across a population, which enables us to create a mean shape. Morphological changes are then located between two groups of subjects. The performance of the proposed method was evaluated on a dataset of 42 hippocampus shapes and compared with a state-of-the-art structural shape analysis approach, using spherical harmonics. Difference maps between mean shapes of two test groups demonstrates that the two approaches showed results with insignificant differences, while Gaussian curvature measures calculated between matched vertices showed a better fit and reduced variability with spectral matching.

  17. Recovery of a spectrum based on a compressive-sensing algorithm with weighted principal component analysis

    NASA Astrophysics Data System (ADS)

    Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang

    2017-07-01

    The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.

  18. Investigating the Age of Mercury's Pyroclastic Deposits

    NASA Astrophysics Data System (ADS)

    Jozwiak, L. M.; Izenberg, N. R.; Olson, C. L.; Head, J. W.

    2018-05-01

    We use a combination of stratigraphic and comparative spectral analysis to investigate the ages of Mercury's pyroclastic deposits. We find that pyroclastic deposits have continued to form into Mercury's recent geologic history.

  19. Effectiveness of Spectral Similarity Measures to Develop Precise Crop Spectra for Hyperspectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Chauhan, H.; Krishna Mohan, B.

    2014-11-01

    The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.

  20. Spectral Dynamics of Resting State fMRI Within the Ventral Tegmental Area and Dorsal Raphe Nuclei in Medication-Free Major Depressive Disorder in Young Adults.

    PubMed

    Wohlschläger, Afra; Karne, Harish; Jordan, Denis; Lowe, Mark J; Jones, Stephen E; Anand, Amit

    2018-01-01

    Background: Dorsal raphe nucleus (DRN) and ventral tegmental area (VTA) are major brainstem monamine nuclei consisting of serotonin and dopamine neurons respectively. Animal studies show that firing patterns in both nuclei are altered when animals exhibit depression like behaviors. Functional MRI studies in humans have shown reduced VTA activation and DRN connectivity in depression. This study for the first time aims at investigating the functional integrity of local neuronal firing concurrently in both the VTA and DRN in vivo in humans using spectral analysis of resting state low frequency fluctuation fMRI. Method: A total of 97 medication-free subjects-67 medication-free young patients (ages 18-30) with major depressive disorder and 30 closely matched healthy controls were included in the study to detect aberrant dynamics in DRN and VTA. For the investigation of altered localized dynamics we conducted power spectral analysis and above this spectral cross correlation between the two groups. Complementary to this, spectral dependence of permutation entropy, an information theoretical measure, was compared between groups. Results: Patients displayed significant spectral slowing in VTA vs. controls ( p = 0.035, corrected). In DRN, spectral slowing was less pronounced, but the amount of slowing significantly correlated with 17-item Hamilton Depression Rating scores of depression severity ( p = 0.038). Signal complexity as assessed via permutation entropy showed spectral alterations inline with the results on spectral slowing. Conclusion: Our results indicate that altered functional dynamics of VTA and DRN in depression can be detected from regional fMRI signal. On this basis, impact of antidepressant treatment and treatment response can be assessed using these markers in future studies.

  1. Spectral gain investigation of large size OPCPA based on partially deuterated KDP

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Boyle, Alexis; Musgrave, Ian O.; Oliveira, Pedro; Pepler, Dave; Shaikh, Waseem; Winstone, Trevor B.; Wyatt, Adam; Hernandez-Gomez, Cristina

    2018-01-01

    The Optical Parametric Chirped Pulse Amplification is one of the most promising techniques to deliver 20PW laser system. The already available KD*P in large size is a good candidate as nonlinear crystal. In this article we report the experimental analysis of the spectral small signal gain for KD*P at 70% deuteration level for different phase matching and non-collinear angle. The data is also compared with a theoretical model.

  2. Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.

    PubMed

    Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina

    2010-07-02

    This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    PubMed

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quantile regression applied to spectral distance decay

    USGS Publications Warehouse

    Rocchini, D.; Cade, B.S.

    2008-01-01

    Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.

  5. Spectral distance decay: Assessing species beta-diversity by quantile regression

    USGS Publications Warehouse

    Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.

    2009-01-01

    Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  6. Ventilatory thresholds determined from HRV: comparison of 2 methods in obese adolescents.

    PubMed

    Quinart, S; Mourot, L; Nègre, V; Simon-Rigaud, M-L; Nicolet-Guénat, M; Bertrand, A-M; Meneveau, N; Mougin, F

    2014-03-01

    The development of personalised training programmes is crucial in the management of obesity. We evaluated the ability of 2 heart rate variability analyses to determine ventilatory thresholds (VT) in obese adolescents. 20 adolescents (mean age 14.3±1.6 years and body mass index z-score 4.2±0.1) performed an incremental test to exhaustion before and after a 9-month multidisciplinary management programme. The first (VT1) and second (VT2) ventilatory thresholds were identified by the reference method (gas exchanges). We recorded RR intervals to estimate VT1 and VT2 from heart rate variability using time-domain analysis and time-varying spectral-domain analysis. The coefficient correlations between thresholds were higher with spectral-domain analysis compared to time-domain analysis: Heart rate at VT1: r=0.91 vs. =0.66 and VT2: r=0.91 vs. =0.66; power at VT1: r=0.91 vs. =0.74 and VT2: r=0.93 vs. =0.78; spectral-domain vs. time-domain analysis respectively). No systematic bias in heart rate at VT1 and VT2 with standard deviations <6 bpm were found, confirming that spectral-domain analysis could replace the reference method for the detection of ventilatory thresholds. Furthermore, this technique is sensitive to rehabilitation and re-training, which underlines its utility in clinical practice. This inexpensive and non-invasive tool is promising for prescribing physical activity programs in obese adolescents. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  8. Spectral mapping tools from the earth sciences applied to spectral microscopy data.

    PubMed

    Harris, A Thomas

    2006-08-01

    Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures. (c) 2006 International Society for Analytical Cytology.

  9. Neural net classification of REM sleep based on spectral measures as compared to nonlinear measures.

    PubMed

    Grözinger, M; Fell, J; Röschke, J

    2001-11-01

    In various studies the implementation of nonlinear and nonconventional measures has significantly improved EEG (electroencephalogram) analyses as compared to using conventional parameters alone. A neural network algorithm well approved in our laboratory for the automatic recognition of rapid eye movement (REM) sleep was investigated in this regard. Originally based on a broad range of spectral power inputs, we additionally supplied the nonlinear measures of the largest Lyapunov exponent and correlation dimension as well as the nonconventional stochastic measures of spectral entropy and entropy of amplitudes. No improvement in the detection of REM sleep could be achieved by the inclusion of the new measures. The accuracy of the classification was significantly worse, however, when supplied with these variables alone. In view of results demonstrating the efficiency of nonconventional measures in EEG analysis, the benefit appears to depend on the nature of the problem.

  10. The effect of input data transformations on object-based image analysis

    PubMed Central

    LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.

    2011-01-01

    The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829

  11. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  12. Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram.

    PubMed

    Timmer, J; Lauk, M; Pfleger, W; Deuschl, G

    1998-05-01

    We investigate the relationship between the extensor electromyogram (EMG) and tremor times series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second-order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.

  13. 3-D interactive visualisation tools for Hi spectral line imaging

    NASA Astrophysics Data System (ADS)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2017-06-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.

  14. Inventories of Delaware's coastal vegetation and land-use utilizing digital processing of ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Rogers, R.; Reed, L.

    1974-01-01

    The author has identified the following significant results. Analysis of ERTS-1 color composite images using analogy processing equipment confirmed that all the major wetlands plant species were distinguishable at ERTS-1 scale. Furthermore, human alterations of the coastal zone were easily recognized since such alterations typically involve removal of vegetative cover resulting in a change of spectral signature. The superior spectral resolution of the CCTs as compared with single band or composite imagery has indeed provided good discrimination through digital analysis of the CCTs with the added advantage of rapid production of thematic maps and data.

  15. Prediction of the spectral reflectance of laser-generated color prints by combination of an optical model and learning methods.

    PubMed

    Nébouy, David; Hébert, Mathieu; Fournel, Thierry; Larina, Nina; Lesur, Jean-Luc

    2015-09-01

    Recent color printing technologies based on the principle of revealing colors on pre-functionalized achromatic supports by laser irradiation offer advanced functionalities, especially for security applications. However, for such technologies, the color prediction is challenging, compared to classic ink-transfer printing systems. The spectral properties of the coloring materials modified by the lasers are not precisely known and may strongly vary, depending on the laser settings, in a nonlinear manner. We show in this study, through the example of the color laser marking (CLM) technology, based on laser bleaching of a mixture of pigments, that the combination of an adapted optical reflectance model and learning methods to get the model's parameters enables prediction of the spectral reflectance of any printable color with rather good accuracy. Even though the pigment mixture is formulated from three colored pigments, an analysis of the dimensionality of the spectral space generated by CLM printing, thanks to a principal component analysis decomposition, shows that at least four spectral primaries are needed for accurate spectral reflectance predictions. A polynomial interpolation is then used to relate RGB laser intensities with virtual coordinates of new basis vectors. By studying the influence of the number of calibration patches on the prediction accuracy, we can conclude that a reasonable number of 130 patches are enough to achieve good accuracy in this application.

  16. LASER METHODS IN BIOLOGY: Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.

    2007-08-01

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.

  17. Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 2. Hydrated gluten.

    PubMed

    Bruun, Susanne Wrang; Søndergaard, Ib; Jacobsen, Susanne

    2007-09-05

    Hydrated gluten, treated with various salts, was analyzed by near-infrared (NIR) spectroscopy to assess the ability of this method to reveal protein structure and interaction changes in perturbed food systems. The spectra were pretreated with second-derivative transformation and extended multiplicative signal correction for improving the band resolution and removing physical and quantitative spectral variations. Principal component analysis of the preprocessed spectra showed spectral effects that depended on salt type and concentration. Although both gluten texture and the NIR spectra were little influenced by treatment with salt solutions of low concentrations (0.1-0.2 M), they were significantly and diversely affected by treatment with 1.0 M salt solutions. Compared to hydration in water, hydration in 1.0 M sulfate salts caused spectral effects similar to a drying-out effect, which could be explained by salting-out.

  18. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  19. Archetypal Analysis for Sparse Representation-Based Hyperspectral Sub-Pixel Quantification

    NASA Astrophysics Data System (ADS)

    Drees, L.; Roscher, R.

    2017-05-01

    This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30m×30m. For this, sparse representation is applied, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. The elementary spectra are determined from image reference data using simplex volume maximization, which is a fast heuristic technique for archetypal analysis. In the experiments, the estimation of class fractions based on the archetypal spectral library is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions and the number of used elementary spectra. We will show, that a collection of archetypes can be an adequate and efficient alternative to the spectral library with respect to mentioned criteria.

  20. Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis

    NASA Astrophysics Data System (ADS)

    Dion, J.-L.; Tawfiq, I.; Chevallier, G.

    2012-01-01

    This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.

  1. Classification of narcotics in solid mixtures using principal component analysis and Raman spectroscopy.

    PubMed

    Ryder, Alan G

    2002-03-01

    Eighty-five solid samples consisting of illegal narcotics diluted with several different materials were analyzed by near-infrared (785 nm excitation) Raman spectroscopy. Principal Component Analysis (PCA) was employed to classify the samples according to narcotic type. The best sample discrimination was obtained by using the first derivative of the Raman spectra. Furthermore, restricting the spectral variables for PCA to 2 or 3% of the original spectral data according to the most intense peaks in the Raman spectrum of the pure narcotic resulted in a rapid discrimination method for classifying samples according to narcotic type. This method allows for the easy discrimination between cocaine, heroin, and MDMA mixtures even when the Raman spectra are complex or very similar. This approach of restricting the spectral variables also decreases the computational time by a factor of 30 (compared to the complete spectrum), making the methodology attractive for rapid automatic classification and identification of suspect materials.

  2. A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting

    PubMed Central

    LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.

    2013-01-01

    Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644

  3. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming

    2008-02-01

    Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.

  4. Raman spectral properties of squamous cell carcinoma of oral tissues and cells

    NASA Astrophysics Data System (ADS)

    Su, L.; Sun, Y. F.; Chen, Y.; Chen, P.; Shen, A. G.; Wang, X. H.; Jia, J.; Zhao, Y. F.; Zhou, X. D.; Hu, J. M.

    2012-01-01

    Early diagnosis is the key of the improved survival rates of oral cancer. Raman spectroscopy is sensitive to the early changes of molecular composition and structure that occur in benign lesion during carcinogenesis. In this study, in situ Raman analysis provided distinct spectra that can be used to discriminate between normal and malignant tissues, as well as normal and cancer cells. The biochemical variations between different groups were analyzed by the characteristic bands by comparing the normalized mean spectra. Spectral profiles of normal, malignant conditions show pronounced differences between one another, and multiple Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discrimination power for cancer sample identification. Statistical analyses of the Raman data and classification using principal component analysis (PCA) are shown to be effective for the Raman spectral diagnosis of oral mucosal diseases. The results indicate that the biomolecular differences between normal and malignant conditions are more obviously at the cellular level. This technique could provide a research foundation for the Raman spectral diagnosis of oral mucosal diseases.

  5. Analysis of JPSS J1 VIIRS Polarization Sensitivity Using the NIST T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeffrey W.; Young, James B.; Moyer, David; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2015-01-01

    The polarization sensitivity of the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) measured pre-launch using a broadband source was observed to be larger than expected for many reflective bands. Ray trace modeling predicted that the observed polarization sensitivity was the result of larger diattenuation at the edges of the focal plane filter spectral bandpass. Additional ground measurements were performed using a monochromatic source (the NIST T-SIRCUS) to input linearly polarized light at a number of wavelengths across the bandpass of two VIIRS spectral bands and two scan angles. This work describes the data processing, analysis, and results derived from the T-SIRCUS measurements, comparing them with broadband measurements. Results have shown that the observed degree of linear polarization, when weighted by the sensor's spectral response function, is generally larger on the edges and smaller in the center of the spectral bandpass, as predicted. However, phase angle changes in the center of the bandpass differ between model and measurement. Integration of the monochromatic polarization sensitivity over wavelength produced results consistent with the broadband source measurements, for all cases considered.

  6. Effect of genetic algorithm as a variable selection method on different chemometric models applied for the analysis of binary mixture of amoxicillin and flucloxacillin: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-03-01

    Different chemometric models were applied for the quantitative analysis of amoxicillin (AMX), and flucloxacillin (FLX) in their binary mixtures, namely, partial least squares (PLS), spectral residual augmented classical least squares (SRACLS), concentration residual augmented classical least squares (CRACLS) and artificial neural networks (ANNs). All methods were applied with and without variable selection procedure (genetic algorithm GA). The methods were used for the quantitative analysis of the drugs in laboratory prepared mixtures and real market sample via handling the UV spectral data. Robust and simpler models were obtained by applying GA. The proposed methods were found to be rapid, simple and required no preliminary separation steps.

  7. A spectral power analysis of driving behavior changes during the transition from nondistraction to distraction.

    PubMed

    Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R

    2017-11-17

    This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing driving performance compared to time domain analyses.

  8. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum.

    PubMed

    Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E

    2017-02-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Messinger, David W.

    2018-03-01

    The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.

  10. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  11. Arc-welding quality assurance by means of embedded fiber sensor and spectral processing combining feature selection and neural networks

    NASA Astrophysics Data System (ADS)

    Mirapeix, J.; García-Allende, P. B.; Cobo, A.; Conde, O.; López-Higuera, J. M.

    2007-07-01

    A new spectral processing technique designed for its application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed by means of two consecutive stages. A compression algorithm is first applied to the data allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in a previous paper, giving rise to an improvement in the performance of the monitoring system.

  12. A new analysis of heart rate variability in the assessment of fetal parasympathetic activity: An experimental study in a fetal sheep model.

    PubMed

    Garabedian, C; Champion, C; Servan-Schreiber, E; Butruille, L; Aubry, E; Sharma, D; Logier, R; Deruelle, P; Storme, L; Houfflin-Debarge, V; De Jonckheere, J

    2017-01-01

    Analysis of heart rate variability (HRV) is a recognized tool in the assessment of autonomic nervous system (ANS) activity. Indeed, both time and spectral analysis techniques enable us to obtain indexes that are related to the way the ANS regulates the heart rate. However, these techniques are limited in terms of the lack of thresholds of the numerical indexes, which is primarily due to high inter-subject variability. We proposed a new fetal HRV analysis method related to the parasympathetic activity of the ANS. The aim of this study was to evaluate the performance of our method compared to commonly used HRV analysis, with regard to i) the ability to detect changes in ANS activity and ii) inter-subject variability. This study was performed in seven sheep fetuses. In order to evaluate the sensitivity and specificity of our index in evaluating parasympathetic activity, we directly administered 2.5 mg intravenous atropine, to inhibit parasympathetic tone, and 5 mg propranolol to block sympathetic activity. Our index, as well as time analysis (root mean square of the successive differences; RMSSD) and spectral analysis (high frequency (HF) and low frequency (LF) spectral components obtained via fast Fourier transform), were measured before and after injection. Inter-subject variability was estimated by the coefficient of variance (%CV). In order to evaluate the ability of HRV parameters to detect fetal parasympathetic decrease, we also estimated the effect size for each HRV parameter before and after injections. As expected, our index, the HF spectral component, and the RMSSD were reduced after the atropine injection. Moreover, our index presented a higher effect size. The %CV was far lower for our index than for RMSSD, HF, and LF. Although LF decreased after propranolol administration, fetal stress index, RMSSD, and HF were not significantly different, confirming the fact that those indexes are specific to the parasympathetic nervous system. In conclusion, our method appeared to be effective in detecting parasympathetic inhibition. Moreover, inter-subject variability was much lower, and effect size higher, with our method compared to other HRV analysis methods.

  13. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    PubMed

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  14. Proteomic Analysis of Acetaminophen-Induced Changes in Mitochondrial Protein Expression Using Spectral Counting

    PubMed Central

    Stamper, Brendan D.; Mohar, Isaac; Kavanagh, Terrance J.; Nelson, Sidney D.

    2011-01-01

    Comparative proteomic analysis following treatment with acetaminophen (APAP) was performed on two different models of APAP-mediated hepatocellular injury in order to both identify common targets for adduct formation and track drug-induced changes in protein expression. Male C57BL/6 mice were used as a model for APAP-mediated liver injury in vivo and TAMH cells were used as a model for APAP-mediated cytotoxicity in vitro. SEQUEST was unable to identify the precise location of sites of adduction following treatment with APAP in either system. However, semiquantitative analysis of the proteomic datasets using spectral counting revealed a downregulation of P450 isoforms associated with APAP bioactivation, and an upregulation of proteins related to the electron transport chain by APAP compared to control. Both mechanisms are likely compensatory in nature as decreased P450 expression is likely to attenuate toxicity associated with N-acetyl-p-quinoneimine (NAPQI) formation, whereas APAP-induced electron transport chain component upregulation may be an attempt to promote cellular bioenergetics. PMID:21329376

  15. Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.

    PubMed

    Belyaeva, O B; Litvin, F F

    2015-12-01

    This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.

  16. Application of multivariate autoregressive spectrum estimation to ULF waves

    NASA Technical Reports Server (NTRS)

    Ioannidis, G. A.

    1975-01-01

    The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.

  17. Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images

    NASA Astrophysics Data System (ADS)

    Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan

    2014-05-01

    To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.

  18. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections

    NASA Astrophysics Data System (ADS)

    Duann, Jeng-Ren; Jan, Chia-Ing; Ou-Yang, Mang; Lin, Chia-Yi; Mo, Jen-Feng; Lin, Yung-Jiun; Tsai, Ming-Hsui; Chiou, Jin-Chern

    2013-12-01

    Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).

  19. Newly Diagnosed Breast Cancer: Comparison of Contrast-enhanced Spectral Mammography and Breast MR Imaging in the Evaluation of Extent of Disease.

    PubMed

    Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita

    2017-11-01

    Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P < .001 for all results). In addition, contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed breast cancer, with a higher PPV. © RSNA, 2017.

  20. Spectral analysis of bacanora (agave-derived liquor) by using FT-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan

    2016-04-01

    The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm-1 to 3500 cm-1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.

  1. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  2. Evaluating visibility of age spot and freckle based on simulated spectral reflectance distribution and facial color image

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Tsumura, Norimichi

    2018-02-01

    In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.

  3. Arrhythmia Mechanism and Scaling Effect on the Spectral Properties of Electroanatomical Maps With Manifold Harmonics.

    PubMed

    Sanroman-Junquera, Margarita; Mora-Jimenez, Inmaculada; Garcia-Alberola, Arcadio; Caamano, Antonio J; Trenor, Beatriz; Rojo-Alvarez, Jose L

    2018-04-01

    Spatial and temporal processing of intracardiac electrograms provides relevant information to support the arrhythmia ablation during electrophysiological studies. Current cardiac navigation systems (CNS) and electrocardiographic imaging (ECGI) build detailed 3-D electroanatomical maps (EAM), which represent the spatial anatomical distribution of bioelectrical features, such as activation time or voltage. We present a principled methodology for spectral analysis of both EAM geometry and bioelectrical feature in CNS or ECGI, including their spectral representation, cutoff frequency, or spatial sampling rate (SSR). Existing manifold harmonic techniques for spectral mesh analysis are adapted to account for a fourth dimension, corresponding to the EAM bioelectrical feature. Appropriate scaling is required to address different magnitudes and units. With our approach, simulated and real EAM showed strong SSR dependence on both the arrhythmia mechanism and the cardiac anatomical shape. For instance, high frequencies increased significantly the SSR because of the "early-meets-late" in flutter EAM, compared with the sinus rhythm. Besides, higher frequency components were obtained for the left atrium (more complex anatomy) than for the right atrium in sinus rhythm. The proposed manifold harmonics methodology opens the field toward new signal processing tools for principled EAM spatiofeature analysis in CNS and ECGI, and to an improved knowledge on arrhythmia mechanisms.

  4. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    PubMed

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  5. Temporal observations of bright soil exposures at Gusev crater, Mars

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.

    2011-01-01

    The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition.

  6. Temporal observations of bright soil exposures at Gusev crater, Mars

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.

    2011-01-01

    The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition. Copyright 2011 by the American Geophysical Union.

  7. G14A-06- Analysis of the DORIS, GNSS, SLR, VLBI and Gravimetric Time Series at the GGOS Core Sites

    NASA Technical Reports Server (NTRS)

    Moreaux, G.; Lemoine, F.; Luceri, V.; Pavlis, E.; MacMillan, D.; Bonvalot, S.; Saunier, J.

    2017-01-01

    Analysis of the time series at the 3-4 multi-technique GGOS sites to analyze and compare the spectral content of the space geodetic and gravity time series. Evaluate the level of agreement between the space geodesy measurements and the physical tie vectors.

  8. Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding

    PubMed Central

    Xiao, Rui; Gao, Junbin; Bossomaier, Terry

    2016-01-01

    A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102

  9. Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; McDowell, Meryl

    2015-05-01

    Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.

  10. A Study of Soil and Duricrust Models for Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2001-03-01

    Analysis of soil and duricrust formation mechanisms on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic).

  11. Standoff analysis of laser-produced plasmas using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less

  12. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66-1.06, 1.06-1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  13. Spectral discrimination of macrophyte species during different seasons in a tropical wetland using in-situ hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Saluja, Ridhi; Garg, J. K.

    2017-10-01

    Wetlands, one of the most productive ecosystems on Earth, perform myriad ecological functions and provide a host of ecological services. Despite their ecological and economic values, wetlands have experienced significant degradation during the last century and the trend continues. Hyperspectral sensors provide opportunities to map and monitor macrophyte species within wetlands for their management and conservation. In this study, an attempt has been made to evaluate the potential of narrowband spectroradiometer data in discriminating wetland macrophytes during different seasons. main objectives of the research were (1) to determine whether macrophyte species could be discriminated based on in-situ hyperspectral reflectance collected over different seasons and at each measured waveband (400-950nm), (2) to compare the effectiveness of spectral reflectance and spectral indices in discriminating macrophyte species, and (3) to identify spectral wavelengths that are most sensitive in discriminating macrophyte species. Spectral characteristics of dominant wetland macrophyte species were collected seasonally using SVC GER 1500 portable spectroradiometer over the 400 to 1050nm spectral range at 1.5nm interval, at the Bhindawas wetland in the state of Haryana, India. Hyperspectral observations were pre-processed and subjected to statistical analysis, which involved a two-step approach including feature selection (ANOVA and KW test) and feature extraction (LDA and PCA). Statistical analysis revealed that the most influential wavelengths for discrimination were distributed along the spectral profile from visible to the near-infrared regions. The results suggest that hyperspectral data can be used discriminate wetland macrophyte species working as an effective tool for advanced mapping and monitoring of wetlands.

  14. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  15. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  16. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  17. Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.

    PubMed

    Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K

    2018-02-01

    Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.

  18. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    NASA Astrophysics Data System (ADS)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  19. TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Cho, H; Kumar, N

    Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low-more » and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.« less

  20. Anomaly Detection and Comparative Analysis of Hydrothermal Alteration Materials Trough Hyperspectral Multisensor Data in the Turrialba Volcano

    NASA Astrophysics Data System (ADS)

    Rejas, J. G.; Martínez-Frías, J.; Bonatti, J.; Martínez, R.; Marchamalo, M.

    2012-07-01

    The aim of this work is the comparative study of the presence of hydrothermal alteration materials in the Turrialba volcano (Costa Rica) in relation with computed spectral anomalies from multitemporal and multisensor data adquired in spectral ranges of the visible (VIS), short wave infrared (SWIR) and thermal infrared (TIR). We used for this purposes hyperspectral and multispectral images from the HyMAP and MASTER airborne sensors, and ASTER and Hyperion scenes in a period between 2002 and 2010. Field radiometry was applied in order to remove the atmospheric contribution in an empirical line method. HyMAP and MASTER images were georeferenced directly thanks to positioning and orientation data that were measured at the same time in the acquisition campaign from an inertial system based on GPS/IMU. These two important steps were allowed the identification of spectral diagnostic bands of hydrothermal alteration minerals and the accuracy spatial correlation. Enviromental impact of the volcano activity has been studied through different vegetation indexes and soil patterns. Have been mapped hydrothermal materials in the crater of the volcano, in fact currently active, and their surrounding carrying out a principal components analysis differentiated for a high and low absorption bands to characterize accumulations of kaolinite, illite, alunite and kaolinite+smectite, delimitating zones with the presence of these minerals. Spectral anomalies have been calculated on a comparative study of methods pixel and subpixel focused in thermal bands fused with high-resolution images. Results are presented as an approach based on expert whose main interest lies in the automated identification of patterns of hydrothermal altered materials without prior knowledge or poor information on the area.

  1. Spectral analysis and slow spreading dynamics on complex networks.

    PubMed

    Odor, Géza

    2013-09-01

    The susceptible-infected-susceptible (SIS) model is one of the simplest memoryless systems for describing information or epidemic spreading phenomena with competing creation and spontaneous annihilation reactions. The effect of quenched disorder on the dynamical behavior has recently been compared to quenched mean-field (QMF) approximations in scale-free networks. QMF can take into account topological heterogeneity and clustering effects of the activity in the steady state by spectral decomposition analysis of the adjacency matrix. Therefore, it can provide predictions on possible rare-region effects, thus on the occurrence of slow dynamics. I compare QMF results of SIS with simulations on various large dimensional graphs. In particular, I show that for Erdős-Rényi graphs this method predicts correctly the occurrence of rare-region effects. It also provides a good estimate for the epidemic threshold in case of percolating graphs. Griffiths Phases emerge if the graph is fragmented or if we apply a strong, exponentially suppressing weighting scheme on the edges. The latter model describes the connection time distributions in the face-to-face experiments. In case of a generalized Barabási-Albert type of network with aging connections, strong rare-region effects and numerical evidence for Griffiths Phase dynamics are shown. The dynamical simulation results agree well with the predictions of the spectral analysis applied for the weighted adjacency matrices.

  2. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    PubMed

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.

  3. The broad-band X-ray spectral variability of Mrk 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1993-01-01

    A detailed spectral analysis of five X-ray observations of Mrk 841 with the EXOSAT, Ginga, and ROSAT satellites is reported. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above, 1 keV, the spectra are adequately modeled by a power law with a strong emission line of equivalent width 450 eV. The large equivalent width of the emission line indicates a strongly enhanced reflection component of the source compared with other Seyferts observed with Ginga. The implications of the results of the analysis for physical models of the emission regions in this and other X-ray bright Seyferts are briefly examined.

  4. Local and Global Gestalt Laws: A Neurally Based Spectral Approach.

    PubMed

    Favali, Marta; Citti, Giovanna; Sarti, Alessandro

    2017-02-01

    This letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels. This analysis performs grouping of local features and individuates perceptual units with the highest salience. Numerical simulations are performed, and results are obtained by applying the technique to a number of stimuli.

  5. The Influence of Solar Spectral Lines on Electron Concentration in Terrestrial Ionosphere

    NASA Astrophysics Data System (ADS)

    Nina, A.; Čadež, V.; Srećković, V. A.; Šulić, D.

    One of the methods of detection and analysis of solar flares is observing the time variations of certain solar spectral lines. During solar flares, a raise of electron concentration occurs in Earth's ionosphere which results in amplitude and phase variations of the recorded very low frequency (VLF) waves. We compared the data obtained by the analysis of recorded VLF signals and line spectra for different solar flares. In this paper we treated the DHO VLF signal transmitted from Germany at the frequency of 23.4 kHz recorded by the AWESOME system in Belgrade (Serbia) during solar flares in the period between 10:40 UT and 13:00 UT on 2011 April 22.

  6. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  7. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  8. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  9. Parametric Methods for Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A

    2017-03-01

    In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Sander, Rolf; Keller-Rudek, Hannelore; Moortgat, Geert; Sörensen, Rüdiger

    2014-05-01

    Measurements from satellites can be used to obtain global concentration maps of atmospheric trace constituents. Critical parameters needed in the analysis of the satellite data are the absorption cross sections of the observed molecules. Here, we present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of more than 5000 absorption cross section and quantum yield data files in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at http://www.uv-vis-spectral-atlas-mainz.org. It has been completely overhauled and now appears with improved browse and search options, based on PostgreSQL, Django and Python database software. The web pages are continuously updated.

  11. Study on text mining algorithm for ultrasound examination of chronic liver diseases based on spectral clustering

    NASA Astrophysics Data System (ADS)

    Chang, Bingguo; Chen, Xiaofei

    2018-05-01

    Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.

  12. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.

    PubMed

    Vaniya, Arpana; Fiehn, Oliver

    2015-06-01

    Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.

  13. Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication

    NASA Astrophysics Data System (ADS)

    Pishva, Davar

    This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.

  14. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    PubMed

    Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.

  15. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    PubMed Central

    Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images. PMID:29874262

  16. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  17. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single species. The discrimination of native and introduced grassland was limited by the similarity of spectral signatures between forb-dominated native grasslands and brome-grass stands. However, saline native grasslands were distinguishable from brome grass.

  18. Auditory spectral versus spatial temporal order judgment: Threshold distribution analysis.

    PubMed

    Fostick, Leah; Babkoff, Harvey

    2017-05-01

    Some researchers suggested that one central mechanism is responsible for temporal order judgments (TOJ), within and across sensory channels. This suggestion is supported by findings of similar TOJ thresholds in same modality and cross-modality TOJ tasks. In the present study, we challenge this idea by analyzing and comparing the threshold distributions of the spectral and spatial TOJ tasks. In spectral TOJ, the tones differ in their frequency ("high" and "low") and are delivered either binaurally or monaurally. In spatial (or dichotic) TOJ, the two tones are identical but are presented asynchronously to the two ears and thus differ with respect to which ear received the first tone and which ear received the second tone ("left"/"left"). Although both tasks are regarded as measures of auditory temporal processing, a review of data published in the literature suggests that they trigger different patterns of response. The aim of the current study was to systematically examine spectral and spatial TOJ threshold distributions across a large number of studies. Data are based on 388 participants in 13 spectral TOJ experiments, and 222 participants in 9 spatial TOJ experiments. None of the spatial TOJ distributions deviated significantly from the Gaussian; while all of the spectral TOJ threshold distributions were skewed to the right, with more than half of the participants accurately judging temporal order at very short interstimulus intervals (ISI). The data do not support the hypothesis that 1 central mechanism is responsible for all temporal order judgments. We suggest that different perceptual strategies are employed when performing spectral TOJ than when performing spatial TOJ. We posit that the spectral TOJ paradigm may provide the opportunity for two-tone masking or temporal integration, which is sensitive to the order of the tones and thus provides perceptual cues that may be used to judge temporal order. This possibility should be considered when interpreting spectral TOJ data, especially in the context of comparing different populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. [Study on Application of NIR Spectral Information Screening in Identification of Maca Origin].

    PubMed

    Wang, Yuan-zhong; Zhao, Yan-li; Zhang, Ji; Jin, Hang

    2016-02-01

    Medicinal and edible plant Maca is rich in various nutrients and owns great medicinal value. Based on near infrared diffuse reflectance spectra, 139 Maca samples collected from Peru and Yunnan were used to identify their geographical origins. Multiplication signal correction (MSC) coupled with second derivative (SD) and Norris derivative filter (ND) was employed in spectral pretreatment. Spectrum range (7,500-4,061 cm⁻¹) was chosen by spectrum standard deviation. Combined with principal component analysis-mahalanobis distance (PCA-MD), the appropriate number of principal components was selected as 5. Based on the spectrum range and the number of principal components selected, two abnormal samples were eliminated by modular group iterative singular sample diagnosis method. Then, four methods were used to filter spectral variable information, competitive adaptive reweighted sampling (CARS), monte carlo-uninformative variable elimination (MC-UVE), genetic algorithm (GA) and subwindow permutation analysis (SPA). The spectral variable information filtered was evaluated by model population analysis (MPA). The results showed that RMSECV(SPA) > RMSECV(CARS) > RMSECV(MC-UVE) > RMSECV(GA), were 2. 14, 2. 05, 2. 02, and 1. 98, and the spectral variables were 250, 240, 250 and 70, respectively. According to the spectral variable filtered, partial least squares discriminant analysis (PLS-DA) was used to build the model, with random selection of 97 samples as training set, and the other 40 samples as validation set. The results showed that, R²: GA > MC-UVE > CARS > SPA, RMSEC and RMSEP: GA < MC-UVE < CARS

  20. Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks.

    PubMed

    Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M

    2008-10-21

    A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.

  1. Magnetoencephalographic Analysis of Cortical Activity in Adults with and without Down Syndrome

    ERIC Educational Resources Information Center

    Virji-Babul, N.; Cheung, T.; Weeks, D.; Herdman, A. T.; Cheyne, D.

    2007-01-01

    Background: This preliminary study served as a pilot for an ongoing analysis of spectral power in adults with Down syndrome (DS) using a 151 channel whole head magnetoencephalography (MEG). The present study is the first step for examining and comparing cortical responses during spontaneous and task related activity in DS. Method: Cortical…

  2. DFT analysis and spectral characteristics of Celecoxib a potent COX-2 inhibitor

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kannappan, V.; Sathyanarayanamoorthi, V.

    2016-10-01

    Extensive quantum mechanical studies are carried out on Celecoxib (CXB), a new generation drug to understand the vibrational and electronic spectral characteristics of the molecule. The vibrational frequencies of CXB are computed by HF and B3LYP methods with 6-311++G (d, p) basis set. The theoretical scaled vibrational frequencies have been assigned and they agreed satisfactorily with experimental FT-IR and Raman frequencies. The theoretical maximum wavelength of absorption of CXB are calculated in water and ethanol by TD-DFT method and these values are compared with experimentally determined λmax values. The spectral and Natural bonds orbital (NBO) analysis in conjunction with spectral data established the presence of intra molecular interactions such as mesomeric, hyperconjugative and steric effects in CXB. The electron density at various positions and reactivity descriptors of CXB indicate that the compound functions as a nucleophile and establish that aromatic ring system present in the molecule is the site of drug action. Electronic distribution and HOMO - LUMO energy values of CXB are discussed in terms of intra-molecular interactions. Computed values of Mulliken charges and thermodynamic properties of CXB are reported.

  3. Quantification of EEG reactivity in comatose patients

    PubMed Central

    Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas

    2016-01-01

    Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757

  4. Characterizing Vaccinium berry Standard Reference Materials by GC-MS using NIST spectral libraries.

    PubMed

    Lowenthal, Mark S; Andriamaharavo, Nirina R; Stein, Stephen E; Phinney, Karen W

    2013-05-01

    A gas chromatography-mass spectrometry (GC-MS)-based method was developed for qualitative characterization of metabolites found in Vaccinium fruit (berry) dietary supplement Standard Reference Materials (SRMs). Definitive identifications are provided for 98 unique metabolites determined among six Vaccinium-related SRMs. Metabolites were enriched using an organic liquid/liquid extraction, and derivatized prior to GC-MS analysis. Electron ionization (EI) fragmentation spectra were searched against EI spectra of authentic standards compiled in the National Institute of Standards and Technology's mass spectral libraries, as well as spectra selected from the literature. Metabolite identifications were further validated using a retention index match along with prior probabilities and were compared with results obtained in a previous effort using collision-induced dissociation (CID) MS/MS datasets from liquid chromatography coupled to mass spectrometry experiments. This manuscript describes a nontargeted metabolite profile of Vaccinium materials, compares results among related materials and from orthogonal experimental platforms, and discusses the feasibility and development of using mass spectral library matching for nontargeted metabolite identification.

  5. Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.

    2018-04-01

    A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.

  6. Spectral response analysis of PVDF capacitive sensors

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  7. Comparing methods for analysis of biomedical hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas J.; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter F.; Annamdevula, Naga S.; Rich, Thomas C.

    2017-02-01

    Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instruments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical "what if" scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.

  8. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices. Part 2: Processing and analysis of LDV data (for runs 1023 and 2023)

    NASA Technical Reports Server (NTRS)

    Meng, J. C. S.; Thomson, J. A. L.

    1975-01-01

    A data analysis program constructed to assess LDV system performance, to validate the simulation model, and to test various vortex location algorithms is presented. Real or simulated Doppler spectra versus range and elevation is used and the spatial distributions of various spectral moments or other spectral characteristics are calculated and displayed. Each of the real or simulated scans can be processed by one of three different procedures: simple frequency or wavenumber filtering, matched filtering, and deconvolution filtering. The final output is displayed as contour plots in an x-y coordinate system, as well as in the form of vortex tracks deduced from the maxima of the processed data. A detailed analysis of run number 1023 and run number 2023 is presented to demonstrate the data analysis procedure. Vortex tracks and system range resolutions are compared with theoretical predictions.

  9. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    NASA Astrophysics Data System (ADS)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  10. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    PubMed

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  11. Two-Flux Green's Function Analysis for Transient Spectral Radiation in a Composite

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    An analysis is developed for obtaining transient temperatures in a two-layer semitransparent composite with spectrally dependent properties. Each external boundary of the composite is subjected to radiation and convection. The two-flux radiative transfer equations are solved by deriving a Green's function. This yields the local radiative heat source needed to numerically solve the transient energy equation. An advantage of the two-flux method is that isotropic scattering is included without added complexity. The layer refractive indices are larger than one. This produces internal reflections at the boundaries and the internal interface; the reflections are assumed diffuse. Spectral results using the Green's function method are verified by comparing with numerical solutions using the exact radiative transfer equations. Transient temperature distributions are given to illustrate the effect of radiative heating on one side of a composite with external convective cooling. The protection of a material from incident radiation is illustrated by adding scattering to the layer adjacent to the radiative source.

  12. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  13. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  14. Power spectral analysis of heart rate in hyperthyroidism.

    PubMed

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P < 0.01); standing, 6.0 +/- 2.7 vs. 15.0 +/- 4.0 NU (P < 0.01); mean +/- SEM]. On the other hand components were comparable in the 2 groups (lying, 64.0 +/- 6.9 vs. 62.0 +/- 6.5 NU; standing, 77.0 +/- 6.5 vs. 78.0 +/- 5.4 NU). Hence, the LF/HF ratio, which is considered an index of sympathovagal balance, was increased in hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P < 0.05) and standing (54.0 +/- 12.6 vs. 9.8 +/- 2.6; P < 0.02). This parameter was positively correlated with both T3 (r = 0.61; P < 0.05) and free T4 (r = 0.63; P < 0.05) serum levels. Among traditional cardiovascular autonomic tests, the reflex response of heart rate during lying to standing was significantly lower in hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P < 0.002). No statistically significant difference in reflex responses between the two groups was found in deep breathing or Valsalva's maneuver. In the 8 patients reexamined after methimazole treatment, we observed complete normalization of altered cardiovascular parameters, with slight predominance of the vagal component compared with controls. These results suggest that thyroid hormone excess may determine reduced parasympathetic activity and, thus, a relative hypersympathetic tone.

  15. M4AST - A Tool for Asteroid Modelling

    NASA Astrophysics Data System (ADS)

    Birlan, Mirel; Popescu, Marcel; Irimiea, Lucian; Binzel, Richard

    2016-10-01

    M4AST (Modelling for asteroids) is an online tool devoted to the analysis and interpretation of reflection spectra of asteroids in the visible and near-infrared spectral intervals. It consists into a spectral database of individual objects and a set of routines for analysis which address scientific aspects such as: taxonomy, curve matching with laboratory spectra, space weathering models, and mineralogical diagnosis. Spectral data were obtained using groundbased facilities; part of these data are precompiled from the literature[1].The database is composed by permanent and temporary files. Each permanent file contains a header and two or three columns (wavelength, spectral reflectance, and the error on spectral reflectance). Temporary files can be uploaded anonymously, and are purged for the property of submitted data. The computing routines are organized in order to accomplish several scientific objectives: visualize spectra, compute the asteroid taxonomic class, compare an asteroid spectrum with similar spectra of meteorites, and computing mineralogical parameters. One facility of using the Virtual Observatory protocols was also developed.A new version of the service was released in June 2016. This new release of M4AST contains a database and facilities to model more than 6,000 spectra of asteroids. A new web-interface was designed. This development allows new functionalities into a user-friendly environment. A bridge system of access and exploiting the database SMASS-MIT (http://smass.mit.edu) allows the treatment and analysis of these data in the framework of M4AST environment.Reference:[1] M. Popescu, M. Birlan, and D.A. Nedelcu, "Modeling of asteroids: M4AST," Astronomy & Astrophysics 544, EDP Sciences, pp. A130, 2012.

  16. ROSAT PSPC and HRI Observations of Supernova Remnant G292.0+1.8

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1999-01-01

    The supernova remnant G292.0+1.8 was observed by the ROSAT PSPC for 18 ksec as part of this grant. Considerable effort was put into the analysis of the PSPC spectra. The major work went into nonequilibrium ionization joint spectral fits with the Einstein SSS and EXOSAT ME data which indicated that the two spatial regions of this remnant (a central bar and a plateau region covering a larger extent) had similar abundances, but different excitation conditions (temperature and ionization state), an important conclusion, if true. Unfortunately as this work was being finished, new ASCA data revealed the presence of a previously unknown, spectrally hard X-ray source near the center of the remnant which contaminated the SSS and ME data and as a consequence made our detailed spectral analysis done up until then un-publishable. We searched for evidence of this hard source in the PSPC data both spectrally and using timing searches (for a pulsar), but found nothing significant. ROSAT HRI data were also obtained on this remnant. These data were compared to the Einstein HRI data to search for evidence of spectral variations with position and possible expansion of the X-ray remnant. One feature in the remnant appears to have changed in brightness although it is not clear what is the cause of the change. No evidence for the hard ASCA source was apparent in the HRI data.

  17. Delineating gas bearing reservoir by using spectral decomposition attribute: Case study of Steenkool formation, Bintuni Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Pradana, G. S.; Riyanto, A.

    2017-07-01

    Tectonic setting of the Bird Head Papua Island becomes an important model for petroleum system in Eastern part of Indonesia. The current exploration has been started since the oil seepage finding in Bintuni and Salawati Basin. The biogenic gas in shallow layer turns out to become an interesting issue in the hydrocarbon exploration. The hydrocarbon accumulation appearance in a shallow layer with dry gas type, appeal biogenic gas for further research. This paper aims at delineating the sweet spot hydrocarbon potential in shallow layer by applying the spectral decomposition technique. The spectral decomposition is decomposing the seismic signal into an individual frequency, which has significant geological meaning. One of spectral decomposition methods is Continuous Wavelet Transform (CWT), which transforms the seismic signal into individual time and frequency simultaneously. This method is able to make easier time-frequency map analysis. When time resolution increases, the frequency resolution will be decreased, and vice versa. In this study, we perform low-frequency shadow zone analysis in which the amplitude anomaly at a low frequency of 15 Hz was observed and we then compare it to the amplitude at the mid (20 Hz) and the high-frequency (30 Hz). The appearance of the amplitude anomaly at a low frequency was disappeared at high frequency, this anomaly disappears. The spectral decomposition by using CWT algorithm has been successfully applied to delineate the sweet spot zone.

  18. Study of the central part of Mare Moscoviense by combining near-infrared spectrometer, SIR-2 and Hyper Spectral Imager (HySI) data onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Upendra Bhatt, Megha; Mall, Urs; Bugiolacchi, Roberto; Bhattacharya, Satadru

    2010-05-01

    The impact basins on lunar surface act as a window into the lunar interior and allow investigations of the composition of lower crust and upper mantle. Mare Moscoviense is one of the oldest impact basins on the far side of the Moon. We report on our preliminary analysis conducted in the central region of Mare Moscoviense using the near-infrared spectrometer, SIR-2 data in combination with the Hyperspectral Imager (HySI) data from the Chandrayaan-1 mission. SIR-2 is a compact, monolithic grating type point spectrometer which collected data with high spatial resolution (~200 m) and spectral resolution (6 nm) at wavelengths between 0.93 to 2.41 µm. The Indian HySI instrument mapped the lunar surface in the spectral range of 0.42 to 0.96 µm in 64 contiguous bands with a spectral bandwidth ~20 nm and spatial resolution of 80 m. We will explain the method of combining the response of SIR-2 and HySI to get a complete spectral coverage from 0.42-2.40 µm with high spatial and spectral resolution. We compare average reflectance spectra for spatially, spectrally and compositionally varying areas with the published literature.

  19. Understanding the spatial distribution of eroded areas in the former rural homelands of South Africa: Comparative evidence from two new non-commercial multispectral sensors

    NASA Astrophysics Data System (ADS)

    Sepuru, Terrence Koena; Dube, Timothy

    2018-07-01

    In this study, we determine the most suitable multispectral sensor that can accurately detect and map eroded areas from other land cover types in Sekhukhune rural district, Limpopo Province, South Africa. Specifically, the study tested the ability of multi-date (wet and dry season) Landsat 8 OLI and Sentinel-2 MSI images in detecting and mapping eroded areas. The implementation was done, using a robust non-parametric classification ensemble: Discriminant Analysis (DA). Three sets of analysis were applied (Analysis 1: Spectral bands as independent dataset; Analysis 2: Spectral vegetation indices as independent and Analysis 3: Combined spectral bands and spectral vegetation indices). Overall classification accuracies ranging between 80% to 81.90% for MSI and 75.71%-80.95% for OLI were derived for the wet and dry season, respectively. The integration of spectral bands and spectral vegetation indices showed that Sentinel-2 (OA = 83, 81%), slightly performed better than Landsat 8, with 82, 86%. The use of bands and vegetation indices as independent dataset resulted in slightly weaker results for both sensors. Sentinel-2 MSI bands located in the NIR (0.785-0.900 μm), red edge (0.698-0.785 μm) and SWIR (1.565-2.280 μm) regions were selected as the most optimal for discriminating degraded soils from other land cover types. However, for Landsat 8OLI, only the SWIR (1.560-2.300 μm), NIR (0.845-0.885 μm) region were selected as the best regions. Of the eighteen spectral vegetation indices computed, NDVI and SAVI and SAVI and Global Environmental Monitoring Index (GEMI) were ranked selected as the most suitable for detecting and mapping soil erosion. Additionally, SRTM DEM derived information illustrates that for both sensors eroded areas occur on sites that are 600 m and 900 m of altitude with similar trends observed in both dry and wet season maps. Findings of this work emphasize the importance of free and readily available new generation sensors in continuous landscape-scale soil erosion monitoring. Besides, such information can help to identify hotspots and potentially vulnerable areas, as well as aid in developing possible control and mitigation measures.

  20. Hyperspectral remote sensing image retrieval system using spectral and texture features.

    PubMed

    Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan

    2017-06-01

    Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.

  1. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis.

    PubMed

    Gautier, Juliette; Munnier, Emilie; Soucé, Martin; Chourpa, Igor; Douziech Eyrolles, Laurence

    2015-05-01

    The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments. On the other hand, capillary electrophoresis with fluorescence detection (CE-LIF) is a quantitative method capable of separating doxorubicin and its metabolites. In this paper, we propose a method for determining drug and metabolite concentration in enriched nuclear and cytosolic fractions of cancer cells by CE-LIF, and we compare these data with those of FCSI. Significant differences in the subcellular distribution of DOX are observed between the drug administered as a molecular solution or as a suspension of drug-loaded iron oxide nanoparticles coated with polyethylene glycol. Comparative analysis of the CE-LIF vs FCSI data may lead to a tentative calibration of this latter method in terms of DOX fluorescence quantum yields in the nucleus and more or less polar regions of the cytosol.

  3. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  4. Numerical modelling of the Black Sea eigen-oscillations on a curvilinear boundary fitted coordinate system

    NASA Astrophysics Data System (ADS)

    Koychev Demirov, Encho

    1994-12-01

    The paper presents a numerical solution of barotropic and two-layer eigen-oscillation problems for the Black Sea on a boundary fitted coordinate system. This solution is compared with model and empirical data obtained by other workers. Frequencies of the eigen-oscillations found by the numerical solution of spectral problem are compared with the data obtained by spectral analysis of the sea-level oscillations measured near the town of Achtopol and Cape Irakli in stormy sea on 17-21 February 1979. Extreme oscillations of the sea-level result from resonant amplifications of three eigenmodes of the Black Sea of 68.3 -1, 36.6 -1 and 27.3 -1 cycles h -1 frequency.

  5. Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs

    NASA Astrophysics Data System (ADS)

    Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny

    2018-01-01

    Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.

  6. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    PubMed

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  7. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    PubMed

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  8. Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment

    PubMed Central

    Dasari, Surendra; Chambers, Matthew C.; Martinez, Misti A.; Carpenter, Kristin L.; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo J.; Tabb, David L.

    2012-01-01

    Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines. PMID:22217208

  9. Spectral Accuracy and Sulfur Counting Capabilities of the LTQ-FT-ICR and the LTQ-Orbitrap XL for Small Molecule Analysis

    NASA Astrophysics Data System (ADS)

    Blake, Samantha L.; Walker, S. Hunter; Muddiman, David C.; Hinks, David; Beck, Keith R.

    2011-12-01

    Color Index Disperse Yellow 42 (DY42), a high-volume disperse dye for polyester, was used to compare the capabilities of the LTQ-Orbitrap XL and the LTQ-FT-ICR with respect to mass measurement accuracy (MMA), spectral accuracy, and sulfur counting. The results of this research will be used in the construction of a dye database for forensic purposes; the additional spectral information will increase the confidence in the identification of unknown dyes found in fibers at crime scenes. Initial LTQ-Orbitrap XL data showed MMAs greater than 3 ppm and poor spectral accuracy. Modification of several Orbitrap installation parameters (e.g., deflector voltage) resulted in a significant improvement of the data. The LTQ-FT-ICR and LTQ-Orbitrap XL (after installation parameters were modified) exhibited MMA ≤ 3 ppm, good spectral accuracy (χ2 values for the isotopic distribution ≤ 2), and were correctly able to ascertain the number of sulfur atoms in the compound at all resolving powers investigated for AGC targets of 5.00 × 105 and 1.00 × 106.

  10. Classification of Hyperspectral Data Based on Guided Filtering and Random Forest

    NASA Astrophysics Data System (ADS)

    Ma, H.; Feng, W.; Cao, X.; Wang, L.

    2017-09-01

    Hyperspectral images usually consist of more than one hundred spectral bands, which have potentials to provide rich spatial and spectral information. However, the application of hyperspectral data is still challengeable due to "the curse of dimensionality". In this context, many techniques, which aim to make full use of both the spatial and spectral information, are investigated. In order to preserve the geometrical information, meanwhile, with less spectral bands, we propose a novel method, which combines principal components analysis (PCA), guided image filtering and the random forest classifier (RF). In detail, PCA is firstly employed to reduce the dimension of spectral bands. Secondly, the guided image filtering technique is introduced to smooth land object, meanwhile preserving the edge of objects. Finally, the features are fed into RF classifier. To illustrate the effectiveness of the method, we carry out experiments over the popular Indian Pines data set, which is collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. By comparing the proposed method with the method of only using PCA or guided image filter, we find that effect of the proposed method is better.

  11. Possibility of successive SRXFA use along with chemical-spectral methods for palladium analysis in geological samples

    NASA Astrophysics Data System (ADS)

    Kislov, E. V.; Kulikov, A. A.; Kulikova, A. B.

    1989-10-01

    Samples of basit-ultrabasit rocks and NiCu ores of the Ioko-Dovyren and Chaya massifs were analysed by SRXFA and a chemical-spectral method. SRXFA perfectly satisfies the quantitative noble-metals analysis of ore-free rocks. Combination of SRXFA and chemical-spectral analysis has good prospects. After analysis of a great number of samples by SRXFA it is necessary to select samples which would show minimal and maximal results for the chemical-spectral method.

  12. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, X; Arbique, G; Guild, J

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluatedmore » by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips Healthcare.« less

  13. A method based on IHS cylindrical transform model for quality assessment of image fusion

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaokun; Jia, Yonghong

    2005-10-01

    Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.

  14. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    NASA Astrophysics Data System (ADS)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  15. Mutual information analysis and detection of interictal morphological differences in interictal epileptiform discharges of patients with partial epilepsies.

    PubMed

    Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I

    1997-10-01

    The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.

  16. Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method

    PubMed Central

    Chen, Hongtao; Digman, Michelle A.

    2015-01-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346

  17. Convolutional neural networks for vibrational spectroscopic data analysis.

    PubMed

    Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena

    2017-02-15

    In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  19. Comparison of the electromagnetic responses of C 12 obtained from the Green's function Monte Carlo and spectral function approaches

    DOE PAGES

    Rocco, Noemi; Lovato, Alessandro; Benhar, Omar

    2016-12-23

    Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less

  20. Comparison of the electromagnetic responses of C 12 obtained from the Green's function Monte Carlo and spectral function approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, Noemi; Lovato, Alessandro; Benhar, Omar

    Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less

  1. An unsupervised classification approach for analysis of Landsat data to monitor land reclamation in Belmont county, Ohio

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O.; Bloemer, H. H. L.; Campbell, W. J.

    1981-01-01

    Two unsupervised classification procedures for analyzing Landsat data used to monitor land reclamation in a surface mining area in east central Ohio are compared for agreement with data collected from the corresponding locations on the ground. One procedure is based on a traditional unsupervised-clustering/maximum-likelihood algorithm sequence that assumes spectral groupings in the Landsat data in n-dimensional space; the other is based on a nontraditional unsupervised-clustering/canonical-transformation/clustering algorithm sequence that not only assumes spectral groupings in n-dimensional space but also includes an additional feature-extraction technique. It is found that the nontraditional procedure provides an appreciable improvement in spectral groupings and apparently increases the level of accuracy in the classification of land cover categories.

  2. Radiometric Comparison between Sentinel 2A (S2A) Multispectral Imager (MSI) and Landsat 8 (L8) Operational Land Imager (OLI)

    NASA Astrophysics Data System (ADS)

    Micijevic, E.; Haque, M. O.

    2016-12-01

    With its forty-four year continuous data record, the Landsat image archive provides an invaluable source of information for essential climate variables, global land change studies and a variety of other applications. The latest in the series, Landsat 8, carries the Operational Land Imager (OLI), the sensor with an improved design compared to its predecessors, but with similar radiometric, spatial and spectral characteristics, to provide image data continuity. Sentinel 2A (S2A), launched in June 2015, carries the Multispectral Imager (MSI) that has a number of bands with spectral and radiometric characteristics similar to L8 OLI. As such, it offers an opportunity to augment the Landsat data record through increased frequency of acquisitions, when combined with OLI. In this study, we compared Top-of-Atmosphere (TOA) reflectance of matching spectral bands in MSI and OLI products. Comparison between S2A MSI and L8 OLI sensors was performed using image data acquired near simultaneously primarily over Pseudo Invariant Calibration Site (PICS) Libya 4, but also over other calibration test sites. Spectral differences between the two sensors were accounted for using their spectral filter profiles and a spectral signature of the site derived from EO1 Hyperion hyperspectral imagery. Temporal stability was also assessed through temporal trending of Top-of-Atmosphere (TOA) reflectance measured by the two sensors over PICS. The performed analysis suggests good agreement between the two sensors, within 5% for the costal aerosol band and better than 3% for other matching bands. It is important to note that whenever data from different sensors are used together in a study, the special attention need to be paid to the spectral band differences between the sensors because the necessary spectral difference adjustment is target dependent and may vary a lot from target to target.

  3. Investigation of computational and spectral analysis methods for aeroacoustic wave propagation

    NASA Technical Reports Server (NTRS)

    Vanel, Florence O.

    1995-01-01

    Most computational fluid dynamics (CFD) schemes are not adequately accurate for solving aeroacoustics problems, which have wave amplitudes several orders of magnitude smaller yet with frequencies larger than the flow field variations generating the sound. Hence, a computational aeroacoustics (CAA) algorithm should have minimal dispersion and dissipation features. A dispersion relation preserving (DRP) scheme is, therefore, applied to solve the linearized Euler equations in order to simulate the propagation of three types of waves, namely: acoustic, vorticity, and entropy waves. The scheme is derived using an optimization procedure to ensure that the numerical derivatives preserve the wave number and angular frequency of the partial differential equations being discretized. Consequently, simulated waves propagate with the correct wave speeds and exhibit their appropriate properties. A set of radiation and outflow boundary conditions, compatible with the DRP scheme and derived from the asymptotic solutions of the governing equations, are also implemented. Numerical simulations are performed to test the effectiveness of the DRP scheme and its boundary conditions. The computed solutions are shown to agree favorably with the exact solutions. The major restriction appears to be that the dispersion relations can be preserved only for waves with wave lengths longer than four or five spacings. The boundary conditions are found to be transparent to the outgoing disturbances. However, when the disturbance source is placed closer to a boundary, small acoustic reflections start appearing. CAA generates enormous amounts of temporal data which needs to be reduced to understand the physical problem being simulated. Spectral analysis is one approach that helps us in extracting information which often can not be easily interpreted in the time domain. Thus, three different methods for the spectral analysis of numerically generated aeroacoustic data are studied. First, the capabilities of two traditional methods for spectral analysis, namely, the Blackman-Tukey method and periodogram method, are compared in estimating the spectra of a simple-periodic process. The periodogram is then applied to analyze transitory-deterministic processes. Finally, these two methods are compared with a more recent method, referred as the Weighted-Overlapped-Segment-Averaging (WOSA) method, in estimating the spectra of a chaotic (random-like) process. From the demonstrative case for the spectral analyses of data generated by simple-periodic process, the periodogram method is found to give a better estimate of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window is found to perform better with the periodogram method than with the Blackman-Tukey method. Finally, for the spectral analysis of data generated by the chaotic process, the periodogram method does not perform well, whereas, the WOSA and Blackman-Tukey methods give equivalently good results.

  4. Three-dimensional dominant frequency mapping using autoregressive spectral analysis of atrial electrograms of patients in persistent atrial fibrillation.

    PubMed

    Salinet, João L; Masca, Nicholas; Stafford, Peter J; Ng, G André; Schlindwein, Fernando S

    2016-03-08

    Areas with high frequency activity within the atrium are thought to be 'drivers' of the rhythm in patients with atrial fibrillation (AF) and ablation of these areas seems to be an effective therapy in eliminating DF gradient and restoring sinus rhythm. Clinical groups have applied the traditional FFT-based approach to generate the three-dimensional dominant frequency (3D DF) maps during electrophysiology (EP) procedures but literature is restricted on using alternative spectral estimation techniques that can have a better frequency resolution that FFT-based spectral estimation. Autoregressive (AR) model-based spectral estimation techniques, with emphasis on selection of appropriate sampling rate and AR model order, were implemented to generate high-density 3D DF maps of atrial electrograms (AEGs) in persistent atrial fibrillation (persAF). For each patient, 2048 simultaneous AEGs were recorded for 20.478 s-long segments in the left atrium (LA) and exported for analysis, together with their anatomical locations. After the DFs were identified using AR-based spectral estimation, they were colour coded to produce sequential 3D DF maps. These maps were systematically compared with maps found using the Fourier-based approach. 3D DF maps can be obtained using AR-based spectral estimation after AEGs downsampling (DS) and the resulting maps are very similar to those obtained using FFT-based spectral estimation (mean 90.23 %). There were no significant differences between AR techniques (p = 0.62). The processing time for AR-based approach was considerably shorter (from 5.44 to 5.05 s) when lower sampling frequencies and model order values were used. Higher levels of DS presented higher rates of DF agreement (sampling frequency of 37.5 Hz). We have demonstrated the feasibility of using AR spectral estimation methods for producing 3D DF maps and characterised their differences to the maps produced using the FFT technique, offering an alternative approach for 3D DF computation in human persAF studies.

  5. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  6. Noise Trauma Induced Neural Plasticity Throughout the Auditory System of Mongolian Gerbils: Differences between Tinnitus Developing and Non-Developing Animals

    PubMed Central

    Tziridis, Konstantin; Ahlf, Sönke; Jeschke, Marcus; Happel, Max F. K.; Ohl, Frank W.; Schulze, Holger

    2015-01-01

    In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development. PMID:25713557

  7. Bayesian statistics as a new tool for spectral analysis - I. Application for the determination of basic parameters of massive stars

    NASA Astrophysics Data System (ADS)

    Mugnes, J.-M.; Robert, C.

    2015-11-01

    Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here, we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-Mégantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence velocities are often underestimated. We also confirm the trend that B stars in clusters are on average faster rotators than field B stars.

  8. Comparative Modelling of the Spectra of Cool Giants

    NASA Technical Reports Server (NTRS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  9. Metabolic De-Isotoping for Improved LC-MS Characterization of Modified RNAs

    NASA Astrophysics Data System (ADS)

    Wetzel, Collin; Li, Siwei; Limbach, Patrick A.

    2014-07-01

    Mapping, sequencing, and quantifying individual noncoding ribonucleic acids (ncRNAs), including post-transcriptionally modified nucleosides, by mass spectrometry is a challenge that often requires rigorous sample preparation prior to analysis. Previously, we have described a simplified method for the comparative analysis of RNA digests (CARD) that is applicable to relatively complex mixtures of ncRNAs. In the CARD approach for transfer RNA (tRNA) analysis, two complete sets of digestion products from total tRNA are compared using the enzymatic incorporation of 16O/18O isotopic labels. This approach allows one to rapidly screen total tRNAs from gene deletion mutants or comparatively sequence total tRNA from two related bacterial organisms. However, data analysis can be challenging because of convoluted mass spectra arising from the natural 13C and 15 N isotopes present in the ribonuclease-digested tRNA samples. Here, we demonstrate that culturing in 12C-enriched/13C-depleted media significantly reduces the isotope patterns that must be interpreted during the CARD experiment. Improvements in data quality yield a 35 % improvement in detection of tRNA digestion products that can be uniquely assigned to particular tRNAs. These mass spectral improvements lead to a significant reduction in data processing attributable to the ease of spectral identification of labeled digestion products and will enable improvements in the relative quantification of modified RNAs by the 16O/18O differential labeling approach.

  10. Preliminary Comparisons of the Information Content and Utility of TM Versus MSS Data

    NASA Technical Reports Server (NTRS)

    Markham, B. L.

    1984-01-01

    Comparisons were made between subscenes from the first TM scene acquired of the Washington, D.C. area and a MSS scene acquired approximately one year earlier. Three types of analyses were conducted to compare TM and MSS data: a water body analysis, a principal components analysis and a spectral clustering analysis. The water body analysis compared the capability of the TM to the MSS for detecting small uniform targets. Of the 59 ponds located on aerial photographs 34 (58%) were detected by the TM with six commission errors (15%) and 13 (22%) were detected by the MSS with three commission errors (19%). The smallest water body detected by the TM was 16 meters; the smallest detected by the MSS was 40 meters. For the principal components analysis, means and covariance matrices were calculated for each subscene, and principal components images generated and characterized. In the spectral clustering comparison each scene was independently clustered and the clusters were assigned to informational classes. The preliminary comparison indicated that TM data provides enhancements over MSS in terms of (1) small target detection and (2) data dimensionality (even with 4-band data). The extra dimension, partially resultant from TM band 1, appears useful for built-up/non-built-up area separation.

  11. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  12. Increased determinism in brain electrical activity occurs in association with multiple sclerosis.

    PubMed

    Carrubba, Simona; Minagar, Alireza; Chesson, Andrew L; Frilot, Clifton; Marino, Andrew A

    2012-04-01

    Increased determinism (decreased complexity) of brain electrical activity has been associated with some brain diseases. Our objective was to determine whether a similar association occurred for multiple sclerosis (MS). Ten subjects with a relapsing-remitting course of MS who were in remission were studied; the controls were age- and gender-matched clinically normal subjects. Recurrence plots were calculated using representative electroencephalogram (EEG) epochs (1-7 seconds) from six derivations; the plots were quantified using the nonlinear variables percent recurrence (%R) and percent determinism (%D). The results were averaged over all derivations for each participant, and the means were compared between the groups. As a linear control procedure the groups were also compared using spectral analysis. The mean±SD of %R for the MS subjects was 6·6±1·3%, compared with 5·1±1·3% in the normal group (P = 0·017), indicating that brain activity in the subjects with MS was less complex, as hypothesized. The groups were not distinguishable using %D or spectral analysis. Taken together with our earlier report that %R could be used to discriminate between MS and normal subjects based on the ability to exhibit evoked potentials, the evidence suggests that complexity analysis of the EEG has potential for development as a diagnostic test for MS.

  13. TESTING RELATIVISTIC REFLECTION AND RESOLVING OUTFLOWS IN PG 1211+143 WITH XMM-NEWTON AND NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobban, A. P.; Pounds, K.; Vaughan, S.

    We analyze the broad-band X-ray spectrum (0.3–50 keV) of the luminous Seyfert 1/quasar PG 1211+143—the archetypal source for high-velocity X-ray outflows—using near-simultaneous XMM-Newton and NuSTAR observations. We compare pure relativistic reflection models with a model including the strong imprint of photoionized emission and absorption from a high-velocity wind, finding a spectral fit that extrapolates well over the higher photon energies covered by NuSTAR . Inclusion of the high signal-to-noise ratio XMM-Newton spectrum provides much tighter constraints on the model parameters, with a much harder photon index/lower reflection fraction compared to that from the NuSTAR data alone. We show that puremore » relativistic reflection models are not able to account for the spectral complexity of PG 1211+143 and that wind absorption models are strongly required to match the data in both the soft X-ray and Fe K spectral regions. In confirming the significance of previously reported ionized absorption features, the new analysis provides a further demonstration of the power of combining the high throughput and resolution of long-look XMM-Newton observations with the unprecedented spectral coverage of NuSTAR .« less

  14. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users

    PubMed Central

    Anderson, Elizabeth S.; Oxenham, Andrew J.; Nelson, Peggy B.; Nelson, David A.

    2012-01-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects’ thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time. PMID:23231122

  15. A Steady-State Kalman Predictor-Based Filtering Strategy for Non-Overlapping Sub-Band Spectral Estimation

    PubMed Central

    Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe

    2015-01-01

    This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038

  16. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  17. EDDIE Seismology: Introductory spectral analysis for undergraduates

    NASA Astrophysics Data System (ADS)

    Soule, D. C.; Gougis, R.; O'Reilly, C.

    2016-12-01

    We present a spectral seismology lesson in which students use spectral analysis to describe the frequency of seismic arrivals based on a conceptual presentation of waveforms and filters. The goal is for students to surpass basic waveform terminology and relate a time domain signals to their conjugates in the frequency domain. Although seismology instruction commonly engages students in analysis of authentic seismological data, this is less true for lower-level undergraduate seismology instruction due to coding barriers to many seismological analysis tasks. To address this, our module uses Seismic Canvas (Kroeger, 2015; https://seiscode.iris.washington.edu/projects/seismiccanvas), a graphically interactive application for accessing, viewing and analyzing waveform data, which we use to plot earthquake data in the time domain. Once students are familiarized with the general components of the waveform (i.e. frequency, wavelength, amplitude and period), they use Seismic Canvas to transform the data into the frequency domain. Bypassing the mathematics of Fourier Series allows focus on conceptual understanding by plotting and manipulating seismic data in both time and frequency domains. Pre/post-tests showed significant improvements in students' use of seismograms and spectrograms to estimate the frequency content of the primary wave, which demonstrated students' understanding of frequency and how data on the spectrogram and seismogram are related. Students were also able to identify the time and frequency of the largest amplitude arrival, indicating understanding of amplitude and use of a spectrogram as an analysis tool. Students were also asked to compare plots of raw data and the same data filtered with a high-pass filter, and identify the filter used to create the second plot. Students demonstrated an improved understanding of how frequency content can be removed from a signal in the spectral domain.

  18. Use of a region of the visible and near infrared spectrum to predict mechanical properties of wet wood and standing trees

    DOEpatents

    Meglen, Robert R.; Kelley, Stephen S.

    2003-01-01

    In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.

  19. Electron scattering, charge order, and pseudogap physics in La 1.6–xNd 0.4Sr xCuO 4: An angle-resolved photoemission spectroscopy study

    DOE PAGES

    Matt, C. E.; Fatuzzo, C. G.; Sassa, Y.; ...

    2015-10-27

    We report an angle-resolved photoemission study of the charge stripe ordered La 1.6–xNd 0.4Sr xCuO 4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectralmore » weight appears to be lost. As a result, these observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.« less

  20. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  1. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  2. Characterization and Analysis of InGaAsSb Detectors

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Joshi, Ravindra P.; Sulima, Oleg V.; Mauk, Michael; Singh, Upendra N.

    2003-01-01

    Profiling of atmospheric CO2 at 2 micron wavelength using the LIDAR technique, has recently gained interest. Although several detectors might be suitable for this application, an ideal device would have high gain, low noise and narrow spectral response peaking around the wavelength of interest. This increases the detector signal-to-noise ratio and minimizes the background signal, thereby increasing the device sensitivity and dynamic range. Detectors meeting the above idealized criteria are commercially unavailable for this particular wavelength. In this paper, the characterization and analysis of Sb-based detectors for 2 micron lidar applications are presented. The detectors were manufactured by AstroPower, Inc., with an InGaAsSb absorbing layer and AlGaAsSb passivating layer. The characterization experiments included spectral response, current versus voltage and noise measurements. The effect of the detectors bias voltage and temperature on its performance, have been investigated as well. The detectors peak responsivity is located at the 2 micron wavelength. Comparing three detector samples, an optimization of the spectral response around the 2 micron wavelength, through a narrower spectral period was observed. Increasing the detector bias voltage enhances the device gain at the narrow spectral range, while cooling the device reduces the cut-off wavelength and lowers its noise. Noise-equivalent-power analysis results in a value as low as 4 x 10(exp -12) W/Hz(exp 1/2) corresponding to D* of 1 x 10(exp 10) cmHz(exp 1/2)/W, at -1 V and 20 C. Discussions also include device operational physics and optimization guidelines, taking into account peculiarity of the Type II heterointerface and transport mechanisms under these conditions.

  3. Differential NICMOS Spectrophotometry at High S/N

    NASA Technical Reports Server (NTRS)

    Gilliland, Ronald L.

    2006-01-01

    Transiting extrasolar planets present an opportunity for probing atmospheric conditions and constituents by taking advantage of different apparent radii, hence transit depth as a function of wavelength. Strong near-IR bands should support detection of water vapor via G141 spectroscopy of the bright star HD 209458 (H=6.13) by comparing in- and out-of-transit ratios of in- and out-of-band spectral intensity ratios. The reduction and analysis of science observations in which the goal is to support 1 part in 10,000, or better, development of spectral diagnostics using NICMOS grism-based spectroscopy is discussed.

  4. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale.

    PubMed

    Nepusz, Tamás; Sasidharan, Rajkumar; Paccanaro, Alberto

    2010-03-09

    An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive and effective tool for practical research in computational biology. Source code and precompiled executables for Windows, Linux and Mac OS X are freely available at http://www.paccanarolab.org/software/scps.

  5. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R; Albanese, K; Lakshmanan, M

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less

  6. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models rather than improving the use of SNe Ia as cosmological probes.

  7. Can unaided non-linguistic measures predict cochlear implant candidacy?

    PubMed Central

    Shim, Hyun Joon; Won, Jong Ho; Moon, Il Joon; Anderson, Elizabeth S.; Drennan, Ward R.; McIntosh, Nancy E.; Weaver, Edward M.; Rubinstein, Jay T.

    2014-01-01

    Objective To determine if unaided, non-linguistic psychoacoustic measures can be effective in evaluating cochlear implant (CI) candidacy. Study Design Prospective split-cohort study including predictor development subgroup and independent predictor validation subgroup. Setting Tertiary referral center. Subjects Fifteen subjects (28 ears) with hearing loss were recruited from patients visiting the University of Washington Medical Center for CI evaluation. Methods Spectral-ripple discrimination (using a 13-dB modulation depth) and temporal modulation detection using 10- and 100-Hz modulation frequencies were assessed with stimuli presented through insert earphones. Correlations between performance for psychoacoustic tasks and speech perception tasks were assessed. Receiver operating characteristic (ROC) curve analysis was performed to estimate the optimal psychoacoustic score for CI candidacy evaluation in the development subgroup and then tested in an independent sample. Results Strong correlations were observed between spectral-ripple thresholds and both aided sentence recognition and unaided word recognition. Weaker relationships were found between temporal modulation detection and speech tests. ROC curve analysis demonstrated that the unaided spectral ripple discrimination shows a good sensitivity, specificity, positive predictive value, and negative predictive value compared to the current gold standard, aided sentence recognition. Conclusions Results demonstrated that the unaided spectral-ripple discrimination test could be a promising tool for evaluating CI candidacy. PMID:24901669

  8. Spectral data compression using weighted principal component analysis with consideration of human visual system and light sources

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liu, Qiang; Liang, Jingxing; Li, Chan

    2016-10-01

    This paper proposed two weight functions based on principal component analysis (PCA) to reserve more colorimetric information in spectral data compression process. One weight function consisted of the CIE XYZ color-matching functions representing the characteristic of the human visual system, while another was made up of the CIE XYZ color-matching functions of human visual system and relative spectral power distribution of the CIE standard illuminant D65. The improvement obtained from the proposed two methods were tested to compress and reconstruct the reflectance spectra of 1600 glossy Munsell color chips and 1950 Natural Color System color chips as well as six multispectral images. The performance was evaluated by the mean values of color difference under the CIE 1931 standard colorimetric observer and the CIE standard illuminant D65 and A. The mean values of root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed two methods significantly outperform the standard PCA and another two weighted PCA in the aspects of colorimetric reconstruction accuracy with very slight degradation in spectral reconstruction accuracy. In addition, weight functions with the CIE standard illuminant D65 can improve the colorimetric reconstruction accuracy compared to weight functions without the CIE standard illuminant D65.

  9. Quantification of EEG reactivity in comatose patients.

    PubMed

    Hermans, Mathilde C; Westover, M Brandon; van Putten, Michel J A M; Hirsch, Lawrence J; Gaspard, Nicolas

    2016-01-01

    EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet's AC1: 65-70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts' agreement regarding reactivity for each individual case. Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Metz, Margaret R.; Rizzo, David M.; Dillon, Whalen W.; Meentemeyer, Ross K.

    2015-04-01

    Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively similar performance, where both spectral responses and texture contributed to burn assessments. However, the application of PCA and MNF introduced much greater variation among models across the three stages. For the early-stage disease progression, neither band reduction algorithms improved or retained the accuracy of burn severity modeling (except for the use of 10 MNF components). Compared to the no-band-reduction scenario, band reduction led to a greater level of overestimation of low-degree burns and underestimation of medium-degree burns, suggesting that the spectral variation removed by PCA and MNF was vital for distinguishing between the spectral reflectance from disease-induced dried crowns (still retaining high structural complexity) and fire ash. For the middle-stage, both algorithms improved the model R2 values by 2-37%, while the late-stage models had comparable or better performance to those using the original 50 spectral bands. This could be explained by the loss of tree crowns enabling better signal penetration, thus leading to reduced spectral variation from canopies. Hence, spectral bands containing a high degree of random noise were correctly removed by the band reduction algorithms. Compared to the middle-stage, the late-stage forest stands were covered by large piles of fallen trees and branches, resulting in higher variability of MASTER imagery. The ability of band reduction to improve the model performance for these late-stage forest stands was reduced, because the valuable spectral variation representing the actual late-stage forest status was partially removed by both algorithms as noise. Our results indicate that PCA and MNF are promising for balancing computation efficiency and the performance of burn severity models in forest stands subject to the middle and late stages of sudden oak death disease progression. Compared to PCA, MNF dramatically reduced image spectral variation, generating larger image objects with less complexity of object shapes. Whereas, PCA-based models delivered superior performance in most evaluated cases suggesting that some key spectral variability contributing to the accuracy of burn severity models in diseased forests may have been removed together with true spectral noise through MNF transformations.

  11. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    NASA Astrophysics Data System (ADS)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.

  12. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    PubMed

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.

  13. Development of space-stable thermal control coatings for use on large space vehicles

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Harada, Y.

    1976-01-01

    The potential of zinc orthotitanate as a pigment for spacecraft thermal control was demonstrated. The properties and performance of pigments prepared by solid state, coprecipitation, and mixed oxalate methods were compared. Environmental tests and subsequent spectral analysis were given primary emphasis.

  14. Analysis of the High-Frequency Content in Human QRS Complexes by the Continuous Wavelet Transform: An Automatized Analysis for the Prediction of Sudden Cardiac Death.

    PubMed

    García Iglesias, Daniel; Roqueñi Gutiérrez, Nieves; De Cos, Francisco Javier; Calvo, David

    2018-02-12

    Fragmentation and delayed potentials in the QRS signal of patients have been postulated as risk markers for Sudden Cardiac Death (SCD). The analysis of the high-frequency spectral content may be useful for quantification. Forty-two consecutive patients with prior history of SCD or malignant arrhythmias (patients) where compared with 120 healthy individuals (controls). The QRS complexes were extracted with a modified Pan-Tompkins algorithm and processed with the Continuous Wavelet Transform to analyze the high-frequency content (85-130 Hz). Overall, the power of the high-frequency content was higher in patients compared with controls (170.9 vs. 47.3 10³nV²Hz -1 ; p = 0.007), with a prolonged time to reach the maximal power (68.9 vs. 64.8 ms; p = 0.002). An analysis of the signal intensity (instantaneous average of cumulative power), revealed a distinct function between patients and controls. The total intensity was higher in patients compared with controls (137.1 vs. 39 10³nV²Hz -1 s -1 ; p = 0.001) and the time to reach the maximal intensity was also prolonged (88.7 vs. 82.1 ms; p < 0.001). The high-frequency content of the QRS complexes was distinct between patients at risk of SCD and healthy controls. The wavelet transform is an efficient tool for spectral analysis of the QRS complexes that may contribute to stratification of risk.

  15. Classification of Peronospora infected grapevine leaves with the use of hyperspectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Serranti, S.; Bonifazi, G.; Luciani, V.; D'Aniello, L.

    2017-05-01

    The present work explores the possible utilization of hyperspectral devices, following a proximity based approach, for the diagnosis of Peronospora infection in the vineyards. It compares the performance of two hyperspectral cameras, characterized by different spectral acquisition ranges, in the identification of different levels of infection as detectable from the analysis of the leaf surface. For this purpose, healthy grapevine leaves and leaves affected by a different grade of Peronospora infection have been acquired in laboratory conditions using two different sensing devices: a Specim Imspector V10™ and a Specim Spectral Camera N17™ working in the region between 400-1000 nm and 1000-1700 nm, respectively. A Partial Least Squares Discriminant Analysis (PLS-DA) model has been built to perform the classification of healthy, infected and necrotic leaves.

  16. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  18. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  19. Spectral and Temporal Laser Fluorescence Analysis Such as for Natural Aquatic Environments

    NASA Technical Reports Server (NTRS)

    Chekalyuk, Alexander (Inventor)

    2015-01-01

    An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements. Quantitative assessments of PBP pigments, CDOM, and other fluorescent constituents, as well as basic structural characterizations of photosynthesizing populations, can be performed using SDC analysis of LSE spectral measurements.

  20. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  1. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  2. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.

    2013-01-01

    Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.

  3. Automatic classification of spectral units in the Aristarchus plateau

    NASA Astrophysics Data System (ADS)

    Erard, S.; Le Mouelic, S.; Langevin, Y.

    1999-09-01

    A reduction scheme has been recently proposed for the NIR images of Clementine (Le Mouelic et al, JGR 1999). This reduction has been used to build an integrated UVvis-NIR image cube of the Aristarchus region, from which compositional and maturity variations can be studied (Pinet et al, LPSC 1999). We will present an analysis of this image cube, providing a classification in spectral types and spectral units. The image cube is processed with Gmode analysis using three different data sets: Normalized spectra provide a classification based mainly on spectral slope variations (ie. maturity and volcanic glasses). This analysis discriminates between craters plus ejecta, mare basalts, and DMD. Olivine-rich areas and Aristarchus central peak are also recognized. Continuum-removed spectra provide a classification more related to compositional variations, which correctly identifies olivine and pyroxenes-rich areas (in Aristarchus, Krieger, Schiaparelli\\ldots). A third analysis uses spectral parameters related to maturity and Fe composition (reflectance, 1 mu m band depth, and spectral slope) rather than intensities. It provides the most spatially consistent picture, but fails in detecting Vallis Schroeteri and DMDs. A supplementary unit, younger and rich in pyroxene, is found on Aristarchus south rim. In conclusion, Gmode analysis can discriminate between different spectral types already identified with more classic methods (PCA, linear mixing\\ldots). No previous assumption is made on the data structure, such as endmembers number and nature, or linear relationship between input variables. The variability of the spectral types is intrinsically accounted for, so that the level of analysis is always restricted to meaningful limits. A complete classification should integrate several analyses based on different sets of parameters. Gmode is therefore a powerful light toll to perform first look analysis of spectral imaging data. This research has been partly founded by the French Programme National de Planetologie.

  4. ACCRETION FLOW DYNAMICS OF MAXI J1659-152 FROM THE SPECTRAL EVOLUTION STUDY OF ITS 2010 OUTBURST USING THE TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.

    2015-04-20

    Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less

  5. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting

    USGS Publications Warehouse

    Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).

  6. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    PubMed

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  7. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  8. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    PubMed

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  9. Comparative Discussion on Psychophysiological Effect of Self-administered Facial Massage by Treatment Method

    NASA Astrophysics Data System (ADS)

    Nozawa, Akio; Takei, Yuya

    The aim of study was to quantitatively evaluate the effects of self-administered facial massage, which was done by hand or facial roller. In this study, the psychophysiological effects of facial massage were evaluated. The central nerves system and the autonomic nervous system were administered to evaluate physiological system. The central nerves system was assessed by Electroencephalogram (EEG). The autonomic nervous system were assessed by peripheral skin temperature(PST) and heart rate variability (HRV) with spectral analysis. In the spectral analysis of HRV, the high-frequency components (HF) were evaluated. State-Trait Anxiety Inventory (STAI), Profile of Mood Status (POMS) and subjective sensory amount with Visual Analog Scale (VAS) were administered to evaluate psychological status. These results suggest that kept brain activity and had strong effects on stress alleviation.

  10. Spectral analysis for GNSS coordinate time series using chirp Fourier transform

    NASA Astrophysics Data System (ADS)

    Feng, Shengtao; Bo, Wanju; Ma, Qingzun; Wang, Zifan

    2017-12-01

    Spectral analysis for global navigation satellite system (GNSS) coordinate time series provides a principal tool to understand the intrinsic mechanism that affects tectonic movements. Spectral analysis methods such as the fast Fourier transform, Lomb-Scargle spectrum, evolutionary power spectrum, wavelet power spectrum, etc. are used to find periodic characteristics in time series. Among spectral analysis methods, the chirp Fourier transform (CFT) with less stringent requirements is tested with synthetic and actual GNSS coordinate time series, which proves the accuracy and efficiency of the method. With the length of series only limited to even numbers, CFT provides a convenient tool for windowed spectral analysis. The results of ideal synthetic data prove CFT accurate and efficient, while the results of actual data show that CFT is usable to derive periodic information from GNSS coordinate time series.

  11. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy.

    PubMed

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-01-18

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.

  12. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.

  13. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample.

    PubMed

    Mazzotti, Diego Robles; Guindalini, Camila; de Souza, Altay Alves Lino; Sato, João Ricardo; Santos-Silva, Rogério; Bittencourt, Lia Rita Azeredo; Tufik, Sergio

    2012-01-01

    Slow wave oscillations in the electroencephalogram (EEG) during sleep may reflect both sleep need and intensity, which are implied in homeostatic regulation. Adenosine is strongly implicated in sleep homeostasis, and a single nucleotide polymorphism in the adenosine deaminase gene (ADA G22A) has been associated with deeper and more efficient sleep. The present study verified the association between the ADA G22A polymorphism and changes in sleep EEG spectral power (from C3-A2, C4-A1, O1-A2, and O2-A1 derivations) in the Epidemiologic Sleep Study (EPISONO) sample from São Paulo, Brazil. Eight-hundred individuals were subjected to full-night polysomnography and ADA G22A genotyping. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the signals from each EEG electrode. The genotype groups were compared in the whole sample and in a subsample of 120 individuals matched according to ADA genotype for age, gender, body mass index, caffeine intake status, presence of sleep disturbance, and sleep-disturbing medication. When compared with homozygous GG genotype carriers, A allele carriers showed higher delta spectral power in Stage 1 and Stages 3+4 of sleep, and increased theta spectral power in Stages 1, 2 and REM sleep. These changes were seen both in the whole sample and in the matched subset. The higher EEG spectral power indicates that the sleep of individuals carrying the A allele may be more intense. Therefore, this polymorphism may be an important source of variation in sleep homeostasis in humans, through modulation of specific components of the sleep EEG.

  14. Geotechnical Site Investigation Using S-waves with Implications for Ground Motion Analysis

    NASA Astrophysics Data System (ADS)

    Hassan, Bilal; Butt, Stephen D.; Hurich, Charles A.

    2017-12-01

    Evaluation results of shear wave attenuation-based ground motion restricted by fracture orientation and rheology, from among those of an extended experimental study, are presented herein. The issues of competence of fractured bedrock dynamically disturbed multilaterally are assessed. Disturbance is primarily modelled by Sh and Sv stimulation, given fracture orientation, while subjected to direct fracture stress regime conditions varying in time. Hence, directionalities of polarisation and stress are taken into consideration simultaneously following simple site-specific non-erodetic approach. Comparison of spectral curves and spectral ratio curves of attenuation with respect to variations of direction and stress emphasise the amplification of the `seismic response' in one direction compared to the other, i.e. vertical vs. horizontal, in terms of weighing possibilities of or predicting structural integrity against failure. The composite analyses of multiple spectral curves not only enable determination of the orientation of the fracture set/s in space but also allow inferring the nature of more amplified response perpendicular to the crack surface compared to that of a response parallel to the crack surface.

  15. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  16. The Great Chilean Tsunamis of 2010, 2014 and 2015 on the Coast and Offshore of Mexico: Comparative Features Based on Open-Ocean Energy Parameterization

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Zaytsev, O.; Thomson, R.

    2016-12-01

    The three recent great earthquakes offshore of Chile on 27 February 2010 (Maule, Mw 8.8), 1 April 2014 (Iquique, Mw 8.2) and 16 September 2015 (Illapel, Mw 8.3) generated major trans-oceanic tsunamis that spread throughout the entire Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the three events recorded on the Pacific coast of Mexico enabled us to compare the events and to identify coastal "hot spots", regions with maximum tsunami risk. Based on joint spectral analyses of tsunamis and background noise, we have developed a method for reconstructing the "true" tsunami spectra in the deep ocean. The "reconstructed" open-ocean tsunami spectra are in excellent agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.

  17. Exploring the potential of hyper-spectral imaging for the biogeochemical analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech

    2014-05-01

    Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative concentrations of chlorin pigments within individual varve years. In a next step absolute concentrations of chlorins derived from HPLC measurements have been calibrated to the spectral data using a linear regression model. This results in a very high-resolution dataset of absolute sedimentary pigment concentrations. In a second example µXRF measurements are used to validate a spectral index for clay mineral detection.

  18. A new approach for the calculation of response spectral density of a linear stationary random multidegree of freedom system

    NASA Astrophysics Data System (ADS)

    Sharan, A. M.; Sankar, S.; Sankar, T. S.

    1982-08-01

    A new approach for the calculation of response spectral density for a linear stationary random multidegree of freedom system is presented. The method is based on modifying the stochastic dynamic equations of the system by using a set of auxiliary variables. The response spectral density matrix obtained by using this new approach contains the spectral densities and the cross-spectral densities of the system generalized displacements and velocities. The new method requires significantly less computation time as compared to the conventional method for calculating response spectral densities. Two numerical examples are presented to compare quantitatively the computation time.

  19. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Joint Bayesian Component Separation and CMB Power Spectrum Estimation

    NASA Technical Reports Server (NTRS)

    Eriksen, H. K.; Jewell, J. B.; Dickinson, C.; Banday, A. J.; Gorski, K. M.; Lawrence, C. R.

    2008-01-01

    We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground- CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3 deg FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.

  1. Cloud-based processing of multi-spectral imaging data

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  2. Spectral resampling based on user-defined inter-band correlation filter: C3 and C4 grass species classification

    NASA Astrophysics Data System (ADS)

    Adjorlolo, Clement; Mutanga, Onisimo; Cho, Moses A.; Ismail, Riyad

    2013-04-01

    In this paper, a user-defined inter-band correlation filter function was used to resample hyperspectral data and thereby mitigate the problem of multicollinearity in classification analysis. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting threshold of inter-band correlation (WTC, Pearson's r) was calculated, whereby r = 1 at the band-centre. Various WTC (r = 0.99, r = 0.95 and r = 0.90) were assessed, and bands with coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in the random forest analysis to classify in situ C3 and C4 grass canopy reflectance. The respective WTC datasets yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results obtained from this study suggested that resampling of hyperspectral data should account for the spectral dependence information to improve overall classification accuracy as well as reducing the problem of multicollinearity.

  3. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Hyperspectral remote sensing exploration of carbonatite - an example from Epembe, Kunene region, Namibia

    NASA Astrophysics Data System (ADS)

    Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard

    2015-04-01

    Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures were merged according to geological context. The major conclusions are: 1. Carbonate minerals can be mapped using spectral unmixing techniques. 2. Carbonatites are associated with specific geometric pattern 3. The combination of spectral and geometric information improves classification result and reduces misclassification. References Clausi, D. A. (2002): An analysis of co-occurrence texture statistics as a function of grey-level quantization. - Canadian Journal of Remote Sensing, 28 (1), 45-62 Jones, A. P., Genge, M. and Carmody, L (2013): Carbonate Melts and Carbonatites. - Reviews in Mineralogy & Geochemistry, 75, 289-322 Shahzad, F. & Gloaguen, R. (2011): TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin analysis. - Computers and Geosciences, 37 (2), 261-271

  5. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods

    DTIC Science & Technology

    2002-05-06

    reaction- diffusion equation is a difficult problem in analysis that will not be addressed here. Errors will also arise from numerically approx solutions to...the ODEs. When comparing the approximate solution to actual reaction- diffusion systems found in nature, we must also take into account errors that...

  6. Analysis of multispectral scanner (MSS) and Thematic Mapper (TM) performance (pre-launch and post-launch)

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1983-01-01

    Tables and graphs show the results of the spectral, radiometric, and geometric characterization of LANDSAT 4 sensors associated with imagery and of the imagery associated with sensors and processing. Specifications for the various parameters are compared with the photoflight and flight values.

  7. A Study of Soil and Duricrust Models for Mars

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.

    2001-01-01

    An analysis of soil and duricrust formation mechanisms on Mars is presented. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic). Additional information is contained in the original extended abstract.

  8. Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series and the SSBUV Instruments

    NASA Technical Reports Server (NTRS)

    Cebula, Richard P.; DeLand, Matthew T.; Hilsenrath, Ernest

    1997-01-01

    During this period of performance, 1 March 1997 - 31 August 1997, the NOAA-11 SBUV/2 solar spectral irradiance data set was validated using both internal and external assessments. Initial quality checking revealed minor problems with the data (e.g. residual goniometric errors, that were manifest as differences between the two scans acquired each day). The sources of these errors were determined and the errors were corrected. Time series were constructed for selected wavelengths and the solar irradiance changes measured by the instrument were compared to a Mg II proxy-based model of short- and long-term solar irradiance variations. This analysis suggested that errors due to residual, uncorrected long-term instrument drift have been reduced to less than 1-2% over the entire 5.5 year NOAA-11 data record. Detailed statistical analysis was performed. This analysis, which will be documented in a manuscript now in preparation, conclusively demonstrates the evolution of solar rotation periodicity and strength during solar cycle 22.

  9. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    NASA Technical Reports Server (NTRS)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; hide

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  10. Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: A multicentre observational study (AWAKE).

    PubMed

    Palacios-Rubio, Julián; Marina-Breysse, Manuel; Quintanilla, Jorge G; Gil-Perdomo, José Miguel; Juárez-Fernández, Miriam; Garcia-Gonzalez, Inés; Rial-Bastón, Verónica; Corcobado, María Carmen; Espinosa, María Carmen; Ruiz, Francisco; Gómez-Mascaraque Pérez, Francisco; Bringas-Bollada, María; Lillo-Castellano, José María; Pérez-Castellano, Nicasio; Martínez-Sellés, Manuel; López de Sá, Esteban; Martín-Benítez, Juan Carlos; Perez-Villacastín, Julián; Filgueiras-Rama, David

    2018-06-06

    Ventricular fibrillation (VF)-related sudden cardiac death (SCD) is a leading cause of mortality and morbidity. Current biological and imaging parameters show significant limitations on predicting cerebral performance at hospital admission. The AWAKE study (NCT03248557) is a multicentre observational study to validate a model based on spectral ECG analysis to early predict cerebral performance and survival in resuscitated comatose survivors. Data from VF ECG tracings of patients resuscitated from SCD will be collected using an electronic Case Report Form. Patients can be either comatose (Glasgow Coma Scale - GCS - ≤8) survivors undergoing temperature control after return of spontaneous circulation (RoSC), or those who regain consciousness (GCS=15) after RoSC; all admitted to Intensive Cardiac Care Units in 4 major university hospitals. VF tracings prior to the first direct current shock will be digitized and analyzed to derive spectral data and feed a predictive model to estimate favorable neurological performance (FNP). The results of the model will be compared to the actual prognosis. The primary clinical outcome is FNP during hospitalization. Patients will be categorized into 4 subsets of neurological prognosis according to the risk score obtained from the predictive model. The secondary clinical outcomes are survival to hospital discharge, and FNP and survival after 6 months of follow-up. The model-derived categorisation will be also compared with clinical variables to assess model sensitivity, specificity, and accuracy. A model based on spectral analysis of VF tracings is a promising tool to obtain early prognostic data after SCD. Copyright © 2018 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  11. An Innovative Technique to Assess Spontaneous Baroreflex Sensitivity with Short Data Segments: Multiple Trigonometric Regressive Spectral Analysis.

    PubMed

    Li, Kai; Rüdiger, Heinz; Haase, Rocco; Ziemssen, Tjalf

    2018-01-01

    Objective: As the multiple trigonometric regressive spectral (MTRS) analysis is extraordinary in its ability to analyze short local data segments down to 12 s, we wanted to evaluate the impact of the data segment settings by applying the technique of MTRS analysis for baroreflex sensitivity (BRS) estimation using a standardized data pool. Methods: Spectral and baroreflex analyses were performed on the EuroBaVar dataset (42 recordings, including lying and standing positions). For this analysis, the technique of MTRS was used. We used different global and local data segment lengths, and chose the global data segments from different positions. Three global data segments of 1 and 2 min and three local data segments of 12, 20, and 30 s were used in MTRS analysis for BRS. Results: All the BRS-values calculated on the three global data segments were highly correlated, both in the supine and standing positions; the different global data segments provided similar BRS estimations. When using different local data segments, all the BRS-values were also highly correlated. However, in the supine position, using short local data segments of 12 s overestimated BRS compared with those using 20 and 30 s. In the standing position, the BRS estimations using different local data segments were comparable. There was no proportional bias for the comparisons between different BRS estimations. Conclusion: We demonstrate that BRS estimation by the MTRS technique is stable when using different global data segments, and MTRS is extraordinary in its ability to evaluate BRS in even short local data segments (20 and 30 s). Because of the non-stationary character of most biosignals, the MTRS technique would be preferable for BRS analysis especially in conditions when only short stationary data segments are available or when dynamic changes of BRS should be monitored.

  12. Spectral discrimination of bleached and healthy submerged corals based on principal components analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, H.; LeDrew, E.

    1997-06-01

    Remote discrimination of substrate types in relatively shallow coastal waters has been limited by the spatial and spectral resolution of available sensors. An additional limiting factor is the strong attenuating influence of the water column over the substrate. As a result, there have been limited attempts to map submerged ecosystems such as coral reefs based on spectral characteristics. Both healthy and bleached corals were measured at depth with a hand-held spectroradiometer, and their spectra compared. Two separate principal components analyses (PCA) were performed on two sets of spectral data. The PCA revealed that there is indeed a spectral difference basedmore » on health. In the first data set, the first component (healthy coral) explains 46.82%, while the second component (bleached coral) explains 46.35% of the variance. In the second data set, the first component (bleached coral) explained 46.99%; the second component (healthy coral) explained 36.55%; and the third component (healthy coral) explained 15.44 % of the total variance in the original data. These results are encouraging with respect to using an airborne spectroradiometer to identify areas of bleached corals thus enabling accurate monitoring over time.« less

  13. Comparative spectral analysis of veterinary powder product by continuous wavelet and derivative transforms

    NASA Astrophysics Data System (ADS)

    Dinç, Erdal; Kanbur, Murat; Baleanu, Dumitru

    2007-10-01

    Comparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported.

  14. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    PubMed

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct recognition rate of the Adaboost-SRDA-NN model achieved 100% in the validation set. The overall results demonstrate that SRDA algorithm can effectively achieve the spectral feature information extraction to the spectral dimension reduction in model calibration process of qualitative analysis of NIR spectroscopy. In addition, the Adaboost lifting algorithm can improve the classification accuracy of the final model. The results obtained in this work can provide research foundation for developing online monitoring instruments for the monitoring of SSF process.

  15. Isotopic determination of uranium in soil by laser induced breakdown spectroscopy

    DOE PAGES

    Chan, George C. -Y.; Choi, Inhee; Mao, Xianglei; ...

    2016-03-26

    Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectralmore » decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured line width for this U I line was larger than its isotopic splitting. In conclusion, although not the best emission line for isotopic analysis, this U I emission line is sensitive for element analysis with a detection limit of 500 ppm U in the soil matrix; the detection limit for the U II 424.437 nm line was 2000 ppm.« less

  16. Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data

    NASA Astrophysics Data System (ADS)

    Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe

    2014-05-01

    Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional satellite data from HIRDLS (1 km eff. resolution) and conclude preliminary that SABER data does not represent the shortest 20 day Kelvin waves as well as HIRDLS and ECMWF operational analysis.

  17. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.

  18. Multispectral analysis tools can increase utility of RGB color images in histology

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Griffin, Croix; Todd, Austin; Levenson, Richard

    2018-04-01

    Multispectral imaging (MSI) is increasingly finding application in the study and characterization of biological specimens. However, the methods typically used come with challenges on both the acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging times and possible phototoxicity and photobleaching. The resulting datasets can be large and complex, prompting the development of a number of mathematical approaches for segmentation and signal unmixing. We show that under certain circumstances, just three spectral channels provided by standard color cameras, coupled with multispectral analysis tools, including a more recent spectral phasor approach, can efficiently provide useful insights. These findings are supported with a mathematical model relating spectral bandwidth and spectral channel number to achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative matrix factorization and phasor analysis tools all provide useful results, with phasors generating particularly helpful spectral display plots for sample exploration.

  19. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  20. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  1. Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Hong, Zhonghua; Li, Xuesu; Han, Yanling; Zhang, Yun; Wang, Jing; Zhou, Ruyan; Hu, Kening

    2018-06-01

    Many megacities (such as Shanghai) are located in coastal areas, therefore, coastline monitoring is critical for urban security and urban development sustainability. A shoreline is defined as the intersection between coastal land and a water surface and features seawater edge movements as tides rise and fall. Remote sensing techniques have increasingly been used for coastline extraction; however, traditional hard classification methods are performed only at the pixel-level and extracting subpixel accuracy using soft classification methods is both challenging and time consuming due to the complex features in coastal regions. This paper presents an automatic sub-pixel coastline extraction method (ASPCE) from high-spectral satellite imaging that performs coastline extraction based on spectral mixture analysis and, thus, achieves higher accuracy. The ASPCE method consists of three main components: 1) A Water- Vegetation-Impervious-Soil (W-V-I-S) model is first presented to detect mixed W-V-I-S pixels and determine the endmember spectra in coastal regions; 2) The linear spectral mixture unmixing technique based on Fully Constrained Least Squares (FCLS) is applied to the mixed W-V-I-S pixels to estimate seawater abundance; and 3) The spatial attraction model is used to extract the coastline. We tested this new method using EO-1 images from three coastal regions in China: the South China Sea, the East China Sea, and the Bohai Sea. The results showed that the method is accurate and robust. Root mean square error (RMSE) was utilized to evaluate the accuracy by calculating the distance differences between the extracted coastline and the digitized coastline. The classifier's performance was compared with that of the Multiple Endmember Spectral Mixture Analysis (MESMA), Mixture Tuned Matched Filtering (MTMF), Sequential Maximum Angle Convex Cone (SMACC), Constrained Energy Minimization (CEM), and one classical Normalized Difference Water Index (NDWI). The results from the three test sites indicated that the proposed ASPCE method extracted coastlines more efficiently than did the compared methods, and its coastline extraction accuracy corresponded closely to the digitized coastline, with 0.39 pixels, 0.40 pixels, and 0.35 pixels in the three test regions, showing that the ASPCE method achieves an accuracy below 12.0 m (0.40 pixels). Moreover, in the quantitative accuracy assessment for the three test sites, the ASPCE method shows the best performance in coastline extraction, achieving a 0.35 pixel-level at the Bohai Sea, China test site. Therefore, the proposed ASPCE method can extract coastline more accurately than can the hard classification methods or other spectral unmixing methods.

  2. Comparison of spectral estimators for characterizing fractionated atrial electrograms

    PubMed Central

    2013-01-01

    Background Complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF) are commonly assessed using the discrete Fourier transform (DFT), but this can lead to inaccuracy. In this study, spectral estimators derived by averaging the autocorrelation function at lags were compared to the DFT. Method Bipolar CFAE of at least 16 s duration were obtained from pulmonary vein ostia and left atrial free wall sites (9 paroxysmal and 10 persistent AF patients). Power spectra were computed using the DFT and three other methods: 1. a novel spectral estimator based on signal averaging (NSE), 2. the NSE with harmonic removal (NSH), and 3. the autocorrelation function average at lags (AFA). Three spectral parameters were calculated: 1. the largest fundamental spectral peak, known as the dominant frequency (DF), 2. the DF amplitude (DA), and 3. the mean spectral profile (MP), which quantifies noise floor level. For each spectral estimator and parameter, the significance of the difference between paroxysmal and persistent AF was determined. Results For all estimators, mean DA and mean DF values were higher in persistent AF, while the mean MP value was higher in paroxysmal AF. The differences in means between paroxysmals and persistents were highly significant for 3/3 NSE and NSH measurements and for 2/3 DFT and AFA measurements (p<0.001). For all estimators, the standard deviation in DA and MP values were higher in persistent AF, while the standard deviation in DF value was higher in paroxysmal AF. Differences in standard deviations between paroxysmals and persistents were highly significant in 2/3 NSE and NSH measurements, in 1/3 AFA measurements, and in 0/3 DFT measurements. Conclusions Measurements made from all four spectral estimators were in agreement as to whether the means and standard deviations in three spectral parameters were greater in CFAEs acquired from paroxysmal or in persistent AF patients. Since the measurements were consistent, use of two or more of these estimators for power spectral analysis can be assistive to evaluate CFAE more objectively and accurately, which may lead to improved clinical outcome. Since the most significant differences overall were achieved using the NSE and NSH estimators, parameters measured from their spectra will likely be the most useful for detecting and discerning electrophysiologic differences in the AF substrate based upon frequency analysis of CFAE. PMID:23855345

  3. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.

    PubMed

    Gamage, I H; Jonker, A; Zhang, X; Yu, P

    2014-01-24

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products.

  5. A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Guo, Ping; Luo, A.-Li

    2017-03-01

    Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.

  6. Blind source separation of ex-vivo aorta tissue multispectral images

    PubMed Central

    Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson

    2015-01-01

    Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method’s performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue. PMID:26137366

  7. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{submore » S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars« less

  8. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results ofmore » our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.« less

  9. An Example Crossover Experiment for Testing New Vicarious Calibration Techniques for Satellite Ocean Color Radiometry

    NASA Technical Reports Server (NTRS)

    Voss, Kenneth J.; McLean, Scott; Lewis, Marlon; Johnson, Carol; Flora, Stephanie; Feinholz, Michael; Yarbrough, Mark; Trees, Charles; Twardowski, Mike; Clark, Dennis

    2010-01-01

    Vicarious calibration of ocean color satellites involves the use of accurate surface measurements of water-leaving radiance to update and improve the system calibration of ocean color satellite sensors. An experiment was performed to compare a free-fall technique with the established MOBY measurement. We found in the laboratory that the radiance and irradiance instruments compared well within their estimated uncertainties for various spectral sources. The spectrally averaged differences between the NIST values for the sources and the instruments were less than 2.5% for the radiance sensors and less than 1.5% for the irradiance sensors. In the field, the sensors measuring the above-surface downwelling irradiance performed nearly as well as they had in the laboratory, with an average difference of less than 2%. While the water-leaving radiance, L(sub w) calculated from each instrument agreed in almost all cases within the combined instrument uncertainties (approximately 7%), there was a relative bias between the two instrument classes/techniques that varied spectrally. The spectrally averaged (400 nm to 600 nm) difference between the two instrument classes/techniques was 3.1 %. However the spectral variation resulted in the free fall instruments being 0.2% lower at 450 nm and 5.9% higher at 550 nm. Based on the analysis of one matchup, the bias in the L(sub w), was similar to that observed for L(sub u)(1 m) with both systems, indicating the difference did not come from propagating L(sub u)(1 m) to L(sub w).

  10. Spectral studies of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Blissett, R. J.

    1980-01-01

    The conventional "indirect" method of reduction and data analysis of spectral data from non-dispersive X-ray detectors, by the fitting of assumed spectral models, is examined. The limitations of this procedure are presented, and alternative schemes are considered in which the derived spectra are not biased to an astrophysical source model. A new method is developed in detail to directly restore incident photon spectra from the detected count histograms. This Spectral Restoration Technique allows an increase in resolution, to a degree dependent on the statistical precision of the data. This is illustrated by numerical simulations. Proportional counter data from Ariel 5 are analysed using this technique. The results obtained for the sources Cas A and the Crab Nebula are consistent with previous analyses and show that increases in resolution of up to a factor three are possible in practice. The source Cyg X-3 is closely examined. Complex spectral variability is found, with the continuum and iron-line emission modulated with the 4.8 hour period of the source. The data suggest multi-component emission in the source. Comparing separate Ariel 5 observations and published data from other experiments, a correlation between the spectral shape and source intensity is evident. The source behaviour is discussed with reference to proposed source models. Data acquired by the low-energy detectors on-board HEAO-1 are analysed using the Spectral Restoration Technique. This treatment explicitly demonstrates the existence of oxygen K-absorption edges in the soft X-ray spectra of the Crab Nebula and Sco X-1. These results are considered with reference to current theories of the interstellar medium. The thesis commences with a review of cosmic X-ray sources and the mechanisms responsible for their spectral signatures, and continues with a discussion of the instruments appropriate for spectral studies in X-ray astronomy.

  11. Spectral analysis of variable-length coded digital signals

    NASA Astrophysics Data System (ADS)

    Cariolaro, G. L.; Pierobon, G. L.; Pupolin, S. G.

    1982-05-01

    A spectral analysis is conducted for a variable-length word sequence by an encoder driven by a stationary memoryless source. A finite-state sequential machine is considered as a model of the line encoder, and the spectral analysis of the encoded message is performed under the assumption that the sourceword sequence is composed of independent identically distributed words. Closed form expressions for both the continuous and discrete parts of the spectral density are derived in terms of the encoder law and sourceword statistics. The jump part exhibits jumps at multiple integers of per lambda(sub 0)T, where lambda(sub 0) is the greatest common divisor of the possible codeword lengths, and T is the symbol period. The derivation of the continuous part can be conveniently factorized, and the theory is applied to the spectral analysis of BnZS and HDBn codes.

  12. The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

  13. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    The perfectly matched layer (PML) technique is developed in the context of a high- order spectral-element Discontinuous-Galerkin (DG) method. The technique is applied to a range of test cases and is shown to be superior compared to other approaches, such as those based on using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries of computational domains. In general, the PML technique improves the quality of the numerical results for simulations of practical flow configurations, but it also exhibits some instabilities for large perturbations. A preliminary analysis that attempts to understand the source of these instabilities is discussed.

  14. Hyperspectral imaging using the single-pixel Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  15. Spectral classifying base on color of live corals and dead corals covered with algae

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  16. Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG.

    PubMed

    Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger; Alving, Jørgen; Fabricius, Martin Ejler; Scherg, Michael; Neufeld, Miri Y; Pressler, Ronit; Kjaer, Troels W; van Emde Boas, Walter; Beniczky, Sándor

    2014-02-01

    To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source analysis was investigated. Forty EEG samples were reviewed by 7 EEG experts in various montages (longitudinal and transversal bipolar, common average, source derivation, source montage, current source density, and reference-free montages) using 2 electrode arrays (10-20 and the extended one). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest sensitivity and identified ictal activity at earlier time-point than visual inspection. There was no significant difference concerning specificity. The findings advocate for the use of these digital EEG technology-derived analysis methods in clinical practice.

  17. Spectral analysis of the 1976 aeromagnetic survey of Harrat Rahat, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Blank, H. Richard; Sadek, Hamdy S.

    1983-01-01

    Harrat Rahat, an extensive plateau of Cenozoic mafic lava on the Precambrian shield of western Saudi Arabia, has been studied for its water resource and geothermal potential. In support of these investigations, the thickness of the lava sequence at more than 300 points was estimated by spectral analysis of low-level aeromagnetic profiles utilizing the integral Fourier transform of field intensity along overlapping profile segments. The optimum length of segment for analysis was determined to be about 40 km or 600 field samples. Contributions from two discrete magnetic source ensembles could be resolved on almost all spectra computed. The depths to these ensembles correspond closely to the flight height (300 m), and, presumably, to the mean depth to basement near the center of each profile segment. The latter association was confirmed in all three cases where spectral estimates could be directly compared with basement depths measured in drill holes. The maximum thickness estimated for the lava section is 380 m and the mean about 150 m. Data from an isopach map prepared from these results suggest that thickness variations are strongly influenced by pre-harrat, north-northwest-trending topography probably consequent on Cenozoic faulting. The thickest zones show a rough correlation with three axially-disposed volcanic shields.

  18. The physical origin of the X-ray emission from SN 1987A

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Orlando, S.; Petruk, O.

    2017-10-01

    We revisit the spectral analysis of the set of archive XMM-Newton observations of SN 1987A through our 3-D hydrodynamic model describing the whole evolution from the onset of the supernova to the full remnant development. For the first time the spectral analysis accounts for the single observations and for the evolution of the system self-consistently. We adopt a forward modeling approach which allows us to directly synthesize, from the model, X-ray spectra and images in different energy bands. We fold the synthetic observables through the XMM-Newton instrumental response and directly compare models and actual data. We find that our simulation provides an excellent fit to the data, by reproducing simultaneously X-ray fluxes, spectral features, and morphology of SN 1987A at all evolutionary stages. Our analysis enables us to obtain a deep insight on the physical origin of the observed multi-thermal emission, by revealing the contribution of shocked surrounding medium, dense clumps of the circumstellar ring, and ejecta to the total emission. We finally provide predictions for future observations (to be performed with XMM-Newton in the next future and with the forthcoming Athena X-ray telescope in approximately 10 years), showing the growing contribution of the ejecta X-ray emission.

  19. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression.

    PubMed

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen

    2016-02-01

    Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.

  20. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    NASA Astrophysics Data System (ADS)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., <300 nm). In preparation for anticipated future hyperspectral satellite missions, we take the first step here of exploring global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  1. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  2. Green method by diffuse reflectance infrared spectroscopy and spectral region selection for the quantification of sulphamethoxazole and trimethoprim in pharmaceutical formulations.

    PubMed

    da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F

    2016-03-01

    An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.

  3. Optical properties of metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, emitting light in the 1250–1400-nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.

    It is demonstrated that metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, which emit light in the 1250–1400 nm spectral range, can be fabricated by molecular-beam epitaxy. The structural and optical properties of the heterostructures are studied by X-ray diffraction analysis, transmission electron microscopy, and the photoluminescence method. Comparative analysis of the integrated photoluminescence intensity of the heterostructures and a reference sample confirm the high efficiency of radiative recombination in the heterostructures. It is confirmed by transmission electron microscopy that dislocations do not penetrate into the active region of the metamorphic heterostructures, where the radiative recombination of carriers occurs.

  4. Is There Evidence for X-Ray Emitting Plasma Very Close to the Photospheres of O Stars?

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.

    2008-01-01

    Aims. We reexamine the implications of the recent HESS observations of the blazar 1ES0229+200 for constraining the extragalactic mid-infrared background radiation. Methods. We examine the effect of gamma-ray absorption by the extragalactic infrared radiation on predicted intrinsic spectra for this blazar and compare our results with the observational data. Results. We find agreement with our previous results on the shape of the infrared spectral energy distribution, contrary to the recent assertion of the HESS group. Our analysis indicates that 1ES0229+200 has a very hard intrinsic spectrum with a spectral index between 1.1 +/- 0.3 and 1.5 +/- 0.3 in the energy range between approx.0.5 TeV and approx.15 TeV. Conclusions. Under the assumptions that (1) the models of Stecker et al. (2006, ApJ, 648, 774) as derived from numerous detailed infrared observations are reasonable, and (2) spectral indexes in the range 1 < gamma < 1.5 are obtainable from relativistic shock acceleration under the astrophysical conditions extant in blazar flares (Stecker et al. 2007, ApJ, 667, L29), the fits to the observations of 1ES0229+200 using our previous infrared spectral energy distributions are consistent with both the infrared and gamma-ray observations. Our analysis presents evidence indicating that the energy spectrum of relativistic particles in 1ES0229+200 is produced by relativistic shock acceleration, producing an intrinsic -ray spectrum with index 1 < gamma < 1.5 and with no evidence of a peak in the spectral energy distribution up to energies approx.15 TeV.

  5. Improved P300 speller performance using electrocorticography, spectral features, and natural language processing.

    PubMed

    Speier, William; Fried, Itzhak; Pouratian, Nader

    2013-07-01

    The P300 speller is a system designed to restore communication to patients with advanced neuromuscular disorders. This study was designed to explore the potential improvement from using electrocorticography (ECoG) compared to the more traditional usage of electroencephalography (EEG). We tested the P300 speller on two epilepsy patients with temporary subdural electrode arrays over the occipital and temporal lobes respectively. We then performed offline analysis to determine the accuracy and bit rate of the system and integrated spectral features into the classifier and used a natural language processing (NLP) algorithm to further improve the results. The subject with the occipital grid achieved an accuracy of 82.77% and a bit rate of 41.02, which improved to 96.31% and 49.47 respectively using a language model and spectral features. The temporal grid patient achieved an accuracy of 59.03% and a bit rate of 18.26 with an improvement to 75.81% and 27.05 respectively using a language model and spectral features. Spatial analysis of the individual electrodes showed best performance using signals generated and recorded near the occipital pole. Using ECoG and integrating language information and spectral features can improve the bit rate of a P300 speller system. This improvement is sensitive to the electrode placement and likely depends on visually evoked potentials. This study shows that there can be an improvement in BCI performance when using ECoG, but that it is sensitive to the electrode location. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Estimating Achievable Accuracy for Global Imaging Spectroscopy Measurement of Non-Photosynthetic Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Kokaly, R. F.; Daughtry, C. S. T.; Roberts, D. A.; Thompson, D. R.; Chambers, J. Q.; Nagler, P. L.; Okin, G. S.; Scarth, P.

    2016-12-01

    Terrestrial vegetation is dynamic, expressing seasonal, annual, and long-term changes in response to climate and disturbance. Phenology and disturbance (e.g. drought, insect attack, and wildfire) can result in a transition from photosynthesizing "green" vegetation to non-photosynthetic vegetation (NPV). NPV cover can include dead and senescent vegetation, plant litter, agricultural residues, and non-photosynthesizing stem tissue. NPV cover is poorly captured by conventional remote sensing vegetation indices, but it is readily separable from substrate cover based on spectral absorption features in the shortwave infrared. We will present past research motivating the need for global NPV measurements, establishing that mapping seasonal NPV cover is critical for improving our understanding of ecosystem function and carbon dynamics. We will also present new research that helps determine a best achievable accuracy for NPV cover estimation. To test the sensitivity of different NPV cover estimation methods, we simulated satellite imaging spectrometer data using field spectra collected over mixtures of NPV, green vegetation, and soil substrate. We incorporated atmospheric transmittance and modeled sensor noise to create simulated spectra with spectral resolutions ranging from 10 to 30 nm. We applied multiple methods of NPV estimation to the simulated spectra, including spectral indices, spectral feature analysis, multiple endmember spectral mixture analysis, and partial least squares regression, and compared the accuracy and bias of each method. These results prescribe sensor characteristics for an imaging spectrometer mission with NPV measurement capabilities, as well as a "Quantified Earth Science Objective" for global measurement of NPV cover. Copyright 2016, all rights reserved.

  7. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  8. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  9. Rapid screening of guar gum using portable Raman spectral identification methods.

    PubMed

    Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D

    2016-01-25

    Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.

  10. Analysis of the High-Frequency Content in Human QRS Complexes by the Continuous Wavelet Transform: An Automatized Analysis for the Prediction of Sudden Cardiac Death

    PubMed Central

    García Iglesias, Daniel; Roqueñi Gutiérrez, Nieves; De Cos, Francisco Javier; Calvo, David

    2018-01-01

    Background: Fragmentation and delayed potentials in the QRS signal of patients have been postulated as risk markers for Sudden Cardiac Death (SCD). The analysis of the high-frequency spectral content may be useful for quantification. Methods: Forty-two consecutive patients with prior history of SCD or malignant arrhythmias (patients) where compared with 120 healthy individuals (controls). The QRS complexes were extracted with a modified Pan-Tompkins algorithm and processed with the Continuous Wavelet Transform to analyze the high-frequency content (85–130 Hz). Results: Overall, the power of the high-frequency content was higher in patients compared with controls (170.9 vs. 47.3 103nV2Hz−1; p = 0.007), with a prolonged time to reach the maximal power (68.9 vs. 64.8 ms; p = 0.002). An analysis of the signal intensity (instantaneous average of cumulative power), revealed a distinct function between patients and controls. The total intensity was higher in patients compared with controls (137.1 vs. 39 103nV2Hz−1s−1; p = 0.001) and the time to reach the maximal intensity was also prolonged (88.7 vs. 82.1 ms; p < 0.001). Discussion: The high-frequency content of the QRS complexes was distinct between patients at risk of SCD and healthy controls. The wavelet transform is an efficient tool for spectral analysis of the QRS complexes that may contribute to stratification of risk. PMID:29439530

  11. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    NASA Astrophysics Data System (ADS)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  12. Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .

    NASA Astrophysics Data System (ADS)

    Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.

    A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.

  13. Sensitivity test of derivative matrix isopotential synchronous fluorimetry and least squares fitting methods.

    PubMed

    Makkai, Géza; Buzády, Andrea; Erostyák, János

    2010-01-01

    Determination of concentrations of spectrally overlapping compounds has special difficulties. Several methods are available to calculate the constituents' concentrations in moderately complex mixtures. A method which can provide information about spectrally hidden components in mixtures is very useful. Two methods powerful in resolving spectral components are compared in this paper. The first method tested is the Derivative Matrix Isopotential Synchronous Fluorimetry (DMISF). It is based on derivative analysis of MISF spectra, which are constructed using isopotential trajectories in the Excitation-Emission Matrix (EEM) of background solution. For DMISF method, a mathematical routine fitting the 3D data of EEMs was developed. The other method tested uses classical Least Squares Fitting (LSF) algorithm, wherein Rayleigh- and Raman-scattering bands may lead to complications. Both methods give excellent sensitivity and have advantages against each other. Detection limits of DMISF and LSF have been determined at very different concentration and noise levels.

  14. Using experimental design and spatial analyses to improve the precision of NDVI estimates in upland cotton field trials

    USDA-ARS?s Scientific Manuscript database

    Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...

  15. Cycles of Expansion in Higher Education 1870-1985: An International Comparison.

    ERIC Educational Resources Information Center

    Windolf, Paul

    1992-01-01

    The relationship between business cycles and expansion in higher education in 1870-1985 is analyzed and compared for Germany, Italy, France, the United States, and Japan. In most countries, expansion corresponded to economic recession. Spectral analysis, used to explore the cyclical character of the phenomenon, was found to be a powerful…

  16. Spectral Knowledge (SK-UTALCA): Software for Exploratory Analysis of High-Resolution Spectral Reflectance Data on Plant Breeding

    PubMed Central

    Lobos, Gustavo A.; Poblete-Echeverría, Carlos

    2017-01-01

    This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules. PMID:28119705

  17. Spectral Knowledge (SK-UTALCA): Software for Exploratory Analysis of High-Resolution Spectral Reflectance Data on Plant Breeding.

    PubMed

    Lobos, Gustavo A; Poblete-Echeverría, Carlos

    2016-01-01

    This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules.

  18. Robust and transferable quantification of NMR spectral quality using IROC analysis

    NASA Astrophysics Data System (ADS)

    Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.

    2017-12-01

    Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.

  19. Spectral analysis of tissues from patients with cancer using a portable spectroscopic diagnostic ratiometer unit

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Spectral profiles of tissues from patients with breast carcinoma, malignant carcinoid and non-small cell lung carcinoma were acquired using native fluorescence spectroscopy. A novel spectroscopic ratiometer device (S3-LED) with selective excitation wavelengths at 280 nm and 335 nm was used to produce the emission spectra of the key biomolecules, tryptophan and NADH, in the tissue samples. In each of the samples, analysis of emission intensity peaks from biomolecules showed increased 340 nm/440 nm and 340 nm/460 nm ratios in the malignant samples compared to their paired normal samples. This most likely represented increased tryptophan to NADH ratios in the malignant tissue samples compared to their paired normal samples. Among the non-small cell lung carcinoma and breast carcinomas, it appeared that tumors of very large size or poor differentiation had an even greater increase in the 340 nm/440 nm and 340 nm/460 nm ratios. In the samples of malignant carcinoid, which is known to be a highly metabolically active tumor, a marked increase in these ratios was also seen.

  20. Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis.

    PubMed

    Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping

    2014-02-28

    Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.

  1. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study.

    PubMed

    Duffy, Frank H; Als, Heidelise

    2012-06-26

    The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.

  2. Simulation of time-dispersion spectral device with sample spectra accumulation

    NASA Astrophysics Data System (ADS)

    Zhdanov, Arseny; Khansuvarov, Ruslan; Korol, Georgy

    2014-09-01

    This research is conducted in order to design a spectral device for light sources power spectrum analysis. The spectral device should process radiation from sources, direct contact with radiation of which is either impossible or undesirable. Such sources include jet blast of an aircraft, optical radiation in metallurgy and textile industry. In proposed spectral device optical radiation is guided out of unfavorable environment via a piece of optical fiber with high dispersion. It is necessary for analysis to make samples of analyzed radiation as short pulses. Dispersion properties of such optical fiber cause spectral decomposition of input optical pulses. The faster time of group delay vary the stronger the spectral decomposition effect. This effect allows using optical fiber with high dispersion as a major element of proposed spectral device. Duration of sample must be much shorter than group delay time difference of a dispersive system. In the given frequency range this characteristic has to be linear. The frequency range is 400 … 500 THz for typical optical fiber. Using photonic-crystal fiber (PCF) gives much wider spectral range for analysis. In this paper we propose simulation of single pulse transmission through dispersive system with linear dispersion characteristic and quadratic-detected output responses accumulation. During simulation we propose studying influence of optical fiber dispersion characteristic angle on spectral measurement results. We also consider pulse duration and group delay time difference impact on output pulse shape and duration. Results show the most suitable dispersion characteristic that allow choosing the structure of PCF - major element of time-dispersion spectral analysis method and required number of samples for reliable assessment of measured spectrum.

  3. What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Maraun, D.; Holschneider, M.

    2007-12-01

    Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.

  4. Power spectral analysis of the sleep electroencephalogram in heartburn patients with or without gastroesophageal reflux disease: a feasibility study.

    PubMed

    Budhiraja, Rohit; Quan, Stuart F; Punjabi, Naresh M; Drake, Christopher L; Dickman, Ram; Fass, Ronnie

    2010-02-01

    Determine the feasibility of using power spectrum of the sleep electroencephalogram (EEG) as a more sensitive tool than sleep architecture to evaluate the relationship between gastroesophageal reflux disease (GERD) and sleep. GERD has been shown to adversely affect subjective sleep reports but not necessarily objective sleep parameters. Data were prospectively collected from symptomatic patients with heartburn. All symptomatic patients underwent upper endoscopy. Patients without erosive esophagitis underwent pH testing. Sleep was polygraphically recorded in the laboratory. Spectral analysis was performed to determine the power spectrum in 4 bandwidths: delta (0.8 to 4.0 Hz), theta (4.1 to 8.0 Hz), alpha (8.1 to 13.0 Hz), and beta (13.1 to 20.0 Hz). Eleven heartburn patients were included in the GERD group (erosive esophagitis) and 6 heartburn patients in the functional heartburn group (negative endoscopy, pH test, response to proton pump inhibitors). The GERD patients had evidence of lower average delta-power than functional heartburn patients. Patients with GERD had greater overall alpha-power in the latter half of the night (3 hours after sleep onset) than functional heartburn patients. No significant differences were noted in conventional sleep stage summaries between the 2 groups. Among heartburn patients with GERD, EEG spectral power during sleep is shifted towards higher frequencies compared with heartburn patients without GERD despite similar sleep architecture. This feasibility study demonstrated that EEG spectral power during sleep might be the preferred tool to provide an objective analysis about the effect of GERD on sleep.

  5. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Martin, Robert; Witt, Kenneth; McCormick, William; Wu, Hai-Shan; Sluch, Mikhail; Ice, Robert; Lemoff, Brian

    2017-05-01

    Deep-ultraviolet Raman spectroscopy is a very useful approach for standoff detection of explosive traces. Using two simultaneous excitation wavelengths improves the specificity and sensitivity to standoff explosive detection. The High Technology Foundation developed a highly compact prototype of resonance Raman explosives detector. In this work, we discuss the relative performance of a dual-excitation sensor compared to a single-excitation sensor. We present trade space analysis comparing three representative Raman systems with similar size, weight, and power. The analysis takes into account, cost, spectral resolution, detection/identification time and the overall system benefit.

  6. The effect of spatial and spectral heterogeneity of ground-based light sources on night-sky radiances

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Aubé, M.; Kohút, I.

    2010-12-01

    Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.

  7. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization.

    PubMed

    Yuan, Yuan; Lin, Jianzhe; Wang, Qi

    2016-12-01

    Hyperspectral image (HSI) classification is a crucial issue in remote sensing. Accurate classification benefits a large number of applications such as land use analysis and marine resource utilization. But high data correlation brings difficulty to reliable classification, especially for HSI with abundant spectral information. Furthermore, the traditional methods often fail to well consider the spatial coherency of HSI that also limits the classification performance. To address these inherent obstacles, a novel spectral-spatial classification scheme is proposed in this paper. The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework, which are claimed to be two main contributions in this procedure. First, the MJSR not only reduces the spectral redundancy, but also retains necessary correlation in spectral field during classification. Second, the stepwise optimization further explores the spatial correlation that significantly enhances the classification accuracy and robustness. As far as several universal quality evaluation indexes are concerned, the experimental results on Indian Pines and Pavia University demonstrate the superiority of our method compared with the state-of-the-art competitors.

  8. Human high intelligence is involved in spectral redshift of biophotonic activities in the brain

    PubMed Central

    Wang, Niting; Li, Zehua; Xiao, Fangyan; Dai, Jiapei

    2016-01-01

    Human beings hold higher intelligence than other animals on Earth; however, it is still unclear which brain properties might explain the underlying mechanisms. The brain is a major energy-consuming organ compared with other organs. Neural signal communications and information processing in neural circuits play an important role in the realization of various neural functions, whereas improvement in cognitive function is driven by the need for more effective communication that requires less energy. Combining the ultraweak biophoton imaging system (UBIS) with the biophoton spectral analysis device (BSAD), we found that glutamate-induced biophotonic activities and transmission in the brain, which has recently been demonstrated as a novel neural signal communication mechanism, present a spectral redshift from animals (in order of bullfrog, mouse, chicken, pig, and monkey) to humans, even up to a near-infrared wavelength (∼865 nm) in the human brain. This brain property may be a key biophysical basis for explaining high intelligence in humans because biophoton spectral redshift could be a more economical and effective measure of biophotonic signal communications and information processing in the human brain. PMID:27432962

  9. Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data

    NASA Astrophysics Data System (ADS)

    Shafri, Helmi Z. M.; Anuar, M. Izzuddin; Saripan, M. Iqbal

    2009-10-01

    High resolution field spectroradiometers are important for spectral analysis and mobile inspection of vegetation disease. The biggest challenges in using this technology for automated vegetation disease detection are in spectral signatures pre-processing, band selection and generating reflectance indices to improve the ability of hyperspectral data for early detection of disease. In this paper, new indices for oil palm Ganoderma disease detection were generated using band ratio and different band combination techniques. Unsupervised clustering method was used to cluster the values of each class resultant from each index. The wellness of band combinations was assessed by using Optimum Index Factor (OIF) while cluster validation was executed using Average Silhouette Width (ASW). 11 modified reflectance indices were generated in this study and the indices were ranked according to the values of their ASW. These modified indices were also compared to several existing and new indices. The results showed that the combination of spectral values at 610.5nm and 738nm was the best for clustering the three classes of infection levels in the determination of the best spectral index for early detection of Ganoderma disease.

  10. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  11. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    PubMed

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P < .05), and shifted respiratory peak toward left (P < .05). Compared to 16 breaths/minute, traditional spectral analysis showed increased LF power and LF/HF ratio, decreased HF power of HRV at 8 breaths per minute (P < .05). As breathing rate decreased, corrected spectral analysis showed increased HF power, decreased LF power, LF/HF ratio of HRV (P < .05). Compared to controls, resting baroreflex sensitivity decreased in hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P < .05) and controls (from 88.49 ± 6.01 to 112.91 ± 7.29 ms/mm Hg, P < .05).Slow breathing can increase HF power and decrease LF power and LF/HF ratio in essential hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  12. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2004-01-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  13. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2003-12-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  14. Planck 2013 results. IX. HFI spectral response

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction coefficients. These coefficients include those based upon HFI observations of CO, dust, and Sunyaev-Zeldovich emission. General agreement is observed between the ground-based spectral characterization of HFI and corresponding in-flight observations, within the quoted uncertainty of each; explanations are provided for any discrepancies.

  15. SpecViz: Interactive Spectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael; STScI

    2016-06-01

    The astronomical community is about to enter a new generation of scientific enterprise. With next-generation instrumentation and advanced capabilities, the need has arisen to equip astronomers with the necessary tools to deal with large, multi-faceted data. The Space Telescope Science Institute has initiated a data analysis forum for the creation, development, and maintenance of software tools for the interpretation of these new data sets. SpecViz is a spectral 1-D interactive visualization and analysis application built with Python in an open source development environment. A user-friendly GUI allows for a fast, interactive approach to spectral analysis. SpecViz supports handling of unique and instrument-specific data, incorporation of advanced spectral unit handling and conversions in a flexible, high-performance interactive plotting environment. Active spectral feature analysis is possible through interactive measurement and statistical tools. It can be used to build wide-band SEDs, with the capability of combining or overplotting data products from various instruments. SpecViz sports advanced toolsets for filtering and detrending spectral lines; identifying, isolating, and manipulating spectral features; as well as utilizing spectral templates for renormalizing data in an interactive way. SpecViz also includes a flexible model fitting toolset that allows for multi-component models, as well as custom models, to be used with various fitting and decomposition routines. SpecViz also features robust extension via custom data loaders and connection to the central communication system underneath the interface for more advanced control. Incorporation with Jupyter notebooks via connection with the active iPython kernel allows for SpecViz to be used in addition to a user’s normal workflow without demanding the user drastically alter their method of data analysis. In addition, SpecViz allows the interactive analysis of multi-object spectroscopy in the same straight-forward, consistent way. Through the development of such tools, STScI hopes to unify astronomical data analysis software for JWST and other instruments, allowing for efficient, reliable, and consistent scientific results.

  16. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-06-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  17. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems

    PubMed Central

    Boschetti, Mirco; Nutini, Francesco; Manfron, Giacinto; Brivio, Pietro Alessandro; Nelson, Andrew

    2014-01-01

    Identifying managed flooding in paddy fields is commonly used in remote sensing to detect rice. Such flooding, followed by rapid vegetation growth, is a reliable indicator to discriminate rice. Spectral indices (SIs) are often used to perform this task. However, little work has been done on determining which spectral combination in the form of Normalised Difference Spectral Indices (NDSIs) is most appropriate for surface water detection or which thresholds are most robust to separate water from other surfaces in operational contexts. To address this, we conducted analyses on satellite and field spectral data from an agronomic experiment as well as on real farming situations with different soil and plant conditions. Firstly, we review and select NDSIs proposed in the literature, including a new combination of visible and shortwave infrared bands. Secondly, we analyse spectroradiometric field data and satellite data to evaluate mixed pixel effects. Thirdly, we analyse MODIS data and Landsat data at four sites in Europe and Asia to assess NDSI performance in real-world conditions. Finally, we test the performance of the NDSIs on MODIS temporal profiles in the four sites. We also compared the NDSIs against a combined index previously used for agronomic flood detection. Analyses suggest that NDSIs using MODIS bands 4 and 7, 1 and 7, 4 and 6 or 1 and 6 perform best. A common threshold for each NDSI across all sites was more appropriate than locally adaptive thresholds. In general, NDSIs that use band 7 have a negligible increase in Commission Error over those that use band 6 but are more sensitive to water presence in mixed land cover conditions typical of moderate spatial resolution analyses. The best performing NDSI is comparable to the combined index but with less variability in performance across sites, suggesting a more succinct and robust flood detection method. PMID:24586381

  18. Spectral Analysis of Rich Network Topology in Social Networks

    ERIC Educational Resources Information Center

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  19. Interference correction by extracting the information of interference dominant regions: Application to near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Bi, Yiming; Tang, Liang; Shan, Peng; Xie, Qiong; Hu, Yong; Peng, Silong; Tan, Jie; Li, Changwen

    2014-08-01

    Interference such as baseline drift and light scattering can degrade the model predictability in multivariate analysis of near-infrared (NIR) spectra. Usually interference can be represented by an additive and a multiplicative factor. In order to eliminate these interferences, correction parameters are needed to be estimated from spectra. However, the spectra are often mixed of physical light scattering effects and chemical light absorbance effects, making it difficult for parameter estimation. Herein, a novel algorithm was proposed to find a spectral region automatically that the interesting chemical absorbance and noise are low, that is, finding an interference dominant region (IDR). Based on the definition of IDR, a two-step method was proposed to find the optimal IDR and the corresponding correction parameters estimated from IDR. Finally, the correction was performed to the full spectral range using previously obtained parameters for the calibration set and test set, respectively. The method can be applied to multi target systems with one IDR suitable for all targeted analytes. Tested on two benchmark data sets of near-infrared spectra, the performance of the proposed method provided considerable improvement compared with full spectral estimation methods and comparable with other state-of-art methods.

  20. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali, Md Nasim; Majumdar, K; Ray, D P

    2014-07-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. An exploratory data analysis of electroencephalograms using the functional boxplots approach

    PubMed Central

    Ngo, Duy; Sun, Ying; Genton, Marc G.; Wu, Jennifer; Srinivasan, Ramesh; Cramer, Steven C.; Ombao, Hernando

    2015-01-01

    Many model-based methods have been developed over the last several decades for analysis of electroencephalograms (EEGs) in order to understand electrical neural data. In this work, we propose to use the functional boxplot (FBP) to analyze log periodograms of EEG time series data in the spectral domain. The functional bloxplot approach produces a median curve—which is not equivalent to connecting medians obtained from frequency-specific boxplots. In addition, this approach identifies a functional median, summarizes variability, and detects potential outliers. By extending FBPs analysis from one-dimensional curves to surfaces, surface boxplots are also used to explore the variation of the spectral power for the alpha (8–12 Hz) and beta (16–32 Hz) frequency bands across the brain cortical surface. By using rank-based nonparametric tests, we also investigate the stationarity of EEG traces across an exam acquired during resting-state by comparing the spectrum during the early vs. late phases of a single resting-state EEG exam. PMID:26347598

  2. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  3. A frequency domain analysis of respiratory variations in the seismocardiogram signal.

    PubMed

    Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A

    2013-01-01

    The seismocardiogram (SCG) signal traditionally measured using a chest-mounted accelerometer contains low-frequency (0-100 Hz) cardiac vibrations that can be used to derive diagnostically relevant information about cardiovascular and cardiopulmonary health. This work is aimed at investigating the effects of respiration on the frequency domain characteristics of SCG signals measured from 18 healthy subjects. Toward this end, the 0-100 Hz SCG signal bandwidth of interest was sub-divided into 5 Hz and 10 Hz frequency bins to compare the spectral energy in corresponding frequency bins of the SCG signal measured during three key conditions of respiration--inspiration, expiration, and apnea. Statistically significant differences were observed between the power in ensemble averaged inspiratory and expiratory SCG beats and between ensemble averaged inspiratory and apneaic beats across the 18 subjects for multiple frequency bins in the 10-40 Hz frequency range. Accordingly, the spectral analysis methods described in this paper could provide complementary and improved classification of respiratory modulations in the SCG signal over and above time-domain SCG analysis methods.

  4. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    PubMed Central

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively. Spectral analysis also showed an impairment of spontaneous BRS in SHR, but kefir-treatment caused only a tendency to reverse this result. Conclusions: The novelty of this study is that daily chronic consumption of a low dose of kefir reduced the impairment of the cardiac autonomic control of HR and of the impaired BRS in SHR. PMID:27375490

  5. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats.

    PubMed

    Klippel, Brunella F; Duemke, Licia B; Leal, Marcos A; Friques, Andreia G F; Dantas, Eduardo M; Dalvi, Rodolfo F; Gava, Agata L; Pereira, Thiago M C; Andrade, Tadeu U; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2016-01-01

    It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1-adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively. Spectral analysis also showed an impairment of spontaneous BRS in SHR, but kefir-treatment caused only a tendency to reverse this result. The novelty of this study is that daily chronic consumption of a low dose of kefir reduced the impairment of the cardiac autonomic control of HR and of the impaired BRS in SHR.

  6. Improving the Accuracy of Mapping Urban Vegetation Carbon Density by Combining Shadow Remove, Spectral Unmixing Analysis and Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Qie, G.; Wang, G.; Wang, M.

    2016-12-01

    Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images

  7. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  8. Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity

    PubMed Central

    Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael

    2010-01-01

    Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131

  9. Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera

    NASA Astrophysics Data System (ADS)

    Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran

    2017-02-01

    Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.

  10. Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans - a mismatch negativity study.

    PubMed

    Tervaniemi, M; Schröger, E; Saher, M; Näätänen, R

    2000-08-18

    The pitch of a spectrally rich sound is known to be more easily perceived than that of a sinusoidal tone. The present study compared the importance of spectral complexity and sound duration in facilitated pitch discrimination. The mismatch negativity (MMN), which reflects automatic neural discrimination, was recorded to a 2. 5% pitch change in pure tones with only one sinusoidal frequency component (500 Hz) and in spectrally rich tones with three (500-1500 Hz) and five (500-2500 Hz) harmonic partials. During the recordings, subjects concentrated on watching a silent movie. In separate blocks, stimuli were of 100 and 250 ms in duration. The MMN amplitude was enhanced with both spectrally rich sounds when compared with pure tones. The prolonged sound duration did not significantly enhance the MMN. This suggests that increased spectral rather than temporal information facilitates pitch processing of spectrally rich sounds.

  11. Spectral Data Reduction via Wavelet Decomposition

    NASA Technical Reports Server (NTRS)

    Kaewpijit, S.; LeMoigne, J.; El-Ghazawi, T.; Rood, Richard (Technical Monitor)

    2002-01-01

    The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more information about materials than was previously possible with broad-band multispectral imagery. For many applications, the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral signature is still one of the most difficult challenges in the exploitation of this advanced technology, because of the immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of dimension reduction to conquer the so-called "curse of dimensionality." Spectral data reduction using wavelet decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and low-frequency features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra. When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.

  12. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies

    NASA Astrophysics Data System (ADS)

    Pacumbaba, R. O.; Beyl, C. A.

    2011-07-01

    The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland's nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.

  13. Component Cell-Based Restriction of Spectral Conditions and the Impact on CPV Module Power Rating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Steiner, Marc; Siefer, Gerald

    One approach to consider the prevailing spectral conditions when performing CPV module power ratings according to the standard IEC 62670-3 is based on spectral matching ratios (SMRs) determined by the means of component cell sensors. In this work, an uncertainty analysis of the SMR approach is performed based on a dataset of spectral irradiances created with SMARTS2. Using these illumination spectra, the respective efficiencies of multijunction solar cells with different cell architectures are calculated. These efficiencies were used to analyze the influence of different component cell sensors and SMR filtering methods. The 3 main findings of this work are asmore » follows. First, component cells based on the lattice-matched triple-junction (LM3J) cell are suitable for restricting spectral conditions and are qualified for the standardized power rating of CPV modules - even if the CPV module is using multijunction cells other than LM3J. Second, a filtering of all 3 SMRs with +/-3.0% of unity results in the worst case scenario in an underestimation of -1.7% and overestimation of +2.4% compared to AM1.5d efficiency. Third, there is no benefit in matching the component cells to the module cell in respect to the measurement uncertainty.« less

  14. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis.

    PubMed

    Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu

    2015-01-01

    The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of researchmore » results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.« less

  16. Validation of High Speed Earth Atmospheric Entry Radiative Heating from 9.5 to 15.5 km/s

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.; Prabhu, D. K.

    2016-01-01

    This paper presents an overview of the analysis and measurements of equilibrium radiation obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility as a part of recent testing aimed at reaching shock velocities up to 15.5 km/s. The goal of these experiments was to measure the level of radiation encountered during high speed Earth entry conditions, such as would be relevant for an asteroid, inter-planetary or lunar return mission. These experiments provide the first spectrally and spatially resolved data for high speed Earth entry and cover conditions ranging from 9.5 to 15.5 km/s at 13.3 and 26.6 Pa (0.1 and 0.2 Torr). The present analysis endeavors to provide a validation of shock tube radiation measurements and simulations at high speed conditions. A comprehensive comparison between the spectrally resolved absolute equilibrium radiance measured in EAST and the predictive tools, NEQAIR and HARA, is presented. In order to provide a more accurate representation of the agreement between the experimental and simulation results, the integrated value of radiance has been compared across four spectral regions (VUV, UV/Vis, Vis/NIR and IR) as a function of velocity. Results have generally shown excellent agreement between the two codes and EAST data for the Vis through IR spectral regions, however, discrepancies have been identified in the VUV and parts of the UV spectral regions. As a result of the analysis presented in this paper, an updated parametric uncertainty for high speed radiation in air has been evaluated to be [9.0%, -6.3%]. Furthermore, due to the nature of the radiating environment at these high shock speeds, initial calculations aimed at modeling phenomena that become more significant with increasing shock speed have been performed. These phenomena include analyzing the radiating species emitting ahead of the shock and the increased significance of radiative cooling mechanisms.

  17. A practical approach to spectral calibration of short wavelength infrared hyper-spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.

  18. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    PubMed

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  19. Low-energy charge transfer excitations in NiO

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.; Ivanov, V. Yu; Yermakov, A. Ye; Uimin, M. A.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.; Moskvin, A. S.

    2012-08-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t1g(π)-eg) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (eg-eg) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  20. Spectral analysis of the Forel-Ule Ocean colour comparator scale

    NASA Astrophysics Data System (ADS)

    Wernand, M. R.; van der Woerd, H. J.

    2010-04-01

    François Alphonse Forel (1890) and Willi Ule (1892) composed a colour comparator scale, with tints varying from indigo-blue to coca-cola brown, to quantify the colour of natural waters, like seas, lakes and rivers. For each measurement, the observer compares the colour of the water above a submersed white disc (Secchi disc) with the hand-held scale of pre-defined colours. The scale can be well reproduced from a simple recipe for twenty-one coloured chemical solutions and because the ease of its use, the Forel-Ule (FU) scale has been applied globally and intensively by oceanographers and limnologists from the year 1890. Indeed, the archived FU data belong to the oldest oceanographic data sets and do contain information on the changes in geobiophysical properties of natural waters during the last century. In this article we describe the optical properties of the FU-scale and its ability to cover the colours of natural waters, as observed by the human eye. The recipe of the scale and its reproduction is described. The spectral transmission of the tubes, with belonging chromaticity coordinates, is presented. The FU scale, in all its simplicity, is found to be an adequate ocean colour comparator scale. The scale is well characterized, is stable and observations are reproducible. This supports the idea that the large historic data base of FU measurements is coherent and well calibrated. Moreover, the scale can be coupled to contemporary multi-spectral observations with hand-held and satellite-based spectrometers.

  1. Spectrotemporal Modulation Sensitivity as a Predictor of Speech Intelligibility for Hearing-Impaired Listeners

    PubMed Central

    Bernstein, Joshua G.W.; Mehraei, Golbarg; Shamma, Shihab; Gallun, Frederick J.; Theodoroff, Sarah M.; Leek, Marjorie R.

    2014-01-01

    Background A model that can accurately predict speech intelligibility for a given hearing-impaired (HI) listener would be an important tool for hearing-aid fitting or hearing-aid algorithm development. Existing speech-intelligibility models do not incorporate variability in suprathreshold deficits that are not well predicted by classical audiometric measures. One possible approach to the incorporation of such deficits is to base intelligibility predictions on sensitivity to simultaneously spectrally and temporally modulated signals. Purpose The likelihood of success of this approach was evaluated by comparing estimates of spectrotemporal modulation (STM) sensitivity to speech intelligibility and to psychoacoustic estimates of frequency selectivity and temporal fine-structure (TFS) sensitivity across a group of HI listeners. Research Design The minimum modulation depth required to detect STM applied to an 86 dB SPL four-octave noise carrier was measured for combinations of temporal modulation rate (4, 12, or 32 Hz) and spectral modulation density (0.5, 1, 2, or 4 cycles/octave). STM sensitivity estimates for individual HI listeners were compared to estimates of frequency selectivity (measured using the notched-noise method at 500, 1000measured using the notched-noise method at 500, 2000, and 4000 Hz), TFS processing ability (2 Hz frequency-modulation detection thresholds for 500, 10002 Hz frequency-modulation detection thresholds for 500, 2000, and 4000 Hz carriers) and sentence intelligibility in noise (at a 0 dB signal-to-noise ratio) that were measured for the same listeners in a separate study. Study Sample Eight normal-hearing (NH) listeners and 12 listeners with a diagnosis of bilateral sensorineural hearing loss participated. Data Collection and Analysis STM sensitivity was compared between NH and HI listener groups using a repeated-measures analysis of variance. A stepwise regression analysis compared STM sensitivity for individual HI listeners to audiometric thresholds, age, and measures of frequency selectivity and TFS processing ability. A second stepwise regression analysis compared speech intelligibility to STM sensitivity and the audiogram-based Speech Intelligibility Index. Results STM detection thresholds were elevated for the HI listeners, but only for low rates and high densities. STM sensitivity for individual HI listeners was well predicted by a combination of estimates of frequency selectivity at 4000 Hz and TFS sensitivity at 500 Hz but was unrelated to audiometric thresholds. STM sensitivity accounted for an additional 40% of the variance in speech intelligibility beyond the 40% accounted for by the audibility-based Speech Intelligibility Index. Conclusions Impaired STM sensitivity likely results from a combination of a reduced ability to resolve spectral peaks and a reduced ability to use TFS information to follow spectral-peak movements. Combining STM sensitivity estimates with audiometric threshold measures for individual HI listeners provided a more accurate prediction of speech intelligibility than audiometric measures alone. These results suggest a significant likelihood of success for an STM-based model of speech intelligibility for HI listeners. PMID:23636210

  2. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-03-01

    Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.

  3. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    PubMed

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  4. Comparison of two feature selection methods for the separability analysis of intertidal sediments with spectrometric datasets in the German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Jung, Richard; Ehlers, Manfred

    2016-10-01

    The spectral features of intertidal sediments are all influenced by the same biophysical properties, such as water, salinity, grain size or vegetation and therefore they are hard to separate by using only multispectral sensors. This could be shown by a previous study of Jung et al. (2015). A more detailed analysis of their characteristic spectral feature has to be carried out to understand the differences and similarities. Spectrometry data (i.e., hyperspectral sensors), for instance, have the opportunity to measure the reflection of the landscape as a continuous spectral pattern for each pixel of an image built from dozen to hundreds of narrow spectral bands. This reveals a high potential to measure unique spectral responses of different ecological conditions (Hennig et al., 2007). In this context, this study uses spectrometric datasets to distinguish between 14 different sediment classes obtained from a study area in the German Wadden Sea. A new feature selection method is proposed (Jeffries-Matusita distance bases feature selection; JMDFS), which uses the Euclidean distance to eliminate the wavelengths with the most similar reflectance values in an iterative process. Subsequent to each iteration, the separation capability is estimated by the Jeffries-Matusita distance (JMD). Two classes can be separated if the JMD is greater than 1.9 and if less than four wavelengths remain, no separation can be assumed. The results of the JMDFS are compared with a state-of-the-art feature selection method called ReliefF. Both methods showed the ability to improve the separation by achieving overall accuracies greater than 82%. The accuracies are 4%-13% better than the results with all wavelengths applied. The number of remaining wavelengths is very diverse and ranges from 14 to 213 of 703. The advantage of JMDFS compared with ReliefF is clearly the processing time. ReliefF needs 30 min for one temporary result. It is necessary to repeat the process several times and to average all temporary results to achieve a final result. In this study 50 iterations were carried out, which makes four days of processing. In contrast, JMDFS needs only 30 min for a final result.

  5. Cardiovascular response to acute stress in freely moving rats: time-frequency analysis.

    PubMed

    Loncar-Turukalo, Tatjana; Bajic, Dragana; Japundzic-Zigon, Nina

    2008-01-01

    Spectral analysis of cardiovascular series is an important tool for assessing the features of the autonomic control of the cardiovascular system. In this experiment Wistar rats ecquiped with intraarterial catheter for blood pressure (BP) recording were exposed to stress induced by blowing air. The problem of non stationary data was overcomed applying the Smoothed Pseudo Wigner Villle (SPWV) time-frequency distribution. Spectral analysis was done before stress, during stress, immediately after stress and later in recovery. The spectral indices were calculated for both systolic blood pressure (SBP) and pulse interval (PI) series. The time evolution of spectral indices showed perturbed sympathovagal balance.

  6. Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings.

    PubMed

    Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa

    2013-02-01

    A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.

  7. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  8. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  9. Spectral Electroencephalogram Analysis for the Evaluation of Encephalopathy Grade in Children With Acute Liver Failure.

    PubMed

    Press, Craig A; Morgan, Lindsey; Mills, Michele; Stack, Cynthia V; Goldstein, Joshua L; Alonso, Estella M; Wainwright, Mark S

    2017-01-01

    Spectral electroencephalogram analysis is a method for automated analysis of electroencephalogram patterns, which can be performed at the bedside. We sought to determine the utility of spectral electroencephalogram for grading hepatic encephalopathy in children with acute liver failure. Retrospective cohort study. Tertiary care pediatric hospital. Patients between 0 and 18 years old who presented with acute liver failure and were admitted to the PICU. None. Electroencephalograms were analyzed by spectral analysis including total power, relative δ, relative θ, relative α, relative β, θ-to-Δ ratio, and α-to-Δ ratio. Normal values and ranges were first derived using normal electroencephalograms from 70 children of 0-18 years old. Age had a significant effect on each variable measured (p < 0.03). Electroencephalograms from 33 patients with acute liver failure were available for spectral analysis. The median age was 4.3 years, 14 of 33 were male, and the majority had an indeterminate etiology of acute liver failure. Neuroimaging was performed in 26 cases and was normal in 20 cases (77%). The majority (64%) survived, and 82% had a good outcome with a score of 1-3 on the Pediatric Glasgow Outcome Scale-Extended at the time of discharge. Hepatic encephalopathy grade correlated with the qualitative visual electroencephalogram scores assigned by blinded neurophysiologists (rs = 0.493; p < 0.006). Spectral electroencephalogram characteristics varied significantly with the qualitative electroencephalogram classification (p < 0.05). Spectral electroencephalogram variables including relative Δ, relative θ, relative α, θ-to-Δ ratio, and α-to-Δ ratio all significantly varied with the qualitative electroencephalogram (p < 0.025). Moderate to severe hepatic encephalopathy was correlated with a total power of less than or equal to 50% of normal for children 0-3 years old, and with a relative θ of less than or equal to 50% normal for children more than 3 years old (p > 0.05). Spectral electroencephalogram classification correlated with outcome (p < 0.05). Spectral electroencephalogram analysis can be used to evaluate even young patients for hepatic encephalopathy and correlates with outcome. Spectral electroencephalogram may allow improved quantitative and reproducible assessment of hepatic encephalopathy grade in children with acute liver failure.

  10. A global estimate of the Earth's magnetic crustal thickness

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2014-05-01

    The Earth's lithosphere is considered to be magnetic only down to the Curie isotherm. Therefore the Curie isotherm can, in principle, be estimated by analysis of magnetic data. Here, we propose such an analysis in the spectral domain by means of a newly introduced regional spatial power spectrum. This spectrum is based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism (Thébault et al., 2006). We briefly discuss its properties and its relationship with the Spherical Harmonic spatial power spectrum. This relationship allows us to adapt any theoretical expression of the lithospheric field power spectrum expressed in Spherical Harmonic degrees to the regional formulation. We compared previously published statistical expressions (Jackson, 1994 ; Voorhies et al., 2002) to the recent lithospheric field models derived from the CHAMP and airborne measurements and we finally developed a new statistical form for the power spectrum of the Earth's magnetic lithosphere that we think provides more consistent results. This expression depends on the mean magnetization, the mean crustal thickness and a power law value that describes the amount of spatial correlation of the sources. In this study, we make a combine use of the R-SCHA surface power spectrum and this statistical form. We conduct a series of regional spectral analyses for the entire Earth. For each region, we estimate the R-SCHA surface power spectrum of the NGDC-720 Spherical Harmonic model (Maus, 2010). We then fit each of these observational spectra to the statistical expression of the power spectrum of the Earth's lithosphere. By doing so, we estimate the large wavelengths of the magnetic crustal thickness on a global scale that are not accessible directly from the magnetic measurements due to the masking core field. We then discuss these results and compare them to the results we obtained by conducting a similar spectral analysis, but this time in the cartesian coordinates, by means of a published statistical expression (Maus et al., 1997). We also compare our results to crustal thickness global maps derived by means of additional geophysical data (Purucker et al., 2002).

  11. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    PubMed Central

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  12. Study of the Spectral Properties of Nanocomposites with CdSe Quantum Dots in a Wide Range of Low Temperatures

    NASA Astrophysics Data System (ADS)

    Magaryan, K. A.; Eremchev, I. Y.; Karimullin, K. R.; Knyazev, M. V.; Mikhailov, M. A.; Vasilieva, I. A.; Klimusheva, G. V.

    2015-09-01

    Luminescence spectra of the colloidal solution of CdSe quantum dots (in toluene) were studied in a wide range of low temperatures. Samples were synthesized in the liquid crystal matrix of cadmium octanoate (CdC8). A comparative analysis of the obtained data with previous results was performed.

  13. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  14. Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Markey, Mia K.; Tunnell, James W.

    2017-02-01

    Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.

  15. Comparative study of mobile Raman instrumentation for art analysis.

    PubMed

    Vandenabeele, P; Castro, K; Hargreaves, M; Moens, L; Madariaga, J M; Edwards, H G M

    2007-04-04

    In archaeometry, one of the main concerns is to extract information from an art object, without damaging it. Raman spectroscopy is being applied in this research field with recent developments in mobile instrumentation facilitating more routine analysis. This research paper evaluates the performances of five mobile Raman instruments (Renishaw RA100, Renishaw Portable Raman Analyser RX210, Ocean Optics RSL-1, Delta Nu Inspector Raman, Mobile Art Analyser--MArtA) in three different laboratories. A set of samples were collected, in order to obtain information on the spectral performances of the instruments including: spectral resolution, calibration, laser cut-off, the ability to record spectra of organic and inorganic pigments through varnish layers and on the possibilities to identify biomaterials. Spectra were recorded from predefined regions on a canvas painting to simulate the investigation of artworks and the capabilities to record spectra from hardly accessible areas was evaluated.

  16. N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method

    NASA Astrophysics Data System (ADS)

    Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.

    2018-05-01

    Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebrat, J. F.; Plaschy, M.; Tommasi, J.

    This paper presents the analysis of some selected experiments of the MUSE-4 program with the ERANOS-2.1 code system using either the JEF-2.2 library or the more recent JEFF-3.1 one; focus has been given to the reactivities calculations and to the spectral indices of the MUSE-4-Reference and SC3-Pb core configurations. Both libraries provide comparable results on the k{sub eff} of the Reference configuration due to large negative and positive compensating reactivity effects, whereas there is a -400 pcm effect on SC3-Pb. A perturbation analysis demonstrates that the large negative total reactivity effect in this configuration comes from the increase of themore » lead contribution and from the decrease of the sodium contribution. The new library improves the C/E for all the spectral indices in the fuel zone and for most of them in the lead zone except for {sup 238}U and {sup 243}Am. (authors)« less

  18. Methyl Group Internal Rotation in the Pure Rotational Spectrum of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, II; Cooke, S. A.; Groner, P.

    2011-06-01

    We have used chirped pulse Fourier transform microwave spectroscopy to record the pure rotational spectrum of the title molecule. The spectrum was doubled owing to the internal rotation of the methyl group. The spectrum has been assigned and two approaches to the spectral analysis have been performed. In the first case, the A and E components were fit separately using a principal axis method with the SPFIT code of Pickett. In the second case, the A and E states were fit simultaneously using the ERHAM code. For a satisfactory analysis of the spectral data it has been found that the choice of Hamiltonian reduction, i.e. Watson A or S, is very important. The barrier to the internal rotation has been determined to be 261.1(8) Cm-1 and it will be compared to that of acetone and other halogenated acetone species recently studied in our laboratory.

  19. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  20. Stochastic response analysis, order reduction, and output feedback controllers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1985-01-01

    Real disturbances and real sensors have finite bandwidths. The first objective of this paper is to incorporate this finiteness in the 'open-loop modal cost analysis' as applied to a flexible spacecraft. Analysis based on residue calculus shows that among other factors, significance of a mode depends on the power spectral density of disturbances and the response spectral density of sensors at the modal frequency. The second objective of this article is to compare performances of an optimal and a suboptimal output feedback controller, the latter based on 'minimum error excitation' of Kosut. Both the performances are found to be nearly the same, leading us to favor the latter technique because it entails only linear computations. Our final objective is to detect an instability due to truncated modes by representing them as a multiplicative and an additive perturbation in a nominal transfer function. In an example problem it is found that this procedure leads to a narrow range of permissible controller gains, and that it labels a wrong mode as a cause of instability. A free beam is used to illustrate the analysis in this work.

  1. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  2. HEAO-1 analysis of Low Energy Detectors (LED)

    NASA Technical Reports Server (NTRS)

    Nousek, John A.

    1992-01-01

    The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.

  3. Performance comparisons on spatial lattice algorithm and direct matrix inverse method with application to adaptive arrays processing

    NASA Technical Reports Server (NTRS)

    An, S. H.; Yao, K.

    1986-01-01

    Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.

  4. Aromatic dipeptides and their salts—Solid-state linear-dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2008-07-01

    Stereo-structural analysis and IR-bands assignment of the aromatic dipeptides L-tryrosyl- L-phenylalanine ( Tyr-Phe), L-phenylalanyl- L-tyrosine ( Phe-Tyr) and their hydrochloride salts have been carried out by means of IR-LD spectroscopy of oriented as nematic liquid crystal suspension solid samples. The experimental data are compared with known crystallographic ones and theoretical predicted geometries at RHF/ and UHF/6-31G**.

  5. Adventitious sounds identification and extraction using temporal-spectral dominance-based features.

    PubMed

    Jin, Feng; Krishnan, Sridhar Sri; Sattar, Farook

    2011-11-01

    Respiratory sound (RS) signals carry significant information about the underlying functioning of the pulmonary system by the presence of adventitious sounds (ASs). Although many studies have addressed the problem of pathological RS classification, only a limited number of scientific works have focused on the analysis of the evolution of symptom-related signal components in joint time-frequency (TF) plane. This paper proposes a new signal identification and extraction method for various ASs based on instantaneous frequency (IF) analysis. The presented TF decomposition method produces a noise-resistant high definition TF representation of RS signals as compared to the conventional linear TF analysis methods, yet preserving the low computational complexity as compared to those quadratic TF analysis methods. The discarded phase information in conventional spectrogram has been adopted for the estimation of IF and group delay, and a temporal-spectral dominance spectrogram has subsequently been constructed by investigating the TF spreads of the computed time-corrected IF components. The proposed dominance measure enables the extraction of signal components correspond to ASs from noisy RS signal at high noise level. A new set of TF features has also been proposed to quantify the shapes of the obtained TF contours, and therefore strongly, enhances the identification of multicomponents signals such as polyphonic wheezes. An overall accuracy of 92.4±2.9% for the classification of real RS recordings shows the promising performance of the presented method.

  6. Spatio-temporal Spectral Variability in Cas A

    NASA Astrophysics Data System (ADS)

    Nambiar, Yamini; Kashyap, V.; Patnaude, D.

    2014-01-01

    We have analyzed Chandra archival data of Cas A Supernova Remnant to identify regions with large spectral abnormalities and variability over the last decade. We use 8 ACIS-S observations spanning the years 2000 to 2012. We compute spectral hardness ratios in the soft/medium and medium/hard CSC bands over spatial scales corresponding to binning by 4, 8, 16, 32, and 64. We reduce the data and apply the latest calibration using the CIAO tool chandra_repro. We account for exposure variations using exposure maps and compute photon fluxes using the CIAO tool fluximage. We then renormalize the color light curves at each pixel and flag large departures from the norm by comparing with the observed spread in the renormalized color light curves. This allows regions with different intrinsic spectral properties to be compared. We flag deviations of >3σ from the renormalized mean at each epoch, and combine all such pixels to form a map of interesting regions in the remnant. We also identify pixels which have intrinsically abnormal hardness ratios at each epoch. We show that there exist many sites on Cas A where abnormal variations in the spectrum exist. Specifically, we find that many of the identified regions coincide with prominent features of the SNR, such as the edge of the remnant, the central compact object, and numerous knots. In addition, we find various other locations 1000) where there is indication of an atypical spectral signature. The full region lists, along with analysis scripts and the figures and tables shown in this poster, are stored on the Harvard Dataverse Network, at http://dx.doi.org/10.7910/DVN1/22634 YN thanks ABRHS and Young Einsteins Science Club for support and guidance. VK and DP acknowledge support during this project from the Chandra X-Ray Center.

  7. Human brain cancer studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  8. The effect of spectral filters on VEP and alpha-wave responses.

    PubMed

    Willeford, Kevin T; Fimreite, Vanessa; Ciuffreda, Kenneth J

    2016-01-01

    Spectral filters are used to treat light sensitivity in individuals with traumatic brain injury (TBI); however, the effect of these filters on normal visual function has not been elucidated. Thus, the current study aimed to determine the effect of spectral filters on objectively-measured visual-evoked potential (VEP) and alpha-wave responses in the visually-normal population. The full-field (15°H×17°V), pattern-reversal VEP (20' check size, mean luminance 52cd/m(2)) was administered to 20 visually-normal individuals. They were tested with four Intuitive-Colorimeter-derived, broad-band, spectral filters (i.e., gray/neutral density, blue, yellow, and red), which produced similar luminance values for the test stimulus. The VEP N75 and P100 latencies, and VEP amplitude, were recorded. Power spectrum analysis was used to derive the respective powers at each frequency, and peak frequency, for the selected 9-11Hz components of the alpha band. Both N75 and P100 latencies increased with the addition of each filter when compared to baseline. Additionally, each filter numerically reduced intra-session amplitude variability relative to baseline. There were no significant effects on either the mean VEP amplitude or alpha wave parameters. The Intuitive Colorimeter filters significantly increased both N75 and P100 latencies, an effect which is primarily attributable (∼75%) to luminance, and in some cases, specific spectral effects (e.g., blue and red). VEP amplitude and alpha power were not significantly affected. These findings provide an important reference to which either amplitude or power changes in light-sensitive, younger clinical groups can be compared. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  9. The effect of spectral filters on VEP and alpha-wave responses

    PubMed Central

    Willeford, Kevin T.; Fimreite, Vanessa; Ciuffreda, Kenneth J.

    2015-01-01

    Purpose Spectral filters are used to treat light sensitivity in individuals with traumatic brain injury (TBI); however, the effect of these filters on normal visual function has not been elucidated. Thus, the current study aimed to determine the effect of spectral filters on objectively-measured visual-evoked potential (VEP) and alpha-wave responses in the visually-normal population. Methods The full-field (15°H × 17°V), pattern-reversal VEP (20′ check size, mean luminance 52 cd/m2) was administered to 20 visually-normal individuals. They were tested with four Intuitive-Colorimeter-derived, broad-band, spectral filters (i.e., gray/neutral density, blue, yellow, and red), which produced similar luminance values for the test stimulus. The VEP N75 and P100 latencies, and VEP amplitude, were recorded. Power spectrum analysis was used to derive the respective powers at each frequency, and peak frequency, for the selected 9–11 Hz components of the alpha band. Results Both N75 and P100 latencies increased with the addition of each filter when compared to baseline. Additionally, each filter numerically reduced intra-session amplitude variability relative to baseline. There were no significant effects on either the mean VEP amplitude or alpha wave parameters. Conclusions The Intuitive Colorimeter filters significantly increased both N75 and P100 latencies, an effect which is primarily attributable (∼75%) to luminance, and in some cases, specific spectral effects (e.g., blue and red). VEP amplitude and alpha power were not significantly affected. These findings provide an important reference to which either amplitude or power changes in light-sensitive, younger clinical groups can be compared. PMID:26293969

  10. Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment

    PubMed Central

    Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M

    2015-01-01

    Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985

  11. Single-hole spectral function and spin-charge separation in the t-J model

    NASA Astrophysics Data System (ADS)

    Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.

    2001-07-01

    Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1<=J/t<=0.4 on lattices with up to L×L=32×32 sites at a temperature as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.

  12. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  13. Comparative 4f-4f absorption spectral study for the interactions of Nd(III) with some amino acids: Preliminary thermodynamics and kinetic studies of interaction of Nd(III):glycine with Ca(II)

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Bendangsenla, N.; David Singh, Th.; Sumitra, Ch.; Rajmuhon Singh, N.; Indira Devi, M.

    2012-02-01

    Spectral analysis of Nd(III) complexes with some amino acids viz.; glycine, L-alanine, L-phenylalanine and L-aspartic acid in the presence and absence of Ca 2+ was carried out in some organic solvents; CH 3OH, CH 3CN, DMF and dioxane using comparative absorption spectra of 4f-4f transitions. The study was carried out by evaluating various energy interaction parameters like Slator-Condon ( Fk), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding parameter ( b1/2), percent-covalency ( δ) by applying partial and multiple regression analysis. The values of oscillator strength ( Pobs) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been calculated. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( Pobs) and Tλ values, reveal the mode of binding with the different ligands. Kinetic studies for the complexation of Nd(III):glycine:Ca(II) have also been discussed at different temperatures in DMF medium and from it the values of activation energy ( Ea) and thermodynamic parameters like Δ H°, Δ S° and Δ G° for the complexation are evaluated.

  14. Spectral Remittance and Transmittance of Visible and Infrared-A Radiation in Human Skin-Comparison Between in vivo Measurements and Model Calculations.

    PubMed

    Piazena, Helmut; Meffert, Hans; Uebelhack, Ralf

    2017-11-01

    The aim of the study was to assess the interindividual variability of spectral remittance and spectral transmittance of visible and infrared-A radiations interacting with human skin and subcutaneous tissue, and direct measurements were taken in vivo using healthy persons of different skin color types. Up to wavelengths of about 900 nm, both spectral remittance and spectral transmittance depended significantly on the individual contents of melanin and hemoglobin in the skin, whereas the contents of water and lipids mainly determined spectral slopes of both characteristics of interaction for wavelengths above about 900 nm. In vivo measured data of spectral transmittance showed approximately similar decreases with tissue thickness between about 900 nm and 1100 nm as compared with model data which were calculated using spectral absorption and scattering coefficients of skin samples in vitro published by different authors. In addition, in vivo measured data and in vitro-based model calculations of spectral remittance were approximately comparable in this wavelength range. In contrast, systematic but individually varying differences between both methods were found for both spectral remittance and spectral transmittance at wavelengths below about 900 nm, where interaction of radiation was significantly affected by both melanin and hemoglobin. © 2017 The American Society of Photobiology.

  15. An excitation wavelength-scanning spectral imaging system for preclinical imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul

    2008-02-01

    Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.

  16. The effect of dim light at night on cerebral hemodynamic oscillations during sleep: A near-infrared spectroscopy study.

    PubMed

    Kim, Tae-Joon; Lee, Byeong Uk; Sunwoo, Jun-Sang; Byun, Jung-Ick; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Kim, Manho; Lim, Jong-Min; Lee, Eunil; Lee, Sang Kun; Jung, Ki-Young

    2017-01-01

    Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003-0.02 Hz), neurogenic VLFOs (0.02-0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04-0.15 Hz), and total LFOs (0.003-0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.

  17. Spectral identification of melon seeds variety based on k-nearest neighbor and Fisher discriminant analysis

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Jiang, Kai; Zhao, Xueguan; Fan, Pengfei; Wang, Xiu; Liu, Chuan

    2017-10-01

    Impurity of melon seeds variety will cause reductions of melon production and economic benefits of farmers, this research aimed to adopt spectral technology combined with chemometrics methods to identify melon seeds variety. Melon seeds whose varieties were "Yi Te Bai", "Yi Te Jin", "Jing Mi NO.7", "Jing Mi NO.11" and " Yi Li Sha Bai "were used as research samples. A simple spectral system was developed to collect reflective spectral data of melon seeds, including a light source unit, a spectral data acquisition unit and a data processing unit, the detection wavelength range of this system was 200-1100nm with spectral resolution of 0.14 7.7nm. The original reflective spectral data was pre-treated with de-trend (DT), multiple scattering correction (MSC), first derivative (FD), normalization (NOR) and Savitzky-Golay (SG) convolution smoothing methods. Principal Component Analysis (PCA) method was adopted to reduce the dimensions of reflective spectral data and extract principal components. K-nearest neighbour (KNN) and Fisher discriminant analysis (FDA) methods were used to develop discriminant models of melon seeds variety based on PCA. Spectral data pretreatments improved the discriminant effects of KNN and FDA, FDA generated better discriminant results than KNN, both KNN and FDA methods produced discriminant accuracies reaching to 90.0% for validation set. Research results showed that using spectral technology in combination with KNN and FDA modelling methods to identify melon seeds variety was feasible.

  18. Examination of Spectral Transformations on Spectral Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  19. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  20. Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Sartohadi, J.; Setiawan, M. A.; Shrestha, D. B. P.; Jetten, V. G.

    2018-04-01

    Land use change influences the hydrological as well as landscape processes such as runoff and sediment yields. The main objectives of this study are to assess the land use change and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were used to classify the old image. Therefore, the present and the past images are comparable. The influence of the past and present land use on runoff and sediment yield has been compared with field measurement. The effect of land use changes shows the increased surface runoff which is the result of change in the curve number (CN) values. The study shows that it is possible to classify previously obtained image based on spectral characteristics and indices of major land cover types derived from recently obtained image. This avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it also demonstrates that it is possible to link land cover changes with land degradation processes and finally to sedimentation in the reservoir. The only condition is the requirement for having the comparable dataset which should not be difficult to generate. Any variation inherent in the data which are other than surface reflectance has to be corrected.

Top